Math 210A: Algebra, Homework 9

Ian Coley

December 3, 2013

Problem 1.
Determine all subrings of \(\mathbb{Z} \).

Solution.
Let \(R \subset \mathbb{Z} \) be a subring. Then we must have \(1 \in R \). Since \(R \) is closed under addition, we have \(1 + \ldots + 1 = n \in R \). Since \(R \) is closed under taking additive inverse, \(-n \in R \) for every \(n \). Therefore we must have \(R = \mathbb{Z} \). \(\square \)

Problem 2.
Determine all subrings of \(\mathbb{Z} \times \mathbb{Z} \).

Solution.
By the above reasoning, in any subring \(R \subset \mathbb{Z} \times \mathbb{Z} \), we must have all elements of the form \((n, n) \). This is one such subring. Suppose now that any other \((m, n) \in R \). Then \((m, n) + (n, -n) = (m - n, 0) \) is in \(R \), so it suffices to examine what elements of the form \((k, 0) \) (or equivalently \((0, k) \)) are in \(R \). Since \(R \) is closed under addition, the element \((0, k) \) yields \((0, n \cdot k) \) (and \((n \cdot k, 0) \)) for any \(n \in \mathbb{Z} \). Therefore we can obtain any element of the form \((m, n) \) where \(m \equiv n \mod k \). If we include the case where \(k = 1 \) (which yields the subring \(\mathbb{Z} \times \mathbb{Z} \)), this gives us every subring of \(\mathbb{Z} \times \mathbb{Z} \). \(\square \)

Problem 3.
Determine all ideals of \(\mathbb{Z} \times \ldots \times \mathbb{Z} \) \(n \) times.

Solution.
First, since \(\mathbb{Z} \) is a principal ideal domain, we know that every ideal is of the form \(m\mathbb{Z} \). We claim that every ideal of \(\mathbb{Z}^n \) is of the form

\[
m_1\mathbb{Z} \times \ldots \times m_n\mathbb{Z}
\]

for some integers \(m_1, \ldots, m_n \). First, it is clear that every \(\prod m_i\mathbb{Z} \) is an ideal in \(\mathbb{Z}^n \). Conversely, suppose that \(J \subset \mathbb{Z}^n \) is an ideal. Let \(\pi_1, \ldots, \pi_n \) be the canonical projections onto the components of \(\mathbb{Z}^n \). By the last homework assignment, the image of an ideal is an ideal under surjection, so \(\pi_i(J) \subset \mathbb{Z} \) is an ideal for each \(i \). Then consider the map

\[
\pi : J \rightarrow \pi_1(J) \times \ldots \times \pi_n(J)
\]

defined in the obvious way. This map is an isomorphism by the Chinese Remainder Theorem, so we are done. \(\square \)
Problem 4.
Give an example of a commutative ring \(R \) and two distinct ideals \(I \) and \(J \) of \(R \) such that \(I \cap J \neq IJ \).

Solution.
Let \(R = \mathbb{Z} \), \(I = 2\mathbb{Z} \), and \(J = 4\mathbb{Z} \). Then \(I \cap J = 4\mathbb{Z} \), but \(IJ = 8\mathbb{Z} \), which are not equal. \(\square \)

Problem 5.
Determine all finite rings of 2 and 3 elements.

Solution.
Let \(R \) be a ring with 2 elements. Then these elements must be 0 and 1, where \(1 + 1 = 0 \). This ring is unique up to isomorphism since 0 and 1 have unique roles in any ring.

Now let \(R \) be a ring with 3 elements, \(R = \{0, 1, r\} \). Since \(R \) has an underlying abelian group structure, it must be isomorphic to \(\mathbb{Z}/3\mathbb{Z} \), so we may write \(R = \{0, 1, 2\} \) where \(1+1 = 2 \) and \(2+1 = 0 \). Since we know how to multiply by 0 and 1, we need only show how to multiply by 2. We have
\[
2 \cdot r = (1 + 1) \cdot r = r + r
\]
for any \(r \in R \), so there is only one way to multiply by 2, given by the abelian group structure of \(R \) isomorphic to \(\mathbb{Z}/3\mathbb{Z} \). Therefore there is only one ring with three elements up to isomorphism. \(\square \)

Problem 6.
Let \(R \) be a commutative ring, \(r \in R \). Prove that there is a unique ring homomorphism \(f : \mathbb{Z}[X] \to R \) such that \(f(X) = r \). Show that the image of \(f \) is the smallest subring of \(R \) that contains \(r \).

Solution.
We claim the ring homomorphism required is completely defined by \(f(X) = r \). Since we must have \(f(1) = 1_R \), we have \(f(n) = n \cdot f(1) = \underbrace{1_R + \cdots + 1_R}_{n \text{ times}} \). We also have \(f(-n) = -f(n) \), \(f \) restricted to \(\mathbb{Z} \) is without choice for any ring homomorphism. In our case, given any polynomial \(g = \sum_{i=0}^{n} a_i X^i \in \mathbb{Z}[X] \), we have
\[
f(g) = \sum_{i=0}^{n} f(a_i X^i) = \sum_{i=0}^{n} f(a_i) \cdot f(X)^i = \sum_{i=0}^{n} \underbrace{r^i + \cdots + r^i}_{a_i \text{ times}},
\]
since \(f \) is uniquely defined on \(\mathbb{Z} \) and \(X \) and respects multiplication.

The smallest subring containing \(r \) must be closed under addition and multiplication and contain 0 and 1. The image of any ring homomorphism must contain 0 and 1, so that condition is settled. Further, the above construction shows that precisely any sum of any powers of \(r \) is in the image of \(f \). Further, this homomorphism is clearly unique, so we are done. \(\square \)

Problem 7.
Let \(R \) be an integral domain such that \(R[X] \) is a principal ideal domain. Prove that \(R \) is a field.
Solution.
Let \(r \in R \) be a nonzero element. Then \((r, X) \subset R[X]\) is an ideal, so we must have \((r, X) = (f)\) for some polynomial \(f \). Further, there exist polynomials \(p, q \) such that \(fp = r \) and \(fq = X \). Since \(R \) is an integral domain, \(R[X] \) has the property that \(\text{deg} fg = \max\{\text{deg} f, \text{deg} g\} \). Therefore since \(\text{deg} r = 0 \), we must have \(\text{deg} f = 0 \) so \(p = b \) and \(f = a \) are constant functions. Additionally, \(q = c + dX \) is a linear function. Therefore
\[
X = fq = a(c + dX) = ac + adX
\]
so we have \(ad = 1 \). Therefore \((f) = (a) = R[X]\), the entire ring. Therefore there exist \(\alpha, \beta \in R[X] \) such that
\[
\alpha r + \beta X = 1.
\]
Again by the properties of degree, we must have \(\beta = 0 \) so \(\alpha r = 1 \). Therefore \(r \) is invertible.

Therefore \(R \) is a commutative division ring, so it is a field.

Problem 8.
Prove that for every nonzero commutative ring, the ring \(R[X] \) has infinitely many prime ideals.

Solution.
We follow Euclid’s proof. By Zorn’s Lemma, there exists some prime ideal \(p \) of \(R[X] \). Proceeding by induction, suppose that we have \(n \) prime ideals, \(p_1, \ldots, p_n \). Let \(a_i \in p_i \) for each \(i \), and choose these such that the product \(a_1 \cdots a_n \neq -1 \) and that \(X \) appears at least once in the product. This is always possible via the replacement \(a_1X \) for \(a_1 \).

Let \(a = a_1 \cdots a_n + 1_R \neq 0 \). We claim that \(a \notin p_i \) for every \(i \). Suppose \(a \in p_1 \). Then since \(a_1 \mid a_1 \cdots a_n \), we have \(a_1 \cdots a_n \in p_1 \). Therefore we must have \(1_R \in p_1 \) as well, which is a contradiction since \(p_1 \) is a prime ideal. Therefore there must be another prime ideal \(p \) containing \(a \), since \(a \) is not invertible. Therefore by induction, there are infinitely many primes.

Problem 9.
Let \(B \subset A \) be a subgroup of an abelian group \(A \). Prove that the set
\[
I = \{ f \in \text{End} A : f(A) \subset B \}
\]
is a right ideal in the ring \(\text{End} A \).

Solution.
Let \(f, g \in I \) and \(h \in \text{End} A \). First, note that \((f + g)(A) = f(A) + g(A)\), where both \(f(A), g(A) \subset B \). Since \(B \) is closed under addition, we have \(f(A) + g(A) \subset B \), so \(f + g \in I \). Further \((f \circ h)(A) = f(h(A))\). Since \(h \) is an endomorphism of \(A \), we have \(h(A) \subset A \), so \(f(h(A)) \subset f(A) \subset B \), hence \(f \circ h \in I \). Therefore \(I \) is a right ideal of \(\text{End} A \).

Problem 10.
The Jacobson radical of a commutative ring \(R \) is the ideal \(\text{Rad} R \) that is the intersection of all maximal ideals in \(R \). Show that \(x \in \text{Rad} R \) if and only if \(1 - xy \in R^x \) for all \(y \in R \).
Solution.
First, let $x \in \text{Rad } R$ and suppose that $1 - xy$ is not invertible. Then $1 - xy \in \mathfrak{m}$ for some maximal ideal \mathfrak{m}. Then since $x \in \text{Rad } R \subset \mathfrak{m}$, we have $xy \in \mathfrak{m}$. Therefore $(1 - xy) + xy = 1 \in \mathfrak{m}$, which is a contradiction. Therefore every $1 - xy$ must be invertible.

Conversely, suppose that $x \notin \text{Rad } R$. Then $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m}. Then $R = \mathfrak{m} + Rx$, so we have $1 = m + xy$ for some $y \in R$, $m \in \mathfrak{m}$. Then $m = 1 - xy$ cannot be invertible since $\mathfrak{m} \neq R$. Since we have proved the contrapositive of the converse, we are done.