Math 131BH Spring 2018: Homework 5, Due 5/9

1-2. Rudin problems 16,18

3. Let $f_n: [0,1] \to \mathbb{R}$ be continuous with the property

$$|f_n(x)| \le 1 + \frac{n}{1 + n^2 x^2},$$

and define $F_n: [0,1] \to \mathbb{R}$ by

$$F_n(x) := \int_0^x f_n(t) dt.$$

Show that the sequence (F_n) has a subsequence that converges pointwise on [0,1].

4. Let $g \in C^1([-2,2])$, g = 0 outside [-1,1], and $\int_{-1}^1 g(x)dx = 1$. Show that for any sequence $f_n \in C([-1,1])$ the sequence (\tilde{f}_n) given by

$$\tilde{f}_n(x) := \int_{-1}^1 g(x-y) f_n(y) dy$$

is equicontinuous on [-1,1], and satisfies $\int_{-2}^{2} \tilde{f}_n(x) dx = \int_{-1}^{1} f_n(x) dx$.

5. [Optional] Let (f_n) be a sequence in C([-1, 1]) such that

(a) f_n is uniformly bounded;

(b) f_n converges pointwise to a continuous function f on [-1, 1] as $n \to \infty$.

Show that $\int_{-1}^{1} f_n(x) dx$ converges to $\int_{-1}^{1} f(x) dx$. Note that this is not true if we omit (a).