Math 131BH Spring 2018: Homework 4, Due 5/2

1-3. Rudin p165, problems $3,5,8$.
4. Let $\left(f_{n}\right)$ be a sequence of function from $[0,1] \rightarrow \mathbb{R}$ such that f_{n} converges pointwise to a continuous function f on $[0,1]$ as $n \rightarrow \infty$. Is it always true that $\int_{0}^{1}\left|f_{n}(x)-f(x)\right|^{2} d x \rightarrow 0$ as $n \rightarrow \infty$? Explain.
5. For each $n \geq 1$ let $f_{n}:[-1,1] \rightarrow \mathbb{R}$ be a continuous, nonnegative function and assume that
(a) $\int_{-1}^{1} f_{n}(y) d y=1$;
(b) For each $c>0,\left(f_{n}\right)$ uniformly converges to 0 on $[-1,-c] \cup[c, 1]$.

Show that for every continuous function $g:[-1,1] \rightarrow \mathbb{R}$, we have

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} f_{n}(y) g(y) d y=g(0)
$$

6. Let $\left(f_{n}\right)$ be as given above, and in addition suppose f_{n} is supported on $[-1 / n, 1 / n], f_{n}(x)=f_{n}(-x)$ and is in $C^{1}([-1,1])$. Consider a continuous function in $g:[-2,2] \rightarrow \mathbb{R}$. Consider

$$
h_{n}(x):=\int_{-2}^{2} f_{n}(y-x) g(y) d y
$$

where we extend f_{n} to be zero when y is outside of $[-1,1]$. Show that
(a) $h_{n} \in C^{1}([-1,1])$;
(b) h_{n} uniformly converges to g on $[-1,1]$ as $n \rightarrow \infty$.

