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Abstract. We formulate and solve a free target optimal Brownian stopping problem from
a given distribution while the target distribution is free and is conditioned to satisfy a given
density height constraint. The solutions to this optimization problem then generates solutions
to the Stefan problem for both supercooled fluid freezing (St1) and ice melting (St2), depend-
ing on the type of cost for optimality. The freezing (St1) case has not been well understood in
the literature beyond one dimension, while our result gives a well-posedness of weak solution
in general dimensions, with a naturally chosen initial data. The cost is a Lagrangian type in-
tegral along path, where the Lagrangian function satisfies strict time monotonicity, increasing
(Type (I) or decreasing (Type (II)). Type (I) case corresponds to the freezing fluid while type
(II) to the melting ice. The optimal stopping time is characterized by the hitting time to a
certain monotone barrier set in the space time, while the optimal target distribution saturates
the density constraint. The barrier sets are determined by the type of the cost and the initial
distribution, and give the space-time free boundaries of the flow for the Stefan problems (St1),
(St2). The free target optimization problem exhibits monotonicity, from which a remarkable
universality follows in the sense that the optimal target distribution is independent of the cost
or its type. This gives a new connection between the freezing and melting Stefan problems.
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1. Introduction

Given a configuration µ of agents subject to a random motion, what would happen if they
try to stay under a given allowed population density height f , in particular, while trying to
optimize their collective dynamics? In the present paper we consider the Brownian motion Wt

in Rd, and the collective dynamics is controlled only by a stopping time τ , that is, when each
random particle stops. Precisely, we consider the following:

Problem 1.1. Consider a nonnegative function f ∈ L∞(Rn). Given an absolutely continuous,
compactly supported measure µ on Rn, find a stopping time τ∗ and its distribution Wτ∗ ∼ ν∗,
that solve

Pf (µ) := inf
(τ,ν)
{C(τ) | W0 ∼ µ, Wτ ∼ ν, ν ≤ f, ν is compactly supported}.(1.1)

Notice that here we do not assume that µ, ν are probability measures. So the expression
‘W0 ∼ µ and Wτ ∼ ν’ should be understood as for each measurable set E,

ν[E] =

ˆ
Prob[Wτ ∈ E | W0 = x]dµ(x).

The problem (1.1) obviously requires some condition for f because if f is too small there will be
no admissible ν. We consider those cases where there is at least one admissible ν. Our model
case is f ≡ 1 on Rd, however a much more general f can be considered. We are particularly
interested in the cost C(τ) of the ‘Lagrangian form’:

C(τ) = E
[ˆ τ

0
L(Bt, t)dt

]
for a continuous L : Rd × R≥0 → R≥0.(1.2)

This problem is in the spirit of what is studied in “constrained transport”, in particular, for
analyzing congested crowd motion (see e.g. [46, 31, 1]) and tumor growth (see e.g. [42, 34]),
which is subject to contact inhibition; the problem (1.1) can be viewed as Brownian martingale
version of the optimal transport free target problem with upper bound of [31]. In those cases the
dynamics have less restricted to allow free drift, making the optimal dynamics deterministic.
Additional noise to their dynamics would generate stochastic aspects. In our problem the
dynamics is restricted only to the Brownian motion but with freedom for stopping time; such
dynamics is called Brownian martingale.

Throughout this paper we make assumptions on the cost C (1.2):

0 ≤ L ≤ D for some constant D and,(1.3)

t 7→ L(·, t) is either strictly increasing (Type (I)), or strictly decreasing (Type (II)).(1.4)

We obtain existence, uniqueness, and characterization of the optimal solution of Problem 1.1;
see Theorem 7.4. Remarkably the problem exhibits universality (see Theorem 7.6), namely, the
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resulting optimal target ν∗ does not depend on a particular choice of the function L, as long as
L satisfies either of the monotonicity assumptions. These are due to monotonicity properties
of the problem regarding the optimal stopping τ∗ and target ν∗ (Theorem 7.1), which also give
L1 contraction (Theorem 7.8) and BV estimates for ν∗ (Theorem 7.10). Such monotonicity is
a novel feature, resulting from not fixing the target distribution ν but treating it as the solution
of the problem. Another important feature of Problem 1.1 is that the optimal solution ν∗, also
the mass flow µt of Wt toward it, saturates the constraint f (Theorem 8.3) wherever possible.

The free target feature of Problem 1.1 distinguishes it from the more well studied so-called
optimal Skorokhod problem (see e.g. [10, 28, 27, 30, 29] as well as the 1 dimensional results
considered by [36, 16, 25, 18]) where optimal stopping times are studied for given fixed initial
and target measures µ, ν and without the density constraint f , that is,

P(µ, ν) := inf
τ
{C(τ) | W0 ∼ µ, Wτ ∼ ν}.(1.5)

Solutions to Problem (1.5) solve the Skorokhod problem [48, 43, 6, 44, 4, 23, 41, 40] for which
a connection to optimal transport was hinted in the work of [33], and established in [10] who
used optimal transport theory (see e.g. the books [50, 51, 45]) and randomized stopping times
to unify all the previous know solutions of the Skorokhod problem as the solutions of (1.5).
We also mention that optimal Skorokhod problem is a special case of the optimal martingale
problem (see e.g. [49, 8, 22, 9, 32, 26, 5, 27] and references therein) which has been recently
popularized in mathematical finance.

As a main application we combine the above mentioned results for Problem 1.1 with the PDE
methods developed in [28] for (1.5) to make progress in the supercooled Stefan problem, a free
boundary problem of the heat equation, which has been poorly understood in the literature.

The supercooled Stefan problem describes freezing of supercooled water into ice, and can
be written in divergence form as

(St1) (η − χ{η>0})t −∆η = 0.

Here −η denotes the temperature of the supercooled water, and thus the set {η > 0} is the
region for the supercooled water. The solution of (St1) is famously known to exhibit irregular,
fractal-like interfaces that could jump discontinuously over time. This is in sharp contrast to
the Stefan problem for melting ice into water,

(St2) (η + χ{η>0})t −∆η = 0,

which can be viewed as a singular nonlinear parabolic equation of the form [β(η)]t −∆η = 0
with an increasing function β; see [2] where one proves comparison and contraction properties
of weak solutions based on this property.

While (St2) is known to generate stable and regularizing solutions ([2, 3, 15]), solutions of
(St1) are shown to develop discontinuity and non-uniqueness in finite time, even in one space
dimension and with smooth initial data ([47, 14]). For higher dimensions, the global existence
of weak solutions for (St1) has stayed largely open.
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It is natural to consider these problems as generated by a particle system, which diffuses
but stops its motion when it hits the interface between water and ice. In one space dimension,
there has been several works which construct solutions of (St1) as a continuum limit of such
particle systems, including [12, 13, 35, 19, 20]. In higher dimensions the global-time existence
of solutions for (St1) has remained open, due to the difficulty of obtaining a stable deterministic
limit [39]. Such an existence theorem is what we establish in this paper.

Similar to aforementioned works, we also consider solutions based on Brownian particles
with hitting times, but with optimization. Indeed a novelty of our approach lies in the op-
timization structure given by Problem (1.1), for the choice of stopping time τ∗ and the final
target distribution ν∗. The optimality gives a certain ‘regularizing effect’ to the solution of
Problem (1.1), and it generates a stable and physically meaningful solutions of both (St1) and
(St2). The method and results are valid for general dimensions. In particular, for (St1) we
obtain the following results:

(a) (Theorem 9.3 and Corollary 9.11) For µ uniformly larger than 1 in its support, there
exists a unique weak solution of (St1) that vanishes in finite time.

(b) (Theorem 9.6 and Corollary 9.12) For compactly supported µ, there exists a unique
weak solution of (St1) that vanishes in finite time except in the support of µ.

Similar results hold for (St2) (Theorem 9.2). The weak solutions in the above results will
correspond to the distribution of active Brownian particles associated with the optimal stopping
times obtained from (1.1), with f = 1 for (a) and f = χRn\suppµ for (b). These results rely on
a rigorous connection that we establish between the weak solution and the optimal Brownian
stopping (see Theorems 5.4 and 5.6). Our results also explain the well-known non-uniqueness
for the freezing case; see the discussion in Section 6 especially, Proposition 6.3.

In connection to the Stefan problem, we can understand our upper constraint problem
(1.1) in the context of freezing and melting. For costs of type (I) the initial distribution µ
can be viewed as the freezing energy of supercooled liquid, or in other words the negative
temperature distribution of the supercooled heat particles. For costs of type (II) we view µ as
some distribution of energy that activates the ‘heat’ particles. The upper constraint f should
stand for the “latent supercooling or heat energy” corresponding to the available transition
energy that the flow from µ needed to yield for the freezing or melting to occur. In other
words, f prescribes the maximal amount of stopped Brownian particles a given location can
accommodate.

The monotonicity types of the cost, (I), (II), correspond to (St1), (St2), respectively. While
(I) and (II) generate different optimal stopping times, we prove that their target measure ν∗

is independent of the cost, or even of its monotonicity type (Theorem 7.6). Using this rather
remarkable universality, we are able to characterize the initial trace of the solutions given in
(a) and (b) above: we refer to Section 9 for further discussions.

1.1. The connection between the Stefan problem and Problem 1.1. The present paper
relies on the previous works on the optimal Skorokhod problem (1.5). Notice that after getting
the optimal target ν∗ in Problem 1.1, finding the optimal stopping time τ∗ is reduced to
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solving (1.5) with µ and ν∗. It is shown [10] [28] that the solution to (1.5) is the first hitting
time of (Wt, t) to a space-time barrier R, which enjoys time-monotonicity. Such a barrier
set can be defined by a barrier function s, such that R := {(x, t) | s(t) ≤ t} for type (I)
and R := {(x, t) | s(t) ≥ t} for type (II). Our results above imply that the free boundary of
the Stefan problem, at time t, corresponds to the boundary of the time t-slice of R, that is
{x | (x, t) ∈ R}. In fact, to derive our well-posedness of the Stefan problem (St1), (St2), it
is crucial for us to verify that R is a closed set, so its complement Rc is open. We are able
to handle this by showing Theorem 4.14, which connects the barrier set of τ∗ to a closed set
generated by the potential function Uµt of the mass flow of Wt under τ∗. Interestingly its proof
essentially uses the Eulerian method in [28].

The PDE methods of [28] is based on the correspondence between stopping time τ and its
Eulerian flow (η, ρ) given on the space-time, that describes the distribution η of (Wt, t) before
stopping by τ , and the stopped distribution of mass ρ of (Wτ , τ). This (η, ρ) solves weakly

ηt −
1

2
∆η = −ρ.

Moreover, under the assumptions (1.3)-(1.4) the (η, ρ) resulting from a solution of P(µ, ν) (1.5)
yields that ρ is formally supported on the boundary of the active region {η > 0} [28]. Assuming
sufficient regularity, ρ should be concentrated on the boundary of the barrier set, which is also
the boundary of the active region {η > 0}. Thus ρ = ν(χ{η>0})t or ρ = ν(χ{η>0})t depending
on the monotonicity of the set {η > 0} over time, and we end up with the weighted Stefan
problem,

(1.6) (η ± νχ{η>0})t −
1

2
∆η = 0,

where ν is the target measure for the optimal stopping time. This equation has been formally
considered for a given fixed target measure ν in [28], and our Theorem 5.4 and 5.6 provide a
rigorous justification.

The saturation result (Theorem 8.3) is crucial for the connection between Problem 1.1 and
the Stefan problem (St1), (St2). It gives ν = 1 (when f ≡ 1) in the active region, so it reduces
the above equation (1.6) to (St1), (St2) for type (I), (II), respectively.

1.2. Further remarks. A novel element of our approach lies in combination of Lagrangian
and Eulerian point of view, as we use both probabilistic arguments using Brownian paths, and
PDE arguments using their Eulerian coordinates, to obtain basic topological properties. It
seems that the closedness of the barrier set R for type (I) is new, while understanding further
regularity of the free boundary for the corresponding supercooled Stefan problem (St1), is a
wide open problem. In this direction, we prove a strict monotonicity result for the barrier
function s, a version of comparison principle, which may shed a light on the challenging ques-
tion; see Theorems 10.1 and 10.2. This is a novel feature of Problem 1.1 as it is a consequence
of the optimization of the free target distribution.

As a byproduct of our approach we define the notion of subharmonically generated sets in
Section 6, which connects the Brownian stopping time and existence of the solution to the
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supercooled Stefan problem (St1). It is a pair (Σ, E) of sets determined by a certain type of
Brownian stopping time from an initial measure µ; Definition 6.1. The solvability of (St1) with
the initial data (µ,E) is determined by whether there is Σ such that (Σ, E) is subharmonically
generated from µ; Theorem 6.2. This notion is used to describe unique solvability of (St1)
and also to characterize vanishing in finite time solution of it in Section 9; Theorem 9.9 and
Corollaries 9.11 and 9.12.

The main results in this paper appear rather surprising, given the lack of understanding in
the literature on multi-dimensional solutions of (St1). In a subsequent work, we will further
develop our method to extend well-posedness theory for (St1) to more general initial bound-
aries. Also, the connection (Remark 9.5) between (St1) and (St2) that we find in this paper
seems to be unexpected, and understanding this connection at a more physical level, is an
interesting open problem. It would also be interesting to understand the physics behind why
type (I) corresponds to freezing and type (II) to melting.

In this paper our method for finding the optimal target ν is solely based on optimizing with
probability measures. We do not consider duality which is a powerful tool for understanding
optimal Brownian stopping, though we heavily rely on the results from [28] that are obtained
via solving the dual problem of the fixed target case, to find the barrier set of the optimal
stoping time. Our free target problem gives a new aspect to the duality that we will discuss
in a subsequent work.

Acknowledgments: We thank Mathav Murugan for various help regarding probabilistic as-
pects.

2. Preliminaries

Throughout this section we assume for simplicity, that the measures µ and ν are compactly
supported in Rd. Much of the discussion (and notation) in this section is borrowed from [28]
which gives foundational results for the development given in this paper. Note that the purpose
of this section is to collect the precise definitions and results necessary for the discussion in
the subsequent sections. We try to include the least amount of information.

2.1. Notation.

• Wt denotes the Brownian motion, while W y
t denotes the Brownian motion with W0 = y.

• Br(x) denotes the ball of radius r centered at x.
• a ∧ b := min[a, b].
• for each Borel measurable set S ⊂ Rd, |S| denotes its d-dimensional Lebesgue measure.
• LSC = the set of lower semi-continuous functions on Rd.
• H1

0 = the Sobolev space on Rd.

2.2. Randomized stopping times and optimal Skorokhod problem in Rn. Related
to Problem 1.1, it is important to understand the notion of stopping times and randomized
stopping times.
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2.2.1. Stopping times and randomized stopping times. Consider the filtered probability space
(Ω,F , {Ft}t∈R≥0

,Pµ) where Ω = C(R≥0;Rd), Pµ the Wiener measure with initial distribution
µ, and {Ft}t∈R≥0

the natural filtration of the Brownian motion. LetM(R≥0) denote the space
of Radon measures on R≥0. A randomized stopping time α [7, 38] is a measure-valued random
variable α : Ω 3 γ 7→ αγ ∈ M(R≥0) such that as a measure on R≥0, αγ ≥ 0, αγ(R≥0) = 1,
and the map γ 7→ αγ([0, t]) is Ft-measurable ∀ t. Along each Brownian path, mass is dropped
according to the distribution on R≥0 determined by the randomized stopping time. A stopping
time τ : Ω → Rγ is a random variable such that for each t, τ ∧ t is Ft-measurable; it can be
understood as a special case of randomized stopping time, where the measure αγ on each path
γ is a Dirac mass at the value τ(γ) in R≥0. To distinguish the different between randomized
stopping time and stopping time, we often call the latter ‘nonrandomized’.

We will say that a subset Q ⊂ R+ × Ω is almost sure for a randomized stopping time if

E
[ˆ

R+

1{t ∈ Q}dα
]

= 0

where 1 is the indicator function of the set. Often this will appear instead as an abbreviated
form, i.e. 1{t ≤ η} := 1{t ∈ Qη} where η is a stopping time and Qη = {(t, ω); t ≤ η(ω)}. We
abbreviate a randomized stopping time by τ ∼ α in the sense that

E
[
f(τ)

]
= E

[ˆ
R≥0

f(t)α(dt)
]
.

The we say ν is the distribution of the (randomized) stopping time τ , that is, Wτ ∼ ν, if

E
[
g(Wτ )

]
=

ˆ
g(z)ν(dz), ∀ continuous g.

From now on we abuse notation and use τ denote either stopping time or randomized stopping
time.

2.2.2. Subharmonic order and optimal Skorokhod problem. Subharmonic order relates two mea-
sures from the point of the Brownian motion. First, f is a subharmonic function on an open
set O in Rd if it is upper-semicontinuous with values on R ∪ {−∞}, and for every x ∈ O and
every closed ball B in O with center at x, it satisfies

f(x) ≤ 1

|B|

ˆ
B
f(y)dy.

When f is C2, the latter condition is equivalent to ∆f ≥ 0 on O, where ∆ =
∑d

i=1
∂2

∂x2i
is the

Laplacian. The reason why we specify the domain O is because subharmonic functions in O
may not necessarily be extended to the whole set Rd.

Two measures µ, ν on Rd with |µ| = |ν| is said to be in subharmonic order µ ≤SH ν, if for
each open set O containing supp(µ+ ν),ˆ

ϕ(x)dµ(x) ≤
ˆ
ϕ(x)dν(x) for every smooth subharmonic function on O.

See e.g. [27, Definition 1.2]. It is known (see e.g. [27, Theorem 1.5]) that for compactly
supported µ and ν as we assume throughout the paper, we have µ ≤SH ν if and only if there
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exists a randomized stopping time τ for the Brownian motion with W0 ∼ µ and Wτ ∼ ν, with
E[τ ] < ∞. For such µ and ν, for any lower semicontinuous cost functional C for the stopping
times, one can find an optimal randomized time between µ and ν using the compactness of the
space of randomized stopping times; this has been observed by Beigleböck, Cox, and Huesmann
[10]. In fact, it is a nontrivial problem to see that such optimal randomized stopping time is
indeed a stopping time (non-randomized) to solve the problem P(µ, ν) (1.5). This has been
proved under the assumptions on the cost (1.3) and (1.4). (For other types of cost, for example
the one based on the distance, C(τ) = E[|W0 −Wτ |], similar results have been proved in [30];
see also [29].)

Theorem 2.1 (Existence/Uniqueness of Optimal Skorokhod Problem [10, 28]). Given com-
pactly supported measures µ, ν on Rd with µ ≤SH ν and µ, ν � Leb, the optimal Skorokhod
problem P(µ, ν) (1.5) with the cost C in (1.2) under the assumption (1.3) and (1.4), has a
unique optimal stopping time τ∗, which is not randomized in the type (I) case, and in the
type (II) case, randomized only at t = 0; in the latter case W0 = x and τ∗ = 0 occurs with
probability ν(x)/µ(x). Moreover, there exists a space-time barrier set R∗ ∈ Rd×R≥0 such that
τ∗ is given by the hitting time to R∗, that is,

τ∗ = inf{t | (Wt, t) ∈ R∗} (in type (II) case, it holds for those paths with τ∗ > 0).

For our purpose it is important to understand the barrier set R∗. It can be characterized
by using the dual solutions of P(µ, ν). In [28]) they used dynamic programming principle to
establish the duality: P(µ, ν) = D(µ, ν) where

D(µ, ν) := sup
ψ∈LSC

{ˆ
Rd
ψ(z)ν(dz)−

ˆ
Rd
Jψ(x, 0)µ(dx)

}
.

Here, the function (x, t) 7→ Jψ(x, t) is called the ‘value function’ which is the result of dynamic
programming:

Jψ(y, t) := sup
σ

{
E
[
ψ(W y

σ )−
ˆ σ

0
L(t+ s,W y

s )ds
]}

where σ are randomized stopping times. Then, it is shown [28] that under the assumptions
in Theorem 2.1 (in fact for more general µ and ν), there exists an optimal dual function
ψ∗ ∈ LSC ∩H1

0 . The barrier set R∗ then is given by

R∗ = {(x, t) | Jψ∗(t, x) = ψ∗(x)} ⊂ Rn × R≥0.(2.1)

The strict monotonicity assumption on L (1.4) for type (I) and (II) implies (forward or back-
ward) time-monotonicity of the set R∗, namely,

R∗ = {(x, t) | t ≥ s(x)} for type (I), R∗ = {(x, t) | t ≤ s(x)} for type (II),

where the function s, called the barrier function, and the stopping time τ∗ is given by

s(x) = inf{t ∈ R+; Jψ∗(t, x) = ψ∗(x)} & τ∗ = inf{t | t ≥ s(Wt)} for type (I),

s(x) = sup{t ∈ R+; Jψ∗(t, x) = ψ∗(x)} & τ∗ = inf{t | t ≤ s(Wt)} for type (II).
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2.3. Eulerian formulation. It is important for us to relate the Brownian motion with stop-
ping time τ , with its corresponding mass flow, which we call Eulerian flow; considering such
Eulerian formulation and effectively using it to analyze optimal stopping times is one of the
main innovations of [28].

An Eulerian flow for us is a pair of measures (η, ρ) on Rd×R≥0 such that in the weak sense,

ρ(t, x) + ∂tη(t, x) =
1

2
∆η(t, x),(2.2) ˆ

R+

dρ = ν, η(x, 0) = µ(x).

For a more precise description, let O ⊂ Rd be a bounded open convex set that contains the
supports of µ and ν. Pick γ < λ the Poincaré constant of O. We consider

C−γ(R≥0 ×O) := {w : C(R+ ×O) | e−γtw(t, x)→ 0 as t→∞, uniformly in x}.

Its dual space Mγ(R+ × O) is the finite Radon measures with γ-exponential decay. We let

C1,2
−γ(R+ × O) denote the functions whose first derivative in time and second derivatives in

space lie in C−γ(R+ × O). Then, following [28] we shall say that (η, ρ) is an admissible pair,

provided η, ρ ∈Mγ(R+ ×O) and η, ρ ≥ 0, and they satisfy the following two equations:ˆ
O
u(z) ν(dz) =

ˆ
O

ˆ
R+

u(x)ρ(dt, dx) for all u ∈ C(O).(2.3)

−
ˆ
O
w(0, y)µ(dy) =

ˆ
O

ˆ
R+

[ ∂
∂t
w(t, x) +

1

2
∆w(t, x)

]
η(dt, dx)(2.4)

−
ˆ
O

ˆ
R+

w(t, x)ρ(dt, dx) for all w ∈ C1,2
−γ(R+ ×O).

Let us translate the Brownian stopping into Eulerian flow:

Proposition 2.2 (see [28] Proposition 2.2). Given µ and ν compactly supported with µ, ν �
Leb. Suppose τ is a stopping time with W0 ∼ µ, Wτ ∼ ν. Then, there is an admissible pair
(η, ρ) of measures on Rd × R≥0, such that for every g ∈ Cc(Rd × R≥0)

E
[
g(τ,Wτ )

]
=

ˆ
O

ˆ
R+

g(t, x)ρ(dt, dx),

and

E
[ ˆ τ

0
g(t,Wt)dt

]
=

ˆ
O

ˆ
R+

g(t, x)η(dt, dx).

This gives equivalence between the optimization problem for the stopping time and the one
for the Eulerian flow [28]:

P(µ, ν) = P1(µ, ν) := inf
(η,ρ)

ˆ
Rd

ˆ
R+

L
(
t, x)η(dt, dx)

where (η, ρ)’s are admissible pairs.
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We close this section with an essential lemma for us to consider the Eulerian flow in the
context of the barrier of the stopping time. It will be later used in Section 4.

Lemma 2.3 ([28] Lemma 4.5). Suppose µ � Leb is a compactly supported measure and
R ⊂ Rd × R≥0. Let (η, ρ) be admissible with the condition η(R) = 0 and ρ(R) = 1.

We suppose R is a measurable forward-barrier, namely, (r, x) ∈ R whenever (t, x) ∈ R with
t ≤ r, and (t, x) ∈ R if there is (ti, x) ∈ R with ti → t. Then (η, ρ) is unique.

If instead R is a measurable backward-barrier, namely, (r, x) ∈ R whenever (t, x) ∈ R with
t ≥ r, and (t, x) ∈ R if there is (ti, x) ∈ R with ti → t, then (η, ρ) is uniquely determined given
the value of ρ on the set (0, x) where s(x) = 0.

Remark 2.4. Let us comment on why the additional condition η(R) = 0, ρ(R) = 1 to the
corresponding PDE (2.4) is sufficient to determine the unique solution. Because ρ(R) = 1
for the probability measure ρ, we have ρ(Rc) = 0. Therefore, the (2.4) behaves like the heat
equation for η in Rc, with the Dirichlet condition which is due to η(R) = 0; therefore the
uniqueness is not surprising, especially if R is closed (so Rc is open). In fact we will show that
we can take R as a closed set; see Section 4, Theorem 4.14.

3. Properties of stopping times

In this section we prove several basic but important results for the properties of hitting times
as well as optimal stopping times. We handle the general case where the barriers are merely
measurable sets, say, not open or closed. This may be of its own interest. For the present
paper, because of Section 4 (see Thereom 4.14), it suffices to consider only the case where the
barrier set is closed, in which case some proofs of this section can possibly be simplified.

3.1. Properties of stopping times with respect to a barrier set. We first recall the
following result from potential theory:

Lemma 3.1. Let µz is the distribution of the stopped Brownian motion starting at z by the
first hitting time to the round sphere ∂Br of radius r centered at 0. Let σ be the surface measure
of ∂Br. Suppose |z| ≥ 2r or |z| ≤ 1

2r. Then, there exists a universal constant C > 0 depending
only on the dimension, such that the Radom-Nikodym derivative satisfies

dµz
dσ
≤ C.

In particular, for the Brownian motion W z
t starting from z, and for the first hitting time τσ to

the sphere ∂Br, we have

Prob[W z
τσ ∈ E] ≤ C σ[E]

σ[∂Br]
for any E ⊂ ∂Br.

Proof. As the Brownian motion is scaling invariant, it is sufficient to consider the case r = 1.
Then, the desired upper bound should be a standard result of potential theory. This is a
consequence of Dahlberg’s Theorem [17]. �
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Using this lemma we now prove a key lemma, which takes care of a subtle possibility that
Brownian paths blocked by a barrier set may possibly drop mass in the set; the lemma says
it should not happen when the final distribution is absolutely continuous. Another equivalent
interpretation is that if it takes some time for Brownian particles from µ to reach G, then the
particles should spread over G before stopping or ν should be singular.

We consider probability measures µ and ν satisfying

(3.1) µ� Leb and ν ≤ f for a bounded measurable function f in Rd.

Lemma 3.2. For probability measures µ and ν satisfying (3.1), let τ be a randomized stopping
time with W0 ∼ µ and Wτ ∼ ν. Let G be a measurable set, and let τG be the first hitting time
to G. That is, τG = inf{t |Wt ∈ G}. Suppose τ ≤ τG and µ ∧ (ν|G) = 0. Then ν[G] = 0.

Remark 3.3. Notice that the condition ν � f , especially ν � Leb, is essential in Lemma 3.2.
For example, consider the distribution ν ∼ Wτ of the Brownian motion of the hitting time τ
to a sphere G, does not satisfy the result of this lemma.

Proof. Suppose ν[G] > 0 for contradiction. Then there exists δ > 0 such that the set

Gδ := {z ∈ G | dν
dx
≥ δ}

has |Gδ| > 0. Consider a Lebesgue point x of Gδ, where the Lebesgue density is 1. Then, for
each small ε > 0, there exists r̄ > 0 (depending on ε) such that the following holds:

ν[Br(x)] ≥ δ/2|Br(x)|, |Gδ ∩Br(x)| ≥ (1− ε)|Br(x)| for all 0 < r ≤ r̄.

From the Fubini’s theorem, there are 0 < r1 < r2 < r̄ with 8r1 < r2 < 10r1 such that

Hd−1[Gδ ∩ ∂Bri(x)] ≥ (1− 5ε)Hd−1[∂Bri(x)], i = 1, 2.

From Lemma 3.1, for a dimensional constant C we have

Prob[Wτ 6∈ Br2(x) |Wt ∈ B4r1(x) for some t ≤ τ ] ≤ Cε,

since for the Brownian path from a point inside B4r1(x) to go outside Br2(x), it has to go
through ∂Br2(x) but avoiding hitting G, thus Gδ. Therefore,

Prob[Wτ ∈ Br2(x) |Wt ∈ B4r1(x) for some t ≤ τ ] ≥ 1− Cε.

By a similar argument of using the same lemma, we get

Prob[Wτ ∈ Br1(x) | Wt ∈ B4r1(x) \B2r1(x) for some t ≤ τ ] ≤ Cε.

Now let us consider

ν[Br1(x)] = Prob[Wτ ∈ Br1(x)]

≤ Prob[W0 ∈ B2r1(x)] + Prob[Wτ ∈ Br1(x) & W0 6∈ B2r1(x)]

= I + II.

Notice that

I = µ[B2r1(x)] ≤ ε|B2r1(x)|
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from the assumption µ ∧ (ν|G) = 0 and the choice of x. On the other hand, from continuity
of Brownian paths, for the Brownian path from a point outside B2r1(x) to arrive in Br1(x), it
first needs to arrive in B4r1(x) \B2r1(x). Therefore,

II ≤ Prob[Wτ ∈ Br1(x) & Wt ∈ B4r1(x) \B2r1(x) for some t ≤ τ ]

= Prob[Wτ ∈ Br1(x) | Wt ∈ B4r1(x) \B2r1(x) for some t ≤ τ ]

× Prob[ Wt ∈ B4r1(x) \B2r1(x) for some t ≤ τ ].

Also, notice that

ν[Br2(x)] = Prob[Wτ ∈ Br2(x)] ≥ Prob[Wτ ∈ Br2(x) | Wt ∈ B4r1(x) for some t ≤ τ ]

× Prob[Wt ∈ B4r1(x) for some t ≤ τ ].

Combining all these with the previous probability estimates with ε, we see that

II ≤ Cε

1− Cε
ν[Br2(x)]

which implies

ν[Br1(x)] ≤ I + II ≤ ε|B2r1(x)|+ Cε

1− Cε
ν[Br2(x)].

Recall that ν[Br1(x)] ≥ δ|Br1(x)|, ν is bounded, and that the volumes |Br1(x)|, |B2r1(x)|, and
|Br2(x)| are all comparable up to a constant factor depending only on the dimension. Then,
we get a contradiction by letting ε→ 0. This completes the proof. �

There are several important consequences of Lemma 3.2. An immediate consequence is this.

Corollary 3.4. Let µ, ν, τ be as given in Lemma 3.2. In addition suppose that τ is given as the
first hitting time to the barrier function s, that is, a measurable function s : Rd → R≥0 ∪{∞},
such that

τ = inf{t | t ≥ s(Wt)} in (I) case, or

τ = inf{t | t ≤ s(Wt)} in (II), respectively.

Let G = {x | s(x) = 0} in (I) case, G = {x | s(x) = ∞} in (II) case, respectively. Assume
f ∧ µ = 0. Then, ν[G] = 0.

Proof. Notice that τ ≤ τG = inf{t |Wt ∈ G} from the definition of τ and τG. Therefore, the
result follows from Lemma 3.2. �

Later in this section we will need another technical fact regarding stopping times.

Lemma 3.5. Let τ be a stopping time. Suppose that G is a measurable set with positive
measure, and every point of G has Lebesgue density larger than a > 0. Let D ⊂ (0,∞) be a
countable dense subset such that

for each fixed constant t ∈ D, Prob[Wt ∈ G & t < τ ] = 0.(3.2)

Let τG := inf{r > 0 | Wr ∈ G}. Then, τ ≤ τG almost surely.
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Proof. First note that

Prob[τ > τG] = Prob[∃t′, t′ < τ & Wt′ ∈ G]

and

Prob[∃t′′ ∈ D, t′′ < τ & Wt′′ ∈ G]

≥ Prob[∃t′′ ∈ D, t′′ < τ & Wt′′ ∈ G | ∃t′, t′ < τ & Wt′ ∈ G]Prob[∃t′, t′ < τ & Wt′ ∈ G].

We now show the following:

Claim: There exists a dimensional constant C > 0 such that

Prob[∃t′′ ∈ D, t′′ < τ & Wt′′ ∈ G |∃t′, t′ < τ & Wt′ ∈ G] = C/2 > 0.

Proof of Claim. For each fixed t′′ > t′, and for given x = Wt′ , the probability density σ for
Wt′′ is nothing but the heat kernel at around x with time t′′ − t′, that is,

σ(z) =
Cd

(t′′ − t′)d/2
e−|z−x|

2/(t′′−t′).

Also note that for fixed t′ < t′′ and for given Wt′ = x, , the event ‘t′ < τ ’ is independent of the
event ‘Wt′′ ∈ G’, from the strong Markov property of the Brownian motion. Hence, for each
x ∈ G and for sufficiently small r > 0 that depends on x we have

Prob[Wt′′ ∈ G | t′ < τ & Wt′ = x]

= Prob[Wt′′ ∈ G | Wt′ = x]

≥ Prob[Wt′′ ∈ G ∩Br(x) | Wt′ = x]

≥ Cd

(t′′ − t′)d/2
e−r

2/(t′′−t′)|G ∩Br(x)|.

≥ a

2

Cd

(t′′ − t′)d/2
e−r

2/(t′′−t′)|Br(x)|,

where the last line follows since G has Lebesgue density larger than a > 0.

Now let r = (t′′ − t′)1/2. Then above computation yields

lim
t′′→t′+

Prob[Wt′′ ∈ G | t′ < τ & Wt′ = x] ≥ C > 0.

Since D is dense, this implies that for each δ > 0,

Prob
[
∃t′′ ∈ D & t′ < t′′ < t′ + δ & Wt′′ ∈ G

∣∣ t′ < τ & Wt′ ∈ G
]
≥ C.

Notice that for fixed t′,

Prob[τ > t′ + δ | t′ < τ & Wt′ ∈ G]→ 1 as δ → 0 for δ > 0.

and thus

Prob[∃t′′ ∈ D, t′′ < τ & Wt′′ ∈ G | t′ < τ & Wt′ ∈ G] ≥ C/2 > 0.
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Since C is uniform over t′, we conclude that

Prob[∃t′′ ∈ D, t′′ < τ & Wt′′ ∈ G |∃t′, t′ < τ & Wt′ ∈ G] ≥ C/2
as well, verifying the claim. �

The Claim yields that

Prob[∃t′′ ∈ D, t′′ < τ & Wt′′ ∈ G] ≥ C

2
Prob[τ > τG].

On the other hand, since D is countable, we have

Prob[∃t′′ ∈ D, t′′ < τ & Wt′′ ∈ G] ≤
∑
t̄∈D

Prob[Wt̄ ∈ G & t̄ < τ ].

Therefore, if Prob[τ > τG] > 0, then there should exist t̄ ∈ D such that

Prob[Wt̄ ∈ G & t̄ < τ ] > 0.

This contradicts (3.2), thus completing the proof. �

Remark 3.6. In Lemma 3.5 the assumption that G consists of its Lebesgue point is essential.
For example, consider in R1, and the interval G1 = [3, 4] and let G = {0} ∪ G1. Let µ be
the uniform distribution on the interval [−1/2, 1/2]. One can find a stopping time τ and its
distribution ν, W0 ∼ µ, Wτ ∼ ν such that ν is supported on [−3/2, 3/2]. Then, because of
the support of ν, we have that τ ≤ τG1. Therefore, for each t > 0, the probability Prob[Wt ∈
G & t < τ ] = Prob[Wt = 0 & t < τ ] = 0. However, on the other hand, τ 6≤ τG, as Brownian
paths will pass through 0 before τ , with positive probability.

Lemma 3.5 together with Lemma 3.2 give the following useful result.

Corollary 3.7. Let µ, ν and τ be as given in Lemma 3.2, and let G be a measurable subset of
Rd. Let D ⊂ (0,∞) be a countable dense subset such that (3.2) holds. Then either the support
of µ overlaps with that of ν|G, or ν[G] = 0.

Remark 3.8. Notice that the condition ν � f , especially ν � Leb, is essential in Corol-
lary 3.7. In particular, if |G| = 0, then Prob[Wt ∈ G & t < τ ] = 0 for each constant t > 0
when W0 ∼ µ � Leb. So, if a singular measure ν supported on such zero Lebesgue measure
set, for example the distribution ν ∼ Wτ of the Brownian motion of the hitting time τ to a
sphere, does not satisfy the result of this Corollary.

Proof. The case |G| = 0 is obvious since ν � Leb. Suppose |G| > 0 and µ ∧ ν = 0 in G̃, we

will show that ν[G] = 0. Let G̃ be the set of Lebesgue points of G. Since (3.2) remains valid

for G̃, Lemma 3.5 yields τ ≤ τG̃ (almost surely), which then implies ν[G̃] = 0 by Lemma 3.2

as µ ∧ ν|G̃ = 0. Since ν[G] = ν[G̃] for ν � Leb, this completes the proof. �

We now focus on stopping times given as the hitting time to a barrier function s : Rd → R≥0.
Lemma 3.2 and its consequences give a useful characterization for such a stopping time, which
will play a key role later in the paper (see for instance Theorem 5.4 and Section 10). Roughly
speaking the following proposition endows a certain regularity to the set {(x, t) | t = s(x)}
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from the condition (3.1), by ensuring that the Brownian particles stop only at the set, nor
above or below (in t), for instance.

Proposition 3.9. Let s : Rd → R≥0∪{+∞} be a measurable function, and let τ be the hitting
time to the barrier s, that is, τ := inf{t | t ≥ s(Wt)} in the type (I) case, τ := inf{t | t ≤ s(Wt)}
in the type (II) case, respectively. Assume W0 ∼ µ, Wτ ∼ ν where µ, ν satisfies (3.1). In the
(II) case further assume that µ ∧ ν = 0. Then,

(3.3) τ = s(Wτ ) almost surely.

Proof. First recall that, by [28, Corollary 3.6], the stopping time occurs only in the barrier set.
Thus, if (3.3) is not true, then

Prob[τ > s(Wτ )] > 0 in the (I) case,

Prob[τ < s(Wτ )] > 0 in the (II) case, respectively,

then, there exists Q 3 t̄ > 0 such that

Prob[τ > t̄ > s(Wτ )] > 0 in the (I) case,

Prob[τ < t̄ < s(Wτ )] > 0 in the (II) case, respectively.

Let us separate the (I) and (II) cases.

1. (I) case. Consider the set S := {x | s(x) < t̄} and the distribution νt̄ of Wt̄∧τ . Note
that Wt̄ ∈ S implies that τ ≤ t̄. Therefore, Wt̄∧τ ∈ S is equivalent to “Wτ ∈ S and τ ≤ t̄”,
which is then equivalent to “s(Wτ ) < t̄ and τ ≤ t̄ ”, whose probability is strictly < 1 due to
Prob[τ > t̄ > s(Wτ )] > 0. Therefore, νt̄[S] < 1, thus the measure µt̄ := νt̄− νt̄|S has a positive
total mass |µt̄| > 0.
We then start the Brownian motion from the distribution µt̄ and initial time t̄; we immediately
stop if τ ≤ t̄, otherwise we continue the Brownian motion until τ ; we call this stopping time τ̄ .
Let ν̄ denote that distribution of Wτ̄ , then, from the condition ν � Leb, we also have ν̄ � Leb.
Moreover, from the definition of S and the fact Prob[τ > t̄ > s(Wτ )] > 0, we have

ν̄[S] > 0.

On the other hand, let τS be the first hitting time to the set S for Brownian motion starting
from the time t̄ with the initial distribution µt̄. Notice that if Wt ∈ S (with t ≥ t̄) then
t ≥ t̄ > s(Wt) by the definition of S, therefore τ ≤ t, thus τ̄ ≤ t from the construction of the
stopping time τ̄ . This implies that τ̄ ≤ τS . From the construction of µt̄ we see that µt̄ � Leb
and µt̄ ∧ ν̄|S = 0. Therefore from Lemma 3.2 we see that ν̄[S] = 0, a contradiction. This
completes the proof in the (I) case.

2. (II) case. Let S = {x | s(x) > t̄}. Let τ̄ = t̄ ∧ τ and τS := inf{t | Wt ∈ S}. Notice that
obviously if t ≥ t̄, then t ≥ τ̄ . On the other hand, if t < t̄ and Wt ∈ S then s(Wt) > t so t > τ .
These imply that τ̄ ≤ τS . Moreover, let ν̄ be the distribution of τ̄ , that is, Wτ̄ ∼ ν̄. Then from
Prob[τ < t̄ < s(Wτ )] > 0 and the assumption µ ∧ ν = 0 in this (II) case, there exists S1 ⊂ S
such that µ[S1] = 0 and ν̄[S1] > 0. Since µ ∧ (ν̄|S1) = 0, and τ̄ ≤ τS ≤ τS1 , we have from
Lemma 3.2, that ν̄[S1] = 0, a contradiction. This completes the proof. �
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4. Stopping times and potential flows.

For each stopping time τ we can consider the time flow of distribution µt of Wτ∧t, 0 ≤ t ≤
∞. These distributions then define potential functions by solving the corresponding Poisson
equation. The potential functions can be used back to study the stopping times, which is
especially beneficial because they have regularity properties coming from the elliptic regularity
and Ito’s formula. Our main theorem (Theorem 4.14) of this section utilizes this to show that
when τ is given by the hitting time to a barrier of type (I) or (II), the barrier is a closed set.
This is a key fact that will be used in Section 5 where we establish the consistency of our
probabilistic formulation of the Stefan problem with the PDE formulation.

Using potential functions to study stopping times has been considered in the literature
starting from [6] for existence of Brownian stopping times (Skorokhod problem), and more
recently for analyzing optimal stopping problems (see [16, 25, 18], for one space dimension,
and [28] for higher dimensions).

4.1. Potential flows, definition and regularity. In this subsection we define the potential
flow Uµt and establish its space-time continuity (Corollary 4.9).

Let N(y) be the Newtonian potential function on Rd, namely

N(y) :=


1
2 |y| d = 1,

2π log |y| d = 2,
1

d(2−d)ωd
|y|2−d otherwise.

where ωd is the volume of the unit ball in Rd such that

∆N(y) = δ0.

Given a measure µ, define the potential Uµ defined as

Uµ(x) :=

ˆ
N(x− y)dµ(y).

Since ∆Uµ = µ, standard elliptic regularity theory yields the following:

Lemma 4.1 (Spatial continuity). Assume that there are constants M,R > 0 such that µ ≤M
and µ = 0 outside BR. Then ‖Uµ‖C1,α(Rd) ≤ C for any 0 < α < 1, with C = C(α,M,R).

Remark 4.2. Our main focus is on the stopping times τ generating a compactly supported ν,
Wτ ∼ ν, with the upper density constraint ν ≤ f . For such τ , the measure µt, the distribution
of Wτ∧t ∼ µt, is uniformly bounded with respect to t, as µt is bounded by the greater of the
solution to the heat equation (with initial value µ) and f . Also, the support of µt is contained
in the convex hull of the support of ν since the subharmonic order µt ≤SH ν implies convex
order µt ≤C ν. In what follows we thus focus on the case where the result of Lemma 4.1 holds.

We now recall a simple consequence of Ito’s formula. For each 0 ≤ g ∈ C1
c (Rd), consider a

subharmonic function u ∈ C2 such that ∆u = g. Note that one can find such u ∈ C2,α from
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elliptic regularity. Using Ito’s formula, for each stopping time σ ≥ 0 we have

E[u(Wσ) | W0 = y]− u(y) = E
[ˆ σ

0

1

2
∆u(Wt)dt

∣∣∣ W0 = y

]
= E

[ˆ σ

0

1

2
g(Wt)dt

∣∣∣ W0 = y

]
.

In particular, we can show

Lemma 4.3. Suppose that µ is a probability measure on Rd and W0 ∼ µ and Wτi ∼ νi, i = 1, 2
and that the potentials Uν1 , Uν2 are measurable functions. Assume that τ1 ≤ τ2. Then, for each
closed or open set E ⊂ Rd, we have for the characteristic function χE that

(4.1)

ˆ
E

(Uν2 − Uν1) (y)dy = E
[ˆ τ2

τ1

1

2
χE(Wt)dt

]
.

In general, for a measurable E, there exists a monotonically increasing sequence of compact
sets Kn ⊆ E with limn→∞ |E \ Kn| = 0 and monotonically decreasing sequence of open sets
with E ⊆ On and limn→∞ |On \ E| = 0 such thatˆ

E
(Uν2 − Uν1) (y)dy = lim

n→∞
E
[ˆ τ2

τ1

1

2
χKn(Wt)dt

]
= E

[ˆ τ2

τ1

1

2
lim
n→∞

χKn(Wt)dt

]
,

ˆ
E

(Uν2 − Uν1) (y)dy = lim
n→∞

E
[ˆ τ2

τ1

1

2
χOn(Wt)dt

]
= E

[ˆ τ2

τ1

1

2
lim
n→∞

χOn(Wt)dt

]
.

Proof. 1. First let us consider the case where E is compact or open. For a compact set E = K,
there exists a monotonically decreasing sequence 0 ≤ gk ∈ C1

c (Rd), point-wisely converging
to χK , that is, χK = infk gk. Indeed, take a continuous function hk that equals d(x,E) if
d(x,E) ≤ 1/k, 1 if d(x,E) ≥ 2/k, and the linear interpolation, (1− 1/k)(d(x,E)− 1/k) + 1/k,
for 1/k ≤ d(x,E) ≤ 2/k. After mollifying, this generates a monotone increasing sequence of
C1 functions that converges to 1− χE .

When E = O is open and bounded, we can modify the above construction for K = (Rd \
O) ∩BR for R� 1 to find corresponding {gk}k converging to χO.

Now, consider the subharmonic functions uk ∈ C∞ such that ∆uk = gk. We haveˆ
E

(Uν2 − Uν1) (y)dy = lim
k→∞

ˆ
(Uν2 − Uν1) (y)gk(y)dy (by the monotone convergence theorem)

= lim
k→∞

ˆ
(ν2 − ν1) (y)uk(y) dy (integration by parts)

= lim
k→∞

E[uk(Wτ2)− uk(Wτ1)]

= lim
k→∞

E
[ˆ τ2

τ1

1

2
gk(Wt)dt

]
(by Ito’s formula)

where by the monotone convergence theorem (applied to the Wiener measure on the path space
as the monotone convergence gk → χE can be extended to the path space), the last line is the
same as

E
[ˆ τ2

τ1

1

2
χE(Wt)dt

]
.
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2. Next for open or cloesd E, consider ER = E ∩ BR. Notice χER → χE monotonically as
R→∞. We can apply arguments in 1. for ER and apply the monotone convergence theorem
as R→∞.

3. Now for a measurable E, one can find a sequence of increasing compact sets K1 ⊆ K2 ⊆
K3 ⊆ .... contained in E such that limn→∞ |E\Kn| = 0 and monotonically decreasing sequence
of open sets with E ⊆ On, O1 ⊇ O2 ⊇ O3 ⊇ · · · , and limn→∞ |On \ E| = 0. Let {En} denote
either the sequence {Kn} or {On}. Then, from the monotone convergence theorem applied to
χEn , we have ˆ

E
(Uν2 − Uν1) (y)dy = lim

n→∞

ˆ
En

(Uν2 − Uν1) (y)dy.

Since for the sets
´
En

(Uν2 − Uν1) (y)dy = E
[´ τ2
τ1

1
2χEn(Wt)dt

]
from the previous cases, we get

ˆ
E

(Uν2 − Uν1) (y)dy = lim
n→∞

E
[ˆ τ2

τ1

1

2
χEn(Wt)dt

]
= E

[ˆ τ2

τ1

1

2
lim
n→∞

χEn(Wt)dt

]
where for the last equality we applied the monotone convergence theorem to the Wiener mea-
sure on the path space as the monotone sequence χEn can be extended to the path space. This
completes the proof. �

The following is a standard fact, but, we provide its proof for the sake of exposition.

Corollary 4.4. Suppose µ is a bounded, compactly supported measure on Rd and that τ1, τ2

are stopping times with the given initial distribution µ and let Wτi ∼ νi, i = 1, 2. Then

τ1 ≤ τ2 implies Uν1 ≤ Uν2 .
Moreover the equality holds if and only if τ1 = τ2 almost surely.

Proof. The order immediately follows from Lemma 4.3. For equality, suppose Uν1 = Uν2 . We
Lemma 4.3 to E = Rd to obtain

0 =

ˆ
Rd

(Uν2 − Uν1) (y)dy = E
[ˆ τ2

τ1

1

2
dt

]
=

1

2
E[τ2 − τ1]

Hence E[τ2 − τ1] = 0. Since τ2 ≥ τ1, we conclude that τ2 = τ1 almost surely. �

Remark 4.5. Note that there are many stopping times with the same final distribution. There-
fore, Uν1 = Uν2 without an assumption like τ1 ≤ τ2 does not give much information.

Now we define our potential flow.

Definition 4.6. For compactly supported measures µ, ν � Leb, let τ be a stopping time between
µ and ν, that is W0 ∼ µ and Wτ ∼ ν. We define µt to be the distribution of the stopping time
τ ∧ t, that is, Wτ∧t ∼ µt. We then call {Uµt}t>0 as the potential flow associated with τ .

Note that µ = µ0 and ν = µ∞. From Corollary 4.4 we immediately have

Corollary 4.7. (a) Uµt is monotonically nondecreasing in t;
(b) Uµ ≤ Uµt ≤ Uν for all t;
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(c) Uµt pointwise converges to Uµ and Uν respectively as t→ 0+ and t→∞.

We now prove continuity of the potential flow in time.

Lemma 4.8 (Time continuity). Suppose C := ‖µt‖L∞(Rd×[0,∞) < ∞, and that the support of
µt is bounded uniformly in t. Then Uµt is Lipschitz in time, more precisely, for each x,

0 ≤ Uµt′ (x)− Uµt(x) ≤ C

2
[t′ − t] for all 0 ≤ t < t′.

Proof. Recall from Lemma 4.3 that for each open set E,
ˆ
E

(
Uµt′ − Uµt

)
(y)dy = E

[ˆ τ∧t′

τ∧t

1

2
χE(Wt)dt

]
.

The first inequality then follows from the spatial continuity of Uµt . For the second inequality,
apply Fubini in above equality to obtain

(4.2)

ˆ
E

(
Uµt′ − Uµt

)
(y)dy =

1

2

ˆ t′

t
Prob[Wr ∈ E & r < τ ]dr.

Notice that for each r > 0, by definition of µt,

Prob[Wr ∈ E & r < τ ] ≤ µr[E].

Since µr ≤ C, this and (4.2) implies

1

|E|

ˆ
E

(
Uµt′ − Uµt

)
(y)dy ≤ C

2
(t′ − t).

Now set E = Br(x) and let r → 0+, which completes the proof. �

From Lemma 4.1, Corollary 4.4 and Lemma 4.8, the following holds:

Corollary 4.9 (Space-time Lipschitzness of the potential). Assume that there exists a constant
C > 0 such that µt ≤ C for all t ≥ 0, and that the support of µt is bounded uniformly in t.
Then Uµt is uniformly C1,α in space and Lipschitz in time in Rd × [0,∞). In particular, the
convergence in Corollary 4.7 (c) is uniform.

4.2. Hitting times to monotone barriers and potential functions. In this section we
investigate the relation between the stopping time τ and the hitting time to a barrier set
generated by the potential Uµt .

Definition 4.10. For the potential flow {Uµt}t≥0 given in Definition 4.6, we define the time
forward/backward stopping times

τU,f := inf{t | Uµt(Wt) = Uν(Wt)}, τU,b := inf{t > 0 | Uµt(Wt) = Uµ(Wt)}.
We also define the corresponding barrier functions and the barrier sets as follows:

sU,f (x) := inf{t | Uµt(x) = Uν(x)}, RU,f := {(x, t) | t ≥ sU,f (x)}
and

sU,b(x) := sup{t | Uµt(x) = Uµ(x)}, RU,b := {(x, t) | t ≤ sU,b(x)}.
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Note that because of the time-monotonicity of Uµt as in Corollary 4.7, we have

τU,f = inf{t | sU,f (Wt) ≤ t}, τU,b = inf{t | sU,b(Wt) ≥ t > 0}.

Notice that the condition t > 0 for τU,b is necessary: otherwise τU,b ≡ 0.

The potential flow Uµt can be defined for any stopping time, even for randomized stopping

time, so the hitting times τU,f , τU,b can be associated to any (randomized) stopping time τ .
On the other hand it is easy to see that τ and either of τU,f , τU,b do not coincide in general.
Even with a first hitting time τ , it will not be equal to τU,f , τU,b unless its barrier is monotone
in time. In case τ is indeed a hitting time to a time-monotone barrier, we verify that it is
in fact equal to τU,f , τU,b, respectively, depending on its monotonicity type; this is proved in
Theorem 4.14 below.

To see why such equivalence is useful, observe the following consequence of the continuity
of potential flow.

Lemma 4.11. Assume µt and its support is uniformly bounded for all t ≥ 0. Then sU,f and
−sU,b are lower semicontinuous. Thus, the sets RU,f and RU,b are closed in Rd × [0,∞).

Proof. From Corollary 4.9. �

The closeness of the barrier sets is essential in Section 5 after we verify below that the
optimal stopping time τ coincides with τU,f or τU,b, depending on type (I) or (II) of τ . It will
imply closedness of the barrier set for τ , which then allow us to apply maximum principle in
the PDE formulation in Section 5.

Note that the equivalence between τ and τU,f or τU,b, is hinted in the formula (4.1) which is
a consequence of Ito’s formula. One sees there that more time spent for the Brownian motion
increases the potential function, which is precisely controlled but, only in integral/expected
value sense, thus, it is not obvious how to use such a control on average quantities to get
information for each Brownian path. We bypass this difficulty in two important steps. First,
we show that the barrier set R of τ (for example, the set R∗ for the optimal stopping time τ∗

as in Section 2) contains (in a measure theoretic sense) the barrier set RU,f for costs of type
(I) (respectively, RU,b for costs of type (II)). This is basically a result of the Ito’s formula via
Lemma 4.3.

Proposition 4.12. Let µ, ν and τ be as given in Definition 4.6. Suppose τ is characterized
as τ = inf{t | t ≥ s(Wt)} for costs of type (I), τ = sup{t | 0 < t ≤ s(Wt)} for costs of type
(II), for a measurable function s : Rd × (R≥0 ∪ {∞}). Then we have

ν[{x | s(x) < sU,f (x)}] = 0 for (I) and ν[{x | s(x) > sU,b(x)}] = 0 for (II).

Proof. We will prove for costs of type (I), since the argument is parallel for the other case.
Suppose not, that is, ν({s < sU,f}) > 0. We can then find a constant t̄ ∈ [0,∞) such that

ν[E] > 0 where E := {x | s(x) ≤ t̄ < sU,f (x)}.
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Since ν � Leb, this also means |E| > 0. Let us define w(x, t) := Uν(x) − Uµt(x). From
Lemma 4.4 and definition of E we have w(·, t̄) > 0 on E, yieldingˆ

E
w(y, t̄)dy > 0.

At the moment we only know that E is a measurable set; for example, we do not know
continuity of s or sU,f , sU,b. But, from Lemma 4.3, there exists monotonically increasing
sequence of compact sets Kn ⊆ E such that´

E w(y, t̄)dy = limn→∞ E
[´ τ
t̄∧τ

1
2χKn(Wt)dt

]
= limn→∞

1
2

´∞
t̄ Prob[Wr ∈ Kn & r < τ ]dr,

where the second equality is from Fubini’s theorem.

On the other hand, recall that τ = inf{t : t ≥ s(x)}. Hence if Wr ∈ E and r ≥ t̄, then
s(Wr) ≤ t̄ ≤ r and thus τ ≤ r. Therefore

Prob[Wr ∈ Kn & r < τ ] ≤ Prob[Wr ∈ E & r < τ ] = 0 for each n.

Back to the previous integrals and the limits, this then implies thatˆ
E
w(y, t̄)dy = 0,

a contradiction, completing the proof. �

Definition 4.13. We let τU commonly denote τU,f and τU,b depending on whether µt is
generated from type (I) or (II) stopping time τ . Likewise we use RU as the corresponding
barrier sets RU,f and RU,b. and sU corresponding to sU,f and sU,b.

Proposition 4.12 and (3.3) together imply that τ ≥ τU . It then implies that we may choose
the barrier R of τ in such a way that R ⊂ RU . The opposite inclusion will show the equivalence
between τ and τU . Unfortunately we fall short of proving this, due to unknown nature of
regularity for the distribution of τU , in spite of the fact that most likely it is ν. In particular
we are unable to use Lemma 2.3 due to the unknown regularity for the corresponding Eulerian
variables. Still, it is possible to utilize the potential barrier to derive that the set {η > 0}
is open, which is important for the consistency results in Section 5. We employ the Eulerian
formulation that connects the Brownian motion with stopping time with a parabolic flow.

Theorem 4.14. Let µ, ν and τ be as given in Proposition 4.12. In type (II), assume that
τ > 0 almost surely. Then the eulerian variable (η, ρ) that corresponds to τ satisfies

(4.3) {η > 0} = (RU )C .

In addition, when 0 < a < ν on its support for a constant a, we have

(4.4) s = sU ν-a.e.
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Remark 4.15. In type (II) the assumption τ > 0 almost surely, is necessary. For example, if
µ ∧ ν 6= 0 then the optimal stopping time τ randomizes at the initial time to stop the common
mass µ ∧ ν then proceed with the remaining mass µ − µ ∧ ν for positive time; in this case τU

can still be > 0, making τ 6= τU .

Proof of Theorem 4.14. From Proposition 2.2, the stopping time τ induces its Eulerian flow
(η, ρ) which satisfies (2.2) with η[R] = 0 and ρ[R] = 1. Furthermore from [28] we have
η ∈ L2(R+;H1

0 (Rn)).

Let us denote w := Uν −Uµt for (I), and w := Uµt −Uµ for (II). For the rest of the proof we
focus on type (I), as (II) follows a parallel proof.

Since ∆w = ν − µt at each t ≥ 0, w satisfies

(4.5) ∆w(x) = ν(x)− η(t, x)−
ˆ t

0
ρ(ds, x) in Rd, for type (I).

Now, for g ∈ C(R+ × Rd) with g(t, ·) ∈ Cc(Rd) for each t > 0, consider ϕ solving −∆ϕ(t, ·) =
g(t, ·) for each t > 0, with decay at infinity. Using (2.2) for (η, ρ) and (4.5), we integrate by
parts to obtainˆ

Rd

ˆ
R+

g(x, t)
∂

∂t
w(x)dtdx =

ˆ
Rd

ˆ
R+

ϕ(−∂tη − ρ)dtdx =

ˆ
Rd

ˆ
R+

ϕ(−1

2
∆η)dtdx

=

ˆ
Rd

ˆ
R+

−1

2
g(x, t)η(x, t)dtdx.

Therefore we have

∂tw = −1
2η (in type (II), the sign is opposite.)(4.6)

Let us continue arguing with (I). Integrating (2.2) for (η, ρ) in time from zero to infinity,
using the fact that η, a subsolution to heat equation with bounded initial data, vanishes as
t→∞, yields that

(4.7)
1

2
∆(

ˆ ∞
0

η(x, s))ds = ν − µ = w(x, 0).

From this and (4.6), it follows that w(x, t) = 1
2

´∞
t η(x, s)ds. Since η is nonnegative, it

follows that the set {w > 0} includes {η > 0}, namely {η > 0} ⊂ (RU )C . On the other
hand, we already had τ ≥ τU , which follows from Proposition 4.12 and (3.3). This means that
without loss of generality we can assume that R ⊂ RU , or in other words, the barrier R of τ
can be chosen to satisfy R ⊂ RU . In particular this implies that ρ((RU )C) = 0, and thus η
solves the heat equation in (RU )C . In particular it follows that η is positive in the connected
open component of (RU )C that contains {µ > 0}×{t = 0}. Since (RU )C decreases in time and
is open, so is any of its connected component. It follows that the set {η(·, t) > 0} decreases in
time, and thus from (4.7) we conclude that {w > 0} = {η > 0} = (RU )C and thus (4.3).

Next we proceed to show (4.4). We will only show the case for type (I), since parallel
arguments hold for (II). Note that by (4.3) we have RU = {w = 0} = {η = 0}, and
(RU )c = {w > 0}. Hence, combining (4.6) and (4.5) we have
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(4.8) wt −
1

2
∆w = −1

2
νχ{w>0}, w(·, 0) = Uν − Uµ.

If 0 < a < ν < b for some constants a, b in its support, then by standard arguments for
parabolic obstacle problem (see Lemma 5.2 and section 5.3 of [11]), ∂{w > 0} = ∂{η > 0} has
zero space-time Lebesgue measure. We will use this fact in the next paragraph.

SinceR ⊂ RU , we have sU ≤ s. Due to Proposition 3.9 ρ can only be supported in {t = s(x)}.
On the other hand ρ = 0 where {η > 0} as shown above and from the (η, ρ) equation ρ = 0 in
any open set where η = 0. Therefore, it follows that ρ = 0 outside of ∂{η > 0}, that is, ρ is
concentrated in the set ∂{η > 0}. Since

´
ρ(x, s)ds = ν(x), Proposition 3.9 implies that

{t = s(x)} ⊂ ∂{η > 0} for ν-a.e. x.

Since {η > 0} = (RU )C = {t < sU (x)}, it follows that both points (sU (x), x), (s(x), x) are
in ∂{η > 0}. Since the set {η > 0} decreases in time, it follows that the whole segment
[sU (x), s(x)] × {x} are in ∂{η > 0}. Hence, if ν(sU < s) > 0 then it contradicts the fact that
the space-time measure of ∂{η > 0} is zero. Now we can conclude (4.4).

In the case of (II), wt = −1
2η with (4.8) changes to wt = 1

2η with

(4.9) wt −
1

2
∆w = −1

2
νχ{w>0} +

1

2
µ, w(·, 0) = 0.

Here we use the fact that τ > 0. The rest of the argument is parallel to that of (I). �

Theorem 4.14 states that if τ is the hitting time to a monotone-in-time barrier set, then
the barrier can be given by RU where the Brownian motion reaches. Note that the barrier
sets cannot be unique, as wherever the Brownian motion does not reach, one can modify the
barrier set without changing the hitting time τ from µ and the final distribution ν. We however
can characterize the set RU is the largest barrier set for τ , as any barrier set of τ should be
contained in RU by Proposition 4.12. Because of this we regard RU as the canonical barrier
associated to τ , µ and ν. From now on we mean RU whenever we say a monotone barrier R
for such hitting times τ as in Proposition 4.12.

We can in fact show that RU (so R in our convention) is not dependent on τ but only on µ
and ν as long as the stopping time is given by the hitting time to a monotone barrier; this is not
straightforward because RU is determined by the potential flow Uµt which then is determined
by the distribution µt ∼ Wτ∧t. In particular this yields the uniqueness of the hitting time
τ (hitting a forward or backward barrier set) for given µ and ν. When R is finely closed,
such uniqueness of the barrier is known (see e.g. [10, Remarks 2.3 and 6.19]). We remove
this restrictive assumption in the proof below, where we make use of the parabolic obstacle
problem that the w-variable solves.

Lemma 4.16. Let µ, ν and τ be as given in Proposition 4.12 with ν uniformly positive in its
support. In type (II), assume that τ > 0 almost surely. Then for given µ and ν, the barrier
set R (more precisely, the barrier function s of R) is unique ν-a.e.
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Proof. Let (η, ρ) and w be as given in the proof of Theorem 4.14.
Note that the above parabolic obstacle problem (4.8) and (4.9) each has a unique solution

due to comparison principle. Indeed, suppose w1 and w2 solve the same parabolic obstacle
problem with the same initial data. Then (w1 − w2)+ is a subsolution of the heat equation
with zero initial data, and thus it is zero. Hence w and {w > 0} = (RU )c is determined only
by µ and ν. Hence we conclude by (4.4). �

Definition 4.17. For µ, ν as given in Lemma 4.16, (R, s(x)) is each the barrier set and the
barrier function associated to (µ, ν) for the cost type (I) or the cost type (II) if R = RU is the
barrier set uniquely given (ν-a.e.) in Lemma 4.16, in the form of R := {(x, t) : t ≥ s(x)} for
cost (I), or R := {(x, t) : t ≤ s(x)} for cost (II).

For the given barrier R, the corresponding Eulerian flow is uniquely determined, due to
Lemma 2.3. This justifies the following:

Definition 4.18. We say the pair (η, ρ) is the Eulerian variables associated with (µ, ν) for
the cost type (I) (or (II)) if it is the unique pair (η, ρ) solving (2.2) in the weak sense with the
property η ∈ L2([0,∞);H1

0 (BR)) with η(R) = 0 and ρ(R) = 1 for the ν-a.e. unique barrier
R = RU determined by µ, ν.

4.3. Remarks on the potential approach and the parabolic obstacle problem. We
have verified in the proof of Lemma 4.16 that the function w(x, t) := Uν −Uµt (w := Uµt −Uµ
for (II)) solves the obstacle problem (4.8)-(4.9). They are in the form of the parabolic obstacle
problem that has been actively studied in the literature. In fact, this connection between
the parabolic obstacle problem and the Stefan problem has been used in [21] to introduce a
notion of weak solution solely based on (4.8) for a regularized version of (St1). However, even
ignoring the regularization, such notion of weak solutions has its limitations due to lack of
sufficient regularity of w-variable to track the problem back to (St1). We refer to [11] and
[35] for available results on regularity and singularity for solutions of (4.8). We point out
that the low regularity of w is due to the fact that wt is non-positive in our setting. When
wt is nonnegative, which corresponds to the costs of type (II) and thus (St2), much stronger
regularity results holds for the parabolic obstacle problem: see e.g. [24].

5. Consistency with the Stefan problem

Let (η, ρ) be the Eulerian variables associated with (µ, ν), given in Definition 4.18. In this
section we will show that η solves the Stefan problems, with initial distribution µ and weight
ν, and vice versa. This connection has been indicated in [28] with formal analysis.

Let us define weak solutions of the (weighted) Stefan problems (St1)ν and (St2)ν with initial
density η0 and initial domain E:

(5.1) (η ± νχ{η>0})t −
1

2
∆η = 0, η(·, 0) = η0 ∈ L1(Rn), E := lim sup

t→0+
{η(·, t) > 0}.

Definition 5.1. A nonnegative function η ∈ L1(Rn × [0,∞)) is a weak solution of (St1)ν
(or (St2)ν) with initial data (η0, E) if

(a) the set {η(·, t)} > 0 decreases (or increases) in t;
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(b) E = lim supt→0+{η(·, t) > 0};

(c) for any test function ϕ ∈ C∞c (Rn × [0,∞)),

(5.2)

ˆ ∞
0

ˆ
Rd

[(η − ( or +)νχ{η>0})ϕt +
1

2
η∆ϕ]dxdt =

ˆ
Rd

[(η0 + ( or −)νχE)ϕ](x, 0)dx

We say that η is a weak solutions of (Sti) if it is for (Sti)ν with ν = 1, for i = 1, 2.

Remark 5.2. One can check that η is a weak solution of (St1)νi if ν1 = ν2 in the set
{x : (x, t) ∈ ∂{η > 0} for some t > 0}. To see this, note that

ˆ ˆ
νχ{η>0}ϕt dxdt =

ˆ
ν(x)

ˆ s(x)

0
ϕtdtdx =

ˆ
ν(x)(ϕ(x, s(x))− χEϕ(x, 0))dtdx,

where s(x) := sup{t : η(x, t) > 0}. So the only value of ν that matters is at (x, s(x)), a.e. x.

Remark 5.3. Note that the weak solution for (St1)ν or (St2)ν requires specifying not only
the initial data η0 but the initial domain E to be solved as an initial-value problem. With
this information we can find a unique solution of (St2) by comparison principle, for instance
see [2]. On the other hand, even with specified η0 and E, (St1) can exhibit a high degree of
non-uniqueness, as we will see in Section 6.1.

Theorem 5.4. Let µ, ν ∈ L1(Rd), and assume that ν > a > 0 for some constant a in its
support. Let (η, ρ) be the associated Eulerian flow given in Definition 4.18 for either (I) or
(II). If the optimal stopping time associated with (µ, ν) is strictly positive, the following holds:

(a) For (I), η is a weak solution (St1)ν with initial data (µ,E), where E is a set containing
the support of ν.

(b) For (II), η is a weak solution (St2)ν with initial data (µ,E) where E is the support of
µ.

Proof. Let R be the barrier set associated with (µ, ν) for either the cost of type (I) and (II)
given in Definition 4.17. Note that the following holds from Proposition 3.9 and Theorem 4.14:

(i) ρ is supported on {t = s(x)};
(ii) {η > 0} = {t < s(x)} (ν, dt)-a.e.

For the next set of computations we focus on (I). Let ϕ ∈ C∞(Rn × [0,∞)) with compact
support in space. Recall that (η, ρ) then satisfies (2.2), namelyˆ ∞

0

ˆ
η(ϕt +

1

2
∆ϕ)dxdt =

ˆ ∞
0

ˆ
ρϕdxdt+

ˆ
µϕ(x, 0)dx.

We would like to see that η satisfies the weak equation for (St1)ν . To this end observe thatˆ ∞
0

ˆ
ρϕdxdt =

ˆ
(

ˆ ∞
0

ρ(x, t)ϕ(x, t)dt)dx =

ˆ ˆ
ν(x)ϕ(x, s(x))dx,

where the second equality comes from (i) and the fact that
´∞

0 ρ(x, t)dt = ν(x) a.e. x.
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Next, from (ii) we have {η > 0} = {t < s(x)} (ν, dt)-a.e. Thus by Fubini’s theorem

´
ν(x)ϕ(x, s(x))dx =

´
ν(x)

´ s(x)
0 ϕt(x, t)dtdx+

´
ν(x)ϕ(x, 0)dx

=
´ ´
{η>0} ν(x)ϕt(x, t)dtdx+

´
ν(x)ϕ(x, 0)dx.

Hence (2.2) can be written asˆ ∞
0

ˆ
η(ϕt +

1

2
∆ϕ)dxdt =

ˆ
ν(x)χ{η>0}ϕt(x, t)dx−

ˆ
[ν(x)− µ(x)]ϕ(x, 0)dx.

Hence η is a weak solution η ∈ L1(Rd × [0,∞)) of (St1)ν , with initial data η0 = µ and the
initial trace of the set {η > 0} equal to a set E containing the support of ν.

For (II), since {η > 0} = {s(x) < t} (ν, dt)-a.e., again by Fubini’s theorem

(5.3)

ˆ
ν(x)ϕ(x, s(x))dx = −

ˆ
ν(x)

ˆ ∞
s(x)

ϕt(x, t)dtdx = −
ˆ ˆ

{η>0}
ν(x)ϕt(x, t)dtdx,

Since τ > 0, we have ν = 0 in {η(·, 0+) > 0}. Hence (2.2) for case (II) can then be written
as

ˆ ∞
0

ˆ
η(ϕt +

1

2
∆ϕ)dxdt = −

ˆ
{η>0}

ν(x)ϕt(x, t)dxdt−
ˆ
µ(x)ϕ(x, 0)dx,

which is the weak expression for (St2)ν with initial data µ and the initial support the same
as µ.

�

Remark 5.5. In the case τ = 0, the theorem will hold with the revised initial data µ−µ0 and
revised target measure ν − µ0, where µ0 is the portion of µ with τ = 0, namely

µ0(x) := Prob[τ = 0 |W0 = x]µ(x).

Next we consider the reverse direction.

Theorem 5.6. Let µ, ν ≥ 0, L∞(Rn) with compact support. Suppose that there exists a weak
solution η ∈ L1(Rn × (0,∞)) of (St1)ν with initial data (µ,E), where E is bounded. Let us
define s and ρ by

s(x) := sup{t : η(x, t) > 0} and

(5.4)

ˆ ˆ
ρ(x)ϕ(x, t) dxdt =

ˆ
ν(x)ϕ(x, s(x))dx

for any test function ϕ ∈ C∞c (Rn × [0,∞)). Then µ ≤SH ν̃ := νχ{s(x)<∞}. Moreover (η, ρ) is
the Eulerian variables between η0 = µ and ν̃, generated by the optimal stopping time with costs
of type (I).
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Proof. By definition of s(x), {η > 0} = {t < s(x)}. This allows us to write, for instance in the
case of (St1),ˆ
ν(x)ϕ(s(x), x)dx−

ˆ
ν(x)ϕ(0, x)dx =

ˆ
ν(x)

ˆ s(x)

0
ϕt(t, x)dtdx =

ˆ ˆ
{η>0}

ν(x)ϕt(t, x)dtdx.

Arguing as in the proof of Theorem 5.4, we can then verify that (η, ρ) satisfies the equation
(2.2). Moreover, we have η(R) = 0 for the barrier set R := {(x, t) : t ≥ s(x)} by the definition
of s(x). Observe also that

ρ(R) =

ˆ
ρ(x, t)dxdt =

ˆ
η(x, 0)dx = µ(Rn) = 1,

where the first equality holds since ρ is supported in R, and the second is due to the mass
preserving property of the heat equation.

Let us define ξ :=
´∞
t η(x, t)dt. Integrating in time the weak equation for (St1), we see that

ξ solves the parabolic obstacle problem

ξt −
1

2
∆ξ = −1

2
νχ{ξ>0}.

On the other hand, since we have ηt − ∆η = −ρ in the distribution sense, and since η
vanishes as time tends to infinity, it follows that

µ = η(·, 0) =

ˆ ∞
0

(−ηt) =

ˆ ∞
0

(−∆η + ρ) = −∆(

ˆ ∞
0

η) + ν̃.

Hence µ − ν̃ = −∆ξ(·, 0). Thus, by uniqueness of the parabolic obstacle problem, ξ(x, t) =
w(x, t) =

´∞
t η̃(x, s)ds, where η̃ is the Eulerian variable generated by the optimal stopping

time between µ and ν̃. In particular {η̃ > 0} = {η > 0}.
To conclude, note that η ∈ L2([0,∞), H1

0 (Rn)), due to the fact that η is a subsolution of the
heat equation with compactly supported initial data. Hence taking their zero set as R (where
clearly both ρ and ρ0 are supported), we can apply Lemma 2.3 to conclude that η = η̃.

�

We finish this section with the corresponding statement for (St2)ν . The proof is parallel to
(St1)ν .

Theorem 5.7. Let µ, ν ≥ 0, L∞(Rn) with compact support. Suppose that there exists a weak
solution η ∈ L1(Rn × (0,∞)) of (St2)ν and initial data (µ,E), where E is bounded. Let us
define s and ρ by

s(x) := inf{t : η(x, t) > 0}
and (5.4). Then (η, ρ) is the Eulerian variables between µ and ν generated by the optimal
stopping time with costs of type (II), where

µ = η0 and ν̃ = νχEC .

In the next section, we will discuss a specific class of the target measures, from which
solutions to the classical Stefan problems (St1) and (St2) are generated.
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6. Subharmonically generated sets

This section defines a central notion of the present paper which characterizes a pair of sets
by existence of a certain stopping time. This notion then is connected to solvability of the
supercooled Stefan problem (St1) the one without weight ν.

Definition 6.1. We say the pair (Σ, E) is subharmonically generated by µ, if there is a
stopping time τ with the corresponding Eulerian flow (η, ρ) (2.2), such that τ > 0 almost
surely, W0 ∼ µ and Wτ ∼ ν = χΣ and E = {x | η(x, t) > 0 for some t > 0}.

This definition is motivated by the following equivalence result.

Theorem 6.2. Consider a compactly supporeted measure µ � Leb on Rd. Then for a given
set E, the following are equivalent.

(a) There exists a weak solution η of (St1) with initial data (µ,E)
(b) There exists a measurable set Σ such that (Σ, E) is subharmonically generated by µ.

Moreover, Σ = {z(x) <∞} with z(x) := sup{t : η(x, t) > 0}.

Proof. If (a) holds, then (b) follows from Theorem 5.6, with Σ := {s(x) < ∞} with s(x) :=
sup{t : η(x, t) > 0}. Let us remark that, since the set {η(·, t) > 0} decreases as t increases, we
have

lim sup
t→0+

{η(·, t) > 0} = ∪t>0{η(·, t) > 0} = E.

Similarly, if (b) holds, then (a) follows from Theorem 5.4. �

We mention that obtaining ν as a characteristic function χΣ does not guarantee a corre-
sponding solution for (St1) unless the stopping time is strictly positive. Even with the stopping
time strictly positive, for a given µ and E there can be many Σ such that (Σ, E) is subharmon-
ically generated by µ. Below we will discuss an example that illustrates these points. In the
next section we will introduce an optimization problem for the target measure ν, that uniquely
generates a subharmonically generated pair (E,E) for each given µ, with E explicitly given
in terms of µ. More discussion on the Stefan problem is to follow in Section 9, in conjunction
with this optimal target problem. We will see therein that our optimal target scheme provides
a mechanism to construct solutions of (St1) in a stable, and physically reasonable manner.

6.1. Example for nonuniquenss for (St1). The weak solution of (St1) is known to have
non-uniqueness with given initial data. Here we give an example that yields infinitely many
weak solutions to (St1) with the same initial data (µ,E): these are solutions that does not
vanish in finite time.

Proposition 6.3. Let µ = 1
|Bε|χBε and E = {|x| ≤ 1}. Then, there are infinitely many weak

solutions to (St1) with initial data (µ,E).

Proof. Consider the set Σ := A1 ∪A2 ⊂ Rd consisting of the union of two annuli,

A1 := {2ε ≤ |x| ≤ r}, A2 := {r′ ≤ |x| ≤ 1}, where 0 < 2ε < r < r′ < 1.
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Assume |Σ| = 1 by choosing appropriate ε, r, and r′. Let ν = χΣ. We will prove

Claim: there exists a randomized stopping time τ , with W0 ∼ µ and Wτ ∼ ν.

After verifying this claim, we can find the optimal stopping time τ∗ for the optimal Skorokhhod
problem P(µ, ν) (1.5). Then, the corresponding Eulearian flow (η, ρ) as given in Propositoin 2.2
gives a solution to (St1)ν via Theorem 5.4, with the initial set

E = lim sup
t→0+

{η(·, t) > 0} = {|x| ≤ 1}.

This is because, to reach the outer annulus A2, the Eulerian variable η should be active in
the whole set {|x| ≤ 1}. From Remark 5.2, the solution we constructed here for (St1)ν , for
ν = χΣ, actually solves the original supercooled Stefan (St1). Hence, by choosing different
combinations of r, r′, but still making |Σ| = 1, we can generate infinitely many solutions to
(St1) with the above (µ,E). In this case, {s(x) = ∞} = {|x| ≤ 2ε} ∪ {r ≤ |x| ≤ r′}, the
outside part of the two annuli in E = {|x| ≤ 1}.

It remains to prove the claim. We first show that there exists a randomized stopping time
τ ′ with W0 ∼ δ{x=0}, such that Wτ ′ ∼ ν. To construct such stoping time, let τr be the first
hitting time to S(r) := {|x| = r}. Then its distribution νr is a uniform d − 1 dimensional
measure along the set S(r), that is, νr = CrδS(r) with some constant Cr > 0. Thus we can
randomize at t = 0 to find a stopping time τA with W0 ∼ δ{x=0} whose distribution νr is given

by νA =
´ r2
r1
νrf(r)dr for some weight f(r) that can be controlled by the randomization at

t = 0. In particular, we can find such a randomization at t = 0 so that νA becomes a uniform
measure on the annulus A = {r1 ≤ |x| ≤ r2}. Now, for such τA1 and τA2 we can consider the
randomized stopping time τ ′ given as

τ ′ =

{
τA1 with probability |A1|

|A1|+|A2| ,

τA2 with probability |A2|
|A1|+|A2| .

Then it follows that Wτ ′ ∼ ν. Moreover, by the Markov property of the Brownian motion, we
can change the randomization at x = 0 to a randomization at S(ε), that is, when the Browinian
motion from the origin first hits S(ε) we make a probabilistic choice how to move from there.

One can find a randomized stopping time τ ′′ as in the above, with W0 ∼ δ{x=0} and Wτ ′′ ∼
1
|Bε|χBε for the ball Bε. Note that τ ′ > τε almost surely. Clearly τ ′′ ≤ τε, so τ ′′ ≤ τ ′. This

means that for the measure µ = 1
|Bε|χBε there exists a randomized stopping time τ with W0 ∼ µ

and Wτ ∼ ν, verifying the claim. �

7. Optimal target problem

From this section on, we consider the optimal target problem (1.1) proposed in our intro-
duction, namely solving for the optimal target ν̄ minimizing the cost function C(τ), under the
upper density constraint ν ≤ f , for a given bounded and measurable function f . One can view
this as a projection problem in the space of probability measures. Given µ ∈ P (Rn), what
is the closest measure ν in the constraint set {ν ≤ f}, under the condition that we have the
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subharmonic order µ ≤SH ν. Here, the closeness between the two measures is measured by
the cost C(τ) for an optimal stopping time τ between them. Once we have the optimal target
ν then we can apply Theorem 2.1, obtaining the optimal stopping time τ that is given by the
hitting time to a barrier given by a barrier function s.

Let us point out that it is not easy to explicitly construct the optimal target even in simple
cases. For instance when f ≡ 1 and µ = δx=0, one may guess that the optimal stopping time
τ is given by the constant time, when the heat kernel K(t, y) becomes K ≤ 1. This is not the
case as we see below, for the either cost type (I) or (II).

For the rest of the paper will see that the optimal target comes with many interesting
characteristics, based on the two main features: monotonicity and saturation property. These
two properties allow us to connect the optimal target problem (1.1) with global solvability of
the Stefan problem; see Section 9.

We begin our discussion with the monotonicity property.

7.1. Monotonicity. The following theorem demonstrates an order between optimal targets
of Problem (1.1) and the corresponding optimal stopping times.

Theorem 7.1 (monotonicity). Consider (µi, νi, si, τi), i = 1, 2 such that τi are stopping times
given by the barrier function si, with initial and target distribution µi and νi. Further assume
that νi ≤ f and µ1 ≤ µ2. Then the following holds:

(1) If ν1 is a solution to (1.1) for µ1, while s1, τ1 are the corresponding uniquely deter-
mined (uniquely ν1-a.e. sense) barrier and the corresponding optimal stopping time,
then, as the stopping times from the initial distribution µ1, we have τ1 ≤ τ2 almost
surely. (Notice that from µ1 ≤ µ2, the stopping time τ2 from µ2 can be restricted to
the initial distribution µ1. ) Here, we do not necessarily assume that ν2 is a solution
to (1.1).

(2) If both νi is a solution to (1.1) for µi, while si, τi are the corresponding uniquely de-
termined (uniquely νi-a.e. sense) barrier and the corresponding optimal stopping time,
respectively, then ν1 ≤ ν2. In particular there is at most one solution to (1.1).

Remark 7.2. We point out that for (1) we only need τ1 to be optimal, not τ2. This in
particular characterizes τ1 as the smallest stopping time that starts from µ1 among eligible
target distributions with the constraint f .

Proof. To show (1), we first prove that τ1 ≤ τ2, when τ2 is restricted to the initial distribution
µ1. For this it only needs optimality of ν1.

(I) case. In this case τi, i = 1, 2, are the first hitting time to the set

Ri := {(x, t) | t ≥ si(x)}; τi = inf{t | (Wt, t) ∈ Ri}.
Let τ̄ := τ1 ∧ τ2. Recall that from Proposition 3.9 we have (Wτi , τi) ∈ Ri almost surely,
i = 1, 2. Therefore τ̄ ≥ min[s1(Wτ̄ ), s2(Wτ̄ )] almost surely. Now, for a Brownian path, if
Wτ̄ ∈ {x | s1(x) ≤ s2(x)} then τ̄ ≥ τ1 so τ̄ = τ1. Similarly, if Wτ̄ ∈ {x | s2(x) ≤ s1(x)} then
τ̄ = τ2.
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Therefore, ν̄ denoting the distribution of τ̄ , we have

ν̄|{s1≤s2} ≤ ν1|{s1≤s2} ≤ f and ν̄|{s2≤s1} ≤ ν2|{s2≤s1} ≤ f ;

so ν̄ ≤ f and τ̄ is admissible.

Now recall that τ1 is the minimizer for C, which implies τ̄ = τ1 almost surely, as otherwise if
Prob[τ̄ < τ1] > 0 then from the strict monotonicity of C, we see C(τ̄) < C(τ1), a contradiction.

This immediately implies that τ1 ≤ τ2, where we understand τ2 as the stopping time re-
stricted to the initial distribution µ1.

(II) case. In this case τi, i = 1, 2, are randomized at the initial time to give the distribution
f ∧ µi, i = 1, 2, and the rest Brownian particles stops when they first hit to the set Ri :=
{(x, t) | t ≤ si(x)}, which gives the corresponding final distribution νi − f ∧ µi (from those
Brownian paths with τi > 0), that satisfies ≤ f − f ∧ µi, i = 1, 2. Notice that f − f ∧ µ2 ≤
f − f ∧ µ1 due to µ1 ≤ µ2.

From now on until the end of the proof of this case, we restrict τ2 to the initial distribution
µ1 and call it still τ2. Define a randomized stopping time τ̄ as follows: For the portion µ1 ∧ f
stop immediately, and for the rest µ1−µ1∧f , follow the Brownian motion until τ1∧τ2. Notice
that τ̄ ≤ τ1 from its construction. The rest of proof is similar to (I) case with additional
consideration for stopping at the initial time. Details follow.

We show that τ̄ is admissible, namely, if we let ν̄ be its distribution (with the initial distribu-
tion µ1), Wτ̄ ∼ ν̄, then ν̄ ≤ f . To see this, first write ν̄ = µ1∧f+ν̄1 where ν̄1 is the distribution
of the rest. For Brownian particles with positive time τ̄ > 0, that is, those accounting for ν̄1,
if Wτ̄ ∈ {x | s1(x) ≥ s2(x)} then τ̄ ≥ τ1 so τ̄ = τ1. Similarly, if Wτ̄ ∈ {x | s2(x) ≥ s1(x)} then
τ̄ ≥ τ2 so τ̄ = τ2. Therefore,

ν̄1|{s1≥s2} ≤ (ν1 − f ∧ µ1)|{s1≥s2} ≤ (f − f ∧ µ1)|{s2≥s1}

as well as

ν̄1|{s2≥s1} ≤ (ν2 − f ∧ µ2)|{s2≥s1} ≤ (f − f ∧ µ2)|{s2≥s1} ≤ (f − f ∧ µ1)|{s2≥s1}.

From these, we have

ν̄ = µ1 ∧ f + ν̄1 ≤ µ1 ∧ f + (f − f ∧ µ1) = f, verifying admissibility of τ̄ .

Now recall that τ1 is the minimizer for C, which implies τ̄ = τ1 almost surely, as otherwise if
Prob[τ̄ < τ ] > 0 then from the strict monotonicity of C and from τ̄ ≤ τ1, we see C(τ̄) < C(τ1)
for admissible τ̄ , a contradiction. This immediately implies that τ1 ≤ τ2 as desired.

We now show (2): this requires optimality of both ν1 and ν2.

Suppose not, i.e.
´
{ν1>ν2} f(x)dx > 0. For a small ε > 0, define

Eε := {x | ν1(x) > ν2(x) + 2εν1(x)}.
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and µε2 := µ2 − εµ1 ≥ 0. Define an auxiliary randomized stopping time τ̃ , from the initial
distribution µ2 as follows:

τ̃ :=


τ2 from µε2 ,

τ1 if Wτ1 ∈ Eε from εµ1,

τ2 if Wτ1 6∈ Eε from εµ1 .

Let us explain the meaning of this. Here the wording ‘from µε2’ or ‘from εµ1’ should be
understood as that at the initial time the Brownian particles belong to the distribution µε2 or
εµ1, respectively. Notice that such a decomposition in the initial distribution is allowed for the
randomized stopping time as it is like randomizing at the initial time. Notice that we already
proved that τ1 ≤ τ2 for Brownian motion starting from µ1, so the second and third lines in the
definition of τ̃ is well defined.
Now let us show that τ̃ is admissible. Define the distribution ν̃ of τ̃ , that is, Wτ̃ ∼ ν̃. From
the definition of τ̃ we see that

ν̃|Ecε = the distribution of Wτ2 from µε2 and from εµ1, restricted to the set Ecε .

Therefore ν̃|Ecε ≤ ν2.
On the other hand,

ν̃|Eε = the distribution of Wτ1 from εµ1

+ the distribution of Wτ2 from µ2 = µε2 + εµ1, restricted to the set Eε

≤ εν1 + ν2 on Eε

≤ ν1 on Eε by the definition of Eε

≤ f
We thus have verified that ν̃ ≤ f , therefore, τ̃ is admissible as the stopping time from the
initial distribution µ2.
Now notice that by the construction τ̃ ≤ τ2, where the latter is optimal . From the strict
monotonicity of the cost C, we see that τ̃ = τ2.

To see why this leads to a contradiction, notice that it implies that for those Brownian
particles starting from εµ with Wτ1 ∈ Eε we have τ1 = τ̃ = τ2. Since εν1 is the final distribution
for τ1 starting from εµ1 we have

εν1|Eε ≤ the distribution for τ2 starting from εµ1, restricted to Eε.

≤ the distribution for τ2 starting from εµ2, restricted to Eε (because µ1 ≤ µ2)

= εν2|Eε .
Note that this is a contradiction to the definition of Eε, thus proves the claim that ν1 ≤ ν2. �

Remark 7.3. Note that τ1 ≤ τ2 should be understood to hold for those Brownian paths starting
from the initial points x distributed as the common mass µ1 = µ1 ∧ µ2 for µ1 ≤ µ2. Because
of Markov property of the Brownian motion, the stopping time τ1 can be applied to the initial
mass of µ2 in the region where µ1 > 0. From the region µ1 = 0, it should be understood that
the stopping time τ1 = 0 because, from where µ1 = 0 there is no motion for τ1. In this sense,
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the inequality τ1 ≤ τ2 can be applied to all Brownian paths from the initial distribution µ2 not
only from µ1.

The rest of the section discusses important consequences of the monotonicity property.

7.2. Existence. Here we show the well-posedness of the optimization problem (1.1).

Theorem 7.4. Let µ be bounded and compactly supported, and suppose the set

A := {ν : µ ≤SH ν, ν is compactly supported and ν ≤ f}

is nonempty for f ∈ L∞(Rn). Then, there exists unique optimal target measure ν for the
problem (1.1).

Proof. Once existence is established, uniqueness is a direct consequence of Theorem 7.1.

First let us consider the case where f is compactly supported. In this case, basically the
relevant domain for the measures ν ∈ A and Brownian motion between µ and ν is compact (in
particular, a subset of the convex hull of supp f), therefore existence of a minimizer ν follows
easily from the weak-* compactness of the minimizing sequence, since that the condition ν ≤ f
is closed with the weak-* convergence.

Now, for the general case, let fR = f ∧1BR , then for R� 1, the corresponding admissibility
set AR with fR is nonempty. Therefore, for the initial measure µ, and for each 1 � R <
R′, applying the compactly supported case, we find νR, νR′ be the optimal solutions with
the constraint fR and fR′ , respectively. Let τR, τR′ be the corresponding optimal stopping
times. Notice that νR also satisfies the density constraint fR′ (≥ fR). We can then apply
the monotonicity, Theorem 7.1(1), and get τR′ ≤ τR. It implies that the support of νR′
is contained in the convex hull of the support of νR. Since in the support of νR we have
fR = fR′ , so, νR′ should be an optimal solution for the constraint fR, because for the cost
we have C(τR′) ≤ C(τR). From uniqueness of optmal solution in the compactly supported
constraint case, we have νR = νR′ . This implies that the optimal νR is independent of R
as long as R is sufficiently large. That νR, R � 1, is the optimal target for f . To see this
notice that for any compactly supported target measure ν ′ ≤ f , there exists R > 0 such that
supp ν ′ ⊂ BR, so ν ′ ≤ fR and the cost for νR is less than or equal to that of ν ′. �

Remark 7.5. We note that those f with A 6= ∅ are plenty. For example, f ≡ 1 on Rd, or any
f ≥ 0 which has a positive lower bound on a ball BR, R � 1, will work. Or any f ≥ 0 that
has a positive lower bound in the annulus {R1 ≤ |x| ≤ R2}, with 1� R2 < R2 ≤ ∞ works. Of
course, here how large R,R1, R2 need to be depends on µ. These are some particular types of
f we focus on in this paper, especially in Section 9.

7.3. Universality of the optimal target. A remarkable consequence of this monotonicity is
that for a given initial measure µ and upperbound constraint f , the optimal target ν is unique
regardless of the cost function C as long as C satisfies either (I) or (II). We exploit the fact
that Theorem 7.1(1) requires optimality only for one target. This result will have interesting
consequences later in the context of Stefan problem (see Section 9).
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Theorem 7.6 (Universality). For a given µ, assume that νi, i = 1, 2, is an optimal solution
to (1.1) with the same upperbound constraint f , but, for costs Ci, i = 1, 2 where Ci satisfies (I)
or (II). Then ν1 = ν2.

Proof. Notice tat ν1, ν2 ≤ f . Let τi, i = 1, 2 are the corresponding optimal stopping times, for
Ci, i = 1, 2, respectively.

For the cost C1 consider the optimal stopping time τ ′2 for the given target ν2. Then, from
Theorem 7.1(1) and optimality of τ1, we have τ1 ≤ τ ′2. This implies that ν1 ≤SH ν2.

Similarly, for the cost C2, consider the optimal stopping time τ ′1 for the given target ν1. Then,
from Theorem 7.1(1) and optimality of τ2, we have τ2 ≤ τ ′1. This implies that ν2 ≤SH ν1.

The two subharmonic orders imply ν2 = ν1, completing the proof. �

Remark 7.7. Above universality is rather surprising since, by putting different weights on
the location x for L, we may expect different optimal target distribution ν. Our result says
this is not the case, namely that the cost function C(τ) depends only on the time spent by the
Brownian paths.

7.4. L1 contraction and BV estimate. Next we show the L1 contraction, which is a con-
sequence of the monotonicity and the fact that the total mass of µ is the same as that of
ν.

Theorem 7.8 (L1-Contraction). Assume either (I) or (II). Let (µ1, ν1), (µ2, ν2) be the pairs
of the initial distribution and optimal solution of the problem (1.1). Then,

‖(ν1 − ν2)+‖L1 ≤ ‖(µ1 − µ2)+‖L1 .

Proof. Let µ̃ = µ1 ∧ µ2; notice that (µ1 − µ2)+ = µ1 − µ̃. Let ν̃ be an optimal solution of the
corresponding problem (1.1) with the initial distribution µ̃. As µ̃ ≤ µi, i = 1, 2, we have from
the monotonicity (Theorem 7.1) that

ν̃ ≤ νi, i = 1, 2.

Now, let E+ = {x | ν1(x)− ν2(x) ≥ 0}. Then,

(ν1 − ν2)+ = (ν1 − ν2)χE+ ≤ (ν1 − ν̃)χE+ ≤ ν1 − ν̃.

Therefore,

‖(ν1 − ν2)+‖L1 ≤ ‖ν1 − ν̃‖L1 = ‖µ1 − µ̃‖L1 = ‖(µ1 − µ2)+‖L1

as desired. Notice that the first equality follows from the fact that the problem preserves the
total mass, i.e. ‖µ1‖L1 = ‖ν1‖L1 , ‖µ̃‖L1 = ‖ν̃‖L1 . �

Remark 7.9. The monotonicity and L1 contraction seem to hold if we add the constraint
τ ≤ t in the problem (1.1), namely, for a given t,

argmin
ν∈P (Rn) & ν≤f

{C(τ) | τ ≤ t, W0 ∼ µ & Wτ ∼ ν}(7.1)

This will be useful for us when we try to use the Markov property of the problem, and do
iteration of the L1 contraction and consequent BV estimate for η.
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We prove the BV estimate as an immediate corollary of the L1 contraction theorem. For
(II), when f = 1 and when µ = (1 + µ0)χE with µ0 > 0, this was shown by Meirmanov [37].

Theorem 7.10 (BV estimate). Let ν be the solution of (1.1) with a constant f . Then,

‖ν‖BV ≤ ‖µ‖BV .

Proof. Let us first consider the case µ ∈ C1. Let us define νδ := ν ∗ ηδ, where η is a standard
nonnegative compactly supported mollifier with total mass one. Since ν is L1 and ν is com-
pactly supported, νδ uniformly converges to ν in L1. From lower semi-continuity of BV norm
under L1 convergence it is enough to prove that

‖νδ‖BV ≤ ‖µ‖BV for small δ > 0.

Observe that for each y ∈ B1, ε > 0, we haveˆ
|νδ(x+ εy)− νδ(x)|dx ≤

ˆ
|ν(w + εy)− ν(w)|dw.

Notice that f ≡ 1 is translation invariant, therefore from the uniqueness result, ν(·+ εy) is
the optimal solution of (1.1) for the initial measure µ(·+εy). We apply then the L1 contraction
(Theorem 7.8) and get for any ε > 0,ˆ

|νδ(x+ εy)− νδ(x)|
ε

dx ≤
ˆ
|µ(x+ εy)− µ(x)|

ε
dx.

Now for a fixed δ, νδ and µ are C1 with compact supports, and so by sending ε→ 0 in above
expression we obtain ˆ

|Dνδ(x) · y|dx ≤
ˆ
|Dµ(x) · y|dx.

We then integrate both sides in y ∈ B1,ˆ
B1

ˆ
|Dνδ(x) · y|dxdy ≤

ˆ
B1

ˆ
|Dµ(x) · y|dy

and apply the Fubini’s theorem,ˆ ˆ
B1

|Dνδ(x) · y|dydx ≤
ˆ ˆ

B1

|Dµ(x) · y|dydx

Observe that for any unit vector e1, we haveˆ
B1

|Dνδ(x) · y|dy = |Dνδ(x)|
ˆ
B1

|e1 · y|dy

and similarly for µ, which leads toˆ
|Dνδ(x)|

(ˆ
B1

|e1 · y|dy
)
dx ≤

ˆ
|Dµ(x)|

(ˆ
B1

|e1 · y|dy
)
dx

Therefore, we get the inequalityˆ
|Dνδ(x)|dx ≤

ˆ
|Dµ(x)|dx.
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Hence we showed that ‖νδ‖BV ≤ ‖µ‖BV as desired.

Let us now consider the general µ in BV . We consider a sequence of measures µk ∈ C1 that
converges as k → ∞, to µ in BV (also in L1); in particular ‖µk‖BV → ‖µ‖BV . Consider the
corresponding νk, namely, the solution of (1.1) with initial µk. . Apply Step 1, and get

‖νk‖BV ≤ ‖µk‖BV .

Now notice that by the L1 contraction νk converges, as k →∞, to ν in L1, therefore, from the
lowe-semicontinuity of the BV-norm in L1 convergence, we get

‖ν‖BV ≤ ‖µ‖BV .
This completes the proof. �

Remark 7.11. The BV estimate is a rather well-known consequence of L1 contraction, when
the problem is homogeneous with respect to spatial shift.

8. Saturation property of the optimal target

Here we prove that the optimal target measure, when obtained with positive stopping time,
saturates up to the upper density limit f . We first show a converse to Corollary 3.7 for optimal
solutions to (1.1), in the following sense.

Lemma 8.1. Let µ be a probabillity measure, absolutely continuous with Lebesgue measure.
Let ν be the corresponding optimal solution of the problem (1.1) for (I) or (II) with bounded
and measurable f . Let τ be the optimal stopping time with W0 ∼ µ and Wτ ∼ ν. Let G be a
measurable set such that f |G > 0. Suppose that there exists a constant t1 > 0 such that

Prob[Wt1 ∈ G & t1 < τ ] > 0.

Then, ν[G] > 0.

Proof. Suppose for contradiction, that ν|G = 0. We define a randomized stopping time τ̄
(starting from the distribution µ) as follows. For those Brownian trajectories with τ < t1, stop
at t̄. For those Brownian trajectories with τ > t1, if Wt1 6∈ G just proceed until τ , but, if
Wt1 ∈ G then drop a portion of mass at the time t1, such that the resulting mass is positive
but has density ≤ f over the set G (note that here we are using the fact that ν|G = 0), then
proceed until τ ; note that this is possible because Prob[Wt1 ∈ G & t1 < τ ] > 0 as well as
f |G > 0 for f � Leb. To be more precise, notice that the density at x of the distribution of
Wt1 for those Brownian particles with t1 < τ , is bounded from above by Kt1(x) of the solution
to the heat equation with initial data µ, thus at each x ∈ G when Wt1 = x ∈ G, one can stop
the mass with the probability

min[f(x),Kt̄(x)]

Kt̄(x)
> 0,

and we get the positive stopped density ≤ f(x). Therefore this randomized stopping time
τ̄ has distribution Wτ̄ ∼ ν̄ with ν̄ ≤ f . Moreover, notice that τ̄ ≤ τ for each random path
almost surely, and Prob[τ̄ < τ ] > 0. Then, the cost C(τ̄) < C(τ) from the strictness of the cost
functional C. This contradicts optimality of τ , thus completing the proof. �
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As an immediate corollary of this lemma and Lemma 3.5, we see that for the optimally
stopped Brownian motion for our problem (1.1), any set G with zero mass of the final distri-
bution blocks off the Brownian motion.

Corollary 8.2. Let µ, ν and τ be as given in Lemma 8.1. Let G is a measurable set with
positive measure, and suppose that every point of G has positive Lebesgue density. Assume
that f |G > 0 and ν[G] = 0. Then, τ ≤ τG almost surely.

Proof. This is a direct consequence of Lemma 8.1 and Lemma 3.5. �

We can combine ideas used in the proof of Lemma 8.1 and the result of Corollary 3.7 to
prove that the optimal solution ν saturates the density upper bound.

Theorem 8.3 (saturation). Assume µ � Leb and ν be the optimal solution of the problem
(1.1) with cost of type (I) or (II) with the optimal stopping time τ . Suppose τ > 0 almost
surely. Then the optimal solution ν to Problem (1.1) is given in the form

ν = fχE for some set E.

More generally, without assuming τ > 0, we have the following results:

(a) For costs of type (I), we have

ν = fχE + µ|F for some set E and F with |E ∩ F | = 0.

where in E the Brownian motion does not stop immediately, i.e. s(x) > 0 for a.e.
x ∈ E, and in F the Brownian paths stop immediately, i.e. s(x) = 0, for a.e. x ∈ F .

(b) In the (II) case, the optimal target measure ν is given in the following form.

ν = ν̃ + f ∧ µ

where ν̃ the optimal solution from the initial measure µ̃ = µ − f ∧ µ, while the upper
bound constraint is given by f̃ = f − f ∧ µ; here ν̃ is given in the form

ν̃ = f̃χE for some set E

and the corresponding optimal stopping time τ̃ satisfies τ̃ > 0 almost surely.
Moreover (f ∧ µ)(x) = Prob[W0 = x, τ = 0]µ(x).

Before proceeding to the proof of above theorem, we state the following characterization of
the instantly stopped portion for each cost types using the potential flow.

Corollary 8.4. For cost (I) and E and F as given in Theorem 8.3 we have

E = {w > 0} and F = {w = 0},

where w ≥ 0 is continuous solution of the obstacle problem

(8.1) −∆w + (f − µ)χ{w>0} = 0.
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Proof. Set w = Uν − Uµ . Then E = {w > 0} and F = {w = 0}. To see this, for example
apply Lemma 4.3 and continuity of Uν and Uµ. Therefore, we see that

∆w = ν − µ = fχ{w>0} + µχ{w=0} − µ = (f − µ)χ{w>0}.

This completes the proof. �

One can variationally characterize the problem w solves. Noting that {w > 0} contains Ω0,
we can write (8.1) as

(f − µ)χ{w>0} = ∆w.

If we let h solve ∆h = f − µ, then w minimizesˆ
|D(ϕ− h)|2dx

among the functions ϕ ≥ 0. Thus w can be viewed as Ḣ1(Rd) projection of h onto the space
of nonnegative functions.

Remark 8.5. In type (II), notice that the set {x | ν(x) < f(x)} belongs to the set where the
Brownian motion under the optimal τ stops immediately.

Proof of Theorem 8.3: We proceed in several steps.
1.When τ > 0 almost surely. For arbitrary 1 > δ > 0, let

Hδ := {x | δ ≤ dν(x)

dx
< f(x)− δ}.

Our goal is to prove ν[Hδ] = 0. Suppose not for contradiction, that is, ν[Hδ] > 0. Then,
Corollary 3.7 implies either

(i) µ ∧ (ν|Hδ) 6= 0, or
(ii) there exists a constant t̄ > 0 such that

Prob[Wt̄ ∈ Hδ & t̄ < τ ] > 0.

For (i), we define a randomized stopping time τ̃ (starting from the distribution µ) as follows.
First, τ̃ is randomized at the initial time for for those Brownian particles from µ∧(ν|Hδ), in such
a way that the distribution of initially stopped particles from µ∧ (ν|Hδ) has positive mass with
density δ. For the remaining particles it follows τ . Then the resulting terminal distribution
by τ̃ , say, ν̃ is ≤ f by the definition of the set Hδ. Moreover, from the construction of τ̃ and
strict monotonicity of C we have C(τ̃) < C(τ), which contradicts optimality of τ . Therefore,
the case (i) should not happen.

For (ii), we define τ̃ in such a way that for those Brownian trajectories with τ < t̄, stop at
τ . For those Brownian trajectories with τ > t̄, if Wt̄ 6∈ Hδ just proceed until τ , but, if Wt̄ ∈ Hδ

drop a portion of mass at time t̄, such that the resulting mass is positive but has density ≤ δ
over the set Hδ, then proceed until τ ; note that this is possible because the density at x of
the distribution of Wt̄ is bounded from above by Kt̄(x) of the solution to the heat equation
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with initial data µ, thus at each x ∈ Hδ when Wt̄ = x ∈ Hδ, one can stop the mass with the
probability

min[δ,Kt̄(x)]

Kt̄(x)
> 0,

and we get the positive stopped density with the total mass ≤ δ. Therefore this randomized
stopping time τ̃ has distribution ν̃ with ν̃ ≤ f . Moreover, notice that τ̃ ≤ τ for each random
path almost surely, and Prob[τ̃ < τ ] > 0. Then, the cost C(τ̃) < C(τ) from the strictness of
the cost functional C. This contradicts optimality of τ , thus completing the proof for the case
‘τ > 0 almost surely’. We verified that ν = fχE for some set E for (II).

2. (I) case. Recall that in this case τ = inf{t | t ≥ s(Wt)}. Notice that the set F :=
{x | s(x) = 0} gives a barrier set for Wt , t ≤ τ . That is, any Brownian path starting from a
point in F with the stopping time τ stops immediately, equivalently, τ ≤ τF . As a consequence
the resulting final distribution with τ starting from µ|F is µ|F . On the other hand, denote
µ̄ := µ|F c and apply the stopping time τ for those Brownian particles starting from µ̄. We let
τ̄ denote such a restriction of τ . Notice that τ̄ > 0 almost surely and it is the optimal stopping
time for µ̄ and f̄ = f − µ|F . Let ν̄ be the resulting final distribution from the stopping time
τ̄ . Then from Case 1, we have that

ν̄ = f̄χE for some set E where f̄ |E > 0.

Moreover, notice that µ̄∧(ν̄|F ) = 0 from the definition µ̄ = µ|F c . Therefore, from τ ≤ τF ( since
F is part of the barrier) and Lemma 3.2 we get ν̄[F ] = 0. This also implies that |E ∩ F | = 0,
therefore, f̄χE = fχE . In summary, we have

ν = ν̄ + µ|F = fχE + µ|F as desired.

This completes the proof for (I).

3. (II) case. In this case the stopping time τ , which is the optimal stopping time between µ
and ν, is randomized at t = 0 to give f ∧ µ and proceed with positive time starting from the
rest µ̃ = µ−f ∧ν, which gives the additional final distribution ν̃ = ν−f ∧ν. Let τ̃ denote the
stoping time τ restricted to the initial distribution µ̄. Then its final distribution, say, ν̃ gives
an optimal solution to (1.1) with the upper bound constraint f̃ = f − f ∧µ. Notice that τ̃ > 0

almost surely. Thus from Case 1, we have ν̃ = f̃χE for a set E. Notice that ν = ν̃ + f ∧µ. All
things combined we verified the result in Case 3.

This completes the proof for (II). �

8.1. Upper bound for the optimal stopping time in the (I) case. One of the applica-
tions of the saturation result is the following:

Theorem 8.6. Let µ is a probability measure with compact support and µ � Leb, and let f
be a bounded measurable function with f ≥ δ for a constant δ > 0. Then the following holds
for costs of type (I):

Let τ be the optimal stopping time for Problem 1.1. Then there exists a constant T̄ =
T̄ (δ, ‖µ‖L1) such that

τ ≤ T̄ almost surely.
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Remark 8.7. This result yields in particular that the support of ν ”closes off”, namely that
it includes the support of µ. Also, interestingly the extinction time T does not depend on the
size of the support of µ.

Proof. Recall that τ has a barrier function s such that τ = inf{t| t ≥ s(Wt)}. Consider the
optimal target ν and the set E and F from Theorem 8.3 (a) (so in the (I) case) which satisfies
that

‘τ > 0’ implies ‘Wτ ∈ E’ almost surely, and

‘τ = 0’ implies ‘W0 ∈ F ’ almost surely,

and that for any measurable set S,

Prob[Wτ ∈ S & τ > 0 | W0 ∼ µ] = ν[S ∩ E] =

ˆ
S∩E

df ≥ δ|S ∩ E|

where the last inequality is from the assumption that f ≥ δ. Since ν � Leb, we may assume,
without loss of generality, that Ec consists of its Lebesgue points, by adding the non-Lebesgue
density portion of Ec, which has zero Lebesgue measure, to E. Then, from Corollary 8.2, we
see that

if τ > 0, then almost surely τ ≤ τEc .(8.2)

Now consider for each T > 0, the set

ZT := {x | s(x) > T}.

Notice that ν[ZT ] = ν[ZT ∩ E]. It suffices to show that there exists T̄ such that ν[ZT̄ ] = 0.
First, recall that from Lemma 3.9 we have τ = s(τ) almost surely. Therefore, almost surely,

Wτ ∈ ZT if and only if τ > T. Also note that τ > T implies s(WT ) > T so WT ∈ ZT . Also,
(8.2) implies WT ∈ E when τ > T . Therefore, almost surely,

Wτ ∈ ZT implies WT ∈ ZT ∩ E & τ > T.

In particular, we have

Prob[Wτ ∈ ZT | W0 ∼ µ] ≤ Prob[WT ∈ ZT ∩ E & τ > T | W0 ∼ µ].

On the other hand, let ρT be the distribution of the heat flow in Rd at time T with the
initial condition ρ0 = µ. Notice that ρT ≤ CT for some constant CT , depending only on ‖µ‖L1

and T , decaying exponentially to zero as T →∞. Consider

CT |ZT ∩ E| ≥
ˆ
ZT∩E

dρT = Prob[WT ∈ ZT ∩ E | W0 ∼ µ]

≥ Prob[WT ∈ ZT ∩ E & τ > T | W0 ∼ µ ]

≥ Prob[Wτ ∈ ZT | W0 ∼ µ ]

= ν[ZT ] = ν[ZT ∩ E]

≥ δ|ZT ∩ E|.

By examining the limit T → ∞ we see that there exists T̄ = T̄ (δ, ‖µ‖L1) > 0 such that
|ZT̄ ∩ E| = 0. Thus we conclude that ν̄[ZT̄ ] = 0, completing the proof. �
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Notice that a similar result does not hold in the (II) case as easily seen in the following
example.

Example 8.8. Consider the case under the (II) assumption where B1, B2 are the balls of
radius 1, 2, respectively, centered at the origin in .

µ = 2dχB1 , f = 1.

Then, we get ν̄ = 1χB2 and the corresponding barrier function s is radially symmetric and can
be given by a function of the form

s(x) =


0 for |x| ≤ 1,

g(|x|) for 1 ≤ |x| < 2,

+∞ for |x| ≥ 2.

where g : [1, 2)→ R is an increasing function with g(1) = 0 and g(t)→∞ as t→ 2. Here the
optimal stopping time τ which is the hitting time to such a barrier has not upper bound.

9. Global-time existence of supercooled Stefan problem

Translating the saturation result, Theorem 8.3, into a PDE formulation via the consistency
result, Theorem 5.4, we can derive global-time existence of the Stefan problem for both super-
cooled fluid (St1) (Theorems 9.3 and 9.6) and melting ice (St2) (Theorem 9.2). Our emphasis
will be on the supercooled case which has not been well understood in the literature. We point
out that, due to Theorem 8.3, ν = 1 in the active region of the brownian particles. Thus
ν satisfies the assumptions of Theorem 4.14 (b). For (St1) we find the unique solution that
vanishes in finite time (Theorem 9.3), for a certain class of initial data (µ,E), and the unique
solution that vanishes outside of its support (Theorem 9.6). Remarkably, our choice of the
initial domain E is necessary to have such solutions, and it is generated as the accumulated
active region of the melting (St2) problem (Theorem 9.10). This connects the two problems
that have very different dynamics from each other.

Let us first translate positivity of the target in Lemma 8.1 in terms of the Eulerian flow η.

Lemma 9.1. Let ν be the optimal target measure generated by (1.1) with µ for type (I) or (II)
costs. Let η be the Eulerian variable associated with (µ, ν). Then we have

ν > 0 on the set {x : η(x, t) > 0 for some t > 0} ∩ {f > 0}.

Proof. We can apply Lemma 8.1 to the set G := {η(x, t1) > 0} for each t1 > 0. �

9.1. Stable Stefan problem. Let us first briefly discuss global well-posedness for the stable
Stefan problem (St2).

Due to the saturation theorem, Theorem 8.3, it follows that ν(x) = 1 in the active region
{η > 0} if f = 1 and µ is larger than one in its support, thus from the consistency theorem,
Theorem 5.4, we have the following:
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Theorem 9.2 (Global-time existence for (St2)). Let µ = (1 + η0)χΣ ∈ L∞(Rd) with η0 > 0
and a bounded Borel set Σ with positive measure. Then for costs of type (II), the corresponding
η-variable for µ and the optimal target ν with f ≡ 1 is the unique weak solution of the stable
Stefan problem (St2),

(St2) (η + χ{η>0})t −
1

2
∆η = 0

with initial data (η0χΣ,Σ).

In this case the initial set for the active region coincides with the support Σ of the initial
distribution µ. This is due to the nature for the type (II) costs whose barrier sets in the
space-time for the optimal stopping are time-backward monotone, in contrast to the type (I)
costs that gives time-forward barrier sets. For the supercooled (St1) case corresponding type
(I), not every initial set Σ has a global-time solution. This will be apparent in the theorems
below for the supercooled case.

9.2. Supercooled Stefan Problem. From the same reasoning as for Theorem 9.2 applied
to the type (I) case, we immediately get the following for the supercooled Stefan problem:

Theorem 9.3 (A global-time existence for (St1)). Suppose µ = (1 + η0)χΣ ∈ L∞(Rd) with
η0 > 0 and a bounded Borel set Σ with positive measure. Let f ≡ 1 and let ν = χE be the
corresponding optimal target for costs of type (I). Then the Eulerian variable η for (µ, ν) solves
the supercooled Stefan problem

(St1) (η − χ{η>0})t −
1

2
∆η = 0

with initial data (µ,E). Moreover we have E = {w > 0}, where w ≥ 0 solves the obstacle
problem

(9.1) χ{w>0} −∆w = µ.

In particular E contains Σ. Lastly, the set {η > 0} vanishes in finite time.

Remark 9.4. In the next subsection we will show that η in above theorem is indeed the unique
solution with initial data µ that vanishes in finite time.

From the point of view of Theorem 6.2), we have this result as (E,E) is subharmonically
generated via Theorem 8.3 for f = 1. Note that (9.1) follows from (8.1) since we know that
in this setting E includes the support of µ. In general case (9.1) no longer holds due to the
instantly frozen part of µ in the region µ < f . The finite time extinction of η is due to
Theorem 8.6, and the characterization of E via the obstacle problem is due to Corollary 8.4.

Remark 9.5 (Relation between (St1) and (St2)). Note that due to universality (Theorem 7.6)
we have the same optimal target measure ν for type (I) and (II), for given µ and f . Therefore
the solution of stable Stefan problem (St2) in Theorem 9.2 determines the initial set E that
gives global-time solution for (St1). This aspect can also be understood as the obstacle problem
(9.1) can be solved by the solution of (St2) by taking t→∞.
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While our optimal target problem connects to the classical Stefan problem (St1) with a
restricted initial data of the form (µ,E), one can generate the solution of (St1) for a wider
class of initial data by making use of Theorem 8.3 and Theorem 5.4. For instance, to ensure
that there is no instantly frozen set, one can choose f = χK where K and the support of µ
are disjoint. Then the optimal stopping time τ must be τ > 0 and, due to Theorem 8.3, we
obtain a solution of (St1) whose positive set instantly expands out to a part of K and then
shrink over time, with its interface away from the support of µ. More precisely we have the
following result which, like Theorem 9.3, is derived immediatly from Lemma 9.1, Theorem 8.3,
and Theorem 5.4 as well as Corollary 8.4.

Theorem 9.6 (A global-time existence for (St1) for f ∧µ = 0). Let µ be compactly supported,
nonnegative function in L∞(Rd). Let us set f = χKc, where K is a compact set that includes
the support of µ, and let ν := fχE = χE∩Kc be the corresponding optimal target for costs of
type (I). Then the Eulerian variable η for (µ, ν) solves (St1) with initial data (µ,E). Here
E = {w > 0}, where w ≥ 0 solves the obstacle problem

∆w = (f − µ)χ{w>0} = χ{w>0}∩Kc − µ.

From the point of view of Theorem 6.2, (E ∩ Kc, E) is subharmonically generated via
Theorem 8.3 for f = χKc .

As in the previous theorem, here again, ν can be determined by solving the type (II) problem
with the same µ and f , or equivalently solving the corresponding (St2) problem. In this case
η does not vanish in finite time. It is because the Brownian motion will travel forever in the
region Σ, where no stopping happens there due to the assumption f |Σ = 0.

Remark 9.7. Uniqueness is in general not true for (St1) with initial data µ and E (see the
example in Section 6). Thus the optimal target problem with f yields a cost (and energy) -
oriented criteria for a unique solution of (St1) with initial distribution µ.

◦ A discussion on the initial expansion

An interesting feature of our solutions of (St1) is the instantly expanded set E. It is well-
understood that the local-in-time solutions to (St1) develops jump discontinuity when the
solution is “overloaded”, namely when the average density goes beyond 1 (see for instance
[14]). When µ > 1 in its support, as given in Theorem 9.3, µ is entirely overloaded and thus it
is natural that one must expand its support to activate the supercooling process. On the other
hand when µ has small density as allowed in Theorem 9.6, such expansion follows from our
choice of f , which describes the particular scenario where the freezing stimulus is only available
outside of the initial supercooled region. Our approach by optimization, as well as imposing
the “energy level” f , may provide an interesting interpretation to supercooling phenomena,
where little is understood.

Our characterization of the initial domain E via (8.1) is also reminiscent of the classical
paper by Dibenedetto and Friedman [21], which considers a time integrated version of (St1).
See the discussion in section 4.3.
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Remark 9.8. The form of µ in Theorems 9.2 and 9.3, and (µ, f) in Theorem 9.6 were made
to ensure the stopping time τ > 0, that is, there is no instant stopping. With more general
µ, an instant stopping may occur as given in the saturation theorem, Thereom 8.3. Those
general cases feature immediate phase transition, which is not present in the standard Stefan
problem. Namely, the drain of energy µ occurs immediately on a certain part, say, the set F in
the case (I) part of Theorem 8.3, or f ∧ µ in the (II) part of Theorem 8.3, for which the heat
particles are not activated. In the freezing problem (I), this is where immediate freezing occurs
(or perhaps one should understand it as the previously frozen region). In the melting problem
(II) the energy f ∧ µ reduces the drain capacity f : only the remaining portion µ − f ∧ µ of
energy is used for the melting for the reduced drain capacity f − f ∧µ. The heat particles once
activated move, and in the melting problem (II), the region (time-dependent) where the heat
particles move is the region where melting occurs.

9.3. Existence of finite time vanishing solution characterizes the initial set. In this
section, we show that the choice of the initial set E in Theorem 9.3, where in particular the
solution vanishes in finite time, is sharp. Namely, such a choice is necessary for a finite time
vanishing solution to exist. First, let us connect finite time vanishing solutions to the notion
of subharmonically generated sets as in Theorem 6.2.

Theorem 9.9. Let η be a weak solution of (St1) with the initial data (µ,E). Then η vanishes
in finite time if and only if (E,E) is subharmonically generated by µ and η is the corresponding
Eulerian variable to (µ, χE). In particular, there is at most one solution of (St1) with the initial
data (µ,E) that vanishes in finite time.

Proof. The ‘if’ direction is a direct consequence of Theorem 6.2 and Theorem 8.6. The ‘only
if’ direction follows from Theorem 6.2 and the fact that

s(x) := sup{t : η(x, t) > 0} < T for some finite T ,

the vanishing time of η. Note that that ‘at most one solution’ follows from Theorem 6.2. �

Theorem 9.10 (Necessary condition for finite time vanishing solution). Let µ be a compactly
supported measure on Rd with µ � Leb. Suppose there is a vanishing in finite time solution
to (St1) with the initial data (µ,E). Then, the set E is determined by the optimal free target
problem (1.1) of type (I) cost, for µ and f ≡ 1, that the optimal target is ν∗ = χE.

Before proving theorem, we point out that to have such E we must have τ > 0 almost surely.
This in particular shows that such a set E is determined by the obstacle problem (9.1). Hence
we arrive at the following conclusion:

Corollary 9.11 (Unique Characterization). Let µ be as given above. Then there is a unique
solution η of (St1) with the initial data µ that vanishes in finite time. In this case, the initial
domain E is given by (9.1), and η corresponds to the Eulerian variable given by µ and the
optimal target ν∗ = χE.

We now prove Theorem 9.10.
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Proof. For this result, we apply Theorem 9.9 and Theorem 7.1.

To have a vanishing in finite time solution to (St1), from Theorem 9.9 it is necessary that
(E,E) has to be subharmonically generated by µ. There is a corresponding type (I) optimal
stopping time, say, τ , solving the optimal Skorokhod problem P(µ, ν). Here, ν = χE , moreover,
E = lim supt→0+{x | η(x, t) > 0} is the initial set of the active region for the corresponding
Eulerian flow (η, ρ).

On the other hand, we have the optimal stopping time τ∗ for the free target problem (1.1)
for type (I) cost, from the measure µ, with f ≡ 1, with the optimal target ν∗ with its density
ν∗ ≤ 1 everywhere.

We claim that ν∗ ≤ ν. It suffices to show this claim, as it implies the desired equality ν∗ = ν
because they have the same mass.

To prove the claim, first note that the monotonicity result, Theorem 7.1 part (1), does not
require optimality of one of the target, therefore, we have τ∗ ≤ τ. Therefore, the Eulerian flow
η∗ for τ∗ is supported inside the support of the Eulerian flow η of τ . In particular the initial
domain for the Eulerian flow η∗ is a subset of the initial domain for η, that is, E. Moreover,
even when there is instant stopping τ∗ = 0 for a set S, since τ > 0 almost surely, we have
S ⊂ E. From these considerations and the fact that ν∗ ≤ 1 and ν = χE , we have ν∗ ≤ ν as
desired. This completes the proof. �

From parallel reasoning we can uniquely characterize η from Theorem 9.6 as well:

Corollary 9.12 (Unique Characterization). Let µ,K, η and E be as given in Theorem 9.6.
Then η is the unique weak solution of (St1) such that ∩{t>0}{η(·, t) > 0} = K. In other words,
E is the unique set for which (E ∩Kc, E) is subharmonically generated.

10. Monotonicity of the optimal barrier functions

We show in this section that the barrier function s(x) for the optimal stopping time τ ,
enjoys a monotonicity property in the spirit of Theorem 7.1. Namely, the barrier functions
si are ordered if the initial distributions µi are ordered (Theorem 10.1), and such order is
strict (Theorem 10.2). The strict monotonicity we obtain generates a comparison principle,
and we hope it may shed a light on understanding regularity of the barrier function s(x), like
comparison principles do for elliptic PDEs. Understanding regularity of s(x), so regularity
of the free boundaries of the Stefan problem, is a wide open problem in (St1) where even
well-posedness is poorly understood.

Our result in Theorem 4.14 shows that its corresponding space-time barrier set R is closed, so
s is lower semicontinuous for type (I) and upper semicontinuous for type (II). To our knowledge
even this very mild regularity result for s is new for (St1). However, for such semicontinuity
we only use the optimality of the stopping time for the optimal Skorokhod problem P(µ, ν).
Our monotonicity of s below, which is a result of optimality of the target measure, may lead
to a nicer regularity result.
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Theorem 10.1 (Monotonicity for optimal barrier functions). Assume µ1 ≤ µ2 � Leb and let
f be a bounded measurable function on Rd. Let νi, i = 1, 2, be the optimal solutions of the
Problem (1.1) with µi, i = 1, 2, respectively. Let si be the barrier functions associated with
(µi, νi) as in Definition 4.17. Then we have

s1 ≤ s2 ν1-a.e. for type (I) cost, and

s1 ≥ s2 ν1-a.e. for type (II) cost.

Here, we are able to show only a.e inequality for (I) due to technical reasons, and we
conjecture it holds everywhere; for example, we immediately get everywhere inequality if si’s
are continuous. To the best of our knowledge the continuity of the barrier function s is not
known in general.

Proof. We utilize the potential flow formulation in Section 4 as well as the monotonicity result
for the optimal target problem (Theorem 7.1). Let us define τUi ,RUi and sUi as in Definition 4.13
generated by the stopping time τi. We aim to show the order between sU1 and sU2 , from which
and (4.4) we can conclude.

Let τ̃2 denote the restriction of τ2 from the initial distribution µ1, which is the common mass
µ1 ∧ µ2 for µ1 ≤ µ2. Then τ1 ≤ τ̃2 due to Theorem 7.1. Let ν̃2 denote its distribution, namely
Wτ̃2 ∼ ν̃2. Recall that τ1 and τ2 are optimal stopping times between µi and νi, i = 1, 2. It is
also easy to see that τ̃2 is an optimal stopping time between µ1 and ν̃2.

The monotonicity (Theorem 7.1) gives τ1 ≤ τ̃2. Let µ1
t be the distribution of Wτ1∧t, that is,

Wτ1∧t ∼ µ1
t . Similarly, let Wτ1∧t ∼ µ1

t , Wτ̃2∧t ∼ µ̃2
t . Since τ1 ∧ t ≤ τ̃2 ∧ t, from Corollary 4.4

we have the potentials satisfy
Uµ1t ≤ Uµ̃2t .

Also, restricting τ2 to the initial distribution µ2 − µ1 ≥ 0 and applying Corollary 4.7, we have

Uµ2−µ1 ≤ Uµ2t−µ̃2t ≤ Uν2−ν̃2 .

Below we treat type (I) and (II) separately.

Type (I). For type (I), define the functions

U1(x, t) := Uν1(x)− Uµ1t (x), Ũ2(x, t) := Uν̃2(x)− Uµ̃2t (x), and U2(x, t) := Uν2(x)− Uµ2t (x).

Notice that they are all nonnegative, continuous, and monotone decreasing in time, due to
Corollary 4.9) and Corollary 4.7. Since Uµ±ν = Uµ ± Uν in general, we have

U2 = Ũ2 +
[
Uν2−ν̃2 − Uµ2t−µ̃2t

]
≥ Ũ2.

Recall that RUi = {Ui = 0}. Thus to show that sU1 ≤ sU2 a.e. it suffices to prove that for each

t and for a.e x, Ũ2(x, t) = 0 implies U1(x, t) = 0, or

(10.1) |{U1(·, t) > 0} ∩ {Ũ2(·, t) = 0}| = 0.

From now on let us fix t. Suppose for contradiction that |{U1(·, t) > 0}∩{Ũ2(·, t) = 0}| > 0.

This implies that U1(·, t) > 0 and Ũ2(·, t) = 0 in E ⊂ Rd for some positive measure set E
that only consists of Lebesgue density points (of density 1). Lemma 4.3 then yields that for
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Brownian motions starting from µ1 there exists a monotone decreasing sequence of open sets
On ⊇ E, with limn→∞ |On \ E| = 0, such that

0 < E
[ˆ τ1

τ1∧t
lim
n→∞

χOn(Wt̄)dt̄

]
.

In particular, this implies

(10.2) 0 < Prob
[
∃ t̄ such that lim

n→∞
χOn(Wt̄) = 1 & t < t̄ < τ1

]
.

Note the strict inequality t < t̄ < τ1 in the above expression.

Now, if limn→∞ χOn(Wt̄) = 1 for some t̄ for a Brownian path, then because E consists only
of its Lebesgue density point, we have that for each ε > 0, there exists with positive probability,
t̄ ≤ t′ ≤ t̄+ ε such that Wt′ ∈ E; here we have used the fact that Brownian motion that visits
an open neighbourhood of E sufficiently close to E while E has Lebesgue density 1, has to visit
E with comparable probability. Since such t̄ exists with t < t̄ < τ1 with positive probability,
this means that

with positive probability there exists t̃ with t < t̃ < τ1 such that Wt̃ ∈ E.

However, for those t̃ and corresponding Brownian paths we have Ũ2(Wt̃, t) = 0 due to the fact

Wt̃ ∈ E ⊂ {Ũ2(·, t) = 0}. Since t̃ > t and Ũ2 is monotonically decreasing in time we have

Ũ2(Wt̃, t̃) = 0. Therefore, (Wt̃, t̃) belongs to the barrier {Ũ2 = 0} of τ̃2, and thus t̃ ≥ τ̃2 for
those Brownian paths. On the other hand, since τ1 ≤ τ̃2 almost surely, we can assume that
along such Brownian paths we have that t̃ satisfies t̃ ≥ τ1, contradicting the fact t̃ < τ1. This
proves (10.1), which yields sU1 ≤ sU2 a.e.

Type (II). For type (II), define the functions

U1(x, t) := Uµ1t (x)− Uµ1(x), Ũ2(x, t) := Uµ̃2t (x)− Uµ1(x), and U2(x, t) := Uµ2t (x)− Uµ2(x).

Notice that they are all nonnegative. From Theorem 4.14, these give the barrier sets for τ1, τ̃2,
and τ2, respectively. Note that from the definition

sUi (x) := sup{t | U1(x, t) = 0}.

Observe that U1 ≤ Ũ2 becasue Uµ1t ≤ Uµ̃2t . Moreover, we have

U2 = Ũ2 +
[
Uµ2t−µ̃2t − Uµ2−µ1

]
≥ Ũ2.

So U1 ≤ U2, which implies sU1 ≥ sU2 . �

We now prove strict monotonicity for s, which is derived by combining the above theorem
with the monotonicity of the stopping time (Theorem 7.1) and the saturation result (Theo-
rem 8.3).

As a preparation of the statement of the result, let us recall that the potential barrier sets
RUi , i = 1, 2 for the stopping times in Theorem 10.1 are closed, therefore their complements
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are open. Define for i = 1, 2,

in type (I), Ei := lim sup
t→0+

{x | ηi(x, t) > 0},(10.3)

in type (II), Ei := lim sup
t→∞

{x | ηi(x, t) > 0}.

Note that due to the monotonicity of Ri, Ei = RCi = ∪t>0{ηi(·, t) > 0}, and thus they are
open. Note also that as Ei’s are connected to the active regions, the Brownian paths that start
from Ei’s have τi > 0 almost surely, except those in type (II) that may immediately stop; see
Theorem 8.3, where the mass that immediately stop in type (II) is characterized by the initial
data as µ∧ f . Thus by taking the initial data as µ− µ∧ f we may assume τi > 0 in E′is. The
complement Ec2 is the set where there is immediate and complete stopping occurs for τ2, so τ2

is zero and so is τ1 = 0 from monotonicity (Theorem 7.1). There the corresponding si’s are 0
in type (I) case, ∞ in type (II) case. Moreover, in type (I) case, Ec2 is exactly the set where
the immediate stopping occurs. This justifies that for comparison between si we can without
loss of generality assume that τi > 0 in both type (I) and (II), and compare si’s only over E2.
Also assuming f > 0 everywhere does not cost much generality for our purpose of comparing
si’s, because in the region f = 0 no stopping to accumulate mass occurs, so the value si can
only be either ∞ or 0. With these considerations we see that the following theorem essentially
covers the general case and the whole domain for the strict monotonicity of s.

Theorem 10.2 (Strict monotonicity for optimal barrier functions). Let f , µi, τi and si be
as given in Theorem 10.1, in particular, with µ1 ≤ µ2 and s1, s2 satisfying the monotonicity.
Assume that f > 0 everywhere and that τi > 0, i = 1, 2, almost surely. Let O be a path
connected component of E2 given in (10.3). Suppose µ2 > µ1 on a subset G ⊂ O with |G| > 0.
Then sU1 (x) 6= sU2 (x) for a.e. x ∈ O.

Proof. From the continuity of Brownian paths, almost surely any Brownian path starting from
O should stay inside the corresponding path-connected component of the active region, say
A ⊂ Rd × R≥0, that is connected to O, that is,

A = {(x, t) | x ∈ O, t < sU2 (x)} in type (I), A = {(x, t) | x ∈ O, t > sU2 (x)} in type (II).

From this and the condition µ1 ≤ µ2, we can without loss of generality assume that O = E2,
that means, we consider only those mass, Brownian motion, and the barriers, associated to O;
for example, we assume µi|E = µi|O, νi|E = νi|O. Notice that A is a connected open set and
that the Eulerian flow η2 > 0 on A. From this we also see that

ν2 > 0 on O.

(To see this use for example, Lemma 8.1, which uses optimality of ν2 with respect to Prob-
lem 1.1.) Therefore, it suffices to show that sU1 (x) 6= sU2 (x) for ν2-a.e. x.

Recall that τ1 ≤ τ2 and ν1 ≤ ν2 from Theorem 7.1. Because of the Markov property
of Brownian motion, the inequality can be applied to all Brownian paths from the initial
distribution µ2 not only from µ1 (see Remark 7.3).
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If s1(Wτ1) = s2(Wτ1), then from the hitting time characterization of τi’s (Proposition 3.9)
we have that τ1 = τ2. Therefore,

almost surely, “s1(Wτ1) = s2(Wτ1)” implies “τ2 = τ1”.(10.4)

Also, recall from the saturation result (Theorem 8.3) that νi 6= f only where the Brownian
paths (from µi) stop immediately. From our assumption τi > 0 almost surely, so we have
νi = f on its support. Therefore to prove the theorem it suffices to show that

ν2[S] = 0,

where

S := {x | s1(x) = s2(x) <∞} ∩ {x | ν1(x) = ν2(x) = f(x)} ∩O.

We have from W0 ∼ µi|O, Wτi ∼ νi|O that

νi[S] =

ˆ
O
Prob[Wτi ∈ S|W0 = x]dµi(x) for i = 1, 2.

Let G be as given in the theorem, and observe that µ2[G] > 0. Then, for i = 1, 2,

νi[S] =

ˆ
G
Prob[Wτi ∈ S|W0 = x]dµi(x) +

ˆ
O\G

Prob[Wτi ∈ S|W0 = x]dµi(x).(10.5)

On the other hand, for µ2-a.e. x,

Prob[Wτ2 ∈ S | W0 = x]

= Prob[Wτ2 ∈ S & τ2 = τ1 | W0 = x] + Prob[Wτ2 ∈ S & τ2 > τ1| W0 = x ]

≥ Prob[Wτ2 ∈ S & τ2 = τ1 | W0 = x]

= Prob[Wτ1 ∈ S & τ2 = τ1 | W0 = x].

From (10.4) it holds that for µ2-a.e. x,

Prob[Wτ1 ∈ S & τ2 = τ1 | W0 = x] = Prob[Wτ1 ∈ S | W0 = x].

Therefore, from the previous inequality we have for µ2-a.e. x,

Prob[Wτ2 ∈ S | W0 = x] ≥ Prob[Wτ1 ∈ S | W0 = x].

Apply this to the above integrals (10.5) and get

ν2[S]− ν1[S] ≥
ˆ
G
Prob[Wτ2 ∈ S|W0 = x]dµ2(x)−

ˆ
G
Prob[Wτ1 ∈ S|W0 = x]dµ1(x)

≥ 0.

On the other hand, due to the definition of S, ν1(S) = ν2(S). This and the condition µ2 > µ1

on G yields

(10.6) Prob[Wτ2 ∈ S | W0 = x] = Prob[Wτ1 ∈ S | W0 = x] = 0 for µ2 a.e. x in G.

Let τ̃2 be the restriction of τ2 to the to the initial distribution µ2|G and consider its Eulerian
flow η̃2. Since the active set A is a connected open set, we have η̃2 > 0 everywhere in A. Recall
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from above that ν2 > 0 on O and that η2 > 0 on A for the Eulerian flow η2 of τ2 with µ2. In
other words, η̃2 > 0 wherever η2 > 0. Therefore, from the Markov property of the Brownian
motion, the resulting target distribution ν̃2 of τ̃2 has ν̃2 > 0 on O, because it has to be > 0
wherever ν2 > 0. Now, (10.6) implies that ν̃2[S] = 0, so ν2[S] = 0 as desired. This completes
the proof.

�
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bedding. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 54(2):1098–1133, 05 2018.

[19] François Delarue, James Inglis, Sylvain Rubenthaler, and Etienne Tanré. Global solvability of a networked
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