Math 131AH Winter 2018: Homework 4, Due 2/7

- 1. Let E be a non-empty subset of $\mathbb R$ that is both open and closed. Show that $E=\mathbb R.$
- 2. Show that any open subset of $\mathbb R$ is a countable or finite union of disjoint open intervals.
 - 3. For the space of polynomials

$$X := \{ P(x) = \sum_{k=1}^{n} a_k x^k, n \in \mathbb{N} \text{ and } a_k \in \mathbb{R} \},$$

let us define

$$d(P,Q) := (\sum_{k=1}^{m} |a_k - b_k|^2)^{1/2}$$

for two polynomials $P(x) = \sum_{k=1}^n a_k x^k$ and $Q(x) = \sum_{k=1}^m b_k x^k$ in X, with $m \ge n$: we define $a_k = 0$ if $k \ge n$.

- (a) Show that d is a metric on X.
- (b) Let 0 be the constant zero polynomial. Show that the set $B:=\{P(x)\in X: d(P,0)\leq 1\}$ is closed and bounded but not compact.
 - 4-6. Rudin p. 43 (Chapter 2.) Exercises 9,12,16.