Math 210B: Algebra, Homework 9

Ian Coley

March 4, 2014

Problem 1.
Let I be the ideal in $\mathbb{Q}[X, Y]$ generated by $X^2 + Y$ and $Y^2 - 2$. Is the factor ring $\mathbb{Q}[X, Y]/I$ a field?

Solution.
We have

$$\mathbb{Q}[X, Y]/I = (\mathbb{Q}[Y]/(Y^2 - 2))[X]/(X^2 + Y).$$

We examine this term piecewise. To begin, we have $\mathbb{Q}[Y]/(Y^2 - 2) \cong \mathbb{Q}(\sqrt{2})$, where we identify $Y = -\sqrt{2}$. Then we have the new quotient $\mathbb{Q}(\sqrt{2})[X]/(X^2 - \sqrt{2})$. Then we again have a quadratic extension, since this polynomial is irreducible over $\mathbb{Q}(\sqrt{2})$, and we see this quotient is isomorphic to $\mathbb{Q}(\sqrt{2})$ under the identification $X = \sqrt{2}$. Therefore the quotient $\mathbb{Q}[X, Y]/I$ is indeed a field. \qed

Problem 2.
Let p be a prime integer, $\zeta \in \mathbb{C}$ a primitive pth root of unity. Find the degree of the extension $\mathbb{Q}(\zeta + \zeta^{-1})/\mathbb{Q}$.

Solution.
We have the following tower of fields:

$$\mathbb{Q}(\zeta) \supseteq \mathbb{Q}(\zeta + \zeta^{-1}) \supseteq \mathbb{Q}.$$

We will use Galois correspondence to compute the degree of $\mathbb{Q}(\zeta + \zeta^{-1})$ over \mathbb{Q}. The Galois group of $\mathbb{Q}(\zeta)/\mathbb{Q}$ is by previous calculation $(\mathbb{Z}/p\mathbb{Z})^\times \cong \mathbb{Z}/(p-1)\mathbb{Z}$, with elements $\sigma_r(\zeta) = \zeta^r$, for $1 \leq r \leq p - 1$. To see which elements of $\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$ fix $\zeta + \zeta^{-1}$, we note

$$\sigma_r(\zeta + \zeta^{-1}) = \zeta^r + (\zeta^r)^{p-1} = \zeta^r + \zeta^{-r}.$$

Therefore the only choices of r which are valid are $r = 1$, which is clear, and $r = p - 1$, because

$$\zeta^{p-1} + \zeta^{-(p-1)} = \zeta^{p-1} + \zeta^{-(p-1)} \cdot \zeta = \zeta + \zeta^{-1}.$$

Since the degree of this extension is equal to the index of the subgroup fixing the extension, have $[\mathbb{Q}(\zeta + \zeta^{-1}) : \mathbb{Q}] = |\text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) : \langle \sigma_{p-1} \rangle| = (p - 1)/2$. \qed
Problem 3.
Find a field \(F \) such that for every \(n \geq 1 \) there exists a subfield \(F_n \subset F \) with \([F : F_n] = n \).

Solution.
Let \(F = \mathbb{C}(X) \). Consider the subfield \(\mathbb{C}(X^n) \). Then we see that \(X \) is a root of the polynomial \(Y^n - X^n \), which is irreducible over \(\mathbb{C}(X^n) \) since \(X^n \) is a prime element of \(\mathbb{C}[X^n] \) and we may apply Eisenstein’s criterion. Therefore \([\mathbb{C}(X) : \mathbb{C}(X^n)] = n \). Since this is viable any \(n \in \mathbb{N} \), we are done with the choice \(F_n = \mathbb{C}(X^n) \).

Problem 4.
Let \(K/F \) be a quadratic extension. Prove that if \(\text{char } F \neq 2 \), then \(K = F(\alpha) \) for some \(\alpha \in K \) so that \(\alpha^2 \in F \).

Solution.
This extension must be separable. If it were inseparable and \(\text{char } F = p > 2 \), then we would have \(p | 2 \), which is impossible. Let \(a \in K \setminus F \). Then \([F(a) : F] > 1 \), so we have \(F(a) = K \). Therefore let the minimal polynomial of \(a \) be \(X^2 + BX + C \), with \(B, C \in F \). Then since \(\text{char } F \neq 2 \) so that we may divide by 2, we may apply the quadratic formula to this polynomial:

\[
a = \frac{-B \pm \sqrt{B^2 - 4C}}{2}.
\]

Without loss of generality, assume that we can choose + for the \(\pm \). Then we have

\[
F(a) = F\left(\frac{-B \pm \sqrt{B^2 - 4C}}{2}\right) = F(\sqrt{B^2 - 4C}).
\]

Therefore \(\sqrt{B^2 - 4C} \) is an appropriate choice for \(\alpha \).

Problem 5.
Let \(K/F \) be a separable quadratic extension. Prove that if \(\text{char } F = 2 \), then \(K = F(\alpha) \) for some \(\alpha \in K \) such that \(\alpha^2 + \alpha \in F \).

Solution.
Again as above, choose \(a \in K \setminus F \), so that \(F(a) = K \). Then let the minimal polynomial of \(a \) be \(X^2 + BX + C \). We must have \(B \neq 0 \), else the polynomial \(X^2 + C = (X + \sqrt{C})^2 \) is not separable, which contradicts our assumptions. Then we see that

\[
(a + d)^2 + B(a + d) + C = a^2 + Ba + c + d^2 + Bd = d(d + B).
\]

Therefore the choice \(d = -B \) yields

\[
(a - B)^2 + B(a - B) + C = 0.
\]

We know that \(C \) is the product of the roots, so \(a(a - B) = C \). Performing a linear change of variables \(\alpha = a - B + 1 \), we have \(F(a) = F(\alpha) \). Further, \(\alpha^2 + \alpha = C \in F \), so we are done.
Problem 6.
Let L/F be a field extension and let E and K be two subfields L containing F. Show that there is a smallest subfield $M \subset L$ containing E and K. Prove that E/F is separable, then M/K is also separable.

Solution.
First, such an M exists because L is a subfield of itself containing both E and K. Therefore take the set $E \cap K$. Then we uniquely close this set under addition, multiplication, and inversion to obtain a subfield M. By definition, this is $M = F(E \cup K)$, and any subfield containing E and K must contain M, else it is not closed under field operations.

Now suppose that E/F is separable, and let $\alpha \in E$. Then consider the tower $M \supset K(\alpha) \supset K$. Since α is separable over F, it is also separable over K, so $K(\alpha) \supset K$ is separable. Since this holds for every $\alpha \in E$, and these elements generate M over K, every element of M/K is separable.

Problem 7.
Prove that a finite extension of a perfect field is also perfect.

Solution.
Let F be a perfect field and K/F a finite extension. Let L/K be a finite extension. Then L/F is a finite extension as well, so it is separable. Since separable extensions are a good class of extensions the subextension L/K is as as well. Therefore by Problem 8, K is a perfect field.

Problem 8.
Prove that a field F is perfect if and only if any finite extension of F is separable.

Solution.
First, suppose that $\text{char } F = 0$. Then F is a fortiori perfect. Further, the derivative of any nonconstant polynomial is nonzero, so every irreducible polynomial is separable. Let E/F be a finite extension. Then for every $\alpha \in E$, the minimal polynomial of α is separable, so E/F is separable.

Now if $\text{char } F = p$, then every polynomial of the form $f(X^p)$ for $f \in F[X]$ has derivative 0. Let φ denote the pth power map $x \mapsto x^p$. Therefore let E/F be a finite extension. Suppose that $\alpha \in E$ is an inseparable element. Then the minimal polynomial of α is of the form $f(X^{p^n})$ for a separable polynomial f. Therefore write

$$\sum_{i=1}^{r} a_i (\alpha^{p^n})^i = 0.$$

Since φ is an automorphism on F, for each of the a_i, there is a pth root $\varphi^{-1}(a_i)$, and by induction a p^nth root. Let b_i be the p^nth root of a_i. Then

$$\sum_{i=1}^{r} a_i (\alpha^{p^n})^i = \left(\sum_{i=1}^{r} b_i \alpha^i \right)^{p^n} = 0 \implies \sum_{i=1}^{r} b_i \alpha^i = 0.$$
Therefore we must have \(n = 0 \) in the first case, so that the minimal polynomial of \(\alpha \) is itself separable. Therefore every inseparable element of \(E \) lies in \(F \) itself, so the entire extension is separable. Conversely, suppose that \(F \) is not perfect. Then \(\varphi \) is not surjective, so let \(a \in F \setminus F^p \). Then the polynomial \(X^p - a \) has no roots in \(F \). Further, it is an inseparable polynomial since it has derivative zero. Therefore the finite extension of \(F \) given by adjoining a root of \(X^p - a \) is not separable. This completes the proof.

Problem 9.
Let \(E/F \) be a field extension of a field \(F \) of characteristic \(p > 0 \). Prove that for any \(\alpha \in E \), which is separable over \(F \), \(F(\alpha) = F(\alpha^p) \).

Solution.
We have a tower of fields \(F \subset F(\alpha^p) \subset F(\alpha) \). Since \(\alpha \) is separable over \(F \), it is also separable over \(F(\alpha^p) \). But \(\alpha \) is a root of \(X^p - \alpha^p \), which factors as \((X - \alpha)^p \) in \(F(\alpha) \). Since the minimal polynomial of \(\alpha \) over \(F(\alpha^p) \) must have only simple roots, it must be \(X - \alpha \) alone. Therefore \(\alpha \in F(\alpha^p) \), so \(F(\alpha) = F(\alpha^p) \).

Problem 10.
Let \(F \) be a field of characteristic \(p > 0 \). Show that there are infinitely many fields \(K \) such that \(F(X^p, Y^p) \subset K \subset F(X, Y) \).

Solution.
Let \(K_f = F(X + f \cdot Y) \), where \(f \in F[X^p, Y^p] \) is a nonconstant polynomial. First, note that \(K_f \neq F(X, Y) \), since \([K_f : F(X^p, Y^p)] = p\) and \([F(X, Y) : F(X^p, Y^p)] = p^2\). We claim that for \(f \neq g \), we have \(K_f \neq K_g \). Suppose there were \(f \neq g \) such that \(K_f = K_g \). Call this field \(K \). Then

\[
X + g \cdot Y - g/f \cdot (X + f \cdot Y) = (1 - g/f)X \in K.
\]

Since \(g \neq f \), \(1 - g/f \in K^\times \), so \(X \in K \). Hence \(X, Y \in K \), so \(K = F(X, Y) \), which is a contradiction. Therefore since there are infinitely choices for \(f \), there are infinitely many nonisomorphic intermediate fields \(K_f \).