Math 131BH Spring 2018: Homework 5, Due 5/9

1 -2. Rudin problems 16,18
3. Let $f_{n}:[0,1] \rightarrow \mathbb{R}$ be continuous with the property

$$
\left|f_{n}(x)\right| \leq 1+\frac{n}{1+n^{2} x^{2}}
$$

and define $F_{n}:[0,1] \rightarrow \mathbb{R}$ by

$$
F_{n}(x):=\int_{0}^{x} f_{n}(t) d t
$$

Show that the sequence $\left(F_{n}\right)$ has a subsequence that converges pointwise on $[0,1]$.
4. Let $g \in C^{1}([-2,2]), g=0$ outside $[-1,1]$, and $\int_{-1}^{1} g(x) d x=1$. Show that for any sequence $f_{n} \in C([-1,1])$ the sequence $\left(\tilde{f}_{n}\right)$ given by

$$
\tilde{f}_{n}(x):=\int_{-1}^{1} g(x-y) f_{n}(y) d y
$$

is equicontinuous on $[-1,1]$, and satisfies $\int_{-2}^{2} \tilde{f}_{n}(x) d x=\int_{-1}^{1} f_{n}(x) d x$.
5. [Optional] Let $\left(f_{n}\right)$ be a sequence in $C([-1,1])$ such that
(a) f_{n} is uniformly bounded;
(b) f_{n} converges pointwise to a continuous function f on $[-1,1]$ as $n \rightarrow \infty$.

Show that $\int_{-1}^{1} f_{n}(x) d x$ converges to $\int_{-1}^{1} f(x) d x$. Note that this is not true if we omit (a).

