MATH 131A section 1: Midterm 2.

Please write clearly, and show your reasoning with mathematical rigor. You may use any correct rule about the algebra or order structure of \mathbb{R} from Section 3 without proving it.

Name:
Student ID:

Problem	Score
1	
2	
3	
4	
Total	

1. a) Suppose $\left(s_{n}\right)$ is a sequence of real numbers satisfying $\left|s_{n}-s_{n+1}\right| \rightarrow 0$. Does this mean $\left(s_{n}\right)$ converges? Either prove it or give a counter-example.
b) Now suppose that $\left|s_{n}-s_{n+1}\right| \leq \frac{1}{2^{n}}$. Show that $\left(s_{n}\right)$ converges.
2. Let $\left(a_{n}\right)$ be a sequence. Suppose that there is a subsequence $\left(a_{n_{k}}\right)_{k \in N}$ such that $\sum_{k=1}^{\infty} a_{n_{k}}$ converges. Show that then $\lim \inf \left|a_{n}\right|=0$.
3. a) State the definition of continuity for a function f at $x_{0} \in \operatorname{dom}(f)$ (you can choose one of the two definitions given in the class).
b) Show that if $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function, then f is bounded in $[0,1]$.
4. a) State the definition of uniform continuity for a function $f: S \rightarrow \mathbb{R}$ in S.
b) Show that if $f(x)=\sqrt{x}$ is uniformly continuous in $(0,1]$. You need to prove that \sqrt{x} is continuous at $x=0$, if you wish to use the fact.
