Math 131A Winter 2018: Homework 5 Due 2/16 1. Let (a_n) and (b_n) be bounded sequences of real numbers. Show that $\limsup a_n + \liminf b_n \le \lim \sup (a_n + b_n) \le \lim \sup a_n + \lim \sup b_n.$ Give an example of a single pair of sequences (a_n) , (b_n) for which both inequalities are strict. - 2. Let (a_n) be a bounded sequence. Prove that there is exactly one real number L with the following two properties: - (i) For every $\varepsilon > 0$ there are only finitely many n for which $a_n > L + \varepsilon$; - (ii) For every $\varepsilon > 0$ there are infinitely many n for which $a_n > L \varepsilon$. Can you characterize this number L in terms of (a_n) ? 3 .- 5. Ross 12.9, 12.10, 12.13.