Math 134 Spring 2017 Lecture 2: Homework 1, due 4/14

Note: At least one of the homework problems, including the suggested exercises, will appear on each exam.

1. Let $y(t) : \mathbb{R} \to \mathbb{R}$ solve the third order ODE

$$y^{'''} = y^2 + t^2.$$

- (a) Define x and f(x) so that the equation may be rewritten in the form $\dot{x} = f(x)$.
- (b) What is the dimension of the system $\dot{x} = f(x)$?
 - 2. Let $x(t) : \mathbb{R} \to \mathbb{R}$ solve the ODE

$$\dot{x} = x - \cos x.$$

Let x_0 be the fixed point of the ODE that lies between zero and $\pi/2$ (explain why it exists, by drawing the graph of x and $\cos x$). Determine the stability of x_0 .

3. Consider the ODE

$$\dot{x} = 3\cos x.$$

- (a) Find all fixed points of the ODE.
- (b) At which points x does the flow have the greatest velocity to the left?
- (c) Find the flow's acceleration x'' as a function of x.
- (d) At which points do the flow have maximum positive acceleration?

4. In each of the following collection of fixed points, give an example of an equation $\dot{x} = f(x)$ that fits the description;

- (a) x = 0: unstable, x = 1: stable and x = 2: semistable;
- (b) x = -1, 1: stable and x = 0: unstable.

5. There are two ways to solve the logistic equation N' = rN(1 - N/K) analytically for an arbitrary initial condition N_0 .

- (a) Separate variables and integrate, using partial fractions.
- (b) Make the change of variables x = 1/N. Then solve the resulting differential equation for x.

Solve the equation in both ways (Assume K, r > 0).

6. A particle travels on the half line $x \ge 0$ with a velocity given by $\dot{x} = ax^{1/b}$, where $a, b \in \mathbb{R}$.

- (a) Find all values of a and b so that the origin x = 0 is a stable fixed point.
- (b) Suppose a and b are chosen such that x = 0 is stable. Can the particle ever reach the origin in a finite time? Specifically, how long does it take for the particle to travel from x = 1 to x = 0, as a function of a and b? (Hint: since distance = (rate)(time), the time it takes to move a distance dx is given by dt = dx/v(x), where v(x) is the velocity at x.)
- (c) For the values of a and b so that the particle reaches the origin in finite time, is $ax^{1/b}$ continuously differentiable on $[0, \infty)$?

7. Suppose x(t) solves $\dot{x} = f(x)$ with f(0) = 0 and $|f(x)| \le A|x|$. Show that if x(0) is not equal to zero then x(t) can never reach the stationary solution x = 0 in finite time.

Other suggested exercises that need not be turned in: Strogatz 2.2.9, 2.3.4, 2.4.2, 2.4.4, 2.4.8, 2.5.4, 2.5.6, 2.6.2.