Math 131A Lecture 6: Homework 1, Due 4/8 in TA session

- 1. Section 1: 1.8.
- 2. Show that $n^4/4 < 1^3 + 2^3 + \ldots + n^3$ for $n \ge 1$ by induction.

3. Using induction, show that every integer n > 1 is either a prime or a product of primes.

- 4. Section 2:
- (a) Show that \sqrt{p} , where p is a prime number, is not a rational number.
- (b) Show that p q, where p is a rational number and q an irrational number, is an irrational number.
 - 5. Section 3: Ex. 3.4, 3.6

6. Let $(F, +, \cdot, \leq)$ be an ordered field with at least two elements. Let 0 and 1 denote the identities for addition and multiplication, respectively. Show that for two nonzero elements x, y of F such that $0 \leq x, y$, we have $x \leq y$ if and only if $x^2 \leq y^2$. Specify what axioms or theorems in the book you are using.