1-5. Rudin Chapter 5, problems 11,15,16,19,22.

6. Let \(\alpha(x) := 1 \) for \(x \geq 0 \) and \(\alpha(x) := 0 \) for \(x < 0 \), and let \(f = \alpha \). Show that \(f \notin \mathcal{R}(\alpha) \).

7. Let \(f, \alpha : [a, b] \rightarrow \mathbb{R} \) be monotone increasing functions. \(f \in \mathcal{R}(\alpha) \) on \([a, b] \).
Then show that \(\alpha \in \mathcal{R}(f) \) on \([a, b] \) and
\[
\int_a^b f \, d\alpha + \int_a^b \alpha \, df = f(b)\alpha(b) - f(a)\alpha(a).
\]

8. Suppose \(f \) is monotone and is differentiable for “almost every” \(x \) in \([0, 1]\)
in the following sense: For any \(\varepsilon > 0 \), there exists a union of disjoint open
intervals \(A = \bigcup_{n=1}^{N} I_n \) in \([0, 1]\) such that
(a) \(\Sigma_{n=1}^{N} |I_n| \geq 1 - \varepsilon \) and
(b) \(f \) is differentiable in \(A \).

Is it always true that \(f(1) - f(0) = \int_0^1 f'(x) \, dx \)?