Math 131A Winter 2018: Homework 4, Due 2/9 1-3. 10.4, 10.7, 10.8

4. Let (s_n) be a sequence in \mathbb{R} , and suppose $\sup\{s_n : n \ge 1\} = \infty$. Show that $\limsup s_n = \infty$.

- 5. Let us consider the sequence $x_1 = 1$ and $x_{n+1} = 1 + \frac{1}{x_n}$.
- (a) Show that $x_n \in [\frac{3}{2}, 2]$ for $n \ge 2$.
- (b) Using (a), show that $|x_{n+1} x_n| \le \frac{4}{9}|x_n x_{n-1}|$ for $n \ge 3$.
- (c) Deduce that $\{x_n\}$ is Cauchy and thus it converges.

6. Suppose (s_n) does not have any subsequence that is monotone nonincreasing. What can you say about s_n ?

7-8. 11.5, 11.8.