Math 131A-Practice Midterm 1.

Please write clearly, and show your reasoning with mathematical rigor. You may use any correct rule about the algebra or order structure of \mathbb{R} from Section 3 without proving it.
1.
(a) State the Principle of Mathematical Induction.
(b) Prove that for all positive integers n,

$$
1+3+\ldots+(2 n-1)=n^{2} .
$$

2.

(a) State the Least Upper Bound Axiom (also called the Completeness Axiom).
(b) Let S be a non-empty subset of the real numbers such that S is bounded above. Let $M=\{y: y \geq x$ for all $x \in S$. $\}$. Prove that M is non-empty, that M is bounded below, and that

$$
\sup S=\inf M
$$

3. Show that natural numbers do not have an upper bound (Do not use Archimedean Property).
4.

(a) Give the $\epsilon-N$ definition of $\lim _{n \rightarrow \infty} s_{n}=s$.
(b) Use the definition to prove that $\lim _{n \rightarrow \infty} \frac{10 n+(-1)^{n}}{n}=10$.
5. Carefully prove that if $s_{n} \rightarrow s$ and $t_{n} \rightarrow t$, where s and t are real numbers, then

$$
s_{n} t_{n} \rightarrow s t \text { as } n \rightarrow \infty .
$$

6.

(a) State the definition of $\limsup _{n \rightarrow \infty} s_{n}$ and $\liminf _{n \rightarrow \infty} s_{n}$ for a given sequence s_{n}.
(b) Show that $\liminf _{n \rightarrow \infty} s_{n} \leq \limsup \sup _{n \rightarrow \infty} s_{n}$.

