Math 131AH Winter 2018: Homework 2, Due Wed. 1/24

- 1. Show that $\sup\{r \in \mathbb{Q} : r < a\} = a$ for all $a \in \mathbb{R}$.
- 2. Show that if $x, y \in \mathbb{R}$ with $x^2 > y^2$ and x > 0 then x > y.
- 3. This exercise proves that $x^2 = 2$ can be solved in \mathbb{R} .
- (a) Show that $E:=\{x\in\mathbb{R}:x^2<2\}$ has a supremum in \mathbb{R} . Let us call $\alpha:=\sup E.$ Show that $0<\alpha<2.$
- (b) Show that $(\alpha + 1/n)^2 < 2$ for some $n \in \mathbb{N}$ if $\alpha^2 < 2$.
- (c) Show that $(\alpha 1/n)^2 > 2$ for some $n \in \mathbb{N}$ if $\alpha^2 > 2$.
- (d) Conclude that $\alpha^2 = 2$.
- 4. Show that irrationals are dense in \mathbb{R} : i.e. prove that for any $x, y \in \mathbb{R}$ with x < y, there exists an irrational number γ such that

$$x < \gamma < y$$
.

5-6. Rudin p22 (chapter 1) Exercise 6, 15.