Math 131AH Winter 2018: Homework 3, Due 1/31

1. Let E be a nonempty set. Show that E is infinite if and only if E has the same cardinality with at least one of its proper subset.
2.

(a) Let X be countable, and let Y be an infinite subset of X. Show that Y is countable. You can follow the proof in the book if you would like to, the point is to make you understand the proof.
(b) Using (a), show that if $\left\{X_{n}\right\}_{n=1}^{\infty}$ is a family of countable sets, then $\cup_{n \in N} X_{n}$ is countable. Explain where we need (a).
3. Let us denote $(0,1):=\{x: x \in \mathbb{R}, 0<x<1\}$. For $x \in(0,1)$, let $f(x)=\left(a_{1}, a_{2}, a_{3}, \ldots\right) \subset\{0,1, \ldots, 9\}^{\mathbb{N}}$, where the $a_{k} \in\{0,1, \ldots, 9\}$ are chosen uniquely by the decimal expansion constructed in class. Recall that in particular we showed that $r_{n}:=0 . a_{1} a_{2} . . a_{n}$ satisfies $r_{n} \leq x<r_{n}+1 /(10)^{n}$.
(a) Show that $f:(0,1) \rightarrow\{0,1, \ldots, 9\}^{\mathbb{N}}$ is a one-to-one map.
(b) Show that the set $S:=\{f(x): x \in(0,1)\}$ is uncountable.
(c) Conclude that $(0,1)$ is uncountable, and thus so is \mathbb{R}.
4. Find a $1-1$, onto map between $[0,1]$ and $(0,1)$.

5-8. Rudin p. 43 (Chapter 2.) Exercises 2, 3, 6, 7.

