Math 131AH Winter 2018: Homework 3, Due 1/31

- 1. Let E be a nonempty set. Show that E is infinite if and only if E has the same cardinality with at least one of its proper subset.
 - 2.
 - (a) Let X be countable, and let Y be an infinite subset of X. Show that Y is countable. You can follow the proof in the book if you would like to, the point is to make you understand the proof.
- (b) Using (a), show that if $\{X_n\}_{n=1}^{\infty}$ is a family of countable sets, then $\bigcup_{n\in N}X_n$ is countable. Explain where we need (a).
- 3. Let us denote $(0,1) := \{x : x \in \mathbb{R}, 0 < x < 1\}$. For $x \in (0,1)$, let $f(x) = (a_1, a_2, a_3, ...) \subset \{0, 1, ..., 9\}^{\mathbb{N}}$, where the $a_k \in \{0, 1, ..., 9\}$ are chosen uniquely by the decimal expansion constructed in class. Recall that in particular we showed that $r_n := 0.a_1a_2..a_n$ satisfies $r_n \le x < r_n + 1/(10)^n$.
 - (a) Show that $f:(0,1)\to\{0,1,...,9\}^{\mathbb{N}}$ is a one-to-one map.
 - (b) Show that the set $S := \{f(x) : x \in (0,1)\}$ is uncountable.
 - (c) Conclude that (0,1) is uncountable, and thus so is \mathbb{R} .
 - 4. Find a 1-1, onto map between [0,1] and (0,1).
 - 5-8. Rudin p. 43 (Chapter 2.) Exercises 2, 3, 6, 7.