Math 131AH Winter 2018: Homework 7, Due 3/7

1. For a given $k \in \mathbb{N}$, Consider two sequences (a_n) and $(b_{n,k})$ in \mathbb{R} . Suppose that

$$a_n \leq b_{n,k}$$
 for all $n, k \in N$.

Show that $\limsup_{n\to\infty} a_n \leq B_k := \limsup_{n\to\infty} b_{n,k}$ for all $k\in N$. Consequently it follows that

$$\limsup_{n \to \infty} a_n \le \liminf_{k \to \infty} B_k.$$

- 2. Rudin chapter 3 exercise problem 17.
- 3. (Construction of \mathbb{R} by Cauchy) Let us first define some necessary notions in the field \mathbb{Q} . We denote \mathbb{Q}^+ by the set of positive rational numbers.
 - For a sequence (q_n) in \mathbb{Q} , we say q_n converges to $r \in \mathbb{Q}$, or $q_n \to r$, if the following holds: for any $w \in \mathbb{Q}^+$, there exists $N \in \mathbb{N}$ such that $|q_n r| \leq w$ if n > N.
 - We say (q_n) is a Cauchy sequence in \mathbb{Q} if the following holds: for any $w \in \mathbb{Q}^+$, there exists $N \in \mathbb{N}$ such that $|q_n q_m| \leq w$ if m, n > N.

With these definitions, let us define \mathbb{R} as follows:

$$\mathbb{R} := \{ [P] : P = (p_n) \text{ is a Cauchy sequence in } \mathbb{Q} \},$$

where [P] is the equivalence class of P defined by the following equivalence relation

$$P \sim \tilde{P}$$
 if $|p_n - \tilde{p}_n| \to 0$.

Let us next define a relation < between [P] and $[\tilde{P}]$ by the following:

$$[P] < [\tilde{P}]$$
 if there exists $w \in \mathbb{Q}^+$ and N such that $w < \tilde{p}_n - p_n$ for $n > N$.

- (1) Show that $(\mathbb{R}, <)$ is an ordered set. First show that the order is well-defined, i.e. that it does not depend on the choice of the sequence P in the same equivalence class.
- (2) Show that $(\mathbb{R}, <)$ has the least upper bound property.
- 4-6. Rudin p99: problems 1,3,4.