Math 131A Winter 2018: Homework 7, Due 3/9

$1-4$. 19.1, 19.7, 19.9, 20.1. For 19.9 we accept the fact that $f(x)=\sin x$ is continuous in \mathbb{R}.
5. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function with $f(0)=f(1)$. Show that there is some $x \in[0,1 / 2]$ such that $f(x)=f(x+1 / 2)$.
6. Show that $f(x)=\sqrt{x}$ is uniformly continuous in $[0,1]$, using only the definition of the uniform continuity.

For 7.-8. S denotes a subset of \mathbb{R}.
7. (a) Show that if $f: S \rightarrow \mathbb{R}$ is uniformly continuous and if S is bounded, then $f(S)$ is bounded.
(b) Show also by a counterexample that the statement is false if f is only continuous.
8. Let $f: S \rightarrow \mathbb{R}$ be uniformly continuous and bounded. The function $\omega:(0, \infty) \rightarrow \mathbb{R}$ given by

$$
\omega(\delta):=\sup \{|f(x)-f(y)|: x, y \in S,|x-y|<\delta\}
$$

is called the modulus of continuity of f. Show that w is increasing and $\lim _{\delta \rightarrow 0^{+}} \omega(\delta)=0$.

