Math 131A Section 6: Homework 7, Due 6/3 in TA session

1. Let us consider the function $f(x)=x \sin \left(\frac{1}{x}\right)$ for $x \neq 0$.
(a) Show that f has a continuous extension \tilde{f} on $-1 \leq x \leq 1$. You may use the fact that $\sin (x)$ is a continuous function.
(b) Show that \tilde{f} is not differentiable at $x=0$.
2. Let $f:(a, b) \rightarrow \mathbb{R}$ be differentiable at all points in (a, b), and let $x \in(a, b)$. Suppose that $\lim _{x \rightarrow c} f^{\prime}(x)$ exists and is finite. Show that this limit must be $f^{\prime}(c)$.

3-6. 20.20, 28.4, 28.8, 28.10.
7-9. 29.3 29.12, 29.18.

