Math 131AH Winter 2018: Homework 4, Due 2/7

1. Let E be a non-empty subset of \mathbb{R} that is both open and closed. Show that $E=\mathbb{R}$.
2. Show that any open subset of \mathbb{R} is a countable or finite union of disjoint open intervals.
3. For the space of polynomials

$$
X:=\left\{P(x)=\Sigma_{k=1}^{n} a_{k} x^{k}, n \in \mathbb{N} \text { and } a_{k} \in \mathbb{R}\right\}
$$

let us define

$$
d(P, Q):=\left(\Sigma_{k=1}^{m}\left|a_{k}-b_{k}\right|^{2}\right)^{1 / 2}
$$

for two polynomials $P(x)=\Sigma_{k=1}^{n} a_{k} x^{k}$ and $Q(x)=\Sigma_{k=1}^{m} b_{k} x^{k}$ in X, with $m \geq n$: we define $a_{k}=0$ if $k \geq n$.
(a) Show that d is a metric on X.
(b) Let 0 be the constant zero polynomial. Show that the set $B:=\{P(x) \in X: d(P, 0) \leq 1\}$ is closed and bounded but not compact.

4-6. Rudin p. 43 (Chapter 2.) Exercises 9,12,16.

