Math 131A Lecture 4: Homework 4, Due 5/6 in TA session

- 1. Let (s_n) be a sequence in \mathbb{R} .
- (a) Show that if $\limsup s_n \leq 1$ if and only if the following holds:

For every $\varepsilon > 0$, there are only finitely many *n* for which $s_n > 1 + \varepsilon$.

- (b) Suppose $\sup\{s_n : n \ge 1\} = \infty$. Show that $\limsup s_n = \infty$.
 - 2. Let us consider the sequence $x_1 = 1$ and $x_{n+1} = 1 + \frac{1}{x_n}$.
- (a) Show that $x_n \in [\frac{3}{2}, 2]$ for $n \ge 2$.
- (b) Using (a), show that $|x_{n+1} x_n| \le \frac{4}{9}|x_n x_{n-1}|$ for $n \ge 3$.
- (c) Deduce that $\{x_n\}$ is Cauchy, and thus it converges.

3. 10.7

4. Suppose (s_n) does not have any subsequence that is monotone nonincreasing. What can you say about (s_n) ?

5-6. 11.8, 11.10. 7-11. 12.2, 12.4, 12.8, 12.10, 12.12