Math 131A Winter 2018: Homework 5 Due 2/16

1. Let (a_n) and (b_n) be bounded sequences of real numbers. Show that

 $\limsup a_n + \liminf b_n \le \lim \sup (a_n + b_n) \le \lim \sup a_n + \lim \sup b_n.$

Give an example of a single pair of sequences (a_n) , (b_n) for which both inequalities are strict.

- 2. Let (a_n) be a bounded sequence. Prove that there is exactly one real number L with the following two properties:
 - (i) For every $\varepsilon > 0$ there are only finitely many n for which $a_n > L + \varepsilon$;
- (ii) For every $\varepsilon > 0$ there are infinitely many n for which $a_n > L \varepsilon$.

Can you characterize this number L in terms of (a_n) ?

3 .- 5. Ross 12.9, 12.10, 12.13.