Math 131BH Spring 2018: Homework 4, Due 5/2

1-3. Rudin p165, problems 3,5,8.

4. Let (f_n) be a sequence of function from $[0,1] \to \mathbb{R}$ such that f_n converges pointwise to a continuous function f on [0,1] as $n \to \infty$. Is it always true that $\int_0^1 |f_n(x) - f(x)|^2 dx \to 0$ as $n \to \infty$? Explain.

5. For each $n\geq 1$ let $f_n:[-1,1]\to \mathbb{R}$ be a continuous, nonnegative function and assume that

- (a) $\int_{-1}^{1} f_n(y) dy = 1;$
- (b) For each c > 0, (f_n) uniformly converges to 0 on $[-1, -c] \cup [c, 1]$.

Show that for every continuous function $g: [-1,1] \to \mathbb{R}$, we have

$$\lim_{n \to \infty} \int_{-1}^{1} f_n(y)g(y)dy = g(0).$$

6. Let (f_n) be as given above, and in addition suppose f_n is supported on [-1/n, 1/n], $f_n(x) = f_n(-x)$ and is in $C^1([-1, 1])$. Consider a continuous function in $g: [-2, 2] \to \mathbb{R}$. Consider

$$h_n(x) := \int_{-2}^2 f_n(y-x)g(y)dy,$$

where we extend f_n to be zero when y is outside of [-1, 1]. Show that

- (a) $h_n \in C^1([-1,1]);$
- (b) h_n uniformly converges to g on [-1,1] as $n \to \infty$.