Math 131A Lecture 4: Homework 4, Due 5/6 in TA session

1. Let $\left(s_{n}\right)$ be a sequence in \mathbb{R}.
(a) Show that if $\lim \sup s_{n} \leq 1$ if and only if the following holds:

For every $\varepsilon>0$, there are only finitely many n for which $s_{n}>1+\varepsilon$.
(b) Suppose $\sup \left\{s_{n}: n \geq 1\right\}=\infty$. Show that $\lim \sup s_{n}=\infty$.
2. Let us consider the sequence $x_{1}=1$ and $x_{n+1}=1+\frac{1}{x_{n}}$.
(a) Show that $x_{n} \in\left[\frac{3}{2}, 2\right]$ for $n \geq 2$.
(b) Using (a), show that $\left|x_{n+1}-x_{n}\right| \leq \frac{4}{9}\left|x_{n}-x_{n-1}\right|$ for $n \geq 3$.
(c) Deduce that $\left\{x_{n}\right\}$ is Cauchy, and thus it converges.
3. 10.7
4. Suppose $\left(s_{n}\right)$ does not have any subsequence that is monotone nonincreasing. What can you say about $\left(s_{n}\right)$?

5-6. 11.8, 11.10.
7-11. 12.2, 12.4, 12.8, 12.10, 12.12

