Fall 2013 MATH 131A Lec 4 Final Exam

Please write clearly, and show your reasoning with mathematical rigor.

Name:

Student ID:

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
Total	

- 1. [17pt] (True or False. Please give a counterexample if false)
- (a) If a set D is dense in \mathbb{R} , its complement $\mathbb{R} D$ is also dense.
- (b) If $S \subset T$ then $\inf T \leq \inf S$.
- (c) If Σa_n converges and b_n is bounded, then $\Sigma(a_n b_n)$ converges.
- (d) A sequence always has a convergence subsequence.
- (e) There is a differentiable function $f : [0,2] \to \mathbb{R}$ such that $\lim_{x\to 1} f'(x)$ exists but is not equal to f'(1). Please explain your answer.
- (f) If $f:(0,1) \to \mathbb{R}$ is uniformly continuous in (0,1), then $\lim_{x \to 1^-} f(x)$ exists.
- (g) If f is integrable in [a, b], then it is either continuous or monotone.

2. [12pt] Suppose S and T is a subset of \mathbb{R} , and suppose $U = \{s + t : s \in S, t \in T\}$. Suppose $\sup S$ and $\sup T$ are finite. Show that $\sup(S + T) = \sup S + \sup T$ by proceeding as below:

- (a) Show that $\sup(S+T) \leq \sup S + \sup T$;
- (b) Show that if $t < \sup S + \sup T$, then t is not an upper bound of S + T;
- (c) Using (b) conclude that $\sup S + \sup T \leq \sup(S + T)$.

3. [12pt] Let us define the sequence $\{x_n\} \subset \mathbb{R}$ as follows:

$$x_1 = 2$$
 and $x_{n+1} = \frac{1}{2}(x_n + \frac{1}{x_n}).$

Show that the sequence is monotone, and find its limit.

- 4. [12pt]
- (a) State the definition of Cauchy sequence in \mathbb{R} .
- (b) Using only the definition of the Cauchy sequence, show that if $\{s_n\}$ is a Cauchy sequence in \mathbb{R} then $\limsup s_n = \liminf s_n$.

5. [12pt] Prove that if $f:[0,1]\to \mathbb{R}$ be continuous then f is bounded.

6. [12pt] Let $f : [0,1] \to \mathbb{R}$ be continuous, f(0) < f(1) and assume that f does not have a local maximum or minimum in (0,1). Show that f must be monotone increasing. Note that f may not be differentiable.

- 7. [11pt] Let $f:(a,b) \to \mathbb{R}$ be continuous.
- (a) Suppose f attains its maximum at $c \in (a, b)$, and suppose that f is differentiable at x = c. Use the definition of derivative to show that f'(c) = 0.
- (b) Suppose $|f'(x)| \leq 1$ in (a, b). Using the Mean Value Theorem, show that f is uniformly continuous in (a, b).

- 8. [12pt] Let $f : [0,1] \to \mathbb{R}$ satisfy f(x) = x if $0 \le x \le 1/2$ and f(x) = 0 if $1/2 < x \le 1$.
- (a) Explain why it is enough to show that, for each $\varepsilon > 0$, there exists U(f, P) and L(f, P) which differ at most by ε .
- (b) Using (a), Show that f is integrable.