Math 131A Winter 2018: Homework 4, Due 2/9

1-3. 10.4, 10.7, 10.8
4. Let $\left(s_{n}\right)$ be a sequence in \mathbb{R}, and suppose $\sup \left\{s_{n}: n \geq 1\right\}=\infty$. Show that $\limsup s_{n}=\infty$.
5. Let us consider the sequence $x_{1}=1$ and $x_{n+1}=1+\frac{1}{x_{n}}$.
(a) Show that $x_{n} \in\left[\frac{3}{2}, 2\right]$ for $n \geq 2$.
(b) Using (a), show that $\left|x_{n+1}-x_{n}\right| \leq \frac{4}{9}\left|x_{n}-x_{n-1}\right|$ for $n \geq 3$.
(c) Deduce that $\left\{x_{n}\right\}$ is Cauchy and thus it converges.
6. Suppose $\left(s_{n}\right)$ does not have any subsequence that is monotone nonincreasing. What can you say about s_{n} ?

7-8. 11.5, 11.8.

