Problem 1.5.4.
Let X and Z be transversal submanifolds of Y. Prove that if $y \in X \cap Z$, then
$$T_y(X \cap Z) = T_y(X) \cap T_y(Z).$$

Solution.
Since $X \cap Z$ is itself a manifold and is contained in both X and Z we have $T_y(X \cap Z) \subset T_y(X)$ and $T_y(X \cap Z) \subset T_y(Z)$, hence we have the inclusion $T_y(X \cap Z) \subset T_y(X) \cap T_y(Z)$.

We claim that these spaces have the same dimension. Since $X \subseteq Z$, $\text{codim}(X \cap Z) = \text{codim}(X) + \text{codim}(Z)$. If $\dim Y = n$, then we may write $\dim(X \cap Z) = \dim X + \dim Z - n$. Therefore
$$\dim T_y(X \cap Z) = \dim T_y(X) + \dim T_y(Z) - n.$$

From linear algebra, we know that
$$\dim(T_y(X) \cap T_y(Z)) = \dim T_y(X) + \dim T_y(Z) - \dim(T_y(X) + T_y(Z)).$$

Again by transversality, we must have $T_y(X) + T_y(Z) = T_y(Y)$, so that $\dim(T_y(X) + T_y(Z)) = n$. Combining these, we have
$$\dim(T_y(X) \cap T_y(Z)) = \dim T_y(X \cap Z).$$

Since these spaces have the same dimension and one includes the other, they must be equal. This completes the proof.

Problem 1.5.5.
Let $f : X \to Y$ be a map transversal to a submanifold Z in Y. Then $W = f^{-1}(Z)$ is a submanifold of X. Prove that $T_x(W)$ is the preimage of $T_{f(x)}(Z)$ under the linear map $Df_x : T_x(X) \to T_{f(x)}(Y)$.

Solution.
Consider $f \circ i : W \to Z$, where $i : W \to X$ is the inclusion map. Then $f \circ i$ is a diffeomorphism, so $D(f \circ i)_x : T_x(W) \to T_{f(x)}(Z)$ is an isomorphism of tangent spaces. Note that $D(f \circ i)_x = Df_{i(x)} \cdot Di_x = Df_x \cdot Di_x$. Since $Di_x : T_x(W) \to T_x(X)$ is also the inclusion map, we see that $T_x(W)$ is the preimage of $T_{f(x)}(Z)$ as required.
Problem 1.5.9.
Let V be a vector space, and let Δ be the diagonal of $V \times V$. For a linear map $A : V \to V$, consider the graph $W = \{(v, Av) : v \in V\}$. Show that $W \nparallel \Delta$ if and only if $+1$ is not an eigenvalue of A.

Solution.
Let $\dim V = n$. If $W \nparallel \Delta$, then $T_{(v,w)}(W) + T_{(v,w)}(\Delta) = T_{(v,w)}(V \times V)$ at every $(v, w) \in V \times V$.
Since we are working over vector spaces, this is equivalent to $W + \Delta = V \times V$. We see that $W \cap \Delta = \{v \in V : Av = v\}$, i.e. the eigenspace of $+1$. Since $W + \Delta = V \times V$, we have
\[
\dim V \times V = \dim W + \dim \Delta - \dim (W \cap \Delta).
\]
Since $\dim W = \dim \Delta = n$ and $\dim V \times V = 2n$, we must have $\dim (W \cap \Delta) = 0$, i.e. A does not have an eigenspace of $+1$, so $+1$ is not an eigenvalue of A.

Conversely, suppose that A does not have an eigenspace for $+1$. Then $\dim W + \dim \Delta = 2n$ by the above equation, hence $W + \Delta = V$. Again, since we are working over vector spaces, this implies $W \nparallel \Delta$.

Problem 1.5.10.
Let $f : X \to X$ be a map with fixed point x. If $+1$ is not an eigenvalue of $Df_x : T_x(X) \to T_x(X)$, then x is called a Lefschetz fixed point of f. f is called a Lefschetz map if all its fixed points are Lefschetz. Prove that if X is compact and f is Lefschetz, then f has only finitely many fixed points.

Solution.
Using the results of the previous problem, we know that x is a Lefschetz fixed point if and only if graph f and Δ (the diagonal) are transversal in $X \times X$. Again, as we saw above, this implies that $\dim(\text{graph } f \cap \Delta) = 0$. The set we are interested in is precisely graph $f \cap \Delta$, since this implies that $(x, f(x)) = (x, x)$ i.e. $f(x) = x$. By earlier results, we have shown that a dimension zero compact manifold is exactly a finite number of isolated points, hence f may only have finitely many fixed points.

Problem 1.6.1.
Suppose that $f_0, f_1 : X \to Y$ are homotopic. Show that there exists a homotopy $\tilde{F} : X \times I \to Y$ such that $\tilde{F}(x, t) = f_0(x)$ for all $t \in [0, \frac{1}{4}]$, and $\tilde{F}(x, t) = f_1(x)$ for all $t \in [\frac{3}{4}, 1]$.

Solution.
We are guaranteed a smooth homotopy $F : X \times I \to Y$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$. Taking the hint, we will construct a smooth function $\rho : \mathbb{R} \to \mathbb{R}$ manipulating t. We recall that we have created a bump function ρ (1.1.18) such that, for any $a < b$,
\[
\rho(x) = \begin{cases}
0 & x \leq a \\
1 & x \geq b
\end{cases}
\]
with smooth interpolation in between. Let $a = \frac{1}{4}$ and $b = \frac{3}{4}$. Since the composition of smooth functions are still smooth we define $\tilde{F} = F(x, \rho(t))$, which is smooth. It satisfies exactly what we want, so we are done.
Problem 1.6.2.
Prove that homotopy is an equivalence relation (i.e. show transitivity).

Solution.
Suppose that \(f \sim g \) and \(g \sim h \) on \(X \to Y \). Let \(H_0 : X \times I \to Y \) and \(H_1 : X \times I \to Y \) be these homotopies, respectively. We use the preceding problem here. Since the choice of \(\frac{1}{4} \) and \(\frac{3}{4} \) was arbitrary in 1.6.1, we know there exists \(\tilde{H}_0 \) such that \(\tilde{H}_0(x, t) = f(x) \) for all \(t \in [0, \frac{1}{2}] \) and \(\tilde{H}_0(x, t) = g(x) \) for all \(t \in [\frac{3}{4}, 1] \). Further, there exists \(\tilde{H}_1 \) such that \(\tilde{H}_1(x, t) = g(x) \) for all \(t \in [0, \frac{3}{4}] \) and \(\tilde{H}_1(x, t) = h(x) \) for all \(t \in [\frac{1}{2}, 1] \).

We therefore can combine these into one homotopy. Define \(H_2 : X \times I \to Y \) by

\[
H_2(x, t) = \begin{cases}
\tilde{H}_0(x, t) & t \in [0, \frac{1}{2}] \\
\tilde{H}_1(x, t) & t \in [\frac{1}{2}, 1].
\end{cases}
\]

This is still a homotopy because \(\tilde{H}_0 \) and \(\tilde{H}_1 \) agree near \(t = 1/2 \), and the entire function is smooth and takes the appropriate values at \(t = 0 \) and \(t = 1 \). This completes the proof.

Problem 1.6.6.
Check that all contractible spaces are simply connected, but convince yourself that the converse is false.

Solution.
By 1.6.4, if \(X \) is contractible, then all maps from an arbitrary manifold \(Y \to X \) are homotopic. Therefore every map \(S^1 \to X \) is homotopic to the constant map from \(S^1 \to X \), so \(X \) is simply connected.

We showed in 1.7.6 (on the last homework) that \(S^k \) is simply connected for \(k > 1 \). However, they are not contractible.

Problem 1.6.7.
Show that the antipodal map \(x \mapsto -x \) of \(S^k \to S^k \) is homotopic to the identity if \(k \) is odd.

Solution.
We will construct this antipodal map explicitly. Let \(k = 2n - 1 \), where \(n \geq 1 \). Consider \(S^k \subset \mathbb{C}^n \cong \mathbb{R}^{2n} \) as the set of points \(\{ z = (z_1, \ldots, z_n) : |z| = 1 \} \), where \(|z| = \sqrt{|z_1|^2 + \cdots + |z_n|^2} \), and \(|z_i| \) is the usual complex norm. Consider the map \(F : S^k \times I \to S^k \) given by

\[
F((z_1, \ldots, z_n), t) = (e^{i\pi t} z_1, \ldots, e^{i\pi t} z_n).
\]

This satisfies \(F(z, 0) = z \) and \(F(z, 1) = -z \). Further, it is smooth since \(e^{i\pi t} \) is smooth and at any point \(t \in (0, 1) \),

\[
|F(z, t)| = |e^{\pi it}| \cdot |z| = 1,
\]

so \(F \) stays on \(S^k \). Thus it is a homology between the identity and the antipodal map, so we are done.
Problem 2.1.8.
Show that there are precisely two unit vectors in $T_x(X)$ that are perpendicular to $T_x(\partial X)$ and that one lies inside $H_x(X)$, the other outside. Denote the outward unit normal by $n(x)$. Note that if X sits in \mathbb{R}^k, $n(x)$ may be considered to be a map of ∂X into \mathbb{R}^k. Prove that n is smooth.

Solution.
If $x \in \partial X$, then there is a neighbourhood of x which is diffeomorphic to H^k. The tangent space of $T_x(\partial X)$ is isomorphic to the hyperplane $\mathbb{R}^{k-1} \subset H^k$. At any point, there are exactly two unit vectors orthogonal to the plane, since its codimension is 1. One of these vectors has $x_k < 0$, which corresponds to the outward vector, and the other has $x_k > 0$ which is the inward vector (taking G&P’s definition of H^k).

To see this is smooth, let $\gamma : I \to H_x(X)$ be a smooth arc lying inside a sufficiently small neighbourhood U of x. Then let $\varphi(t) = D\gamma_t/|D\gamma_t|$. By the chain rule, $\varphi(t)$ is smooth and $-D\varphi(t)(0)$ is a preimage of $n(x)$. Since the inclusion of ∂X into \mathbb{R}^k is also smooth, $n(x) : \partial X \to U \to \mathbb{R}^k$ will also be a smooth map.

Problem 2.1.9.
(a) Show that ∂X is a closed subset of X.
(b) Find some examples in which ∂X is compact but X is not.

Solution.
(a) We use the result of 2.1.11. Given that ∂x may be given by $f^{-1}(0)$ by a smooth function f, in particular f is continuous. Then $\partial X = f^{-1}(0)$ is closed since $\{0\} \subset \mathbb{R}$ is closed.

We may also see this by noting that the interior of X is open (since any point is covered by a chart). Since $\partial X = X \setminus \text{int} X = \text{int} X^c$, ∂X is closed in X.

(b) Let $X = H^1$. Then $\partial X = \{0\}$, which is compact, but X itself is not.

Problem 2.1.10.
Let $x \in \partial X$ be a boundary point. Show that there exists a smooth nonnegative function f on some open neighbourhood U of x, such that $f(z) = 0$ if and only if $z \in \partial U$, and if $z \in \partial U$, then $Df_x(n(z)) < 0$ (where $n(z)$ is the unit outward normal vector).

Solution.
Let $\pi : H^k \to \mathbb{R}$ be given by $\pi(x_1, \ldots, x_k) = x_k$. We adopt G&P’s convention and define $H^k = \{x \in \mathbb{R}^k : x_k \geq 0\}$. Then $\pi \geq 0$ everywhere. Further, $\pi(z) = 0$ only when $z \in \partial H^k$.

Let $\varphi : U \to V \subset H^k$ be a chart around $z \in X$. Then let $f : U \to \mathbb{R}$ by $f = \pi \circ \varphi$. Then $f \geq 0$ and $f(z) = 0$ if and only if $\varphi(z) \in \partial H^k$ if and only if $z \in \partial X$. Since the derivative is linear, we know $Df_z(n(x)) < 0$ if and only if $Df_z(-n(z)) > 0$. Now, $Df_z = D(\pi \circ \varphi)_z = D\pi_{\varphi(z)} \cdot D\varphi_z$.

4
We claim that \(D\varphi_z(-n(z)) \) points inward into \(H^k \). To see this, we have for any curve satisfying \(\gamma(0) = z \) and \(\gamma'(0) = -n(z) \),

\[
D\varphi_z(-n(z)) = \lim_{t \to 0} \frac{\varphi(\gamma(t)) - \varphi(\gamma(0))}{t} = \lim_{t \to 0} \frac{\varphi(\gamma(t)) - \varphi(z)}{t}.
\]

Since \(\varphi(\gamma(t)) \in H^k \setminus \partial H^k \) for all \(t \) and \(\varphi(z) \in \partial H^k \). Since \(\pi \) is linear, \(D\pi\varphi(z) = \pi \), so \(\pi(D\varphi_z(-n(z))) > 0 \) since \(D\varphi_z(-n(z)) \in H^k \). This completes the proof. \(\square \)

Problem 2.1.11.
Show that if \(X \) is any manifold with boundary, then there exist a smooth nonnegative function \(f \) on \(X \), with a regular value at 0, such that \(\partial X = f^{-1}(0) \).

Solution.
Let \(U_i \) be a locally finite cover of \(X \), which is guaranteed to exist. Then by 2.1.9, we have functions \(f_i : U_1 \to \mathbb{R} \) such that \(f_i \geq 0 \) and \(f_i(x) \) if and only if \(x \in \partial U_i \). By locally finite, we may define \(f : X \to \mathbb{R} \) by \(f = \sum f_i \). Then by construction, \(f = 0 \) if and only if \(x \in \bigcup \partial U_i = \partial X \), and \(f \geq 0 \) in general. This completes the proof. \(\square \)