Math 131A-Practice Midterm 1.

Please write clearly, and show your reasoning with mathematical rigor. You may use any correct rule about the algebra or order structure of $I\!\!R$ from Section 3 without proving it.

1.

- (a) State the Principle of Mathematical Induction.
- (b) Prove that for all positive integers n,

$$1 + 3 + \dots + (2n - 1) = n^2$$
.

2.

- (a) State the Least Upper Bound Axiom (also called the Completeness Axiom).
- (b) Let S be a non-empty subset of the real numbers such that S is bounded above. Let $M = \{y : y \ge x \text{ for all } x \in S.\}$. Prove that M is non-empty, that M is bounded below, and that

$$\sup S = \inf M.$$

3. Show that natural numbers do not have an upper bound (Do not use Archimedean Property).

4.

- (a) Give the ϵN definition of $\lim_{n \to \infty} s_n = s$.
- (b) Use the definition to prove that $\lim_{n\to\infty} \frac{10n+(-1)^n}{n} = 10$.

5. Carefully prove that if $s_n \to s$ and $t_n \to t$, where s and t are real numbers, then $s_n t_n \to st$ as $n \to \infty$.

6.

- (a) State the definition of $\limsup_{n\to\infty} s_n$ and $\liminf_{n\to\infty} s_n$ for a given sequence s_n .
- (b) Show that $\liminf_{n\to\infty} s_n \leq \limsup_{n\to\infty} s_n$.