1. Let \(y(t) : \mathbb{R} \to \mathbb{R} \) solve the third order ODE
 \[
y''' = y^2 + t^2.
 \]
 (a) Define \(x \) and \(f(x) \) so that the equation may be rewritten in the form \(\dot{x} = f(x) \).
 (b) What is the dimension of the system \(\dot{x} = f(x) \)?

2. Let \(x(t) : \mathbb{R} \to \mathbb{R} \) solve the ODE
 \[
 \dot{x} = x - \cos x.
 \]
 Let \(x_0 \) be the fixed point of the ODE that lies between zero and \(\pi/2 \) (explain why it exists, by drawing the graph of \(x \) and \(\cos x \)). Determine the stability of \(x_0 \).

3. Consider the ODE
 \[
 \dot{x} = 3 \cos x.
 \]
 (a) Find all fixed points of the ODE.
 (b) At which points \(x \) does the flow have the greatest velocity to the left?
 (c) Find the flow’s acceleration \(x'' \) as a function of \(x \).
 (d) At which points do the flow have maximum positive acceleration?

4. In each of the following collection of fixed points, give an example of an equation \(\dot{x} = f(x) \) that fits the description;
 (a) \(x = 0 \): unstable, \(x = 1 \): stable and \(x = 2 \): semistable;
 (b) \(x = -1, 1 \): stable and \(x = 0 \): unstable.
5. There are two ways to solve the logistic equation \(N' = rN(1 - N/K) \) analytically for an arbitrary initial condition \(N_0 \).

(a) Separate variables and integrate, using partial fractions.

(b) Make the change of variables \(x = 1/N \). Then solve the resulting differential equation for \(x \).

Solve the equation in both ways (Assume \(K, r > 0 \)).

6. A particle travels on the half line \(x \geq 0 \) with a velocity given by \(\dot{x} = ax^{1/b} \), where \(a, b \in \mathbb{R} \).

(a) Find all values of \(a \) and \(b \) so that the origin \(x = 0 \) is a stable fixed point.

(b) Suppose \(a \) and \(b \) are chosen such that \(x = 0 \) is stable. Can the particle ever reach the origin in a finite time? Specifically, how long does it take for the particle to travel from \(x = 1 \) to \(x = 0 \), as a function of \(a \) and \(b \)? (Hint: since distance = (rate)(time), the time it takes to move a distance \(dx \) is given by \(dt = dx/v(x) \), where \(v(x) \) is the velocity at \(x \).)

(c) For the values of \(a \) and \(b \) so that the particle reaches the origin in finite time, is \(ax^{1/b} \) continuously differentiable on \([0, \infty)\)?

7. Suppose \(x(t) \) solves \(\dot{x} = f(x) \) with \(f(0) = 0 \) and \(|f(x)| \leq A|x| \). Show that if \(x(0) \) is not equal to zero then \(x(t) \) can never reach the stationary solution \(x = 0 \) in finite time.

Other suggested exercises that need not be turned in:
Strogatz 2.2.9, 2.3.4, 2.4.2, 2.4.4, 2.4.8, 2.5.4, 2.5.6, 2.6.2.