Math 131AH Winter 2018: Homework 2, Due Wed. 1/24

1. Show that $\sup \{r \in \mathbb{Q}: r<a\}=a$ for all $a \in \mathbb{R}$.
2. Show that if $x, y \in \mathbb{R}$ with $x^{2}>y^{2}$ and $x>0$ then $x>y$.
3. This exercise proves that $x^{2}=2$ can be solved in \mathbb{R}.
(a) Show that $E:=\left\{x \in \mathbb{R}: x^{2}<2\right\}$ has a supremum in \mathbb{R}. Let us call $\alpha:=\sup E$. Show that $0<\alpha<2$.
(b) Show that $(\alpha+1 / n)^{2}<2$ for some $n \in \mathbb{N}$ if $\alpha^{2}<2$.
(c) Show that $(\alpha-1 / n)^{2}>2$ for some $n \in \mathbb{N}$ if $\alpha^{2}>2$.
(d) Conclude that $\alpha^{2}=2$.
4. Show that irrationals are dense in \mathbb{R} : i.e. prove that for any $x, y \in \mathbb{R}$ with $x<y$, there exists an irrational number γ such that

$$
x<\gamma<y
$$

5-6. Rudin p22 (chapter 1) Exercise 6, 15.

