Math 131BH Spring 2018: Homework 3, due in class 4/25

1-4. Rudin p138, Problems 6, 8,11,12.
5. Compute

$$
\int_{0}^{1} x d \alpha
$$

where α is the Cantor function constructed in class.
6. Suppose f is continuous and is differentiable for "almost every" x in $[0,1]$ in the following sense. For any $\varepsilon>0$, there exists a union of disjoint open intervals $A_{N}=\cup_{n=1}^{N} I_{n}$ in $[0,1]$ such that
(a) $\sum_{n=1}^{N}\left|I_{n}\right| \geq 1-\varepsilon$ and
(b) f is differentiable in A_{N}.

Let us define $\int_{A_{N}} f^{\prime}(x) d x:=\Sigma_{n=1}^{N} \int_{I_{n}} f^{\prime}(x) d x$. Is it always true that $f(1)-$ $f(0)=" \int_{0}^{1} f^{\prime}(x) d x ":=\lim _{N \rightarrow \infty} \int_{A_{N}} f^{\prime}(x) d x ?$

