Fall 2013 MATH 131A Lec 4 Final Exam
Please write clearly, and show your reasoning with mathematical rigor.
Name:
Student ID:

Problem	Score
1	
2	
3	
4	
5	
6	
7	
8	
Total	
2	

1. $[17 \mathrm{pt}]$ (True or False. Please give a counterexample if false)
(a) If a set D is dense in \mathbb{R}, its complement $\mathbb{R}-D$ is also dense.
(b) If $S \subset T$ then $\inf T \leq \inf S$.
(c) If Σa_{n} converges and b_{n} is bounded, then $\Sigma\left(a_{n} b_{n}\right)$ converges.
(d) A sequence always has a convergence subsequence.
(e) There is a differentiable function $f:[0,2] \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow 1} f^{\prime}(x)$ exists but is not equal to $f^{\prime}(1)$. Please explain your answer.
(f) If $f:(0,1) \rightarrow \mathbb{R}$ is uniformly continuous in $(0,1)$, then $\lim _{x \rightarrow 1^{-}} f(x)$ exists.
(g) If f is integrable in $[a, b]$, then it is either continuous or monotone.
2. [12pt] Suppose S and T is a subset of \mathbb{R}, and suppose $U=\{s+t: s \in S, t \in T\}$. Suppose sup S and $\sup T$ are finite. Show that $\sup (S+T)=\sup S+\sup T$ by proceeding as below:
(a) Show that $\sup (S+T) \leq \sup S+\sup T$;
(b) Show that if $t<\sup S+\sup T$, then t is not an upper bound of $S+T$;
(c) Using (b) conclude that $\sup S+\sup T \leq \sup (S+T)$.
3. [12pt] Let us define the sequence $\left\{x_{n}\right\} \subset \mathbb{R}$ as follows:

$$
x_{1}=2 \text { and } x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{1}{x_{n}}\right) .
$$

Show that the sequence is monotone, and find its limit.
4. [12pt]
(a) State the definition of Cauchy sequence in \mathbb{R}.
(b) Using only the definition of the Cauchy sequence, show that if $\left\{s_{n}\right\}$ is a Cauchy sequence in \mathbb{R} then $\limsup s_{n}=\liminf s_{n}$.
5. [12pt] Prove that if $f:[0,1] \rightarrow \mathbb{R}$ be continuous then f is bounded.
6. [12pt] Let $f:[0,1] \rightarrow \mathbb{R}$ be continuous, $f(0)<f(1)$ and assume that f does not have a local maximum or minimum in $(0,1)$. Show that f must be monotone increasing. Note that f may not be differentiable.
7. [11pt] Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous.
(a) Suppose f attains its maximum at $c \in(a, b)$, and suppose that f is differentiable at $x=c$. Use the definition of derivative to show that $f^{\prime}(c)=0$.
(b) Suppose $\left|f^{\prime}(x)\right| \leq 1$ in (a, b). Using the Mean Value Theorem, show that f is uniformly continuous in (a, b).
8. [12pt] Let $f:[0,1] \rightarrow \mathbb{R}$ satisfy $f(x)=x$ if $0 \leq x \leq 1 / 2$ and $f(x)=0$ if $1 / 2<x \leq 1$.
(a) Explain why it is enough to show that, for each $\varepsilon>0$, there exists $U(f, P)$ and $L(f, P)$ which differ at most by ε.
(b) Using (a), Show that f is integrable.

