Math 131AH Winter 2018: Homework 7, Due 3/7

1. For a given $k \in \mathbb{N}$, Consider two sequences $\left(a_{n}\right)$ and $\left(b_{n, k}\right)$ in \mathbb{R}. Suppose that

$$
a_{n} \leq b_{n, k} \text { for all } n, k \in N
$$

Show that $\limsup _{n \rightarrow \infty} a_{n} \leq B_{k}:=\limsup _{n \rightarrow \infty} b_{n, k}$ for all $k \in N$. Consequently it follows that

$$
\limsup _{n \rightarrow \infty} a_{n} \leq \liminf _{k \rightarrow \infty} B_{k}
$$

2. Rudin chapter 3 exercise problem 17.
3. (Construction of \mathbb{R} by Cauchy) Let us first define some necessary notions in the field \mathbb{Q}. We denote \mathbb{Q}^{+}by the set of positive rational numbers.

- For a sequence $\left(q_{n}\right)$ in \mathbb{Q}, we say q_{n} converges to $r \in \mathbb{Q}$, or $q_{n} \rightarrow r$, if the following holds: for any $w \in \mathbb{Q}^{+}$, there exists $N \in \mathbb{N}$ such that $\left|q_{n}-r\right| \leq w$ if $n>N$.
- We say $\left(q_{n}\right)$ is a Cauchy sequence in \mathbb{Q} if the following holds: for any $w \in \mathbb{Q}^{+}$, there exists $N \in \mathbb{N}$ such that $\left|q_{n}-q_{m}\right| \leq w$ if $m, n>N$.

With these definitions, let us define \mathbb{R} as follows:

$$
\mathbb{R}:=\left\{[P]: P=\left(p_{n}\right) \text { is a Cauchy sequence in } \mathbb{Q}\right\}
$$

where $[P]$ is the equivalence class of P defined by the following equivalence relation

$$
P \sim \tilde{P} \quad \text { if }\left|p_{n}-\tilde{p}_{n}\right| \rightarrow 0
$$

Let us next define a relation $<$ between $[P]$ and $[\tilde{P}]$ by the following:
$[P]<[\tilde{P}]$ if there exists $w \in \mathbb{Q}^{+}$and N such that $w<\tilde{p}_{n}-p_{n}$ for $n>N$.
(1) Show that $(\mathbb{R},<)$ is an ordered set. First show that the order is welldefined, i.e. that it does not depend on the choice of the sequence P in the same equivalence class.
(2) Show that $(\mathbb{R},<)$ has the least upper bound property.

4-6. Rudin p99: problems $1,3,4$.

