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Problem 1.
Let Γ ⊂ R2 be the graph of the function y = |x|.

(a) Construct a smooth function f : R→ R2 whose image is Γ.

(b) Can f be an immersion?

Solution.
(a) Let ρ : R→ R be a smooth bump function so that supp ρ = R \ [−1, 1] and ρ(0) = 0.

Then define
f(x) = (ρ(x) · x, ρ(x)|x|).

Then f is smooth, because it is smooth at 0 by construction and is piecewise smooth
on x < 0 and x > 0. Further, f(x) is always contained in Γ and is surjective, so this
is the requisite function.

(b) Suppose we have such an immersion. Then locally it is the canonical immersion, i.e.
there are local coordinates (x1, x2) around 0 ∈ R2 so that Γ is equal to x1. But this
would require a diffeomorphism of a ‘corner’ in R2 to a line, which is not possible. That
is, even though we could have a smooth function f , the ‘corner’ on Γ is a problem if
we want f to be an immersion.

Problem 2.
Let W be a smooth manifold with boundary, and f : ∂W → Rn a smooth map, for some
n ≥ 1. Show that there exists a smooth map F : W → Rn such that F |∂W = f .

Solution.
We use the general ε-neighbourhood theorem. We know that W embeds in some Euclidean
space RN , which gives an embedding of the boundaryless manifold ∂W into RN . Then there
is a neighbourhood ∂W ε ⊂ RN of ∂W and a submersion π : ∂W ε → ∂W that is the identify
on ∂W . In particular, we have

∂W ε = {x ∈ RN : |x− y| < ε(y) for some y ∈ ∂W}, ε : ∂W → R smooth.
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Consider a bump function ρ that is supported on ∂W ε and has ρ(y) = 1 for all y ∈ ∂W .
Then define

F : RN → Rn, F (x) =

{
0 x /∈ ∂W ε

ρ(x) · f(π(x)) x ∈ ∂W ε

This is smooth by construction, and has F |∂W = f . The restriction of F to W ⊂ RN is
exactly the function we want.

Problem 3.
Let Sn ⊂ Rn+1 be the unit sphere. Determine the values of n ≥ 0 for which the antipodal
map Sn → Sn is isotopic to the identity.

Solution.
This only occurs when n is odd. We know that the degree of the antipodal map is (−1)n+1,
therefore it is only possible when n is odd. Further, we can construct this isotopy explicitly
for S2n−1. If we view R2n as the direct sum of n planes, i.e. Cn, then the antipodal map is
the same as rotating each copy of C through by π radians. Therefore the isotopy is given by
rotating back.

Problem 4.
Let ω1, . . . , ωk be 1-forms on a smooth n-dimensional manifold M . Show that {ωi} are
linearly dependent if and only if

ω1 ∧ · · · ∧ ωk 6= 0.

Solution.
If the ωi are linearly dependent, then without loss of generality we can write

ωk =
k−1∑
i=1

aiωi.

Then

ω1 ∧ · · · ∧ ωk = ω1 ∧ · · · ∧

(
k−1∑
i=1

aiωi

)

=
k−1∑
i=1

ai ω1 ∧ · · · ∧ ωi

=
k−1∑
i=1

(−1)k−(i+1)ai ω1 ∧ · · · ω̂i ∧ · · · ∧ ωi ∧ ωi

Since for 1-forms we have ω ∧ ω = 0, we have

k−1∑
i=1

(−1)k−(i+1)ai ω1 ∧ · · · ω̂i ∧ · · · ∧ 0 = 0.
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Conversely, suppose that the ωi are linearly independent. Then the dual vector fields
associated to these, say Vi, are linearly independent as well. We can find local coordinates
such that ∂

∂xi
= Vi for all i. Then clearly ω1 ∧ · · · ∧ ωk 6= 0 in these local coordinates. Since

this works in any chart in M , the form cannot be identically zero.

Problem 5.
Let M = R2/Z2 be the 2-torus, L the line 3x = 7y in R2, and S = π(L) ⊂ M , where
π : R2 → M is the projection map. Find a differential form on M which represents the
Poincaré dual of S.

Solution.
We know that S ∈ H1(M) is a cycle. We can describe S ∈ H1(M)∗ in the following way:
for ω ∈ H1(M), there is (by Poincaré duality) a form η such that∫

S

ω =

∫
M

ω ∧ η.

We want to construct this (unique) η. Since H1(M) ∼= R2, we can let ω = aθ1 + bθ2 for
a, b ∈ R, where θ1 and θ2 are 1-forms on the component copies of S1 in M which have integral
1. Then ∫

S

ω =

∫
S

aθ1 + bθ2 = 3

∫
S1

aθ1 + 7

∫
S1

bθ2 = 3a+ 7b.

The second equality holds since S is a 3-fold wrapping of one of the copies of S1 and a 7-fold
wrapping of the other. Hence it is fairly clear that η = 7θ2 + 3θ1. To see this,∫

M

ω ∧ η =

∫
M

3aθ1 ∧ θ2 + 7bθ1 ∧ θ2 = 3a+ 7b.

Problem 6.
Let Sn ⊂ Rn+1 be the unit sphere, equipped with the round metric gS (the restriction of the
Euclidean metric on Rn+1). Consider also the hyperplane H = Rn × {0} ⊂ Rn+! equipped
with the Euclidean metric gH . Any line passing through the North Pole p = (0, . . . , 0, 1) and
another point A ∈ Sn will intersect this hyperplane in a point A′. The map

Ψ : Sn \ {p} → H, Ψ(A) = A′

is called the stereographic projection. Show that Ψ is conformal, i.e. for any x ∈ Sn \ {p},
the bilinear form (gS)x is a multiple of the bilinear form Ψ∗((gH)Ψ(x)).

Solution.
The inclusion of a Riemannian geometry problem is very inconsiderate, so this problem will
remained unanswered on principle.

Problem 7.
Let X be the wedge sum S1 ∨ S1. Give an example of an irregular covering space X̃ → X.
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Solution.
Recall that an irregular covering space corresponds to a subgroup of π1(S1∨S1) = Z∗Z which
is not normal. Consider p.58 of Hatcher for actual pictures. Picture (13) there corresponds
to the subgroup 〈ab〉 of Z ∗Z. This is not normal because it does not contain, in particular,
the conjugate ba.

Problem 8.
For n ≥ 2, let Xn be the space obtain from a regular (2n)-gon by identifying the opposite
sides with parallel orientations.

(a) Write down the cellular complex associated to this description.

(b) Show that Xn is a surface, and find its genus.

Solution.

(a) Xn has one 2-cell A, n 1-cells e1, . . . , en, and either 1 or 2 0-cells a and (possibly) b
depending on the parity of n. We get 2 0-cells for odd n because different vertices can
lie on the vertical line of symmetry, but this is not possible for even n. Therefore we
split up into even and odd n:

For even n, each 1-cell is glued to the same vertex, so we have ker ∂1 = Zn. Since
∂2(A) = 0, we have H1(Xn) = Zn and H2(Xn) = Z. Clearly H0(M) = Z as well.

For odd n, we still have H2(M) = H0(M) = Z. However, we have ∂1(ei) = a−b or b−a
in differing amounts. Without loss of generality, there are (n+ 1)/2 which have a− b
and (n−1)/2 of b−a. Renumber the ei in this order. We claim that dim ker ∂1 = n−1.
To see this, we look at a new basis for Ci given by ei − ei+1. All of these successive
differences have ∂1(ei − ei+1) = 0 except for the one which has e(n+1)/2 and e(n+1)/2+1,
because these have differing types. This shows H1(M) = Zn−1.

(b) The above shows this is a surface since H2(M) = Z in all cases. We know that, for an
orientable genus g surface Mg, we have χ(Mg) = 2−2g. Therefore we have the relation

χ(Xn) = 1− rkH1(Xn) + 1 = 2− 2g =⇒ rkH1(Xn) = 2g.

The genus of these surfaces is 1
2

rkH1(Xn), which is n/2 and (n − 1)/2 depending on
whether n is even or odd.

Problem 9.

(a) Consider the space Y obtained from S2 × [0, 1] by identifying (x, 0) with (−x, 0) and
also identifying (x, 1) with (−x, 1) for all x ∈ S2. Show that Y is homeomorphic to
the connected sum RP3#RP3.

(b) Show that S2 × S1 is a double cover of the connected sum RP3#RP3.

Solution.
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(a) Since ∂(S2 × [0, 1]) = S2 t S2, it is clear that ∂Y = RP2 t RP2. The antipodal
identification of S2 is precisely how RP2 is obtained. Further, we know that RP3 is
obtained by gluing a 3-cell appropriately to RP2. Therefore RP3 less an open D3, which
is the first step in taking the connected sum, is homeomorphic to RP2 if we choose the
appropriate disc. Therefore RP3#RP3 should look like two copies of RP2 connected by
the 3-tube, which is S2 × [0, 1]. This is exactly the case.

(b) Consider S1 = [0, 1) = {0} ∪ (0, 1/2) ∪ {1/2} ∪ (1/2, 1) for an appropriate parametri-
sation. Then define the covering map p in the following way: let S2 × {0} 2-cover the
{0} copy of RP2; let S2 × (0, 1/2) 1-cover the tube S2 × (0, 1); let S2 × {1/2} 2-cover
the {1} copy of RP2; and finally let S2× (1/2, 1) 1-cover the tube a second time. This
gives a smooth 2-cover of RP3#RP3.

Problem 10.
Let X be a topological space. Define the suspension S(X) to be the space obtained from
X × [0, 1] by contracting X × {0} to a point and contracting X × {1} to another point.
Describe the relation between the homology groups of X and S(X).

Solution.
We can construct a nice Mayer-Vietoris sequence for this space. Consider A = X×[0, 3/4)/ ∼
and B = X × (1/4, 1]/ ∼. Then A∪B = S(X), and A∩B = X × (1/4, 3/4) ' X. Further,
since A and B are just cones, they deformation retract onto their vertex, i.e. the point
X × {0} or X × {1}. Hence we have a sequence

· · · → Hi(A ∩B)→ Hi(A)⊕Hi(B)→ Hi(S(X))→ Hi−1(A ∩B)→ · · ·

which, in terms of what we know, gives us

· · · → 0→ Hi(S(X))→ Hi−1(X)→ 0→ · · ·

in each degree for i > 1. However when i = 1, Hi(A) = Hi(B) = Z (assuming Z-coefficients),
so we obtain

0→ H1(S(X))→ H0(X)→ Z2 → H0(S(X))→ 0.

We know that S(X) is connected even if X is not, because S(X) is path connected. Therefore
H0(S(X)) = Z. The surjection Z2 → H0(S(X)) means that this map has kernel isomorphic
to Z, whence H0(X) → Z2 has image isomorphic to Z. Factoring through that image, we
obtain the exact sequence

0→ H1(S(X))→ H0(X)→ Z→ 0

which is, in particular, split. Therefore H0(X) = Z⊕H1(S(X)). This gives us

Hi(S(X)) = Hi−1(X) for i > 1, H1(S(X))⊕ Z = H0(X), H0(S(X)) = Z.
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2 Fall 2013

Problem 1.
Let f : M → N be a nonsingular smooth map between connected manifolds of the same
dimension. Answer the following questions with a proof or counterexample.

(a) Is f necessarily injective or surjective?

(b) Is f necessarily a covering map when N is compact?

(c) Is f necessarily an open map?

(d) Is f necessarily a closed map?

Solution.
We know that f is nonsingular if and only if f is a local diffeomorphism for manifolds of the
same dimension. We will use this criterion to answer the questions.

(a) f does not need to be surjective. The inclusion of the open unit ball in Rn into Rn

itself is a local diffeomorphism but is not surjective.

f must be injective, however. Suppose f(x) = f(y). We know that there is a neigh-
bourhood Ux of x such that f |Ux is a diffeomorphism, and a Uy with the same property.
We claim that y ∈ Ux. Indeed, because f is a local diffeomorphism on Ux ∩ Uy, we
know that f−1(f(Ux)) = Ux. In particular, since f(x) = f(y) ∈ f(Ux), we have

f−1(f(y)) = y ∈ Ux = f−1(f(Ux)).

Therefore since f(x) = f(y) on Ux∩Uy, on which f is a local diffeomorphism, we have
x = y.

(b) No. Consider the map f : S1∨S1 → S1 which ‘folds’ the circles onto each other. Then
if we let x ∈ S1∨S1 be the wedge point, we know that every point in S1∨S1 \{x} has
a preimage with two points, and at at those points f is a two-sheeted covering map.
However, this is not the case at x, where there is only one preimage point. Therefore
we do not have a covering map.

(c) Yes. Because it is a local diffeomorphism, at any point x ∈M , we have a neighbourhood
Ux so that f(Ux) ∼= Ux. Therefore every point f(x) in the image has a neighbourhood
f(Ux) contained in the image, so the map is open.

(d) No. If we take the inclusion from part (a), the image of the open unit ball is not closed
in Rn. However, it is a closed set with respect to itself, so this map is not closed.

Problem 2.
Let M be a connected compact manifold with nonempty boundary ∂M . Show that M does
not retract onto ∂M .
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Solution.
See below, Spring 2013 #5.

Problem 3.
Let M,N ⊂ Rp+1 be two compact, smooth, oriented submanifolds of dimensions m and n,
respectively, such that m+ n = p. Suppose that M ∩N = ∅. Consider the linking map

λ : M ×N → Sp, λ(x, y) =
x− y
‖x− y‖

.

The degree of λ is called the linking number l(M,N).

(a) Show that l(M,N) = (−1)(m+1)(n+1)l(N,M).

(b) Show that if M is the boundary of an oriented submanifold W ⊂ Rp+1 disjoint from
N , then l(M,N) = 0.

Solution.

(a) Let z be a regular value of λ, and let λ−1(z) = {(xi, yi) : i = 1, . . . , k}. We know
that l(M,N) is the sum of the relative orientations at each (xi, yi). Then in the
product N ×M , we know that λ(yi, xi) = −z, the antipodal point of z. We know
that the relative orientation of (yi, xi) with respect to (xi, yi) is (−1)n·m. However, the
relative orientation of z to −z is (−1)p+1 = (−1)m+n+1, and the relative orientation
of (yi, xi) with respect to −z is (−1)n·m+1. Therefore the total relative orienation is
(−1)n·m+m+n+1. Therefore since we may applying the correcting term (−1)(m+1)(n+1)

to each term in the sum giving us l(N,M), we are done.

(b) We use the following proposition (as in Fall 2011, #4): suppose f : X → Y is a smooth
map of compact oriented manifolds of the same dimension and X = ∂W for a compact
W . If f can be extended to all of W , then deg f = 0. In our case, let f = λ. Then we
see that λ is a map between smooth oriented manifolds of the same dimension (since
the product of compact manifolds is compact). Further, if we have M = ∂W , then

∂(W ×N) = (∂W )×N tW × (∂N) = M ×N

since ∂N = ∅. Therefore all we need to do is show that λ can be extended to W×N to
finish the proof. But since we have assumed that W∩N = ∅, we never have ‖x−y‖ = 0
for (x, y) ∈ W ×N , so λ is still well defined. Hence deg λ = 0, so l(M,N) = 0.

Problem 4.
Let ω be a 1-form on a connected manifold M . Show that ω is exact if and only if for all
piecewise smooth closed curves c : S1 →M it follows that

∫
c
ω = 0.

Solution.
See Spring 2013, #2(b).
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Problem 5.
Let ω be a smooth, nowhere vanishing 1-form on a three-dimensional smooth manifold M3.

(a) Show that kerω is an integrable distribution on M if and only if ω ∧ dω = 0.

(b) Give an example of a codimension one distribution on R3 that is not integrable.

Solution.
(a) We use that a distribution ∆ is integrable if and only if it is closed under the Lie

bracket if and only if the annihilator of ∆, which we call I(∆), is closed under the
exterior differential. I(∆) is defined by

I(∆) = {η ∈ Ω(M) : iv(η) = 0 for all v ∈ ∆}.

This is an ideal in Ω(M). Suppose that ω ∧ dω = 0. Suppose that x, y ∈ kerω. Then
we know that

dω(x, y) = ω(x)− ω(y)− ω([x, y]) = −ω([x, y])

Additionally,

(ω ∧ dω)(x, y, v) = (dω ∧ ω)(x, y, v)

= ω(v) · dω(x, y).

Since this has to hold for any vector v in the third argument, this implies dω(x, y) = 0.
As such, we must have had ω([x, y]) = 0 above, so that [x, y] ∈ kerω. This proves one
direction.

For the converse, assume I(∆) is closed under exterior differentiation. Then since
ω ∈ I(∆), dω ∈ I(∆). Therefore consider any linearly independent vectors x, y, z.
Then we may assume that x, y ∈ kerω, since up to a linear change this is true. Further,
assume we can (locally) write dω = η1 ∧ η2 for ease of notation (linearity means this
assumption is okay). Thus

(ω ∧ dω)(x, y, z) =

∣∣∣∣∣∣
ω(x) ω(y) ω(z)
η1(x) η1(y) η1(z)
η2(x) η2(y) η2(z)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
0 0 ω(z)

η1(x) η1(y) η1(z)
η2(x) η2(y) η2(z)

∣∣∣∣∣∣
= ω(z) ·

∣∣∣∣ η1(x) η1(y)
η2(x) η2(y)

∣∣∣∣ = ω(z) · dω(x, y) = 0.

Therefore ω ∧ dω = 0.

(b) We need to pick a nowhere vanishing 1-form on R3 that does not satisfy ω ∧ dω = 0.
We can express this globally in terms of dx, dy, dz. Let

ω = −y
2
dx+

x

2
dy + dz.
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Then

ω ∧ dω =
(
−y

2
dx+

x

2
dy + dz

)
∧ (dx ∧ dy)

= dx ∧ dy ∧ dz.

This is a volume form on R3 and therefore not zero.

Problem 6.
Let f : Rn → R be a smooth function.

(a) Define the gradient ∇f as a vector field dual to the differential df .

(b) Define the Hessian Hess f(X, Y ) as a symmetric (0, 2)-tensor.

(c) If the usual Euclidean inner product between tangent vectors in TpRn is denoted
g(X, Y ) = X · Y , show that

Hess f(X, Y ) =
1

2
(L∇fg)(X, Y ).

Solution.
(a) Classically, given local coordinates x1, . . . , xn, we define

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
The differential df is defined to be (in these coordinates)

df =
n∑
i=1

∂f

∂xi
dxi.

Because we have dual bases ∂
∂xi

and dxi, the duality is clear.

(b) Since we are in Rn, we can express vector fields by

X =
n∑
i=1

ai
∂

∂xi
, Y =

n∑
i=1

bi
∂

∂xi
.

Then we define

Hess f(X, Y ) :=

(
a1

∂

∂x1
, . . . , an

∂

∂xn

)
·Hf ·

(
b1

∂

∂x1
, . . . , bn

∂

∂xn

)t
where Hf ∈Mn(R) is defined by

(Hf )i,j =
∂2f

∂xi∂yi
.

Note that since mixed partials commute, this matrix is symmetric, so the tensor itself
is symmetric.
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(c) We can give g in local coordinates. Using the same notation as above,

g =
n∑
i=1

dxi ⊗ dxi, g(X, Y ) =
n∑
i=1

ai · bi.

Then by the product rule,

L∇fg =
n∑
i=1

(L∇fdxi) · dxi + dxi · (L∇fdxi) = 2
n∑
i=1

(L∇fdxi) · dxi.

It is clear that L∇fdxi = d(L∇fxi) =
∑n

j=1
∂2f

∂xj∂xi
dxj. Then all in all,

n∑
i=1

(L∇fdxi) · dxi =
n∑

i,j=1

∂2f

∂xi∂xj
dxi ⊗ dxj.

But this was exactly our definition of the Hessian.

Problem 7.
Let M = T 2 \D2 be the complement of a disk inside the 2-torus. Determine all connected
surfaces that can be described as 3-fold covers of M .

Solution.
These surfaces are determined, up to basepoint-preserving isomorphism, by index 3 sub-
groups of π1(M). Therefore it behooves us first to calculate π1(M). Take fundamental
polygon of the torus:

•v •v

•v •v

a

b b

a

If we remove a disk from this solid square, then we have a deformation retraction onto the
hollow square. After the gluing, we are left with S1 ∨ S1. Therefore 3-fold covers of M
correspond to 3-fold covers of S1 ∨ S1. These, in turn, correspond to subgroups of index 3
of Z ∗ Z. We have the following formula for the number of subgroups of index k for a free
group of rank r:

N(k, r) = k(k!)r−1 −
k−1∑
i=1

((k − i)!)r−1N(i, r).

In our case, this gives us N(3, 2) = 4. What these surfaces are is by no means clear from
this description, unfortunately.

Problem 8.
Let n > 0 be an integer and let A be an abelian group with a finite presentation by generators
and relations. Show that there exists a topological space X with Hn(X) ∼= A.

10



Solution.
We can construct a CW-complex satisfying what we want. Let A = Z`/〈r1, . . . , rm〉, i.e. it
is generated by m elements with n relations. If g1, . . . , g` are the generators, we can write

rj = gε1i1 · · · g
εk
ik
,

where each ε is ±1. First, take the wedge of ` copies of Sn. This has Hn(
∨` Sn) = Z`. Then,

to this attach m (n + 1)-cells according to the relations ri. That is, the attaching maps
∂Dn+1 →

∨` Sn should be full covers of the appropriate copy of Sn in the order prescribed
by the relation. Call this space X. By construction, we have precisely

Hn(X) = Zn(X)/Bn(X) = Zm/〈r1, . . . , rm〉 ∼= A.

Problem 9.
Let H ⊂ S3 be the Hopf link, shown in the figure (which we cannot reproduce; it is two linked
copies of S1). Compute the fundamental group and the homology groups of the complement
S3 \H.

Solution.
We will prove this using the Mayer-Vietoris sequence. Let A and B both be diffeomorphic to
S3\S1, but with the removed S1 in such a way that A∩B = S3\H. We know that Hi(S

3) = Z
for i = 0, 3 and is trivial otherwise. Further, we know Hi(S

3 \ S1) = Z of i = 0, 1, 3 and is
trivial otherwise. We know that Hi(S

3 \ S1) = Z because π1(S3 \ S1) = Z. To demonstrate
this, take any loop in S3\S1. Then we can deform the loop into a neighbourhood of S1 which
locally looks like R3 \ S1. Then any loop ‘wrapping around’ the removed S1 is determined
by the winding number of the loop around S1, and any loop not wrapping around S1 is
nulhomotopic.

First using homology, we have H0(S3 \H) = Z. The rest of the sequence is

0→ H3(S3 \H)→ Z⊕ Z→ Z→ H2(S3 \H)→ 0→ 0→ H1(S3 \H)→ Z⊕ Z→ 0

This shows that H1(S3 \H) = Z2 since that part of the sequence must be an isomorphism.
Further, we see that Z → H2(S3 \H) is surjective. Finally, we know that H3(S3 \H) ∼= Z
since S3 \H is orientable with one component, and the map H3(S3 \H) → Z ⊕ Z is given
by the diagonal map 1 7→ (1, 1). Since im(Z⊕ Z → Z) = (Z⊕ Z)/Z(1, 1) ∼= Z, that map is
surjective. Therefore the image of Z→ H2(S3 \H) is zero, so H2(S3 \H) = 0. Therefore

Hi(S
3 \H) =


Z i = 0, 3

Z2 i = 1

0 else

To find π1(S3 \H), we know that π1(S3) is the pushout of the diagram

π1(S3 \H) π1(S3 \ S1)

π1(S3 \ S1)

=⇒
π1(S3 \H) Z

Z 0
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This shows that we must have π1(S3 \ H) ∼= Z × Z because the universal property of the
pushout in this case aligns with the universal property of the product.

Problem 10.
Let H = R⊕Ri⊕Rj⊕Rk be the group of quaternions. The multiplicative group H∗ = H\{0}
acts on Hn \ {0} by left multiplication. The quotient HPn−1 = (HPn \ {0})/H∗ is called
quaternionic projective space. Calculate its homology groups.

Solution.
Believing in our hearts that this space should look like CPn, we try to define a cell structure
recursively. The construction should follow in the same way as the construction of CPn as
in Spring 2009, #7. This would give us cells only in dimension 4k for 0 ≤ k ≤ n. Then all
of our boundary maps are zero, and the chain complex is actually exact. Thus

Hi(HPn) = Ci(HPn) =

{
Z i = 4k, 0 ≤ k ≤ n

0 else

3 Spring 2013

Problem 1.
Let Mm×n(R) be the space of m× n matrices with real-valued entries.

(a) Show that the subset S ⊂Mm×n(R) of rank 1 matrices form a submanifold of dimension
m+ n− 1.

(b) Show that the subset T ⊂Mm×n(R) of rank k matrices form a submanifold of dimension
k(m+ n− k).

Solution.

(a) This will follow from part (b).

(b) See Guillemin and Pollack, Problem 1.14.13. Note that k(m+n−k) = mn−(m−k)(n−
k). Also note that for k > 0, having rank > k is an open condition: perturbations do
not affect linearly independent rows, but can affect linearly dependent rows, thereby
increasing the rank. We can swap the rows of any m× n matrix with rank at least k
to obtain the form

A =

(
B C
D E

)
,

where B ∈ GLk(R) is invertible and the other dimensions follow from that. We may
postmultiply by the matrix (

I ′ −B−1C
0 I ′

)
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where I ′ is the matrix with 1 in every diagonal entry and 0 elsewhere, depending on
its dimensions, so that this matrix has full rank. The multiplication yields(

B 0
D E −DB−1C

)
row reduces to

=⇒
(
Ik 0
0 E −DB−1C

)
= A′

This gives us a smooth map from matrices of rank at least k to M(m−k)×(n−k)(R), where
A 7→ E − DB−1C, which we call F . If A was a rank k matrix, then we must have
E − DB−1C = 0 since rkA = rkA′, so T = F−1(0). We need to show that F is a
submersion at 0 to complete the proof. If we show this, then by the preimage theorem,
T is a submanifold of codimension (m− k)(n− k) = dimM(m−k)×(n−k)(R).

Now, we need to show that dFA has full rank for every A with rank exactly k.
Further, we know that the tangent space to 0 in M(m−k)×(n−k)(R) is isomorphic to
M(m−k)×(n−k)(R) itself. Therefore we need to find a path through a matrix of rank at
least k that maps to every X ∈ M(m−k)×(n−k)(R). But this is easy: we can define a
path through A as above by

γ(t) =

(
B C
D E + tX

)
.

Then F (γ(t)) = E+ tX−DB−1C, hence the derivative of this path at t = 0 is just X.

Problem 2.
Let M be a smooth manifold and ω ∈ Ω1(M) a smooth 1-form.

(a) Define the line integral ∫
c

ω

along a piecewise smooth curve c : [0, 1]→M .

(b) Show that ω = df for a smooth function M → R if and only if
∫
c
ω = 0 for all closed

curves c : [0, 1]→M .

Solution.
(a) We define ∫

c

ω :=

∫ 1

0

ω(c′(t)) dt,

where this is the usual calculus integral.

(b) If ω = df , then Stokes’ theorem tells us that∫
c

ω =

∫
c

df =

∫
∂c

f = f(c(1))− f(c(0)) = 0.

The last equality follows because c is a closed curve. Conversely, suppose that ω
integrates to 0 along every c. Then we can construct f for this circumstance: without

13



loss of generality, let M be connected, as this construction is independent on path
components of M . Let p be some basepoint, and let f(p) = 0. Define

f(q) :=

∫
γ

ω,

where γ : [0, 1] → M is a path between p and q. We claim that f does not actually
depend on γ; suppose that γ′ is another path. Then let γ̄′ be the reverse path. Then
γ̄′ ◦ γ is a closed loop at p, hence

0 =

∫
γ̄′◦γ

ω =

∫
γ

ω −
∫
γ′
ω =⇒

∫
γ

ω =

∫
γ′
ω.

Now we show that df = ω. But this is true by the fundamental theorem of calculus
(or otherwise totally obvious).

Problem 3.
Let S1, S2 ⊂M be smooth embedded submanifolds.

(a) Define what it means for S1, S2 to be transversal.

(b) Show that if S1, S2 ⊂ M are transversal, then S1 ∩ S2 ⊂ M is a smooth embedded
submanifold of dimension dimS1 + dimS2 − dimM .

Solution.

(a) Two submanifolds are transversal if, for every x ∈ S1 ∩ S2, we have

TxS1 + TxS2 = TxM.

Note that this sum is not a direct sum, and in particular if S1 ∩ S2 = ∅, then the
manifolds are trivially transversal.

(b) This is not true if S1 ∩ S2 = ∅, since dim∅ = −1, but this case is unimportant.

Otherwise, let dimS1 = n1, dimS2 = n2, and dimM = m. Let x ∈ S1 ∩ S2. Then
near x we have an neighbourhood U1 ⊂ S1 so that U1 is the zero set of some functions
f1, . . . , fm−n1 . Similarly, we have a neighbourhood U2 ⊂ S2 which is the zero set of
functions g1, . . . , gm−n2 . Therefore a neighbourhood of x ∈ S1∩S2, given by U1∩U2, is
the vanishing set of (m− n1) + (m− n2) functions. This means that a neighbourhood
of x is a manifold, and since this holds for every x ∈ S1 ∩ S2, gluing these together
gives a manifold structure. Further, we have

codim(S1 ∩ S2) = (m− n1) + (m− n2) =⇒ m− dim(S1 ∩ S2) = 2m− n1 − n2

=⇒ dim(S1 ∩ S2) = n1 + n2 −m,

which is what we wanted to show.
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Problem 4.
Let C ⊂ M be given as F−1(c), where F = (F 1, . . . , F k) : M → Rk is smooth and c ∈ Rk

is a regular value. If f : M → R is smooth, show that its restriction f |C to C ⊂ M has a
critical point at p ∈ C if and only if there exist constants λ1, . . . , λk such that

dfp =
∑

λidF
i
p

where dgp : TpM → R denotes the differential at p of g.

Solution.
Suppose that dfp =

∑
λidF

i
p. Then since F is constant on C, we have (dF i|C)p = 0 identically

for any p ∈ C. Hence (df |C)p = 0 as well, so p is a critical point.
Conversely, suppose that p ∈ C is a critical point of f |C . Then we know that dfp can only

be nonzero on directions normal to C. Because C is the preimage submanifold of a regular
value, we know that the dF i

p form a basis for these directions. Therefore there must exist
constants λ expressing dfp in terms of dF i

p.

Problem 5.
Let M be a smooth, orientable, compact manifold with boundary ∂M . Show that there is
no (smooth) retract r : M → ∂M .

Solution.
Without loss of generality, we may assume M and ∂M are connected. Consider the long
exact sequence of the good pair (M,∂M):

0→ Hn(∂M)→ Hn(M)→ Hn(M,∂M)
δ→ Hn−1(∂M)→ Hn−1(M)→ Hn−1(M,∂M)→ · · ·

We claim that the map Hn−1(∂M) → Hn−1(M) is trivial, which holds if and only if the
connecting homomorphism δ is surjective. Because M is a compact orientable manifold
with boundary, we have Hn(M) = 0. Since ∂M is a compact orientable manifold without
boundary, we have Hn−1(∂M) = Z. Further Hn(∂M) = 0 since dim ∂M = n− 1 This gives

0→ Hn(M,∂M)
δ→ Hn−1(∂M)→ Hn−1(M)→ Hn−1(M,∂M)→ · · ·

Since identifying the boundary of M gives a compact orientable manifold without boundary,
we have Hn(M,∂M) = Z. Hence δ is surjective (since it is a priori injective). This shows
that

ker(Hn−1(∂M)→ Hn−1(M)) = im δ = Hn−1(∂M).

Since Hn−1(∂M) = Z, this map is not injective. But this is exactly the map that a retraction
r : M → ∂M would induce, so no such retraction can exist.

Problem 6.
Let A ∈ GLn+1(C).
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(a) Show that A defines a smooth map A : CPn → CPn.

(b) Show that the fixed points of A : CPn → CPn correspond to eigenvectors for the
original matrix.

(c) Show that A : CPn → CPn is a Lefschetz map if the eigenvalues of A all have multi-
plicity 1.

(d) Show that the Lefschetz number of A : CPn → CPn is n+ 1. Hint: you are allowed to
use that GLn+1(C) is connected.

Solution.

(a) Since A is defined on Cn+1, we need to show it behaves well via the identification of
x ∼ λx for λ ∈ C×. First, since kerA = 0, A descends to a map Cn+1 \ {0} →
Cn+1 \ {0}. Second, suppose that A(x) = y. Then A(λx) = λn+1y. Since λn+1y ∈ C×,
we have A(λx) ∼ A(x), which is necessary. Put another way, linear transformations
preserve C-linear subspaces, the identification of which is how we obtain CPn from
Cn+1. Smoothness is obvious.

(b) Let A′ be the original matrix now. Suppose that A(x) = x in CPn. Then since x ∼ λx,
we have that A′(x′) = µx′, where x′ is a preimage of x and µ ∈ C×. Therefore x′ is an
eigenvalue of A′. Conversely, if we have y′ ∈ Cn+1 so that A′(y′) = µy′, then A(y) = y
for y the image of y′.

(c) Recall that a map f : X → X between compact manifolds is Lefschetz if graph f and
the diagonal ∆ are transversal in X × X. Unpacked, this means that at every fixed
point f(x) = x, graph(dfx)∩∆x = 0, since these two submanifolds have complementary
dimension. This means that dfx has no eigenvector of eigenvalue +1.

Therefore suppose that A′ has eigenvalues of only multiplicity 1. Then A′ is diagonal-
isable, and so up to a change of basis we have

A′ = diag(λ0, . . . , λn).

We need to look at all the fixed points of A, which are all of the form [0 : · · · : 1 : · · · : 0].
It suffices to examine [1 : 0 : · · · : 0]. In a neighbourhood of this point, take local
coordinates x. At some point z = [1 : x1 : · · · : xn], we have

A[1 : x1 : · · · : xn] = [λ0 : λ1x1 : · · · : λnxi] =

[
1 :

λ1

λ0

x1 : · · · : λn
λ0

xn

]
.

Therefore

dAz = diag

(
λ1

λ0

, . . . ,
λn
λ0

)
.

This has no eigenvalue 1 if and only if λ0 6= λi for all i. But this is exactly the case we
are in, so the map is Lefschetz.
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(d) We could write down the definition of the Lefschetz number, but we needn’t. Recall
that Λid = χ(X) for any space X. Further recall that χ(CPn) = n + 1, which is
calculable (e.g.) by the sum of the Betti numbers:

βi(CPn) =

{
1 i even

0 i odd

Finally, Lefschetz number is a homotopy invariant. Since GLn+1(C) is connected, there
is a path from A to id for any map A. If A is not Lefschetz, then since this property
is generic, we do not have a problem. This path defines a smooth homotopy A ∼ id.
Hence ΛA = χ(CPn) = n + 1. Put otherwise, since degA′ = +1, we know there is a
homotopy A′ ∼ idS2n+1 . This homotopy descends to CPn.

Problem 7.
Let F : Sn → Sn be a continuous map.

(a) Define the degree degF of F and show that when F is smooth,

degF

∫
Sn

ω =

∫
Sn

F ∗ω

for all ω ∈ Ωn(Sn).

(b) Show that if F has no fixed points, then degF = (−1)n+1.

Solution.
(a) We define degF in the following way (which we have done elsewhere): F induces a

map F∗ on homology of Sn. Since Hn(Sn) = Z, let 1 ∈ Hn(Sn) be a generator. Then
we define degF to be the image of 1 under F∗, i.e. F∗(1) ∈ Z. We choose the generator
so that deg id = 1, so there is no ambiguity. Now,∫

Sn

F ∗ω =

∫
F∗Sn

ω,

where we view Sn is an n-cycle in the domain Sn. Since F∗(S
n) is an (degF )-fold cover

of Sn, we have ∫
Sn

F ∗ω =

∫
F∗(Sn)

ω = degF

∫
Sn

ω.

(b) We will show that F ∼ A, the antipodal map. We know that degA = (−1)n+1, since
A is comprised of n+ 1 transpositions which each have degree −1. Consider a the map
h : [0, 1]× Sn → Rn+1

h(t, x) = (1− t)F (x) + tA(x) = (1− t)F (x)− tx.

For each fixed x, h(t, x) defines a line through Sn that avoids the origin, because we
never have F (x) = x. Therefore if we let

H : [0, 1]× Sn → Sn, H(t, x) =
h(t, x)

‖h(t, x)‖
.

This is a homotopy of A with F , which completes the proof.
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Problem 8.
Let f : Sn−1 → Sn−1 be a continuous map and Dn the disk with ∂Dn = Sn−1.

(a) Define the adjunction space Dn ∪f Dn.

(b) Let deg f = k and compute the homology groups Hp(D
n ∪f Dn,Z) for p = 0, 1, . . ..

(c) Assume that f is a homeomorphism. Show that Dn ∪f Dn is homeomorphic to Sn.

Solution.
(a) We define Dn ∪f Dn by Dn tDn/ ∼, where ∼ is a relation between the disjoint copies

of Dn given by x ∼ f(x). Essentially, we glue the boundaries of the disks together as
prescribed by f .

(b) We have a very easy cellular structure on this space. We form a copy of Sn−1 by gluing
a (n − 1)-cell S to a 0-cell v. We then glue one n-cell e1 to Sn−1 with the identity
attaching map and the another one e2 by the k-fold covering map, which we know is
homotopic to f by the Hopf degree theorem. This space X which we have constructed
has the same homology as Dn ∪f Dn. It has no homology outside of (possibly) degrees
0, n− 1, and n. Since this space is connected, H0(X) = Z. Now, in the chain complex
we have at the highest degrees

0→ Z2 → Z→ 0→ · · ·

We need to understand the map above to compute the homology. This map is given
by (a, b) 7→ a + kb, because the degrees of the attaching maps are 1 and k, and it is
clearly surjective. Therefore Hn−1(X) = 0, This map has kernel generated by (k,−1).
Therefore Hn(X) = Z. This completes the description.

(c) This is so obvious as to confuse the reader. Given Sn, we can construct a homeo-
morphism from its closed upper hemisphere to Dn, as well as from its closed lower
hemisphere. This gives a homeomorphism from the equator of Sn, which is homeomor-
phic to Sn−1, to both copies of ∂Dn. This would be a problem if ∂Dn was not glued
from one to the other by a homeomorphism, but it is, so there is no confusion in gluing
these two homeomorphisms together to all of Sn to all of Dn ∪f Dn.

Problem 9.
Let F : M → N be a finite covering map between closed manifolds. Either prove or find
counterexamples to the following questions:

(a) Do M and N have the same fundamental groups?

(b) Do M and N have the same de Rham cohomology groups?

(c) When M is simply connected, do M and N have the same singular homology groups?
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Solution.

(a) No. Consider the 2-sheeted covering of RP2 by S2. We have π1(S2) = 0. However, we
have H1(RP2) = Z/2Z. Since H1 is the abelianisation of π1, in particular we could not
have π1(RP2) = 0.

(b) No. Consider the same example. We know that H2(S2) = Z. However, H2(RP2) =
H2(RP2)⊕ T1(RP2) ∼= Z/2Z.

(c) No. Consider the same example. We know that H1(RP2) = Z/2Z, but H1(S2) = 0 by
simple connectivity.

Problem 10.
Let A ⊂ X be a subspace of a topological space. Define the relative singular homology
groups Hp(X,A) and show that there is a long exact sequence

· · · → Hp(A)→ Hp(X)→ Hp(X,A)→ Hp−1(A)→ · · ·

Solution.
If i : A → X is the inclusion, then it induces an inclusion Cp(A) → Cp(X). Since we are
working with abelian groups, we can take the quotient Cp(X)/Cp(A). We can define a chain
complex on these groups:

· · · → Cp+1(X)/Cp+1(A)→ Cp(X)/Cp(A)→ Cp−1(X)/Cp−1(A)→ · · ·

using the boundary map on C•(X). Since the boundary map on C•(X) restricted to C•(A)
is the boundary map on C•(A), we see that ∂(Cp(A)) ⊂ Cp−1(A), so these maps are well
defined. We define H•(X,A) as the homology of this sequence. The fact that

0→ Cp(A)→ Cp(X)→ Cp(X)/Cp(A)→ 0

is a short exact sequence means that we have the same exact explanation of the long exact
sequence as there always is, e.g. Spring 2012, #5.

4 Fall 2012

Problem 1.

(a) Show that the Lie group SL2(R) = {A ∈ M2(R) : detA = 1} is diffeomorphic to
S1 × R2.

(b) Show that the Lie group SL2(C) = {A ∈ M2(C) : detA = 1} is diffeomorphic to
S3 × R3.

Solution.
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(a) We know that SL2(R) is the group of isotopic transformations of R2. These consist
of rotations and translations. Therefore we have a diffeomorphism if we consider the
group of translations as diffeomorphic to R2 and the group of rotations diffeomorphic
to S1. Note that this is not a Lie group isomorphism if we take the usual Lie group
structure on S1 × R2, but the diffeomorphism is there.

(b) We can use a polar decomposition to show this. We know that S3 corresponds to the
rotations of C2. Then we can write every

A = UP,

where U is a unitary (rotation) matrix and P is a positive-semidefinite Hermitian
matrix. This is determined by three real numbers: the top right entry can be any real
number, and the top left entry can be any complex number. The bottom left entry is
the inverse of the top right and the bottom left is the complex conjugate of the top
left. Therefore we obtain S3 × R3.

Problem 2.
For n ≥ 1, construct an everywhere non-vanishing smooth vector field on the odd-dimensional
real projective space RP2n−1.

Solution.
We can take a vector field on S2n−1 and push it down to RP2n−1 if it is A-invariant, where A
is the antipodal map. This makes the form well-defined on RP2n−1 = S2n−1/ ∼ where x ∼ y
if x = A(y). Now, let ω be the form on S2n−1 given by, for x = (x1, . . . , x2n),

V (x) = (x2,−x1, . . . , x2n,−x2n−1).

Then we have V (A(x)) = −V (x) ∼ V (x), so indeed V is compatible with A. Therefore the
vector field as written is a nowhere-vanishing vector field in RP2n−1.

Problem 3.
Let Mm ⊂ Rn be a smooth submanifold of dimension m < n− 2. Show that its complement
Rn \M is connected and simply connected.

Solution.
We will use transversality. Let x, y ∈ Rn, and let γ be a path connecting them in Rn. Then
we claim that γ is homotopic to a path avoiding M . Indeed, since transversality is generic,
we have some γ′ ∼ γ which is transversal to M . Suppose γ′ intersects M at a point p. Since
γ : S1 → Rn has dimension 1 and M has dimension < n − 2, then sum of dimensions of
their tangent spaces at p is strictly less than n. Therefore γ′ cannot intersect M , so γ′ is a
valid path in Rn \M . Since Rn is path connected, it is connected, because these notions are
equivalent in a manifold.

To show it is simply connected we use the same point. Suppose we have a loop γ at the
origin and a homotopy H : γ × I → Rn taking γ to {0}. We may assume H is transversal
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to M by the above. Then the sum of dimensions of the tangent spaces at any point of
intersection is less than n, since the image of H is 2-dimensional and M is (< n − 2)-
dimensional. Therefore the image of H is disjoint from M , so the homotopy still works in
Rn \M .

Problem 4.
(a) Show that for any n ≥ 1 and k ∈ Z, there exists a continuous map f : Sn → Sn of

degree k.

(b) Let X be a compact, oriented n-manifold. Show that for any k ∈ Z, there exists a
continuous f : X → Sn of degree k.

Solution.
(a) See Spring 2010, #8(b). The process is the same, albeit with more dimensions

(b) We can perform the same process: take |k| disjoint n-balls on X. Map them homeo-
morphically, preserving orientation, onto Sn \ {n}, and map the rest of X onto {n},
the north pole. This will have degree |k|. To obtain degree −|k|, map them orientation
reversing instead.

Problem 5.
Assume that ∆ = {X1, . . . , Xk} is a k-dimensional distribution spanned by vector fields on
an open set Ω ⊂Mn. For each open subset V ⊂ Ω, define

ZV = {u ∈ C∞(V ) : X1u = X2u = · · · = Xku = 0}.

Show that the following two statements are equivalent:

(a) The distribution ∆ is integrable.

(b) For each x ∈ Ω there exists an open neighbourhood x ∈ V ⊂ Ω and n − k functions
u1, . . . , un−k ∈ ZV such that the differential du1, . . . , dun−k are linearly independent at
each point in V .

Solution.
For (a) implies (b), if ∆ is integrable then there exists a submanifold x ∈ N ⊂ M so that
TxN ∼= ∆x for each x ∈ N . Therefore we can choose coordinates in a neighbourhood V ⊂ Ω
corresponding to this tangent space, k of them corresponding to ∆x and n− k of them not.
If we take the differentials of the latter coordinates, they give us a basis for the complement
of TxN in TxM , so they must be linearly independent.

For the converse, we take the following integrability criterion: ∆ is integrable if and only
if its annihilator ideal I(∆) in the algebra of all forms is closed under exterior differentiation.
If (b) holds, then we know that df1, . . . , dfn−k ∈ I(∆), and we would like to show that these
span I(∆) (as an ideal in the algebra of forms). Equivalently, we can show that the fi
generate ZV . Indeed, suppose that g ∈ ZV that is not in the span of the fi, so that dg is not
in the span of the dfi. Then in local coordinates, dg =

∑n
i=1 ai dxi must have a component

in ∆ by dimensionality. This implies that Xjg 6= 0 for some j, a contradiction.
Since I(∆) is generated by dfi, it is clear that I(∆) is closed under exterior differentiation,

which proves (b) implies (a).
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Problem 6.
On Rn \ {0} define the (n− 1)-forms

σ =
n∑
i=1

(−1)i−1xidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn, ω =
σ

|x|n
.

(a) Show that ω = r∗ ◦ i∗(σ), where i : Sn−1 → Rn \{0} is the natural inclusion of the unit
sphere and r(x) = x

|x| : Rn \ {0} → Sn−1 is the natural retraction.

(b) Show that σ is not a closed form.

(c) Show that ω is a closed form that is not exact.

Solution.
(a) We know that r∗ ◦ i∗(σ)(x) = σ(r(i(x))). Because i∗ is just inclusion, i(x) = x, so we

can write σ in the same way without causing any problems. We have

σ(r(x)) =
n∑
i=1

(−1)i−1 x

|x|
d(r(x1)) ∧ · · · ∧ ̂d(r(xi)) ∧ · · · ∧ d(r(xn))

We know that d(r(xi)) = dxi/|x|, so this gives us

=
n∑
i=1

(−1)i−1 x

|x|

(
dx1

|x|
∧ · · · ∧ d̂x

i

|x|
∧ · · · ∧ dx

n

|x|

)

=
n∑
i=1

(−1)i−1x
idx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn

|x|n
=
σ(x)

|x|n
.

(b) We have

dσ =
n∑
i=1

(−1)i−1dxi ∧ dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

To move the dxi over to where it is ‘missing’ requires multiplying by −1 for each
transposition, for a total of (−1)i−1. Thus

=
n∑
i=1

dx1 ∧ · · · ∧ dxn 6= 0.

This is clearly nonzero because it is (a multiple of) the volume form on Sn−1. Therefore
σ is not closed.

(c) Since d commutes with pullbacks, we have

dω = d(r∗ ◦ i∗(σ)) = r∗ ◦ i∗(n · dx1 ∧ · · · ∧ dxn)

= r∗(n · dx1 ∧ · · · ∧ dxn)

= n · dx
1 ∧ · · · ∧ dxn

|x|n
= 0.
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This is because dω is an n-form on Sn−1, which is (n− 1)-dimensional, so there is no
n-form. To show the form is not exact, recall that a closed form on the sphere is exact
if and only if it has zero integral. We have∫

Sn−1

ω =

∫
Dn

dω,

by Stokes’ theorem, where Dn is the unit ball in Rn. Hence∫
Sn−1

ω = n

∫
Dn

dx1 ∧ · · · ∧ dxn

|x|n
6= 0

because the integrand is a multiple of the volume form on Dn.

Problem 7.
Let n ≥ 0 be an integer. Let M be a compact, orientable smooth manifold of dimension
4n+ 2. Show that dimH2n+1(M ;R) is even.

Solution.
The statement of the problem implies strongly that we will use Poincaré duality. Let
dimH2n+1(M ;R) = k. We have a map

F : H2n+1(M ;R)×H2n+1(M ;R)→ H4n+2(M ;R), F (ω, η) = ω ∧ η.

Because ω ∧ ω = 0, ω ∧ η = (−1)2n+1η ∧ ω = −η ∧ ω, and H4n+2(M ;R) ∼= R, we get an
antisymmetric bilinear form on Rk. This is representable by a matrix A ∈Mk(R) such that
At = −A. Therefore

(−1)k det(A) = det(−A) = det(At) = det(A),

whence k is even.

Problem 8.
Show that there is no compact three-dimensional manifold M whose boundary is the real
projective space RP2.

Solution.
Suppose that such an M exists. Let N be the space obtained by gluing two copies of M
together along ∂M . Then N is a compact connected three-dimensional manifold without
boundary, so we have χ(N) = 0 by Poincaré duality, where χ is the Euler characteristic.
Since M ∪M is a partition of N into open sets, we can apply the Meyer-Vietoris sequence
to obtain a long exact sequence

· · · → Hn(∂M)→ Hn(M)⊕Hn(M)→ Hn(N)→ · · ·

This implies that
χ(N) = 2χ(M)− χ(∂M).

Therefore χ(∂M) = χ(RP2) is even. But χ(RP2) = 1, so we have a contradiction.
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Problem 9.
Consider the coordinate axes in Rn:

Li = {(x1, . . . , xn) : xj = 0 for all j 6= i}.

Calculate the homology groups of the complement Rn \ (L1 ∪ · · · ∪ Ln).

Solution.
First, let f : Rn \ {0} → Sn−1 be the usual deformation retraction, i.e. f(x) = x/|x|. If
we restrict f to Rn \ (

⋃
Li), then we obtain a deformation retraction from that domain to

Sn−1 with 2n points removed, namely the points (0, . . . ,±1, . . . , 0). Write {k} for a set of k
points. Removal of the first point gives a homotopy Sn−1 \ {2n} ' Rn−1 \ {2n− 1}.

From here, each neighbourhood of the removed points is homotopy equivalent to Sn−2.
With a proper deformation, we can isolate these neighbourhood and retract Rn−1 \ {2n− 1}
onto a wedge of 2n− 1 copies of Sn−2. This gives

Hi

(
Rn \

(⋃
Li

))
= Hi

(
2n−1∨

Sn−2

)
=


Z i = 0

Z2n−1 i = n− 1

0 else

Problem 10.
(a) Let X be a finite CW complex. Explain how the homology groups of X are related to

the homology groups of X × S1.

(b) For each integer n ≥ 0, give an example of a compact smooth manifold of dimension
2n+ 1 such that Hi(X) = Z for all i = 0, . . . , 2n+ 1.

Solution.
(a) We will use cellular homology, since the problem suggests it. We view S1 as a 1-cell

a attached to a 0-cell v. We have ∂1(a) = v − v = 0 and ∂0(v) = 0. We know that a
cell decomposition of X × S1 is composed of products of cells. In particular, if ei is an
i-cell of X, then we have

∂i+1(ei, a) = (∂i(ei), a) + (−1)i(ei, ∂1(a)) = (∂i(ei), a)

∂i(ei, v) = (∂i(ei), v) + (−1)i(ei, ∂0(v)) = (∂i(ei), v).

Thus the kernel of ∂i on X × S1 is generated by pairs (ei−1, a) and (ei, v) where ei−1

is a (i − 1)-cycle in X and ei is an i-chain in X. Similarly, we see that the image
of ∂i+1 is generated by (ei, a) and (ei+1, v) where ei is an i-boundary and ei+1 is an
(i+ 1)-boundary. Therefore

Hi(X × S1) = Zi(X × S1)/Bi(X × S1)

∼= (Zi(X)⊕ Zi−1(X))
/

(Bi(X)⊕Bi−1(X))

= Hi(X)⊕Hi−1(X).
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(b) Recall the homology of CPn: because it is comprised of only one cell in each even
dimension, we have

Hi(CPn) =

{
Z i even

0 i odd

Further, CPn is compact because it is a quotient of S2n+1, which is compact. Therefore
CPn×S1, which has dimension dimCPn+ dimS1 = 2n+ 1, is what we are looking for:

Hi(CPn × S1) = Hi(CPn)⊕Hi−1(CPn) = Z

because exactly one of i and i− 1 is even.

5 Spring 2012

Problem 1.
Explain in detail, from the viewpoint of transversality theory, why the sum of the indices
of a vector field with isolated zeroes on a compact orientable manifold M is independent of
what vector field we choose.

Solution.
This is the Poincaré-Hopf Index Theorem. Let V be a vector field with isolated zeroes. Let
φt be the flow of V for some small t, which we may make global because M is compact. The
fixed points of φt are just the zeroes of V , and in particular they are isolated. Therefore φt
is a Lefschetz map. In particular, notice that∑

p:Vp=0

indp(V ) =
∑

p:φt(p)=p

Lp(φt) = Λφt .

The Lefschetz number of φt is the sum of the local Lefschetz numbers, which are identically
the indices of the zeroes of V . Now because φt is a diffeomorphism for small enough t,
we have φt ∼ idM , the homotopy given by the backwards flow φ−t. Therefore Λφt = ΛidM

because Lefschetz number is a homotopy invariant. This shows that no matter the choice of
V , we always obtain the same value ΛidM

.

Problem 2.
Let the Euler characteristic χ(M) be the sum from above. Explain why the Euler character-
istic of a genus g surface is 2− 2g. Do this explicitly, not using the homological description
of χ(M).

Solution.
See Guillemin and Pollack, p.125 for the appropriate picture. The typical example of the
genus g surface is the g-holed 2-torus, Mg. Flip it ‘vertical’, so that we have (effectively)
a stack of donuts with outward facing holes. Consider the paths of a drop of water from
the top to the bottom. This defines a vector field on Mg. It is zero at the top, zero at the
bottom, and zero at the top and bottom of every hole. The index at the top and the bottom
is +1, since these are a ‘source’ and a ‘sink’. At the top and bottom of the holes, however,
we have saddle points, which have index −1. Hence χ(Mg) = 2− 2g.
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Problem 3.
Suppose that M is a triangulated compact orientable manifold.

(a) Show that the alternating sum of the Betti numbers b0 − b1 + b2 − · · · is equal to the
alternating sum (# vertices)−(# edges)+(# faces)− · · · .

(b) Show that there is a vector field with its sum of its indices equal to the number described
in part (a).

Solution.

(a) We know that bi = rkHi(M), and further since Hi(M) = Zi(M)/Bi(M), we have
rkHi(M) = rkZi(M)− rkBi(M). We need to rephrase this in terms of the number of
k-chains. Let ∂i : Ci(M)→ Ci−1(M) be the boundary operator. We know that im ∂i ∼=
Ci(M)/ ker ∂i. If we just need to count rank, we have rkCi(M) = rk im ∂i + rk ker ∂i.
But ker ∂i = Zi and im ∂i = Bi−1. This gives the alternating sum of the number of
subsimplices is

n∑
i=0

(−1)i rkCi(M) =
n∑
i=0

(−1)i(rkZi(M) + rkBi−1(M))

Since B−1 = 0 = Bn, we can replace rkBi−1 by − rkBi and not affect anything, whence

=
n∑
i=0

(−1)i(rkZi − rkBi) =
n∑
i=0

(−1)i rkHi(M).

(b) We will describe how this vector field looks on n-simplices, and from there it will apply
smoothly to a triangulated manifold M . Let X be an n-simplex. For each k-face of
X, define a zero at the centre of the face. In the interior of even k-faces, define flow
lines directly inward towards that zero, so that we have a sink. On odd k-faces, this
then should define a saddle point at the centre. Then the index of the zeros is the
appropriate −1 or 1 depending on the parity of k. Thus the sum of the indices of
this vector field is just the alternating sum of the number of each k-face, weighted
appropriately.

Problem 4.
Suppose V is a smooth vector field on R3 that is nonzero at (0, 0, 0). The vector field is
said to be gradient-like at (0, 0, 0) if there is a neighbourhood of (0, 0, 0) and a nowhere
zero smooth function λ(x, y, z) on that neighbourhood such that λV is the gradient of some
smooth function some neighbourhood of (0, 0, 0).

(a) Write V = (P,Q,R). Show by example that there are functions P,Q,R for which V is
not gradient-like in a neighbourhood of (0, 0, 0). (Suggestion: the orthogonal comple-
ment of V taken at each point would have to be an integrable 2-plane distribution.)
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(b) Derive a general differential condition on (P,Q,R) which is necessary and sufficient for
V to be gradient-like in a neighbourhood of (0, 0, 0).

Solution.

(a) Let V = (−y/2, x/2, 1). Taking the hint, we know that V ⊥ is the kernel of the dual of
the generator of V , i.e.

V ⊥ = ker
(
−y

2
dx+

x

2
dy + dz

)
.

We know (from Fall 2013, #5(b)) that kerω is integrable if and only if ω∧dω = 0. We
have shown above that, for this particular example, ω ∧ dω = dx ∧ dy ∧ dz. Therefore
V cannot be gradient-like since V ⊥ is not integrable.

Now we want to show V is gradient-like if and only if V ⊥ is an integrable distribution.
Therefore suppose that λV = ∇f . Then at any point p ∈ U , the vector Vp is per-
pendicular to ∇fp. Therefore any vector perpendicular to V is perpendicular to ∇f ,
which shows V ⊥ = ker(df). By one of our integrability criteria, df ∧ d(df) = 0 implies
ker(df) is an integrable distribution.

For the converse, suppose V ⊥ is integrable. Let M be the 2-submanifold of R3 so that
TpM = V ⊥p for every p ∈ M . In local coordinates, we can express M as the zero set
of the third coordinate function x3 on R3. We know that the normal bundle to M at
p is 1-dimensional and contains both Vp and ∇fp, so these are scalar multiples of each
other at every point. Therefore we can construct λ to account for this scaling at every
point so that λV = ∇f .

(b) For specific functions, we claim that V ⊥ is integrable if and only if curlV ⊥ V . If
V = (P,Q,R), we have

curlV =

(
∂R

∂y
− ∂Q

∂z

)
∂

∂x
+

(
∂P

∂z
− ∂R

∂x

)
∂

∂y
+

(
∂Q

∂x
− ∂P

∂y

)
∂

∂z
.

Let ω = P dx + Qdy + Rdz. Then we claim that 〈curlV, V 〉 = 0 is equivalent to
ω∧dω = 0. Writing it out literally, it is obvious. Since V = kerω, by that integrability
criterion, this proves the claim.

Problem 5.

(a) Define carefully the ‘boundary map’ which defines the Hn to Hn−1 mapping that arises
in the long exact sequence arising from a short exact sequence of chain complexes.

(b) Prove that the kernel of the boundary map is equal to the image of the map into the
Hn.

Solution.

(a) This has been done in various places over this document, e.g. Spring 2011, #6(b).
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(b) We have not had to show it is exact yet. We appeal to our snake diagram again, with
the previous map added in:

ker ∂B ker ∂C

0 Ai Bi Ci 0

0 Ai−1 Bi Ci 0

coker ∂A

fi

∂A

gi

∂B ∂C

fi−1 gi−1

Let δ be the connecting homomorphism. We need to show we have exactness at ker ∂C .
Suppose that β ∈ ker ∂B maps to γ ∈ ker ∂C . Then β = fi(α) for some α ∈ Ai. Then we
know that ∂B(fi(α)) = fi−1(∂A(α)) = 0, so since fi−1 is injective, ∂A(α) = 0. Therefore by
the commutativity of everything, δ(γ) = 0 in coker ∂A.

Let δ(γ) = 0. Then we know that we can change this by the image of elements of Ai with
impunity. But the above shows that γ would have to have come from an element of ker ∂B.
This shows exactness.

Problem 6.
Compute the homology of RPn for n > 1.

Solution.
We have done this below for RP2, but we might as well do it in general. We can construct RPn
using cellular homology in the following way: RPn is the quotient of Sn+1 by the antipodal
map. If we just look at one hemisphere, we can view RPn as an n-cell with its boundary Sn

identified via the antipodal map. But this in turn is the description of RPn−1.
Therefore we build up RPn inductively: begin with RP1 by gluing the boundary of a

1-cell to a 0-cell. Then glue a 2-cell e2 onto RP1 by a double cover of the 1-skeleton of RP1

by ∂e2. Repeat this process. Our chain complex is

0→ Z ∂n−→ · · · ∂2−→ Z ∂1−→ Z→ 0

since we have one cell in each dimension. We know that ∂1 is the zero map. Further, in
general, the attaching map ∂i is first the identity and second the antipodal map on ∂ei.
Hence ∂i is multiplication by the value deg(id) + deg(A) = 1 + (−1)i. This gives

· · · ∂4=2·−−−→ Z ∂3=0−−−→ Z ∂2=2·−−−→ Z ∂1=0−−−→ Z −−−→ 0

Therefore at even i, we have ker ∂i = 0, so Hi(RPn) = 0. At odd i, ker ∂i = Z and
im ∂i+1 = 2Z, so Hi(RPn) = Z/2Z. The only other case to check is i = n. if n is even,
then we have the same case as before. However, if n is odd, then we have ker ∂n = Z but
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im ∂n+1 = 0. Therefore Hn(RPn) = Z in the final case. Summarised,

Hi(RPn) =


Z i = 0, i = n odd

Z/2Z 0 < i < n odd

0 else

Problem 7.

(a) Define CPn.

(b) Show that CPn is compact for all n.

(c) Show that CPn has a cell decomposition with one cell in each even dimension and no
other cells. Include a careful description of the attaching maps.

Solution.
See Spring 2009, #7 for all answers.

Problem 8.
Suppose a compact (real) manifold M has a (finite) cell decomposition with only even di-
mensional cells. Is M necessarily orientable?

Solution.
Yes. We know that M is orientable if it has nontrivial rank in its top homology, which
implies it has nontrivial rank in its top cohomology. Therefore examine the (cellular) chain
complex

0→ Cn
∂n→ Cn−1 → · · ·

with n = dimM even. We know that Cn−1 = 0 since there are no (n − 1)-cells. Further,
im ∂n+1 = 0 since Cn+1 = 0. Therefore

Hn(M) = ker ∂n/ im ∂n+1
∼= Cn.

Since Cn is free on at least one element, is has positive rank. Therefore M is orientable.

Problem 9.
Suppose that a finite group G acts smoothly on a compact manifold M and that the action
is free.

(a) Show that M/G is a manifold.

(b) Show that M →M/G is a covering space.

(c) If Hk
dR(M) = 0 for some k > 0, then does Hk

dR(M/G) = 0 necessarily? Prove your
answer.

Solution.
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(a) Recall that an action is free if g·x = x =⇒ g = e. We claim that this action is properly
discontinuous, which will allow us to put a manifold structure on M/G. Recall that an
action is properly discontinuous if for every x, y ∈ M , there exist neighbourhoods Ux
and Uy such that only finitely many g ∈ G give g ·Ux ∩Uy 6= ∅. This is always true in
a finite group. Properly discontinuous also tells us (in the case of compact manifolds)
that every point has a neighbourhood U so that the set {g · U} is pairwise disjoint.

Therefore we can define charts on M/G: we know that every point x ∈ M/G has a
neighbourhood U so that the orbit {g ·U} is disjoint. Therefore we can take charts on
any particular g · U we’d like in M and, because U ∼= g · U , use them canonically on
U . This makes M/G a smooth manifold.

(b) We have basically shown this. The above showed that p : M → M/G is a proper,
surjective smooth map, and every x ∈M/G has a neighbourhood U so that its preimage
{g·U} is disjoint. Since g is a homeomorphism ofM , g·U ∼= U for every g. In particular,
this is a finitely-sheeted (|G|-sheeted) covering space.

(c) For a finite cover, every form on M/G can be viewed as a G-invariant form on M , which
gives an injection Hk(M/G) → Hk(M). Any form on U ⊂ M/G can be viewed as a
form on G by gluing together its action on finitely many open subsets of M . Therefore
if Hk(M) = 0, then Hk(M/G) = 0 as well.

Problem 10.
Let M = RP2×RP2. In a general product manifold, homology elements can arise by taking
in effect the product of a cycle in each factor. Show that in the case, there is an element
in degree 3 homology with Z coefficients that does not arise this way. Exhibit this element
explicitly, e.g. in terms of a cell decomposition.

Solution.
See Spring 2011, #8.

6 Fall 2011

Problem 1.
Let M be a compact smooth manifold. Prove that there exists some n ∈ Z+ such that M
can be smoothly embedded in the Euclidean space Rn.

Solution.
For compact manifolds, an embedding is an injective immersion. Let dimM = m. Cover
M by its charts φi : Ui → Rm. By compactness, we may pick a finite subcover φ1, . . . , φN .
We can construct smooth bump functions λi : M → [0, 1] with respect to the Ui , i.e.
suppλi = Ui.

Define F : M → RN(m+1) by

F (x) = (λ1(x)φ1(x), . . . , λn(x)φn(x), λ1(x), . . . , λn(x))
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We will show that this is an injective immersion. Suppose that F (x) = F (y). Then in
particular, λi(x) = λi(y) for all i. Since some λi(x) 6= 0, this shows that φi(x) = φi(y). Since
φi was a was a coordinate function, it was a diffeomorphism, hence injective. Thus x = y.

Now suppose that v, w ∈ TxM and dFx(v) = dFx(w). Then we must have d(λi)x(v) =
d(λi)x(w) for all i. Further, we must have

d(λi · φi)x = d(λi)x · φi(x) + λi(x) · d(φi)x.

At some j we have λj(x) 6= 0, so this gives

d(φj)x(v) = d(φj)x(w).

Since φj was a diffeomorphism, d(φj)x is injective at all x, so v = w.

Problem 2.
Prove that the real projective space RPn is a smooth manifold of dimension n.

Solution.
We begin with its construction: consider the sphere Sn+1, which has dimension n, and
consider the antipodal map A : Sn+1 → Sn+1. Then RPn is homeomorphic to the quotient
Sn+1/ ∼, where x ∼ y if and only if A(x) = y.

We see that RPn inherits the smooth structure and charts from Sn+1, since locally on Sn+1

the action of A is trivial. This also shows that RPn is of the same dimension. Put another
way, Sn+1 is a 2-to-1 covering space of RPn, so they must have the same dimension.

Problem 3.
Let M be a compact, simply connected smooth manifold of dimension n. Prove that there
is no smooth immersion f : M → T n, where T n is the n-torus.

Solution.
Suppose we have such an immersion. Then f(M) is a compact, hence closed submanifold
of T n. Since dimM = dimT n = n, we know that at every point dfx is actually an isomor-
phism, so f is a submersion. Therefore f(M) is open as well, so f(M) = T n. f is a local
diffeomorphism. Therefore we have a surjective proper local diffeomorphism, which means
that f : M → T n is a universal covering map. But we know that Rn is the universal cover
of T n, and Rn is not compact. This gives us a contradiction, so no such f can exist.

Problem 4.
Give a topological proof of the fundamental theorem of algebra.

Solution.
Let f(x) : C → C be a monic polynomial of order m > 0 (the assumption of monic is of
no consequence). We will show that it has a root by contradiction. We use the following
proposition, found on p.110 of Guillemin and Pollack:

Lemma. Suppose that f : X → Y is a smooth map of closed manifolds of the same
dimension and that X = ∂W (W compact). If f can be extended to all of W , then deg f = 0.
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This is a consequence of the so-called ‘extendability lemma’: if X is the boundary of a
compact manifold, f is transversal to a submanifold Z ⊂ Y , and f can be extended to a
map f : W → Y , then I(f, Z) = 0.

In our case, suppose S is the circle of radius r in C, and f has no zeroes on S. Then
define two functions S → S1

f(x)

|f(x)|
and

xm

|xm|
=
(x
r

)m
.

These two maps are homotopic when r is large enough, when the lower degree terms of f(x)
are of no consequence. Therefore they have the same degree m. We know that S is the
boundary of a compact disc Dr in C. If f has no zero in Dr, then we can extend f/|f |
to all of Dr. This implies that deg(f/|f |) = 0 by the lemma above, but we know that
deg(f/|f |) = m > 0 by the above, a contradiction. Therefore f must have a zero in Dr for
r sufficiently large.

Problem 5.
Let f : M → N be a smooth map between two manifolds M and N . Let α be a p-form on
N . Show that d(f ∗α) = f ∗(dα).

Solution.
See Spring 2008, #1.

Problem 6.
(a) What are the de Rham cohomology groups of a smooth manifold?

(b) State de Rham’s theorem.

Solution.
(a) We construct de Rham cohomology in the following way: let Ωk(M) be the algebra

of k-forms on M , which should need no definition. Let d be the exterior differential
on forms. d defines a map d : Ωk(M) → Ωk+1(M) in the obvious way for all k. In
particular since d2 = 0, we have a chain complex:

0
d−1−→ Ω0(M)

d0−→ Ω1(M)
d1−→ · · · dn−1−→ Ωn(M)

dn−→ 0,

where n = dimM . Then we define H i
dR(M), the ith de Rham cohomology group of

M , to be ker di/ im di−1.

(b) de Rham’s theorem relates de Rham cohomology groups with cohomology groups
obtained via singular homology. Let H i(M) be the ith cohomology group with R
coefficients, given by H i(M ;R) = Hom(Hi(M ;R),R). Then consider the map I :
H i
dR(M) → H i(M ;R) given by integration in the following way: for a cohomology

class ω ∈ H i
dR(M), let I(ω) be the element corresponding to the map

Hi(M) 3 α 7→
∫
α

ω,

where we consider α as an i-cycle in the integral. de Rham’s theorem says that this
map is an isomorphism.
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Problem 7.
Consider the form

ω = (x2 + x+ y)dy ∧ dz.

on R3. Let S2 ⊂ R3 be the unit sphere, and let i : S2 → R3 by the inclusion.

(a) Calculate
∫
S2 ω.

(b) Construct a closed form α on R3 such that i∗α = i∗ω, or show that such a form α does
not exist.

Solution.
(a) We can use Stokes’ theorem here. We know that S2 = ∂D3, the unit ball in R3.

Therefore ∫
S2

ω =

∫
D3

dω.

We see that
dω = (2x+ 1)dx ∧ dy ∧ dz.

Then what we are seeking is∫
D3

(2x+ 1)dx ∧ dy ∧ dz =

∫
D3

2x dx ∧ dy ∧ dz +

∫
D3

1 dx ∧ dy ∧ dz.

We could convert this into the usual sort of three dimensional integral. If we did so,
then we would see that the lefthand integral above is zero based on the symmetry of
the unit ball. Therefore∫

S2

ω =

∫
D3

dx ∧ dy ∧ dz = Vol(D3) =
4π

3
.

(b) Suppose we could construct such an α. Because α is closed on R3, i∗α = i∗ω is closed
on S2. Further, by the Poincaré lemma, α is exact, so let α = dη. Then

i∗ω = i∗α = i∗(dη) = d(i∗η).

Therefore i∗ω is an exact form on S2. By a well-known result, a closed form on S2 is
exact if and only if its integral is zero. But we showed that the integral of ω is not
zero, so no such α exists.

Problem 8.
(a) Let M be a Möbius band. Using homology, show that there is no retraction from M

to ∂M .

(b) Let K be a Klein bottle. Show that there exist homotopically nontrivial simple closed
curves γ1 and γ2 on K such that K retracts to γ1 but does not retract to γ2.
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Solution.

(a) Recall that if r : M → A is a retraction, then r∗ : H1(A) → H1(M) is injective. We
claim that this is not the case. Consider the below simplicial structure on M :

•v •w

•w •v

b

a

c

d
a

Let the top 2-simplex be A and the bottom be B. The simplicial structure on ∂M is
just given by the 1-simplices b, c. The generating element of H1(∂M) is a+ c+ a− b =
2a − b + c. We claim that this is a boundary in M , so r∗ is the zero map identically,
making the map (in particular) noninjective. We see that ∂2(A) = d − b + a and
∂2(B) = a− d+ c. We have ∂2(A+ B) = 2a− b+ c. This is exactly what we wanted
to prove.

(b) We have the following simplicial structure on K:

•v •v

•v •v

b

a

b

c
a

where we again name the top 2-simplex A and the bottom B. Let r1, r2 be the supposed
retractions onto γ1, γ2. Consider the closed loop γ1 given by the solid line below

•v •v

•v •v

This is a loop since it goes from v to v, and it is nontrivial. This loop corresponds to
b− c+ b = 2b− c from the above. We claim that r∗1(2b− c) 6= 0, so r∗1 is an injection.
Indeed, we have ∂2(A) = c − b + a and ∂2(B) = a − c + b, so for a general element
xA+ yB, for the coefficient of c to be −1 we must have x− 1 = y. But this gives

∂(xA+ (x− 1)B) = 2x · a− b− c.

Hence we must have had x = 0, but then we do not have the required element.
Therefore r∗1(2b − c) /∈ im ∂2, so it represents a nontrivial element of H1(K), and
the map is injective.
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We can use this approach to construct a trivial element, however. Consider the loop

•v •v

•v •v

This corresponds to the element a + b + a − b = 2a. From the above, we see that
∂2(A+B) = 2a, so r∗2(2a) = 0 ∈ H1(K). Therefore the ‘retraction’ r2 cannot exist.

Problem 9.
Let X be the topological space identified from a pentagon by identifying its edges cyclically.
Calculate the homology and cohomology groups of X with integer coefficients.

Solution.
We will use a cell decomposition: let v be a vertex, a an edge, and A a 2-cell. Then we
construct X in the following way: glue ∂a to v, and glue ∂A to a by a 5-fold cover. We
know that H0(X) = Z, since our space is connected. We can calculate H1(X) by looking
at the degree of the attaching map, which the above shows is 5. This means that the map
C2 → C1 is given by 1 7→ 5. Further, the map C1 → C0 is the zero map, since we glue ∂a in
two places with opposite orientations. Therefore

H1(X) = ker ∂1/ im ∂2 = Z/5Z.

Since the map C2 → C1 is injective, ker ∂2 = 0, so H2(X) = 0.
Now we use the universal coefficient theorem to calculate cohomology. We see that

H0(X) = Z, H1(X) = 0, H2(X) = Z/5Z,

since we shift the torsion part ‘up’ one degree.

Problem 10.
Let X, Y be topological spaces and f, g : X → Y two continuous maps. Consider the space Z
obtained from the disjoint union Y t(X×[0, 1]) by identifying (x, 0) ∼ f(x) and (x, 1) ∼ g(x)
for all x ∈ X. So there is a long exact sequence of the form

· · · → Hn(X)→ Hn(Y )→ Hn(Z)→ Hn−1(X)→ · · ·

Solution.
This problem is straight from Hatcher, p.151. We begin with the following long exact
sequence on relative homology:

· · · → Hn+1(X × I,X × ∂I)
∂−→ Hn(X × ∂I)

i∗−→ Hn(X × I)→ · · ·
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The pair (X × I,X × ∂I) is a good pair, which we will use later. i∗ is surjective since
Hn(X × ∂I) is two copies of Hn(X) and X × I deformation retracts onto X × {0} or
X × {1}. This is how we know that the end maps are 0, which implies that the map ∂ is
injective. This means that

0→ Hn+1(X × I,X × ∂I)
∂−→ Hn(X × ∂I)

i∗−→ Hn(X × I)→ 0

is actually exact. We know that ker i∗ = (α,−α) for α ∈ Hn(X). Therefore Hn+1(X×I,X×
∂I) ∼= Hn(X).

We have a quotient map q : X × I → Z which is a restriction of the above construction
of Z. We actually have q : (X×I,X×∂I)→ (Z, Y ), so we have q∗ on the relative homology
sequences:

· · · Hn+1(X × I,X × ∂I) Hn(X × ∂I) Hn(X × I) · · ·

· · · Hn+1(Z, Y ) Hn(Y ) Hn(Z) · · ·

0

q∗

∂ i∗

q∗

0

q∗

∂ i∗

Since q is a map on good pairs and (X × I)/(X × ∂I) ∼= Z/Y , the lefthand q∗ is actually an
isomorphism. Therefore Hn+1(Z, Y ) ∼= Hn(X), so the bottom long exact sequence is actually
the one we were looking for all along.

7 Spring 2011

Problem 1.
Show that if V is a smooth vector field on a smooth manifold of dimension n and if V (p) is
nonzero for some point of p, then there is a coordinate system defined in a neighbourhood
of p, say (x1, . . . , xn), such that V = ∂

∂x1
.

Solution.
See Spring 2008 #2.

Problem 2.

(a) Demonstrate the formula L = d ◦ iX + iX ◦ d, where L is the Lie derivative and i is the
interior product.

(b) Use this formula to show that a vector field X on R3 has a local flow that preserves
volume if and only if divX = 0 everywhere.

Solution.

(a) We know that, if φ is a flow of X, that

LXω = lim
h→0

1

h
[φ∗h(ω)− ω] .
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Therefore LX(dω) = d(LXω) since the exterior derivative commutes with pullbacks.
Suppose we just have a function f . Then

LXf = Xf = lim
h→0

1

h
[f ◦ φh − f ] = df(X).

Also,
d(iXf) + iX(df) = d(0) + df(X),

so this holds. We now need only show LX behaves nicely with respect to the wedge
product, and we are done since we have proven the identity on arbitrary forms in local
coordinates and we can use linearity. We know that for a k-form ω and an l-form η,

iX(ω ∧ η) = (iXω) ∧ η + (−1)kω ∧ (iXη).

We also know that
LX(ω ∧ η) = (LXω) ∧ η + ω ∧ (LXη).

Working this all out directly,

d(iX(ω ∧ η))+iX(d(ω ∧ η))

= d((iXω) ∧ η) + (−1)kd(ω ∧ (iXη)) + iX(dω ∧ η) + (−1)kiX(ω ∧ dη)

= d(iXω) ∧ η + (−1)k−1(iXω) ∧ (dη) + (−1)kdω ∧ (iXη)

+ (−1)2kω ∧ d(iXη) + iX(dω) ∧ η + (−1)k+1dω ∧ (iXη)

+ (−1)k(iXω) ∧ dη + (−1)2kω ∧ (iX(dη))

= (d(iXω) + iX(dω)) ∧ η + ω ∧ (d(iXη) + iX(dη))

= LX(ω ∧ η).

Four of the terms cancel in the second line, and the remainder reduce to the third line.
The fourth line follows by the identity for the Lie derivative of a wedge product. This
completes the identity.

(b) Write X in local coordinates:

X = f
∂

∂x
+ g

∂

∂y
+ h

∂

∂z
.

X has a local flow that preserves volume if and only if LX(dx∧ dy ∧ dz) = 0. That is,

LX(dx ∧ dy ∧ dz) = d ◦ iX(dx ∧ dy ∧ dz) + iX ◦ d(dx ∧ dy ∧ dz).

The rightmost term is zero, since there are no 4-forms on R2. Further, we see

iX(dx ∧ dy ∧ dz) = (dx ∧ dy ∧ dz)(X,−,−) = f dy ∧ dz − g dx ∧ dz + h dx ∧ dy.

Therefore

d ◦ iX(dx ∧ dy ∧ dz) =

(
∂f

∂x
+
∂g

∂y
+
∂h

∂z

)
dx ∧ dy ∧ dz.

Thus this is zero everywhere if and only if ∂f
∂x

+ ∂g
∂y

+ ∂h
∂z

= divX is zero everywhere.
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Problem 3.

(a) Explain some systematic reason why there is a closed 2-form on R3 \ {0} that is not
exact.

(b) With ω such a form as in (a), discuss why, for any smooth map F of S2 to itself, the
number ∫

S2 F
∗ω∫

S2 ω

is degF . This includes explaining why the denominator integral cannot be 0.

Solution.

(a) Note that R3 \ {0} ' S2, so they have isomorphic homology groups. We claim that
H2(S2) 6= 0. Since H2(R3 \ {0}) is the abelian group of (cohomology classes of) closed
2-forms on this space, this would prove the claim. We know that H0(S2) = Z since
the 2-sphere is connected. By Poincaré duality, since S2 is a closed oriented manifold,
H0(S2) ∼= H2(S2). This completes the proof.

(b) For the second part of (b), see Problem 4 below. For the first part, see Spring 2013,
#7.

Problem 4.
Show without using de Rham’s Theorem (but you may use the Poincaré Lemma without
proof) that a 2-form ω on the 2-sphere S2 that has integral 0 is exact.

Solution.
Consider A = S2 \ {n} and B = S2 \ {s}, where n and s are the north and south poles of
the sphere. We can take the restrictions i∗A(ω) and i∗B(ω), and we have∫

A

i∗A(ω) =

∫
S2

ω = 0,

and similar for B, since A and S2 differ by a set of measure zero. Since A,B ' R2, we know
that i∗A(ω) and i∗B(ω) are in fact exact. Say that ω|A = dηA and ω|B = dηB. Then we would
like to modify these η so that we get a 1-form on all of S2. Look at ηA − ηB on A ∩ B.
Because d commutes with pullbacks,

d(i∗A∩B(ηA − ηB)) = i∗A∩B(i∗Aω − i∗Bω) = i∗A∩B(ω − ω) = 0.

Therefore the 1-forms ηA and ηB differ by an exact 1-form df . Hence we can define η globally
by means of a bump function so that at a small neighbourhood of the south pole, we let
η = ηA + df and let η = ηB elsewhere. This is a satisfactory gluing which satisfies dη = ω
everywhere, so we are done.
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Problem 5.
Suppose that V : U → S2 is a smooth map, considered as a vector field of unit vectors, where
U = R3 \ {p1, . . . , pn}, where all pi lie strictly inside S2 ⊂ R3. Explain carefully, from basic
facts about critical values and critical points and the like, why the degree of V |S2 : S2 → S2

is equal to the sum of the indices of the vector field V at the points p1, . . . , pn.

Solution.
First, because these pi must be isolated, they have neighbourhoods Ui which are pairwise
disjoint. These may also be chosen so that ∂Ui ∩ S2 = ∅ for all i. Then consider the region
X = R3 \ (

⋃
Ui), whose boundary is ∂X = S2 t (

⋃
∂Ui). The map V : ∂X → S2 is a map

between two manifolds of the same dimension, the codomain connected, and V extends to
all of X. Therefore deg V = 0 on ∂X.

Because ∂X = S2 − (
⋃
∂Ui) (taking the orientation of the boundary into account), we

have
deg V |S2 − deg V |⋃ ∂Ui

= 0 =⇒ deg V |S2 = deg V |⋃ ∂Ui
=
∑

deg V |∂Ui
.

But deg V |∂Ui
is exactly the index of V at pi by construction, which solves the problem.

Problem 6.
(a) Explain what a short exact sequence of chain complexes is.

(b) Describe how a short exact sequence of chain complexes gives rise to a long exact
sequence in homology. Include how the connecting homomorphism arises. You do not
need to prove exactness of the sequence.

Solution.
(a) Let A•, B•, C• be three chain complexes with boundary map ∂ with degree −1. Then

given chain maps f• : A• → B• and g• : B• → C•, we say that the sequence

0→ A•
f•−→ B•

g•−→ C• → 0

is a short exact sequence of complexes if at every degree i ∈ Z we have

0→ Ai
fi→ Bi

gi→ Ci → 0

is a short exact sequence in the abelian category A we are working over. To be perfectly
clear, this means that im fi = ker gi, where these notions are well understood in the
appropriate category.

(b) First, we see that chain maps descend to the level of cycles: suppose that x ∈ Ai is a
cycle, i.e. that ∂x = 0. Then we have

∂ ◦ fi(x) = fi−1 ◦ ∂(x) = 0,

so fi(x) is a cycle in Bi. The same reasoning shows that exact forms map to exact
forms: if x = ∂y for y ∈ Ai+1,

fi(x) = fi ◦ ∂(y) = ∂ ◦ fi+1(y).
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Therefore chain maps descend to homology. This allows us to construct a sequence

Hi(A•)
fi∗−→ Hi(B•)

gi∗−→ Hi(C•)

which we do not need to show is exact, but is. However, we would like to construct
a map Hi(C•) → Hi−1(A•). To see how (i.e. to demonstrate the snake lemma), we
will need a picture. We know that Hi(C•) is a quotient of the boundaries of Ci, which
is the kernel of ∂ : Ci → Ci−1. Further, Hi−1(A•) is a quotient of the cokernel of
∂ : Ai → Ai−1. Therefore we want to construct the following dashed map, which we
will call δ:

ker ∂C

0 Ai Bi Ci 0

0 Ai−1 Bi Ci 0

coker ∂A

fi

∂A

gi

∂B ∂C

fi−1 gi−1

Let x ∈ ker ∂C . Since gi is surjective, we can find y ∈ Bi so that gi(y) = x. Therefore
we have ∂C(gi(y)) = 0. Since g• was a chain map, ∂C(gi(y)) = gi−1(∂B(y)) = 0.
Therefore ∂B(y) ∈ ker gi−1 = im fi−1 by exactness. Therefore let z ∈ Ai−1 so that
fi−1(z) = ∂B(y). This choice is unique since fi−1 is injective. This is our choice for
δ(x).

Suppose that we had chosen a different y ∈ Bi in the first step, say y′. Then because
Ci ∼= Bi/Ai, y − y′ must be in the image of fi. We may represent it by w ∈ Ai. As
such, the choice z′ we get from y′ differs from z by ∂A(w), which is an boundary in
Ai−1. Therefore on the induced map on coker ∂A, there is no difference. This means
our connecting homomorphism is well defined on homology, so we have the long exact
sequence

· · · → Hi(A•)
fi∗−→ Hi(B•)

gi∗−→ Hi(C•)
δ−→ Hi−1(A•)→ · · ·

Problem 7.

(a) Define complex projective space CPn, n = 1, 2, 3, . . ..

(b) Compute the homology and cohomology of CPn with Z coefficients.

Solution.

(a) See Spring 2009, #7.

(b) See the same for the calculation of homology. For the calculation of cohomology, we
use Poincaré duality. CPn is a closed manifold without boundary, as we can view it
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as a quotient of S2n−1 which is certainly closed. Further, it is orientable since it has a
volume form (i.e. H2n(CPn) 6= 0). Thus , for 0 ≤ i ≤ 2n,

H i(CPn) =

{
Z i even

0 i odd

Problem 8.
(a) Find the Z coefficient homology of RP2 by any systematic method.

(b) Explain explicitly (not using the Künneth Theorem) how a nonzero element of the
3-homology with Z coefficents of RP2 × RP2 arises.

Solution.
(a) The systematic method we choose is simplicial homology. We can represent RP2 with

the following (bad) picture of its fundamental polygon:

v1• •v0

v0• •v1

a

b
c

b

a

We label the top 2-simplex A and the bottom 2-simplex B. We have ∂2(A) = c− a+ b
and ∂2(B) = a− (−c) + b. We have ∂1(a) = v0− v1, ∂1(b) = v1− v0, and ∂1(c) = 0. We
see that H0(RP2) = Z since this space is connected. We have H1(RP2) = ker ∂1/ im ∂2.
Since ker ∂1 is generated by a−b and c and im ∂2 is generated by c−a+b and a+b+c,
we have

Z(a− b)⊕ Z(c)
/

(c = a− b, a+ b+ c = 0) ∼= Z(a− b)
/

(a+ b = a− b) ∼= Z/2Z,

since under this equivalence the only choices are a− b or 0. For H2(RP2) = ker ∂2, we
see that ∂2 is injective so H2(RP2) = 0.

(b) We know that the product manifold has a cell decomposition with the products of
cells. Let A1, A2 be the 2-cells, a1, a2 the 1-cells, and v1, v2 the 0-cells. The 3-cells of
the product are given by (A1, a2) and (a1, A2), and the (only) 4-cell given by (A1, A2).
By the product rule, we know that

∂4(A1, A2) = (∂2A1, A2) + (A1, ∂2A2) = (2a1, A2) + (A1, 2a2)

∂3(A1, a2) = (∂2A1, a2) + (A1, ∂1a2) = (2a1, a2) + (A1, 0)

∂3(a1, A2) = (∂1a1, A2)− (a1, ∂2A2) = (0, A2)− (a1, 2a2).

Now, note that (2a1 × A2) = 2(a1 × A2), and similarly (0, A2) = 0. We can see this
directly, and it holds because generally C•(X × Y ) ∼= C•(X) ⊗ C•(Y ). Therefore the
above gives us

∂4(A1, A2) = 2((a1, A2) + (A1, a2)), ∂3(A1, a2) = 2(a1, a2), ∂3(a1, A2) = −2(a1, a2).
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We see that ker ∂3 is generated by (a1, A2) + (A1, a2), but this element is not in the
image of ∂4 because we are working with Z coefficients. This is the required element.

Problem 9.

(a) State the Lefschetz Fixed Point Theorem.

(b) Show that the Lefschetz number of any map from CP2n to itself is nonzero and hence
every map from CP2n to itself has a fixed point. Suggestion: the action of the map
on cohomology with Z coefficients is determined by what happens to the degree 2
cohomology, since the whole cohomology ring is generated by H2.

Solution.

(a) The theorem states: let f : X → X be a smooth map on a compact orientable manifold.
Then if Λf 6= 0, then f has a fixed point. We define the Lefschetz number of a map f
by the intersection number of two submanifolds of the product manifold X ×X:

Λf = I(∆, graph f),

where ∆ = {(x, x)} and graph f = {(x, f(x))}.

(b) Let f : CP2n → CP2n be a smooth map. We know that H2(CP2n) = Z, so let ω be
a generator of this cohomology ring. We know that f ∗ : H2(CP2n) → H2(CP2n) is
representable by an integer m so that f ∗(ω) = m · ω. Now, we know that ω ∧ ω is a
4-form on CP2n, and in fact generates it. The same is true for the k-fold wedge of ω
and H2k(CP2n). Therefore the action of f ∗ on H2k(CP2n) is multiplication by mk.

Lefschetz number has another definition in terms of homology, which is verifiable from
the above definition: assuming X can be written as a finite CW-complex, we have the
Lefschetz number of a map f : X → X is

Λf =
∑
k≥0

(−1)k tr(f∗|Hk(X;Q)).

In our case, Poincaré duality applies, so we have

Λf =
∑
k≥0

(−1)k tr(f ∗|Hk(CP2n;R)) =
∑
k≥0

mk =
mn+1 − 1

m− 1
.

If m = 1, then we know that f ∗ is the identity map on cohomology, so f ' idCP2n . As
such, Λf = n + 1 = χ(CP2n). If m 6= 1, then Λf = 0 if and only if mn+1 − 1 = 0,
i.e. mn+1 = 1. The only way this is possible is if m = −1 and n + 1 is even. But by
assumption, n is even, so this is impossible. Therefore Λf 6= 0 always, so it has a fixed
point by the Lefschetz fixed point theorem.
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Problem 10.
Compute explicitly the simplicial homology of the surface of a tetrahedron, thus obtaining
the homology of the 2-sphere.

Solution.
Let ∆3 be a 3-simplex and let X be a (hollow) tetrahedron. Since homology in degree i
depends only on the i- and (i + 1)- skeletons we know that H0(∆3) = H0(X) = Z and
H1(∆3) = H1(X) = 0. We need only to calculate the homology in degree 2 for X. We have
the following (bad) picture:

•

• •v2

•v0

e

c

f

ab

d

To calculate H2(X), we need to determine ker ∂2 and im ∂3. Since C3(X) = 0, we only need
to calculate ker ∂2. We have four 2-simplices: [v0, v1, v2], [v0, v1, v3], [v0, v2, v3], and [v1, v2, v3].
Name these a, b, c, d (in that order). Let the 1-simplices be defined by

α = [v0, v1], β = [v0, v2], γ = [v0, v3], δ = [v1, v2], ε = [v1, v3], ζ = [v2, v3].

Then

∂2(a) = δ − β + α, ∂2(b) = ε− γ + α, ∂2(c) = ζ − γ + β, ∂2(d) = ζ − ε+ δ.

Each 1-simplex appears exactly twice. We claim the kernel is a rank 1 subgroup of C2. To
illustrate: let x = (na, nb, nc, nd) ∈ ker ∂2. Then we must have na = −nb, so that the α terms
cancel. We must have na = nc so the β terms cancel. We must have nb = −nc so that the γ
terms cancel (which we already know). We must have na = −nd so that the δ terms cancel.
We must have nb = nd so that the ε terms cancel (which we already know). Finally, we
must have nc = −nd so that the ζ terms cancel (which we already know). This means that
x = na(1,−1, 1,−1). Therefore a− b+ c− d generates ker ∂2, so we have H2(X) = Z.

8 Fall 2010

Problem 1.
Let M be a connected smooth manifold. Show that for any two non-zero tangent vectors
v1 at x1 and v2 at x2, there is a diffeomorphism φ : M → M such that φ(x1) = x2 and
dφ(v1) = v2.

Solution.
We have shown below (e.g. Fall 2008 #3) how to construct φ so that φ(x1) = x2. The
added requirement on tangent vectors is not any more stringent. We can construct another
diffeomorphism ψ : M → M which is the identity on x2 but will change a neighbourhood
U of x2 to obtain what we want. We know we can construct a linear automorphism F of
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Tx2M so that F (dφ(v1)) = v2. The matrix associated to this map tells us how a local basis
∂
∂xi

is affected, and thus we can see how a system of local coordinates dxi for U is affected
and define a ψ accordingly with dψ = F . So long as we parametrise so that x2 is identified
with 0 ∈ Rn, it will not be moved. Therefore the composition f = ψ ◦ φ will have

df(v1) = d(ψ ◦ φ)(v1) = dψ(dφ(v1)) = v2

as well as f(x1) = x2.

Problem 2.
Let X and Y be submanifolds of Rn. Prove that for almost every a ∈ Rn, the translate
X + a intersects Y transversally.

Solution.
This is a consequence of the transversality theorem (e.g. Guillemin and Pollack p.68). Its
statement for our purposes is, given a smooth map F : X×S → Z such that F is transversal
to a submanifold Y ⊂ Z, then at almost every point s ∈ S we have F (−, s) = fs transversal
to Y . For our purposes, we let F : X ×Rn → Rn be given by F (x, a) = x+ a. First, we see
that F is transversal to Y . Because the action of F on Rn is given by translation, dF has
full rank. Therefore we must have

im dF(x,a) + Ty(Y ) = Ty(Rn)

for any (x, a) so that F (x, a) = y ∈ Y . This shows that almost all fa are transversal to Y .
Since fa(X) = X + a, this shows that X + a and Y intersect transversally for almost every
a.

Problem 3.
Let Mn(R) ∼= Rn2

be the space of n× n matrices with real coefficients.

(a) Show that
SL(n) = {A ∈Mn(R) : detA = 1}

is a smooth submanifold of Mn(R).

(b) Identify the tangent space to SL(n) at the identity matrix In.

(c) Show that SL(n) has trivial Euler characteristic.

Solution.
(a) See Spring 2009 #6.

(b) Ibid.

(c) We use the Poincaré-Hopf Index Theorem (e.g. Guillemin and Pollack p.134). It states
that, if X is a smooth vector field on a compact, oriented manifold M with only finitely
many zeroes, then the global sum of the indices of X equals χ(X).

In our case, we know that SL(n) is a Lie group, with multiplication inherited from
Mn(R). As such, we can define a nowhere-vanishing vector field on SL(n) by translating
a nonzero vector v at In by left multiplication. Therefore the global sum of the indices
of X is empty, so its sum is 0 = χ(SL(n)).
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Problem 4.

(a) Let fi : M → N , i = 0, 1, be two smooth maps between smooth manifolds M and N ,
and f ∗i : Ω•(N)→ Ω•(M), i = 0, 1, be the induced chain maps between the respective
de Rham complexes. Define the notion of chain homotopy between f ∗0 and f ∗1 . Here
the coboundary operators on the de Rham complex are the exterior derivatives.

(b) Let X be a smooth vector field on a compact smooth manifold M , and let φt : M →M
be the flow generated by X at time t. Find an explicit chain homotopy between
the chain maps φ∗0 and φ∗1 from Ω•(M) to itself. Hint: use Cartan’s magic formula
LXω = d ◦ ixω + iX ◦ dω.

Solution.

(a) We define a chain homotopy P between f ∗0 and f ∗1 in the following way: let f i0 be the
induced map on chains at degree i. Since Hom(Ωi(N),Ωi(M)) is an abelian group,
f i1 − f i0 is well defined, which yields a picture.

Ωi−1(N) Ωi(N) Ωi+1(N)

Ωi−1(M) Ωi(M) Ωi+1(M)

d

f i−1
1 −f i−1

0

d

f i1−f i0 f i+1
1 −f i+1

0

d d

Then we say that f ∗0 ∼ f ∗1 , i.e. that the maps are chain homotopic, if there exists
a map P : Ω•(N) → Ω•(M) of degree −1, i.e. P i : Ωi(N) → Ωi−1(M), so that
f i1−f i0 = d◦P i+P i+1 ◦d, illustrated in the diagram below (which does not commute):

Ωi(N) Ωi+1(N)

Ωi−1(M) Ωi(M)

d

f i1−f i0
P i P i+1

d

(b) Note that φ∗0 is nothing but the identity, since φ0 = id. We claim that we that the
chain homotopy we want is iX , the interior product by the vector field X. Cartan’s
magic formula tells us

LXω = lim
h→0

1

h
[φ∗hω − ω] = iX(dω) + d(iXω).

Now, we know by the Fundamental Theorem of Calculus that, for a form ω and a point
p, we have

(φ∗1 − φ∗0)ω(p) =

∫ 1

0

∂φ∗t (ω(p))

∂t
dt.

45



But this righthand integrand is just the Lie derivative of ω with respect to X at the
point φt(p). Hence

(φ∗1 − φ∗0)ω(p) =

∫ 1

0

LXω(φt(p)) dt.

By Cartan’s magic formula,

=

∫ 1

0

diX(ω(φt(p))) + iX(dω(φt(p))) dt

=

∫ 1

0

diX(ω(φt(p))) dt+

∫ 1

0

iX(dω(φt(p))) dt.

Since the d on the left integral has to do with the integral itself, we can move it to the
outside:

= d

∫ 1

0

iX(ω(φt(p))) dt+

∫ 1

0

iX(dω(φt(p))) dt.

Therefore our requisite chain homotopy is the map

ω(p) 7→
∫ 1

0

iXω(φt(p)) dt,

which indeed is degree −1. Hence the two maps are chain homotopic.

Problem 5.
Let ω = dx1 ∧ dx2 + dx3 ∧ dx4 + · · ·+ dx2n−1 ∧ dx2n be a 2-form on R2n, where (x1, . . . , x2n)
are the standard coordinates. Define an S1-action on R2n as follows: for each t ∈ S1, define
gt : R2n → R2n by considering R2n as the direct sum of n copies of R2 and rotating each R2

summand an angle t. Let X be the vector field on R2n defined by

X(x) =
dgt(x)

dt

∣∣
t=0

for any x ∈ R2n.

(a) Find the Lie derivative LXω and a function f on R2n such that df = iXω.

(b) The S1 action above induces an action on S2n−1. Let Pn−1 be the quotient space of
S2n−1 by this action. Show that the quotient space Pn−1 has a natural smooth structure
and that the tangent space of Pn−1 at any point x can be identified with the quotient
of the tangent space TxS

2n−1 by the line spanned by X(x) for any x ∈ x. Here x is the
orbit of x under the S1-action.

(c) Show that ω descends to a well-defined 2-form on the quotient space Pn−1 and that
the 2-form so defined is closed.

46



(d) Is the closed form in (c) exact?

Solution.
(a) The vector field is easily shown to be

X(x1, . . . , x2n) = (x2,−x1, . . . , x2n,−x2n−1).

We will use Cartan’s magic formula, stated in the above problem. We have

LXω = d ◦ iXω + iX ◦ dω.

We have

iXω = ω(X,−) =

(
n∑
i=1

dx2i−1 ∧ dx2i

)
(X,−).

We only need to understand what is going on at each of the summands. At the point
x = (x1, . . . , x2n), we have

X =
n∑
i=1

−x2i
∂

∂x2i−1
+ x2i−1

∂

∂x2i
,

so if Y =
∑2n

j=1 yj
∂
∂yj

is an arbitrary vector field, we have

dx2i−1 ∧ dx2i(X, Y ) = det

(
−x2i y2i−1

x2i−1 y2i

)
= −(x2i−1y2i−1 + x2iy2i).

Therefore we have

iXω = −
2n∑
i=1

xi dxi.

We can see that the choice

f(x1, . . . , x2n) = −1

2

(
x2

1 + · · ·+ x2
2n

)
gives us iXω = df . Since it is clear that dω = 0, and we have shown that iXω is exact,
we have

LXω = d(df) + iX(0) = 0.

(b) We claim we are working with CPn−1, though we aren’t saying it out loud. Consider
R2n = Cn, where each plane from the premise is identified with a copy of C. Then the
rotation by S1 in each plane corresponds to complex multiplication by λ ∈ C× with
|λ| = 1. This is exactly the identification on Cn that gives us CPn−1. We will now
refer to Pn−1 by its proper name. CPn−1 has a natural smooth structure as a quotient
manifold.

For the second part, we know that X(x) is the tangent vector to TxS
2n−1 that corre-

sponds to the rotation in the appropriate complex plane that we are identifying to a
point. Since TxCPn−1 has dimension n − 1, what remains after the quotient by the
rotation tangent vector must be the remainder.
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(c) ω descends to CPn−1 exactly if ω is invariant with respect to the quotient action. Since
this identification is given by the flows of vector field X, we need to show LXω = 0.
But that was part (a). The form is closed because, pulling back ω from CPn−1 gives
the original form on RP2n. But this form was originally closed upstairs, so it must be
closed downstairs as well.

(d) ω is not exact. Though the form upstairs is exact, and we can write ω = dη for

η =
n∑
i=1

x2i−1 dx2i.

But η is not invariant under the group action, so cannot descend to CPn−1.

Problem 6.
Suppose that f : Sn → Sn is a smooth map of degree not equal to (−1)n+1. Show that f
has a fixed point.

Solution.
This is the contrapositive of Spring 2013, #7(b).

Problem 7.
(a) Let G be a finitely presented group. Show that there is a topological space X with

fundamental group π1(X) ∼= G.

(b) Give an example of X in the case G = Z ∗ Z, the free group on two generators.

(c) How many connected, 2-sheeted covering spaces does the space X from (b) have?

Solution.
(a) If G is finitely presented, then let g1, . . . , gm be a minimal generating set for G and let

r1, . . . , rn be a minimal set of relations so that G ∼= Fm/〈〈r1, . . . , rn〉〉, where F is the
free group of rank m. We construct the topological space in the following way: take
a 0-cell and glue to it the boundaries of m 1-cells, where we label each copy with one
generator gi. This space is homeomorphic to

∨m S1 and will have fundamental group
Fm, so we need only construct the relations.

Each relation rj can be realised as a finite string of generators or their inverses, e.g.

rj = gε1i1 g
ε2
i2
· · · gεkik ,

where ε = ±1. Let that finite string give instructions for gluing n 2-cells to the wedge
of circles we have constructed, where ε = −1 means glue the boundary while reversing
orientation, and call this new space X. This gives us a map Fm → π1(X) whose kernel
is generated by the relation words rj. This means that π1(X) ∼= G, as required.

(b) We may take X to be the wedge of 2 circles, since G ∼= F 2 and hence we need no
relations.
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(c) The (basepoint-preserving isomorphism classes of) connected, 2-sheeted covering spaces
of X correspond to the subgroups of π1(X) of index 2. Suppose H ⊂ F 2 is a subgroup
of index 2. Let a, b be the generators of F 2, and consider the cosets aH, bH,H. Two of
these must be the same. Further, we cannot have aH = bH, because then we cannot
construct a coset other than H, which is a contradiction.

Therefore suppose we have aH = H. Then every word in H must start with an
a. Further, since no words in bH start with a and H ∪ bH = F 2, we must have
H = {x ∈ F 2 : x = a · · · }. If bH = H then we see that H = {x ∈ F 2 : x = b · · · }.
This exhausts the possibilities for H, so we have two connected 2-sheeted covering
spaces of X.

Problem 8.
Let G be a connected topological group. Show that π1(G) is a commutative group.

Solution.
See Fall 2008 #8.

Problem 9.
Show that if Rm and Rn are homeomorphic, then m = n.

Solution.
We will use simplicial homology to show this. First, if Rm ∼= Rn, then removing a point from
each does not change the homeomorphism. Assume that m,n ≥ 2, because if we have m = 1
and n ≥ 2 (without loss of generality) then removing a point from Rm makes it disconnected,
but not so for Rn, so we have a contradiction.

Now, because Rk \ {pt} deformation retracts onto Sk−1, this implies that we have an
isomorphism of Hi(S

n−1) and Hi(S
m−1) at each i. Because a k-sphere is comprised of a

vertex and an k-cell with boundary glued onto that one vertex, we can calculate directly
that

Hi(S
k) =

{
Z i = 0, k

0 else

Therefore spheres are uniquely determined by where their homology is supported outside
of degree 0. Therefore since we see that Hn−1(Sn−1) = Z = Hm−1(Sm−1), we must have
n− 1 = m− 1, which implies that n = m as required.

Problem 10.
Let Ng be the nonorientable surface of genus g, that is, the connected sum of g copies of
RP2. Calculate the fundamental group and homology groups of Ng.

Solution.
We can put a simplical structure on Ng in the following way: take one 0-cell v, g 1-cells
{e1, . . . , eg} all glued to the 0-cell, and one 2-cell A glued according to e2

1 · · · e2
g. Therefore

we have
∂(p) = 0, ∂(ei) = 0, ∂(A) = 2e1 + · · ·+ 2eg,
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where ∂ is the boundary operator. This shows that H0(Ng) = Z (since it is connected) and
H2(Ng) = 0. We also have H1(Ng) ∼= Zg/〈(2, . . . , 2)〉. We may rewrite an orthogonal basis
for Zg such that (1, . . . , 1) is a basis element, which gives us

H1(Ng) =
(
〈(1, . . . , 1)〉 ⊕ Zg−1

) /
〈(2, . . . , 2)〉

∼= 〈(1, . . . , 1)〉/〈(2, . . . , 2)〉 ⊕ Zg−1

= Z/2Z⊕ Zg−1.

For π1(Ng), we use the same method we did for Problem 7 above. The fundamental
group is a quotient of F g by the attaching map for A, which gives us

π1(Ng) = F g/〈e2
1 · · · e2

g〉.

We will not give a better description of this group.

9 Spring 2010

Problem 1.
Let Mn be the space of all n×n matrices with real entries and let Sn be the subset consisting
of all symmetric matrices. Consider the map F : Mn → Sn defined by F (A) = AAt − In.

(a) Show that 0n is a regular value of F .

(b) Deduce that O(n), the set of all n× n matrices such that A−1 = At, is a submanifold
of Mn.

(c) Find the dimension of O(n) and determine the tangent space of O(n) at the identity
matrix as a subspace of TMn

∼= Mn.

Solution.
(a) We need to show that F is a submersion at 0n. That is, given any A ∈ F−1(0), we need

to show dFA : TAMn → T0Sn surjective. Because Mn and Sn are Euclidean spaces, we
may identify their tangent spaces with the space itself. Therefore, we need to show if,
given C ∈ Sn, that there is a B ∈Mn so that dFA(B) = C. By definition,

dFA(B) = lim
t→0

F (A+ tB)− F (A)

t
= lim

t→0

(A+ tB)(At + tBt)− AAt

t
= ABt +BAt.

We claim B = 1
2
CA works. To see this,

ABt +BAt =
1

2
(AAtC + CAAt) =

1

2
(2C) = C,

since by assumption AAt = In. Therefore 0n is a regular value.

(b) By the preimage theorem, we know that the preimage of a regular value is a subman-
ifold. We see that F−1(0n) = O(n), since

AAt − In = 0n ⇐⇒ AAt = In ⇐⇒ At = A−1.
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(c) By the same theorem, we have dimO(n) = dimMn − dimSn. We have dimMn = n2,
as we have one degree per matrix entry. By the same reasoning, there is one degree
per matrix entry for Sn, but a symmetric matrix is defined by its entires on the upper
triangle. This gives dimSn = n+ (n− 1) + · · ·+ 2 + 1 = n(n+1)

2
. Hence

dimO(n) = n2 − n(n+ 1)

2
=

2n2 − n2 − n
2

=
n(n− 1)

2
.

Now, we need to calculate the tangent space. We know that TInO(n) is the space of
derivations of lines through In, each of which is representable by a matrix in Mn. Let
A ∈Mn and consider the line In + tA for t ∈ R. The derivative of this path is just A,
so we need to see which A satisfies that In + tA ∈ O(n) for small enough t. Hence we
need

In + tAt = (In + tA)−1 =⇒ (In + tAt)(In + tA) = In

=⇒ In + tAt + tA+ t2AtA = In.

We may ignore the t2 term as it goes to 0 much faster than the t term, so this means we
need t(A+ At) = 0 for small t, so this implies that −A = At, i.e. A is antisymmetric.
Hence the tangent space to In is the space of antisymmetric matrices.

Problem 2.
Show that T 2 × Sn is parallelisable, where Sn is the n-sphere, T 2 is the 2-torus, and a
manifold of dimension k is parallelisable if there exist k vector fields V1, . . . , Vk such that
V1(p), . . . , Vk(p) are linearly independent everywhere.

Solution.
In fact, we can show that S1 × Sn is parallelisable. If that is the case, then the product of
two parallelisable manifolds S1 and S1 × Sn is still parallelisable.

Consider TSn. If we take TSn × R, we obtain Sn × Rn+1, since this R term can be
realised as the normal bundle to the sphere as a submanifold of Rn+1. We know that
TS1 = S1 × R, because taking the unit tangent vector in R2 to S1 at every point is a
nowhere-vanishing vector field. Let π1 : S1×Sn → S1 be projection onto the first coordinate
and π2 : S1 × Sn → Sn be projection onto the second coordinate. Then

T (S1 × Sn) = π∗1(TS1)× π∗2(TSn) = π∗1(S1 × R× TSn) = S1 × Sn × Rn+1,

so this is parallelisable.

Problem 3.
Let π : M1 → M2 be a smooth map of compact differentiable manifolds. Suppose that for
each p ∈M1, the differential dπ : TpM1 → Tπ(p)M2 is a vector space isomorphism.

(a) Show that if M1 is connected, then π is a covering space projection.
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(b) Give an example where M2 is compact but π : M1 → M2 is not a covering space (but
has the dπ isomorphism property).

Solution.
(a) We have to assume that M2 is connected, I believe, otherwise π may not be surjective.

Then the problem is just Spring 2009, #2.

(b) Ibid.

Problem 4.
Let Fk(M) denote the differentiable smooth k-forms on a manifold M . Suppose U and V
are open subsets of M .

(a) Explain carefully how the usual exact sequence

0→ F(U ∪ V )→ F(U)⊕F(V )→ F(U ∩ V )→ 0

arises.

(b) Write down the long exact sequence in de Rham cohomology associated to the above
short exact sequence and describe explicitly how the map

Hk(U ∩ V )→ Hk+1(U ∪ V )

arises.

Solution.
(a) First, it suffices to explain this exact sequence in each degree k, since the maps between

these chains are going to have degree 0. First, suppose ω is a k-form on U ∪ V . Then
we can restrict ω to U ⊂ U ∪ V or to V ⊂ U ∪ V . The first map fk is the one defined
by

ω 7→ (ω|U , ω|V ).

For the second map, we can restrict a form ω on U to U ∩ V ⊂ U and a form η on V
to U ∩ V ⊂ V . The second map gk is defined by

(ω, η) = ω|U∩V − η|U∩V .

To see this sequence is exact, first we see that for a form ω ∈ Fk(U ∪ V ), we have

ω 7→ (ω|U , ω|V ) 7→ ω|U∩V − ω|U∩V = 0,

so im fk ⊂ ker gk. Now, suppose (ω, η) ∈ ker gk. Then ω|U∩V = η|U∩V , so we may glue
the two forms together with no contradiction on the overlap U ∩ V , i.e.

θ(x) =

{
ω(x) x ∈ U
η(x) x ∈ V \ U

.

This is a form on U ∪ V , so we have ker gk ⊂ im fk. Therefore the sequence is exact.
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(b) The long exact sequence we obtain is

· · · → Hk−1(U ∩ V )
δk−1

−→ Hk(U ∪ V )
fk∗−→ Hk(U)⊕Hk(V )

gk∗−→ Hk(U ∩ V )
δk−→ · · ·

We need to define the missing maps, however. Let ω ∈ Hk(U ∩ V ), which we can
represent by ηU−ηV from the short exact sequence, where ηU ∈ Fk(U) and ηV ∈ Fk(V )
are closed forms. Then dω = dηU − dηV = 0, so dηU = dηV on U ∩ V . Therefore we
can define δk(ω) by gluing together dηU and dηV exactly as we did above to obtain a
k + 1 form on U ∪ V , and the sequence is seen to be exact at this point in exactly the
same way.

Problem 5.
Explain carefully why the following holds: if π : SN → M , N > 1 is a covering space with
M orientable, then every closed k-form on M , 1 ≤ k < N , is exact.

Solution.
Suppose that ω is a closed k-form on M . We know that π∗ induces a map on cohomology
π∗ : Fk(M) → Fk(SN), and in particular π∗ maps closed forms to closed forms. Therefore
π∗(ω) is a closed k-form on SN . Therefore π∗(ω) is exact, since Fk(Sn) = 0 for all 1 ≤ k < N .
Write π∗(ω) = dθ.

We now use the fact that we have a covering space. In particular, since SN is compact,
this covering space is finitely-sheeted. If G is the (finite) group of deck transformations of π,
then Sn/G ∼= M . In order for a form on SN to descend to M , it needs to be G-equivariant.
We can construct this:

η =
1

|G|
∑
g∈G

g∗(θ).

This form is G-equivariant. Therefore we can view it as a form on M . We claim that dη = ω.
We have

dη =
1

|G|
∑
g∈G

d(g∗(θ)) =
1

|G|
∑
g∈G

g∗(dθ) =
1

|G|
∑
g∈G

g∗(π∗(ω)) = ω,

because adding up all the the g∗ conjugates of π∗(ω) will get us back the form ω that we
started with. Therefore ω is exact.

Problem 6.
Calculate the singular homology of Rn, n > 1, with k points removed, k ≥ 1.

Solution.
First, assume that n = 2. Then if we remove one point, we have a deformation retract to
S1. Therefore if we remove k points from R2, we have a deformation retract onto the wedge
of k copies of S1. Since we know how to calculate the singular homology of S1 and know
that wedge products become direct sums under homology (by the Mayer-Vietoris sequence),
we are done. Indeed, we see that the general case is analogous. Removing k points from Rn
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gives a deformation retract onto the wedge of k copies of Sn−1. Therefore we can summarise
all the homology thus:

Hi(Rn \ {k points}) =


Z i = 0

Zk i = n− 1

0 otherwise

Problem 7.
(a) Explain what is meant by adding a handle to a 2-sphere for a 2-dimensional orientable

surface in general.

(b) Show that a 2-sphere with a positive number of handles cannot be simply connected.

Solution.
(a) Let M be such a surface. Then adding a handle happens in the following way: we

recall that the connected sum # of two 2-spaces X, Y is accomplished thus: remove
a disc homeomorphic to R2 from each space and glue X to Y along the boundary of
this disc. If these spaces are oriented, then ∂X and ∂Y (which is homeomorphic to
S1) are naturally endowed with an orientation, and so we glue the space together as
to preserve orientation.

We add a handle to an orientable space M by taking first taking the sum M#Z, where
Z is a hollow cylinder and remove one end of the cylinder to accomplish the sum. Then
we connect the other end of Z to M \ Z in the same way. This adds a tube between
two discs on M , which looks much like a handle on a coffee mug if one visualises it
properly.

(b) We claim that S2 with g handles attached is homeomorphic to the torus of genus g,
which we denote Mg. Indeed, it is clear that S2 with one handle is homeomorphic to
T 2 by taking the two open sets cut out of S2 to be the open northern and southern
hemispheres. Repeating this process increases the genus by 1 each time.

Now, we have π1(T 2) = Z2, so the space is not simply connected. It is easy to see
that the torus of genus g retracts onto the torus of genus g − 1, which induces an
injection π1(Mg−1) ↪→ π1(Mg). Therefore adding more handles can only enlarge the
fundamental group, so a a sphere with a positive number of handles cannot be simply
connected.

Problem 8.
(a) Define the degree deg f of a smooth map f : S2 → S2 and prove that deg f as you

present it is well-defined and independent of any choice you need to make in your
definition.

(b) Prove in detail that for each integer k, there is a smooth map f : S2 → S2 of degree k.
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Solution.
(a) We know that f : S2 → S2 induces a map on homology f∗ : H2(S2) → H2(S2). Since

H2(S2) ∼= Z, we know that f∗ ∈ Hom(Z,Z) ∼= Z. Therefore we associate to f∗ an
integer which we call its degree, where f∗(x) = deg f · x for any x ∈ H2(S2) (the
domain).

(b) We will use the other definition of degree for this part: for any closed orientable man-
ifolds of the same dimension M,N f : M → N , and p ∈ N , f−1(p) = {x1, . . . , xk} is a
finite set of discrete points. Further, at each of these points, f is a local diffeomorphism.
As such, f is either orientation preserving or orientation reversing. Let

sgnx(f) =

{
1 f is orientation preserving near x

−1 f is orientation reversing near x

Then we define degp f =
∑

x∈f−1(p) sgnx(f). One can verify that since M is path
connected by assumption that the choice of p is irrelevant, and so we can write deg f
alone.

In our case, define f : S2 → S2 in the following way: in the domain sphere, take k
disjoint open discs. Then f will map those discs while preserving orientation onto the
codomain S2 \ {p}, where p is the north pole, and f maps the complement of the open
discs to p. This map by construction is continuous and has deg f = k by taking any
point q 6= p and doing the above calculation. We can make this map smooth without
changing the degree by creating a smooth bump at the border of each of the k open
discs. To get maps with negative degree, simply glue the open discs onto S2 \{p} while
reversing orientation. This completes the proof.

Problem 9.
Explain how Stokes’ theorem for manifolds with boundary gives, as a special case, the
classical divergence theorem.

Solution.
See Spring 2008, #3.

Problem 10.
(a) Show that every map F : Sn → T k is nulhomotopic.

(b) Show that there is a map F : T n → Sn such that F is not nulhomotopic.

(c) Show that every (smooth) map F : Sn → Sn1 × · · · × Snk , n1 + · · · + nk = n, ni > 0,
k ≥ 2 has degree 0.

Solution.
(a) We assume n > 1, otherwise this is patently false. The universal cover of T k is Rk, so

any map F : Sn → T k has a unique lift to F ′ : Sn → Rk because π1(Sn) is trivial. We
claim that any such map is nulhomotopic, which is obvious since Rk is contractible.
Therefore, if we let p : Rk → T k be the usual covering map, since F = p ◦ F ′, a
homotopy of F ′ to the constant map can descend to one on F .
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(b) Let U ⊂ T n be some open set diffeomorphic to Rn. Then define a map F as follows:
let F map U diffeomorphically (orientation preserving) onto Sn \ {n}, where n is
the north pole, and map T n \ U to n. This map is continuous by construction, and
can be made smooth if necessary by the density of smooth functions in continuous
functions. Then using the definition of degree by orientated intersection theory, we
take a regular value of F , which is any point x 6= n. As such, F−1(x) has only one
point of matching orientation. Hence degF = 1. Since degree is a homotopy invariant,
if F were nulhomotopic we would need degF = 0, so F is not nulhomotopic.

(c) We now use the definition of degree via differential forms: let ωi be a nowhere vanishing
ni-form on Sni , which exists because Sni is orientable. Then ω1 ∧ · · · ∧ωk is a nowhere
vanishing n-form on the product of spheres. If we normalise this, we get a nowhere
vanishing form ω on the n-form that integrates to 1. Then

degF =

∫
Sn

F ∗ω =

∫
Sn

F ∗(ω1 ∧ · · · ∧ ωk)

=

∫
Sn

F ∗ω1 ∧ · · · ∧ F ∗ωk.

First, since F ∗ωi is an closed ni-form on Sn (as pullback sends closed forms to closed
forms), it must be exact since 0 < ni < n. Then we let F ∗ωi = dηi for each i. Then∫

Sn

F∗ω =

∫
Sn

dη1 ∧ · · · ∧ dηk =

∫
Sn

d(η1 ∧ dη2 ∧ · · · ∧ dηk)

Applying Stokes’ theorem,∫
Sn

F ∗ω =

∫
∂Sn

η1 ∧ dη2 ∧ · · · ∧ dηk = 0

since ∂Sn = ∅. Therefore degF = 0 for any F . By the Hopf degree theorem, any
degree zero map is nulhomotopic.

10 Spring 2009

Problem 1.

(a) Show that a closed 1-form θ on S1×(−1, 1) is dF for some function F : S1×(−1, 1)→ R
if and only if

∫
S1 i
∗θ = 0, where i : S1 → S1 × (−1, 1) is defined by i(p) = (p, 0).

(b) Show that a 2-form ω on S2 is dθ for some 1-form on S1 if and only if
∫
S2 ω = 0.

Solution.

(a) We know that S1 × (−1, 1) is homotopic to S1 by contracting each line {x} × (−1, 1).
Therefore H1(S1) ∼= H1(S1 × (−1, 1)), and i∗ : H1(S1 × (−1, 1) → H1(S1) is an
isomorphism. In particular every cohomology class in H1(S1 × (−1, 1)) is uniquely
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determined by a cohomology class of S1. Hence if we have closed form ω on S1×(−1, 1),
it is exact if and only if its corresponding form i∗ω is exact on S1.

That i∗ω is exact if and only if
∫
S1 i
∗ω = 0 follows from Stokes theorem. If i∗ω = df ,

then ∫
S1

i∗ω =

∫
∂S1

f = 0,

since ∂S1 = ∅. Conversely, we can construct the function f if i∗ω integrates to 0. Let
p ∈ S1 be some basepoint. Then for any q ∈ S1, there is an arc γ : [0, 1]→ S1 so that
γ(0) = p and γ(1) = q. Define

f(q) :=

∫
γ

ω.

By the fundamental theorem of calculus, we have df = ω. We need only show that f
is well defined. Suppose that γ′ is another path from p to q. Then let γ̄′ be the path
from q to p around the other side of S1. We have∫

γ

ω −
∫ ′
γ

ω

∫
γ̄′◦γ

ω =

∫
S1

ω = 0.

Therefore f is well-defined, so we are done.

(b) This works similarly. Note that the θ in the question might as well be viewed as form
on S2. If we have a form on S2, we obtain a form on S1 induced by the inclusion of
the equator. Now, if ω is exact, then let ω = dθ. We have∫

S2

ω =

∫
∂S2

θ = 0.

Conversely, suppose
∫
S2 ω = 0. We will construct θ piecewise. Let L = S2 \ {n} and

U = S2 \ {s}, where n is the north pole and s is the south pole. Then U,L ' D2,
so they are contractible. Now ω|U and ω|L are (degree at least 1) closed forms on a
contractible domain, so they are exact by the Poincaré lemma. Therefore let θU and
θL be the corresponding 1-forms. We can restrict these forms to U ∩ L, and we claim
that θU and θL differ by an exact form on U ∩L. Indeed, if i∗ denotes the map induced
by an inclusion map,

d(i∗U∩L(θU − θL)) = i∗U∩L(dθU − dθL) = ω|U∩L − ω|U∩L = 0.

Therefore θU − θL is a closed 1-form on U ∩ L ' S1. Further, we know that
∫
S1 θU =∫

S1 θL, so in fact θU − θL is exact, say it equals df for f : U ∩ L→ R.

We can now glue together θU and θL on S2. We have θL = θU + df . Therefore on S2

less a neighbourhood of the south pole, define θ = θU , and on that neighbourhood of
the south pole we can smoothly interpolate θU + t ·df so that the value is correct at the
south pole. Then all the cohomology classes work out properly, and dθ = ω globally.
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Problem 2.
Suppose that M and N are connected smooth manifolds of the same dimension n ≥ 1 and
F : M → N is a smooth map such that dF : TpM → TF (p)N is surjective for each p ∈M .

(a) Prove that if M is compact, then F is onto and F is a covering map.

(b) Find an example of such an everywhere nonsingular equidimensional map where N is
compact, F is onto, F−1(p) is finite for each p ∈ N , but F is not a covering map.

Solution.
(a) F is a submersion, so it is an open map. Since M is compact, F is proper and F (M)

is a compact subset of N , and in particular is closed. Therefore F (M) is both open
and closed in N , so F (M) = N because N is connected. We have a proper surjective
continuous map, but we need to show that it is a local diffeomorphism. But since
dimTpM = dimTF (p)N = n, dFp is actually a linear isomorphism everywhere, so we
are done.

(b) Take F : R→ S1 so that [0, 1] maps diffeomorphically onto S1 \U for some connected
open set U and maps (−∞, 0) and (1,∞) onto U diffeomorphically. Then we have
a local diffeomorphism, so dπ is an isomorphism everywhere. Further, F−1(p) has
cardinality 1 or 2 at any point. But this map is not even-sheeted, so it cannot be a
covering map.

Problem 3.
(a) Suppose that M is a smooth connected manifold. Prove that, given an open subset U

of M and a finite set of points p1, . . . , pk, there is a diffeomorphism F : M → M such
that f({p1, . . . , pk}) ⊂ U .

(b) Use part (a) to show that if M is compact and χ(M) = 0, then there is a vector field on
M which vanishes nowhere. You may assume that if a vector field has isolated zeroes,
then the sum of the indices at the zero points equals χ(M) = 0.

Solution.
(a) We proceed by induction. Let p ∈ M be any point, and let x ∈ U . Then since M is

connected, it is path connected, so let γ : I →M be a path with γ(0) = p and γ(1) = x.
We may take a tubular neighbourhood V of γ in M to obtain a tube diffeomorphic to
Rn. Then we may construct a diffeomorphism of M that is the identity outside of V
and inside V moves p along the path γ near x ∈ U .

For k points, we compose diffeomorphisms F1, . . . , Fk which repeat the above process.

(b) Let V be any vector field on M with (finitely many) isolated zeroes at p1, . . . , pk. Then
we know that the sum of the indices of these zeroes equals zero. By (a), we may move
all these zeroes into an arbitrarily small neighbourhood U diffeomorphic to Rn. Then
we know the index of V around U is zero. Therefore we may ‘delete’ the vector field as
given inside U and replace it with a nonvanishing vector field, since locally constructing
such a thing is trivial. The new vector field V we obtain is nowhere vanishing.
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Problem 4.
A smooth vector field V on R3 is said to be ‘gradient-like’ if, for each p ∈ R3, there is a
neighbourhood Up of p and a function λp : Up → R \ {0} such that λpV on Up is the gradient
of some smooth function on Up. Suppose V is nowhere zero on R3. Then show that V is
gradient-like if and only if curlV is perpendicular to V at each point of R3.

Solution.
See Spring 2012, #4.

Problem 5.
Suppose that M is a compact smooth manifold of dimension n.

(a) Show that there is a positive integer k such that there is an immersion F : M → Rk.

(b) Show that if k > 2n, there is a k− 1-dimensional subspace H of Rk such that P ◦F is
an immersion, where P : Rk → H is orthogonal projection.

Solution.
(a) See Fall 2011, #1.

(b) See Guillemin and Pollack, p.51. Define the orthogonal projection P in the following
way: define g : TM → Rk by g(x, v) = dFx(v). Since dimTM = 2n < k, there is a
point a ∈ Rk that is not in the image of g. Then let H be the orthogonal complement
of a, and P the associated orthogonal projection. We claim that P ◦ F is still an
immersion.

Suppose that d(P ◦ F )x(v) = 0 for nonzero (x, v) ∈ TM . Then since P is linear, we
have

d(P ◦ F )x(v) = P (dFx(v)) = 0.

Therefore dFx(v) ∈ Ra. Since our original F was an immersion, this implies that
dFx(v) = t · a has t 6= 0. But then dFx(v/t) = g(x, v/t) = a, a contradiction.

Problem 6.
Let GL+(n,R) be the set of n×n matrices with determinant > 0. Note that GL+(n,R) can
be considered to be a subset of Rn2

and this subset is open.

(a) Prove that SL+(n,R) = {A ∈ GL+(n,R) : detA = 1} is a submanifold.

(b) Identify the tangent space of SL+(n,R) at the identity matrix In.

(c) Prove that, for every n× n matrix B, the series

exp(B) = 1 +B +
B

2!
+ · · ·

converges to some n× n matrix.
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(d) Prove that if exp(tB) ∈ SL+(n,R) for all t ∈ R, then trB = 0.

(e) Prove that if trB = 0, then exp(B) ∈ SL+(n,R).

Solution.

(a) We have the continuous determinant map det : GL+(n,R) → R+, and thus we can
define SL+(n,R) = det−1(1). If we prove that 1 is a regular value of det, then we
are done by the preimage theorem. Since the rank of T1R is 1, we need to only show
that the derivative of det is not identically zero. But this is clear, since perturbing a
matrix in almost any direction changes the value of the determinant. Therefore det is
a submersion at the value 1, so it is a regular value.

(b) We claim this tangent space is sl(n,R) = {A ∈Mn(R) : trA = 0}. To see this, we use
that the tangent space is the space of derivations of paths through the identity. We
take a path In+tA through the identity. We need to see when we have det(In+tA) = 1
for small t. We can illustrate what happens when n = 2, with the general case working
in the same way. We have

det

(
I2 + t

(
a b
c d

))
= det

(
ta+ 1 tb
tc+ 1 td

)
= (ta+ 1)(td+ 1)− t2bc = t2(ad− bc) + t(a+ d) + 1

= t2 · detA+ t · trA+ 1 = t2 + t · trA+ 1.

Hence for this to be 1 as t→ 0, we need to have trA = 0. Since the derivative of the
path In + tA is just A, this means that A ∈ TIn SL+(n,R), as claimed.

(c) We have proved this below in Spring 2008 #5.

(d) We did not prove this directly, but from what we did prove, we know that tr tB = 0
for all t ∈ R. This means that trB = 0 since trace is linear.

(e) See (c).

Problem 7.

(a) Define complex projective space CPn.

(b) Calculate the homology of CPn.

Solution.

(a) The easiest description of CPn is as follows: define an equivalence relation on Cn+1\{0}
by

(x0, . . . , xn) ∼ (y0, . . . , yn) ⇐⇒ ∃λ ∈ C× such that λxi = yi for all i.

Then CPn := Cn+1/ ∼. We denote elements by homogenous coordinates

[x0 : · · · : xn] with xi ∈ C
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(b) It is best to use cellular homology, and so we must define a cell structure on CPn. We
do recursively. First, CP0 is just a point. Now for CPn in general, from the above
description we know that we could take a quotient of S2n+1 ⊂ Cn+1 by x ∼ y if and
only if x = λy for |λ| = 1. We can given an even more useful description, though.

Consider the closed unit ball D2n. We want to construct CPn as a quotient of this
space along its boundary. Suppose x ∈ S2n+1 has last coordinate real and nonnegative.
Then it is of the form (z,

√
1− |z|) for z ∈ Cn and |z| ≤ 1. This is the graph of

the function Cn → R given by z 7→
√

1− |z|, which is a disk D with boundary
∂D = {(z, 0) : |z| = 1}.
Now, we know that any vector x ∈ S2n+1 is equivalent to a vector of the above form
by

(x0, . . . , xn) ∼
(
x0

xn
, . . . , 1

)
assuming that xn 6= 0. If xn = 0, then we may view x ∈ S2n−1 ⊂ S2n+1. Further, these
associated vectors are unique in D. Therefore CPn is a quotient of D by its boundary
∂D ∼= S2n−1, which is identified as in CPn−1. Hence we can construct CPn by gluing
disks D0, D2, . . . , D2n successively in the way described above. This shows that the
cellular structure of CPn is supposed only in even dimensions, viz.

Ci(CPn) =

{
Z i even

0 i odd
.

Our chain complex is therefore Z → 0 → Z → 0 → Z → · · · . Hence the homology is,
for 0 ≤ i ≤ 2n,

Hi(CPn) =

{
Z i even

0 i odd
.

Problem 8.
Let p : E → B be a covering space and f : X → B a map. Define E∗ = {(x, e) ∈ X × B :
f(x) = p(e)}. Prove that q : E∗ → X by q(x, e) = x is a covering space.

Solution.
We have the following diagram:

E∗ −−−→ E

q

y p

y
X

f−−−→ B

where the top map is given by projection in the other coordinate, i.e. g(x, e) = e. We will
chase this diagram and show q is a covering space. First, take any point x ∈ X and consider
f(x) ∈ B. Then there is a neighbourhood V of f(x) so that p−1(V ) is a disjoint union of
open sets homeomorphic to V . Therefore let U = f−1(V ). Let e ∈ E such that p(e) = f(x).
Let W be a neighbourhood of e homeomorphic to V . Let e′ ∈ W . Then p(e′) ∈ V , so there
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exists x′ ∈ U so that f(x′) = p(e′). Through this method, we can construct a preimage of W
in E∗, which must be open. If we repeat this method for each ei ∈ p−1(f(x)), then we obtain
neighbourhoods Ui over U . These neighbourhoods are disjoint since the neighbourhoods Wi

are disjoint in E. Further, they are homeomorphic to U since they are the graph of the
function g : U → E by the method above. This completes the proof.

Problem 9.
(a) Explain carefully and concretely what it means for two smooth maps of S1 into R2 to

be transversal.

(b) Do the same for maps of S1 into R3.

(c) Explain what it means for transversal maps to be ‘generic’ and prove that they are
indeed generic in the cases above.

Solution.
(a) Let f, g : S1 → R2. In general, we say that two submanifolds X,Z ⊂ Y are transversal

if they satisfy
TyX + TyZ = TyY

for every y ∈ X∩Z. For two maps, we instead look at the pushforwards of the tangent
spaces. Concretely, if x, y ∈ S1 so that f(x) = g(y) = z ∈ R2, then we require

df(TxS
1) + dg(TyS

1) = TzR2.

In our case, since dimTxS
1 is constantly 1 everywhere (as a loop is an embedding),

we need df(TxS
1) to be linearly independent from dg(TyS

1) for these two maps to be
transversal. This means that the two loops do not intersect tangentially.

(b) For this case, since dim(df(TxS
1) + dg(TyS

1)) ≤ 2 and dimTzR3 = 3, we can never
have the above equality. Therefore we must have no points x, y so that f(x) = g(y),
i.e. the loops are disjoint.

(c) ‘Generic’ means that, given any two maps, they may be perturbed by an arbitrarily
small amount so that they are transversal. For (a), suppose first that f, g intersect
tangentially on a discrete set. Then we may take small neighbourhoods around each
point which are disjoint. Then in these neighbourhoods, may take one curve and move
it past the other, creating two non-tangential intersections which are transversal. If
they intersect tangentially on a non-discrete set, then these problem areas are discrete
open sets where the two loops overlap. A translation will pull these areas apart, so that
the maps are trivially transversal at those points. For (b), we do essentially the same
thing, except we can pull apart all areas of intersection by using the third dimension
in this space. If f and g intersect non-tangentially at f(x) = g(y) = z ∈ R3, then
df(TxS

1) + dg(TyS
1) is a plane in TzR3, which we identify with a neighbourhood of z.

Then we may pull the loops apart in the direction perpendicular to this plane. This
completes the proof
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Problem 10.
Let M be the 3-manifold with boundary obtained as the union of a two-holed torus in 3-space
and the bounded component of its complement. Let X be the space obtained from M by
deleting k points from the interior of M .

(a) Calculate the fundamental group of X.

(b) Calculate the homology of X.

Solution.
(a) We will see what this will deformation retract onto. If we take first M , we may ‘squish’

it to obtain two overlapping annuli. These will deformation retract onto the wedge of
two circles. Now, say we remove a point from M to obtain M ′. Then we may deform
M ′ so that we have a closed ball with a point removed glued onto M . Thus we can
deform M as before, and deform the closed ball without a point into S2. This is true
for the removal of any number of points, so we have

X ' S1 ∨ S1 ∨
k∨
S2 =⇒ π1(X) ∼= π1(S1 ∨ S1 ∨

k∨
S2) ∼= π1(S1)2 × π1(S2)k

∼= Z ∗ Z

(b) This space is connected, so H0(X) = Z. We have calculated π1(X) above, so H1(X) =
Z2, the abelianisation of Z ∗ Z. Finally, H2(X) depends only on the 2- and 3-skeleton
of X, we see that

H2(X) ∼= H2

(
k∨
S2

)
∼= H2(S2)k = Zk.

Problem 11.
Let P be a finite polyhedron.

(a) Define the Euler characteristic χ(P ).

(b) Prove that if P1, P2 ⊂ P are subpolyhedra such that P1∩P2 is a point and P1∪P2 = P ,
then χ(P ) = χ(P1) + χ(P2)− 1.

(c) Suppose that p : E → P is an n-sheeted covering space. Prove that χ(E) = n · χ(P ).

Solution.
(a) Let us assume that a finite polyhedron is one obtained by gluing a finite number of

simplices together. The Euler characteristic is the alternating sum of the number of
simplices in each dimension. In general, we can define the Euler characteristic as the
alternating sum of the Betti numbers, i.e.

n∑
i=0

(−1)i rankHi(P ).

These notions give the same result on simplicial complexes.
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(b) We see that we are counting every simplex once except for the point P1 ∩P2. Since we
are double-counting this point in the sum, we must subtract 1 from the final tally.

(c) Take an open cover of P by open sets whose preimage is an n-sheeted homeomorphic
copy. Since P is compact, we can take a finite subcover U1, . . . , Un of this cover.
Therefore these sets have a minimum diameter, say δ > 0. Then through barycentric
subdivision, we can create a finer simplicial structure on P such that every simplex
is contained in some U . Therefore the preimage of every simplex is n copies of that
simplex. This shows that χ(E) = n · χ(P ) as required.

Problem 12.
Let f : T → T = S1×S1 be the map of the torus inducing fπ : π1(T )→ π1(T ) = Z2 and let
F be a matrix representing fπ. Prove that the determinant of F equals the degree of f .

Solution.
Define a new map φ : R2/Z2 → R2/Z2 induced by the action of F on R2. Then φπ = fπ, so
we will use this more convenient map.

We want to show deg φ = detF first. We use the cohomological definition: if ω is a
volume form on T , then

deg φ =

∫
T

φ∗ω.

By multivariable calculus, φ∗ω = J(φ)ω, where J is the Jacobian of φ. Since we clearly have
deg φ = J(φ) = detF , we are done here.

We now need to show that φ ∼ f , so that their degrees are equal. Consider the map
f − φ, which is well defined on the torus since it is a topological group. Then (f − φ)π = 0,

so the map f − φ : T → T lifts to a map f̃ − φ : T → R2, since R2 is the universal cover.
But in R2, all maps are nulhomotopic. Such a nulhomotopy projects down to f−φ : T → T ,
whence f − φ ∼ 0, i.e. f ∼ φ.

11 Fall 2008

Problem 1.
Let G(k, n) be the collection of all k-dimensional linear subspaces of Rn.

(a) Define a natural topological and smooth structure on G(k, n), and show that with
respect to the structures you defined, G(k, n) is a smooth manifold.

(b) Show that G(k, n) is diffeomorphic to G(n− k, n).

Solution.
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(a) We use a theorem out of Lie group theory. Note that the Lie group O(n) acts tran-
sitively on G(k, n). We have the following proposition: if G is a Lie group, and G
acts on a set X transitively such that the stabiliser of any point p ∈ X is a closed Lie
subgroup of G, then X has a unique smooth manifold structure such that the given
action is smooth.

In our case, we need to show that the stabiliser of a k-subspace of Rn is a closed
subgroup of O(n). For simplicity, consider p = 〈e1, . . . , ek〉 ∈ G(k, n). Then the
stabiliser of p is the set of matrices(

A 0
0 B

)
, A ∈ O(k), B ∈ O(n− k).

This is evidently a closed Lie subgroup of O(n). This gives us the smooth structure
on G(k, n).

(b) The diffeomorphism is given by sending a space to its orthogonal complement. This
map is bijective, and smoothness of the map should follow easily.

Problem 2.
Let M and N be two smooth manifolds, and f : M → N a smooth map. Assume that
dfx : TxM → Tf(x)N is surjective for all x ∈M and that the inverse image f−1(y) is compact
for all y ∈ N .

(a) Show that for any y ∈ N there is an open neighbourhood of V of y such that f−1(V )
is diffeomorphic to V × f−1(y).

(b) Assuming further that N is connected, can you take V to be N in (a)?

Solution.
(a) First, note that f is an open map, so is a surjection onto some collections of connected

components of N . If y ∈ N is not in this collection, then there is a neighbourhood
V of y contained in its connected component such that f−1(V ) = ∅, so the claim
holds trivially. For the remainder of the question, this problem becomes Ehresmann’s
fibration theorem.

Let y ∈ im f . Then f−1(y) = {x1, . . . , xn} is a finite (disjoint) collection of points. As
such, we can take open neighbourhoods Ui around each xi. Then consider

⋂
f(Ui).

Since f is an open map, this is a finite intersection of open sets in N , so is a neigh-
bourhood V of y. Then we can consider the disjoint collection Vi of open sets around
each xi obtained by Ui ∩ f−1(V ). Then all the Vi are diffeomorphic to each other and
disjoint, and Vi ∼= f−1(V ). Therefore we have f−1(V ) ∼= V × f−1(y).

(b) No. If we could take V to be N , then f would be a fibration. However, we do not
know that f : M → N is even-sheeted. For example, let N = S1, and let M = R. For
manifolds of equal dimension, a fibration is a covering map. We can construct a cover
of S1 by R that is 1-sheeted on an open connected subset of S1 by 2-sheeted on its
complement, viz. Fall 2013, #1(b).
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Problem 3.
Let M be a connected smooth manifold. Show that for any two points x, y ∈ M there is a
diffeomorphism f of M such that f(x) = y.

Solution.
Fix x. Let N ⊂M be the set

N = {y ∈M : there exists a diffeomorphism f : M →M such that f(x) = y}.

The problem is equivalent to N = M . First, take any coordinate chart φ : U → Rn

containing x. Then we know that there is an isomorphism in Rn that sends φ(x) to φ(y),
namely the shift by φ(y) − φ(x). Pulling this back gives us a diffeomorphism of M which
acts trivially on every other chart not intersecting U . Therefore N is an open set. Further,
by the same argument, M \N is also open. If y ∈M \N with a coordinate chart V around
y and z ∈ V ∩N , then we could construct a diffeomorphism sending z to y. Composition of
these diffeomorphisms being another diffeomorphism, we have a contradiction. Therefore N
and M \N is a partition of M by open sets. Since M is connected, we must have N = ∅ or
N = M . Since x ∈ N , we are done.

Problem 4.
Let θ =

∑n
i=1(xidyi−yidxi) be a 1-form defined on R2n, where (x1, . . . , xn, y1, . . . , yn) are the

coordinates of R2n. Consider the 2n−1-dimensional distribution D = ker θ. Is D integrable?

Solution.
We know from Fall 2013, #5 that ker θ is integrable if and only if θ ∧ dθ = 0. As such, ths
is what we will try to show. Since we differentiate linearly, we have

dθ =
n∑
i=1

dxi ∧ dyi − dyi ∧ dxi = 2
n∑
i=1

dxi ∧ dyi.

Since the wedge product is bilinear,

1

2
(θ ∧ dθ) =

n∑
i,j=1

xidyi ∧ dxj ∧ dyj − yidxi ∧ dxj ∧ dyj

The terms with i = j are identically zero, so removing them yields

=
∑
i 6=j

xidyi ∧ dxj ∧ dyj − yidxi ∧ dxj ∧ dyj

Rearranging these terms in order to use the standard basis for 3-forms,

=
∑
i<j

(−xidxj ∧ dyi ∧ dyj − yidxi ∧ dxj ∧ dyj)

+
∑
i>j

(xidxj ∧ dyj ∧ dyi + yidxi ∧ dxi ∧ dyj)

= 0.

Therefore D is integrable.
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Problem 5.
Let D be a bounded domain in Rn with a smooth boundary S, j : S → Rn be the inclusion
map and X be a smooth vector field defined on Rn.

(a) Denote the standard volume form dx1∧· · ·∧dxn by ω. Show that j∗(iXω) = 〈X,N〉 dS,
where N is the outward unit normal vector field along S and 〈−,−〉 the Euclidean inner
product. Here iXω is the contraction of ω along X, dS is the ‘area’ form on S. Explain
carefully the definition and the geometrical meaning of the term dS.

(b) Use (a) and Stokes’ Theorem to show that∫
D

LXω =

∫
S

〈X,N〉 dS.

Solution.
This is essentially the same as Spring 2008, #3 below.

Problem 6.
Find π1(T 2 \ {k points}), where T 2 is the 2-dimensional torus.

Solution.
First, picture T 2 as the unit square with edges identified appropriately. If we puncture this
square, then we can deformation retract it to the following hollow square:

• •

• •

Gluing this together yields T 2 \ {p} ' S1 ∨ S1. If we were to remove k points, we may
assume they are located at (1/2k+ (i−1)/k, 1/2) for i = 1, . . . , k. Then we can deformation
retract this square so that we have the above picture but with edges at i/k for i = 0, . . . , k.
Thus when we deformation retract, we obtain a wedge of k + 1 circles (one for each edge).
Therefore

π1(T 2 \ {k points}) = Z ∗ · · · ∗ Z︸ ︷︷ ︸
k+1 times

.

Problem 7.
Find the homology groups Hi(∆

(k)
n ), i = 0, . . . , k. Here ∆

(k)
n is the k-skeleton of the n-simplex

∆n with k ≤ n.

Solution.
Fix n and let ∆n = X and ∆

(k)
n = Xk for ease of notation. Since only Xk is disconnected

for only k = 0, we have H0(Xk) = Z for k 6= 0 and H0(X0) = Zn+1.
Now, we examine Hk(X

k) for k > 0. If we take Zk and Bk to be cycles and boundaries
respectively, we know Bk = 0 as there are no k+ 1-simplices in Xk. However, we know that
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the boundary of every ‘expected’ k + 1-simplex is a cycle in Zk. We know that there are(
n+1
k+1

)
simplices in Xk+1, so this is the rank of Zk. Therefore the rank of Hk(X

k) is
(
n+1
k+1

)
.

Since Xk is a CW-complex, we know that Hi(X
k) depends only on X i and X i+1. There-

fore we see that Hi(X
k) = Hi(X) for i < k. This shows that Hi(X

k) = 0 for 0 < i < k. We
summarise this solution below:

Hi(∆
(k)
n ) =


Z i = 0, k > 0

0 k > i > 0

Z(n+1
k+1) i = k

.

Problem 8.
Let G be a topological group with identity element e. For any two continuous loops γ1, γ2 :
S1 → G sending 1 ∈ S1 to e ∈ G, define γ1 ∗ γ2 : S1 → G by γ1 ∗ γ2(t) = γ1(t) · γ2(t).

(a) Show that the product ∗ induces a product structure on π1(G, e) and this new product
on π1(G, e) is the same as the usual one.

(b) Is π1(G, e) commutative?

Solution.
The argument for this problem is known as the Eckmann-Hilton argument, but we do not
have to use its full strength. We need to show that γ1γ2 = γ1 ∗ γ2, where the first product is
the usual concatenation of loops. First, let us view the loops as maps γi : [0, 1] → S1 with
γi(0) = γi(1) = 1. Second, reparametrise as follows:

γ̄1(t) =

{
γ1(2t) t ∈ [0, 1/2]

e t ∈ [1/2, 1]
, γ̄2(t) =

{
e t ∈ [0, 1/2]

γ2(2t− 1) t ∈ [1/2, 1]
.

We have [γi] = [γ̄i]. In this case, it is easy to see that γ̄1γ̄2 = γ̄1 ∗ γ̄2 for all t. Therefore we
have shown

[γ1γ2] = [γ̄1γ̄2] = [γ̄1 ∗ γ̄2] = [γ1 ∗ γ2].

It is also clear that the identity loop is the same in both cases, so these multiplication is the
same.

To show commutativity, notice that in the above argument that at every t ∈ [0, 1], one
of γ̄i is the identity, i.e. that γ̄1 and γ̄2 commute. Therefore [γ1 ∗ γ2] = [γ2 ∗ γ1], so the
fundamental group must be commutative.

Problem 9.

(a) Show that any continuous map f : S2 → T 2 is nulhomotopic.

(b) Show that there exists a continuous map f : T 2 → S2 which is not nulhomotopic.

Solution.
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(a) Recall that the universal cover of the torus is R × R = R2. Therefore such an f has
a unique lift to f̃ : S2 → R2. Since R2 is contractible, any continuous map into it is
nulhomotopic. Therefore f = p ◦ f̃ is also nulhomotopic.

(b) Identify T 2 ∼= S1 × S1 and S2 = {α ∈ R3 : |α| = 1}. Let A = {(x, y, z) ∈ S2 : z = 0
and B = {(x, y, z) ∈ S2 : y = 0}. A and B are both homeomorphic to S1 and
create pseudo-coordinate axes on S2. Define f : T 2 → S2 by (θ1, θ2) maps to the
same points with respect to A and B. This map is surjective but not injective, e.g.
f(π, 0) = f(0, π). Moreover, it is a degree 2 map, so it cannot be nulhomotopic.

Problem 10.
Let A and B be two chain complexes with boundary operators ∂A and ∂b and let f : A→ B
be a chain map. Define a new chain complex C whose ith chain group is Ci = Ai⊕Bi+1 and
boundary operator defined by ∂C(a, b) = (∂A(a), ∂B(b) + (−1)deg af(a)).

(a) Show that C is indeed a chain complex and there is a short exact sequence of chain
complex

0→ B → C → A→ 0

such that Bi+1 7→ Ci and Ci 7→ Ai.

(b) Write down the long exact sequence of the homology groups associated to the above
short exact sequence. What is the connecting homomorphism in the long exact se-
quence?

(c) Let (f∗)i : Hi(A)→ Hi(B) be the induced map of f on the ith homology group. Show
that it is an isomorphism for all i if and only if Hi(C) = 0 for all i.

Solution.
(a) We will show that ∂2

C = 0. We have

∂2
C(a, b) = ∂C(∂A(a), ∂B(b) + (−1)deg af(a))

= (∂2
A(a), ∂B(∂B(b) + (−1)deg af(a)) + (−1)deg a−1f(∂A(a)))

The first coordinate is zero, as is the ∂2
B(b) in the second coordinate. We are left with

∂B
[
(−1)deg af(a)

]
+ (−1)deg a−1f(∂A(a)).

Because f is a chain map, it satisfies the following commutative diagram:

Ai
∂A−−−→ Ai−1

f

y f

y
Bi

∂B−−−→ Bi−1

This shows that ∂B(f(a)) = f(∂A(a)). Since (−1)deg a and (−1)deg a−1 have opposite
signs, the above expression is zero. This shows that C is a chain complex.

Now, we need to check that the above sequence is short exact. Call the maps j : B → C
and p : C → A. It is clear that im j ⊂ ker p. Further, if c ∈ ker p, then it must be
supported only in the Bi+1 terms, for which we can always find a preimage under j
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(b) The induced sequence is

· · · → Hi+1(B)→ Hi(C)→ Hi(A)
δi→ Hi(B)→ · · ·

We need to construct the appropriate map from the snake lemma δi : ker ∂A → coker ∂B,
where both of these boundary maps are in degree i.

ker ∂A

0 Bi+1 Ci Ai 0

0 Bi Ci−1 Ai−1 0

coker ∂B

ji

∂B

pi

∂C ∂A

ji−1 pi−1

Let a ∈ ker ∂A. Then since pi is surjective, we may choose a preimage (α, b) ∈ Ci. By
construction, we know that α = a, so we will write it as such now. Then ∂A(pi(a, b)) =
pi−1(∂C(a, b)) = 0 Therefore ∂C(a, b) ∈ ker pi−1 = im ji−1, so there exists β ∈ Bi so that
ji−1(b) = ∂C(a, b). In our case, we know that ∂C(a, b) = (∂A(a), ∂B(b) + (−1)if(a)).
By construction, we know that β = ∂B(b) + (−1)if(a). Now, we may project b into
the appropriate member of coker ∂B to complete the map, and which gives (−1)if(a).
Therefore since we have defined this map on the level of ker ∂A, it descends to a map
on homology. Thus δi(a) = (−1)if∗(a).

(c) If Hi(C) = 0 for all i, then our long exact sequence becomes

0→ Hi(A)
δi→ Hi(B)→ 0

at each degree. Therefore δi is an isomorphism. If i is even, then we have nothing else
to show; if i is odd, then we have an inverse (f∗)

−1
i = −δ−1

i . The converse is clear given
this reasoning.

12 Spring 2008

Problem 1.
Let M and N be smooth manifolds, and let f : M → N be a smooth map.

(a) Define the map f ∗ of p-forms on N to p-forms on M .

(b) Prove that if ω is a p-form on N , then f ∗(dNω) = dM(f ∗ω).

Solution.
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(a) It suffices to give a definition in local coordinates, which we do. In a coordinate chart,
we can use the coordinates xi to construct a basis for the space of p-forms, namely
dxi1 ∧ · · · ∧ dxip with i1 < · · · < ip. A general form therefore looks like

ω =
∑

gIdxi1 ∧ · · · ∧ dxip ,

where gI is a smooth function and I is the multiindex corresponding to (i1, . . . , ip).
Then we define

f ∗ω =
∑

(gI ◦ f)dfi1 ∧ · · · ∧ dfip ,

where df =
∑ ∂f

∂xi
dxi.

(b) It suffices to prove this on a form of the type

ω = gdxi1 ∧ · · · ∧ dxip

by linearity. Then we see that

f ∗(dω) = f ∗
(
dg ∧ dxi1 ∧ · · · ∧ dxip

)
= f ∗

(∑ ∂g

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxip

)
=
∑

f ∗
(
∂g

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxip

)
=
∑(

∂g

∂xi
◦ f
)
dfi ∧ dfi1 ∧ · · · ∧ dfip

= d(g ◦ f)dfi1 ∧ · · · ∧ dfip = d(f ∗(ω)).

Problem 2.
Let M be a smooth manifold and X a smooth vector field on M .

(a) Suppose Xp 6= 0 for some p ∈ M . Show, using the flow of X, that there is a neigh-
bourhood U of p and a coordinate system (x1, . . . , xn) on U so that X = ∂

∂x1
on U .

(b) Use the above to prove that if Y is another smooth vector field on M with [X, Y ] = 0
everywhere, then φs(ψt(p)) = ψt(φs(p)) for all s, t sufficiently small, where φ and ψ are
the flows of X and Y . (Hint: Write Y near p in terms of the coordinate system of part
(a).)

Solution.

(a) This can be found in Spivak’s Differential Geometry, Volume 1, p.148. We may assume
that we are working in Rn and that p = 0. Let (t1, . . . , tn) be the standard coordinates.
We can further assume that X(0) = ∂

∂t1

∣∣
0
. The idea of the proof hinges on the integral

curves running through points near 0.
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Let φt be the flow of X. Consider χ : U → Rn for a neighbourhood U of the origin
given by

χ(a1, . . . , an) = φa1(0, a2, . . . , an).

Then for a = (a1, . . . , an),

χ∗

(
∂

∂t1

∣∣∣
a

)
(f) =

∂

∂t1

∣∣∣
a
(f ◦ χ)

= lim
h→0

1

h
[χ(a1 + h, a2, . . . , an)− f(χ(a))]

= lim
h→0

1

h
[f(φa1+h(0, a2, . . . , an))− f(χ(a))]

= lim
h→0

1

h
[f(φh(χ(a)))− f(χ(a))]

= (LXf)(χ(a)).

Further, for i > 1, we have

χ∗

(
∂

∂ti

∣∣∣
0

)
(f) =

∂

∂ti

∣∣∣
0
(f ◦ χ)

= lim
h→0

1

h
[f(χ(0, . . . , h, . . . , 0)− f(0)]

= lim
h→0

1

h
[f(0, . . . , h, . . . , 0)− f(0)]

=
∂f

∂ti

∣∣∣
0
.

Since X(0) = ∂
∂ti
|0, χ∗(0) = I is nonsingular. Therefore χ−1 is a coordinate system

that we require.

(b) This is found on p.157 of the same reference. We write

0 = [X, Y ] = LXY = lim
h→0

1

h
[Yq − (φh∗Y )q] for all q ∈M.

For a point p ∈M , let c be a curve in Mp given by c(t) = (φt∗Y )p. We see that

c′(t) = lim
h→0

1

h
[c(t+ h)− c(t)]

= lim
h→0

1

h

[
(φ(t+h)∗Y )p − (φt∗Y )p

]
= lim

h→0

1

h

[
φt∗(φh∗Y )φ−t∗(p) − φt∗Yφ−t∗(p)

]
= φt∗

[
lim
h→0

1

h

[
(φh∗Y )φ−t∗(p) − Yφ−t∗(p)

]]
= φt∗(0) = 0,

where the last line uses the point q = φ−t(p). Therefore c(t) = c(0) everywhere so
φt∗Y = Y . We know that the flow of φt∗Y is φt ◦ ψs ◦ φ−t, hence

φt ◦ ψs ◦ φ−t = ψs =⇒ ψt ◦ ψs = ψs ◦ φt.
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Problem 3.
Gauss’ Divergence Theorem asserts that if U is a bounded domain in R3 with smooth bound-
ary and if X is a smooth vector field defined in a neighbourhood of U , then∫

U

divXd(vol) =

∫
∂U

〈X,N〉d(area),

where N is the unit outward normal vector for ∂U . Show how the divergence theorem follows
from Stokes’ theorem.

Solution.
Stokes’ theorem tells us that, for a domain U and (n− 1)-form ω,∫

U

dω =

∫
∂U

ω.

Therefore we would like show that d (〈X,N〉d(area)) = divXd(vol). If we are in local
coordinates (which we may assume), then we may let d(vol) = dx ∧ dy ∧ dz and

X = f
∂

∂x
+ g

∂

∂y
+ h

∂

∂z
=⇒ divX =

∂f

∂x
+
∂g

∂y
+
∂h

∂z

for functions f, g, h : R3 → R. Direct calculation shows that

d(f dy ∧ dz − g dx ∧ dz + h dx ∧ dy) = divXdx ∧ dy ∧ dz.

Therefore we need to prove that the above form, which we call η, is equal to 〈X,N〉d(area).
Now, take local coordinates for ∂U , say some α, β. If φ is the chart map, then we have

N = φ∗
∂

∂α
× φ∗

∂

∂β
,

where × is the cross product in R3. Further,

d(area) = φ∗(dα ∧ dβ) = dφα ∧ dφβ.

Then using the change of variables formula, we transform η by φ into

f ◦ φ d(φ∗y) ∧ d(φ∗z)− g ◦ φ d(φ∗x) ∧ d(φ∗z) + h ◦ φ d(φ∗x) ∧ d(φ∗y).

Since we can write φ = (φ1, φ2, φ3), we have

d(φ∗x) = dφ1 =
∂φ1

∂α
dα +

∂φ1

∂β
dβ

and similar. But these coefficients come from φ∗
∂
∂α

and φ∗
∂
∂β

. Direct computation shows the

mess we get above is precisely equal to 〈X,N〉 in these coordinates.

Problem 4.
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(a) Let θ be a 1-form on S2 with dθ = 0. Construction a function f on S2 with df = θ.

(b) Let θ be a 1-form on S1 × (0, 1) with dθ = 0. Show that there is a function f :
S1 × (0, 1)→ R with df = θ if and only if∫

S1×{1/2}
θ = 0.

(c) Use the above to show that if ω is a 2-form on S2 with
∫
S2 ω = 0 then there is a 1-form

θ on S2 with dθ = ω. (Hint: You may use the Poincaré Lemma so that ω = dθ1 on
S2 \ {NP} and ω = dθ2 on S2 \ {SP}. Use Stokes’ theorem to show θ1− θ2 satisfies the
integral condition of (b).)

Solution.
This problem mirrors Spring 2009, #3, and in particular the construction in (a) mirrors (b)
above.

Problem 5.
Let SO(3) = {A ∈ SL(3) : A−1 = A⊥}. Also, let

exp(A) :=
∞∑
n=0

An

n!
= 1 + A+

A2

2!
+ · · · .

(a) Prove that exp(A) always converges, so that exp : M3(R)→M3(R). You may assume
henceforth that exp is smooth and can be differentiated termwise.

(b) Show that exp is injective on some neighbourhood of the zero matrix in M3(R). (Hint:
inverse function theorem.)

(c) Show that exp(B) ∈ SO(3) if B⊥ = −B.

(d) Show that exp restricted to the space of antisymmetric matrices is a surjective map
from some neighbourhood of the zero matrix to a neighbourhood of I3 ∈ SO(3). (Hint:
Note that every element of SO(3) is a rotation around some axis.)

(e) Discuss how to combine the above parts to give coordinate charts on SO(3) and thus
make it a differentiable manifold.

Solution.
(a) Let ‖ · ‖ be the operator norm for matrices, i.e. ‖A‖ = sup{|Ax| : |x| = 1}. This norm

is submultiplicative, so we have ‖An‖ ≤ ‖A‖n. Therefore we have

0 ≤
∥∥∥∥Ann!

∥∥∥∥ ≤ ‖A‖nn!
=⇒ 0 ≤ ‖ exp(A)‖ ≤ exp(‖A‖).

where we also use subadditivity. Since ‖A‖ is just a finite number, exp(‖A‖) < ∞,
so our sequence converges to a matrix with finite operator norm. This is sufficient to
prove that the sequence converges in M3(R) as this space is complete.
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(b) As expected, we can see that d exp = exp, i.e. this function is its own derivative. At
0 ∈ M3(R), we have d exp |0 = exp(0) = I3, so by the inverse function theorem exp is
invertible in some neighbourhood of the zero matrix. In particular, it must be injective.

(c) Suppose that B⊥ = −B. We need to prove that det(expB) = 1 and B−1 = B⊥. First,
B being antisymmetric implies that trB = 0. We see this because each diagonal entry
must be its own negative. We claim that

det(exp(A)) = exp(tr(A)).

This obviously holds true for diagonal matrices, and we can see it holds true for (com-
plex) diagonalisable matrices as well: suppose A is diagonalisable and A = PDP−1

for a diagonal D. Note that (PDP−1)n = PDnP−1 for all n by internal cancellation.
Then

det(exp(A)) = det(exp(PDP−1)) = det(P exp(D)P−1) = det(exp(D)) = exp(tr(D)).

Since the trace is not affected by conjugation, noting tr(D) = tr(A) proves this state-
ment. Now we claim that the set of diagonalisable matrices is dense in M3(R). Indeed,
the only matrices that are not diagonalisable are {B : det(B) = 0}. Any matrix
with zero determinant may be perturbed by an arbitrarily small amount so that it
has nonzero determinant since the determinant function is continuous. Therefore since
det, exp, tr are all continuous, what holds on a dense subset actually holds on the entire
space.

This proves that det(exp(B)) = exp(tr(B)) = exp(0) = 1, as required. To show
that these matrices are orthogonal, note that (as expected again), exp(A + A′) =
exp(A) exp(A′). Additionally, exp(A)⊥ = exp(A⊥) since ⊥ distributes through sums.
Therefore

exp(B) exp(B)⊥ = exp(B) exp(B⊥) = exp(B +B⊥) = exp(B −B) = I3.

This completes the proof.

(d) Since the tangent space to I3 ∈ SO(3) is isomorphic to SO(3) itself, we need to check
that for every A ∈ SO(3), there exists an antisymmetric B ∈M3(R) so that exp(A) =
B. We take the hint that every A ∈ SO(3) is a rotation of 3-space around an axis,
then up to a change of orthonormal basis we may assume that

A =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .

Direct calculation shows that

B =

 0 −θ 0
θ 0 0
0 0 0


is a logarithm of A. B is antisymmetric, and so is the conjugate of B by orthonormal
matrices, so this completes the proof.
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(e) We know that antisymmetric matrices have a natural smooth structure inherited from
M3(R). Further, exp is a smooth submersion of antisymmetric matrices onto SO(3).
Therefore we can define charts on SO(3) by taking the images of charts on antisym-
metric matrices.

Problem 6.
Let M and N be two compact, oriented manifolds of the same dimension. Let ω be a nowhere
vanishing n-form on N with

∫
N
ω = 1. Let F : M → N be a smooth map.

(a) Set degω F =
∫
M
F ∗ω. Show that degω F is independent of the choice of ω. (You may

assume de Rham’s theorem).

(b) Show that there is a smooth map from S2 × S2 → S4 of degree 1.

(c) Show that no map from S4 → S2 × S2 has degree 1.

Solution.
(a) Let ω1, ω2 be two forms satisfying the above. Then we claim that ω1 − ω2 is exact.

Indeed, de Rham’s theorem tells us that the integration map I : H i
dR(M)→ H i(M ;R)

given by

I(ω) = c 7→
∫
c

ω ∈ Hom(Hi(M ;R),R).

Therefore since we are looking at top-dimensional forms on N on compact, oriented
manifolds, we know that the element ω1 − ω2 maps to the zero homomorphism, since∫
N
ω1 =

∫
N
ω2. Therefore ω1−ω2 must be represented by the zero element of H i

dR(M),
i.e. it is an exact form. Therefore we have ω1−ω2 = dη for some (n− 1)-form η. Then

degω1
F − degω2

F =

∫
M

F ∗(ω1 − ω2) =

∫
M

F ∗(dη) =

∫
M

dF ∗(η).

By Stokes’ theorem, we have∫
M

dF ∗(η) =

∫
∂M

F ∗(η) = 0

since ∂M = ∅ by assumption.

(b) See Spring 2010, #10 for a relatively similar treatment of this problem. Use the fact
that S2 × S2 has a 4-cell in its decomposition.

(c) Ibid.

Problem 7.
Describe carefully the basic algebraic construction of algebraic topology, namely, how to
go from a short exact sequence of chain complexes to a long exact sequence in homology.
Give explicitly, in particular, the construction of the ‘connecting homomorphism’ and prove
exactness at its image. You need not prove exactness of the long exact sequence elsewhere.
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Solution.
See Spring 2011 #6(b) and Spring 2012 #5(b) for the two bits of this question.

Problem 8.
(a) Prove that Sn is simply connected if n > 1.

(b) Prove that π1(RPn) = Z/2Z, n > 1.

(c) Prove that RPn is orientable if n is odd (n > 1).

Solution.
(a) We claim that any map f : S1 → Sn for n > 1 cannot be surjective. This follows

from Sard’s theorem. Since dimTxS
1 < dimTf(x)S

n, every point in the image of f is
a critical value. Therefore the image of f has measure zero, so there must be a point
y ∈ Sn that is not in the image of f . As such, f factors through to a map f : S1 → Rn

via the diffeomorphism Sn \ {y} ∼= Rn. Since Rn is contractible, f is nulhomotopic.
Therefore every loop in S1 is nulhomotopic, so Sn is simply connected.

(b) We know that only the 1- and 2-skeleton of RPn determines π1. Further, since we have
embeddings RPn−1 ⊂ RPn, we know that π1(RPn) ∼= π1(RP2). Since RP2 is formed (as
a CW-complex) by a copy of S1 with a 2-cell attached to it by a double cover, we have

0→ Z 2·→ Z→ π1(RP2)→ 0

is exact. Therefore π1(RP2) ∼= Z/2Z, as needed.

(c) We have shown this in Spring 2012, #6 and elsewhere.

Problem 9.
Find by any method the homology groups of RPn with integer coefficients.

Solution.
See Spring 2012, #6.

Problem 10.
(a) Define complex projective space CPn.

(b) Show that CPn is compact.

(c) Show that CP1 ∼= S2. (Homeomorphic is enough.)

(d) Show that CPn is simply connected.

(e) Find the homology of CPn.

Solution.
(a), (b), and (e) have been done in Spring 2012, #7. To show (c), we note that CP1 is formed
by gluing the boundary of a 2-cell to a 0-cell, which is clearly homeomorphic to S2. To show
(d), we know by its cell decomposition that CPn has no 1-skeleton, so it must have a trivial
fundamental group.
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