Math 210B: Algebra, Homework 5

Ian Coley

February 9, 2014

Problem 1.
Show that as submodule of a cyclic module over a PID is also cyclic.

Solution.
Let M be a cyclic module, so that $\varphi : R \to M$ is a surjection under $\varphi(r) = r \cdot m$ for some fixed M. Therefore M is isomorphic to $R/\ker \varphi$, i.e. a quotient of R by some ideal. Further, any submodule of M is isomorphic to an ideal of $R/\ker \varphi$. Since $R/\ker \varphi$ is a PID also, any submodule of it is generated by one element. Hence any submodule $N \subset M$ is cyclic.

Problem 2.
Let a and b be nonzero elements of a PID R. Prove that $R/aR \oplus R/bR \cong R/cR \oplus R/dR$, where c is the least common multiple and d is the greatest common divisor of a and b.

Solution.
Recall that we may decompose these cyclic modules in terms of their elementary divisors. Let p_1, \ldots, p_n be all prime elements dividing a or b. Then we may write

$$a = \prod_{i=1}^{n} p_i^{a_i}, \quad b = \prod_{i=1}^{n} p_i^{b_i}$$

where $a_i, b_i \geq 0$. Then

$$R/aR \oplus R/bR \cong \bigoplus_{i=1}^{n} \left(R/p_i^{a_i}R \oplus R/p_i^{b_i}R \right).$$

For each prime p_i, we may choose $c_i = \max\{a_i, b_i\}$ and $d_i = \min\{a_i, b_i\}$. Then let $c = \prod p_i^{c_i}$ and $d = \prod p_i^{d_i}$. By construction, c is the least common multiple of a, b and d is the greatest common divisor. Finally, by rearrangement, we have

$$\bigoplus_{i=1}^{n} \left(R/p_i^{a_i}R \oplus R/p_i^{b_i}R \right) = \bigoplus_{i=1}^{n} \left(R/p_i^{c_i}R \oplus R/p_i^{d_i}R \right) \cong R/cR \oplus R/dR,$$

since we may recombine the appropriate coprime ideals as we separated them above. This completes the proof.
Problem 3.
Find the invariant factors of the factor group \(\mathbb{Z}^3/N \), where \(N \) is generated by \((-4, 4, 2), (16, -4, -8), \) and \((8, 4, 2)\).

Solution.
We can recover the invariant factors of this group from reducing the following matrix:
\[
\begin{pmatrix}
-4 & 16 & 8 \\
4 & -4 & 4 \\
2 & -8 & 2
\end{pmatrix}.
\]
Eliminating the first row and column, we obtain
\[
\begin{pmatrix}
12 & 0 & 0 \\
0 & 4 & -4 \\
0 & 2 & -8
\end{pmatrix}.
\]
Continuing, we obtain
\[
\begin{pmatrix}
12 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 4
\end{pmatrix}.
\]
Fiddling around to obtain the appropriate diagonal, we obtain
\[
\begin{pmatrix}
12 & 0 & 0 \\
0 & 12 & 0 \\
0 & 0 & 2
\end{pmatrix}.
\]
This yields the factorisation
\[
G \cong \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z} \oplus \mathbb{Z}/12\mathbb{Z}.
\]

Problem 4.
Find the canonical form of the linear operator in \(\mathbb{R}^3 \) given by the matrix
\[
\begin{pmatrix}
-2 & 0 & 0 \\
-1 & -4 & -1 \\
2 & 4 & 0
\end{pmatrix}.
\]

Solution.
It is easy verified that the characteristic polynomial \(p_A \) of the given matrix is \((X + 2)^3\) via direct computation from the determinant. First, we need to calculate the minimal polynomial. We see that \(A + 2I \neq 0 \), but \((A + 2I)^2 = 0\). Hence the minimal polynomial of \(A \) is \((X + 2)^2\), so the invariant factors are \((X + 2), (X + 2)^2\). Hence the rational canonical form of \(A \) is
\[
\begin{pmatrix}
-2 & 0 & 0 \\
0 & 0 & -4 \\
0 & 1 & -4
\end{pmatrix}.
\]
Problem 5.
Find the Jordan canonical form of the linear operator in \(\mathbb{C}^2 \) given by the matrix
\[
\begin{pmatrix}
1 & -1 \\
1 & 3
\end{pmatrix}.
\]

Solution.
The characteristic polynomial here is \(p_A(X) = (X - 2)^2 \). Since \(A - 2 \neq 0 \), the minimal polynomial is \((X - 2)^2 \) itself. Therefore the Jordan block of the eigenvalue 2 has dimension 2. Therefore the Jordan canonical form is
\[
\begin{pmatrix}
2 & 1 \\
0 & 2
\end{pmatrix}.
\]

Problem 6.
Find the invariant factors of the zero operator in a vector space of dimension \(n \).

Solution.
The matrix of this operator in any basis of \(V \) is the zero matrix. Therefore the characteristic polynomial of the zero operator is \(X^n \). The minimal polynomial of the zero operator is just \(X \), since \(A = 0 \). Therefore since all invariant factors divide the minimal polynomial, we have the invariant factors of the zero operator are just \(n \) copies of \(X \).

Problem 7.
Prove that an \(n \times n \) matrix \(A \) is similar to a diagonal matrix if and only if the elementary divisors of \(A \) are all linear.

Solution.
First, suppose all the elementary divisors of \(A \) are linear. Then the minimal polynomial \(p_A \) factors as
\[
p_A(X) = \prod_{i=1}^{n} (X - \lambda_i)
\]
The elementary divisor decomposition of \(A \) is therefore the diagonal matrix \(\text{diag}(\lambda_1, \ldots, \lambda_n) \).

Now suppose that \(A \) is has a nonlinear elementary divisor. It suffices to show this case for \(A \) has only one nonlinear elementary divisor, and we may further assume it is of degree 2. Then let that elementary divisor be \(X^2 - aX - b \). Suppose \(A \) were similar to a diagonal matrix \(\text{diag}(\lambda, \mu) \). Then we would need
\[
(X - \lambda)(X - \mu) = X^2 - aX - b.
\]
If \(\lambda \neq \mu \), then the diagonal matrix evidently has two elementary divisors, which is a contradiction. Therefore the diagonal matrix is \(\text{diag}(\lambda, \lambda) = \lambda I \). But the minimal polynomial of \(\lambda I \) is \(X - \lambda I \), which is linear, and the minimal polynomial of \(A \) is quadratic. Therefore \(A \) cannot be diagonalisable. Through generalisation, this shows that any nonlinear elementary divisor makes \(A \) undiagonalisable, which completes the proof.
Problem 8.
Show that the minimal polynomial of an \(n \times n \) matrix \(A \) has the same irreducible divisors as the characteristic polynomial of \(A \).

Solution.
Let \(f_1, \ldots, f_s \) be the invariant factors of \(A \), so \(f_s \) is the minimal polynomial. Then
\[
p_A = \prod_{i=1}^{s} f_i.
\]
Suppose that \(g \) is an irreducible polynomial such that \(g \mid p_A \). Then \(g \mid f_j \) for some \(j \in \{1, \ldots, s\} \) since irreducible polynomials are the prime elements of \(F[X] \). Since \(f_j \mid f_s \) for every choice of \(j \), we also have \(g \mid f_s \). This completes the proof. \(\square \)

Problem 9.
Let \(A \) be a nilpotent \(n \times n \) matrix. Show that the invariant factors of \(A \) are the powers of \(X \). Prove that \(A^n = 0 \).

Solution.
If \(A \) is a nilpotent matrix, then \(A^N = 0 \) for some \(N \in \mathbb{N} \). Assume that \(m \) is the minimal such \(N \), i.e. \(A^{m-1} \neq 0 \) but \(A^m = 0 \). Therefore the minimal polynomial of \(A \) is \(X^m \). Since all invariant factors divide the minimal polynomial, they are all powers of \(X \). Finally, since the minimal polynomial has degree at most \(n \), \(n - m \geq 0 \), so we have
\[
A^n = A^m \cdot A^{n-m} = 0 \cdot A^{n-m} = 0.
\]
\(\square \)

Problem 10.
Prove that an \(n \times n \) matrix is similar to its transpose \(A^t \).

Solution.
First, recall that matrices are similar if and only if they have the same elementary divisors. Therefore, we need only prove this theorem in the case where \(A \) has only one elementary divisor, since two block diagonal matrices are similar if and only if each block is similar up to some permutation.

Therefore let \(p_A = f^m \) for some irreducible polynomial \(f \), where \(p_A \) is also the minimal polynomial of \(A \). Then \(p_{A^t} = p_A \) since
\[
p_A = \det(X \cdot I - A) = \det(X \cdot I^t - A^t) = p_{A^t}.
\]
Further, let the minimal polynomial of \(A^t \) be \(g \mid p_{A^t} = p_A \). Then
\[
0 = g(A') = \sum_{i=1}^{m} a_i(A')^i = \sum_{i=1}^{m} a_i(A^t)^{i \text{ transpose}} \rightarrow 0 = \sum_{i=1}^{m} a_i A^i = g(A).
\]
Therefore \(g = p_A \) since \(p_A \) was the minimal polynomial of \(A \). Hence, in our case, \(A \) and \(A^t \) have only one invariant factor, namely \(p_A \) itself, so they have the same rational canonical form, so they are similar. Applying this to finitely many elementary divisors of any matrix, we conclude that a matrix is similar to its transpose. \(\square \)