Math 131BH Spring 2018: Homework 2, due in class $4 / 18$
1-3. Rudin p114, Problems $15,18,25$.
4. Let f and g be n-th differentiable in (a, b), and suppose that for some $c \in(a, b)$ we have $f(c)=f^{\prime}(c)=\ldots=f^{(n-1)}(c)=0$, and $g(c)=g^{\prime}(c)=\ldots=$ $g^{(n-1)}(c)=0$, but that $g^{(n)}(x)$ is never zero in (a, b). Show that

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f^{(n)}(c)}{g^{(n)}(c)}
$$

if $g(x) \neq 0$ for $x \neq c$.
5-6. Rudin p138, Problems 3,5.
7. Let $f, \alpha:[a, b] \rightarrow \mathbb{R}$ be two monotone increasing functions, and suppose $f \in \mathcal{R}(\alpha)$ on $[a, b]$. Show that $\alpha \in \mathcal{R}(f)$ on $[a, b]$ and

$$
\int_{a}^{b} f d \alpha+\int_{a}^{b} \alpha d f=f(b) \alpha(b)-f(a) \alpha(a)
$$

