CALCULUS
THIRD EDITION

JON ROGAWSKI
COLIN ADAMS
ALGEBRA

Lines
Slope of the line through \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \):
\[
m = \frac{y_2 - y_1}{x_2 - x_1}
\]
Slope-intercept equation of line with slope \(m \) and y-intercept \(b \):
\[
y = mx + b
\]
Point-slope equation of line through \(P_1 = (x_1, y_1) \) with slope \(m \):
\[
y - y_1 = m(x - x_1)
\]
Point-point equation of line through \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \):
\[
y - y_1 = m(x - x_1) \quad \text{where} \quad m = \frac{y_2 - y_1}{x_2 - x_1}
\]
Lines of slope \(m_1 \) and \(m_2 \) are parallel if and only if \(m_1 = m_2 \).
Lines of slope \(m_1 \) and \(m_2 \) are perpendicular if and only if \(m_1 = -\frac{1}{m_2} \).

Circles
Equation of the circle with center \((a, b)\) and radius \(r \):
\[
(x - a)^2 + (y - b)^2 = r^2
\]

Distance and Midpoint Formulas
Distance between \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \):
\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
Midpoint of \(P_1P_2 \):
\[
\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)
\]

Laws of Exponents
\[
x^m \cdot x^n = x^{m+n} \quad \frac{x^m}{x^n} = x^{m-n} \quad (x^m)^n = x^{mn}
\]
\[
x^{-n} = \frac{1}{x^n} \quad (xy)^n = x^n y^n \quad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}
\]
\[
x^{1/n} = \sqrt[n]{x} \quad \sqrt[x]{y} = \sqrt[n]{x} \cdot \sqrt[n]{y} \quad \sqrt[n]{x} = \sqrt[n]{y}
\]
\[
x^{m/n} = \sqrt[n]{x^m} = (\sqrt[n]{x})^m
\]

Special Factorizations
\[
x^2 - y^2 = (x + y)(x - y)
\]
\[
x^3 + y^3 = (x + y)(x^2 - xy + y^2)
\]
\[
x^3 - y^3 = (x - y)(x^2 + xy + y^2)
\]

Binomial Theorem
\[
(x + y)^n = x^n + nx^{n-1}y + \frac{n(n-1)}{2!}x^{n-2}y^2 + \cdots + \binom{n}{k}x^{n-k}y^k + \cdots + nxy^{n-1} + y^n
\]
where \(\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot2\cdot3\cdots k} \)

Quadratic Formula
If \(ax^2 + bx + c = 0 \), then \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \).

Inequalities and Absolute Value
If \(a < b \) and \(b < c \), then \(a < c \).
If \(a < b \), then \(a + c < b + c \).
If \(a < b \) and \(c > 0 \), then \(ca < cb \).
If \(a < b \) and \(c < 0 \), then \(ca > cb \).
\[
|x| = x \quad \text{if} \ x \geq 0
\]
\[
|x| = -x \quad \text{if} \ x \leq 0
\]

GEOMETRY

Formulas for area \(A \), circumference \(C \), and volume \(V \)

<table>
<thead>
<tr>
<th>Triangle</th>
<th>Circle</th>
<th>Sector of Circle</th>
<th>Sphere</th>
<th>Cylinder</th>
<th>Cone</th>
<th>Cone with arbitrary base</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A = \frac{1}{2}bh)
 (= \frac{1}{2}ab \sin \theta)</td>
<td>(A = \pi r^2)
 (C = 2\pi r)
 (s = r\theta) ((\theta) in radians)</td>
<td>(A = \frac{1}{2}r^2\theta)</td>
<td>(V = \frac{4}{3}\pi r^3)
 (s = r\theta)</td>
<td>(V = \pi r^2h)
 (A = 4\pi r^2)</td>
<td>(V = \frac{1}{3}\pi r^2h)</td>
<td>(V = \frac{1}{3}Ah) (where (A) is the area of the base)</td>
</tr>
</tbody>
</table>

Pythagorean Theorem: For a right triangle with hypotenuse of length \(c \) and legs of lengths \(a \) and \(b \), \(c^2 = a^2 + b^2 \).
TRIGONOMETRY

Angle Measurement

\[\pi \text{ radians} = 180^\circ \]

\[1^\circ = \frac{\pi}{180} \text{ rad} \quad 1 \text{ rad} = \frac{180^\circ}{\pi} \]

\[s = r\theta \quad (\theta \text{ in radians}) \]

Right Triangle Definitions

\[\sin \theta = \frac{\text{opp}}{\text{hyp}} \quad \cos \theta = \frac{\text{adj}}{\text{hyp}} \]

\[\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\text{opp}}{\text{adj}} \quad \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\text{adj}}{\text{opp}} \]

\[\sec \theta = \frac{1}{\cos \theta} = \frac{\text{hyp}}{\text{adj}} \quad \csc \theta = \frac{1}{\sin \theta} = \frac{\text{hyp}}{\text{opp}} \]

Trigonometric Functions

\[\sin \theta = \frac{y}{r} \quad \csc \theta = \frac{r}{y} \]

\[\cos \theta = \frac{x}{r} \quad \sec \theta = \frac{r}{x} \]

\[\tan \theta = \frac{y}{x} \quad \cot \theta = \frac{x}{y} \]

\[\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad \lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0 \]

Fundamental Identities

\[\sin^2 \theta + \cos^2 \theta = 1 \]

\[\sin(-\theta) = -\sin \theta \quad \cos(-\theta) = \cos \theta \]

\[1 + \tan^2 \theta = \sec^2 \theta \quad \tan(-\theta) = -\tan \theta \]

\[1 + \cot^2 \theta = \csc^2 \theta \quad \sin \left(\frac{\pi}{2} - \theta \right) = \cos \theta \]

\[\sin(\theta + 2\pi) = \sin \theta \quad \cos(\theta + 2\pi) = \cos \theta \]

\[\tan \left(\frac{\pi}{2} - \theta \right) = \cot \theta \quad \tan(\theta + \pi) = \tan \theta \]

The Law of Sines

\[
\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}
\]

The Law of Cosines

\[a^2 = b^2 + c^2 - 2bc \cos A \]

Addition and Subtraction Formulas

\[\sin(x + y) = \sin x \cos y + \cos x \sin y \]

\[\sin(x - y) = \sin x \cos y - \cos x \sin y \]

\[\cos(x + y) = \cos x \cos y - \sin x \sin y \]

\[\cos(x - y) = \cos x \cos y + \sin x \sin y \]

\[\tan(x + y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \]

\[\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y} \]

Double-Angle Formulas

\[\sin 2x = 2 \sin x \cos x \]

\[\cos 2x = \cos^2 x - \sin^2 x = 2 \cos^2 x - 1 = 1 - 2 \sin^2 x \]

\[\tan 2x = \frac{2 \tan x}{1 - \tan^2 x} \]

\[\sin^2 x = \frac{1 - \cos 2x}{2} \quad \cos^2 x = \frac{1 + \cos 2x}{2} \]

Graphs of Trigonometric Functions

\[
\text{Graphs of } \sin x, \cos x, \tan x, \csc x, \sec x, \cot x
\]
ABOUT THE AUTHORS

COLIN ADAMS

Colin Adams is the Thomas T. Read professor of Mathematics at Williams College, where he has taught since 1985. Colin received his undergraduate degree from MIT and his PhD from the University of Wisconsin. His research is in the area of knot theory and low-dimensional topology. He has held various grants to support his research, and written numerous research articles.

He is a recipient of the Haimo National Distinguished Teaching Award from the Mathematical Association of America (MAA) in 1998, an MAA Polya Lecturer for 1998-2000, a Sigma Xi Distinguished Lecturer for 2000-2002, and the recipient of the Robert Foster Cherry Teaching Award in 2003.

Colin has two children and one slightly crazy dog, who is great at providing the entertainment.

JON ROGAWSKI

As a successful teacher for more than 30 years, Jon Rogawski listened and learned much from his own students. These valuable lessons made an impact on his thinking, his writing, and his shaping of a calculus text.

Jon Rogawski received his undergraduate and master’s degrees in mathematics simultaneously from Yale University, and he earned his PhD in mathematics from Princeton University, where he studied under Robert Langlands. Before joining the Department of Mathematics at UCLA in 1986, where he was a full professor, he held teaching and visiting positions at the Institute for Advanced Study, the University of Bonn, and the University of Paris at Jussieu and Orsay.

Jon’s areas of interest were number theory, automorphic forms, and harmonic analysis on semisimple groups. He published numerous research articles in leading mathematics journals, including the research monograph *Automorphic Representations of Unitary Groups in Three Variables* (Princeton University Press). He was the recipient of a Sloan Fellowship and an editor of the Pacific Journal of Mathematics and the Transactions of the AMS.

Sadly, Jon Rogawski passed away in September 2011. Jon’s commitment to presenting the beauty of calculus and the important role it plays in students’ understanding of the wider world is the legacy that lives on in each new edition of *Calculus*.
CONTENTS

Chapter 1 PRECALCULUS REVIEW
1.1 Real Numbers, Functions, and Graphs
1.2 Linear and Quadratic Functions
1.3 The Basic Classes of Functions
1.4 Trigonometric Functions
1.5 Technology: Calculators and Computers
Chapter Review Exercises

Chapter 2 LIMITS
2.1 Limits, Rates of Change, and Tangent Lines
2.2 Limits: A Numerical and Graphical Approach
2.3 Basic Limit Laws
2.4 Limits and Continuity
2.5 Evaluating Limits Algebraically
2.6 Trigonometric Limits
2.7 Limits at Infinity
2.8 Intermediate Value Theorem
2.9 The Formal Definition of a Limit
Chapter Review Exercises

Chapter 3 DIFFERENTIATION
3.1 Definition of the Derivative
3.2 The Derivative as a Function
3.3 Product and Quotient Rules
3.4 Rates of Change
3.5 Higher Derivatives
3.6 Trigonometric Functions
3.7 The Chain Rule
3.8 Implicit Differentiation
3.9 Related Rates
Chapter Review Exercises

Chapter 4 APPLICATIONS OF THE DERIVATIVE
4.1 Linear Approximation and Applications
4.2 Extreme Values
4.3 The Mean Value Theorem and Monotonicity
4.4 The Shape of a Graph
4.5 Graph Sketching and Asymptotes
4.6 Applied Optimization
4.7 Newton's Method
Chapter Review Exercises

Chapter 5 THE INTEGRAL
5.1 Approximating and Computing Area
5.2 The Definite Integral
5.3 The Indefinite Integral

Chapter 6 APPLICATIONS OF THE INTEGRAL
6.1 Area Between Two Curves
6.2 Setting Up Integrals: Volume, Density, Average Value
6.3 Volumes of Revolution
6.4 The Method of Cylindrical Shells
6.5 Work and Energy
Chapter Review Exercises

Chapter 7 EXPONENTIAL FUNCTIONS
7.1 Derivative of \(f(x) = b^x \) and the Number \(e \)
7.2 Inverse Functions
7.3 Logarithms and Their Derivatives
7.4 Exponential Growth and Decay
7.5 Compound Interest and Present Value
7.6 Models Involving \(y' = k(y - b) \)
7.7 L'Hôpital's Rule
7.8 Inverse Trigonometric Functions
7.9 Hyperbolic Functions
Chapter Review Exercises

Chapter 8 TECHNIQUES OF INTEGRATION
8.1 Integration by Parts
8.2 Trigonometric Integrals
8.3 Trigonometric Substitution
8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions
8.5 The Method of Partial Fractions
8.6 Strategies for Integration
8.7 Improper Integrals
8.8 Probability and Integration
8.9 Numerical Integration
Chapter Review Exercises

Chapter 9 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS
9.1 Arc Length and Surface Area
9.2 Fluid Pressure and Force
9.3 Center of Mass
9.4 Taylor Polynomials
Chapter Review Exercises

iv
Chapter 10 INTRODUCTION TO DIFFERENTIAL EQUATIONS 499
10.1 Solving Differential Equations 499
10.2 Graphical and Numerical Methods 507
10.3 The Logistic Equation 515
10.4 First-Order Linear Equations 519
Chapter Review Exercises 525

Chapter 11 INFINITE SERIES 529
11.1 Sequences 529
11.2 Summing an Infinite Series 539
11.3 Convergence of Series with Positive Terms 550
11.4 Absolute and Conditional Convergence 559
11.5 The Ratio and Root Tests and Strategies for Choosing Tests 564
11.6 Power Series 569
11.7 Taylor Series 579
Chapter Review Exercises 591

Chapter 12 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS 595
12.1 Parametric Equations 595
12.2 Arc Length and Speed 606
12.3 Polar Coordinates 612
12.4 Area and Arc Length in Polar Coordinates 620
12.5 Conic Sections 625
Chapter Review Exercises 638

Chapter 13 VECTOR GEOMETRY 641
13.1 Vectors in the Plane 641
13.2 Vectors in Three Dimensions 651
13.3 Dot Product and the Angle Between Two Vectors 661
13.4 The Cross Product 669
13.5 Planes in 3-Space 680
13.6 A Survey of Quadric Surfaces 686
13.7 Cylindrical and Spherical Coordinates 694
Chapter Review Exercises 701

Chapter 14 CALCULUS OF VECTOR-VALUED FUNCTIONS 705
14.1 Vector-Valued Functions 705
14.2 Calculus of Vector-Valued Functions 713
14.3 Arc Length and Speed 722
14.4 Curvature 727
14.5 Motion in 3-Space 738
14.6 Planetary Motion According to Kepler and Newton 747
Chapter Review Exercises 753

Chapter 15 DIFFERENTIATION IN SEVERAL VARIABLES 755
15.1 Functions of Two or More Variables 755
15.2 Limits and Continuity in Several Variables 766
15.3 Partial Derivatives 773
15.4 Differentiability and Tangent Planes 783
15.5 The Gradient and Directional Derivatives 790
15.6 The Chain Rule 803
15.7 Optimization in Several Variables 811
15.8 Lagrange Multipliers: Optimizing with a Constraint 825
Chapter Review Exercises 834

Chapter 16 MULTIPLE INTEGRATION 837
16.1 Integration in Two Variables 837
16.2 Double Integrals over More General Regions 848
16.3 Triple Integrals 861
16.4 Integration in Polar, Cylindrical, and Spherical Coordinates 872
16.5 Applications of Multiple Integrals 882
16.6 Change of Variables 894
Chapter Review Exercises 907

Chapter 17 LINE AND SURFACE INTEGRALS 911
17.1 Vector Fields 911
17.2 Line Integrals 921
17.3 Conservative Vector Fields 935
17.4 Parametrized Surfaces and Surface Integrals 946
17.5 Surface Integrals of Vector Fields 960
Chapter Review Exercises 970

Chapter 18 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS 973
18.1 Green's Theorem 973
18.2 Stokes' Theorem 987
18.3 Divergence Theorem 997
Chapter Review Exercises 1009

APPENDICES A1
A. The Language of Mathematics A1
B. Properties of Real Numbers A7
C. Induction and the Binomial Theorem A12
D. Additional Proofs A16

ANSWERS TO ODD-NUMBERED EXERCISES ANS1

REFERENCES R1

INDEX I1

Additional content can be accessed online via LaunchPad: ADDITIONAL PROOFS
• L'Hôpital's Rule
• Error Bounds for Numerical Integration
• Comparison Test for Improper Integrals

ADDITIONAL CONTENT
• Second Order Differential Equations
• Complex Numbers
On Teaching Mathematics

I consider myself very lucky to have a career as a teacher and practitioner of mathematics. When I was young, I decided I wanted to be a writer. I loved telling stories. But I was also good at math, and, once in college, it didn’t take me long to become enamored with it. I loved the fact that success in mathematics does not depend on your presentation skills or your interpersonal relationships. You are either right or you are wrong and there is little subjective evaluation involved. And I loved the satisfaction of coming up with a solution. That intensified when I started solving problems that were open research questions that had previously remained unsolved.

So, I became a professor of mathematics. And I soon realized that teaching mathematics is about telling a story. The goal is to explain to students in an intriguing manner, at the right pace, and in as clear a way as possible, how mathematics works and what it can do for you. I find mathematics immensely beautiful. I want students to feel that way, too.

On Writing a Calculus Text

I had always thought I might write a calculus text. But that is a daunting task. These days, calculus books average over a thousand pages. And I would need to convince myself that I had something to offer that was different enough from what already appears in the existing books. Then, I was approached about writing the third edition of Jon Rogawski's calculus book. Here was a book for which I already had great respect. Jon’s vision of what a calculus book should be fit very closely with my own. Jon believed that as math teachers, how we say it is as important as what we say. Although he insisted on rigor at all times, he also wanted a book that was written in plain English, a book that could be read and that would entice students to read further and learn more. Moreover, Jon strived to create a text in which exposition, graphics, and layout would work together to enhance all facets of a student’s calculus experience.

In writing his book, Jon paid special attention to certain aspects of the text:

1. Clear, accessible exposition that anticipates and addresses student difficulties.
2. Layout and figures that communicate the flow of ideas.
3. Highlighted features that emphasize concepts and mathematical reasoning: Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical Perspective.
4. A rich collection of examples and exercises of graduated difficulty that teach basic skills, reinforce conceptual understanding, and motivate calculus through interesting applications. Each section also contains exercises that develop additional insights and challenge students to further develop their skills.

Coming into the project of creating the third edition, I was somewhat apprehensive. Here was an already excellent book that had attained the goals set for it by its author. First and foremost, I wanted to be sure that I did it no harm. On the other hand, I have been teaching calculus now for 30 years, and in that time, I have come to some conclusions about what does and does not work well for students.

As a mathematician, I want to make sure that the theorems, proofs, arguments and development are correct. There is no place in mathematics for sloppiness of any kind. As a teacher, I want the material to be accessible. The book should not be written at the mathematical level of the instructor. Students should be able to use the book to learn the material, with the help of their instructor. Working from the high standard that Jon set, I have tried hard to maintain the level of quality of the previous edition while making the changes that I believe will bring the book to the next level.
Placement of Taylor Polynomials

Taylor polynomials appear in Chapter 9, before infinite series in Chapter 11. The goal here is to present Taylor polynomials as a natural extension of linear approximation. When teaching infinite series, the primary focus is on convergence, a topic that many students find challenging. By the time we have covered the basic convergence tests and studied the convergence of power series, students are ready to tackle the issues involved in representing a function by its Taylor series. They can then rely on their previous work with Taylor polynomials and the error bound from Chapter 9. However, the section on Taylor polynomials is written so that you can cover this topic together with the materials on infinite series if this order is preferred.

Careful, Precise Development

W. H. Freeman is committed to high quality and precise textbooks and supplements. From this project’s inception and throughout its development and production, quality and precision have been given significant priority. We have in place unparalleled procedures to ensure the accuracy of the text:

- Exercises and Examples
- Exposition
- Figures
- Editing
- Composition

Together, these procedures far exceed prior industry standards to safeguard the quality and precision of a calculus textbook.

New to the Third Edition

There are a variety of changes that have been implemented in this edition. Following are some of the most important.

MORE FOCUS ON CONCEPTS

The emphasis has been shifted to focus less on the memorization of specific formulas, and more on understanding the underlying concepts. Memorization can never be completely avoided, but it is in no way the crux of calculus. Students will remember how to apply a procedure or technique if they see the logical progression that generates it. And they then understand the underlying concepts rather than seeing the topic as a black box in which you insert numbers. Specific examples include:

- (Section 1.2) Removed the general formula for the completion of a square and instead, emphasized the method so students need not memorize the formula.
- (Section 8.2) Changed the methods for evaluating trigonometric integrals to focus on techniques to apply rather than formulas to memorize.
- (Chapter 10) Discouraged the memorization of solutions of specific types of differential equations and instead, encouraged the use of methods of solution.
- (Section 13.2) Decreased number of formulas for parametrizing a line from two to one, as the second can easily be derived from the first.
- (Section 13.6) De-emphasized the memorization of the various formulas for quadric surfaces. Instead, moved the focus to slicing with planes to find curves and using those to determine the shape of the surface. These methods will be useful regardless of the type of surface it is.
- (Section 15.4) Decreased the number of essential formulas for linear approximation of functions of two variables from four to two, providing the background to derive the others from these.

CHANGES IN NOTATION

There are numerous notational changes. Some were made to bring the notation more into line with standard usage in mathematics and other fields in which mathematics is applied. Some were implemented to make it easier for students to remember the meaning of the notation. Some were made to help make the corresponding concepts that are represented more transparent. Specific examples include:
• (Section 4.5) Presented a new notation for graphing that gives the signs of the first and second derivative and then simple symbols (slanted up and down arrows and up and down u’s) to help the student keep track of when the graph is increasing or decreasing and concave up or concave down over the given interval.

• (Section 8.1) Simplified the notation for integration by parts and provided a visual method for remembering it.

• (Chapter 11) Changed names of the various tests for convergence/divergence of infinite series to evoke the usage of the test and thereby make it easier for students to remember them.

• (Chapters 14–18) Rather than using \(c(t) \) for a path, we consistently switched to the vector-valued function \(r(t) \). This also allowed us to replace \(ds \) with \(dr \) as a differential, which means there is less likely to be confusion with \(ds, dS \) and \(dS \).

MORE EXPLANATIONS OF DERIVATIONS Occasionally, in the previous edition, a result was given and verified, without motivating where the derivation came from. I believe it is important for students to understand how someone might come up with a particular result, thereby helping them to picture how they might themselves one day be able to derive results.

• (Section 9.3) Developed the center of mass formulas by first discussing the one-dimensional case of a seesaw.

• (Section 15.4) Developed the equation of the tangent plane in a manner that makes geometric sense.

• (Section 15.5) Included a proof of the fact the gradient of a function \(f \) of three variables is orthogonal to the surfaces that are the level sets of \(f \).

• (Section 15.8) Gave an intuitive explanation for why the Method of Lagrange Multipliers works.

REORDERING AND ADDING TOPICS There were some specific rearrangements among the sections and additions. These include:

• A subsection on piecewise-defined functions has been added to Section 1.3.

• The section on indefinite integrals (previously Section 4.8) has been moved from Chapter 4 (Applications of the Derivative) to Chapter 5 (The Integral). This is a more natural placement for it.

• A new section on choosing from amongst the various methods of integration has been added to Chapter 8.

• A subsection on choosing the appropriate convergence/divergence test has been added to Section 11.5.

• An explanation of how to find indefinite limits using power series has been added to Section 10.6.

• The definitions of divergence and curl have been moved from Chapter 18 to Section 17.1. This allows us to utilize them at an appropriate earlier point in the text.

• A list all of the different types of integrals that have been introduced in Chapter 17 has been added to Section 17.5.

• A subsection on the Vector Form of Green’s Theorem has been added to Section 18.1.

NEW EXAMPLES, FIGURES, AND EXERCISES Numerous examples and accompanying figures have been added to clarify concepts. A variety of exercises have also been added throughout the text, particularly where new applications are available or further conceptual development is advantageous. Figures marked with a \(\text{LaunchPad} \) icon have been made dynamic and can be accessed via \textit{LaunchPad}. A selection of these figures also includes brief tutorial videos explaining the concepts at work.
SUPPLEMENTS

For Instructors

Instructor’s Solutions Manual
Contains worked-out solutions to all exercises in the text.

Test Bank
Includes a comprehensive set of multiple-choice test items.

Instructor’s Resource Manual
Provides sample course outlines, suggested class time, key points, lecture material, discussion topics, class activities, worksheets, projects, and questions to accompany the Dynamic Figures.

For Students

Student Solutions Manual
Contains worked-out solutions to all odd-numbered exercises in the text.

Software Manuals
Maple™ and Mathematica® software manuals serve as basic introductions to popular mathematical software options.

ONLINE HOMEWORK OPTIONS

Our new course space, LaunchPad, combines an interactive e-Book with high-quality multimedia content and ready-made assessment options, including LearningCurve adaptive quizzing. Pre-built, curated units are easy to assign or adapt with your own material, such as readings, videos, quizzes, discussion groups, and more. LaunchPad includes a gradebook that provides a clear window on performance for your whole class, for individual students, and for individual assignments. While a streamlined interface helps students focus on what’s due next, social commenting tools let them engage, make connections, and learn from each other. Use LaunchPad on its own or integrate it with your school’s learning management system so your class is always on the same page. Contact your rep to make sure you have access.

Assets integrated into LaunchPad include:

Interactive e-Book: Every LaunchPad e-Book comes with powerful study tools for students, video and multimedia content, and easy customization for instructors. Students can search, highlight, and bookmark, making it easier to study and access key content. And instructors can make sure their class gets just the book they want to deliver: customize and rearrange chapters, add and share notes and discussions, and link to quizzes, activities, and other resources.

LearningCurve provides students and instructors with powerful adaptive quizzing, a game-like format, direct links to the e-Book, and instant feedback. The quizzing system features questions tailored specifically to the text and adapts to students’ responses, providing material at different difficulty levels and topics based on student performance.

Dynamic Figures: Over 250 figures from the text have been recreated in a new interactive format for students and instructors to manipulate and explore, making the visual aspects and dimensions of calculus concepts easier to grasp. Brief tutorial videos accompany selected figures and explain the concepts at work.

CalcClips: These whiteboard tutorials provide animated and narrated step-by-step solutions to exercises that are based on key problems in the text.

SolutionMaster offers an easy-to-use Web-based version of the instructor’s solutions, allowing instructors to generate a solution file for any set of homework exercises.
FEATURES

WebAssign Premium

www.webassign.net/freeman.com

WebAssign Premium integrates the book’s exercises into the world’s most popular and trusted online homework system, making it easy to assign algorithmically generated homework and quizzes. Algorithmic exercises offer the instructor optional algorithmic solutions. WebAssign Premium also offers access to resources, including Dynamic Figures, CalcClips whiteboard tutorials, and a “Show My Work” feature. In addition, WebAssign Premium is available with a fully customizable e-Book option.

WeBWorK

webwork.maa.org

W. H. Freeman offers thousands of algorithmically generated questions (with full solutions) through this free, open-source online homework system created at the University of Rochester. Adopters also have access to a shared national library test bank with thousands of additional questions, including 2,500 problem sets matched to the book’s table of contents.

FEATURES

Conceptual Insights

encourage students to develop a conceptual understanding of calculus by explaining important ideas clearly but informally.

CONCEPTUAL INSIGHT

Leibniz notation is widely used for several reasons. First, it reminds us that the derivative df/dx, although not itself a ratio, is in fact a limit of ratios $\Delta f/\Delta x$. Second, the notation specifies the independent variable. This is useful when variables other than x are used. For example, if the independent variable is t, we write df/dt. Third, we often think of d/dx as an “operator” that performs differentiation on functions. In other words, we apply the operator d/dx to f to obtain the derivative df/dx. We will see other advantages of Leibniz notation when we discuss the Chain Rule in Section 3.7.

GRAPHICAL INSIGHT

Can we visualize the rate represented by $f''(x)$? The second derivative is the rate at which $f'(x)$ is changing, so $f''(x)$ is large if the slopes of the tangent lines change rapidly, as in Figure 3(A). Similarly, $f''(x)$ is small if the slopes of the tangent lines change slowly—in this case, the curve is relatively flat, as in Figure 3(B). If f is a linear function [Figure 3(C)], then the tangent line does not change at all and $f''(x) = 0$. Thus, $f''(x)$ measures the “bending” or concavity of the graph.

Graphical Insights

enhance students’ visual understanding by making the crucial connections between graphical properties and the underlying concepts.
Reminders
are margin notes that link the current discussion to important
carefully introduced earlier in the text to give
students a quick review and make connections
with related ideas.

Historical Perspectives
are brief vignettes that place key
discoveries and conceptual
advances in their historical
context. They give students a
glimpse into some of the
accomplishments of great
mathematicians and an
appreciation for their significance.

EXAMPLE 1 Use L'Hôpital's Rule to evaluate \(\lim_{x \to 0} \frac{x^3 - 8}{x^3 + 2x - 20} \).

Solution Let \(f(x) = x^3 - 8 \) and \(g(x) = x^3 + 2x - 20 \). Both \(f \) and \(g \) are differentiable and \(f'(x)/g'(x) \) is indeterminate of type \(0/0 \) at \(a = 0 \) because \(f(0) = g(0) = 0 \).

- Numerator: \(f(1) = 1 \)
- Denominator: \(g(2) = 2^3 + 2(2) - 20 = 0 \)

Furthermore, \(g'(x) = 4x^3 + 2 \) is nonzero near \(x = 2 \), so L'Hôpital's Rule applies. We may replace the numerator and denominator by their derivatives to obtain

\[
\lim_{x \to 2} \frac{x^3 - 8}{x^3 + 2x - 20} = \lim_{x \to 2} \frac{(x^3 - 8)'}{(x^3 + 2x - 20)'} = \lim_{x \to 2} \frac{3x^2}{4x^2 + 2} = \frac{12}{38} = \frac{6}{19}.
\]

EXAMPLE 3 Evaluate \(\int \sin^2 x \, dx \).

Solution We could apply the reduction formula Eq. (5) from the last section. However, instead, we apply a method that does not rely on knowing that formula. We utilize the trigonometric identity called the double angle formula \(\sin 2x = 2 \sin x \cos x \). Then

\[
\int \sin^2 x \, dx = \int \frac{1}{2}(1 - \cos 2x) \, dx = \frac{x}{2} - \frac{\sin 2x}{4} + C.
\]

Using the trigonometric identities in the margin, we can also integrate \(\cos^2 x \), obtaining the following:

1. \(\int \sin^2 x \, dx = \frac{x}{2} - \frac{\sin 2x}{4} + C = \frac{x}{2} - \frac{1}{2} \sin x \cos x + C \)
2. \(\int \cos^2 x \, dx = \frac{x}{2} + \frac{\sin 2x}{4} + C = \frac{x}{2} + \frac{1}{2} \sin x \cos x + C \)

HISTORICAL PERSPECTIVE

Geometric series were used as early as the third century BC by Archimedes in a brilliant argument for determining the area \(S \) of a "parabolic segment" (shaded region in Figure 3). Given two points \(A \) and \(C \) on a parabola, there is a point \(B \) between \(A \) and \(C \) where the tangent line is parallel to \(AC \) (apparently, Archimedes was aware of the Mean Value Theorem more than 2000 years before the invention of calculus). Let \(T \) be the area of triangle \(\triangle ABC \). Archimedes proved that if \(D \) is chosen in a similar fashion relative to \(AB \) and \(E \) is chosen relative to \(BE \), then

\[
\frac{1}{2} T = \text{Area} \triangle ADB + \text{Area} \triangle BEO.
\]

This construction of triangles can be continued. The next step would be to construct the four triangles on the segments \(AD, DB, BE, EC \), of total area \(\frac{3}{4} T \). Then construct eight triangles of total area \(\frac{1}{2} T \), etc. In this way, we obtain infinitely many triangles that completely fill up the parabolic segment. By the formula for the sum of a geometric series, we get

\[
S = T + \frac{1}{4} T + \frac{1}{16} T + \cdots = T \sum_{n=0}^{\infty} \frac{1}{4^n} = \frac{4}{3} T.
\]

For this and many other achievements, Archimedes is ranked together with Newton and Gauss as one of the greatest scientists of all time.

The modern study of infinite series began in the seventeenth century with Newton, Leibniz, and their contemporaries. The divergence of \(\sum_{n=1}^{\infty} \frac{1}{n} \) (called the harmonic series) was known to the medieval scholar Nicole d'Oresme (1323–1382), but his proof was lost for centuries, and the result was rediscovered on more than one occasion. It was also known that the sum of the reciprocal squares \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, and in the 1640s, the Italian Pietro Mengoli put forward the challenge of finding its sum. Despite the efforts of the best mathematicians of the day, including Leibniz and the Bernoulli brothers Jakob and Johann, the problem resisted solution for nearly a century. In 1735 the great master Leonhard Euler (at the time, 28 years old) astonished his contemporaries by proving that

\[
1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{6}.
\]

This formula, surprising in itself, plays a role in a variety of mathematical fields. A theorem from number theory states that two whole numbers, chosen randomly, have no common factor with probability \(6/\pi^2 \approx 0.6 \) (the reciprocal of Euler's result). On the other hand, Euler's result and its generalizations appear in the field of statistical mechanics.

CAUTION When using L'Hôpital's Rule, be sure to take the derivative of the numerator and denominator separately:

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]

Do not differentiate the quotient function \(y = f(x)/g(x) \).
Assumptions Matter
uses short explanations and well-chosen counterexamples to help students appreciate why hypotheses are needed in theorems.

EXAMPLE 3 Assumptions Matter
Show that the Product Law cannot be applied to \(\lim_{x \to 0} f(x)g(x) \) if \(f(x) = x \) and \(g(x) = x^{-1} \).

Solution
For all \(x \neq 0 \), we have \(f(x)g(x) = x \cdot x^{-1} = 1 \), so the limit of the product exists:

\[
\lim_{x \to 0} f(x)g(x) = \lim_{x \to 0} 1 = 1
\]

However, \(\lim x^{-1} \) does not exist because \(g(x) = x^{-1} \) approaches \(\infty \) as \(x \to 0^+ \) and it approaches \(-\infty \) as \(x \to 0^- \). Therefore, the Product Law cannot be applied and its conclusion does not hold:

\[
(\lim_{x \to 0} f(x))(\lim_{x \to 0} g(x)) \neq (\lim_{x \to 0} x)(\lim_{x \to 0} x^{-1})
\]

(Does not exist)

Ch. 2, p. 58

Section Summaries summarize a section’s key points in a concise and useful way and emphasize for students what is most important in each section.

Section Exercise Sets offer a comprehensive set of exercises closely coordinated with the text. These exercises vary in difficulty from routine, to moderate, to more challenging. Also included are icons indicating problems that require the student to give a written response \(\square \) or require the use of technology \(\square \).

Chapter Review Exercises offer a comprehensive set of exercises closely coordinated with the chapter material to provide additional problems for self-study or assignments.

ACKNOWLEDGMENTS

Colin Adams and W. H. Freeman and Company are grateful to the many instructors from across the United States and Canada who have offered comments that assisted in the development and refinement of this book. These contributions included class testing, manuscript reviewing, problems reviewing, and participating in surveys about the book and general course needs.

ALABAMA Tammy Potter, Gaithers State Community College; David Dempsey, Jacksonville State University; Edwin Smith, Jacksonville State University; Jeff Dodd, Jacksonville State University; Douglas Bailer, Northeast Alabama Community College; Michael Hicks, Shelton State Community College; Patricia C. Eiland, Troy University, Montgomery Campus; Chadia Affne Aji, Tuskegee University; James L. Wang, The University of Alabama; Stephen Brick, University of South Alabama; Joseph Feldvoss, University of South Alabama; ALASKA Mark A. Fitch, University of Alaska Anchorage; Kamal Narang, University of Alaska Anchorage; Alexei Rybkin, University of Alaska Fairbanks; Martin Getz, University of Alaska Fairbanks; ARIZONA Stefania Tracogna, Arizona State University; Bruno Welfert, Arizona State University; Light Bryant, Arizona Western College; Daniel Russow, Arizona Western College; Jennifer Jameson, Cochise College; George Cole, Mesa Community College; David Schultz, Mesa Community College; Michael Bezusko, Pima Community College, Desert Vista Campus; Garry Carpenter, Pima Community College, Northwest Campus; Paul Flasch, Pima County Community College; Jessica Knapp, Pima Community College, Northwest Campus; Roger Werbly, Pima County Community College; Katie Louchart, Northern Arizona University; Janet McShane, Northern Arizona University; Donna M. Krawczyk, The University of Arizona; ARKANSAS Deborah Parker, Arkansas Northeastern College; J. Michael Hall, Arkansas State University; Kevin Cornelius, Ouachita Baptist University; Hyungkoo Mark Park, Southern Arkansas University; Katherine Pinzon, University of Arkansas at Fort Smith; Denise LeGrand, University of Arkansas at Little Rock; John Anulis, University of Arkansas at Monticello; Erin Haller, University of Arkansas, Fayetteville; Shannon Dingman, University of Arkansas, Fayetteville; Daniel J. Arrigo, University of Central Arkansas; CALIFORNIA Michael S. Gagliardo, California Lutheran University; Harvey Greenwald, California Polytechnic State University, San Luis Obispo; Charles Hale, California Polytechnic State University; John Hagen, California Polytechnic State University, San Luis Obispo; Donald Hartig, California Polytechnic State University, San Luis Obispo; Colleen Margarita Kirk, California Polytechnic State University, San Luis Obispo; Lawrence Sze, California Polytechnic State University, San Luis Obispo; Raymond Terry, California Polytechnic State University, San Luis Obispo; James D. McKinney, California State Polytechnic University, Pomona; Robin Wilson, California State Polytechnic University, Pomona; Charles Lam, California State University, Bakersfield; David McKay, California State University, Long Beach; Melvin Lax, California State University, Long Beach; Wallace A. Etterbeek, California State University, Sacramento; Mohamed Al-lali, Chapman University; George Rhys, College of the Canyons; Janice Hector, DeAnza College; Isabelle Saber, Glendale Community College;
Peter Stathis, Glendale Community College; Douglas B. Lloyd, Golden West College; Thomas Scardina, Golden West College; Kristin Hartford, Long Beach City College; Eduardo Arismendi-Parodi, Orange Coast College; Mitchell Alves, Orange Coast College; Yen-khun Yu, Orange Coast College; Yan Tian, Palomar College; Donna E. Nordstrom, Pasadena City College; Don L. Hancock, Pepperdine University; Kevin Iga, Pepperdine University; Adolfo J. Rumbos, Pomona College; Virginia May, Sacramento City College; Carlos de la Lama, San Diego City College; Matthias Beck, San Francisco State University; Arck Goetz, San Francisco State University; Nick Bykov, San Joaquin Delta College; Eleanor Lang Kendrick, San Joaquin Delta College; Richard Salome, Scotts Valley High School; Norman Feldman, Sonoma State University; Elaine McDonald, Sonoma State University; John D. Eggers, University of California, San Diego; Adam Bowman, University of California, San Diego; Bruno Nachtergaele, University of California, Davis; Boumediene Hamzi, University of California, Davis; Olga Radko, University of California, Los Angeles; Richard Leborne, University of California, San Diego; Peter Steenughen, University of California, San Diego; Jeffrey Stopple, University of California, Santa Barbara; Guofang Wei, University of California, Santa Barbara; Rick A. Simon, University of La Verne; Alexander E. Koonce, University of Redlands; Mohamad A. Alwash, West Los Angeles College; Calder Daenzer, University of California, Berkeley; Jude Thaddeus Socrates, Pasadena City College; Cheuk Ying Lam, California State University Bakersfield; Borislava Gutarts, California State University, Los Angeles; Daniel Rogalski, University of California, San Diego; Don Hartig, California Polytechnic State University; Anne Voht, Palomar College; Jay Wiestling, Palomar College; Lindsey Bramlett-Smith, Santa Barbara City College; Dennis Morrow, College of the Canyons; Sydney Shanks, College of the Canyons; Bob Tolar, College of the Canyons; Gene W. Majors, Fullerton College; Robert Diaz, Fullerton College; Gregory Nguyen, Fullerton College; Paul Sjoberg, Fullerton College; Deborah Ritchie, Moorpark College; Maya Rahnamaie, Moorpark College; Kathy Fink, Moorpark College; Christine Cole, Moorpark College; K. Di Passero, Moorpark College; Sid Kolpas, Glendale Community College; Miriam Castronuevo, Irvine Valley College; Ilkner Erbas-White, Irvine Valley College; Corey Manchester, Grossmont College; Donald Murray, Santa Monica College; Barbara McGee, Cuesta College; Marie Larsen, Cuesta College; Joe Vasta, Cuesta College; Mike Kinter, Cuesta College; Mark Turner, Cuesta College; G. Lewis, Cuesta College; Daniel Kleinfelter, College of the Desert; Esmeralda Medrano, Citrus College; James Swatzel, Citrus College; Mark Littrell, Rio Hondo College; Rich Zucker, Irvine Valley College; Cindy Torigison, Palomar College; Craig Chamberline, Palomar College; Lindsay Lang, Diablo Valley College; Sam Needham, Diablo Valley College; Dan Bach, Diablo Valley College; Ted Nigritio, Diablo Valley College; Monte Collazo, Diablo Valley College; Tina Levy, Diablo Valley College; Mona Panchal, East Los Angeles College; Ron Sandvick, San Diego Mesa College; Larry Handa, West Valley College; Frederick Utter, Santa Rosa Junior College; Darshod Mosh, DeAnza College; Dori Bambhania, DeAnza College; Charles Klein, DeAnza College; Tammie Marshall, Cuyamaca College; Inworth Leu, Cuyamaca College; Michael Moretti, Bakersfield College; Janet Tarjan, Bakersfield College; Haot Le, San Diego City College; Richard Fielding, Southwestern College; Shannon Gracey, Southwestern College; Janet Mazzarella, Southwestern College; Christina Soderlund, California Lutheran University; Rudy Gonzalez, Citrus College; Robert Crise, Crafton Hills College; Joseph Kazimir, East Los Angeles College; Randall Rogers, Fullerton College; Peter Bouzar, Golden West College; Linda Ternes, Golden West College; Hisao-Ling Liu, Los Angeles Trade Tech Community College; Yu-Chung Chang-Hou, Pasadena City College; Guillermo Alvarez, San Diego City College; Ken Kuniyuki, San Diego Mesa College; Laleh Howard, San Diego Mesa College; Sharareh Ma-soonan, Santa Barbara City College; Jared Hersh, Santa Barbara City College; Betty Wong, Santa Monica College; Brian Rodas, Santa Monica College; Vessa Chiek, Riverside City College

COLORADO

Tony Weathers, Adams State College; Erica Johnson, Arapahoe Community College; Karen Walters, Arapahoe Community College; Joshua D. Lai-son, Colorado College; G. Gustave Greivel, Colorado School of Mines; Holly Eklund, Colorado School of Mines; Mike Nicholas, Colorado School of Mines; Jim Thomas, Colorado State University; Eleanor Storey, Front Range Community College; Larry Johnson, Metropolitan State College of Denver; Carol Kaper, Morgan Community College; Larry A. Pontaski, Pueblo Community College; Terry Chen Reeves, Red Rocks Community College; Debra S. Carney, Colorado School of the Mines; Louis A. Talman, Metropolitan State College of Denver; Mary A. Nelson, University of Colorado at Boulder; J. Kyle Pula, University of Denver; Jon Von Stroh, University of Denver; Sharon Butz, University of Denver; Daniel Daly, University of Denver; Tracy Lawrence, Arapahoe Community College; Shannah Mahan, University of Colorado Denver; Adam Norris, University of Colorado at Boulder; Anca Radulescu, University of Colorado at Boulder; Mike Kawai, University of Colorado Denver; Janet Barnett, Colorado State University—Pueblo; Byron Hurley, Colorado State University—Pueblo; Jonathan Portiz, Colorado State University—Pueblo; Bill Emerson, Metropolitan State College of Denver; Suzanne Caukl, Regis University; Anton Dzhamay, University of Northern Colorado

CONNECTICUT

Jeffrey McGowan, Central Connecticut State University; Ivan Gotchev, Central Connecticut State University; Charles Waiveris, Central Connecticut State University; Christopher Hammond, Connecticut College; Anthony Y. Aidoo, Eastern Connecticut State University; Kim Ward, Eastern Connecticut State University; Joan W. Weiss, Fairfield University; Theresa M. Sandifer, Southern Connecticut State University; Cristian Rios, Trinity College; Melanie Stein, Trinity College; Steven Orszag, Yale University; DELWARE, Patrick F. Mw erinde, University of Delaware

DISTRICT OF COLUMBIA

Frey Hakim, American University; Joshua M. Lansky, American University; James A. Nickerson, Gallaudet University

FLORIDA

Gregory Spradlin, Embry-Riddle University at Daytona Beach; Daniela Popova, Florida Atlantic University; Abbas Zadegan, Florida International University; Gerardo Aladro, Florida International University; Gregory Henderson, Hillsborough Community College; Pam Crawford, Jacksonville University; Penny Morris, Polk Community College; George Schultz, St. Petersburg College; Jimmy Chang, St. Petersburg College; Carolyn Kistner, St. Petersburg College; Aida Kadic-Galeb, The University of Tampa; Constance Schober, University of Central Florida; S. Roy Choudhury, University of Central Florida; Kurt Overhiser, Valencia Community College; Jongmin Yong, University of Central Florida; Giray Okten, The Florida State University; Frederick Hoffman, Florida Atlantic University; Thomas Beaty, Florida Gulf Coast University; Witny Librun, Palm Beach Community College North; Joe Castillo, Broward County College; Joann Lewin, Edison College; Donald Ransford, Edison College; Scott Berthiaume, Edison College; Alexander Ambrioso, Hillsborough Community College; Jane Golden, Hillsborough Community College; Susan Hiatt, Polk Community College—Lakeland Campus; Li Zhou, Polk Community College—Winter Haven Campus; Heather Edwards, Seminole Community College; Benjamin Landon, Daytona State College; Tony Malaret, Seminole Community College; Lane Yosbury, Seminole Community College; William Rickman, Seminole Community College; Cheryl Cantwell, Seminole Community College; Michael Schramm, Indian River State College; Janette Campbell, Palm Beach Community College—Lake Worth; Kwi-Lee Chui, University of Florida; Shu-Jen Huang, University of Florida

GEORGIA

Christian Barrientos, Clayton State University; Thomas T. Morley, Georgia Institute of Technology; Doron Lubsinsky, Georgia Institute of Technology; Ralph Wildy, Georgia Military College; Shahram Nazari, Georgia Perimeter College; Alice Eiko Pierce, Georgia Perimeter College; Clarkston Campus; Susan Nelson, Georgia Perimeter College; Clarkson Campus; Laurene Faussett, Georgia Southern University; Scott N. Kessey, Georgia Southern University; Jimmy L. Solomon, Georgia Southern University; Allen G. Fuller, Gordon College; Marwan Zabawli, Gordon College; Carolyn A. Yackel, Mercer University; Blaine Hollingsworth, Middle Georgia State College; Shahryar Heydari, Piedmont College; Dan Kannan, The University of Georgia; June

ACKNOWLEDGMENTS
Jones, Middle Georgia State College; Abdelkrim Brania, Morehouse College; Ying Wang, Augusta State University; James M. Benedict, Augusta State University; Kouang Law, Georgia Perimeter College; Rob Williams, Georgia Perimeter College; Alvinia Alkison, Georgia Gwinnett College; Amy Erickson, Georgia Gwinnett College HAWAII Shuguang Li, University of Hawaii at Hilo; Raina B. Ivanova, University of Hawaii at Hilo IDAHO Uwe Kaiser, Boise State University; Charles Kerr, Boise State University; Zach Teitler, Boise State University; Otis Kenny, Boise State University; Alex Feldman, Boise State University; Doug Bullock, Boise State University; Brian Dietel, Lewis-Clark State College; Ed Komnev, Northwest Nazarene University; Cynthia Piez, University of Idaho ILLINOIS Chris Morin, Blackburn College; Alberto L. Delgado, Bradley University; John Haverhals, Bradley University; Herbert E. Kasube, Bradley University; Marvin Dubet, Lake Forest College; Marvin A. Gordon, Lake Forest Graduate School of Management; Richard J. Maher, Loyola University Chicago; Joseph H. Mayne, Loyola University Chicago; Marian Gidea, Northeastern Illinois University; John M. Alongi, Northwestern University; Miguel Angel Lerna, Northwestern University; Mehmet Dik, Rockford College; Tammy Voepel, Southern Illinois University Edwardsville; Rahim G. Karimpour, Southern Illinois University; Thomas Smith, University of Chicago; Laura DeMarco, University of Illinois; Evangelos Kobotis, University of Illinois at Chicago; Jennifer McNeill, University of Illinois at Urbana-Champaign; Timur Oikkberg, University of Illinois at Urbana-Champaign; Manouchehr Azad, Harper College; Minhua Liu, Harper College; Mary Hill, College of DuPage; Arthur N. DiVito, Harold Washington College INDIANA Vania Mascioni, Ball State University; Julie A. Killingbeck, Ball State University; Kathie Preed, Butler University; Zixin Wu, DePaul University; John P. Boardman, Franklin College; Robert N. Talbert, Franklin College; Robin Symonds, Indiana University Kokomo; Henry L. Wyzinski, Indiana University Northwest; Melvin Royer, Indiana Wesleyan University; Gail P. Greene, Indiana Wesleyan University; David L. Finn, Rose-Hulman Institute of Technology; Chong Keat Arthur Lim, University of Notre Dame IOWA Nasser Dastran, Buena Vista University; Mark A. Mills, Central College; Karen Ernst, Hawkeye Community College; Richard Mason, Indian Hills Community College; Robert S. Keller, Loras College; Eric Robert Westlund, Luther College; Weimin Han, The University of Iowa KANSAS Timothy W. Flood, Pittsburg State University; Sarah Cook, Washburn University; Kevin E. Charlwood, Washburn University; Conrad Uwe, Cowley County Community College; David N. Yetter, Kansas State University KENTUCKY Alex M. McMallister, Center College; Sandy Spears, Jefferson Community & Technical College; Leanne Faulkner, Kentucky Wesleyan College; Donald O. Clayton, Madisonville Community College; Thomas Riedel, University of Louisville; Mananbendra Das, University of Louisville; Lee Larson, University of Louisville; Jens E. Harlander, Western Kentucky University; Philip McCarty, Northern Kentucky University; Andy Long, Northern Kentucky University; Omer Yayenie, Murray State University; Donald Krug, Northern Kentucky University LOUISIANA William Forrest, Baton Rouge Community College; Paul Wayne Britt, Louisiana State University; Galen Turet, Louisiana Tech University; Randall Wills, Southeastern Louisiana University; Kent Neuberger, Southeastern Louisiana University; Guoli Ding, Louisiana State University; Julia Ledet, Louisiana State University; Brent Strunk, University of Louisiana at Monroe MAINE Andrew Knightly, The University of Maine; Sergey Lvin, The University of Maine; Joel W. Irish, University of Southern Maine; Laurie Woodman, University of Southern Maine; David M. Bradley, The University of Maine; William O. Bray, The University of Maine MARYLAND Leonid Stern, Towson University; Jacob Kogan, University of Maryland Baltimore County; Mark E. Williams, University of Maryland Eastern Shore; Austin A. Lobo, Washington College; Supawan Lertsrakai, Hartford Community College; Fary Sami, Hartford Community College; Andrew Bulleri, Howard Community College MASSACHUSETTS Sean McGrath, Algonquin Regional High School; Norton Starr, Amherst College; Renato Mirollo, Boston College; Emma Prevato, Boston University; Laura K Gross, Bridgewater State University; Richard H. Stout, Gordon College lege; Matthew P. Leingang, Harvard University; Suellen Robinson, North Shore Community College; Walter Stone, North Shore Community College; Barbara Lourd, Regis College; Andrew B. Perry, Springfield College; Tawanda Leke, Tufts University; Gary Simundza, Wentworth Institute of Technology; Mikhail Chkhenkeli, Western New England College; David Daniels, Western New England College; Alan Gorfín, Western New England College; Saeed Gharbani, Western New England College; Julian Fleron, Westfield State College; Maria Fung, Worcester State University; Brigitte Servatius, Worcester Polytechnic Institute; John Goulet, Worces ter Polytechnic Institute; Alexander Martinskoyvskiy, Northeastern University; Marie Cote, Boston College; Alexander Kastner, Williams College; Margaret Peard, Williams College; Mihai Stoiciu, Williams College MICHIGAN Mark E. Bollman, Albion College; Jim Chesla, Grand Rapids Community College; Jeanie Wald, Michigan State University; Alan A. Struthers, Michigan Technological University; Debra Pharo, Northwestern Michigan College; Anna Maria Spagnuolo, Oakland University; Diana Faoro, Romeo Senior High School; Andrew Strowe, University of Michigan–Dearborn; Daniel Stephen Drucker, Wayne State University; Christopher Cartwright, Lawrence Technological University; Jay Treiman, Western Michigan University MINNESOTA Bruce Bordwell, Anoka-Ramsey Community College; Robert Dobrow, Carleton College; Jessie K. Lenarz, Concordia College–Moorhead Minnesota; Bill Tomhaye, Concordia College; David L. Frank, University of Minnesota; Steven I. Sperber, University of Minnesota; Jeffrey T. McLean, University of St. Thomas; Chehrzad Shakiban, University of St. Thomas; Melissa Loe, University of St. Thomas; Nick Christopher Fiala, St. Cloud State University; Victor Padron, Normandale Community College; Mark Ahrens, Normandale Community College; Gerry Naughton, Century Community College; Car rie Naughton, Inver Hills Community College MISSISSIPPI Vivien G. Miller, Mississippi State University; Ted Dobson, Mississippi State University; Len Miller, Mississippi State University; Tristan Denley, The University of Mississippi MISSOURI Robert Robertson, Drury University; Gregory A. Mitchell, Metropolitan Community College–Penn Valley; Charles N. Curtis, Missouri Southern State University; Vivek Narayanan, Moberly Area Community College; Russell Blyth, Saint Louis University; Juliane Rainbolt, Saint Louis University; Blake Thornton, Saint Louis University; Kevin W. Hopkins, Southwest Baptist University; Joe Howe, St. Charles Community College; Wanda Long, St. Charles Community College; Andrew Stephon, St. Charles Community College; MONTANA Kelly Cline, Carroll College; Veronica Baker, Montana State University; Boge man; Richard C. Swanson, Montana State University; Thomas Hayes-McGoff, Montana State University; Nikolaus Vonessen, The University of Montana NEBRASKA Edward G. Reinke Jr., Concordia University; Judith Downey, University of Nebraska at Omaha NEVADA Jennifer Gorman, College of Southern Nevada; Jonathan Pearsall, College of Southern Nevada; Rohan Dalpatadu, University of Nevada, Las Vegas; Paul Ai zley, University of Nevada, Las Vegas NEW HAMPSHIRE Richard Jardine, Keene State College; Michael Cullinan, Keene State College; Roberta Kieronski, University of New Hampshire at Manchester; Erik Van Eer, Dartmouth College NEW JERSEY Paul S. Rossi, College of Saint Elizabeth; Mark Gali, Essex County College; Katarzyna Potocka, Ramapo College of New Jersey; Nora S. Thomber, Raritan Valley Community College; Abdulkadir Hassen, Rowan University; Olayi Ilicasu, Rowan University; Avraham Soffer, Rutgers, The State University of New Jersey; Chengwen Wang, Rutgers, The State University of New Jersey; Shabnam Beheshhti, Rutgers University, The State University of New Jersey; Stephen J. Greenfield, Rutgers, The State University of New Jersey; John T. SACcoman, Seton Hall University; Lawrence E. Levine, Stevens Institute of Technology; Jana Gevertz, The College of New Jersey; Barry Burd, Drew University; Penny Luczak, Camden County College; John Climent, Cecil Community College; Kristyanna Erickson, Cecil Community College; Eric Compton, Brookdale Community College; John Atsuwany, Atlantic Cape Community College NEW MEXICO Kevin Leith, Central New Mexico Community College; David Blankenbaker, Central New Mexico Community College; Joseph Lakey, New Mexico State University; Kees Onneweer, University of New Mexico; Jurg Bolli,
The University of New Mexico NEW YORK Robert C. Williams, Alfred University; Timmy G. Bremer, Broome Community College State University of New York; Joaquin O. Carbonara, Buffalo State College; Rachel S. Sanders, Buffalo State College; Rachel C. Cunningham, Buffalo State College; Rose Marie Castner, Canisius College; Sharon L. Sullivan, Catawa College; Fabio Nironi, Columbia University; Camil Muscala, Cornell University; Maria S. Terrell, Cornell University; Margaret Mulligan, Dominican College of Blaurock; Robert Andersen, Farmingdale State University of New York; Leonard Nissim, Fordham University; Jennifer Roche, Hobart and William Smith Colleges; James E. Carpenter, Iona College; Peter Shenkin, John Jay College of Criminal Justice/CUNY; Gordon Crandall, LaGuardia Community College/CUNY; Gilbert Traub, Maritime College, State University of New York; Paul E. Seeburger, Monroe Community College Brighton Campus; Abraham S. Mantell, Nassau Community College; Daniel D. Birmajer, Nazareth College; Sybil G. Shaver, Pace University; Margaret Kiehl, Rensselaer Polytechnic Institute; Carl V. Lutzer, Rochester Institute of Technology; Michael A. Radin, Rochester Institute of Technology; Hossein Shahmohamad, Rochester Institute of Technology; Thomas Rousseau, Siena College; Jason Hofstein, Siena College; Leon E. Gerber, St. John’s University; Christopher Bishop, Stony Brook University; James Fulton, Suffolk County Community College; John G. Michaels, SUNY Brockport; Howard J. Skogman, SUNY Brockport; Cristina Bucuta, SUNY Cortland; Jean Harper, SUNY Fredonia; David Hobby, SUNY New Paltz; Kelly Black, Union College; Thomas W. Cusick, University at Buffalo/The State University of New York; Gino Biondini, University at Buffalo/The State University of New York; Robert Koehler, University at Buffalo/The State University of New York; Donald Larson, University of Rochester; Robert Thompson, Hunter College; Ed Grossman, The City College of New York NORTH CAROLINA Jeffrey Clark, Elon University, William L. Burgin, Gaston College; Manouchehr H. Misaghi, Johnson C. Smith University; Legunchin L. Emmanwori, North Carolina A&T State University; Drew Pasteur, North Carolina State University; Demetric Labate, North Carolina State University; Mohammad Kazemi, The University of North Carolina at Charlotte; Richard Carmichael, Wake Forest University; Gretchen Wilke Whipple, Warren Wilson College; John Russell Taylor, University of North Carolina at Charlotte; Mark Ellis, Piedmont Community College NORTH DAKOTA Jim Cokayndall, North Dakota State University; Anthony J. Bevelacqua, The University of North Dakota; Richard P. Millsbaugh, The University of North Dakota; Thomas Glid sof, The University of North Dakota; Michele Iams, The University of North Dakota; Mohammad Khavanin, University of North Dakota OHIO Christopher Butler, Case Western Reserve University; Pamela Pierce, The College of Wooster; Barbara H. Margolius, Cleveland State University; Tzu-Yi Alan Yang, Columbus State Community College; Greg S. Goodhart, Columbus State Community College; Kelly C. Stady, Cuyahoga Community College; Brian T. Van Pelt, Cuyahoga Community College; David Robert Ericson, Miami University; Frederick S. Gass, Miami University; Thomas Stacklin, Ohio Dominican University; Vitaly Bergelson, The Ohio State University; Robert Knight, Ohio University; John R. Pather, Ohio University, Eastern Campus; Teresa Contenza, Otterbein College; Ali Hajjafar, The University of Akron; Jianping Zhu, The University of Akron; Ian Cough, University of Cincinnati Clermont College; Atif Abucida, University of Dayton; Judith McCrorey, The University of Findlay; Thomas S motzer, Youngstown State University; Angela Spalsburg, Youngstown State University; James Osterberg, The University of Cincinnati; Mi huela A. Popolicher, University of Cincinnati; Frederick Thulin, University of Illinois at Chicago; Weimian Han, The Ohio State University; Crichton Og le, The Ohio State University; Jackie Miller, The Ohio State University; Walter Mackey, Owens Community College; Jonathan Baker, Columbus State Community College OKLAHOMA Christopher Francisco, Oklahoma State University; Michael McClendon, University of Central Oklahoma; Teri Jo Murphy, The University of Oklahoma; Kimberly Adams, University of Tulsa; Shirley Pomerantz, University of Tulsa OREGON Lorna TenEyck, Chemeketa Community College; Angela Martinek, Linn-Benton Community College; Filiis Maisch, Oregon State University; Tevian Dray, Oregon State University; Mark Ferguson, Chemeketa Community College; Andrew Flight, Portland State University; Austina Fong, Portland State University; Jeannette R. Palmter, Portland State University PENNSYLVANIA John B. Polhill, Bloomsburg University of Pennsylvania; Russell B. Walker, Coastal Carolina University; Jon A. Beal, Clarion University of Pennsylvania; Kathleen Kane, Community College of Allegheny County; David A. Santos, Community College of Philadelphia; David S. Richeson, Dickinson College; Christine Marie Cezo, Gannon University; Monica Pierri-Galvao, Gannon University; John H. Ellison, Grove City College; Gary L. Thompson, Grove City College; Dale McIntyre, Grove City College; Dennis Benchoff, Harrisburg Area Community College; William A. Drumin, King’s College; Denise Reboli, King’s College; Chawne Kimber, Lafayette College; Elizabeth McMahon, Lafayette College; Lorenzo Trahli, Lafayette College; David L. Johnson, Lebanon Valley University; Matthew Hyatt, Lebanon Valley University; Zia Uddin, Lock Haven University of Pennsylvania; Donna A. Dietz, Mansfield University of Pennsylvania; Samuel Wilcock, Messiah College; Richard R. Kern, Montgomery County Community College; Michael Fraboni, Moravian College; Neena T. Chopra, The Pennsylvania State University; Boris A. Datskovsky, Temple University; Dennis M. Deteruck, University of Pennsylvania; Jacob Burbee, University of Pittsburgh; Mohammed Yahid, Ursinus College; Timothy Feeman, Villanova University; Douglas Norton, Villanova University; Robert Styer, Villanova University; Michael J. Fisher, West Chester University of Pennsylvania; Peter Brooksbank, Bucknell University; Emily Dryden, Bucknell University; Larry Friesen, Butler County Community College; Lisa Angelo, Bucks County College; Elaine Fitt, Bucks County College; Pauline Chow, Harrisburg Area Community College; Diane Benner, Harrisburg Area Community College; Emily B. Dryden, Bucknell University; Erica Chauvet, Waynesburg University RHODE ISLAND Thomas F. Banchorff, Brown University; Yajini Warnapala-Yehiia, Roger Williams University; Carol Gibbons, Salve Regina University; Joe Allen, Community College of Rhode Island; Michael Latina, Community College of Rhode Island SOUTH CAROLINA Stanley O. Perrine, Charleston Southern University; Joan Hoffacker, Clemson University; Constance C. Edwards, Coastal Carolina University; Thomas L. Fitzkee, Francis Marion University; Richard West, Francis Marion University; John Harris, Furman University; Douglas B. Meade, University of South Carolina; George Androulakis, University of South Carolina; Art Mark, University of South Carolina Aiken; Sherry Biggers, Clemson University; Mary Zachary Krohn, Clemson University; Andrew Incognito, Coastal Carolina University; Deanna Caveny, College of Charleston SOUTH DAKOTA Dan Kemp, South Dakota State University TENNESSEE Andrew Miller, Belmont University; Arthur A. Yanushka, Christian Brothers University; Laurie Plunk Dishman, Cumberland University; Maria Siopis, Maryville College; Beth Long, Pellissippi State Technical Community College; Judith Fethe, Pellissippi State Technical Community College; Andrezj Gutek, Tennessee Technological University; Sabine Le Borne, Tennessee Technological University; Richard Le Borne, Tennessee Technological University; Maria F. Botheloh, University of Memphis; Roberto Triggiani, University of Memphis; Jim Conant, The University of Pennsylvania; Pavlos Tservias, The University of Tennessee; Luis Renato Abbi Finito, University of Tennessee, Knoxville; Jennifer Fowler, University of Tennessee, Knoxville; Jo Ann W. Stapes, Vanderbilt University; Dave Vinson, Pellissippi State Community College; Jonathan Lamb, Pellissippi State Community College TEXAS Sally Haas, Angellina College; Karl Havlak, Angelo State University; Michael Huff, Austin Community College; John M. Davis, Baylor University; Scott Wilde, Baylor University and The University of Texas at Arlington; Rob Eby, Blinn College; Tim Sever, Houston Community College—Central; Ernest Lowrey, Houston Community College—Northeast; Brian Lo f, Sam Houston State University; Jianzhong Wang, Sam Houston State University; Shirley Davis, South Plains College; Todd M. Steckler, South Texas College; Mary E. Wagner-Krankel, St. Mary’s University; Elise Z. Price, Tarrent County College, Southeast Campus; David Price, Tarrent County College, Southeast Campus; Runchao Lin, Texas A&M University; Michael Stecher, Texas A&M University; Philip B. Yasskin, Texas A&M University; Brock Williams, Texas
ACKNOWLEDGMENTS

Tech University; I. Wayne Lewis, Texas Tech University; Robert E. Byerly, Texas Tech University; Ellina Grigorieva, Texas Woman's University; Abraham Haje, Tomball College; Scott Chapman, Trinity University; Elias Y. Deeba, University of Houston Downtown; Jianping Zhu, The University of Texas at Arlington; Tuncay Aktosun, The University of Texas at Arlington; John E. Gilbert, The University of Texas at Austin; Jorge R. Viramontes-Olivias, The University of Texas at El Paso; Fenxing Chen, University of Texas at San Antonio; Melanie Ledwig, The Victoria College; Gary L. Walls, West Texas A&M University; William Heirrer, Harris County Junior College; Lisa Rezac, University of St. Thomas; Raymond J. Cannon, Baylor University; Kathryn Flores, McMurry University; Jacqueline A. Jensen, Sam Houston State University; James Galloway, Collin County College; Raja Khoury, Collin County College; Annette Benbow, Tarrant County College–Northwest; Greta Harland, Tarrant County College–Northeast; Doug Smith, Tarrant County College–Northeast; Marcus McGuff, Austin Community College–Clarence; Clarence McGuff, Austin Community College–Steve Rodi, Austin Community College; Vicki Payne, Austin Community College; Anne Pradera, Austin Community College; Christy Babu, Laredo Community College; Deborah Hewitt, McLennan Community College; Hugh Griffith, Mt. San Antonio College; Utah; Ruth Trygstad, Salt Lake City Community College; Virginia; Verne E. Leininger, Bridgewater College; Brian Bradie, Christopher Newport University; Hongwei Chen, Christopher Newport University; John J. Avioli, Christopher Newport University; James H. Martin, Christopher Newport University; David Wen, George Mason University; Mike Shiraai, Germanna Community College; Julie Clark, Hollins University; Ramon A. Mata-Toledo, James Madison University; Adrian Riskin, Mary Baldwin College; Josephine Letts, Ocean Lakes High School; Przemyslaw Bogacki, Old Dominion University; Deborah Denvir, Randolph-Macon Woman's College; Linda Powers, Virginia Tech; Gregory Dresden, Washington and Lee University; Jacob A. Siehler, Washington and Lee University; Yuan-Jen Chiang, University of Mary Washington; Nicholas Hamblet, University of Virginia; Bernard Fulgham, University of Virginia; Manouchehr “Mike” Mohajeri, University of Virginia; Lester Frank Caudill, University of Richmond; Vermont; David Dorman, Middlebury College; Rachel Repstad, Vermont Technical College; Washington; Jennifer Laveglia, Bellevue Community College; David Whittaker, Cascadia Community College; Sharon Saxton, Cascadia Community College; Aaron Montgomery; Central Washington University; Patrick Averbeck, Edmonds Community College; Tana Knudson, Heritage University; Kelly Brooks, Pierce College; Shana P. Calaway, Shoreline Community College; Abel Gage, Skagit Valley College; Scott MacDonald, Tacoma Community College; Jason Preszler, University of Puget Sound; Martha A. Gady, Whitworth College; Wayne L. Neidhardt, Edmonds Community College; Simrat Ghuman, Bellevue College; Jeff Eldridge, Edmonds Community College; Kris Kissel, Green River Community College; Laura Moore-Mueller, Green River Community College; David Stacy, Bellevue College; Eric Schultz, Walla Walla Community College; Julienne Sachs, Walla Walla Community College; West Virginia; David Cusick, Marshall University; Ralph Oberste-Vorth, Marshall University; Suda Kunysongy, Shepard University; Nicholas Martin, Shepard University; Rajeev Raram, Shepard University; Xiaohong Zhang; West Virginia State University; Sam B. Nadler, West Virginia University of West Virginia; Claudia Stewart, Casper College; Pete Wildman, Casper College; Charles Newberg, Western Wyoming Community College; Lynne Ippina, University of Wyoming; John Spitter, University of Wyoming; Wisconsin; Erik R. Tou, Carriage College; Paul Bankston, Marquette University; Jane Nichols, Milwaukee School of Engineering; Yvonne Yasz, Milwaukee School of Engineering; Simei Tong, University of Wisconsin–Eau Claire; Terry Nyman, University of Wisconsin–Fox Valley; Robert L. Wilson, University of Wisconsin–Madison; Dietrich A. Ulenbrock, University of Wisconsin–Madison; Paul Milewski, University of Wisconsin–Madison; Donald Solomon, University of Wisconsin–Madison; Kandasamy Muthavel, University of Wisconsin–Oshkosh; Sheryl Wills, University of Wisconsin–Platteville; Kathy A. Tomlinson, University of Wisconsin–River Falls; Cynthia L. McCabe, University of Wisconsin–Stevens Point; Matthew Welz, University of Wisconsin–Stevens Point; Joy Becker, University of Wisconsin–Stout; Jeganathan Srisukandarajah, Madison Area Tech College; Wayne Sigelko, Madison Area Tech College; Canada; Don St. Jean, George Brown College; Robert Dawson, St. Mary's University; Len Bos, University of Calgary; Tony Ware, University of Calgary; Peter David Perez, University of Calgary; John O’Connor, Grant MacEwan University; Michael P. Lamoureux, University of Calgary; Yousry Elsabrouty, University of Calgary; Darja Kalajdzievski, University of Manitoba; Andrew Skelton, University of Guelph; Douglas Fureniick, University of Regina.

The creation of this third edition could not have happened without the help of many people. First, I want to thank the individuals whom I have worked with at W. H. Freeman. Terri Ward and Ruth Baruth convinced me that I should take on this project, and I am grateful to them for their support and their confidence in my ability to tackle it. Throughout this process, Terri has been a huge help. I can always count on her to keep this train on track. Katrina Wilhelm has also been an amazing resource. She brings calm competence and organizational skills that constantly impress me. Tony Palermino has provided expert editorial help throughout the process. He is incredibly knowledgeable about all aspects of mathematics textbooks and has an eye for the details that make a book work. Kerry O’Shaughnessy kept the production process moving forward in a timely manner without ever resorting to threats. John Rogosich was the superb compositor. Patti Brecht handled the copyediting in an expert manner. My thanks are also due to W. H. Freeman’s superb production team: Janice Donnola, Eileen Liang, Blake Logan, Paul Rohloff, and to Ron Weickart at Network Graphics for his skilled and creative execution of the art program.

Many faculty gave critical feedback on the second edition, and their names appear above. I am deeply grateful to them. I do want to particularly thank all of the advisory board members who gave me feedback month after month. Maria Shea Terrell continually sent me excellent unsolicited feedback until I asked to have her on the board. Then it became solicited. The accuracy reviewers, John Alongi, CK Cheung, Kwai-Lee Chui, John Davis, John Eggers, Stephen Greenfield, Roger Lipsett, Vivek Narayan, and Olga Radko, helped to bring the final version into the form in which it now appears. You think we have found the errors, but you have not. I also want to thank my colleagues in the Mathematics and Statistics Department at Williams College. I have always known I am incredibly lucky to be a member of this department. There are so many interesting projects and clever pedagogical ideas coming out of the department that it motivates me just because I am trying to keep up.

I would further like to thank my students. Their enthusiasm is what makes teaching fun. I enjoy coming to work every day, and they are what make it such a pleasure.

Finally, I want to thank my two children, Alexa and Colton. They are the ones who keep me grounded, who remind me what works and what doesn’t in the real world. This book is dedicated to them.

Colin Adams
Functions that yield the amount of seismic activity as a function of time help scientists to predict volcanic eruptions and earthquakes. (Douglas Peebles/Science Source)

1 PRECALCULUS REVIEW

Calculus builds on the foundation of algebra, analytic geometry, and trigonometry. In this chapter, therefore, we review some concepts, facts, and formulas from precalculus that are used throughout the text. In the last section, we discuss ways in which technology can be used to enhance your visual understanding of functions and their properties.

1.1 Real Numbers, Functions, and Graphs

We begin with a short discussion of real numbers. This gives us the opportunity to recall some basic properties and standard notation.

A real number is a number represented by a decimal or “decimal expansion.” There are three types of decimal expansions: finite, repeating, and infinite but nonrepeating. For example,

\[\frac{3}{8} = 0.375, \quad \frac{1}{7} = 0.142857142857 \ldots = 0.1\overline{42857} \]

The number \(\frac{3}{8} \) is represented by a finite decimal, whereas \(\frac{1}{7} \) is represented by a repeating or periodic decimal. The bar over 142857 indicates that this sequence repeats indefinitely. The decimal expansion of \(\pi \) is infinite but nonrepeating.

The set of all real numbers is denoted by a boldface \(\mathbb{R} \). When there is no risk of confusion, we refer to a real number simply as a number. We also use the standard symbol \(\in \) for the phrase “belongs to.” Thus,

\[a \in \mathbb{R} \quad \text{reads} \quad “a \text{ belongs to } \mathbb{R}” \]

The set of integers is commonly denoted by the letter \(\mathbb{Z} \) (this choice comes from the German word Zahl, meaning “number”). Thus, \(\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \} \). A whole number is a nonnegative integer—that is, one of the numbers 0, 1, 2,

A real number is called rational if it can be represented by a fraction \(\frac{p}{q} \), where \(p \) and \(q \) are integers with \(q \neq 0 \). The set of rational numbers is denoted \(\mathbb{Q} \) (for “quotient”). Numbers that are not rational, such as \(\pi \) and \(\sqrt{2} \), are called irrational.

We can tell whether a number is rational from its decimal expansion: Rational numbers have finite or repeating decimal expansions, and irrational numbers have infinite, non-repeating decimal expansions. Furthermore, the decimal expansion of a number is unique, apart from the following exception: Every finite decimal is equal to an infinite decimal in which the digit 9 repeats. For example,

\[1 = 0.999\ldots, \quad \frac{3}{8} = 0.375 = 0.374999\ldots, \quad \frac{47}{20} = 2.35 = 2.34999\ldots \]

We visualize real numbers as points on a line (Figure 1). For this reason, real numbers are often referred to as points. The point corresponding to 0 is called the origin.

The absolute value of a real number \(a \), denoted \(|a| \), is defined by (Figure 2)

\[|a| = \text{distance from the origin} = \begin{cases} a & \text{if } a \geq 0 \\ -a & \text{if } a < 0 \end{cases} \]

For example, \(|1.2| = 1.2\) and \(|-8.35| = 8.35\). The absolute value satisfies

\[|a| = |-a|, \quad |ab| = |a||b| \]

Additional properties of real numbers are discussed in Appendix B.
The **distance** between two real numbers a and b is $|b - a|$, which is the length of the line segment joining a and b (Figure 3).

Two real numbers a and b are close to each other if $|b - a|$ is small, and this is the case if their decimal expansions agree to many places. More precisely, if the decimal expansions of a and b agree to k places (to the right of the decimal point), then the distance $|b - a|$ is at most 10^{-k}. Thus, the distance between $a = 3.1415$ and $b = 3.1478$ is at most 10^{-2} because a and b agree to two places. In fact, the distance is exactly $|3.1478 - 3.1415| = 0.0063$.

Beware that $|a + b|$ is not equal to $|a| + |b|$ unless a and b have the same sign or at least one of a and b is zero. If they have opposite signs, cancellation occurs in the sum $a + b$, and $|a + b| < |a| + |b|$. For example, $|2 + 5| = |2| + |5|$ but $|−2 + 5| = 3$, which is less than $|−2| + |5| = 7$. In any case, $|a + b|$ is never larger than $|a| + |b|$ and this gives us the simple but important **triangle inequality**:

$$ |a + b| \leq |a| + |b| $$

We use standard notation for intervals. Given real numbers $a < b$, there are four intervals with endpoints a and b (Figure 4). They all have length $b - a$ but differ according to which endpoints are included.

- **Closed interval** $[a, b]$ (endpoints included)
- **Open interval** (a, b) (endpoints excluded)
- **Half-open interval** $[a, b)$
- **Half-open interval** $(a, b]$

The closed interval $[a, b]$ is the set of all real numbers x such that $a \leq x \leq b$: $[a, b] = \{x \in \mathbb{R} : a \leq x \leq b\}$

We usually write this more simply as $\{x : a \leq x \leq b\}$, it being understood that x belongs to \mathbb{R}. The **open** and **half-open intervals** are the sets

- **Open interval** (a, b) (endpoints excluded)
- **Half-open interval** $[a, b)$
- **Half-open interval** $(a, b]$

The infinite interval $(-\infty, \infty)$ is the entire real line \mathbb{R}. A half-infinite interval is closed if it contains its finite endpoint and is open otherwise (Figure 5): $[a, \infty) = \{x : a \leq x\}$ and $(-\infty, b] = \{x : x \leq b\}$

Open and closed intervals may be described by inequalities. For example, the interval $(-r, r)$ is described by the inequality $|x| < r$ (Figure 6):

$$ |x| < r \iff -r < x < r \iff x \in (-r, r) $$

More generally, for an interval symmetric about the value c (Figure 7),

$$ |x - c| < r \iff c - r < x < c + r \iff x \in (c - r, c + r) $$

Closed intervals are similar, with $<$ replaced by \leq. We refer to r as the **radius** and to c as the **midpoint** or **center**. The intervals (a, b) and $[a, b]$ have midpoint $c = \frac{1}{2}(a + b)$ and radius $r = \frac{1}{2}(b - a)$ (Figure 7).
In Example 2 we use the notation \(\cup \) to denote “union”: The union \(A \cup B \) of sets \(A \) and \(B \) consists of all elements that belong to either \(A \) or \(B \) (or to both).

The term “Cartesian” refers to the French philosopher and mathematician René Descartes (1596–1650), whose Latin name was Cartesius. He is credited (along with Pierre de Fermat) with the invention of analytic geometry. In his great work _La Géométrie_, Descartes used the letters \(x, y, z \) for unknowns and \(a, b, c \) for constants, a convention that has been followed ever since.

EXAMPLE 1
Describe \([7, 13]\) using inequalities.

Solution The midpoint of the interval \([7, 13]\) is \(c = \frac{1}{2}(7 + 13) = 10 \) and its radius is \(r = \frac{1}{2}(13 - 7) = 3 \) (Figure 8). Therefore,

\[
[7, 13] = \{ x \in \mathbb{R} : |x - 10| \leq 3 \}
\]

EXAMPLE 2
Describe the set \(S = \{ x : \frac{1}{2}x - 3 > 4 \} \) in terms of intervals.

Solution It is easier to consider the opposite inequality \(\frac{1}{2}x - 3 \leq 4 \) first. By (2),

\[
\left| \frac{1}{2}x - 3 \right| \leq 4 \iff -4 \leq \frac{1}{2}x - 3 \leq 4
\]

\[
-1 \leq \frac{1}{2}x \leq 7 \quad \text{(add 3)}
\]

\[
-2 \leq x \leq 14 \quad \text{(multiply by 2)}
\]

Thus, \(\frac{1}{2}x - 3 \leq 4 \) is satisfied when \(x \) belongs to \([-2, 14]\). The set \(S \) is the complement, consisting of all numbers \(x \) not in \([-2, 14]\). We can describe \(S \) as the union of two intervals: \(S = (-\infty, -2) \cup (14, \infty) \) (Figure 9).

Graphing

Graphing is a basic tool in calculus, as it is in algebra and trigonometry. Recall that rectangular (or Cartesian) coordinates in the plane are defined by choosing two perpendicular axes, the \(x \)-axis and the \(y \)-axis. To a pair of numbers \((a, b) \) we associate the point \(P \) located at the intersection of the line perpendicular to the \(x \)-axis at \(a \) and the line perpendicular to the \(y \)-axis at \(b \) (Figure 10(A)). The numbers \(a \) and \(b \) are the \(x \)- and \(y \)-coordinates of \(P \). The \(x \)-coordinate is sometimes called the “abscissa” and the \(y \)-coordinate the “ordinate.” The _origin_ is the point with coordinates \((0, 0)\).

The axes divide the plane into four quadrants labeled I–IV, determined by the signs of the coordinates [Figure 10(B)]. For example, quadrant III consists of points \((x, y)\) such that \(x < 0 \) and \(y < 0 \).

The distance \(d \) between two points \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) is computed using the Pythagorean Theorem. In Figure 11, we see that \(\overrightarrow{P_1P_2} \) is the hypotenuse of a right triangle with sides \(a = |x_2 - x_1| \) and \(b = |y_2 - y_1| \). Therefore,

\[
d^2 = a^2 + b^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2
\]

We obtain the distance formula by taking square roots.

Distance Formula The distance between \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) is equal to

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]
A function $f : D \to Y$ is also called a “map.” The sets D and Y can be arbitrary. For example, we can define a map from the set of living people to the set of whole numbers by mapping each person to his or her year of birth. The range of this map is the set of years in which a living person was born. In multivariable calculus, the domain might be a set of points in the two-dimensional plane and the range a set of numbers, points, or vectors.

A point (x, y) lies on this circle if the distance from (x, y) to (a, b) is r:

$$\sqrt{(x - a)^2 + (y - b)^2} = r$$

Squaring both sides, we obtain the standard equation of the circle:

$$(x - a)^2 + (y - b)^2 = r^2$$

We now review some definitions and notation concerning functions.

DEFINITION A function f from a set D to a set Y is a rule that assigns, to each element x in D, a unique element $y = f(x)$ in Y. We write

$$f : D \to Y$$

The set D, called the domain of f, is the set of “allowable inputs.” For $x \in D$, $f(x)$ is called the value of f at x (Figure 13). The range R of f is the subset of Y consisting of all values $f(x)$:

$$R = \{y \in Y : f(x) = y \text{ for some } x \in D\}$$

Informally, we think of f as a “machine” that produces an output y for every input x in the domain D (Figure 14).

The first part of this text deals with numerical functions f, where both the domain and the range are sets of real numbers. We refer to such a function as f and its value at x as $f(x)$. The letter x is used often to denote the independent variable that can take on any value in the domain D. We write $y = f(x)$ and refer to y as the dependent variable (because its value depends on the choice of x).

When f is defined by a formula, its natural domain is the set of real numbers x for which the formula is meaningful. For example, the function $f(x) = \sqrt{9 - x}$ has domain $D = \{x : x \leq 9\}$ because $\sqrt{9 - x}$ is defined if $9 - x \geq 0$. Here are some other examples of domains and ranges:

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>Domain D</th>
<th>Range R</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2</td>
<td>\mathbb{R}</td>
<td>${y : y \geq 0}$</td>
</tr>
<tr>
<td>$\cos x$</td>
<td>\mathbb{R}</td>
<td>${y : -1 \leq y \leq 1}$</td>
</tr>
<tr>
<td>$\frac{1}{1 + x}$</td>
<td>${x : x \neq -1}$</td>
<td>${y : y \neq 0}$</td>
</tr>
</tbody>
</table>

The graph of a function $y = f(x)$ is obtained by plotting the points $(a, f(a))$ for a in the domain D (Figure 15). If you start at $x = a$ on the x-axis, move up to the graph and then over to the y-axis, you arrive at the value $f(a)$. The absolute value $|f(a)|$ is the distance from the graph to the x-axis.

A zero or root of a function f is a number c such that $f(c) = 0$. The zeros are the values of x where the graph intersects the x-axis.

In Chapter 4, we will use calculus to sketch and analyze graphs. At this stage, to sketch a graph by hand, we can make a table of function values, plot the corresponding points (including any zeros), and connect them by a smooth curve.
EXAMPLE 3 Find the roots and sketch the graph of \(f(x) = x^3 - 2x \).

Solution First, we solve

\[
x^3 - 2x = x(x^2 - 2) = 0
\]

The roots of \(f \) are \(x = 0 \) and \(x = ±\sqrt{2} \). To sketch the graph, we plot the roots and a few values listed in Table 1 and join them by a curve (Figure 16).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x^3 - 2x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-4</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

Functions arising in applications are not always given by formulas. For example, data collected from observation or experiment define functions for which there may be no exact formula. Such functions can be displayed either graphically or by a table of values. Figure 17 and Table 2 display data collected by biologist Julian Huxley (1887–1975) in a study of the antler weight \(W \) of male red deer as a function of age \(t \). We will see that many of the tools from calculus can be applied to functions constructed from data in this way.

![Figure 17](image1.png)

Figure 17 Male red deer shed their antlers every winter and regrow them in the spring. This graph shows average antler weight as a function of age.

![Figure 18](image2.png)

Figure 18 Graph of \(4y^2 - x^3 = 3 \). This graph fails the Vertical Line Test, so it is not the graph of a function.

We can graph not just functions but, more generally, any equation relating \(y \) and \(x \). Figure 18 shows the graph of the equation \(4y^2 - x^3 = 3 \); it consists of all pairs \((x, y)\) satisfying the equation. This curve is not the graph of a function because some \(x \)-values are associated with two \(y \)-values. For example, \(x = 1 \) is associated with \(y = ±1 \). A curve is the graph of a function if and only if it passes the **Vertical Line Test**; that is, every vertical line \(x = a \) intersects the curve in at most one point.

We are often interested in whether a function is increasing or decreasing. Roughly speaking, a function \(f \) is increasing if its graph goes up as we move to the right and is decreasing if its graph goes down [Figures 19(A) and (B)]. More precisely, we define the notion of increase/decrease on an open interval.

A function \(f \) is:

- **increasing** on \((a, b)\) if \(f(x_1) < f(x_2) \) for all \(x_1, x_2 \in (a, b) \) such that \(x_1 < x_2 \).
- **decreasing** on \((a, b)\) if \(f(x_1) > f(x_2) \) for all \(x_1, x_2 \in (a, b) \) such that \(x_1 < x_2 \).
We say that \(f \) is \textbf{monotonic} if it is either increasing or decreasing. In Figure 19(C), the function is not monotonic because it is neither increasing nor decreasing for all \(x \).

A function \(f \) is called \textbf{nondecreasing} if \(f(x_1) \leq f(x_2) \) for \(x_1 < x_2 \) (defined by \(\leq \) rather than a strict inequality \(< \)). \textbf{Nonincreasing} functions are defined similarly. Function (D) in Figure 19 is nondecreasing, but it is not increasing on the intervals where the graph is horizontal. Function (E) is increasing everywhere even though it levels off momentarily.

Another important property is \textbf{parity}, which refers to whether a function is even or odd:

- \(f \) is \textbf{even} if \(f(-x) = f(x) \)
- \(f \) is \textbf{odd} if \(f(-x) = -f(x) \)

The graphs of functions with even or odd parity have a special symmetry:

- **Even function**: Graph is symmetric about the \(y \)-axis. This means that if \(P = (a, b) \) lies on the graph, then so does \(Q = (-a, b) \) [Figure 20(A)].
- **Odd function**: Graph is symmetric with respect to the origin. This means that if \(P = (a, b) \) lies on the graph, then so does \(Q = (-a, -b) \) [Figure 20(B)].

Many functions are neither even nor odd [Figure 20(C)].

EXAMPLE 4 Determine whether the function is even, odd, or neither.

\begin{align*}
(a) & \quad f(x) = x^4 \\
(b) & \quad g(x) = x^{-1} \\
(c) & \quad h(x) = x^2 + x
\end{align*}

\textbf{Solution}

\begin{enumerate}
\item \(f(-x) = (-x)^4 = x^4 \). Thus, \(f(x) = f(-x) \), and \(f \) is even.
\item \(g(-x) = (-x)^{-1} = -x^{-1} \). Thus, \(g(-x) = -g(x) \), and \(g \) is odd.
\item \(h(-x) = (-x)^2 + (-x) = x^2 - x \). We see that \(h(-x) \) is not equal to \(h(x) \) or to \(-h(x) = -x^2 - x \). Therefore, \(h \) is neither even nor odd.
\end{enumerate}

EXAMPLE 5 Using Symmetry Sketch the graph of \(f(x) = \frac{1}{x^2 + 1} \).

\textbf{Solution} The function \(f \) is positive \([f(x) > 0]\) and even \([f(-x) = f(x)]\). Therefore, the graph lies above the \(x \)-axis and is symmetric with respect to the \(y \)-axis. Furthermore,
Real Numbers, Functions, and Graphs

7

is decreasing for \(x \geq 0 \) (because a larger value of \(x \) makes the denominator larger). We use this information and a short table of values (Table 3) to sketch the graph (Figure 21). Note that the graph approaches the \(x \)-axis as we move to the right or left because \(f(x) \) gets closer to 0 as \(|x|\) increases.

Table 3

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{1}{x^2+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>(\pm 1)</td>
<td>(\frac{1}{2})</td>
</tr>
<tr>
<td>(\pm 2)</td>
<td>(\frac{1}{3})</td>
</tr>
</tbody>
</table>

Two important ways of modifying a graph are **translation** (or **shifting**) and **scaling**. Translation consists of moving the graph horizontally or vertically:

Definition Translation (Shifting)

- **Vertical translation** \(y = f(x) + c \): Shifts the graph by \(|c|\) units vertically, upward if \(c > 0 \) and downward if \(c < 0 \).
- **Horizontal translation** \(y = f(x + c) \): Shifts the graph by \(|c|\) units horizontally, to the right if \(c < 0 \) and \(c \) units to the left if \(c > 0 \).

Figure 22 shows the effect of translating the graph of \(f(x) = \frac{1}{x^2+1} \) vertically and horizontally.

Example 6 Figure 23(A) is the graph of \(f(x) = x^2 \), and Figure 23(B) is a horizontal and vertical shift of (A). What is the equation of graph (B)?

Solution Graph (B) is obtained by shifting graph (A) 1 unit to the right and 1 unit down. We can see this by observing that the point \((0, 0)\) on the graph of \(f \) is shifted to \((1, -1)\). Therefore, (B) is the graph of \(g(x) = (x - 1)^2 - 1 \).
Scaling (also called dilation) consists of compressing or expanding the graph in the vertical or horizontal directions:

DEFINITION Scaling

- **Vertical scaling** \(y = kf(x) \): If \(k > 1 \), the graph is expanded vertically by the factor \(k \). If \(0 < k < 1 \), the graph is compressed vertically. When the scale factor \(k \) is negative \((k < 0) \), the graph is also reflected across the \(x \)-axis (Figure 24).
- **Horizontal scaling** \(y = f(kx) \): If \(k > 1 \), the graph is compressed in the horizontal direction. If \(0 < k < 1 \), the graph is expanded. If \(k < 0 \), then the graph is also reflected across the \(y \)-axis.

The amplitude of a function is half the difference between its greatest value and its least value, if it has both a greatest value and least value. Thus, vertical scaling changes the amplitude by the factor \(|k| \).

EXAMPLE 7 Sketch the graphs of \(f(x) = \sin(\pi x) \) and its dilates \(f(3x) \) and \(3f(x) \).

Solution

The graph of \(f(x) = \sin(\pi x) \) is a sine curve with period 2. It completes one cycle over every interval of length 2—see Figure 25(A). It has amplitude 1.

- The graph of \(f(3x) = \sin(3\pi x) \) is a compressed version of \(y = f(x) \), completing three cycles instead of one over intervals of length 2 [Figure 25(B)]. It also has amplitude 1.
- The graph of \(y = 3f(x) = 3\sin(\pi x) \) differs from \(y = f(x) \) only in amplitude: It is expanded in the vertical direction by a factor of 3 [Figure 25(C)], so its amplitude is 3.

1.1 SUMMARY

- Absolute value: \(|a| = \begin{cases} a & \text{if } a \geq 0 \\ -a & \text{if } a < 0 \end{cases} \)
- Triangle inequality: \(|a + b| \leq |a| + |b| \)
- Four intervals with endpoints \(a \) and \(b \):
 \[(a, b), \quad [a, b], \quad [a, b), \quad (a, b] \]
- Writing open and closed intervals using inequalities:
 \[(a, b) = \{x : |x - c| < r \}, \quad [a, b] = \{x : |x - c| \leq r \} \]
 where \(c = \frac{1}{2}(a + b) \) is the midpoint and \(r = \frac{1}{2}(b - a) \) is the radius.
• Distance \(d\) between \((x_1, y_1)\) and \((x_2, y_2)\):

\[
d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]

• Equation of circle of radius \(r\) with center \((a, b)\):

\[
(x - a)^2 + (y - b)^2 = r^2
\]

• A zero or root of a function \(f\) is a number \(c\) such that \(f(c) = 0\).

• Vertical Line Test: A curve in the plane is the graph of a function if and only if each vertical line \(x = a\) intersects the curve in at most one point.

<table>
<thead>
<tr>
<th>Increasing: (f(x_1) < f(x_2)) if (x_1 < x_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nondecreasing: (f(x_1) \leq f(x_2)) if (x_1 < x_2)</td>
</tr>
<tr>
<td>Decreasing: (f(x_1) > f(x_2)) if (x_1 < x_2)</td>
</tr>
<tr>
<td>Nonincreasing: (f(x_1) \geq f(x_2)) if (x_1 < x_2)</td>
</tr>
</tbody>
</table>

• Even function: \(f(-x) = f(x)\) (graph is symmetric about the y-axis).

• Odd function: \(f(-x) = -f(x)\) (graph is symmetric about the origin).

• Four ways to transform the graph of \(f\):

<table>
<thead>
<tr>
<th>Formula</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) + c)</td>
<td>Shifts graph vertically (</td>
</tr>
<tr>
<td>(f(x + c))</td>
<td>Shifts graph horizontally (</td>
</tr>
<tr>
<td>(kf(x))</td>
<td>Scales graph vertically by factor (k); if (k < 0), graph is reflected across (x)-axis</td>
</tr>
<tr>
<td>(f(kx))</td>
<td>Scales graph horizontally by factor (k) (compresses if (k > 1); stretches if (0 < k < 1))</td>
</tr>
</tbody>
</table>

1.1 EXERCISES

Preliminary Questions

1. Give an example of numbers \(a\) and \(b\) such that \(a < b\) and \(|a| > |b|\).

2. Which numbers satisfy \(|a| = a\)? Which satisfy \(|a| = -a\)? What about \(|-a| = a|\)?

3. Give an example of numbers \(a\) and \(b\) such that \(|a + b| < |a| + |b|\).

4. Are there numbers \(a\) and \(b\) such that \(|a + b| > |a| + |b|\)?

5. What are the coordinates of the point lying at the intersection of the lines \(x = 9\) and \(y = -4\)?

6. In which quadrant do the following points lie?

(a) \((1, 4)\) \hspace{1cm} (b) \((-3, 2)\) \hspace{1cm} (c) \((4, -3)\) \hspace{1cm} (d) \((-4, -1)\)

7. What is the radius of the circle with equation \((x - 7)^2 + (y - 8)^2 = 9^2\)?

8. The equation \(f(x) = 5\) has a solution if (choose one):

(a) \(5\) belongs to the domain of \(f\).

(b) \(5\) belongs to the range of \(f\).

9. What kind of symmetry does the graph have if \(f(-x) = -f(x)\)?

10. Is there a function that is both even and odd?

Exercises

1. Use a calculator to find a rational number \(r\) such that \(|r - \pi^2| < 10^{-4}\).

2. Which of (a)–(f) are true for \(a = -3\) and \(b = 2\)?

(a) \(a < b\) \hspace{1cm} (b) \(|a| < |b|\) \hspace{1cm} (c) \(ab > 0\) \hspace{1cm} (d) \(3a < 3b\) \hspace{1cm} (e) \(-4a < -4b\) \hspace{1cm} (f) \(\frac{1}{a} < \frac{1}{b}\)

In Exercises 3–8, express the interval in terms of an inequality involving absolute value.

3. \([-2, 2]\) \hspace{1cm} 4. \((-4, 4)\) \hspace{1cm} 5. \((0, 4)\) \hspace{1cm} 6. \([-4, 0]\) \hspace{1cm} 7. \([1, 5]\) \hspace{1cm} 8. \((-2, 8)\)

9. \(|x| < 8\) \hspace{1cm} 10. \(|x - 12| < 8\) \hspace{1cm} 11. \(|2x + 1| < 5\) \hspace{1cm} 12. \(|3x - 4| < 2\)

In Exercises 9–12, write the inequality in the form \(a < x < b\).

13. \(|x| < 4\) \hspace{1cm} 14. \(|x| \leq 9\) \hspace{1cm} 15. \(|x - 4| < 2\) \hspace{1cm} 16. \(|x + 7| < 2\) \hspace{1cm} 17. \(|4x - 1| \leq 8\) \hspace{1cm} 18. \(|3x + 5| < 1\)

In Exercises 13–18, express the set of numbers \(x\) satisfying the given condition as an interval.
In Exercises 19–22, describe the set as a union of finite or infinite intervals.

19. \(\{ x : |x - 4| > 2 \} \)
20. \(\{ x : |2x + 4| > 3 \} \)
21. \(\{ x : |x^2 - 1| > 2 \} \)
22. \(\{ x : |x^2 + 2x| > 2 \} \)

23. Match (a)–(f) with (i)–(vi).
 (a) \(a > 3 \) \hspace{1cm} (b) \(|a - 5| < \frac{1}{3} \)
 (c) \(|a - \frac{1}{3}| < 5 \) \hspace{1cm} (d) \(|a| > 5 \)
 (e) \(|a - 4| < 3 \) \hspace{1cm} (f) \(1 \leq a \leq 5 \)

(i) \(a \) lies to the right of 3.
(ii) \(a \) lies between 1 and 7.
(iii) The distance from \(a \) to 5 is less than \(\frac{1}{2} \).
(iv) The distance from \(a \) to 3 is at most 2.
(v) \(a \) has less than 5 units from \(\frac{1}{3} \).
(vi) \(a \) lies either to the left of \(-5\) or to the right of 5.

24. Describe \(\left\{ x : \frac{x}{x + 1} < 0 \right\} \) as an interval. \text{Hint:} Consider the sign of \(x \) and \(x + 1 \) individually.

25. Describe \(\{ x : x^2 + 2x < 3 \} \) as an interval. \text{Hint:} Plot \(y = x^2 + 2x - 3 \).

26. Describe the set of real numbers satisfying \(|x - 3| = |x - 2| + 1 \) as a half-infinite interval.

27. Show that if \(a > b \) and \(a, b \neq 0 \), then \(b^{-1} > a^{-1} \), provided that \(a \) and \(b \) have the same sign. What happens if \(a > 0 \) and \(b < 0 \)?

28. Which \(x \) satisfies both \(|x - 3| < 2 \) and \(|x - 5| < 1 \)?

29. Show that if \(|a - 5| < \frac{1}{2} \) and \(|b - 8| < \frac{1}{2} \), then \(|(a + b) - 13| < 1 \). \text{Hint:} Use the triangle inequality \(|a + b| \leq |a| + |b| \).

30. Suppose that \(|x - 4| \leq 1 \).
 (a) What is the maximum possible value of \(|x + 4| \)?
 (b) Show that \(|x^2 - 16| \leq 9 \).

31. Suppose that \(|a - 6| \leq 2 \) and \(|b| \leq 3 \).
 (a) What is the largest possible value of \(|a + b| \)?
 (b) What is the smallest possible value of \(|a + b| \)?

32. Prove that \(|x| - |y| \leq |x - y| \). \text{Hint:} Apply the triangle inequality to \(y \) and \(x - y \).

33. Express \(r_1 = 0.277 \) as a fraction. \text{Hint:} \(100r_1 - r_1 \) is an integer. Then express \(r_2 = 0.2666 \ldots \) as a fraction.

34. Represent \(1/7 \) and \(4/27 \) as repeating decimals.

35. The text states: \text{If the decimal expansions of numbers} \(a \) \text{and} \(b \) \text{agree to} \(k \) \text{places, then} \(|a - b| \leq 10^{-k} \). \text{Show that the converse is false: For all} \(k \) \text{there are numbers} \(a \) \text{and} \(b \) \text{whose decimal expansions do not agree at all but} \(|a - b| \leq 10^{-k} \).

36. Plot each pair of points and compute the distance between them:
 (a) (1, 4) and (3, 2)
 (b) (2, 1) and (2, 4)
 (c) (0, 0) and (−2, 3)
 (d) (−3, −3) and (−2, 3)

37. Find the equation of the circle with center (2, 4):
 (a) with radius \(r = 3 \).
 (b) that passes through (1, −1).

38. Find all points in the \(xy \)-plane with integer coordinates located at a distance 5 from the origin. Then find all points with integer coordinates located at a distance 5 from \((2, 3) \).

39. Determine the domain and range of the function
 \[f : \{ r, s, t, u \} \rightarrow \{ A, B, C, D, E \} \]
 defined by \(f(r) = A, f(s) = B, f(t) = B, f(u) = E \).

40. Give an example of a function whose domain \(D \) has three elements and whose range \(R \) has two elements. Does a function exist whose domain \(D \) has two elements and whose range \(R \) has three elements?

In Exercises 41–48, find the domain and range of the function.

41. \(f(x) = -x \)
42. \(g(t) = t^4 \)
43. \(f(x) = x^3 \)
44. \(g(t) = \sqrt{2 - t} \)
45. \(f(x) = |x| \)
46. \(h(s) = \frac{1}{s} \)
47. \(f(x) = \frac{1}{x^2} \)
48. \(g(t) = \cos \frac{1}{t} \)

In Exercises 49–52, determine where \(f \) is increasing.

49. \(f(x) = |x + 1| \)
50. \(f(x) = x^3 \)
51. \(f(x) = x^4 \)
52. \(f(x) = \frac{1}{x^3 + x^2 + 1} \)

In Exercises 53–58, find the zeros of \(f \) and sketch its graph by plotting points. Use symmetry and increase/decrease information where appropriate.

53. \(f(x) = x^2 - 4 \)
54. \(f(x) = 2x^2 - 4 \)
55. \(f(x) = x^3 - 4x \)
56. \(f(x) = x^3 \)
57. \(f(x) = 2 - x^3 \)
58. \(f(x) = \frac{1}{(x - 1)^2 + 1} \)

59. Which of the curves in Figure 26 is the graph of a function?

60. Determine whether the function is even, odd, or neither.
 (a) \(f(x) = x^5 \)
 (b) \(g(t) = t^3 - t^2 \)
 (c) \(F(t) = \frac{1}{t^4 + t^2} \)
61. Determine whether the function is even, odd, or neither.
(a) \(f(t) = \frac{1}{t^4 + t + 1} - \frac{1}{t^4 - t + 1} \)
(b) \(g(t) = 2^t - 2^{-t} \)
(c) \(G(\theta) = \sin \theta + \cos \theta \)
(d) \(H(\theta) = \sin(\theta^2) \)

62. Write \(f(x) = 2x^4 - 5x^3 + 12x^2 - 3x + 4 \) as the sum of an even and an odd function.

63. Determine the values of \(x \) for which \(f(x) = \frac{1}{x - 4} \) is increasing and for which decreasing.

64. State whether the function is increasing, decreasing, or neither.
(a) Surface area of a sphere as a function of its radius
(b) Temperature at a point on the equator as a function of time
(c) Price of an airline ticket as a function of the price of oil
(d) Pressure of the gas in a piston as a function of volume

In Exercises 65–70, let \(f \) be the function shown in Figure 27.

65. Find the domain and range of \(f \).

66. Sketch the graphs of \(y = f(x + 2) \) and \(y = f(x) + 2 \).

67. Sketch the graphs of \(y = f(2x) \), \(y = f\left(\frac{1}{2}x\right) \), and \(y = 2f(x) \).

68. Sketch the graphs of \(y = f(-x) \) and \(y = -f(-x) \).

69. Extend the graph of \(f \) to \([-4, 4]\) so that it is an even function.

70. Extend the graph of \(f \) to \([-4, 4]\) so that it is an odd function.

71. Suppose that \(f \) has domain \([4, 8]\) and range \([2, 6]\). Find the domain and range of:
(a) \(y = f(x) + 3 \)
(b) \(y = f(x) + 3 \)

72. Let \(f(x) = x^2 \). Sketch the graph over \([-2, 2]\) of:
(a) \(y = f(x + 1) \)
(b) \(y = f(x) + 1 \)

73. Suppose that the graph of \(f(x) = \sin x \) is compressed horizontally by a factor of 2 and then shifted 5 units to the right.
(a) What is the equation for the new graph?
(b) What is the equation if you first shift by 5 and then compress by 2?
(c) Verify your answers by plotting your equations.

74. Figure 28 shows the graph of \(f(x) = |x| + 1 \). Match the functions (a)–(e) with their graphs (i)–(v).
(a) \(y = f(x - 1) \)
(b) \(y = -f(x) \)
(c) \(y = -f(x) + 2 \)
(d) \(y = f(x - 1) - 2 \)
(e) \(y = f(x + 1) \)

75. Sketch the graph of \(y = f(2x) \) and \(y = f\left(\frac{1}{2}x\right) \), where \(f(x) = |x| + 1 \) (Figure 28).

76. Find the function \(f \) whose graph is obtained by shifting the parabola \(y = x^2 \) by 3 units to the right and 4 units down, as in Figure 29.

77. Define \(f(x) \) to be the larger of \(x \) and \(2 - x \). Sketch the graph of \(f \). What are its domain and range? Express \(f(x) \) in terms of the absolute value function.

78. For each curve in Figure 30, state whether it is symmetric with respect to the \(y \)-axis, the origin, both, or neither.
80. Suppose that \(f \) and \(g \) are both odd. Which of the following functions are even? Which are odd?

(a) \(y = f(x)g(x) \)
(b) \(y = f(x)^3 \)
(c) \(y = f(x) - g(x) \)
(d) \(y = \frac{f(x)}{g(x)} \)

81. Prove that the only function whose graph is symmetric with respect to both the \(y \)-axis and the origin is the function \(f(x) = 0 \).

Further Insights and Challenges

82. Prove the triangle inequality (\(|a + b| \leq |a| + |b|\)) by adding the two inequalities

\[-|a| \leq a \leq |a|, \quad -|b| \leq b \leq |b|\]

83. Show that a fraction \(r = a/b \) in lowest terms has a finite decimal expansion if and only if

\(b = 2^m 5^n \) for some \(n, m \geq 0 \).

Hint: Observe that \(r \) has a finite decimal expansion when \(10^N r \) is an integer for some \(N \geq 0 \) (and hence \(b \) divides \(10^N \)).

84. Let \(p = p_1 \ldots p_s \) be an integer with digits \(p_1, \ldots, p_s \). Show that

\[
\frac{p}{10^s - 1} = 0.p_1 \ldots p_s
\]

Use this to find the decimal expansion of \(r = \frac{2}{11} \). Note that

\[r = \frac{2}{11} = \frac{18}{10^2 - 1} \]

85. A function \(f \) is symmetric with respect to the vertical line \(x = a \) if \(f(a - x) = f(a + x) \).

(a) Draw the graph of a function that is symmetric with respect to \(x = 2 \).

(b) Show that if \(f \) is symmetric with respect to \(x = a \), then \(g(x) = f(x + a) \) is even.

86. Formulate a condition for \(f \) to be symmetric with respect to the point \((a, 0)\) on the \(x \)-axis.

1.2 Linear and Quadratic Functions

Linear functions are the simplest of all functions, and their graphs (lines) are the simplest of all curves. However, linear functions and lines play an enormously important role in calculus. For this reason, you should be thoroughly familiar with the basic properties of linear functions and the different ways of writing an equation of a line.

Let’s recall that a **linear function** is a function of the form

\[
f(x) = mx + b \quad (m \text{ and } b \text{ constants})
\]

The graph of \(f \) is a line of slope \(m \), and since \(f(0) = b \), the graph intersects the \(y \)-axis at the point \((0, b)\) (Figure 1). The number \(b \) is called the \(y \)-intercept.

![Figure 1](https://via.placeholder.com/150)

The **slope-intercept form** of the line with slope \(m \) and \(y \)-intercept \(b \) is given by

\[
y = mx + b
\]

We use the symbols \(\Delta x \) and \(\Delta y \) to denote the change (or increment) in \(x \) and \(y = f(x) \) over an interval \([x_1, x_2]\) (Figure 1):

\[
\Delta x = x_2 - x_1, \quad \Delta y = y_2 - y_1 = f(x_2) - f(x_1)
\]

The slope \(m \) of a line is equal to the ratio

\[
m = \frac{\Delta y}{\Delta x} = \frac{\text{vertical change}}{\text{horizontal change}} = \frac{\text{rise}}{\text{run}}
\]
This follows from the formula \(y = mx + b \):

\[
\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{(mx_2 + b) - (mx_1 + b)}{x_2 - x_1} = \frac{m(x_2 - x_1)}{x_2 - x_1} = m
\]

The slope \(m \) measures the rate of change of \(y \) with respect to \(x \). In fact, by writing

\[
\frac{\Delta y}{\Delta x} = m
\]

we see that a 1-unit increase in \(x \) (i.e., \(\Delta x = 1 \)) produces an \(m \)-unit change \(\Delta y \) in \(y \). For example, if \(m = 5 \), then \(y \) increases by 5 units per unit increase in \(x \). The rate-of-change interpretation of the slope is fundamental in calculus. We discuss it in greater detail in Section 2.1.

Graphically, the slope \(m \) measures the steepness of the line \(y = mx + b \). Figure 2(A) shows lines through a point of varying slope \(m \). Note the following properties:

- **Steepness**: The larger the absolute value \(|m| \), the steeper the line.
- **Positive slope**: If \(m > 0 \), the line slants upward from left to right.
- **Negative slope**: If \(m < 0 \), the line slants downward from left to right.
- \(f(x) = mx + b \) is increasing if \(m > 0 \) and decreasing if \(m < 0 \).
- The horizontal line \(y = b \) has slope \(m = 0 \) [Figure 2(B)].
- A vertical line has equation \(x = c \), where \(c \) is a constant. The slope of a vertical line is undefined. It is not possible to write the equation of a vertical line in slope-intercept form \(y = mx + b \). A vertical line is not the graph of a function [Figure 2(B)].

Scale is especially important in applications because the steepness of a graph depends on the choice of units for the \(x \)- and \(y \)-axes. We can create very different subjective impressions by changing the scale. Figure 3 shows the growth of company profits over a 4-year period. The two plots convey the same information, but the left-hand plot makes the growth look more dramatic.

CAUTION Graphs are often plotted using different scales for the \(x \)- and \(y \)-axes. This is necessary to keep the sizes of graphs within reasonable bounds. However, when the scales are different, lines do not appear with their true slopes.

FIGURE 3 Growth of company profits.
Next, we recall the relation between the slopes of parallel and perpendicular lines (Figure 4):

- Lines of slopes m_1 and m_2 are **parallel** if and only if $m_1 = m_2$.
- Lines of slopes m_1 and m_2 are **perpendicular** if and only if
 \[
 m_1 = -\frac{1}{m_2} \quad \text{or} \quad m_1 m_2 = -1
 \]

CONCEPTUAL INSIGHT The increments over an interval $[x_1, x_2]$:

\[
\Delta x = x_2 - x_1, \quad \Delta y = f(x_2) - f(x_1)
\]

are defined for any function f (linear or not), but the ratio $\Delta y/\Delta x$ may depend on the interval (Figure 5). The characteristic property of a linear function $f(x) = mx + b$ is that $\Delta y/\Delta x$ has the same value m for every interval. In other words, y has a constant rate of change with respect to x. We can use this property to test if two quantities are related by a linear equation.

EXAMPLE 1 Testing for a Linear Relationship Do the data in Table 1 suggest a linear relation between the pressure P and temperature T of a gas?

<table>
<thead>
<tr>
<th>Temperature ($^\circ$C)</th>
<th>Pressure (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1365.80</td>
</tr>
<tr>
<td>45</td>
<td>1385.40</td>
</tr>
<tr>
<td>55</td>
<td>1424.60</td>
</tr>
<tr>
<td>70</td>
<td>1483.40</td>
</tr>
<tr>
<td>80</td>
<td>1522.60</td>
</tr>
</tbody>
</table>
Solution We calculate $\Delta P/\Delta T$ at successive data points and check whether this ratio is constant:

<table>
<thead>
<tr>
<th>(T_1, P_1)</th>
<th>(T_2, P_2)</th>
<th>$\Delta P/\Delta T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(40, 1365.80)</td>
<td>(45, 1385.40)</td>
<td>$\frac{1385.40 - 1365.80}{45 - 40} = 3.92$</td>
</tr>
<tr>
<td>(45, 1385.40)</td>
<td>(55, 1424.60)</td>
<td>$\frac{1424.60 - 1385.40}{55 - 45} = 3.92$</td>
</tr>
<tr>
<td>(55, 1424.60)</td>
<td>(70, 1483.40)</td>
<td>$\frac{1483.40 - 1424.60}{70 - 55} = 3.92$</td>
</tr>
<tr>
<td>(70, 1483.40)</td>
<td>(80, 1522.60)</td>
<td>$\frac{1522.60 - 1483.40}{80 - 70} = 3.92$</td>
</tr>
</tbody>
</table>

Because $\Delta P/\Delta T$ has the constant value 3.92, the data points lie on a line with slope $m = 3.92$. This is confirmed in the plot in Figure 6.

Real experimental data are unlikely to reveal perfect linearity, even if the data points do essentially lie on a line. The method of “linear regression” is used to find the linear function that best fits the data.

As mentioned above, it is important to be familiar with the standard ways of writing the equation of a line. The general **linear equation** is

$$ax + by = c$$

where a and b are not both zero. For $b = 0$, we obtain the vertical line $ax = c$. When $b \neq 0$, we can rewrite Eq. (1) in slope-intercept form. For example, $-6x + 2y = 3$ can be rewritten as $y = 3x + 3$.

Two other forms we will use frequently are the **point-slope** and **point-point** forms. Given a point $P = (a, b)$ and a slope m, the equation of the line through P with slope m is $y - b = m(x - a)$. Similarly, the line through two distinct points $P = (a_1, b_1)$ and $Q = (a_2, b_2)$ has slope (Figure 7)

$$m = \frac{b_2 - b_1}{a_2 - a_1}$$

Therefore, we can write its equation as $y - b_1 = m(x - a_1)$.

Additional Equations for Lines

1. **Point-slope form** of the line through $P = (a, b)$ with slope m:

 $$y - b = m(x - a)$$

2. **Point-point form** of the line through $P = (a_1, b_1)$ and $Q = (a_2, b_2)$:

 $$y - b_1 = m(x - a_1), \quad \text{where } m = \frac{b_2 - b_1}{a_2 - a_1}$$
CHAPTER 1 PRECALCULUS REVIEW

EXAMPLE 2 Line of Given Slope Through a Given Point Find the equation of the line through \((9, 2)\) with slope \(-\frac{2}{3}\).

Solution In point-slope form:

\[y - 2 = -\frac{2}{3}(x - 9) \]

In slope-intercept form: \(y = -\frac{2}{3}(x - 9) + 2\) or \(y = -\frac{2}{3}x + 8\). See Figure 8.

EXAMPLE 3 Line Through Two Points Find the equation of the line through \((2, 1)\) and \((9, 5)\).

Solution The line has slope

\[m = \frac{5 - 1}{9 - 2} = \frac{4}{7} \]

Because \((2, 1)\) lies on the line, its equation in point-slope form is \(y - 1 = \frac{4}{7}(x - 2)\).

A quadratic function is a function defined by a quadratic polynomial

\[f(x) = ax^2 + bx + c \quad (a, b, c, \text{ constants with } a \neq 0) \]

The graph of \(f\) is a parabola (Figure 9). The parabola opens upward if the leading coefficient \(a\) is positive and downward if \(a\) is negative. The discriminant of \(f(x)\) is the quantity

\[D = b^2 - 4ac \]

The roots of \(f\) are given by the quadratic formula (see Exercise 58):

\[\text{Roots of } f(x) = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-b \pm \sqrt{D}}{2a} \]

The sign of \(D\) determines whether or not \(f\) has real roots (Figure 9). If \(D > 0\), then \(f\) has two real roots, and if \(D = 0\), it has one real root (a “double root”). If \(D < 0\), then \(\sqrt{D}\) is imaginary and \(f\) has no real roots.

When \(f\) has two real roots \(r_1\) and \(r_2\), then \(f(x)\) factors as

\[f(x) = a(x - r_1)(x - r_2) \]

For example, \(f(x) = 2x^2 - 3x + 1\) has discriminant \(D = b^2 - 4ac = 9 - 8 = 1 > 0\), and by the quadratic formula, its roots are \((3 \pm 1)/4\) or 1 and \(\frac{1}{2}\). Therefore,

\[f(x) = 2(x - \frac{3}{4})^2 \quad \text{and} \quad x = \frac{3}{4} \pm \frac{1}{2} \]

The technique of completing the square consists of writing a quadratic polynomial as a multiple of a square plus a constant. Then

\[x^2 + bx + c = x^2 + bx + \left(\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + c \]

If there is a constant \(a\) multiplying the \(x^2\) term, we factor that out first, as demonstrated in the following example.
Cuneiform texts written on clay tablets show that the method of completing the square was known to ancient Babylonian mathematicians who lived some 4000 years ago.

Ignoring air resistance, a basketball follows a parabolic path (Figure 10).

FIGURE 10

A linear function is a function of the form \(f(x) = mx + b \).

The general equation of a line is

\[
ax + by = c
\]

Three convenient ways of writing the equation of a nonvertical line:

\[y = mx + b \] (slope-intercept form; \(m \) and \(y \)-intercept \(b \))

\[y - b = m(x - a) \] (slope \(m \), passes through \((a, b) \))

\[y - b = mx - ma \] (point-point form; line through two points \((a, b) \) and \((a_2, b_2) \) with slope \(m = \frac{b_2 - b_1}{a_2 - a_1} \) and equation \(y - b_1 = m(x - a_1) \)).

Two lines of slopes \(m_1 \) and \(m_2 \) are parallel if and only if \(m_1 = m_2 \), and they are perpendicular if and only if \(m_1 = -\frac{1}{m_2} \).

EXAMPLE 4 Completing the Square
Complete the square for the quadratic polynomial \(f(x) = 4x^2 - 12x + 3 \).

Solution
First factor out the leading coefficient:

\[
4x^2 - 12x + 3 = 4 \left(x^2 - 3x + \frac{3}{4} \right)
\]

Then complete the square for the term \(x^2 - 3x \):

\[
x^2 - 3x = x^2 - 3x + \left(\frac{3}{2} \right)^2 - \left(\frac{3}{2} \right)^2 = \left(x - \frac{3}{2} \right)^2 - \frac{9}{4}
\]

Therefore,

\[
4x^2 - 12x + 3 = 4 \left(x - \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{3}{4} = 4 \left(x - \frac{3}{2} \right)^2 - 6
\]

The method of completing the square can be used to find the minimum or maximum value of a quadratic function.

EXAMPLE 5 Finding the Maximum of a Quadratic Function
Complete the square and find the maximum value of \(f(x) = -x^2 + 4x + 1 \).

Solution
We have

\[
f(x) = -(x^2 - 4x - 1) = -(x^2 - 4x + 4 - 4 - 1) = -((x - 2)^2 - 5) = -(x - 2)^2 + 5
\]

Thus, \(f(x) \leq 5 \) for all \(x \), and the maximum value of \(f \) is \(f(2) = 5 \) (Figure 11).

1.2 SUMMARY

- A linear function is a function of the form \(f(x) = mx + b \).
- The general equation of a line is \(ax + by = c \). The line \(y = c \) is horizontal and \(x = c \) is vertical.
- Three convenient ways of writing the equation of a nonvertical line:
 - Slope-intercept form: \(y = mx + b \) (slope \(m \) and \(y \)-intercept \(b \))
 - Point-slope form: \(y - b = m(x - a) \) (slope \(m \), passes through \((a, b) \))
 - Point-point form: The line through two points \(P = (a_1, b_1) \) and \(Q = (a_2, b_2) \) has slope \(m = \frac{b_2 - b_1}{a_2 - a_1} \) and equation \(y - b_1 = m(x - a_1) \).
- Two lines of slopes \(m_1 \) and \(m_2 \) are parallel if and only if \(m_1 = m_2 \), and they are perpendicular if and only if \(m_1 = -\frac{1}{m_2} \).
- Quadratic function: \(f(x) = ax^2 + bx + c \). The roots are \(x = \frac{-b \pm \sqrt{D}}{2a} \), where \(D = b^2 - 4ac \) is the discriminant. The roots are real and distinct if \(D > 0 \), there is a double root if \(D = 0 \), and there are no real roots if \(D < 0 \).
- Completing the square consists of writing a quadratic function as a multiple of a square plus a constant.

1.2 EXERCISES

Preliminary Questions

1. What is the slope of the line \(y = -4x - 9 \)?
2. Are the lines \(y = 2x + 1 \) and \(y = -2x - 4 \) perpendicular?
3. When is the line \(ax + by = c \) parallel to the \(y \)-axis? To the \(x \)-axis?
4. Suppose \(y = 3x + 2 \). What is \(\Delta y \) if \(x \) increases by 3?
5. What is the minimum of \(f(x) = (x + 3)^2 - 4 \)?
6. What is the result of completing the square for \(f(x) = x^2 + 1 \)?
Exercises

In Exercises 1–4, find the slope, the y-intercept, and the x-intercept of the line with the given equation.

1. \(y = 3x + 12\)
2. \(y = 4 - x\)
3. \(4x + 9y = 3\)
4. \(y - 3 = \frac{1}{2}(x - 6)\)

In Exercises 5–8, find the slope of the line.

5. \(y = 3x + 2\)
6. \(y = 3(x - 9) + 2\)
7. \(3x + 4y = 12\)
8. \(3x + 4y = -8\)

In Exercises 9–20, find the equation of the line with the given description.

9. Slope 3, y-intercept 8
10. Slope \(-2\), y-intercept 3
11. Slope 3, passes through \((7, 9)\)
12. Slope \(-5\), passes through \((0, 0)\)
13. Horizontal, passes through \((0, -2)\)
14. Passes through \((-1, 4)\) and \((2, 7)\)
15. Parallel to \(y = 3x - 4\), passes through \((1, 1)\)
16. Passes through \((1, 4)\) and \((12, -3)\)
17. Perpendicular to \(3x + 5y = 9\), passes through \((2, 3)\)
18. Vertical, passes through \((-4, 9)\)
19. Horizontal, passes through \((8, 4)\)
20. Slope 3, x-intercept 6

21. Find the equation of the perpendicular bisector of the segment joining \((1, 2)\) and \((5, 4)\) (Figure 12). Hint: The midpoint \(Q\) of the segment joining \((a, b)\) and \((c, d)\) is \(\left(\frac{a + c}{2}, \frac{b + d}{2}\right)\).

![Figure 12](image_url)

22. Intercept-Intercept Form Show that if \(a, b \neq 0\), then the line with x-intercept \(x = a\) and y-intercept \(y = b\) has equation (Figure 13)

\[\frac{x}{a} + \frac{y}{b} = 1\]

![Figure 13](image_url)

23. Find an equation of the line with x-intercept \(x = 4\) and y-intercept \(y = 3\).

24. Find \(y\) such that \((3, y)\) lies on the line of slope \(m = 2\) through \((1, 4)\).

25. Determine whether there exists a constant \(c\) such that the line \(x + cy = 1\):
 (a) has slope 4.
 (b) passes through \((3, 1)\).
 (c) is horizontal.
 (d) is vertical.

26. Assume that the number \(N\) of concert tickets that can be sold at a price of \(P\) dollars per ticket is a linear function \(N(P)\) for \(10 \leq P \leq 40\). Determine \(N(P)\) (called the demand function) if \(N(10) = 500\) and \(N(40) = 0\). What is the decrease \(\Delta N\) in the number of tickets sold if the price is increased by \(\Delta P = 5\) dollars?

27. Suppose that the number of a certain type of computer that can be sold when its price is \(P\) (in dollars) is given by a linear function \(N(P)\). Determine \(N(P)\) if \(N(100) = 10,000\) and \(N(1500) = 7,500\). What is the change \(\Delta N\) in the number of computers sold if the price is increased by \(\Delta P = 100\) dollars?

28. Suppose that the demand for Colin’s kidney pies is linear in the price \(P\). Determine the demand function \(N\) as a function of \(P\) giving the number of pies sold when the price is \(P\) if he can sell 100 pies when the price is $5.00 and he can sell 40 pies when the price is $10.00. Determine the revenue \((N \times P)\) for prices \(P = 5, 6, 7, 8, 9, 10\) and then choose a price to maximize the revenue.

29. Materials expand when heated. Consider a metal rod of length \(L_0\) at temperature \(T_0\). If the temperature is changed by an amount \(\Delta T\), then the rod’s length approximately changes by \(\Delta L = \alpha L_0 \Delta T\), where \(\alpha\) is the thermal expansion coefficient and \(\Delta T\) is not an extreme temperature change. For steel, \(\alpha = 1.24 \times 10^{-5} \text{ C}^{-1}\).
 (a) A steel rod has length \(L_0 = 40\) cm at \(T_0 = 40^\circ\text{C}\). Find its length at \(T = 90^\circ\text{C}\).
 (b) Find its length at \(T = 50^\circ\text{C}\) if its length at \(T_0 = 100^\circ\text{C}\) is 65 cm.
 (c) Express length \(L\) as a function of \(T\) if \(L_0 = 65\) cm at \(T_0 = 100^\circ\text{C}\).

30. Do the points \((0.5, 1), (1, 1.2), (2, 2)\) lie on a line?

31. Find \(b\) such that \((2, -1), (3, 2), \text{ and } (b, 5)\) lie on a line.

32. Find an expression for the velocity \(v\) as a linear function of \(t\) that matches the following data:

<table>
<thead>
<tr>
<th>(t) (s)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v) (m/s)</td>
<td>39.2</td>
<td>58.6</td>
<td>78</td>
<td>97.4</td>
</tr>
</tbody>
</table>

33. The period \(T\) of a pendulum is measured for pendulums of several different lengths \(L\). Based on the following data, does \(T\) appear to be a linear function of \(L\)?

<table>
<thead>
<tr>
<th>(L) (cm)</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T) (s)</td>
<td>0.9</td>
<td>1.1</td>
<td>1.27</td>
<td>1.42</td>
</tr>
</tbody>
</table>

34. Show that \(f\) is linear of slope \(m\) if and only if

\[f(x + h) = f(x) + mh\quad (\text{for all } x \text{ and } h)\]

That is to say, prove the following two statements:
 (a) \(f\) is linear of slope \(m\) implies that \(f(x + h) = f(x) + mh\) (for all \(x\) and \(h\)).
(b) \(f(x + h) - f(x) = mh \) (for all \(x \) and \(h \)) implies that \(f \) is linear of slope \(m \).

35. Find the roots of the quadratic polynomials:
(a) \(f(x) = 4x^2 - 3x - 1 \)
(b) \(f(x) = x^2 - 2x - 1 \)

In Exercises 36–43, complete the square and find the minimum or maximum value of the quadratic function.

36. \(y = x^2 + 2x + 5 \)
37. \(y = x^2 - 6x + 9 \)
38. \(y = -9x^2 + x \)
39. \(y = x^2 + 6x + 2 \)
40. \(y = 2x^2 - 4x - 7 \)
41. \(y = -4x^2 + 3x + 8 \)
42. \(y = 3x^2 + 12x - 5 \)
43. \(y = 4x - 12x^2 \)

44. Sketch the graph of \(y = x^2 - 6x + 8 \) by plotting the roots and the minimum point.
45. Sketch the graph of \(y = x^2 + 4x + 6 \) by plotting the minimum point, the \(y \)-intercept, and one other point.
46. If the alleles \(A \) and \(B \) of the cystic fibrosis gene occur in a population with frequencies \(p \) and \(1 - p \) (where \(p \) is a fraction between 0 and 1), then the frequency of heterozygous carriers (carriers with both alleles) is \(2p(1 - p) \). Which value of \(p \) gives the largest frequency of heterozygous carriers?

47. For which values of \(c \) does \(f(x) = x^2 + cx + 1 \) have a double root? No real roots?

48. Let \(f \) be a quadratic function and \(c \) a constant. Which of the following statements are correct? Explain graphically.
(a) There is a unique value of \(c \) such that \(y = f(x) - c \) has a double root.
(b) There is a unique value of \(c \) such that \(y = f(x) - c \) has a double root.

49. Prove that \(x + \frac{1}{x} \geq 2 \) for all \(x > 0 \).

50. Let \(a, b > 0 \). Show that the geometric mean \(\sqrt{ab} \) is not larger than the arithmetic mean \((a + b)/2 \).

Further Insights and Challenges

55. Show that if \(f \) and \(g \) are linear, then so is \(f + g \). Is the same true of \(fg \)?
56. Show that if \(f \) and \(g \) are linear functions such that \(f(0) = g(0) \) and \(f(1) = g(1) \), then \(f = g \).
57. Show that \(\Delta y/\Delta x \) for the function \(f(x) = x^2 \) over the interval \([x_1, x_2]\) is not a constant, but depends on the interval. Determine the exact dependence of \(\Delta y/\Delta x \) on \(x_1 \) and \(x_2 \).
58. Complete the square and use the result to derive the quadratic formula for the roots of \(ax^2 + bx + c = 0 \).

51. If objects of weights \(x \) and \(w_1 \) are suspended from the balance in Figure 14(A), the cross-beam is horizontal if \(bx = aw_1 \). If the lengths \(a \) and \(b \) are known, we may use this equation to determine an unknown weight \(x \) by selecting \(w_1 \) such that the cross-beam is horizontal. If \(a \) and \(b \) are not known precisely, we might proceed as follows. First balance \(x \) by \(w_1 \) on the left as in (A). Then switch places and balance \(x \) by \(w_2 \) on the right as in (B). The average \(\bar{x} = \frac{1}{2}(w_1 + w_2) \) gives an estimate for \(x \). Show that \(\bar{x} \) is greater than or equal to the true weight \(x \).

52. Find numbers \(x \) and \(y \) with sum 10 and product 24.

53. Find a pair of numbers whose sum and product are both equal to 8.

54. Show that the parabola \(y = x^2 \) consists of all points \(P \) such that \(d_1 = d_2 \), where \(d_1 \) is the distance from \(P \) to \((0, \frac{1}{2})\) and \(d_2 \) is the distance from \(P \) to the line \(y = -\frac{1}{2} \) (Figure 15).

1.3 The Basic Classes of Functions

It would be impossible (and useless) to describe all possible functions \(f \). Since the values of a function can be assigned arbitrarily, a function chosen at random would likely be so complicated that we could neither graph it nor describe it in any reasonable way. However, calculus makes no attempt to deal with all functions. The techniques of calculus, powerful...
and general as they are, apply only to functions that are sufficiently “well-behaved” (we will see what well-behaved means when we study the derivative in Chapter 3). Fortunately, such functions are adequate for a vast range of applications.

Most of the functions considered in this text are constructed from the following familiar classes of well-behaved functions:

- polynomials
- rational functions
- algebraic functions
- exponential functions
- trigonometric functions
- logarithmic functions
- inverse trigonometric functions

We shall refer to these as the basic functions.

- **Polynomials:** For any real number \(m \), \(f(x) = x^m \) is called the power function with exponent \(m \). Power functions include \(f(x) = x^3 \), \(f(x) = x^{-7} \) and \(f(x) = x^{5/2} \). The base is the variable and the exponent is a constant. For now, we are interested in power functions with exponents that are positive integers or zero (making the term a constant in that case) (Figure 1):

\[
f(x) = x^5 - 5x^3 + 4x, \quad g(t) = 7t^6 + t^3 - 3t - 1, \quad h(x) = x^9
\]

Thus, the function \(f(x) = x + x^{-1} \) is not a polynomial because it includes a power \(x^{-1} \) with a negative exponent. The general polynomial \(P \) in the variable \(x \) may be written

\[
P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0
\]

- The numbers \(a_0, a_1, \ldots, a_n \) are called coefficients.
- The degree of \(P \) is \(n \) (assuming that \(a_n \neq 0 \)).
- The coefficient \(a_n \) is called the leading coefficient.
- The domain of \(P \) is \(\mathbb{R} \).

- A rational function is a quotient of two polynomials (Figure 2):

\[
f(x) = \frac{P(x)}{Q(x)} \quad [P(x) \text{ and } Q(x) \text{ polynomials}]
\]

The domain of \(f \) is the set of numbers \(x \) such that \(Q(x) \neq 0 \). For example,

\[
f(x) = \frac{1}{x^2} \quad \text{domain} \{ x : x \neq 0 \}
\]

\[
h(t) = \frac{7t^6 + t^3 - 3t - 1}{t^2 - 1} \quad \text{domain} \{ t : t \neq \pm 1 \}
\]

Every polynomial is also a rational function [with \(Q(x) = 1 \)].

- An algebraic function is produced by taking sums, products, and quotients of roots of polynomials and rational functions (Figure 3):

\[
f(x) = \sqrt[3]{1 + 3x^2 - x^4}, \quad g(t) = (\sqrt{t} - 2)^2, \quad h(z) = \frac{z + z^{-5/3}}{5z^3 - \sqrt[3]{z}}
\]

A number \(x \) belongs to the domain of \(f \) if each term in the formula is defined and the result does not involve division by zero. For example, \(g(t) \) is defined if \(t \geq 0 \) and \(\sqrt{t} \neq 2 \), so the domain of \(g \) is \(D = \{ t : t \geq 0 \text{ and } t \neq 4 \} \). More generally, algebraic functions are defined by polynomial equations between \(x \) and \(y \). In this case, we say that \(y \) is implicitly defined as a function of \(x \). For example, the equation \(y^4 + 2x^2y + x^4 = 1 \) defines \(y \) implicitly as a function of \(x \).

- **Exponential functions:** The function \(f(x) = b^x \), where \(b > 0 \), is called the exponential function with base \(b \). Some examples are

\[
f(x) = 2^x, \quad g(t) = 10^t, \quad h(x) = \left(\frac{1}{3} \right)^x, \quad p(t) = (\sqrt{3})^t
\]

Any function that is not algebraic is called transcendental. Exponential and trigonometric functions are examples, as are the Bessel and gamma functions that appear in engineering and statistics. The term “transcendental” goes back to the 1670s, when it was used by Gottfried Wilhelm Leibniz (1646–1716) to describe functions of this type.
Exponential functions and their inverses, the logarithmic functions, are treated in greater detail in Chapter 7.

- Trigonometric functions are functions built from \(\sin x \) and \(\cos x \). These functions are discussed in the next section.

Constructing New Functions

Given functions \(f \) and \(g \), we can construct new functions by forming the sum, difference, product, and quotient functions:

\[
(f + g)(x) = f(x) + g(x), \quad (f - g)(x) = f(x) - g(x) \\
(fg)(x) = f(x)g(x), \quad \left(\frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} \quad (\text{where } g(x) \neq 0)
\]

For example, if \(f(x) = x^2 \) and \(g(x) = \sin x \), then

\[
(f + g)(x) = x^2 + \sin x, \quad (f - g)(x) = x^2 - \sin x \\
(fg)(x) = x^2 \sin x, \quad \left(\frac{f}{g} \right)(x) = \frac{x^2}{\sin x}
\]

We can also multiply functions by constants. A function of the form

\[
h(x) = c_1 f(x) + c_2 g(x) \quad (c_1, c_2 \text{ constants})
\]

is called a linear combination of \(f \) and \(g \).

Composition is another important way of constructing new functions. The composition of \(f \) and \(g \) is the function \(f \circ g \) defined by \((f \circ g)(x) = f(g(x)) \). The domain of \(f \circ g \) is the set of values of \(x \) in the domain of \(g \) such that \(g(x) \) lies in the domain of \(f \).

Example 1

Compute the composite functions \(f \circ g \) and \(g \circ f \) and discuss their domains, where

\[
f(x) = \sqrt{x}, \quad g(x) = 1 - x
\]

Solution We have

\[
(f \circ g)(x) = f(g(x)) = f(1 - x) = \sqrt{1 - x}
\]

The square root \(\sqrt{1 - x} \) is defined if \(1 - x \geq 0 \) or \(x \leq 1 \), so the domain of \(f \circ g \) is \(\{x : x \leq 1\} \). On the other hand,

\[
(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = 1 - \sqrt{x}
\]

The domain of \(g \circ f \) is \(\{x : x \geq 0\} \).

Elementary Functions

As noted above, we can produce new functions by applying the operations of addition, subtraction, multiplication, division, and composition. It is convenient to refer to a function constructed in this way from the basic functions listed above as an elementary function. The following functions are elementary:

\[
f(x) = \sqrt{2x + \sin x}, \quad f(x) = 10^{\sqrt{x}}, \quad f(x) = \frac{1 + x^{-1}}{1 + \cos x}
\]

Piecewise-Defined Functions

We can also create new functions by piecing together functions defined over limited domains, obtaining piecewise-defined functions. One example we have already seen is the absolute value function defined by

\[
|x| = \begin{cases}
-x & \text{when } x < 0 \\
x & \text{when } x \geq 0
\end{cases}
\]
In Exercises 1–12, determine the domain of the function.

Preliminary Questions

1. Give an example of a rational function.
2. Is \(y = |x| \) a polynomial function? What about \(y = |x^2 + 1| \)?
3. What is unusual about the domain of the composite function \(f \circ g \)

Exercises

In Exercises 1–12, determine the domain of the function.

1. \(f(x) = x^{1/4} \)
2. \(g(t) = t^{2/3} \)
3. \(f(x) = x^3 + 3x - 4 \)
4. \(h(z) = z^3 + z^{-3} \)
5. \(g(t) = \frac{1}{t + 2} \)
6. \(f(x) = \frac{1}{x^2 + 4} \)
7. \(G(u) = \frac{1}{u^2 - 4} \)
8. \(f(x) = \frac{\sqrt{x}}{x^2 - 9} \)
9. \(f(x) = x^{-4} + (x - 1)^{-3} \)
10. \(F(s) = \sin\left(\frac{s}{s + 1}\right) \)
11. \(g(y) = 10\sqrt[3]{y^3 - 1} \)
12. \(f(x) = \frac{x + x^{-1}}{(x - 3)(x + 4)} \)
13. \(f(x) = 4x^3 + 9x^2 - 8 \)
14. \(f(x) = x^{-4} \)
15. \(f(x) = \sqrt{x} \)
16. \(f(x) = \sqrt{1 - x^2} \)

In Exercises 13–24, identify each of the following functions as polynomial, rational, algebraic, or transcendental.
21. \(f(x) = \sin(x^2)\)
22. \(f(x) = \frac{x}{\sqrt{x} + 1}\)
23. \(f(x) = x^2 + 3x^{-1}\)
24. \(f(x) = \sin(3x^3)\)

25. Is \(f(x) = 2^{x^2}\) a transcendental function?

26. Show that \(f(x) = x^2 + 3x^{-1}\) and \(g(x) = 3x^3 - 9x + x^{-2}\) are rational functions—that is, quotients of polynomials.

In Exercises 27–34, calculate the composite functions \(f \circ g\) and \(g \circ f\), and determine their domains.

27. \(f(x) = \sqrt{x}\), \(g(x) = x + 1\)
28. \(f(x) = \frac{x}{x}, \quad g(x) = x^{-4}\)
29. \(f(x) = 2^x, \quad g(x) = x^2\)
30. \(f(x) = |x|, \quad g(\theta) = \sin \theta\)
31. \(f(\theta) = \cos \theta, \quad g(x) = x^3 + x^2\)
32. \(f(x) = \frac{1}{x^2 + 1}, \quad g(x) = x^{-2}\)
33. \(f(t) = \frac{1}{\sqrt{t}}, \quad g(t) = -t^2\)

34. \(f(t) = \sqrt[3]{t}, \quad g(t) = 1 - t^3\)

In Exercises 35–38, draw the graphs of each of the piecewise-defined functions.

35.\[
 f(x) = \begin{cases}
 3 & \text{when } x < 0 \\
 x^2 + 3 & \text{when } x \geq 0
\end{cases}
\]

36.\[
 f(x) = \begin{cases}
 x + 1 & \text{when } x < 0 \\
 1 - x & \text{when } x \geq 0
\end{cases}
\]

37.\[
 f(x) = \begin{cases}
 x^2 & \text{when } x < 0 \\
 -x^2 & \text{when } x \geq 0
\end{cases}
\]

38.\[
 f(x) = \begin{cases}
 2x - 2 & \text{when } x < 0 \\
 x & \text{when } x \geq 0
\end{cases}
\]

39. The population (in millions) of a country as a function of time \(t\) (years) is \(P(t) = 30 \cdot 2^{0.1t}\). Show that the population doubles every 10 years. Show more generally that for any positive constants \(a\) and \(k\), the function \(g(t) = a2^{kt}\) doubles after \(1/k\) years.

40. Find all values of \(c\) such that \(f(x) = \frac{x+1}{x^2 + 2cx + 4}\) has domain \(\mathbb{R}\).

Further Insights and Challenges

In Exercises 41–47, we define the first difference \(\delta f\) of a function \(f\) by \(\delta f(x) = f(x + 1) - f(x)\).

41. Show that if \(f(x) = x^2\), then \(\delta f(x) = 2x + 1\). Calculate \(\delta f\) for \(f(x) = x\) and \(f(x) = x^3\).

42. Show that \(\delta(10^x) = 9 \cdot 10^x\) and, more generally, that \(\delta(b^x) = (b - 1)b^x\).

43. Show that for any two functions \(f\) and \(g\), \(\delta(f + g) = \delta f + \delta g\) and \(\delta(cf) = c\delta(f)\), where \(c\) is any constant.

44. Suppose we can find a function \(P\) such that \(\delta P(x) = (x + 1)^k\) and \(P(0) = 0\). Prove that \(P(1) = 1^k, P(2) = 1^k + 2^k\), and, more generally, for every whole number \(n\),

\[
P(n) = 1^k + 2^k + \cdots + n^k
\]

45. First show that

\[
P(x) = \frac{x(x + 1)}{2}
\]

satisfies \(\delta P = (x + 1)\). Then apply Exercise 44 to conclude that

\[
1 + 2 + 3 + \cdots + n = \frac{n(n + 1)}{2}
\]

46. Calculate \(\delta(x^3), \delta(x^2), \text{ and } \delta(x)\). Then find a polynomial \(P\) of degree 3 such that \(\delta P = (x + 1)^2\) and \(P(0) = 0\). Conclude that \(P(n) = 1^2 + 2^2 + \cdots + n^2\).

47. This exercise combined with Exercise 44 shows that for all whole numbers \(k\), there exists a polynomial \(P\) satisfying Eq. (1). The solution requires the Binomial Theorem and proof by induction (see Appendix C).

(a) Show that \(\delta(x^{k+1}) = (k + 1)x^k + \cdots\), where the dots indicate terms involving smaller powers of \(x\).

(b) Show by induction that there exists a polynomial of degree \(k + 1\) with leading coefficient \(1/(k + 1)\):

\[
P(x) = \frac{1}{k + 1}x^{k+1} + \cdots
\]

such that \(\delta P = (x + 1)^k\) and \(P(0) = 0\).

1.4 Trigonometric Functions

We begin our trigonometric review by recalling the two systems of angle measurement: radians and degrees. They are best described using the relationship between angles and rotation. As is customary, we often use the lowercase Greek letter \(\theta\) (“theta”) to denote angles and rotations.
Figure 1(A) shows a unit circle with radius OP rotating counterclockwise into radius OQ. The radian measure of this rotation is the length θ of the circular arc traversed by P as it rotates into Q. On a circle of radius r, the arc traversed by a counterclockwise rotation of θ radians has length θr (Figure 2).

The unit circle has circumference 2π. Therefore, a rotation through a full circle has radian measure $\theta = 2\pi$ [Figure 1(B)]. The radian measure of a rotation through one-quarter of a circle is $\theta = 2\pi/4 = \pi/2$ [Figure 1(C)] and, in general, the rotation through one-nth of a circle has radian measure $2\pi/n$ (Table 1). A negative rotation (with $\theta < 0$) is a rotation in the clockwise direction [Figure 1(D)].

The radian measure of an angle such as $\angle P O Q$ in Figure 1(A) is defined as the radian measure of a rotation that carries OP to OQ. Notice, however, that the radian measure of an angle is not unique. The rotations through θ and $\theta + 2\pi$ both carry OP to OQ. Therefore, θ and $\theta + 2\pi$ represent the same angle even though the rotation through $\theta + 2\pi$ takes an extra trip around the circle. In general, two radian measures represent the same angle if the corresponding rotations differ by an integer multiple of 2π. For example, $\pi/4$, $9\pi/4$, and $-15\pi/4$ all represent the same angle because they differ by multiples of 2π:

$$\frac{\pi}{4} = \frac{9\pi}{4} - 2\pi = -\frac{15\pi}{4} + 4\pi$$

Every angle has a unique radian measure satisfying $0 \leq \theta < 2\pi$. With this choice, the angle θ subtends an arc of length θr on a circle of radius r (Figure 2).

Degrees are defined by dividing the circle (not necessarily the unit circle) into 360 equal parts. A degree is $\frac{1}{360}$ of a circle. A rotation through θ degrees (denoted θ°) is a rotation through the fraction $\theta/360$ of the complete circle. For example, a rotation through 90° is a rotation through the fraction $\frac{90}{360}$, or $\frac{1}{4}$, of a circle.

As with radians, the degree measure of an angle is not unique. Two degree measures represent that same angle if they differ by an integer multiple of 360. For example, the angles -45° and 675° coincide because $675 = -45 + 2(360)$. Every angle has a unique degree measure θ with $0 \leq \theta < 360$.

To convert between radians and degrees, remember that 2π radians is equal to 360°. Therefore, 1 radian equals $360/2\pi$ or $180/\pi$ degrees.

- To convert from radians to degrees, multiply by $180/\pi$.
- To convert from degrees to radians, multiply by $\pi/180$.

\section*{Example 1}

Convert (a) 55° to radians and (b) 0.5 radians to degrees.

\textbf{Solution}

(a) $55^\circ \times \frac{\pi}{180^\circ} \approx 0.9599$ radians

(b) 0.5 radians $\times \frac{180^\circ}{\pi} \approx 28.648^\circ$
The trigonometric functions sine and cosine can be defined in terms of right triangles. Let θ be an acute angle in a right triangle, and let us label the sides as in Figure 3. Then

\[
\sin \theta = \frac{b}{c} = \frac{\text{opposite}}{\text{hypotenuse}}, \quad \cos \theta = \frac{a}{c} = \frac{\text{adjacent}}{\text{hypotenuse}}
\]

A disadvantage of this definition is that it makes sense only if θ lies between 0 and $\pi/2$ (because an angle in a right triangle cannot exceed $\pi/2$). However, sine and cosine can be defined for all angles in terms of the unit circle. Let $P = (x, y)$ be the point on the unit circle corresponding to the angle θ as in Figures 4(A) and (B), and define

\[
\cos \theta = x\text{-coordinate of } P, \quad \sin \theta = y\text{-coordinate of } P
\]

This agrees with the right-triangle definition when $0 < \theta < \pi/2$. On the circle of radius r (centered at the origin), the point corresponding to the angle θ has coordinates

\[
(r \cos \theta, r \sin \theta)
\]

Furthermore, we see from Figure 4(C) that $f(x) = \sin \theta$ is an odd function and $f(x) = \cos \theta$ is an even function:

\[
\sin(-\theta) = -\sin \theta, \quad \cos(-\theta) = \cos \theta
\]

Although we use a calculator to evaluate sine and cosine for general angles, the standard values listed in Figure 5 and Table 2 appear often and should be memorized.

![Figure 3: Right triangle with sides labeled](image)

![Figure 4: Unit circle definitions of sine and cosine](image)

![Figure 5: Four standard angles](image)

TABLE 2

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>$\pi/6$</th>
<th>$\pi/4$</th>
<th>$\pi/3$</th>
<th>$\pi/2$</th>
<th>$2\pi/3$</th>
<th>$3\pi/4$</th>
<th>$5\pi/6$</th>
<th>π</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin \theta$</td>
<td>0</td>
<td>$1/2$</td>
<td>$\sqrt{2}/2$</td>
<td>$\sqrt{3}/2$</td>
<td>1</td>
<td>$\sqrt{3}/2$</td>
<td>$\sqrt{2}/2$</td>
<td>$1/2$</td>
<td>0</td>
</tr>
<tr>
<td>$\cos \theta$</td>
<td>1</td>
<td>$\sqrt{3}/2$</td>
<td>$\sqrt{2}/2$</td>
<td>0</td>
<td>$-1/2$</td>
<td>$-\sqrt{3}/2$</td>
<td>$-\sqrt{2}/2$</td>
<td>$-1/2$</td>
<td>-1</td>
</tr>
</tbody>
</table>

The graph of $y = \sin \theta$ is the familiar “sine wave” shown in Figure 6. Observe how the graph is generated by the y-coordinate of the point $P = (\cos \theta, \sin \theta)$ moving around the unit circle.
The graph of \(y = \sin \theta \) is generated as the point \(P = (\cos \theta, \sin \theta) \) moves around the unit circle.

The graph of \(y = \cos \theta \) has the same shape but is shifted to the left \(\pi/2 \) units (Figure 7).

The signs of \(\sin \theta \) and \(\cos \theta \) vary as \(P = (\cos \theta, \sin \theta) \) changes quadrant.

A function \(f \) is called periodic with period \(T \) if \(f(x + T) = f(x) \) (for all \(x \)) and \(T \) is the smallest positive number with this property. The sine and cosine functions are periodic with period \(T = 2\pi \) (Figure 8) because the radian measures \(x \) and \(x + 2\pi k \) correspond to the same point on the unit circle for any integer \(k \):

\[
\sin x = \sin(x + 2\pi k), \quad \cos x = \cos(x + 2\pi k)
\]

There are four other standard trigonometric functions, each defined in terms of \(\sin x \) and \(\cos x \) or as ratios of sides in a right triangle (Figure 9):

- **Tangent**: \(\tan x = \frac{\sin x}{\cos x} = \frac{b}{a} \)
- **Cotangent**: \(\cot x = \frac{\cos x}{\sin x} = \frac{a}{b} \)
- **Secant**: \(\sec x = \frac{1}{\cos x} = \frac{c}{a} \)
- **Cosecant**: \(\csc x = \frac{1}{\sin x} = \frac{c}{b} \)

These functions are periodic (Figure 10): \(y = \tan x \) and \(y = \cot x \) have period \(\pi \); \(y = \sec x \) and \(y = \csc x \) have period \(2\pi \) (see Exercise 57).
EXAMPLE 2 Computing Values of Trigonometric Functions
Find the values of the six trigonometric functions at \(x = 4\pi/3 \).

Solution
The point \(P \) on the unit circle corresponding to the angle \(x = 4\pi/3 \) lies opposite the point with angle \(\pi/3 \) (Figure 11). Thus, we see that (refer to Table 2)

\[
\sin\frac{4\pi}{3} = -\sin\frac{\pi}{3} = -\frac{\sqrt{3}}{2}, \quad \cos\frac{4\pi}{3} = -\cos\frac{\pi}{3} = -\frac{1}{2}.
\]

The remaining values are

\[
\tan\frac{4\pi}{3} = \frac{\sin4\pi/3}{\cos4\pi/3} = -\frac{\sqrt{3}/2}{-1/2} = \sqrt{3}, \quad \cot\frac{4\pi}{3} = \frac{\cos4\pi/3}{\sin4\pi/3} = \frac{1}{-\sqrt{3}}.
\]

\[
\sec\frac{4\pi}{3} = \frac{1}{\cos4\pi/3} = \frac{1}{-1/2} = -2, \quad \csc\frac{4\pi}{3} = \frac{1}{\sin4\pi/3} = -\frac{2}{\sqrt{3}}.
\]

EXAMPLE 3 Find the angles \(x \) such that \(\sec x = 2 \).

Solution
Because \(\sec x = 1/\cos x \), we must solve \(\cos x = \frac{1}{2} \). From Figure 12 we see that \(x = \pi/3 \) and \(x = -\pi/3 \) are solutions. We may add any integer multiple of \(2\pi \), so the general solution is \(x = \pm\pi/3 + 2\pi k \) for any integer \(k \).

EXAMPLE 4 Trigonometric Equation
Solve \(\sin 4x + \sin 2x = 0 \) for \(x \in [0, 2\pi) \).

Solution
We must find the angles \(x \) such that \(\sin 4x = -\sin 2x \). First, let’s determine when angles \(\theta_1 \) and \(\theta_2 \) satisfy \(\sin \theta_2 = -\sin \theta_1 \). Figure 13 shows that this occurs if \(\theta_2 = -\theta_1 \) or \(\theta_2 = \theta_1 + \pi \). Because the sine function is periodic with period \(2\pi \),

\[
\sin \theta_2 = -\sin \theta_1 \iff \theta_2 = -\theta_1 + 2\pi k \quad \text{or} \quad \theta_2 = \theta_1 + \pi + 2\pi k
\]

where \(k \) is an integer. Taking \(\theta_2 = 4x \) and \(\theta_1 = 2x \), we see that

\[
\sin 4x = -\sin 2x \iff 4x = -2x + 2\pi k \quad \text{or} \quad 4x = 2x + \pi + 2\pi k
\]

The first equation gives \(6x = 2\pi k \) or \(x = (\pi/3)k \) and the second equation gives \(2x = \pi + 2\pi k \) or \(x = \pi/2 + \pi k \). We obtain eight solutions in \([0, 2\pi) \) (Figure 14):

\[
x = 0, \quad \frac{\pi}{3}, \quad \frac{2\pi}{3}, \quad \pi, \quad \frac{4\pi}{3}, \quad \frac{5\pi}{3} \quad \text{and} \quad x = \frac{\pi}{2}, \frac{3\pi}{2}.
\]

EXAMPLE 5 Sketch the graph of \(f(x) = 3\cos(2(x + \frac{\pi}{2})) \) over \([0, 2\pi) \).

Solution
The graph is obtained by scaling and shifting the graph of \(y = \cos x \) in three steps (Figure 15):

- Compress horizontally by a factor of 2: \(y = \cos 2x \)
- Shift to the left \(\pi/2 \) units: \(y = \cos \left(2\left(x + \frac{\pi}{2}\right)\right)\)
- Expand vertically by a factor of 3: \(y = 3\cos \left(2\left(x + \frac{\pi}{2}\right)\right)\)

(A) \(y = \cos x \)
(B) \(y = \cos 2x \) (periodic with period \(\pi \))
(C) \(y = \cos 2\left(x + \frac{\pi}{2}\right)\)
(D) \(y = 3\cos 2\left(x + \frac{\pi}{2}\right)\)
CAUTION To shift the graph of \(y = \cos 2x \) to the left \(\pi/2 \) units, we must replace \(x \) by \(x + \pi/2 \) to obtain \(\cos \left(2 \left(x + \frac{\pi}{2} \right) \right) \). It is incorrect to take \(\cos \left(2x + \frac{\pi}{2} \right) \). Note that to shift left (in the \(-x \) direction), we add \(\pi/2 \). To shift right (in the \(+x \) direction), we subtract \(\pi/2 \), counter to what you might expect.

The expression \(\sin^2 x \) is usually denoted \(\sin^4 x \). For example, \(\sin^2 x \) is the square of \(\sin x \). We use similar notation for the other trigonometric functions. However, we reserve \(\sin^{-1} x \) for the inverse sine function discussed in Section 7.8, rather than for \(\frac{1}{\sin x} \).

![FIGURE 16](image)

For complementary angles, the sine of one angle is equal to the cosine of the complementary angle.

|| Example 6 Suppose that \(\cos \theta = \frac{2}{5} \). Calculate \(\tan \theta \) in the following two cases:
| (a) \(0 < \theta < \frac{\pi}{2} \) and | (b) \(\pi < \theta < 2\pi \).
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution First, using the identity (\cos^2 \theta + \sin^2 \theta = 1), we obtain</td>
<td></td>
</tr>
<tr>
<td>(\sin \theta = \pm \sqrt{1 - \cos^2 \theta} = \pm \sqrt{1 - \frac{4}{25}} = \pm \frac{\sqrt{21}}{5})</td>
<td></td>
</tr>
<tr>
<td>(a) If (0 < \theta < \frac{\pi}{2}), then (\sin \theta) is positive and we take the positive square root:</td>
<td></td>
</tr>
<tr>
<td>(\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{21}/5}{2/5} = \frac{\sqrt{21}}{2})</td>
<td></td>
</tr>
<tr>
<td>To visualize this computation, draw a right triangle with angle (\theta) such that (\cos \theta = \frac{2}{5}) as in Figure 17. The opposite side then has length (\sqrt{21} = \sqrt{5^2 - 2^2}) by the Pythagorean Theorem.</td>
<td></td>
</tr>
<tr>
<td>(b) If (\pi < \theta < 2\pi), then (\sin \theta) is negative and (\tan \theta = -\frac{\sqrt{21}}{2}).</td>
<td></td>
</tr>
</tbody>
</table>

We conclude this section by quoting the Law of Cosines (Figure 18), which is a generalization of the Pythagorean Theorem (see Exercise 60).
THEOREM 1 Law of Cosines If a triangle has sides a, b, and c, and θ is the angle opposite side c, then

$$c^2 = a^2 + b^2 - 2ab \cos \theta$$

If $\theta = \pi/2$, then $\cos \theta = 0$ and the Law of Cosines reduces to the Pythagorean Theorem.

1.4 SUMMARY

- An angle of θ radians subtends an arc of length θr on a circle of radius r.
- To convert from radians to degrees, multiply by $180/\pi$.
- To convert from degrees to radians, multiply by $\pi/180$.
- Unless otherwise stated, all angles in this text are given in radians.
- The functions $f(x) = \cos \theta$ and $f(x) = \sin \theta$ are defined in terms of right triangles for acute angles and as coordinates of a point on the unit circle for general angles (Figure 19):

$$\sin \theta = \frac{b}{c} \text{ opposite hypotenuse}, \quad \cos \theta = \frac{a}{c} \text{ adjacent hypotenuse}$$

- Basic properties of sine and cosine:
 - Periodicity: $\sin(\theta + 2\pi) = \sin \theta$, $\cos(\theta + 2\pi) = \cos \theta$
 - Parity: $\sin(-\theta) = -\sin \theta$, $\cos(-\theta) = \cos \theta$
 - Basic identity: $\sin^2 \theta + \cos^2 \theta = 1$
- The four additional trigonometric functions:
 $$\tan \theta = \frac{\sin \theta}{\cos \theta}, \quad \cot \theta = \frac{\cos \theta}{\sin \theta}, \quad \sec \theta = \frac{1}{\cos \theta}, \quad \csc \theta = \frac{1}{\sin \theta}$$

1.4 EXERCISES

Preliminary Questions

1. How is it possible for two different rotations to define the same angle?
2. Give two different positive rotations that define the angle $\pi/4$.
3. Give a negative rotation that defines the angle $\pi/3$.
4. The definition of $\cos \theta$ using right triangles applies when (choose the correct answer):

 (a) $0 < \theta < \frac{\pi}{2}$
 (b) $0 < \theta < \pi$
 (c) $0 < \theta < 2\pi$

5. What is the unit circle definition of $\sin \theta$?
6. How does the periodicity of $f(x) = \sin \theta$ and $f(x) = \cos \theta$ follow from the unit circle definition?

Exercises

1. Find the angle between 0 and 2π equivalent to $13\pi/4$.
2. Describe $\theta = \pi/6$ by an angle of negative radian measure.
3. Convert from radians to degrees:
 (a) π
 (b) $\pi/3$
 (c) $5\pi/12$
 (d) $3\pi/4$

4. Convert from degrees to radians:
 (a) 1°
 (b) 30°
 (c) 25°
 (d) 120°

5. Find the lengths of the arcs subtended by the angles θ and ϕ radians in Figure 20.
6. Calculate the values of the six standard trigonometric functions for the angle \(\theta \) in Figure 21.

![Figure 21](image)

7. Fill in the remaining values of \((\cos \theta, \sin \theta)\) for the points in Figure 22.

![Figure 22](image)

8. Find the values of the six standard trigonometric functions at \(\theta = 11\pi/6 \).

In Exercises 9–14, use Figure 22 to find all angles between 0 and \(2\pi\) satisfying the given condition.

9. \(\cos \theta = \frac{1}{2} \)
10. \(\tan \theta = 1 \)

11. \(\tan \theta = -1 \)
12. \(\csc \theta = 2 \)

13. \(\sin x = \frac{\sqrt{3}}{2} \)
14. \(\sec t = 2 \)

15. Fill in the following table of values:

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\pi/6)</th>
<th>(\pi/4)</th>
<th>(\pi/3)</th>
<th>(\pi/2)</th>
<th>(2\pi/3)</th>
<th>(3\pi/4)</th>
<th>(5\pi/6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tan \theta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\sec \theta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Complete the following table of signs:

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\sin \theta)</th>
<th>(\cos \theta)</th>
<th>(\tan \theta)</th>
<th>(\cot \theta)</th>
<th>(\sec \theta)</th>
<th>(\csc \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 < \theta < \pi/2)</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi/2 < \theta < \pi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\pi < \theta < 3\pi/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3\pi/2 < \theta < 2\pi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Show that if \(\tan \theta = c \) and \(0 \leq \theta < \pi/2 \), then \(\cos \theta = 1/\sqrt{1+c^2} \).

\textit{Hint:} Draw a right triangle whose opposite and adjacent sides have lengths \(c \) and 1.

18. Suppose that \(\cos \theta = \frac{1}{3} \).

(a) Show that if \(0 \leq \theta < \pi/2 \), then \(\sin \theta = 2\sqrt{2}/3 \) and \(\tan \theta = 2\sqrt{2} \).

(b) Find \(\sin \theta \) and \(\tan \theta \) if \(3\pi/2 \leq \theta < 2\pi \).

In Exercises 19–24, assume that \(0 \leq \theta < \pi/2 \).

19. Find \(\sin \theta \) and \(\tan \theta \) if \(\cos \theta = \frac{5}{3} \).
20. Find \(\cos \theta \) and \(\tan \theta \) if \(\sin \theta = \frac{3}{5} \).
21. Find \(\sin \theta \), \(\sec \theta \), and \(\cot \theta \) if \(\tan \theta = \frac{2}{3} \).
22. Find \(\sin \theta \), \(\cos \theta \), and \(\sec \theta \) if \(\cot \theta = 4 \).
23. Find \(\cos 2\theta \) if \(\sin \theta = \frac{1}{3} \).
24. Find \(\sin 2\theta \) and \(\cos 2\theta \) if \(\tan \theta = \sqrt{2} \).
25. Find \(\cos \theta \) and \(\tan \theta \) if \(\sin \theta = 0.4 \) and \(\pi/2 < \theta < \pi \).
26. Find \(\cos \theta \) and \(\sin \theta \) if \(\tan \theta = 4 \) and \(\pi < \theta < 3\pi/2 \).
27. Find \(\cos \theta \) if \(\cot \theta = \frac{1}{3} \) and \(\sin \theta < 0 \).
28. Find \(\tan \theta \) if \(\sec \theta = \sqrt{3} \) and \(\sin \theta < 0 \).
29. Find the values of \(\sin \theta \), \(\cos \theta \), and \(\tan \theta \) for the angles corresponding to the eight points on the unit circles in Figure 23(A) and (B).

![Figure 23](image)

30. Refer to Figure 24(A). Express the functions \(\sin \theta \), \(\tan \theta \), and \(\csc \theta \) in terms of \(c \).
31. Refer to Figure 24(B). Compute \(\cos \psi \), \(\sin \psi \), \(\cot \psi \), and \(\csc \psi \).

![Figure 24](image)

32. Express \(\cos \left(\theta + \frac{\pi}{2} \right) \) and \(\sin \left(\theta + \frac{\pi}{2} \right) \) in terms of \(\cos \theta \) and \(\sin \theta \).

\textit{Hint:} Find the relation between the coordinates \((a, b)\) and \((c, d)\) in Figure 25.

![Figure 25](image)
33. Use the addition formula to compute \(\cos \left(\frac{\pi}{3} + \frac{\pi}{4} \right) \) exactly.
34. Use the addition formula to compute \(\sin \left(\frac{\pi}{3} - \frac{\pi}{4} \right) \) exactly.

In Exercises 35–38, sketch the graph over \([0, 2\pi]\).

35. \(f(\theta) = 2 \sin 4\theta \)
36. \(f(\theta) = \cos \left(2\left(\theta - \frac{\pi}{2}\right) \right) \)
37. \(f(\theta) = \cos \left(2\theta - \frac{\pi}{2}\right) \)
38. \(f(\theta) = \sin \left(2\left(\theta - \frac{\pi}{2}\right)\right) + 2 \)

39. Determine a function that would have a graph as in Figure 26(A), stating the period and amplitude.

\[
\begin{align*}
\text{(A)} & \quad \begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{Figure26A}
\end{array}
\end{array} \quad \text{(B)} & \quad \begin{array}{c}
\begin{array}{c}
\includegraphics[width=0.4\textwidth]{Figure26B}
\end{array}
\end{array}
\end{align*}
\]

FIGURE 26

40. Determine a function that would have a graph as in Figure 26(B), stating the period and amplitude.

41. How many points lie on the intersection of the horizontal line \(y = c \) and the graph of \(y = \sin x \) for \(0 \leq x < 2\pi \)? *Hint:* The answer depends on \(c \).

42. How many points lie on the intersection of the horizontal line \(y = c \) and the graph of \(y = \tan x \) for \(0 \leq x < 2\pi \)?

In Exercises 43–46, solve for \(0 \leq \theta < 2\pi \) (see Example 4).

43. \(\sin 2\theta + \sin 3\theta = 0 \)
44. \(\sin \theta = \sin 2\theta \)
45. \(\cos 4\theta + \cos 2\theta = 0 \)
46. \(\sin \theta = \cos 2\theta \)

In Exercises 47–56, derive the identity using the identities listed in this section.

47. \(\cos 2\theta = 2 \cos^2 \theta - 1 \)
48. \(\cos^2 \frac{\theta}{2} = \frac{1 + \cos \theta}{2} \)
49. \(\sin \theta = \sqrt{1 - \cos^2 \theta} \)
50. \(\sin(\theta + \pi) = -\sin \theta \)
51. \(\cos(\theta + \pi) = -\cos \theta \)
52. \(\tan x = \cot \left(\frac{\pi}{2} - x\right) \)
53. \(\tan(\pi - \theta) = -\tan \theta \)
54. \(\tan 2x = \frac{2\tan x}{1 - \tan^2 x} \)
55. \(\tan x = \frac{2\tan x}{1 + \cos 2x} \)
56. \(\sin^2 x \cos^2 x = \frac{1 - \cos 4x}{8} \)
57. Use Exercises 50 and 51 to show that \(\tan \theta \) and \(\cot \theta \) are periodic with period \(\pi \).
58. Use the identity of Exercise 48 to show that \(\cos \frac{\pi}{4} \) is equal to \(\sqrt{\frac{1}{2} + \sqrt{2}} \).
59. Use the Law of Cosines to find the distance from \(P \) to \(Q \) in Figure 27.

FIGURE 27

60. Use Figure 28 to derive the Law of Cosines from the Pythagorean Theorem.

\[
\begin{align*}
\text{FIGURE 28}
\end{align*}
\]

61. Use the addition formula to prove \(\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta \).

62. Use the addition formulas for sine and cosine to prove \(\tan(a + b) = \frac{\tan a + \tan b}{1 - \tan a \tan b} \) and \(\cot(a - b) = \frac{\cot a \cot b + 1}{\cot b - \cot a} \).

63. Let \(\theta \) be the angle between the line \(y = mx + b \) and the \(x \)-axis [Figure 29(A)]. Prove that \(m = \tan \theta \).

64. Let \(L_1 \) and \(L_2 \) be the lines of slope \(m_1 \) and \(m_2 \) [Figure 29(B)]. Show that the angle \(\theta \) between \(L_1 \) and \(L_2 \) satisfies \(\cot \theta = \frac{m_2 m_1 + 1}{m_2 - m_1} \).

65. **Perpendicular Lines** Use Exercise 64 to prove that two lines with nonzero slopes \(m_1 \) and \(m_2 \) are perpendicular if and only if \(m_2 = -1/m_1 \).

66. Apply the double-angle formula to prove:
 (a) \(\cos \frac{\pi}{8} = \frac{1}{2} \sqrt{2 + \sqrt{2}} \)
 (b) \(\cos \frac{\pi}{16} = \frac{1}{2} \sqrt{2 + \sqrt{2 + \sqrt{2}}} \)

 Guess the values of \(\cos \frac{\pi}{32} \) and \(\cos \frac{\pi}{2n} \) for all \(n \).
Computer technology has vastly extended our ability to calculate and visualize mathematical relationships. In applied settings, computers are indispensable for solving complex systems of equations and analyzing data, as in weather prediction and medical imaging. Mathematicians use computers to study complex structures such as the Mandelbrot Set (Figures 1 and 2). We take advantage of this technology to explore the ideas of calculus visually and numerically.

When we plot a function with a graphing calculator or computer algebra system, the graph is contained within a viewing rectangle, the region determined by the range of \(x\) and \(y\)-values in the plot. We write \([a, b] \times [c, d]\) to denote the rectangle where \(a \leq x \leq b\) and \(c \leq y \leq d\).

The appearance of the graph depends heavily on the choice of viewing rectangle. Different choices may convey very different impressions that are sometimes misleading. Compare the three viewing rectangles for the graph of \(f(x) = 12 - x - x^2\) in Figure 3. Only (A) successfully displays the shape of the graph as a parabola. In (B), the graph is cut off, and no graph at all appears in (C). Keep in mind that the scales along the axes may change with the viewing rectangle. For example, the unit increment along the \(y\)-axis is larger in (B) than in (A), so the graph in (B) is steeper.

There is no single “correct” viewing rectangle. The goal is to select the viewing rectangle that displays the properties you wish to investigate. This usually requires experimentation.

EXAMPLE 1 How Many Roots and Where? How many real roots does the function \(f(x) = x^9 - 20x + 1\) have? Find their approximate locations.

Solution We experiment with several viewing rectangles (Figure 4). Our first attempt (A) displays a cut-off graph, so we try a viewing rectangle that includes a larger range of \(y\)-values. Plot (B) shows that the roots of \(f\) probably lie somewhere in the interval \([-3, 3]\), but it does not reveal how many real roots there are. Therefore, we try the viewing rectangle in (C). Now we can see clearly that \(f\) has three roots. A further zoom in (D) shows that these roots are located near \(-1.5, 0.1,\) and \(1.5\). Further zooming would provide their locations with greater accuracy.
must be used judiciously. In this respect, graphing
the vertical line $y = 10$, it does not. For any
function such as $y = x^{1/4}$ (Figure 6), it
may appear to approach a horizontal
asymptote, but in fact, it does not. For any
given horizontal line, the graph eventually
rises above it. In this respect, graphing
calculators and computer graphing systems
must be used judiciously.

EXAMPLE 2 Does a Solution Exist? Does $\cos x = \tan x$ have a solution? Describe the set of all solutions.

Solution The solutions of $\cos x = \tan x$ are the x-coordinates of the points where the graphs of $y = \cos x$ and $y = \tan x$ intersect. Figure 5(A) shows that there are two solutions in the interval $[0, 2\pi]$. By zooming in on the graph as in (B), we see that the first positive root lies between 0.6 and 0.7 and the second positive root lies between 2.4 and 2.5. Further zooming shows that the first root is approximately 0.67 [Figure 5(C)]. Continuing this process, we find that the first two roots are $x \approx 0.666$ and $x \approx 2.475$.

Since $f(x) = \cos x$ and $f(x) = \tan x$ are periodic, the picture repeats itself with period 2π. All solutions are obtained by adding multiples of 2π to the two solutions in $[0, 2\pi]$:

$$x \approx 0.666 + 2\pi k \quad \text{and} \quad x \approx 2.475 + 2\pi k \quad \text{(for any integer } k)$$

EXAMPLE 3 Functions with Asymptotes Plot the function $f(x) = \frac{1 - 3x}{x - 2}$ and describe its asymptotic behavior.

Solution First, we plot f in the viewing rectangle $[-10, 20] \times [-5, 5]$ as in Figure 7(A). The vertical line $x = 2$ is called a **vertical asymptote**. Many graphing calculators display this line, but it is not part of the graph (and it can usually be eliminated by choosing a smaller range of y-values). We see that $f(x)$ tends to ∞ as x approaches 2 from the left, and to $-\infty$ as x approaches 2 from the right. To display the horizontal asymptotic behavior of f, we use the viewing rectangle $[-10, 20] \times [-10, 5]$ [Figure 7(B)]. Here, we see that the graph approaches the horizontal line $y = -3$, called a **horizontal asymptote** (which we have added as a dashed horizontal line in the figure).
Calculators and computer algebra systems give us the freedom to experiment numerically. For instance, we can explore the behavior of a function by constructing a table of values. In the next example, we investigate a function related to exponential functions and compound interest (see Section 7.5).

EXAMPLE 4 Investigating the Behavior of a Function How does \(f(n) = (1 + \frac{1}{n})^n \) behave for large whole-number values of \(n \)? Does \(f(n) \) tend to infinity as \(n \) gets larger?

Solution First, we make a table of values of \(f(n) \) for larger and larger values of \(n \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>((1 + \frac{1}{n})^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2.59374</td>
</tr>
<tr>
<td>(10^2)</td>
<td>2.70481</td>
</tr>
<tr>
<td>(10^3)</td>
<td>2.71692</td>
</tr>
<tr>
<td>(10^4)</td>
<td>2.71815</td>
</tr>
<tr>
<td>(10^5)</td>
<td>2.71827</td>
</tr>
<tr>
<td>(10^6)</td>
<td>2.71828</td>
</tr>
</tbody>
</table>

This table suggests that \(f(n) \) does not tend to infinity. Rather, as \(n \) grows larger, \(f(n) \) appears to get closer to some value near 2.718 (a number resembling \(e \)). This is an example of limiting behavior that we will discuss in Chapter 2. Next, replace \(n \) by the variable \(x \) and plot the function \(f(x) = (1 + \frac{1}{x})^x \). The graphs in Figure 8 confirm that \(f(x) \) approaches a limit of approximately 2.7. We will prove that \(f(n) \) approaches \(e \) as \(n \) tends to infinity in Section 7.1.

EXAMPLE 5 Bird Flight: Finding a Minimum Graphically According to one model of bird flight, the power consumed by a pigeon flying at velocity \(v \) (in meters per second) is \(P(v) = 17v - \frac{1}{10}v^3 \) (in joules per second). Use a graph of \(P \) to find the velocity that minimizes power consumption.

Solution The velocity that minimizes power consumption corresponds to the lowest point on the graph of \(P \). We plot \(P \) first in a large viewing rectangle (Figure 9). This figure reveals the general shape of the graph and shows that \(P \) takes on a minimum value for \(v \) somewhere between \(v = 8 \) and \(v = 9 \). In the viewing rectangle \([8, 9.2] \times [2.6, 2.65]\), we see that the minimum occurs at approximately \(v = 8.65 \) m/s.

EXAMPLE 6 Illustrating Local Linearity Illustrate local linearity for the function \(f(x) = x \sin x \) at \(x = 1 \).

Solution First, we plot \(f(x) = x \sin x \) in the viewing window of Figure 10(A). The graph moves up and down and appears very wavy. However, as we zoom in, the graph straightens out. Figures (B)–(D) show the result of zooming in on the point \((1, f(1))\). When viewed up close, the graph looks like a straight line. This illustrates the local linearity of \(f \) at \(x = 1 \).
The appearance of a graph on a graphing calculator depends on the choice of viewing rectangle. Experiment with different viewing rectangles until you find one that displays the information you want. Keep in mind that the scales along the axes may change as you vary the viewing rectangle.

The following are some ways in which graphing calculators and computer algebra systems can be used in calculus:

- Visualizing the behavior of a function
- Finding solutions graphically or numerically
- Conducting numerical or graphical experiments
- Illustrating theoretical ideas (such as local linearity)

1.5 EXERCISES

Preliminary Questions

1. Is there a definite way of choosing the optimal viewing rectangle, or is it best to experiment until you find a viewing rectangle appropriate to the problem at hand?

2. Describe the calculator screen produced when the function \(y = 3 + x^2 \) is plotted with a viewing rectangle:
 - (a) \([-1, 1] \times [0, 2]\]
 - (b) \([0, 1] \times [0, 4]\]

3. According to the evidence in Example 4, it appears that \(f(n) = (1 + 1/n)^n \) never takes on a value greater than 3 for \(n > 0 \). Does this evidence prove that \(f(n) \leq 3 \) for \(n > 0 \)?

4. How can a graphing calculator be used to find the minimum value of a function?

Exercises

The exercises in this section should be done using a graphing calculator or computer algebra system.

1. Plot \(f(x) = 2x^4 + 3x^3 - 14x^2 - 9x + 18 \) in the appropriate viewing rectangles and determine its roots.

2. How many solutions does \(x^3 - 4x + 8 = 0 \) have?

3. How many positive solutions does \(x^3 - 12x + 8 = 0 \) have?

4. Does \(\cos x + x = 0 \) have a solution? A positive solution?

5. Find all the solutions of \(\sin x = \sqrt{x} \) for \(x > 0 \).

6. How many solutions does \(\cos x = x^2 \) have?

7. Let \(f(x) = (x - 100)^2 + 1000 \). What will the display show if you graph \(f \) in the viewing rectangle \([-10, 10]\) by \([-10, 10]\)? Find an appropriate viewing rectangle.

8. Plot \(f(x) = \frac{8x + 1}{8x - 4} \) in an appropriate viewing rectangle. What are the vertical and horizontal asymptotes?

9. Plot the graph of \(f(x) = \sin \frac{1}{x} \) in a viewing rectangle that clearly displays the vertical and horizontal asymptotes.

10. Illustrate local linearity for \(f(x) = x^2 \) by zooming in on the graph at \(x = 0.5 \) (see Example 6).

11. Plot \(f(x) = \cos(x^2) \sin x \) for \(0 \leq x \leq 2\pi \). Then illustrate local linearity at \(x = 3.8 \) by choosing appropriate viewing rectangles.

12. If \(P_0 \) dollars are deposited in a bank account paying 5% interest compounded monthly, then the account has value \(P_0 \left(1 + \frac{0.05}{12}\right)^N \) after \(N \) months. Find, to the nearest integer \(N \), the number of months after which the account value doubles.

In Exercises 13–18, investigate the behavior of the function as \(n \) or \(x \) grows large by making a table of function values and plotting a graph (see Example 4). Describe the behavior in words.

13. \(f(n) = n^{1/n} \)

14. \(f(n) = \frac{4n + 1}{6n - 5} \)

15. \(f(n) = \left(1 + \frac{1}{n}\right)^n \)

16. \(f(x) = \left(\frac{x + 6}{x - 4}\right)^x \)

17. \(f(x) = \left(x \tan \frac{1}{x}\right)^x \)

18. \(f(x) = \left(x \tan \frac{1}{x}\right)^{x^2} \)
19. The graph of \(f(\theta) = A \cos \theta + B \sin \theta \) is a sinusoidal wave for any constants \(A \) and \(B \). Confirm this for \((A, B) = (1, 1), (1, 2), \) and \((3, 4) \) by plotting \(f \).

20. Find the maximum value of \(f \) for the graphs produced in Exercise 19. Can you guess the formula for the maximum value in terms of \(A \) and \(B \)?

21. Find the intervals on which \(f(x) = x(x + 2)(x - 3) \) is positive by plotting a graph.

22. Find the set of solutions to the inequality \((x^2 - 4)(x^2 - 1) < 0 \) by plotting a graph.

Further Insights and Challenges

23. Let \(f_1(x) = x \) and define a sequence of functions by \(f_{n+1}(x) = \frac{1}{2}(f_n(x) + x/f_n(x)) \). For example, \(f_2(x) = \frac{1}{2}(x + 1) \). Use a computer algebra system to compute \(f_n(x) \) for \(n = 3, 4, 5 \) and plot \(y = f_n(x) \) together with \(y = \sqrt{x} \) for \(x \geq 0 \). What do you notice?

24. Set \(P_0(x) = 1 \) and \(P_1(x) = x \). The Chebyshev polynomials (useful in approximation theory) are defined inductively by the formula \(P_{n+1}(x) = 2xP_n(x) - P_{n-1}(x) \).

(a) Show that \(P_2(x) = 2x^2 - 1 \).

(b) Compute \(P_n(x) \) for \(3 \leq n \leq 6 \) using a computer algebra system or by hand, and plot \(y = P_n(x) \) over \([-1, 1]\).

(c) Check that your plots confirm two interesting properties: (a) \(y = P_n(x) \) has \(n \) real roots in \([-1, 1]\) and (b) for \(x \in [-1, 1] \), \(P_n(x) \) lies between \(-1\) and \(1\).

CHAPTER REVIEW EXERCISES

1. Express \((4, 10)\) as a set \(\{x: |x - a| < c\}\) for suitable \(a\) and \(c\).

2. Express as an interval:
 (a) \(\{x: |x - 5| < 4\}\)
 (b) \(\{x: |5x + 3| \leq 2\}\)

3. Express \(\{x: 2 \leq |x - 1| \leq 6\}\) as a union of two intervals.

4. Give an example of numbers \(x, y\) such that \(|x| + |y| = x - y\).

5. Describe the pairs of numbers \(x, y\) such that \(|x + y| = x - y\).

6. Sketch the graph of \(y = f(x + 2) - 1\), where \(f(x) = x^2\) for \(-2 \leq x \leq 2\).

In Exercises 7–10, let \(f(x)\) be the function shown in Figure 1.

7. Sketch the graphs of \(y = f(x) + 2\) and \(y = f(x + 2)\).

8. Sketch the graphs of \(y = \frac{1}{2}f(x)\) and \(y = f\left(\frac{1}{2}x\right)\).

9. Continue the graph of \(f\) to the interval \([-4, 4]\) as an even function.

10. Continue the graph of \(f\) to the interval \([-4, 4]\) as an odd function.

In Exercises 11–14, find the domain and range of the function.

11. \(f(x) = \sqrt{x + 1}\)

12. \(f(x) = \frac{4}{x^2 + 1}\)

13. \(f(x) = \frac{2}{3 - x}\)

14. \(f(x) = \sqrt{x^2 - x + 3}\)

15. Determine whether the function is increasing, decreasing, or neither:
 (a) \(f(x) = 3^{-x}\)
 (b) \(f(x) = \frac{1}{x^2 + 1}\)
 (c) \(g(t) = t^2 + t\)
 (d) \(g(t) = t^3 + t\)

16. Determine whether the function is even, odd, or neither:
 (a) \(f(x) = x^4 - 3x^2\)
 (b) \(g(x) = \sin(x + 1)\)
 (c) \(f(x) = 2^{-x^2}\)

In Exercises 17–24, find the equation of the line.

17. Line passing through \((-1, 4)\) and \((2, 6)\).

18. Line passing through \((-1, 4)\) and \((-1, 6)\).

19. Line of slope 6 through \((9, 1)\).

20. Line of slope \(-\frac{3}{2}\) through \((4, -12)\).

21. Line through \((2, 1)\) perpendicular to the line given by \(y = 3x + 7\).

22. Line through \((3, 4)\) perpendicular to the line given by \(y = 4x - 2\).

23. Line through \((2, 3)\) parallel to \(y = 4 - x\).

24. Horizontal line through \((-3, 5)\).

25. Does the following table of market data suggest a linear relationship between price and number of homes sold during a one-year period? Explain.

<table>
<thead>
<tr>
<th>Price (thousands of $)</th>
<th>180</th>
<th>195</th>
<th>220</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of homes sold</td>
<td>127</td>
<td>118</td>
<td>103</td>
<td>91</td>
</tr>
</tbody>
</table>

26. Does the following table of revenue data for a computer manufacturer suggest a linear relationship between revenue and time? Explain.

<table>
<thead>
<tr>
<th>Year</th>
<th>2005</th>
<th>2009</th>
<th>2011</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue (billions of $)</td>
<td>13</td>
<td>18</td>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>

27. Suppose that a cell phone plan that is offered at a price of \(P\) dollars per month attracts \(C\) customers, where \(C(P)\) is a linear demand function for \$100 \leq P \leq \$500. If \(C(100) = 1,000,000\) and \(C(500) = 100,000\), determine the demand function \(C\). What is the decrease in the number of customers for each increase of \$100 in the price?

28. Suppose that Internet domain names are sold at a price of \$P\) per month for \$2 \leq P \leq \$100. The number of customers \(C\) who buy the domain names is a linear function of the price. If 10,000 customers buy
a domain name when the price is $2 per month and 1000 customers buy when the price is $100 per month, determine the demand function C. What is the decrease in the number of customers for every $1 increase in the cost of the domain names?

29. Find the roots of $f(x) = x^4 - 4x^2$ and sketch its graph. On which intervals is f decreasing?

30. Let $h(z) = -2z^2 + 12z + 3$. Complete the square and find the maximum value of h.

31. Let $f(x)$ be the square of the distance from the point $(2, 1)$ to a point $(x, 3x + 2)$ on the line $y = 3x + 2$. Show that f is a quadratic function, and find its minimum value by completing the square.

32. Prove that $x^2 + 5x + 3 \geq 0$ for all x.

In Exercises 33–38, sketch the graph by hand.

33. $y = t^4$
34. $y = t^5$
35. $y = \sin \frac{\theta}{2}$
36. $y = 10^{-x}$
37. $y = x^{1/3}$
38. $y = \frac{1}{x^2}$

39. Show that the graph of $y = f(\frac{1}{2}x - b)$ is obtained by shifting the graph of $y = f(\frac{1}{2}x)$ to the right $3b$ units. Use this observation to sketch the graph of $y = [\frac{1}{2}x - 4]$.

40. Let $h(x) = \cos x$ and $g(x) = x^{-1}$. Compute the composite functions $h(g)$ and $g(h)$, and find their domains.

41. Find functions f and g such that the function $f(g(t)) = (12t + 9)^4$

42. Sketch the points on the unit circle corresponding to the following three angles, and find the values of the six standard trigonometric functions at each angle:
 (a) $\frac{2\pi}{3}$
 (b) $\frac{7\pi}{4}$
 (c) $\frac{7\pi}{6}$

43. What are the periods of these functions?
 (a) $y = \sin 2\theta$
 (b) $y = \sin \frac{\theta}{2}$
 (c) $y = \sin 2\theta + \sin \frac{\theta}{2}$

44. Assume that $\sin \theta = \frac{4}{5}$, where $\pi/2 < \theta < \pi$. Find:
 (a) $\tan \theta$
 (b) $\sin 2\theta$
 (c) $\csc \frac{\theta}{2}$

45. Give an example of values a, b such that
 (a) $\cos(a + b) \neq \cos a + \cos b$
 (b) $\cos \frac{a}{2} \neq \frac{\cos a}{2}$

46. Let $f(x) = \cos x$. Sketch the graph of $y = 2f\left(\frac{1}{3}x - \frac{2}{3}\right)$ for $0 \leq x \leq 6\pi$.

47. Solve $\sin 2x + \cos x = 0$ for $0 \leq x < 2\pi$.

48. How does $h(n) = n^2/2^n$ behave for large whole-number values of n? Does $h(n)$ tend to infinity?

49. [GUI] Use a graphing calculator to determine whether the equation $\cos x = 5x^2 - 8x^4$ has any solutions.

50. [GUI] Using a graphing calculator, find the number of real roots and estimate the largest root to two decimal places:
 (a) $f(x) = 1.8x^4 - x^3 - x$
 (b) $g(x) = 1.7x^4 - x^3 - x$
Calculus is usually divided into two branches, differential and integral, partly for historical reasons. The subject grew out of efforts in the seventeenth century to solve two important geometric problems: finding tangent lines to curves (differential calculus) and computing areas under curves (integral calculus). However, calculus is a broad subject with no clear boundaries. It includes other topics, such as the theory of infinite series, and it has an extraordinarily wide range of applications. What makes these methods and applications part of calculus is that they all rely on the concept of a limit. We will see throughout the text how limits allow us to make computations and solve problems that cannot be solved using algebra alone.

This chapter introduces the limit concept and sets the stage for our study of the derivative in Chapter 3. The first section, intended as motivation, discusses how limits arise in the study of rates of change and tangent lines.

2.1 Limits, Rates of Change, and Tangent Lines

Limits are about how a function \(f \) behaves, as \(x \) approaches a number \(a \). Does \(f(x) \) get closer and closer to a number \(L \)? If so, we say \(L \) is the limit of \(f(x) \) as \(x \) approaches \(a \). If not, we say the limit does not exist. Limits play a key role throughout calculus. In this section, we discuss their role in understanding rates of change.

Rates of change become critical whenever we study the relationship between two changing quantities. Velocity is a familiar example (the rate of change of position with respect to time), but there are many others, such as

- Rate of change in the number of infected individuals with respect to time
- Rate of change in consumer price index with respect to time
- Rate of change of atmospheric temperature with respect to altitude

Roughly speaking, if \(y \) and \(x \) are related quantities, the rate of change should tell us how much \(y \) changes in response to a unit change in \(x \). For example, if an automobile travels at a velocity of 80 km/h, then its position changes by 80 km for each unit change in time (the unit being 1 hour). If the trip lasts only half an hour, its position changes by 40 km, and in general, the change in position is 80\(t \) km, where \(t \) is the change in time (i.e., the time elapsed in hours). In other words,

\[
\text{Change in position} = \text{velocity} \times \text{change in time}
\]

However, this simple formula is not valid or even meaningful if the velocity is not constant. After all, if the automobile is accelerating or decelerating, which velocity would we use in the formula?

The problem of extending this formula to account for changing velocity lies at the heart of calculus. As we will learn, differential calculus uses the limit concept to define instantaneous velocity, and integral calculus enables us to compute the change in position in terms of instantaneous velocity. But these ideas are very general. They apply to all rates of change, making calculus an indispensable tool for modeling an amazing range of real-world phenomena.

In this section, we discuss velocity and other rates of change, emphasizing their graphical interpretation in terms of tangent lines. Although at this stage, we do not define precisely what a tangent line is—this will have to wait until Chapter 3—you can think of a tangent line as a line that skims a curve at a point, as in Figures 1(A) and (B) but not (C).
CHAPTER 2 LIMITS

FIGURE 1 The line is tangent in (A) and (B) but not in (C).

HISTORICAL PERSPECTIVE

Philosophy is written in this grand book—I mean the universe—which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language … in which it is written. It is written in the language of mathematics.…

—Galileo Galilei, 1623

The scientific revolution of the sixteenth and seventeenth centuries reached its high point in the work of Isaac Newton (1643–1727), who was the first scientist to show that the physical world, despite its complexity and diversity, is governed by a small number of universal laws. One of Newton’s great insights was that the universal laws are dynamical, describing how the world changes over time in response to forces, rather than how the world actually is at any given moment in time. These laws are expressed best in the language of calculus, which is the mathematics of change.

More than 50 years before the work of Newton, the astronomer Johannes Kepler (1571–1630) discovered his three laws of planetary motion, the most famous of which states that the path of a planet around the sun is an ellipse. Kepler arrived at these laws through a painstaking analysis of astronomical data, but he could not explain why they were true. According to Newton, the motion of any object—planet or pebble—is determined by the forces acting on it. The planets, if left undisturbed, would travel in straight lines. Since their paths are elliptical, some force—in this case, the gravitational force of the sun—must be acting to make them change direction continuously. In his magnum opus Prinicipia Mathematica, published in 1687, Newton proved that Kepler’s laws follow from Newton’s own universal laws of motion and gravity.

For these discoveries, Newton gained widespread fame in his lifetime. His fame continued to increase after his death, assuming a nearly mythic dimension, and his ideas had a profound influence, not only in science but also in the arts and literature, as expressed in this epitaph by British poet Alexander Pope: “Nature and Nature’s Laws lay hid in Night. God said, Let Newton be! and all was Light.”

Velocity

When we speak of velocity, we usually mean instantaneous velocity, which indicates the speed and direction of an object at a particular moment. The idea of instantaneous velocity makes intuitive sense, but care is required to define it precisely.

Consider an object traveling in a straight line (linear motion). The average velocity over a given time interval has a straightforward definition as the ratio

\[
\text{Average velocity} = \frac{\text{change in position}}{\text{length of time interval}}
\]

For example, if an automobile travels 200 km in 4 hours, then its average velocity during this 4-hour period is \(\frac{200}{4} = 50 \text{ km/h} \). At any given moment, the automobile may be going faster or slower than the average.

We cannot define instantaneous velocity as a ratio because we would have to divide by the length of the time interval (which is zero). However, we should be able to estimate instantaneous velocity by computing average velocity over successively smaller time intervals. The guiding principle is: Average velocity over a very small time interval is very close to instantaneous velocity. To explore this idea further, we introduce some notation.

The Greek letter \(\Delta \) (delta) is commonly used to denote the change in a function or variable. If \(s(t) \) is the position of an object (distance from the origin) at time \(t \) and \([t_0, t_1]\) is a time interval, we set

\[
\Delta s = s(t_1) - s(t_0) = \text{change in position}
\]

\[
\Delta t = t_1 - t_0 = \text{change in time (length of time interval)}
\]
The change in position Δs is also called the displacement, or net change in position. For $t_1 \neq t_0$,

$$\text{Average velocity over } [t_0, t_1] = \frac{\Delta s}{\Delta t} = \frac{s(t_1) - s(t_0)}{t_1 - t_0}$$

One type of motion we will study is the motion of an object falling to earth under the influence of gravity (assuming no air resistance). Galileo discovered that if the object is released at time $t = 0$ from a state of rest (Figure 2), then the distance traveled after t seconds is given by the formula

$$s(t) = 4.9t^2 \text{ m}$$

EXAMPLE 1 A hammer falls off a scaffolding at time $t = 0$. Estimate the instantaneous velocity at $t = 0.8$ s.

Solution We use Galileo’s formula $s(t) = 4.9t^2$ to compute the average velocity over the five short time intervals listed in Table 1. Consider the first interval $[t_0, t_1] = [0.8, 0.81]$:

$$\Delta s = s(0.81) - s(0.8) = 4.9(0.81)^2 - 4.9(0.8)^2 \approx 3.2149 - 3.1360 = 0.0789 \text{ m}$$

$$\Delta t = 0.81 - 0.8 = 0.01 \text{ s}$$

The average velocity over $[0.8, 0.81]$ is the ratio

$$\frac{\Delta s}{\Delta t} = \frac{s(0.81) - s(0.8)}{0.81 - 0.8} = \frac{0.0789}{0.01} = 7.889 \text{ m/s}$$

Table 1 shows the results of similar calculations for intervals of successively shorter lengths. It looks like these average velocities are getting closer to 7.84 m/s as the length of the time interval shrinks:

$$7.889, \ 7.8645, \ \mathbf{7.8405}, \ 7.84024, \ 7.840005$$

This suggests that 7.84 m/s is a good candidate for the instantaneous velocity at $t = 0.8$.

We express our conclusion in the previous example by saying the following:

> **Average velocity converges to instantaneous velocity. Instantaneous velocity is the limit of average velocity** as the length of the time interval shrinks to zero.

We might write this as **instantaneous velocity** $= \lim_{\Delta t \to 0} \text{ (average velocity)}$.

Graphical Interpretation of Velocity

The idea that average velocity converges to instantaneous velocity as we shorten the time interval has a vivid interpretation in terms of secant lines. The term **secant line** refers to a line through two points on a curve.

Consider the graph of position $s(t)$ for an object traveling in a straight line such as a bicycle (Figure 3). The ratio defining average velocity over $[t_0, t_1]$ is nothing more than the slope of the secant line through the points $(t_0, s(t_0))$ and $(t_1, s(t_1))$. For $t_1 \neq t_0$,

$$\text{Average velocity = slope of secant line} = \frac{\Delta s}{\Delta t} = \frac{s(t_1) - s(t_0)}{t_1 - t_0}$$

By interpreting average velocity as a slope, we can visualize what happens as the time interval gets smaller. Figure 4 shows the graph of position for the falling stone of Example 1, where $s(t) = 4.9t^2$. As the time interval shrinks, the secant lines get closer to—and seem to rotate into—the tangent line at $t = 0.8$.

TABLE 1

<table>
<thead>
<tr>
<th>Time intervals</th>
<th>Average velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.8, 0.81]</td>
<td>7.889</td>
</tr>
<tr>
<td>[0.8, 0.805]</td>
<td>7.8645</td>
</tr>
<tr>
<td>[0.8, 0.8001]</td>
<td>7.8405</td>
</tr>
<tr>
<td>[0.8, 0.80005]</td>
<td>7.84024</td>
</tr>
<tr>
<td>[0.8, 0.800001]</td>
<td>7.840005</td>
</tr>
</tbody>
</table>

There is nothing special about the particular time intervals in Table 1. We are looking for a trend, and we could have chosen any intervals $[0.8, t]$ for values of t approaching 0.8. We could also have chosen intervals $[t, 0.8]$ for $t < 0.8.
CHAPTER 2 LIMITS

FIGURE 3 The average velocity over \([t_0, t_1]\) is equal to the slope of the secant line.

<table>
<thead>
<tr>
<th>Time interval</th>
<th>Average velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0.8, 0.805]</td>
<td>7.8645</td>
</tr>
<tr>
<td>[0.8, 0.8001]</td>
<td>7.8405</td>
</tr>
<tr>
<td>[0.8, 0.80005]</td>
<td>7.8402</td>
</tr>
</tbody>
</table>

FIGURE 4 The secant lines "rotate into" the tangent line as the time interval shrinks. Note: The graph is not drawn to scale.

And since the secant lines approach the tangent line, the slopes of the secant lines get closer and closer to the slope of the tangent line. In other words, the statement

As the time interval shrinks to zero, the average velocity approaches the instantaneous velocity.

has the graphical interpretation

As the time interval shrinks to zero, the slope of the secant line approaches the slope of the tangent line.

We conclude the following:

Instantaneous velocity is equal to the slope of the tangent line to the graph of position as a function of time.

This conclusion and its generalization to other rates of change are of fundamental importance in differential calculus.

EXAMPLE 2 Describe the motion and velocities of a shuttle train that runs on a straight track at the airport, ferrying passengers from one terminal to another according to the graph given in Figure 5.

Solution At time \(t = 0\), the train is at position \(x = 0\) on the track at the first terminal. It gradually begins moving, speeding up until around 2 min. It then begins slowing down, and reaches its destination 800 m down the track at \(t = 4\) min. At this point, it stops. Notice that for \(t\) in the interval \((0, 4)\), the slopes of the tangent lines, which represent
the velocity, are positive. So the instantaneous velocities are positive. The slopes of the
tangent lines begin very small, increase, and then decrease to 0. In the interval [4, 5],
the graph has a horizontal tangent line with slope 0. In this interval, the train is not moving,
having instantaneous velocity 0. The shuttle train then moves in the reverse direction. The
slopes of the tangent lines in the interval (5, 9) are all negative. The speed increases and
then decreases in this interval but the velocities are all negative. The train has returned to
the original terminal at \(x = 0 \) on the track at time \(t = 9 \) min.

Other Rates of Change

Velocity is only one of many examples of a rate of change. Our reasoning applies to any
quantity \(y \) that depends on a variable \(x \)—say, \(y = f(x) \). For any interval \([x_0, x_1]\), we set

\[
\Delta f = f(x_1) - f(x_0), \quad \Delta x = x_1 - x_0
\]

For \(x_1 \neq x_0 \), the **average rate of change** of \(y \) with respect to \(x \) over \([x_0, x_1]\) is the ratio

\[
\text{Average rate of change} = \frac{\Delta f}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}
\]

The **instantaneous rate of change** at \(x = x_0 \) is the limit of the average rates of change.
We estimate it by computing the average rate over smaller and smaller intervals.

In Example 1 above, we considered only right-hand intervals \([x_0, x_1]\). In the next
element, we compute the average rate of change for intervals lying to both the left and
the right of \(x_0 \).

Example 3 Bacteria in a Petri Dish

Suppose the formula \(B = 5\sqrt{T} \) yields a good
approximation to the amount of bacteria, as measured by its weight, that grows in a
particular petri dish (in milligrams) over one day as a function of the temperature \(T \) (in
degrees centigrade) for temperatures in the range \(0 \leq T \leq 25 \). Estimate the instantaneous
rate of change of \(B \) with respect to \(T \) when \(T = 10^\circ\text{C} \). What are the units of this rate?

Solution To estimate the instantaneous rate of change at \(T = 10 \), we compute the average
rate for several intervals lying to the left and right of \(T = 10 \). For example, the average rate of change over \([9.5, 10]\) is

\[
\frac{B(10) - B(9.5)}{10 - 9.5} = \frac{5\sqrt{10} - 5\sqrt{9.5}}{0.5} \approx 0.8007
\]

Tables 2 and 3 suggest that the instantaneous rate is approximately 0.790. This is the rate
of increase in the weight of the bacteria with respect to temperature, so it has units of
milligrams per degree centigrade. The secant lines corresponding to the values in
the tables are shown in Figures 6 and 7.
To conclude this section, we recall an important point discussed in Section 1.2: For any linear function \(f(x) = mx + b \), the average rate of change over every interval is equal to the slope \(m \) (Figure 8). We verify as follows:

\[
\frac{\Delta f}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{(mx_1 + b) - (mx_0 + b)}{x_1 - x_0} = \frac{m(x_1 - x_0)}{x_1 - x_0} = m
\]

The instantaneous rate of change at \(x = x_0 \), which is the limit of these average rates, is also equal to \(m \). This makes sense graphically because all secant lines and all tangent lines to the graph of \(f \) coincide with the graph itself.

2.1 SUMMARY

- The limit as \(x \) approaches \(a \) of a function \(f \) is a number \(L \) that \(f(x) \) approaches, if such an \(L \) exists.
- The average rate of change of \(y = f(x) \) over an interval \([x_0, x_1]\):

 \[
 \text{Average rate of change} = \frac{\Delta f}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \quad (x_1 \neq x_0)
 \]

- The instantaneous rate of change is the limit of the average rates of change as the time interval shrinks.
- Graphical interpretation:
 - Average rate of change is the slope of the secant line through the points \((x_0, f(x_0))\) and \((x_1, f(x_1))\) on the graph of \(f \).
 - Instantaneous rate of change is the slope of the tangent line at \(x_0 \).
- To estimate the instantaneous rate of change at \(x = x_0 \), compute the average rate of change over several intervals \([x_0, x_1]\) (or \([x_1, x_0]\)) for \(x_1 \) close to \(x_0 \).
- The velocity of an object in linear motion is the rate of change of position \(s(t) \).
- Linear function \(f(x) = mx + b \): The average rate of change over every interval and the instantaneous rate of change at every point are equal to the slope \(m \).

2.1 EXERCISES

Preliminary Questions

1. Average velocity is equal to the slope of a secant line through two points on a graph. Which graph?

2. Can instantaneous velocity be defined as a ratio? If not, how is instantaneous velocity computed?

3. What is the graphical interpretation of instantaneous velocity at a specific time \(t = t_0 \)?

Exercises

1. A ball dropped from a state of rest at time \(t = 0 \) travels a distance \(s(t) = 4.9t^2 \) m in \(t \) seconds.
 (a) How far does the ball travel during the time interval \([2, 2.5]\)?
 (b) Compute the average velocity over \([2, 2.5]\).
 (c) Compute the average velocity for the time intervals in the table and estimate the ball’s instantaneous velocity at \(t = 2 \).

<table>
<thead>
<tr>
<th>Interval</th>
<th>[2, 2.01]</th>
<th>[2, 2.005]</th>
<th>[2, 2.001]</th>
<th>[2, 2.00001]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average velocity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. A wrench dropped from a state of rest at time \(t = 0 \) travels a distance \(s(t) = 4.9t^2 \) m in \(t \) seconds. Estimate the instantaneous velocity at \(t = 3 \).

3. Let \(B = 5\sqrt{T} \) as in Example 3. Estimate the instantaneous rate of change of \(B \) with respect to \(T \) when \(T = 20^\circ C \).

4. Compute \(\Delta y/\Delta x \) for the interval \([2, 5]\), where \(y = 4x - 9 \). What is the instantaneous rate of change of \(y \) with respect to \(x \) at \(x = 2 \)?

In Exercises 5–6, a stone is tossed vertically into the air from ground level with an initial velocity of 15 m/s. Its height at time \(t \) is \(h(t) = 15t - 4.9t^2 \) m.
5. Compute the stone’s average velocity over the time interval \([0.5, 2.5]\) and indicate the corresponding secant line on a sketch of the graph of \(h\).

6. Compute the stone’s average velocity over the time intervals \([1, 1.01], [1, 1.001], [1, 1.0001]\) and \([0.99, 1], [0.999, 1], [0.9999, 1]\), and then estimate the instantaneous velocity at \(t = 1\).

7. With an initial deposit of $100, and an interest rate of 8%, the balance in a bank account after \(t\) years is \(f(t) = 100(1.08)^t\) dollars.
 (a) What are the units of the rate of change of \(f(t)\)?
 (b) Find the average rate of change over \([0, 0.5]\) and \([0, 1]\).
 (c) Estimate the instantaneous rate of change at \(t = 0.5\) by computing the average rate of change over intervals to the left and right of \(t = 0.5\).

8. The position of a particle at time \(t\) is \(s(t) = t^3 - t\). Compute the average velocity over the time interval \([1, 4]\) and estimate the instantaneous velocity at \(t = 1\).

9. Figure 9 shows the estimated percentage \(P\) of the Chilean population that uses the Internet, based on data from the United Nations Statistics Division.
 (a) Estimate the rate of change of \(P\) at \(t = 2010\).
 (b) Does the rate of change increase or decrease as \(t\) increases? Explain graphically.
 (c) Let \(R\) be the average rate of change over \([2008, 2012]\). Compute \(R\).
 (d) Is the rate of change at \(t = 2012\) greater than or less than the average rate \(R\)? What about the rate at \(t = 2008\)? Explain graphically.

10. The atmospheric temperature \(T\) (in degrees Celsius) at altitude \(h\) meters above a certain point on Earth can be approximated by \(T = 15 - 0.0067h\) for \(h \leq 12,000\) m. What are the average and instantaneous rates of change of \(T\) with respect to \(h\)? Why are they the same? Sketch the graph of \(T\) for \(h \leq 12,000\).

In Exercises 11–18, estimate the instantaneous rate of change at the point indicated.

11. \(P(x) = 3x^2 - 5; \quad x = 2\)
12. \(f(t) = 12t - 7; \quad t = -4\)
13. \(y(x) = \frac{1}{x + 2}; \quad x = 2\)
14. \(y(t) = \sqrt{3t + 1}; \quad t = 1\)
15. \(f(x) = 3x; \quad x = 0\)
16. \(f(x) = 3x; \quad x = 3\)
17. \(f(x) = \sin x; \quad x = \pi/6\)
18. \(f(x) = \tan x; \quad x = \pi/4\)

19. The height (in centimeters) at time \(t\) (in seconds) of a small mass oscillating at the end of a spring is \(h(t) = 8\cos(12\pi t)\).
 (a) Calculate the mass’s average velocity over the time intervals \([0, 0.1]\) and \([3, 3.5]\).
 (b) Estimate its instantaneous velocity at \(t = 3\).

20. Assume that the period \(T\) (in seconds) of a pendulum (the time required for a complete back-and-forth cycle) is \(T = \frac{1}{2} \sqrt{\frac{L}{g}}\), where \(L\) is the pendulum’s length (in meters).
 (a) What are the units for the rate of change of \(T\) with respect to \(L\)? Explain what this rate measures.
 (b) Which quantities are represented by the slopes of lines \(A\) and \(B\) in Figure 10?
 (c) Estimate the instantaneous rate of change of \(T\) with respect to \(L\) when \(L = 3\) m.

21. The number \(P(t)\) of E. coli cells at time \(t\) (hours) in a petri dish is plotted in Figure 11.
 (a) Calculate the average rate of change of \(P(t)\) over the time interval \([1, 3]\) and draw the corresponding secant line.
 (b) Estimate the slope \(m\) of the line in Figure 11. What does \(m\) represent?

22. The graphs in Figure 12 represent the positions of moving particles as functions of time.
 (a) Do the instantaneous velocities at times \(t_1, t_2, t_3\) in (A) form an increasing or a decreasing sequence?
 (b) Is the particle speeding up or slowing down in (A)?
 (c) Is the particle speeding up or slowing down in (B)?
23. An advertising campaign boosted sales of Crunchy Crust frozen pizza to a peak level of \(X_0 \) dollars per month. A marketing study showed that after \(t \) months, monthly sales declined to

\[
S(t) = S_0 g(t), \quad \text{where} \quad g(t) = \frac{1}{\sqrt{1 + t}}
\]

Do sales decline more slowly or more rapidly as time increases? Answer by referring to a sketch of the graph of \(g \) together with several tangent lines.

24. The fraction of a city’s population infected by a flu virus is plotted as a function of time (in weeks) in Figure 13.

(a) Which quantities are represented by the slopes of lines \(A \) and \(B \)? Estimate these slopes.

(b) Is the flu spreading more rapidly at \(t = 1 \), \(2 \), or \(3 \)?

(c) Is the flu spreading more rapidly at \(t = 4 \), \(5 \), or \(6 \)?

25. The graphs in Figure 14 represent the positions \(s \) of moving particles as functions of time \(t \). Match each graph with a description:

(a) Speeding up

(b) Speeding up and then slowing down

(c) Slowing down

(d) Slowing down and then speeding up

26. An epidemiologist finds that the percentage \(N(t) \) of susceptible children who are sick on day \(t \) during the first 3 weeks of a measles outbreak is given, to a reasonable approximation, by the formula (Figure 15)

\[
N(t) = \frac{100t^2}{t^3 + 5t^2 - 100t + 380}
\]

27. The fungus \(Fusarium exosporium \) infects a field of flax plants through the roots and causes the plants to wilt. Eventually, the entire field is infected. The percentage \(f(t) \) of infected plants as a function of time \(t \) (in days) since planting is shown in Figure 16.

(a) What are the units of the rate of change of \(f(t) \) with respect to \(t \)? What does this rate measure?

(b) Use the graph to rank (from smallest to largest) the average infection rates over the intervals \([0, 12], [20, 32], \) and \([40, 52]\).

(c) Use the following table to compute the average rates of infection over the intervals \([30, 40], [40, 50], [30, 50]\):

<table>
<thead>
<tr>
<th>Days</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent infected</td>
<td>0</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
</tr>
</tbody>
</table>

(d) Draw the tangent line at \(t = 40 \) and estimate its slope.

28. Let \(v = 5\sqrt{T} \) as in Example 3. Is the rate of change of \(v \) with respect to \(T \) greater at low temperatures or high temperatures? Explain in terms of the graph.

29. If an object in linear motion (but with changing velocity) covers \(\Delta s \) meters in \(\Delta t \) seconds, then its average velocity is \(v_0 = \frac{\Delta s}{\Delta t} \) m/s. Show that it would cover the same distance if it traveled at constant velocity \(v_0 \) over the same time interval. This justifies our calling \(\Delta s/\Delta t \) the average velocity.

30. Sketch the graph of \(f(x) = x(1 - x) \) over \([0, 1]\). Refer to the graph and, without making any computations, find:

(a) the average rate of change over \([0, 1]\).

(b) the (instantaneous) rate of change at \(x = \frac{1}{2} \).

(c) the values of \(x \) at which the rate of change is positive.
31. Which graph in Figure 17 has the following property: For all \(x \), the average rate of change over \([0, x]\) is greater than the instantaneous rate of change at \(x \). Explain.

Further Insights and Challenges

32. The height of a projectile fired in the air vertically with initial velocity 25 m/s is

\[h(t) = 25t - 4.9t^2 \text{ m} \]

(a) Compute \(h(1) \). Show that \(h(t) - h(1) \) can be factored with \((t - 1)\) as a factor.

(b) Using part (a), show that the average velocity over the interval \([1, t]\) is \(20.1 - 4.9t\).

(c) Use this formula to find the average velocity over several intervals \([1, t]\) with \(t \) close to 1. Then estimate the instantaneous velocity at time \(t = 1 \).

33. Let \(Q(t) = t^2 \). As in the previous exercise, find a formula for the average rate of change of \(Q \) over the interval \([1, t]\) and use it to estimate the instantaneous rate of change at \(t = 1 \). Repeat for the interval \([2, t]\) and estimate the rate of change at \(t = 2 \).

34. Show that the average rate of change of \(f(x) = x^3 \) over \([1, x]\) is equal to

\[x^2 + x + 1 \]

Use this to estimate the instantaneous rate of change of \(f(x) \) at \(x = 1 \).

35. Find a formula for the average rate of change of \(f(x) = x^3 \) over \([2, x]\) and use it to estimate the instantaneous rate of change at \(x = 2 \).

36. Let \(T = \frac{3}{2} \sqrt{L} \) as in Exercise 20. The numbers in the second column of Table 4 are increasing, and those in the last column are decreasing. Explain why in terms of the graph of \(T \) as a function of \(L \). Also, explain graphically why the instantaneous rate of change at \(L = 3 \) lies between 0.43299 and 0.43303.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Average rate of change</th>
<th>Interval</th>
<th>Average rate of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>[3.3.2]</td>
<td>0.42603</td>
<td>[2.8, 3]</td>
<td>0.44048</td>
</tr>
<tr>
<td>[3.3.1]</td>
<td>0.42946</td>
<td>[2.9, 3]</td>
<td>0.43668</td>
</tr>
<tr>
<td>[3.3.001]</td>
<td>0.43298</td>
<td>[2.999, 3]</td>
<td>0.43305</td>
</tr>
<tr>
<td>[3.3.005]</td>
<td>0.43299</td>
<td>[2.9995, 3]</td>
<td>0.43303</td>
</tr>
</tbody>
</table>

2.2 Limits: A Numerical and Graphical Approach

The goal in this section is to define limits and study them using numerical and graphical techniques. We begin with the following question: How do the values of a function \(f \) behave when \(x \) approaches a number \(c \), whether or not \(f(c) \) is defined?

To explore this question, we’ll experiment with the function

\[f(x) = \frac{\sin x}{x} \] \(x \) in radians

Notice that \(f(0) \) is not defined. In fact, when we set \(x = 0 \) in

\[f(x) = \frac{\sin x}{x} \]

we obtain the undefined expression 0/0 because \(\sin 0 = 0 \). Nevertheless, we can compute \(f(x) \) for values of \(x \) close to 0. When we do this, a clear trend emerges.

To describe the trend, we use the phrase “\(x \) approaches 0” or “\(x \) tends to 0” to indicate that \(x \) takes on values (both positive and negative) that get closer and closer to 0. The notation for this is \(x \to 0 \), and more specifically we write

- \(x \to 0^+ \) if \(x \) approaches 0 from the right (on the number line).
- \(x \to 0^- \) if \(x \) approaches 0 from the left (on the number line).

Now consider the values listed in Table 1. The table gives the unmistakable impression that \(f(x) \) gets closer and closer to 1 as \(x \to 0^+ \) and as \(x \to 0^- \).

This conclusion is supported by the graph of \(f \) in Figure 1. The point \((0, 1)\) is missing from the graph because \(f(x) \) is not defined at \(x = 0 \), but the graph approaches
The fact that \(\frac{\sin x}{x} \) approaches 1 for \(x \) approaching 0 can be interpreted to mean that the two functions \(y = \sin x \) and \(y = x \) behave similarly as \(x \) approaches 0. Their graphs in Figure 2 make it clear this is the case. The closer we get to \(x = 0 \), the closer the two graphs become.

To define limits, let us recall that the distance between two numbers \(a \) and \(b \) is the absolute value \(|a - b| \). So we can express the idea that \(f(x) \) is close to \(L \) by saying that \(|f(x) - L| \) is small.

Definition of a Limit

Assume that \(f(x) \) is defined for all \(x \) in an open interval containing \(c \), but not necessarily at \(c \) itself. We say that

\[
\text{the limit of } f(x) \text{ as } x \to c \text{ is equal to the number } L
\]

if \(|f(x) - L| \) can be made arbitrarily small by taking \(x \) sufficiently close (but not equal) to \(c \). In this case, we write

\[
\lim_{x \to c} f(x) = L
\]

We also say that \(f(x) \) approaches or converges to \(L \) as \(x \to c \) [and we write \(f(x) \to L \)].

In other words, as \(x \) approaches \(c \), \(f(x) \) approaches \(L \). See Figure 3 for the graphical interpretation. If the values of \(f(x) \) do not converge to any number \(L \) as \(x \to c \), we say that \(\lim_{x \to c} f(x) \) does not exist. It is important to note that the value \(f(c) \) itself, which may

The concept of a limit was not fully clarified until the nineteenth century. The French mathematician Augustin-Louis Cauchy (1789–1857, pronounced Koh-shee) gave the following verbal definition: “When the values successively attributed to the same variable approach a fixed value indefinitely, in such a way as to end up differing from it by as little as one might wish, this last value is called the limit of all the others. So, for example, an irrational number is the limit of the various fractions which provide values that approximate it more and more closely.” (Translated by J. Grabiner)

TABLE 1

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{\sin x}{x})</th>
<th>(x)</th>
<th>(\frac{\sin x}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.841470985</td>
<td>-1</td>
<td>0.841470985</td>
</tr>
<tr>
<td>0.5</td>
<td>0.958851077</td>
<td>-0.5</td>
<td>0.958851077</td>
</tr>
<tr>
<td>0.1</td>
<td>0.998334166</td>
<td>-0.1</td>
<td>0.998334166</td>
</tr>
<tr>
<td>0.05</td>
<td>0.999583385</td>
<td>-0.05</td>
<td>0.999583385</td>
</tr>
<tr>
<td>0.01</td>
<td>0.999983333</td>
<td>-0.01</td>
<td>0.999983333</td>
</tr>
<tr>
<td>0.005</td>
<td>0.9999995833</td>
<td>-0.005</td>
<td>0.9999995833</td>
</tr>
<tr>
<td>0.001</td>
<td>0.9999999833</td>
<td>-0.001</td>
<td>0.9999999833</td>
</tr>
</tbody>
</table>

\(x \to 0^+ \quad f(x) \to 1 \quad x \to 0^- \quad f(x) \to 1 \)

Figure 2

CONCEPTUAL INSIGHT The numerical and graphical evidence may convince us that \(f(x) = \frac{\sin x}{x} \) converges to 1 as \(x \to 0 \), but since \(f(0) \) yields the undefined expression 0/0, could we not arrive at this conclusion more simply by saying that 0/0 is equal to 1? The answer is no. Algebra does not allow us to divide by 0 under any circumstances, and it is not correct to say that 0/0 equals 1 or any other number.

What we have learned, however, is that a function \(f \) may approach a limit as \(x \to c \) even if the formula for \(f(c) \) produces the undefined expression 0/0. The limit of \(f(x) = \frac{\sin x}{x} \) turns out to be 1. We will encounter other examples where the formula for \(f(c) \) produces 0/0 but the limit is a number other than 1 (or the limit does not exist).
or may not be defined, plays no role in the limit. All that matters are the values of $f(x)$ for x close to c. Furthermore, if $f(x)$ approaches a limit as $x \to c$, then the limiting value L is unique.

EXAMPLE 1 Use the definition above to verify the following limits:

(a) $\lim_{x \to 7} 5 = 5$

(b) $\lim_{x \to 4} (3x + 1) = 13$

Solution

(a) Let $f(x) = 5$. To show that $\lim_{x \to 7} f(x) = 5$, we must show that $|f(x) - 5|$ becomes arbitrarily small when x is sufficiently close (but not equal) to 7. But observe that $|f(x) - 5| = |5 - 5| = 0$ for all x, so what we are required to show is automatic (and it is not necessary to take x close to 7).

(b) Let $f(x) = 3x + 1$. To show that $\lim_{x \to 4} (3x + 1) = 13$, we must show that $|f(x) - 13|$ becomes arbitrarily small when x is sufficiently close (but not equal) to 4. We have

$$|f(x) - 13| = |(3x + 1) - 13| = |3x - 12| = 3|x - 4|$$

Because $|f(x) - 13|$ is a multiple of $|x - 4|$, we can make $|f(x) - 13|$ arbitrarily small by taking x sufficiently close to 4.

Reasoning as in Example 1 but with arbitrary constants, we obtain the following simple but important results:

THEOREM 1 For any constants k and c, (a) $\lim_{x \to c} k = k$, (b) $\lim_{x \to c} x = c$.

To deal with more complicated limits and, especially, to provide mathematically rigorous proofs, a more precise version of the above limit definition is needed. This more precise version is discussed in Section 2.9, where inequalities are used to pin down the exact meaning of the phrases “arbitrarily small” and “sufficiently close.”

Graphical and Numerical Investigation

Our goal in the rest of this section is to develop a better intuitive understanding of limits by investigating them graphically and numerically.

Graphical Investigation Use a graphing utility to produce a graph of f. The graph should give a visual impression of whether or not a limit exists. It can often be used to estimate the value of the limit.

Numerical Investigation We write $x \to c^-$ to indicate that x approaches c through values less than c (i.e., from the left), and we write $x \to c^+$ to indicate that x approaches c through values greater than c (i.e., from the right). To investigate $\lim_{x \to c} f(x)$,

(i) Make a table of values of $f(x)$ for x close to but less than c—that is, as $x \to c^-$.

(ii) Make a second table of values of $f(x)$ for x close to but greater than c—that is, as $x \to c^+$.

(iii) If both tables indicate convergence to the same number L, we take L to be an estimate for the limit.
The tables should contain enough values to reveal a clear trend of convergence to a value L. If $f(x)$ approaches a limit, the successive values of $f(x)$ will generally agree to more and more decimal places as x is taken closer to c. If no pattern emerges, then the limit may not exist.

Example 2 Investigate $\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3}$ graphically and numerically.

Solution The function $f(x) = \frac{x - 9}{\sqrt{x} - 3}$ is undefined at $x = 9$ because the formula for $f(9)$ leads to the undefined expression $0/0$. Therefore, the graph in Figure 4 has a gap at $x = 9$. However, the graph suggests that $f(x)$ approaches 6 as $x \to 9$.

For numerical evidence, we consider a table of values of $f(x)$ for x approaching 9 from both the left and the right. Table 2 supports our impression that $\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3} = 6$.

We will see shortly that, in fact, we can write $\lim_{x \to 9} \frac{x - 9}{\sqrt{x} - 3} = \lim_{x \to 9} \frac{(\sqrt{x} - 3)(\sqrt{x} + 3)}{\sqrt{x} - 3} = \lim (\sqrt{x} + 3) = 6$. Thus, the algebraic solution will confirm our numerical and geometric conclusion.

Example 3 Limit Equals Value of the Function Investigate $\lim_{x \to 4} x^2$.

Solution Figure 5 and Table 3 both suggest that $\lim_{x \to 4} x^2 = 16$. But $f(x) = x^2$ is defined at $x = 4$ and $f(4) = 16$, so in this case, *the limit is equal to the function value*. This pleasant conclusion is valid whenever f is a *continuous* function, a concept treated in Section 2.4.

Example 4 Investigate $\lim_{h \to 0} \frac{2^h - 1}{h}$.

Solution The function $f(h) = (2^h - 1)/h$ is undefined at $h = 0$, but both Figure 6 and Table 4 suggest that $\lim_{h \to 0} (2^h - 1)/h \approx 0.693$.

Table 2

<table>
<thead>
<tr>
<th>$x \to 9^-$</th>
<th>$x - 9$</th>
<th>$x \to 9^+$</th>
<th>$x - 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.9</td>
<td>5.98329</td>
<td>9.1</td>
<td>6.01662</td>
</tr>
<tr>
<td>8.99</td>
<td>5.99833</td>
<td>9.01</td>
<td>6.00166</td>
</tr>
<tr>
<td>8.999</td>
<td>5.99983</td>
<td>9.001</td>
<td>6.000167</td>
</tr>
<tr>
<td>8.9999</td>
<td>5.999983</td>
<td>9.0001</td>
<td>6.0000167</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>$x \to 4^-$</th>
<th>x^2</th>
<th>$x \to 4^+$</th>
<th>x^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.9</td>
<td>15.21</td>
<td>4.1</td>
<td>16.81</td>
</tr>
<tr>
<td>3.99</td>
<td>15.9201</td>
<td>4.01</td>
<td>16.0801</td>
</tr>
<tr>
<td>3.999</td>
<td>15.992001</td>
<td>4.001</td>
<td>16.000001</td>
</tr>
<tr>
<td>3.9999</td>
<td>15.99920001</td>
<td>4.0001</td>
<td>16.00000001</td>
</tr>
</tbody>
</table>

Table 4

<table>
<thead>
<tr>
<th>$h \to 0$</th>
<th>$2^h - 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h \to 0$</td>
<td>h</td>
</tr>
</tbody>
</table>
EXAMPLE 5 A Limit That Does Not Exist Investigate \(\lim_{x \to 0} \sin \frac{\pi}{x} \) graphically and numerically.

Solution The function \(f(x) = \sin \frac{\pi}{x} \) is not defined at \(x = 0 \), but Figure 7 suggests that it oscillates between \(+1\) and \(-1\) infinitely often as \(x \to 0 \). It appears, therefore, that \(\lim_{x \to 0} \sin \frac{\pi}{x} \) does not exist. This impression is confirmed by Table 5, which shows that the values of \(f(x) \) bounce around and do not tend toward any limit \(L \) as \(x \to 0 \).

TABLE 5 The Function \(f(x) = \sin \frac{\pi}{x} \) Does Not Approach a Limit as \(x \to 0 \)

<table>
<thead>
<tr>
<th>(x \to 0^−)</th>
<th>(\frac{\pi}{x})</th>
<th>(x \to 0^+)</th>
<th>(\frac{\pi}{x})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-0.1)</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
</tr>
<tr>
<td>(-0.03)</td>
<td>0.866</td>
<td>0.03</td>
<td>-0.866</td>
</tr>
<tr>
<td>(-0.007)</td>
<td>-0.434</td>
<td>0.007</td>
<td>0.434</td>
</tr>
<tr>
<td>(-0.0009)</td>
<td>0.342</td>
<td>0.0009</td>
<td>-0.342</td>
</tr>
<tr>
<td>(-0.00065)</td>
<td>-0.935</td>
<td>0.00065</td>
<td>0.935</td>
</tr>
</tbody>
</table>

One-Sided Limits

The limits discussed so far are two-sided. To show that \(\lim_{x \to c} f(x) = L \), it is necessary to check that \(f(x) \) converges to \(L \) as \(x \) approaches \(c \) through values both larger and smaller than \(c \). In some instances, \(f(x) \) may approach \(L \) from one side of \(c \) without necessarily approaching it from the other side, or \(f(x) \) may be defined on only one side of \(c \). For this reason, we define the one-sided limits

\[
\lim_{x \to c^−} f(x) \quad \text{(left-hand limit)}, \quad \lim_{x \to c^+} f(x) \quad \text{(right-hand limit)}
\]

The limit itself exists if both one-sided limits exist and are equal.

EXAMPLE 6 Left- and Right-Hand Limits Not Equal Investigate the one-sided limits of \(f(x) = \frac{x}{|x|} \) as \(x \to 0 \). Does \(\lim_{x \to 0} f(x) \) exist?

Solution Figure 8 shows what is going on. For \(x < 0 \),

\[
f(x) = \frac{x}{|x|} = \frac{x}{-x} = -1
\]

Therefore, the left-hand limit is \(\lim_{x \to 0^−} f(x) = -1 \). But for \(x > 0 \),

\[
f(x) = \frac{x}{|x|} = \frac{x}{x} = 1
\]

Therefore, \(\lim_{x \to 0^+} f(x) = 1 \). These one-sided limits are not equal, so \(\lim_{x \to 0} f(x) \) does not exist.
EXAMPLE 7 The function \(f \) in Figure 9 is not defined at \(c = 0, 2, 4 \). Investigate the one- and two-sided limits at these points.

Solution

- \(c = 0 \): The left-hand limit \(\lim_{x \to 0^-} f(x) \) does not seem to exist because \(f(x) \) appears to oscillate infinitely often to the left of \(x = 0 \). On the other hand, \(\lim_{x \to 0^+} f(x) = 2 \).
- \(c = 2 \): The one-sided limits exist but are not equal:
 \[
 \lim_{x \to 2^-} f(x) = 3 \quad \text{and} \quad \lim_{x \to 2^+} f(x) = 1
 \]
 Therefore, \(\lim_{x \to 2} f(x) \) does not exist.
- \(c = 4 \): The one-sided limits exist and both have the value 2. Therefore, the two-sided limit exists and \(\lim_{x \to 4} f(x) = 2 \).

Infinite Limits

For some functions, \(f(x) \) tends to \(\infty \) or \(-\infty \) as \(x \) approaches a value \(c \). If so, \(\lim_{x \to c} f(x) \) does not exist, but we say that \(f(x) \) has an infinite limit. More precisely, we write

- \(\lim_{x \to c} f(x) = \infty \) if \(f(x) \) increases without bound as \(x \to c \).
- \(\lim_{x \to c} f(x) = -\infty \) if \(f(x) \) decreases without bound as \(x \to c \).

Here, “decrease without bound” means that \(f(x) \) becomes negative and \(|f(x)| \to \infty \). One-sided infinite limits are defined similarly. When using this notation, keep in mind that \(\infty \) and \(-\infty \) are not numbers.

When \(f(x) \) approaches \(\infty \) or \(-\infty \) as \(x \) approaches \(c \) from one or both sides, the line \(x = c \) is called a vertical asymptote. In Figure 10, the line \(x = 2 \) is a vertical asymptote in (A), and \(x = 0 \) is a vertical asymptote in (B).

In the next example, the notation \(x \to c^\pm \) is used to indicate that the left- and right-hand limits are to be considered separately.

EXAMPLE 8 [GU] Investigate the one-sided limits graphically:

(a) \(\lim_{x \to 2^-} \frac{1}{x-2} \)
(b) \(\lim_{x \to 0^+} \frac{1}{x^2} \)

Solution

(a) Figure 10(A) suggests that
 \[
 \lim_{x \to 2^-} \frac{1}{x-2} = -\infty, \quad \lim_{x \to 2^+} \frac{1}{x-2} = \infty
 \]
 The vertical line \(x = 2 \) is a vertical asymptote. Why are the one-sided limits different?

 Because \(f(x) = \frac{1}{x-2} \) is negative for \(x < 2 \) (so the limit from the left is \(-\infty \)) and \(f(x) \) is positive for \(x > 2 \) (so the limit from the right is \(\infty \)).

(b) Figure 10(B) suggests that \(\lim_{x \to 0^+} \frac{1}{x^2} = \infty \). Indeed, \(f(x) = \frac{1}{x^2} \) is positive for all \(x \neq 0 \) and becomes arbitrarily large as \(x \to 0 \) from either side. The line \(x = 0 \) is a vertical asymptote.
CONCEPTUAL INSIGHT You should not think of an infinite limit as a true limit. The notation \(\lim_{x \to c} f(x) = \infty \) is merely a shorthand way of saying that \(f(x) \) increases beyond all bounds as \(x \) approaches \(c \). The limit itself does not exist. We must be careful when using this notation because \(\infty \) and \(-\infty \) are not numbers, and contradictions can arise if we try to manipulate them as numbers. For example, if \(\infty \) were a number, it would be larger than any finite number, and presumably, \(\infty + 1 = \infty \). But then
\[
(\infty + 1) - \infty = \infty - \infty
\]
\[
1 = 0 \quad \text{(contradiction!)}
\]
To avoid errors, keep in mind the \(\infty \) is not a number but rather a convenient shorthand notation.

2.2 SUMMARY

- By definition, \(\lim_{x \to c} f(x) = L \) if \(|f(x) - L| \) can be made arbitrarily small by taking \(x \) sufficiently close (but not equal) to \(c \). We say that
 - The limit of \(f(x) \) as \(x \) approaches \(c \) is \(L \), or
 - \(f(x) \) approaches (or converges) to \(L \) as \(x \) approaches \(c \).
- If \(f(x) \) approaches a limit as \(x \to c \), then the value of the limit \(L \) is unique.
- If \(f(x) \) does not approach a limit as \(x \to c \), we say that \(\lim_{x \to c} f(x) \) does not exist.
- The limit may exist even if \(f(c) \) is not defined.
- **One-sided limits:**
 - \(\lim_{x \to c^-} f(x) = L \) if \(f(x) \) converges to \(L \) as \(x \) approaches \(c \) through values less than \(c \).
 - \(\lim_{x \to c^+} f(x) = L \) if \(f(x) \) converges to \(L \) as \(x \) approaches \(c \) through values greater than \(c \).
- The limit exists if and only if both one-sided limits exist and are equal.
- **Infinite limits:** \(\lim_{x \to c} f(x) = \infty \) if \(f(x) \) increases beyond bound as \(x \) approaches \(c \), and \(\lim_{x \to c} f(x) = -\infty \) if \(f(x) \) becomes arbitrarily large (in absolute value) but negative as \(x \) approaches \(c \).
- In the case of a one- or two-sided infinite limit, the vertical line \(x = c \) is called a *vertical asymptote*.

2.2 EXERCISES

Preliminary Questions

1. What is the limit of \(f(x) = 1 \) as \(x \to \pi \)?
2. What is the limit of \(g(t) = t \) as \(t \to \pi \)?
3. Is \(\lim_{x \to 10} 20 \) equal to 10 or 20?
4. Can \(f(x) \) approach a limit as \(x \to c \) if \(f(c) \) is undefined? If so, give an example.
5. What does the following table suggest about \(\lim_{x \to 1^-} f(x) \) and \(\lim_{x \to 1^+} f(x) \)?

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.9</th>
<th>0.99</th>
<th>0.999</th>
<th>1.1</th>
<th>1.01</th>
<th>1.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>7</td>
<td>25</td>
<td>4317</td>
<td>3.0126</td>
<td>3.0047</td>
<td>3.00011</td>
</tr>
</tbody>
</table>

6. Can you tell whether \(\lim_{x \to 5} f(x) \) exists from a plot of \(f \) for \(x > 5 \)? Explain.
7. If you know in advance that \(\lim_{x \to 5} f(x) \) exists, can you determine its value from a plot of \(f \) for all \(x > 5 \)?
In Exercises 1–4, fill in the tables and guess the value of the limit.

1. \(\lim_{x \to 1} f(x) \), where \(f(x) = \frac{x^3 - 1}{x^2 - 1} \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.002</td>
<td>0.998</td>
<td>1.001</td>
<td>0.999</td>
</tr>
<tr>
<td>1.0005</td>
<td>0.99995</td>
<td>1.0001</td>
<td>0.99999</td>
</tr>
</tbody>
</table>

2. \(\lim_{t \to 0} h(t) \), where \(h(t) = \frac{\cos t - 1}{t^2} \). Note that \(h \) is even; that is, \(h(t) = h(-t) \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\pm 0.002)</th>
<th>(\pm 0.0001)</th>
<th>(\pm 0.00005)</th>
<th>(\pm 0.00001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h(t))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. \(\lim_{y \to 2} f(y) \), where \(f(y) = \frac{y^2 - y - 2}{y^2 + y - 6} \).

<table>
<thead>
<tr>
<th>(y)</th>
<th>(f(y))</th>
<th>(y)</th>
<th>(f(y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.002</td>
<td>1.998</td>
<td>2.001</td>
<td>1.999</td>
</tr>
<tr>
<td>2.0001</td>
<td>1.9999</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. \(\lim_{\theta \to 0} f(\theta) \), where \(f(\theta) = \frac{\sin \theta - \theta}{\theta^3} \).

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>(\pm 0.002)</th>
<th>(\pm 0.0001)</th>
<th>(\pm 0.00005)</th>
<th>(\pm 0.00001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(\theta))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Determine \(\lim_{x \to 0.5} f(x) \) for \(f \) as in Figure 11.

6. Determine \(\lim_{x \to 0.5} g(x) \) for \(g \) as in Figure 12.

In Exercises 7–8, evaluate the limit.

7. \(\lim_{x \to 21} x \)

8. \(\lim_{t \to 0} \sqrt{t} \)

In Exercises 9–16, verify each limit using the limit definition. For example, in Exercise 9, show that \(|3x - 12| \) can be made as small as desired by taking \(x \) close to 4.

9. \(\lim_{x \to 4} 3x = 12 \)

10. \(\lim_{x \to 3} 3 = 3 \)

11. \(\lim_{x \to 3} (5x + 2) = 17 \)

12. \(\lim_{x \to 2} (7x - 4) = 10 \)

13. \(\lim_{x \to 0} x^2 = 0 \)

14. \(\lim_{x \to 0} (3x^2 - 9) = -9 \)

15. \(\lim_{x \to 0} (4x^2 + 2x + 5) = 5 \)

16. \(\lim_{x \to 0} (x^3 + 12) = 12 \)

In Exercises 17–38, estimate the limit numerically or state that the limit does not exist. If infinite, state whether the one-sided limits are \(\infty \) or \(-\infty \).

17. \(\lim_{x \to 0} \frac{\sqrt{x} - 1}{x - 1} \)

18. \(\lim_{x \to 4} \frac{2x^2 - 32}{x + 4} \)

19. \(\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - x - 2} \)

20. \(\lim_{x \to 3} \frac{x^3 - 2x^2 - 9}{x^2 - 2x - 3} \)

21. \(\lim_{x \to 5} \frac{2x}{x} \)

22. \(\lim_{x \to 0} \frac{5x}{x} \)

23. \(\lim_{x \to 0} \frac{\cos \theta - 1}{\theta} \)

24. \(\lim_{x \to 0} \frac{\sin x}{x^2} \)

25. \(\lim_{x \to 4} \frac{1}{(x - 4)^3} \)

26. \(\lim_{x \to 1} \frac{3 - x}{x - 1} \)

27. \(\lim_{x \to -3} \frac{x + 3}{x^2 + x - 6} \)

28. \(\lim_{x \to -1} \frac{x + 1}{x + 2} \)

29. \(\lim_{x \to 3^+} \frac{x - 4}{x^2 - 9} \)

30. \(\lim_{h \to 0} \frac{3h - 1}{h} \)

31. \(\lim_{x \to 0} \frac{\sin x}{x} \)

32. \(\lim_{h \to 0} \frac{1}{h} \)

33. \(\lim_{x \to 0} |x|^x \)

34. \(\lim_{x \to 1^+} \frac{5x}{\sqrt{x - 1}} \)

35. \(\lim_{x \to -4^+} \frac{\tan \theta - 2 \sin \theta \cos \theta}{\theta - \pi/4} \)

36. \(\lim_{x \to 0} (1 + r)^{1/r} \)

37. The greatest integer function, also known as the floor function, is defined by \([x] = n \), where \(n \) is the unique integer such that \(n \leq x < n + 1 \). Sketch the graph of \(y = [x] \). Calculate for \(c \) an integer:
 \(a) \lim_{x \to c^-} [x] \quad b) \lim_{x \to c^+} [x] \quad c) \lim_{x \to c} [x] \)

38. Determine the one-sided limits at \(c = 1, 2, \) and 4 of the function \(g \) shown in Figure 13, and state whether the limit exists at these points.

In Exercises 39–46, determine the one-sided limits numerically or graphically. If infinite, state whether the one-sided limits are \(\infty \) or \(-\infty \), and describe the corresponding vertical asymptote. In Exercise 46, \(f(x) = [x] \) is the greatest integer function defined in Exercise 37.

39. \(\lim_{x \to 0^+} \frac{\sin x}{|x|} \)

40. \(\lim_{x \to 0^-} |x|^{1/x} \)

41. \(\lim_{x \to 0^+} \frac{x - \sin |x|}{x^3} \)

42. \(\lim_{x \to 4^-} x - 1 \)

43. \(\lim_{x \to -2^+} \frac{4x^2 + 7}{x^3 + 8} \)

44. \(\lim_{x \to -3^-} \frac{x^2}{x^2 - 9} \)
45. \(\lim_{x \to 1^+} \frac{x^5 + x - 2}{x^2 + x - 2} \)

46. \(\lim_{x \to 2^+} \cos \left(\frac{\pi x}{2} (x - \lfloor x \rfloor) \right) \)

47. Determine the one-sided limits at \(c = 2 \) and \(c = 4 \) of the function \(f \) in Figure 14. What are the vertical asymptotes of \(f ? \)

48. Determine the infinite one- and two-sided limits in Figure 15.

49. \(\lim_{x \to 1} f(x) = 2 \), \(\lim_{x \to 3^-} f(x) = 0 \), \(\lim_{x \to 3^+} f(x) = 4 \)

50. \(\lim_{x \to 1^-} f(x) = \infty \), \(\lim_{x \to 3^-} f(x) = 0 \), \(\lim_{x \to 3^+} f(x) = -\infty \)

51. \(\lim_{x \to 2^+} f(x) = 2 \neq f(4) \), \(\lim_{x \to 2^-} f(x) = -1 \)

52. \(\lim_{x \to 1^+} f(x) = \infty \), \(\lim_{x \to 1^-} f(x) = 3 \), \(\lim_{x \to 4} f(x) = -\infty \)

53. Determine the one-sided limits of the function \(f \) in Figure 16, at the points \(c = 1, 3, 5, 6 \).

54. Does either of the two oscillating functions in Figure 17 appear to approach a limit as \(x \to 0 \)?

55. \(\lim_{\theta \to 0} \frac{\sin 5\theta}{\sin 2\theta} \)

56. \(\lim_{x \to 0} \frac{12^x - 1}{4^x - 1} \)

57. \(\lim_{x \to 0} \frac{2^x - \cos x}{x^4} \)

58. \(\lim_{\theta \to 0} \frac{\sin^2 4\theta}{\cos \theta - 1} \)

59. \(\lim_{\theta \to 0} \frac{\cos 7\theta - \cos 5\theta}{\theta^2} \)

60. \(\lim_{\theta \to 0} \frac{\sin^2 2\theta - \theta \sin 4\theta}{\theta^4} \)

61. Let \(n \) be a positive integer. For which \(n \) are the two infinite one-sided limits \(\lim_{x \to 0^+} 1/x^n \) equal?

62. Let \(L(n) = \lim_{x \to 1} \left(\frac{n}{1 - x^n} - \frac{1}{1 - x} \right) \) for \(n \) a positive integer. Investigate \(L(n) \) numerically for several values of \(n \), and then guess the value of \(L(n) \) in general.

63. \(\text{GU} \) In some cases, numerical investigations can be misleading. Plot \(f(x) = \cos \frac{x}{2} \).

(a) Does \(\lim_{x \to 0} f(x) \) exist?

(b) Show, by evaluating \(f(x) \) at \(x = \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{5}, \ldots \), that you might be able to trick your friends into believing that the limit exists and is equal to \(L = 1 \).

(c) Which sequence of evaluations might trick them into believing that the limit is \(L = -1 \).

64. Light waves of frequency \(\lambda \), passing through a slit of width \(a \) produce a Fraunhofer diffraction pattern of light and dark fringes (Figure 18). The intensity as a function of the angle \(\theta \) is

\[
I(\theta) = I_m \left(\frac{\sin(R \sin \theta)}{R \sin \theta} \right)^2
\]

where \(R = \pi a/\lambda \) and \(I_m \) is a constant. Show that the intensity function is not defined at \(\theta = 0 \). Then choose any two values for \(R \) and check numerically that \(I(\theta) \) approaches \(I_m \) as \(\theta \to 0 \).

65. Investigate \(\lim_{\theta \to 0} \frac{\sin n\theta}{\theta} \) numerically for several positive integer values of \(n \). Then guess the value in general.
66. Show numerically that \(\lim_{x \to 0} \frac{b^x - 1}{x} \) for \(b = 3 \) and \(b = 5 \) appears to equal \(\ln 3 \) and \(\ln 5 \), respectively, where \(\ln x \) is the natural logarithm. Then make a conjecture (guess) for the value in general and test your conjecture for two additional values of \(b \).

67. Investigate \(\lim_{x \to 1} \frac{x^n - 1}{x^m - 1} \) for \((m, n) \) equal to \((2, 1) \), \((1, 2) \), \((2, 3) \), and \((3, 2) \). Then guess the value of the limit in general and check your guess for two additional pairs.

68. Find by numerical experimentation the positive integers \(k \) such that \(\lim_{x \to 0} \frac{\sin(\sin^2 x)}{x^k} \) exists.

69. \(\text{GU} \) Plot the graph of \(f(x) = \frac{2^x - 8}{x - 3} \).
 (a) Zoom in on the graph to estimate \(L = \lim_{x \to 3} f(x) \).
 (b) Explain why \(f(2.99999) \leq L \leq f(3.00001) \).

 Use this to determine \(L \) to three decimal places.

70. \(\text{GU} \) The function \(f(x) = \frac{2^{1/x} - 2^{-1/x}}{2^{1/x} + 2^{-1/x}} \) is defined for \(x \neq 0 \).
 (a) Investigate \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to 0^-} f(x) \) numerically.
 (b) Plot the graph of \(f \) and describe its behavior near \(x = 0 \).

2.3 Basic Limit Laws

In Section 2.2, we relied on graphical and numerical approaches to investigate limits and estimate their values. In the next four sections, we go beyond this intuitive approach and develop tools for computing limits in a precise way. The next theorem provides our first set of tools.

THEOREM 1 Basic Limit Laws If \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) exist, then

(i) **Sum Law**: \(\lim_{x \to c} (f(x) + g(x)) \) exists and
\[
\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)
\]

(ii) **Constant Multiple Law**: For any number \(k \), \(\lim_{x \to c} k f(x) \) exists and
\[
\lim_{x \to c} k f(x) = k \lim_{x \to c} f(x)
\]

(iii) **Product Law**: \(\lim_{x \to c} f(x) g(x) \) exists and
\[
\lim_{x \to c} f(x) g(x) = \left(\lim_{x \to c} f(x) \right) \left(\lim_{x \to c} g(x) \right)
\]

(iv) **Quotient Law**: If \(\lim_{x \to c} g(x) \neq 0 \), then \(\lim_{x \to c} \frac{f(x)}{g(x)} \) exists and
\[
\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}
\]

(v) **Powers and Roots**: If \(n \) is a positive integer, then
\[
\lim_{x \to c} [f(x)]^n = \left(\lim_{x \to c} f(x) \right)^n
\]

\[
\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}
\]

In the second limit, assume that \(\lim_{x \to c} f(x) \geq 0 \) if \(n \) is even.

If \(p, q \) are integers with \(q \neq 0 \), then \(\lim_{x \to c} [f(x)]^{p/q} \) exists and
\[
\lim_{x \to c} [f(x)]^{p/q} = \left(\lim_{x \to c} f(x) \right)^{p/q}
\]

Assume that \(\lim_{x \to c} f(x) \geq 0 \) if \(q \) is even, and that \(\lim_{x \to c} f(x) \neq 0 \) if \(p/q < 0 \).

Before proceeding to the examples, we make some useful remarks.

- The Sum and Product Laws are valid for any number of functions. For example,
\[
\lim_{x \to c} \left(f_1(x) + f_2(x) + f_3(x) \right) = \lim_{x \to c} f_1(x) + \lim_{x \to c} f_2(x) + \lim_{x \to c} f_3(x)
\]
The Sum Law has a counterpart for differences:

\[
\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)
\]

This follows from the Sum and Constant Multiple Laws (with \(k = -1\)):

\[
\lim_{x \to c} (f(x) - g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} (-g(x)) = \lim_{x \to c} f(x) - \lim_{x \to c} g(x)
\]

Recall two basic limits from Theorem 1 in Section 2.2:

\[
\lim_{x \to c} k = k, \quad \lim_{x \to c} x = c
\]

Applying Law (v) to \(f(x) = x\), we obtain

\[
\lim_{x \to c} x^{p/q} = c^{p/q}
\]

for integers \(p, q, q \neq 0\). Assume that \(c \geq 0\) if \(q\) is even and that \(c \neq 0\) if \(p/q < 0\).

Example 1 Use the Basic Limit Laws to evaluate:

(a) \(\lim_{x \to 2} x^3\) \hspace{1cm} (b) \(\lim_{x \to 2} (x^3 + 5x + 7)\) \hspace{1cm} (c) \(\lim_{x \to 2} \sqrt{x^3 + 5x + 7}\)

Solution

(a) By Eq. (1), \(\lim_{x \to 2} x^3 = 2^3 = 8\).

(b)

\[
\lim_{x \to 2} (x^3 + 5x + 7) = \lim_{x \to 2} x^3 + \lim_{x \to 2} 5x + \lim_{x \to 2} 7 \quad \text{(Sum Law)}
\]

\[
= \lim_{x \to 2} x^3 + 5\lim_{x \to 2} x + \lim_{x \to 2} 7 \quad \text{(Constant Multiple Law)}
\]

\[
= 8 + 5(2) + 7 = 25
\]

(c) By Law (v) for roots and (b),

\[
\lim_{x \to 2} \sqrt{x^3 + 5x + 7} = \sqrt{\lim_{x \to 2} (x^3 + 5x + 7)} = \sqrt{25} = 5
\]

Example 2 Evaluate (a) \(\lim_{t \to 1} \frac{t + 6}{2t^4}\) and (b) \(\lim_{t \to 3} t^{-1/4}(t + 5)^{1/3}\).

Solution

(a) Use the Quotient, Sum, and Constant Multiple Laws:

\[
\lim_{t \to 1} \frac{t + 6}{2t^4} = \frac{\lim_{t \to 1} (t + 6)}{\lim_{t \to 1} (2t^4)} = \frac{1 + 6}{2 \lim_{t \to 1} t^4} = -1 + 6 = 5
\]

(b) Use the Product, Powers, and Sum Laws:

\[
\lim_{t \to 3} t^{-1/4}(t + 5)^{1/3} = \left(\lim_{t \to 3} t^{-1/4}\right) \left(\lim_{t \to 3} (t + 5)^{1/3}\right) = 3^{-1/4} \left(\sqrt[3]{3 + 5}\right)
\]

\[
= 3^{-1/4} \sqrt[3]{8} = 3^{-1/4}(2) = \frac{2}{3^{1/4}}
\]

The next example reminds us that the Basic Limit Laws apply only when the limits of both \(f(x)\) and \(g(x)\) exist.
EXAMPLE 3 Assumptions Matter Show that the Product Law cannot be applied to
\(\lim_{x \to 0} f(x)g(x) \) if \(f(x) = x \) and \(g(x) = x^{-1} \).

Solution For all \(x \neq 0 \), we have \(f(x)g(x) = x \cdot x^{-1} = 1 \), so the limit of the product exists:

\[
\lim_{x \to 0} f(x)g(x) = \lim_{x \to 0} 1 = 1
\]

However, \(\lim x^{-1} \) does not exist because \(g(x) = x^{-1} \) approaches \(\infty \) as \(x \to 0^+ \) and it approaches \(-\infty \) as \(x \to 0^- \). Therefore, the Product Law cannot be applied and its conclusion does not hold:

\[
\left(\lim_{x \to 0} f(x) \right) \left(\lim_{x \to 0} g(x) \right) = \left(\lim_{x \to 0} x \right) \left(\lim_{x \to 0} x^{-1} \right) = 0 \cdot \infty = \text{Does not exist}
\]

2.3 SUMMARY

- The Basic Limit Laws: If \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) both exist, then

 (i) \(\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) \)

 (ii) \(\lim_{x \to c} kf(x) = k \lim_{x \to c} f(x) \)

 (iii) \(\lim_{x \to c} f(x)g(x) = \lim_{x \to c} f(x) \lim_{x \to c} g(x) \)

 (iv) If \(\lim g(x) \neq 0 \), then \(\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \)

 (v) If \(p, q \) are integers with \(q \neq 0 \),

\[
\lim_{x \to c} [f(x)]^{p/q} = \left(\lim_{x \to c} f(x) \right)^{p/q}
\]

For \(n \) a positive integer,

\[
\lim_{x \to c} [f(x)]^n = \left(\lim_{x \to c} f(x) \right)^n, \quad \lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}
\]

- If \(\lim_{x \to c} f(x) \) or \(\lim_{x \to c} g(x) \) does not exist, then the Basic Limit Laws cannot be applied.

2.3 EXERCISES

Preliminary Questions

1. State the Sum Law and Quotient Law.
2. Which of the following is a verbal version of the Product Law (assuming the limits exist)?
 (a) The product of two functions has a limit.
 (b) The limit of the product is the product of the limits.
 (c) The product of a limit is a product of functions.
 (d) A limit produces a product of functions.
 (e) The Quotient Law does not hold if:
 (a) the limit of the denominator is zero.
 (b) the limit of the numerator is zero.
3. Which statement is correct? The Quotient Law does not hold if:
 (a) the limit of the denominator is zero.
 (b) the limit of the numerator is zero.

Exercises

In Exercises 1–24, evaluate the limit using the Basic Limit Laws and the limits \(\lim_{x \to c} x^{p/q} = c^{p/q} \) and \(\lim_{x \to c} k = k \).

1. \(\lim_{x \to 9} x \)
2. \(\lim_{x \to 14} 3x + 4 \)
3. \(\lim_{x \to 2} x \)
4. \(\lim_{x \to 27} x \)
5. \(\lim_{t \to 2} t^{x^{-1}} \)
6. \(\lim_{x \to 5} x^{-2} \)
7. \(\lim_{x \to 0.2} (3x + 4) \)
8. \(\lim_{x \to 2} (3x^3 + 2x^2) \)
9. \(\lim_{x \to -1} (3x^4 - 2x^3 + 4x) \)
10. \(\lim_{x \to 8} (3x^{2/3} - 16x^{-1}) \)
11. \(\lim_{x \to 2} (x + 1)(3x^2 - 9) \)
12. \(\lim_{x \to 1/2} (4x + 1)(6x - 1) \)

13. \(\lim_{t \to 4} \frac{3t - 14}{t + 1} \)
14. \(\lim_{z \to 9} \frac{\sqrt{z}}{z - 2} \)

15. \(\lim_{y \to 4} (16y + 1)(2y^{1/2} + 1) \)
16. \(\lim_{x \to 2} x(x + 1)(x + 2) \)

17. \(\lim_{y \to 4} \frac{1}{\sqrt{6y^2 + 1}} \)
18. \(\lim_{w \to 1} \frac{\sqrt{w^2 + 1}}{w - 2} \)

19. \(\lim_{x \to -1} \frac{x}{x^3 + 4x} \)
20. \(\lim_{t \to -1} \frac{t^2 + 1}{(t^3 + 2)(t^4 + 1)} \)

21. \(\lim_{t \to 23} \frac{3\sqrt{t} - \sqrt{5}}{(t - 20)^2} \)
22. \(\lim_{y \to 1/4} (18y^2 - 4)^4 \)

23. \(\lim_{r \to 2} (4r^2 + 8r - 5)^{3/2} \)
24. \(\lim_{y \to (1/2)} \frac{(t + 2)^{1/2}}{(t + 1)^{3/5}} \)

25. Use the Quotient Law to prove that if \(\lim_{x \to c} f(x) \) exists and is nonzero, then

\[\lim_{x \to c} \frac{1}{f(x)} = \frac{1}{\lim_{x \to c} f(x)} \]

26. Assuming that \(\lim_{x \to 6} f(x) = 4 \), compute:

(a) \(\lim_{x \to 6} (f(x))^2 \)
(b) \(\lim_{x \to 6} \frac{1}{f(x)} \)
(c) \(\lim_{x \to 6} x \sqrt{f(x)} \)

Further Insights and Challenges

36. Show that both \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) exist and \(\lim_{x \to c} g(x) \neq 0 \), then \(\lim_{x \to c} \frac{f(x)}{g(x)} \) exists. Hint: Write \(f(x) = \frac{f(x)}{g(x)} g(x) \).

37. Suppose that \(\lim_{t \to 5} g(t) = 12 \). Show that \(\lim_{t \to 5} g(t) \) exists and equals 4.

38. Prove that if \(\lim_{t \to 3} \frac{h(t)}{t^5} = 5 \), then \(\lim_{t \to 3} h(t) = 15 \).

39. Assuming that \(\lim_{x \to 0} \frac{f(x)}{x} = 1 \), which of the following statements is necessarily true? Why?

(a) \(f(0) = 0 \)
(b) \(\lim_{x \to 0} f(x) = 0 \)

40. Prove that if \(\lim_{x \to c} f(x) = L \neq 0 \) and \(\lim_{x \to c} g(x) = 0 \), then the limit \(\lim_{x \to c} \frac{f(x)}{g(x)} \) does not exist.

41. Suppose that \(\lim_{h \to 0} g(h) = L \).

(a) Explain why \(\lim_{h \to 0} g(ah) = L \) for any constant \(a \neq 0 \).

(b) If we assume instead that \(\lim_{h \to 1} g(h) = L \), is it still necessarily true that \(\lim_{h \to 1} g(ah) = L \)?

(c) Illustrate (a) and (b) with the function \(f(x) = x^2 \).

42. Assume that \(L(a) = \lim_{x \to 0} \frac{a^x - 1}{x} \) exists for all \(a > 0 \). Assume also that \(\lim_{x \to 0} f(x) = 1 \).

(a) Prove that \(L(ab) = L(a) + L(b) \) for \(a, b > 0 \). Hint: \((ab)^x - 1 = a^x b^x - a^x + a^x - 1 = a^x (b^x - 1) + (a^x - 1)\). This shows that \(L(a) \) “behaves” like a logarithm, in the sense that \(\ln(ab) = \ln(a) + \ln(b) \).

(b) Verify numerically that \(L(12) = L(3) + L(4) \).

2.4 Limits and Continuity

In everyday speech, the word “continuous” means having no breaks or interruptions. In calculus, continuity is used to describe functions whose graphs have no breaks. If we imagine the graph of a function \(f \) as a wavy metal wire, then \(f \) is continuous if its graph consists of a single piece of wire as in Figure 1.

Most physical phenomena are continuous in nature. Our position and velocity vary continuously with time. Temperature varies continuously with time. Viscosity of a fluid varies continuously with temperature, assuming we do not freeze or boil the liquid. Ultimately, when we determine the rate of change of a function as we do in the next chapter, we will need the function to be continuous.
A break in the wire as in Figure 2 is called a discontinuity. Observe in Figure 2 that the break in the graph occurs because the left- and right-hand limits as \(x \) approaches \(c \) are not equal and thus \(\lim_{x \to c} g(x) \) does not exist. By contrast, in Figure 1, \(\lim_{x \to c} f(x) \) exists and is equal to the function value \(f(c) \). This suggests the following definition of continuity in terms of limits.

DEFINITION Continuity at a Point
Assume that \(f(x) \) is defined on an open interval containing \(x = c \). Then \(f \) is continuous at \(x = c \) if \(\lim_{x \to c} f(x) = f(c) \). If the limit does not exist, or if it exists but is not equal to \(f(c) \), we say that \(f \) has a discontinuity (or is discontinuous) at \(x = c \).

Note that for \(f \) to be continuous at \(c \), three conditions must hold:

1. \(f(c) \) is defined.
2. \(\lim_{x \to c} f(x) \) exists.
3. They are equal.

A function \(f \) may be continuous at some points and discontinuous at others. If \(f \) is continuous at all points in an interval \(I \), then \(f \) is said to be continuous on \(I \). If \(I \) is an interval \([a,b]\) or \([a,b)\) that includes \(a \) as a left endpoint, we require that \(\lim_{x \to a^+} f(x) = f(a) \). Similarly, we require that \(\lim_{x \to b^-} f(x) = f(b) \) if \(I \) includes \(b \) as a right endpoint. If \(f \) is continuous at all points in its domain, then \(f \) is simply called continuous.

EXAMPLE 1 Show that the following functions are continuous:

(a) \(f(x) = k \) (\(k \) any constant)
(b) \(g(x) = x^n \) (\(n \) a whole number)

Solution

(a) We have \(\lim_{x \to c} f(x) = \lim_{x \to c} k = k \) and \(f(c) = k \). The limit exists and is equal to the function value for all \(c \), so \(f \) is continuous (Figure 3).

(b) By Eq. (1) in Section 2.3, \(\lim_{x \to c} g(x) = \lim_{x \to c} x^n = c^n \) for all \(c \). Also \(g(c) = c^n \), so again, the limit exists and is equal to the function value. Therefore, \(g \) is continuous. (Figure 4 illustrates the case \(n = 1 \).)

Examples of Discontinuities

To understand continuity better, let’s consider some ways in which a function can fail to be continuous. Keep in mind that continuity at a point \(x = c \) requires that:

1. \(f(c) \) is defined.
2. \(\lim_{x \to c} f(x) \) exists.
3. They are equal.

If \(\lim_{x \to c} f(x) \) exists but is not equal to \(f(c) \), we say that \(f \) has a removable discontinuity at \(x = c \). The function in Figure 5(A) has a removable discontinuity at \(c = 2 \) because

\[
\begin{align*}
\lim_{x \to 2} f(x) &= 5 \\
\text{Limit exists but is not equal to function value}
\end{align*}
\]

Removable discontinuities are “mild” in the following sense: We can make \(f \) continuous at \(x = c \) by redefining \(f(c) \). In Figure 5(B), \(f(2) \) has been redefined as \(f(2) = 5 \), and this makes \(f \) continuous at \(x = 2 \).
2.4 Limits and Continuity

A “worse” type of discontinuity is a **jump discontinuity**, which occurs if the one-sided limits \(\lim_{x \to c^-} f(x) \) and \(\lim_{x \to c^+} f(x) \) exist but are not equal. Figure 6 shows two functions with jump discontinuities at \(c = 2 \). Unlike the removable case, we cannot make \(f \) continuous by redefining \(f(c) \).

In connection with jump discontinuities, it is convenient to define **one-sided continuity**.

DEFINITION One-Sided Continuity A function \(f \) is called:
- Left-continuous at \(x = c \) if \(\lim_{x \to c^-} f(x) = f(c) \)
- Right-continuous at \(x = c \) if \(\lim_{x \to c^+} f(x) = f(c) \)

In Figure 6 above, the function in (A) is left-continuous but the function in (B) is neither left- nor right-continuous. The next example explores one-sided continuity using a piecewise-defined function—that is, a function defined by different formulas on different intervals.

EXAMPLE 2 Piecewise-Defined Function Discuss the continuity of

\[
F(x) = \begin{cases}
 x & \text{for } x < 1 \\
 3 & \text{for } 1 \leq x \leq 3 \\
 x & \text{for } x > 3
\end{cases}
\]

Solution The functions \(f(x) = x \) and \(g(x) = 3 \) are continuous, so \(F \) is also continuous, except possibly at the transition points \(x = 1 \) and \(x = 3 \), where the formula for \(F(x) \) changes (Figure 7).

- At \(x = 1 \), the one-sided limits exist but are not equal:
 \[
 \lim_{x \to 1^-} F(x) = \lim_{x \to 1^-} x = 1, \quad \lim_{x \to 1^+} F(x) = \lim_{x \to 1^+} 3 = 3
 \]
 Thus, \(F \) has a jump discontinuity at \(x = 1 \). However, the right-hand limit is equal to the function value \(F(1) = 3 \), so \(F \) is right-continuous at \(x = 1 \).
- At \(x = 3 \), the left- and right-hand limits exist and both are equal to \(F(3) = 3 \), so \(F \) is continuous at \(x = 3 \):
 \[
 \lim_{x \to 3^-} F(x) = \lim_{x \to 3^-} 3 = 3, \quad \lim_{x \to 3^+} F(x) = \lim_{x \to 3^+} x = 3
 \]
We say that f has an infinite discontinuity at $x = c$ if one or both of the one-sided limits are infinite (even if $f(x)$ itself is not defined at $x = c$). Figure 8 illustrates three types of infinite discontinuities occurring at $x = 2$. Notice that $x = 2$ does not belong to the domain of the function in cases (A) and (B).

Finally, we note that some functions have more “severe” types of discontinuity than those discussed above. For example, $f(x) = \sin \frac{1}{x}$ oscillates infinitely often between $+1$ and -1 as $x \to 0$ (Figure 9). Neither the left- nor the right-hand limit exists at $x = 0$, so this discontinuity is not a jump discontinuity. See Exercises 88 and 89 for even stranger examples. Although of interest from a theoretical point of view, these discontinuities rarely arise in practice.

Building Continuous Functions

Having studied some examples of discontinuities, we focus again on continuous functions. How can we show that a function is continuous? One way is to use the Laws of Continuity, which state, roughly speaking, that a function is continuous if it is built out of functions that are known to be continuous.

Theorem 1 Basic Laws of Continuity

If f and g are continuous at $x = c$, then the following functions are also continuous at $x = c$:

1. $f + g$ and $f - g$
2. kf for any constant k
3. fg
4. f/g if $g(c) \neq 0$

Proof These laws follow directly from the corresponding Basic Limit Laws (Theorem 1, Section 2.3). We illustrate by proving the first part of (i) in detail. The remaining laws are proved similarly. By definition, we must show that $\lim_{x \to c} (f(x) + g(x)) = f(c) + g(c)$. Because f and g are both continuous at $x = c$, we have

$$\lim_{x \to c} f(x) = f(c), \quad \lim_{x \to c} g(x) = g(c)$$

The Sum Law for limits yields the desired result:

$$\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) = f(c) + g(c)$$

In Section 2.3, we noted that the Basic Limit Laws for Sums and Products are valid for an arbitrary number of functions. The same is true for continuity; that is, if f_1, \ldots, f_n are continuous, then so are the functions

$$f_1 + f_2 + \cdots + f_n, \quad f_1 \cdot f_2 \cdots f_n$$

The basic functions are continuous on their domains. Recall (Section 1.3) that the term **basic function** refers to polynomials, rational functions, nth-root and algebraic functions, trigonometric functions and their inverses, and exponential and logarithmic functions.
THEOREM 2 Continuity of Polynomial and Rational Functions

Let P and Q be polynomials. Then:

- P and Q are continuous on the real line.
- P/Q is continuous on its domain [at all values $x = c$ such that $Q(c) \neq 0$].

Proof The function $f(x) = x^m$ is continuous for all whole numbers m by Example 1. By Continuity Law (ii), $f(x) = ax^m$ is continuous for every constant a. A polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is a sum of continuous functions, so it too is continuous. By Continuity Law (iv), a quotient function P/Q is continuous at $x = c$, provided that $Q(c) \neq 0$.

This result shows, for example, that $f(x) = 3x^4 - 2x^3 + 8x$ is continuous for all x and that

$$g(x) = \frac{x + 3}{x^2 - 1}$$

is continuous for $x \neq \pm 1$. Note that if n is a positive integer, then $f(x) = x^{-n}$ is continuous for $x \neq 0$ because $f(x) = x^{-n} = 1/x^n$ is a rational function.

The continuity of the nth-root, sine, cosine, exponential, and logarithmic functions should not be surprising because their graphs have no visible breaks (Figure 10). However, complete proofs of continuity are somewhat technical and are omitted.

THEOREM 3 Continuity of Some Basic Functions

- $y = x^{1/n}$ is continuous on its domain for n a natural number.
- $y = \sin x$ and $y = \cos x$ are continuous on the real line.
- $y = b^x$ is continuous on the real line (for $b > 0, b \neq 1$).
- $y = \log_b x$ is continuous for $x > 0$ (for $b > 0, b \neq 1$).

FIGURE 10 As the graphs suggest, these functions are continuous on their domains.

FIGURE 11 Graph of $y = \tan x$.

Because $f(x) = \sin x$ and $f(x) = \cos x$ are continuous, the Continuity Law (iv) for Quotients implies that the other standard trigonometric functions are continuous on their domains, consisting of the values of x where their denominators are nonzero:

$$\tan x = \frac{\sin x}{\cos x}, \quad \cot x = \frac{\cos x}{\sin x}, \quad \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x}$$

They have infinite discontinuities at points where their denominators are zero. For example, $f(x) = \tan x$ has infinite discontinuities at the points (Figure 11)

$$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2} \ldots$$
The next theorem states that the inverse \(f^{-1} \) of a continuous function \(f \) is continuous. This is to be expected because the graph of \(f^{-1} \) is the reflection of the graph of \(f \) through the line \(y = x \). If the graph of \(f \) has “no breaks,” the same ought to be true of the graph of \(f^{-1} \) (see the proof of Theorem 6 in Appendix D).

THEOREM 4 Continuity of the Inverse Function If \(f \) is continuous on an interval \(I \) with range \(R \), and if \(f^{-1} \) exists, then \(f^{-1} \) is continuous with domain \(R \).

One consequence of this theorem is that the logarithms, \(n \)th roots, and inverse trigonometric functions

\[
\begin{align*}
 f(x) &= \sin^{-1} x, \\
 f(x) &= \cos^{-1} x, \\
 f(x) &= \tan^{-1} x,
\end{align*}
\]

and so on are all continuous on their domains.

Finally, it is important to know that a composition of continuous functions is again continuous. The following theorem is proved in Appendix D.

THEOREM 5 Continuity of Composite Functions If \(g \) is continuous at \(x = c \), and \(f \) is continuous at \(x = g(c) \), then the composite function \(F(x) = f(g(x)) \) is continuous at \(x = c \).

For example, \(F(x) = (x^2 + 9)^{1/3} \) is continuous because it is the composite of the continuous functions \(f(x) = x^{1/3} \) and \(g(x) = x^2 + 9 \). Similarly, \(F(x) = \cos(x^{-1}) \) is continuous for all \(x \neq 0 \), and \(F(x) = 2\sin x \) is continuous for all \(x \).

More generally, an *elementary function* is a function that is constructed out of basic functions using the operations of addition, subtraction, multiplication, division, and composition. Since the basic functions are continuous (on their domains), an elementary function is also continuous on its domain by the Laws of Continuity. An example of an elementary function is

\[
F(x) = \sin \left(\frac{x^2 + \cos(2^3 + 9)}{x - 8} \right)
\]

This function is continuous on its domain \(\{x : x \neq 8\} \).

Substitution: Evaluating Limits Using Continuity

It is easy to evaluate a limit when the function in question is known to be continuous. In this case, by definition, the limit is equal to the function value:

\[
\lim_{x \to c} f(x) = f(c)
\]

We call this the **Substitution Method** because the limit is evaluated by “plugging in” \(x = c \).

EXAMPLE 3 Evaluate \(\lim_{y \to \pi/2} \sin y \) and \(\lim_{x \to -1} \frac{3^x}{\sqrt{x + 5}} \).

Solution

(a) We can use substitution because \(f(y) = \sin y \) is continuous.

\[
\lim_{y \to \pi/2} \sin y = \sin \frac{\pi}{2} = 1
\]

(b) The function \(f(x) = \frac{3^x}{\sqrt{x + 5}} \) is continuous at \(x = -1 \) because the numerator and denominator are both continuous at \(x = -1 \) and the denominator \(\sqrt{x + 5} \) is nonzero at \(x = -1 \). Therefore, we can use substitution:

\[
\lim_{x \to -1} \frac{3^x}{\sqrt{x + 5}} = \frac{3^{-1}}{\sqrt{-1 + 5}} = \frac{1}{6}
\]
The greatest integer function $f(x) = \lfloor x \rfloor$ is the function defined by $\lfloor x \rfloor = n$, where n is the unique integer such that $n \leq x < n + 1$ (Figure 12). For example, $\lfloor 4.7 \rfloor = 4$ and $\lfloor -2.3 \rfloor = -3$.

EXAMPLE 4 Assumptions Matter Can we evaluate $\lim_{x \to 2} \lfloor x \rfloor$ using substitution?

Solution Substitution cannot be applied because $f(x) = \lfloor x \rfloor$ is not continuous at $x = 2$. Although $f(2) = 2$, $\lim_{x \to 2} \lfloor x \rfloor$ does not exist because the one-sided limits are not equal:

\[
\lim_{x \to 2^+} \lfloor x \rfloor = 2 \quad \text{and} \quad \lim_{x \to 2^-} \lfloor x \rfloor = 1.
\]

CONCEPTUAL INSIGHT Real-World Modeling by Continuous Functions Continuous functions are used often to represent physical quantities such as velocity, temperature, and voltage. This reflects our everyday experience that change in the physical world tends to occur continuously rather than through abrupt transitions. However, mathematical models are at best approximations to reality, and it is important to be aware of their limitations.

In Figure 13, atmospheric temperature is represented as a continuous function of altitude. This is justified for large-scale objects such as the earth’s atmosphere because the reading on a thermometer appears to vary continuously as altitude changes. However, temperature is a measure of the average kinetic energy of molecules. At the microscopic level, it would not be meaningful to treat temperature as a quantity that varies continuously from point to point.

Similarly, the size $P(t)$ of a population is usually treated as a continuous function of time t. Strictly speaking, $P(t)$ is a whole number that changes by $±1$ when an individual is born or dies, so it is not continuous, but if the population is large, the effect of an individual birth or death is small, and it is both reasonable and convenient to treat P as a continuous function.

2.4 SUMMARY

- **Definition:** f is continuous at $x = c$ if $\lim_{x \to c} f(x) = f(c)$. This means that $f(c)$ exists, $\lim_{x \to c} f(x)$ exists, and they are equal.
- If $\lim_{x \to c} f(x)$ does not exist, or if it exists but does not equal $f(c)$, then f is discontinuous at $x = c$.
- If f is continuous at all points in its domain, f is simply called continuous.
- Right-continuous at $x = c$: $\lim_{x \to c^+} f(x) = f(c)$.
- Left-continuous at $x = c$: $\lim_{x \to c^-} f(x) = f(c)$.
• Three common types of discontinuities: **removable discontinuity** \(\lim_{x \to c} f(x) \) exists but does not equal \(f(c) \), **jump discontinuity** (the one-sided limits both exist but are not equal), and **infinite discontinuity** (the limit is infinite as \(x \) approaches \(c \) from one or both sides).

• Laws of Continuity: Sums, products, multiples, inverses, and composites of continuous functions are again continuous. The same holds for a quotient \(f/g \) at points where \(g(x) \neq 0 \).

• Basic functions: Polynomials, rational functions, \(n \)-th root and algebraic functions, trigonometric functions and their inverses, exponential and logarithmic functions. Basic functions are continuous on their domains.

• Substitution Method: If \(f \) is known to be continuous at \(x = c \), then the value of the limit \(\lim_{x \to c} f(x) \) is \(f(c) \).

2.4 Exercises

Preliminary Questions

1. Which property of \(f(x) = x^3 \) allows us to conclude that \(\lim_{x \to 2} x^3 = 8 \)?

2. What can be said about \(f(3) \) if \(f \) is continuous and \(\lim_{x \to 3} f(x) = \frac{1}{2} \)?

3. Suppose that \(f(x) < 0 \) if \(x \) is positive and \(f(x) > 1 \) if \(x \) is negative. Can \(f \) be continuous at \(x = 0 \)?

4. Is it possible to determine \(f(7) \) if \(f(x) = 3 \) for all \(x < 7 \) and \(f \) is right-continuous at \(x = 7 \)? What if \(f \) is left-continuous?

5. Are the following true or false? If false, then draw or give a counterexample, and state a correct version.

 (a) \(f \) is continuous at \(x = a \) if the left- and right-hand limits of \(f(x) \) as \(x \to a \) exist and are equal.

 (b) \(f \) is continuous at \(x = a \) if the left- and right-hand limits of \(f(x) \) as \(x \to a \) exist and equal \(f(a) \).

 (c) If the left- and right-hand limits of \(f(x) \) as \(x \to a \) exist, then \(f \) has a removable discontinuity at \(x = a \).

 (d) If \(f \) and \(g \) are continuous at \(x = a \), then \(f + g \) is continuous at \(x = a \).

 (e) If \(f \) and \(g \) are continuous at \(x = a \), then \(f/g \) is continuous at \(x = a \).

Exercises

1. Referring to Figure 14, state whether \(f \) is left- or right-continuous (or neither) at each point of discontinuity. Does \(f \) have any removable discontinuities?

 Exercises 2–4 refer to the function \(g \) whose graph appears in Figure 15.

2. State whether \(g \) is left- or right-continuous (or neither) at each of its points of discontinuity.

3. At which point \(c \) does \(g \) have a removable discontinuity? How should \(g(c) \) be redefined to make \(g \) continuous at \(x = c \)?

4. Find the point \(c_1 \) at which \(g \) has a jump discontinuity but is left-continuous. How should \(g(c_1) \) be redefined to make \(g \) right-continuous at \(x = c_1 \)?

5. In Figure 16, determine the one-sided limits at the points of discontinuity. Which discontinuity is removable and how should \(f \) be redefined to make it continuous at this point?

6. Suppose that \(f(x) = 2 \) for \(x < 3 \) and \(f(x) = -4 \) for \(x > 3 \).

 (a) What is \(f(3) \) if \(f \) is left-continuous at \(x = 3 \)?

 (b) What is \(f(3) \) if \(f \) is right-continuous at \(x = 3 \)?

 In Exercises 7–16, use the Laws of Continuity and Theorems 2 and 3 to show that the function is continuous.

7. \(f(x) = x + \sin x \)

8. \(f(x) = x \sin x \)

9. \(f(x) = 3x + 4 \sin x \)

10. \(f(x) = 3x^3 + 8x^2 - 20x \)

11. \(f(x) = \frac{1}{x^2 + 1} \)

12. \(f(x) = \frac{x^2 - \cos x}{3 + \cos x} \)

13. \(f(x) = \cos(x^2) \)

14. \(f(x) = \tan(4^x) \)

15. \(f(x) = 2^x \cos 3x \)

16. \(f(x) = \tan \left(\frac{1}{x^2 + 1} \right) \)
In Exercises 35–48, determine the domain of the function and prove its continuity.

17. \(f(x) = \frac{1}{x} \)
18. \(f(x) = |x| \)
19. \(f(x) = \frac{x - 2}{|x - 1|} \)
20. \(f(x) = |x| \)
21. \(f(x) = \left\{ \begin{array}{ll} \frac{x}{2} & \text{if } x \neq 2 \\ -1 & \text{if } x = 2 \end{array} \right. \)
22. \(g(t) = \frac{1}{t^2 - 1} \)
23. \(f(x) = \frac{x + 1}{4x - 2} \)
24. \(h(z) = \frac{1 - 2z}{z^2 - z - 6} \)
25. \(f(x) = 3x^{2/3} - 9x^3 \)
26. \(g(t) = 3t^{-2/3} - 9t^3 \)
27. \(f(x) = \left\{ \begin{array}{ll} \frac{x - 2}{|x - 2|} & \text{if } x \neq 2 \\ 1 & \text{if } x = 2 \end{array} \right. \)
28. \(f(x) = \left\{ \begin{array}{ll} \cos \frac{x}{1} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{array} \right. \)
29. \(g(t) = \tan 2t \)
30. \(f(x) = \csc(x^2) \)
31. \(f(x) = \tan(\sin x) \)
32. \(f(x) = \cos(\pi |x|) \)
33. \(f(x) = \frac{1}{2x^2 - 2x} \)
34. \(f(x) = 2|x/2| - 4|x/4| \)

In Exercises 35–48, determine the domain of the function and prove that it is continuous on its domain using the Laws of Continuity and the facts quoted in this section.

35. \(f(x) = 2 \sin x + 3 \cos x \)
36. \(f(x) = \sqrt{x^2 + 9} \)
37. \(f(x) = \sqrt{x} \sin x \)
38. \(f(x) = \frac{x^2}{x + x^{1/4}} \)
39. \(f(x) = x^{2/3} - 2x \)
40. \(f(x) = x^{1/3} + x^{3/4} \)
41. \(f(x) = x^{-4/3} \)
42. \(f(x) = \cos^3 x \)
43. \(f(x) = \tan^2 x \)
44. \(f(x) = \cos(2x) \)
45. \(f(x) = (x^4 + 1)^{3/2} \)
46. \(f(x) = 3^{-x^2} \)
47. \(f(x) = \frac{\cos(x^2)}{x^2 - 1} \)
48. \(f(x) = 9^{\tan x} \)

49. Show that the function

\[
f(x) = \begin{cases}
 x^2 + 3 & \text{for } x < 1 \\
 10 - x & \text{for } 1 \leq x \leq 2 \\
 6x - x^2 & \text{for } x > 2
\end{cases}
\]

is continuous for \(x \neq 1, 2 \). Then compute the right- and left-hand limits at \(x = 1, 2 \), and determine whether \(f \) is left-continuous, right-continuous, or continuous at these points (Figure 17).

50. Sawtooth Function Draw the graph of \(f(x) = x - [x] \). At which points is \(f \) discontinuous? Is it left- or right-continuous at those points?

In Exercises 51–54, sketch the graph of \(f \). At each point of discontinuity, state whether \(f \) is left- or right-continuous.

51. \(f(x) = \begin{cases}
 x^2 & \text{for } x \leq 1 \\
 2 - x & \text{for } x > 1
\end{cases} \)
52. \(f(x) = \begin{cases}
 x + 1 & \text{for } x < 1 \\
 \frac{1}{x} & \text{for } x \geq 1
\end{cases} \)
53. \(f(x) = \begin{cases}
 x^2 - 3x + 2 & \text{for } x \neq 0 \\
 x - 2 & \text{for } x = 2
\end{cases} \)
54. \(f(x) = \begin{cases}
 x^3 + 1 & \text{for } -\infty < x \leq 0 \\
 -x + 1 & \text{for } 0 < x < 2 \\
 -x^2 + 10x - 15 & \text{for } x \geq 2
\end{cases} \)

55. Show that the function

\[
f(x) = \begin{cases}
 x^2 - 16 & \text{for } x \neq 4 \\
 10 & \text{for } x = 4
\end{cases} \]

has a removable discontinuity at \(x = 4 \).

56. **GU** Define \(f(x) = x \sin \frac{1}{x} + 2 \) for \(x \neq 0 \). Plot \(f \). How should \(f(0) \) be defined so that \(f \) is continuous at \(x = 0 \)?

In Exercises 57–59, find the value of the constant \((a, b, c)\) that makes the function continuous.

57. \(f(x) = \begin{cases}
 x^2 - c & \text{for } x < 5 \\
 4x + 2c & \text{for } x \geq 5
\end{cases} \)
58. \(f(x) = \begin{cases}
 2x + 9x^{-1} & \text{for } x \leq 3 \\
 -4x + c & \text{for } x > 3
\end{cases} \)
59. \(f(x) = \begin{cases}
 x^{-1} & \text{for } x < -1 \\
 ax + b & \text{for } -1 \leq x \leq \frac{1}{2} \\
 x^{-1} & \text{for } x > \frac{1}{2}
\end{cases} \)

60. Define

\[
g(x) = \begin{cases}
 x + 3 & \text{for } x < -1 \\
 cx & \text{for } -1 \leq x \leq 2 \\
 x + 2 & \text{for } x > 2
\end{cases} \]

Find a value of \(c \) such that \(g \) is

(a) left-continuous
(b) right-continuous

In each case, sketch the graph of \(g \).

61. Define \(g(t) = 2^{1/(t-1)} \) for \(t \neq 1 \). Answer the following questions, using a plot if necessary.

(a) Can \(g(1) \) be defined so that \(g \) is continuous at \(t = 1 \)?
(b) How should \(g(1) \) be defined so that \(g \) is left-continuous at \(t = 1 \)?

62. Each of the following statements is false. For each statement, sketch the graph of a function that provides a counterexample.

(a) If \(\lim_{x \to a^-} f(x) \) exists, then \(f \) is continuous at \(x = a \).
(b) If \(f \) has a jump discontinuity at \(x = a \), then \(f(a) \) is equal to either \(\lim_{x \to a^-} f(x) \) or \(\lim_{x \to a^+} f(x) \).
In Exercises 63–66, draw the graph of a function on [0, 5] with the given properties.

63. \(f \) is not continuous at \(x = 1 \), but \(\lim_{x \to 1^+} f(x) \) and \(\lim_{x \to 1^-} f(x) \) exist and are equal.

64. \(f \) is left-continuous but not continuous at \(x = 2 \), and right-continuous but not continuous at \(x = 3 \).

65. \(f \) has a removable discontinuity at \(x = 1 \), a jump discontinuity at \(x = 2 \), and
\[
\lim_{x \to 3^-} f(x) = -\infty, \quad \lim_{x \to 3^+} f(x) = 2
\]

66. \(f \) is right- but not left-continuous at \(x = 1 \), left- but not right-continuous at \(x = 2 \), and neither left- nor right-continuous at \(x = 3 \).

In Exercises 67–80, evaluate using substitution.

67. \(\lim_{x \to -1} (2x^3 - 4) \)

68. \(\lim_{x \to -2} (5x - 12x^{-2}) \)

69. \(\lim_{x \to 3} \frac{x + 2}{x^2 + 2x} \)

70. \(\lim_{x \to \pi} \sin \left(\frac{x}{2} - \pi\right) \)

71. \(\lim_{x \to \tan(3x)} x \)

72. \(\lim_{x \to \pi} \frac{1}{\cos x} \)

73. \(\lim_{x \to 4} x^{-5/2} \)

74. \(\lim_{x \to 2} \sqrt{x^3 + 4x} \)

75. \(\lim_{x \to 1} (1 - 8x^3)^{3/2} \)

76. \(\lim_{x \to 2} \left(\frac{7x + 2}{4 - x}\right)^{2/3} \)

77. \(\lim_{x \to 3} 10^x - 2x \)

78. \(\lim_{x \to -\frac{\pi}{2}} 3\sin x \)

79. \(\lim_{x \to \pi/3} \sin^2(\pi \sin^2 x) \)

80. \(\lim_{x \to 0} \tan(2x - 1) \)

81. Suppose that \(f \) and \(g \) are discontinuous at \(x = c \). Does it follow that \(f + g \) is discontinuous at \(x = c \)? If not, give a counterexample. Does this contradict Theorem 1(i)?

82. Prove that \(f(x) = |x| \) is continuous for all \(x \). Hint: To prove continuity at \(x = 0 \), consider the one-sided limits.

83. Use the result of Exercise 82 to prove that if \(g \) is continuous, then \(f(x) = |g(x)| \) is also continuous.

84. Which of the following quantities would be represented by continuous functions of time and which would have one or more discontinuities?
(a) Velocity of an airplane during a flight
(b) Temperature in a room under ordinary conditions
(c) Value of a bank account with interest paid yearly
(d) The salary of a teacher
(e) The population of the world

85. In 2009, the federal income tax \(T \) on income of \(x \) dollars (up to $82,250) was determined by the formula
\[
T(x) = \begin{cases}
0.10x & \text{for } 0 \leq x < 8350 \\
0.15x - 417.50 & \text{for } 8350 \leq x < 33,950 \\
0.25x - 3812.50 & \text{for } 33,950 \leq x < 82,250
\end{cases}
\]
Sketch the graph of \(T \). Does \(T \) have any discontinuities? Explain why, if \(T \) had a jump discontinuity, it might be advantageous in some situations to earn less money.

86. If \(f \) has a removable discontinuity at \(x = c \), then it is possible to redefine \(f(c) \) so that \(f \) is continuous at \(x = c \). Can this be done in more than one way?

87. Give an example of functions \(f \) and \(g \) such that \(f(g(x)) \) is continuous but \(g \) has at least one discontinuity.

88. Continuous at Only One Point Show that the following function is continuous only at \(x = 0 \):
\[
f(x) = \begin{cases}
x & \text{for } x \text{ rational} \\
-x & \text{for } x \text{ irrational}
\end{cases}
\]

89. Show that \(f \) is a discontinuous function for all \(x \), where \(f(x) \) is defined as follows:
\[
f(x) = \begin{cases}
1 & \text{for } x \text{ rational} \\
-1 & \text{for } x \text{ irrational}
\end{cases}
\]
Show that \(f^2 \) is continuous for all \(x \).

Further Insights and Challenges

2.5 Evaluating Limits Algebraically

Substitution can be used to evaluate limits when the function in question is known to be continuous. For example, \(f(x) = x^{-2} \) is continuous at \(x = 3 \), and therefore,
\[
\lim_{x \to 3} x^{-2} = 3^{-2} = \frac{1}{9}
\]
When we study derivatives in Chapter 3, we will be faced with limits \(\lim_{x \to c} f(x) \), where \(f(c) \) is not defined. In such cases, substitution cannot be used directly. However, many of these limits can be evaluated if we use algebra to rewrite the formula for \(f(x) \).

To illustrate, consider the limit (Figure 1):
\[
\lim_{x \to 4} \frac{x^2 - 16}{x - 4}
\]
The function \(f(x) = \frac{x^2 - 16}{x - 4} \) is not defined at \(x = 4 \) because the formula for \(f(4) \) produces the undefined expression \(0/0 \). However, the numerator of \(f(x) \) factors:

\[
\begin{align*}
&\frac{x^2 - 16}{x - 4} = \frac{(x + 4)(x - 4)}{x - 4} = x + 4 \quad \text{(valid for } x \neq 4)\\
&\text{This shows that } f \text{ coincides with the continuous function } y = x + 4 \text{ for all } x \neq 4. \text{ Since the limit depends only on the values of } f(x) \text{ for } x \neq 4, \text{ we have}
\end{align*}
\]

\[
\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} (x + 4) = 8
\]

We say that \(f(x) \) has an indeterminate form (or is indeterminate) at \(x = c \) if the formula for \(f(c) \) yields an undefined expression of the type \(0/0 \), \(\infty/\infty \), \(\infty \cdot 0 \), \(\infty - \infty \).

Indeterminate forms are warning signs that tell us more work needs to be done to evaluate the limit. Our strategy, when this occurs, is to transform \(f(x) \) algebraically, if possible, into a new expression that is defined and continuous at \(x = c \), and then evaluate the limit by substitution (“plugging in”). As you study the following examples, notice that the critical step is to cancel a common factor from the numerator and denominator at the appropriate moment, thereby removing the indeterminacy.

EXAMPLE 1 Calculate \(\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 + x - 12} \).

Solution The function has the indeterminate form \(0/0 \) at \(x = 3 \) because

\[
\text{Numerator at } x = 3: \quad x^2 - 4x + 3 = 3^2 - 4(3) + 3 = 0
\]

\[
\text{Denominator at } x = 3: \quad x^2 + x - 12 = 3^2 + 3 - 12 = 0
\]

Step 1. Transform algebraically and cancel.

\[
\begin{align*}
\frac{x^2 - 4x + 3}{x^2 + x - 12} &= \frac{(x - 3)(x - 1)}{(x - 3)(x + 4)} = \frac{x - 1}{x + 4} \quad \text{(if } x \neq 3) \\
\text{Cancel common factor} &\quad \text{Continuous at } x = 3
\end{align*}
\]

Step 2. Substitute (evaluate using continuity).

Because the expression on the right in Eq. (1) is continuous at \(x = 3 \),

\[
\lim_{x \to 3} \frac{x^2 - 4x + 3}{x^2 + x - 12} = \lim_{x \to 3} \frac{x - 1}{x + 4} = \frac{2}{7}
\]

Evaluate by substitution

EXAMPLE 2 The Form \(\frac{\infty}{\infty} \) Calculate \(\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\sec x} \).

Solution As we see in Figure 2, both \(f(x) = \tan x \) and \(f(x) = \sec x \) have infinite discontinuities at \(x = \frac{\pi}{2} \), so this limit has the indeterminate form \(\infty/\infty \) at \(x = \frac{\pi}{2} \).
Step 1. Transform algebraically and cancel.

\[
\tan x = \frac{\sin x}{\cos x} = \frac{\cos x}{\cos x} \sin x \quad (\text{if } \cos x \neq 0)
\]

Step 2. Substitute (evaluate using continuity).
Because \(f(x) = \sin x \) is continuous,

\[
\lim_{{x \to \frac{\pi}{2}}} \tan x = \lim_{{x \to \frac{\pi}{2}}} \sin x = \sin \frac{\pi}{2} = 1
\]

The next example illustrates the algebraic technique of “multiplying by the conjugate,” which can be used to treat some indeterminate forms involving square roots.

Example 3 Multiplying by the Conjugate
Evaluate \(\lim_{{x \to 4}} \frac{\sqrt{x} - 2}{x - 4} \).

Solution We check that \(f(x) = \frac{\sqrt{x} - 2}{x - 4} \) has the indeterminate form \(0/0 \) at \(x = 4 \):

Numerator at \(x = 4 \): \(\sqrt{4} - 2 = \sqrt{4} - 2 = 0 \)

Denominator at \(x = 4 \): \(x - 4 = 4 - 4 = 0 \)

Step 1. Multiply by the conjugate and cancel.

\[
\left(\frac{\sqrt{x} - 2}{x - 4} \right) \left(\frac{\sqrt{x} + 2}{\sqrt{x} + 2} \right) = \frac{x - 4}{(x - 4)(\sqrt{x} + 2)} = \frac{1}{\sqrt{x} + 2} \quad (\text{if } x \neq 4)
\]

Step 2. Substitute (evaluate using continuity).
Because \(f(x) = \frac{1}{\sqrt{x} + 2} \) is continuous at \(x = 4 \),

\[
\lim_{{x \to 4}} \frac{\sqrt{x} - 2}{x - 4} = \lim_{{x \to 4}} \frac{1}{\sqrt{x} + 2} = \frac{1}{4}
\]

Example 4 Evaluate \(\lim_{{h \to 5}} \frac{h - 5}{\sqrt{h + 4} - 3} \).

Solution We note that \(f(h) = \frac{h - 5}{\sqrt{h + 4} - 3} \) yields \(0/0 \) at \(h = 5 \):

Numerator at \(h = 5 \): \(h - 5 = 5 - 5 = 0 \)

Denominator at \(h = 5 \): \(\sqrt{9} + 4 - 3 = \sqrt{9} + 1 = 0 \)

The conjugate of \(\sqrt{h + 4} - 3 \) is \(\sqrt{h + 4} + 3 \), and

\[
\frac{h - 5}{\sqrt{h + 4} - 3} = \left(\frac{h - 5}{\sqrt{h + 4} - 3} \right) \left(\frac{\sqrt{h + 4} + 3}{\sqrt{h + 4} + 3} \right) = \frac{(h - 5)(\sqrt{h + 4} + 3)}{(\sqrt{h + 4} - 3)(\sqrt{h + 4} + 3)}
\]

The denominator is equal to

\[
(\sqrt{h + 4} - 3)(\sqrt{h + 4} + 3) = (\sqrt{h + 4})^2 - 9 = h - 5
\]

Thus, for \(h \neq 5 \),

\[
f(h) = \frac{h - 5}{\sqrt{h + 4} - 3} = \frac{(h - 5)(\sqrt{h + 4} + 3)}{h - 5} = \sqrt{h + 4} + 3
\]

We obtain

\[
\lim_{{h \to 5}} \frac{h - 5}{\sqrt{h + 4} - 3} = \lim_{{h \to 5}} (\sqrt{h + 4} + 3) = \sqrt{5} + 3 = 6
\]
EXAMPLE 5 The Form $\infty - \infty$ Calculate \(\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right) \).

Solution As we see in Figure 3, \(y = \frac{1}{x - 1} \) and \(y = \frac{2}{x^2 - 1} \) both have infinite discontinuities at \(x = 1 \), so this limit has the indeterminate form \(\infty - \infty \).

Step 1. Transform algebraically and cancel.
Combine the fractions and simplify (for \(x \neq 1 \)):
\[
\frac{1}{x - 1} - \frac{2}{x^2 - 1} = \frac{x + 1}{x^2 - 1} - \frac{2}{x^2 - 1} = \frac{x - 1}{(x - 1)(x + 1)} = \frac{1}{x + 1}
\]

Step 2. Substitute (evaluate using continuity).
\[
\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{2}{x^2 - 1} \right) = \lim_{x \to 1} \frac{1}{x + 1} = \frac{1}{1 + 1} = \frac{1}{2}
\]

In the next example, the function has the undefined form \(a/0 \) with \(a \) nonzero. This is not an indeterminate form (it is not of the form \(0/0, \infty/\infty \), etc.).

EXAMPLE 6 Infinite But Not Indeterminate Evaluate \(\lim_{x \to 2} \frac{x^2 - x + 5}{x - 2} \).

Solution The function \(f(x) = \frac{x^2 - x + 5}{x - 2} \) is undefined at \(x = 2 \) because the formula for \(f(2) \) yields 7/0:

Numerator at \(x = 2 \): \(x^2 - x + 5 = 2^2 - 2 + 5 = 7 \)

Denominator at \(x = 2 \): \(x - 2 = 2 - 2 = 0 \)

But \(f(x) \) is not indeterminate at \(x = 2 \) because 7/0 is not an indeterminate form. As in Figure 4, the one-sided limits are infinite:
\[
\lim_{x \to 2^+} \frac{x^2 - x + 5}{x - 2} = -\infty, \quad \lim_{x \to 2^-} \frac{x^2 - x + 5}{x - 2} = \infty
\]

The limit itself does not exist since the numerator approaches a fixed nonzero value and the denominator approaches 0.

As preparation for the derivative in Chapter 3, we evaluate a limit involving a symbolic constant.

EXAMPLE 7 Symbolic Constant Calculate \(\lim_{h \to 0} \frac{(h + a)^2 - a^2}{h} \), where \(a \) is a constant.

Solution We have the indeterminate form \(0/0 \) at \(h = 0 \) because

Numerator at \(h = 0 \): \((h + a)^2 - a^2 = (0 + a)^2 - a^2 = 0 \)

Denominator at \(h = 0 \): \(h = 0 \)

Expand the numerator and simplify (for \(h \neq 0 \)):
\[
\frac{(h + a)^2 - a^2}{h} = \frac{h^2 + 2ah + a^2 - a^2}{h} = \frac{h^2 + 2ah}{h} = \frac{h(h + 2a)}{h} = h + 2a
\]

The function \(y = h + 2a \) is continuous (for any constant \(a \)), so
\[
\lim_{h \to 0} \frac{(h + a)^2 - a^2}{h} = \lim_{h \to 0} (h + 2a) = 2a
\]

Given an expression that yields an indeterminate form, it will not always be the case that algebraic manipulation yields the limit. For instance, consider \(\lim_{x \to 0} \frac{\sin x}{x} \). Although this is an indeterminate form of type \(0/0 \), algebraic manipulation does not provide an
answer. In the next section, we use the Squeeze Theorem to evaluate this limit. It can also be evaluated by L'Hôpital's Rule, which will allow us to evaluate many indeterminate forms and which we will discuss in Section 7.7.

2.5 SUMMARY

- When \(f \) is known to be continuous at \(x = c \), the limit can be evaluated by substitution: \(\lim_{x \to c} f(x) = f(c) \).
- We say that \(f(x) \) is indeterminate (or has an indeterminate form) at \(x = c \) if the formula for \(f(c) \) yields an undefined expression of the type
 \[
 \frac{0}{0}, \quad \frac{\infty}{\infty}, \quad \infty \cdot 0, \quad \infty - \infty
 \]
- If \(f(x) \) is indeterminate at \(x = c \), try to transform \(f(x) \) algebraically into a new expression that is defined and continuous at \(x = c \). Then evaluate by substitution.

2.5 EXERCISES

Preliminary Questions

1. Which of the following is indeterminate at \(x = 1 \)?
 \[
 \frac{x^2 + 1}{x - 1}, \quad \frac{x^2 - 1}{x + 2}, \quad \frac{x^2 - 1}{\sqrt{x + 3} - 2}, \quad \frac{x^2 + 1}{\sqrt{x + 3} - 2}
 \]

2. Give counterexamples to show that these statements are false:
 (a) If \(f(c) \) is indeterminate, then the right- and left-hand limits as \(x \to c \) are not equal.
 (b) If \(\lim_{x \to c} f(x) \) exists, then \(f(c) \) is not indeterminate.
 (c) If \(f(x) \) is undefined at \(x = c \), then \(f(x) \) has an indeterminate form at \(x = c \).

3. The method for evaluating limits discussed in this section is sometimes called “simplify and plug in.” Explain how it actually relies on the property of continuity.

Exercises

In Exercises 1–4, show that the limit leads to an indeterminate form. Then carry out the two-step procedure: Transform the function algebraically and evaluate using continuity.

1. \(\lim_{x \to 6} \frac{x^2 - 36}{x - 6} \)
2. \(\lim_{h \to 3} \frac{9 - h^2}{h - 3} \)
3. \(\lim_{x \to -1} \frac{x^2 + 2x + 1}{x + 1} \)
4. \(\lim_{r \to 9} \frac{2r - 18}{5r - 45} \)

In Exercises 5–34, evaluate the limit, if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

5. \(\lim_{x \to 7} \frac{x - 7}{x^2 - 49} \)
6. \(\lim_{x \to 8} \frac{x^2 - 64}{x - 8} \)
7. \(\lim_{x \to 2} \frac{x^2 + 3x + 2}{x + 2} \)
8. \(\lim_{x \to 8} \frac{x^3 - 64x}{x - 8} \)
9. \(\lim_{x \to 5} \frac{2x^2 - 9x - 5}{x^2 - 25} \)
10. \(\lim_{h \to 0} \frac{(1 + h)^3 - 1}{h} \)
11. \(\lim_{x \to -\frac{1}{2}} \frac{2x + 1}{2x^2 + 3x + 1} \)
12. \(\lim_{x \to 3} \frac{x^2 - x}{x^2 - 9} \)
13. \(\lim_{x \to 2} \frac{3x^2 - 4x - 4}{2x^2 - 8} \)
14. \(\lim_{h \to 0} \frac{(3 + h)^3 - 27}{h} \)
15. \(\lim_{t \to 0} \frac{4t^2 - 1}{4t^4 - 1} \)
16. \(\lim_{h \to 4} \frac{(h + 2)^2 - 9h}{h - 4} \)
17. \(\lim_{x \to 16} \frac{\sqrt{x} - 4}{x - 16} \)
18. \(\lim_{t \to -2} \frac{2t + 4}{12 - 3t^2} \)
19. \(\lim_{h \to 0} \frac{1}{(h + 2)^2} - \frac{1}{h} \)
20. \(\lim_{y \to 3} \frac{y^2 + y - 12}{y^3 - 10y + 3} \)
21. \(\lim_{h \to 0} \frac{\sqrt{2 + h} - 2}{h} \)
22. \(\lim_{x \to 8} \frac{\sqrt{x - 4} - 2}{x - 8} \)
23. \(\lim_{x \to 4} \frac{x - 4}{\sqrt{x} - \sqrt{8} - \sqrt{x}} \)
24. \(\lim_{x \to 4} \frac{x - 4}{2 - \sqrt{x}} \)
25. \(\lim_{x \to 4} \left(\frac{1}{\sqrt{x} - 2} - \frac{4}{x - 4} \right) \)
26. \(\lim_{x \to 0^+} \left(\frac{1}{\sqrt{x}} - \frac{1}{\sqrt{x^2} + x} \right) \)
27. \(\lim_{x \to 0} \csc x \cot x \)
28. \(\lim_{\theta \to \frac{\pi}{2}} \cot \theta \csc \theta \)
29. \(\lim_{x \to 1} \left(\frac{1}{1 - x} - \frac{2}{1 - x^2} \right) \)
30. \(\lim_{x \to \frac{\pi}{2}} \sin x - \cos x \tan x - 1 \)
31. \(\lim_{t \to 2} \frac{2t^2 + 2t - 20}{t^2 - 4} \)
32. \(\lim_{\theta \to \frac{\pi}{2}} (\sec \theta - \tan \theta) \)
33. \(\lim_{\theta \to \frac{\pi}{2}} \left(\frac{1}{\tan \theta - 1} - \frac{2}{\tan^2 \theta - 1} \right) \)
34. \(\lim_{x \to \frac{\pi}{2}} \frac{2 \cos^2 x + 3 \cos x - 2}{2 \cos x - 1} \)
35. [GU] Use a plot of \(f(x) = \frac{x - 4}{\sqrt{x} - \sqrt{8} - x} \) to estimate \(\lim_{x \to 36} f(x) \) to two decimal places. Compare with the answer obtained algebraically in Exercise 23.

36. [GU] Use a plot of \(f(x) = \frac{1}{\sqrt{x} - 2} - \frac{4}{x - 4} \) to estimate \(\lim_{x \to 39} f(x) \) numerically. Compare with the answer obtained algebraically in Exercise 25.

In Exercises 37–42, evaluate using the identity \(a^3 - b^3 = (a - b)(a^2 + ab + b^2) \) to two decimal places. Compare with the answer obtained algebraically.

In Exercises 55–58, find all values of \(c \) such that the limit exists.

Further Insights and Challenges

In Exercises 55–58, find all values of \(c \) such that the limit exists.

55. \(\lim_{x \to \infty} \frac{x^2 - 5x - 6}{x - c} \)
56. \(\lim_{x \to 1} \frac{x^3 + 3x + c}{x - 1} \)
57. \(\lim_{x \to 1} \left(\frac{1}{x - 1} - \frac{c}{x^3 - 1} \right) \)
58. \(\lim_{x \to 0} \frac{1 + cx^2 - \sqrt{1 + x^2}}{x^2} \)
59. For which sign, + or –, does the following limit exist?

\[\lim_{x \to 0} \frac{1}{x} \pm \frac{1}{x(x - 1)} \]

2.6 Trigonometric Limits

In our study of the derivative, we will need to evaluate certain limits involving transcendental functions such as sine and cosine. The algebraic techniques of the previous section are often ineffective for such functions, and other tools are required. In this section, we discuss one such tool—the Squeeze Theorem—and use it to evaluate the trigonometric limits needed in Section 3.6.

The Squeeze Theorem

Consider a function \(f \) that is “trapped” between two functions \(l \), for lower bound, and \(u \), for upper bound, on an interval \(I \). In other words, \[l(x) \leq f(x) \leq u(x) \quad \text{for all } x \in I \]

Thus, the graph of \(f \) lies between the graphs of \(l \) and \(u \) (Figure 1).

The Squeeze Theorem applies when \(f \) is not just trapped but squeezed at a point \(x = c \) (Figure 2). By this we mean that for all \(x \neq c \) in some open interval containing \(c \),

\[l(x) \leq f(x) \leq u(x) \quad \text{and} \quad \lim_{x \to c} l(x) = \lim_{x \to c} u(x) = L \]

We do not require that \(f(x) \) be defined at \(x = c \), but it is clear graphically that \(f(x) \) must approach the limit \(L \), as stated in the next theorem. See Appendix D for a proof.

THEOREM 1 Squeeze Theorem

Assume that for \(x \neq c \) (in some open interval containing \(c \)),

\[l(x) \leq f(x) \leq u(x) \quad \text{and} \quad \lim_{x \to c} l(x) = \lim_{x \to c} u(x) = L \]

Then \(\lim_{x \to c} f(x) \) exists and \(\lim_{x \to c} f(x) = L \).
Example 1

Show that \(\lim_{x \to 0} x \sin \frac{1}{x} = 0. \)

Solution

Although \(f(x) = x \sin \frac{1}{x} \) is a product of two functions, we cannot use the Product Law because \(\lim_{x \to 0} \frac{1}{x} \) does not exist. However, the sine function takes on values between 1 and –1, and therefore \(|\sin \frac{1}{x}| \leq 1 \) for all \(x \neq 0. \)

Multiplying by \(|x|, \) we obtain \(|x \sin \frac{1}{x}| \leq |x| \) and conclude that (Figure 3)

\[
-|x| \leq x \sin \frac{1}{x} \leq |x|
\]

Because

\[
\lim_{x \to 0} |x| = 0 \quad \text{and} \quad \lim_{x \to 0} (-|x|) = -\lim_{x \to 0} |x| = 0
\]

we can apply the Squeeze Theorem to conclude that \(\lim_{x \to 0} x \sin \frac{1}{x} = 0. \)

In Section 2.2, we found numerical and graphical evidence suggesting that the limit \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \) is equal to 1. The Squeeze Theorem will allow us to prove this fact.

Theorem 2

Important Trigonometric Limits

\[
\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad \text{and} \quad \lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0
\]

To apply the Squeeze Theorem, we must find functions that squeeze \(\frac{\sin \theta}{\theta} \) at \(\theta = 0. \)

These are provided by the next theorem (Figure 4).

Theorem 3

\[
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1 \quad \text{for} \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2} \quad \theta \neq 0
\]

Proof

Assume first that \(0 < \theta < \frac{\pi}{2}. \) Our proof is based on the following relation between the areas in Figure 5:

\[
\text{Area of } \triangle OAB < \text{area of sector } BOA < \text{area of } \triangle OAC
\]

Let’s compute these three areas. First, \(\triangle OAB \) has base 1 and height \(\sin \theta, \) so its area is \(\frac{1}{2} \sin \theta. \) Next, recall that a sector of angle \(\theta \) has area \(\frac{1}{2} \theta. \) Finally, to compute the area of \(\triangle OAC, \) we observe that

\[
\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}} = \frac{AC}{OA} \quad \Rightarrow \quad \frac{AC}{1} = AC
\]

Thus, \(\triangle OAC \) has base 1, height \(\tan \theta, \) and area \(\frac{1}{2} \tan \theta. \) We have shown, therefore, that

\[
\frac{1}{2} \sin \theta \leq \frac{1}{2} \theta \leq \frac{1}{2} \tan \theta
\]

\[
\text{Area } \triangle OAB \quad \text{Area of sector} \quad \text{Area } \triangle OAC
\]
The first inequality yields \(\sin \theta \leq \theta \), and because \(\theta > 0 \), we obtain
\[
\frac{\sin \theta}{\theta} \leq 1
\]

Next, multiply the second inequality in (3) by \(\frac{2 \cos \theta}{\theta} \) to obtain
\[
\cos \theta \leq \frac{\sin \theta}{\theta}
\]

The combination of (4) and (5) gives us (1) when \(0 < \theta < \frac{\pi}{2} \). However, the functions in (1) do not change value when \(\theta \) is replaced by \(-\theta \) because both \(f(x) = \cos x \) and \(f(x) = \sin x \) are even functions. Indeed, \(\cos(-\theta) = \cos \theta \) and \(\sin(-\theta) = -\sin \theta \).

Therefore, (1) holds for \(\frac{-\pi}{2} < \theta < 0 \) as well. This completes the proof of Theorem 3.

Proof of Theorem 2 According to Theorem 3,
\[
\cos \theta \leq \frac{\sin \theta}{\theta} \leq 1
\]

Since \(\lim_{\theta \to 0} \cos \theta = \cos 0 = 1 \) and \(\lim_{\theta \to 0} 1 = 1 \), the Squeeze Theorem yields \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \), as required. It then follows that
\[
\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = \lim_{\theta \to 0} \left(\frac{1 + \cos \theta}{1 + \cos \theta} \right) \frac{1 - \cos \theta}{\theta} = \lim_{\theta \to 0} \frac{1}{1 + \cos \theta} \left(\frac{1 - \cos^2 \theta}{\theta} \right)
\]
\[
= \lim_{\theta \to 0} \frac{1}{1 + \cos \theta} \lim_{\theta \to 0} \frac{\sin^2 \theta}{\theta} = \lim_{\theta \to 0} \frac{\sin \theta}{1 + \cos \theta} \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 0 \cdot 1 = 0
\]

In the next example, we evaluate another trigonometric limit. The key idea is to rewrite the function of \(h \) in terms of the new variable \(\theta = 4h \).

Example 2 Evaluating a Limit by Changing Variables Investigate \(\lim_{h \to 0} \frac{\sin 4h}{h} \) numerically and then evaluate it exactly.

Solution The table of values at the left suggests that the limit is equal to 4. To evaluate the limit exactly, we rewrite it in terms of the limit of \(\frac{\sin \theta}{\theta} \) so that Theorem 2 can be applied. Thus, we set \(\theta = 4h \) and write
\[
\frac{\sin 4h}{h} = 4 \left(\frac{\sin 4h}{4h} \right) = 4 \frac{\sin \theta}{\theta}
\]
The new variable \(\theta \) tends to zero as \(h \to 0 \) because \(\theta \) is a multiple of \(h \). Therefore, we may change the limit as \(h \to 0 \) into a limit as \(\theta \to 0 \) to obtain

\[
\lim_{h \to 0} \frac{\sin 4h}{h} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 4 \left(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \right) = 4(1) = 4
\]

Note that the change of variables demonstrates that \(\frac{\sin (kx)}{kx} \) approaches 1 as \(x \to 0 \).

We can use this to our advantage in the next example.

Example 3 Find \(\lim_{x \to 0} \tan(3x) \tan(2x) \).

Solution

\[
\lim_{x \to 0} \tan(3x) \tan(2x) = \lim_{x \to 0} \frac{\sin(3x)}{\cos(3x)} \cdot \frac{\cos(2x)}{\sin(2x)} = \lim_{x \to 0} \frac{3x}{\frac{3x}{3 \cdot x}} \cdot \frac{2x}{\frac{2x}{\sin(2x)}} = \lim_{x \to 0} 3 \cdot 1 \cdot 1 = 3
\]

2.6 Summary

- We say that \(f \) is **squeezed** at \(x = c \) if there exist functions \(l \) and \(u \) such that \(l(x) \leq f(x) \leq u(x) \) for all \(x \neq c \) in an open interval \(I \) containing \(c \), and

 \[
 \lim_{x \to c} l(x) = \lim_{x \to c} u(x) = L
 \]

 The Squeeze Theorem states that in this case, \(\lim_{x \to c} f(x) = L \).

- Two important trigonometric limits:

 \[
 \lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad \text{and} \quad \lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0
 \]

2.6 Exercises

Preliminary Questions

1. Assume that \(-x^4 \leq f(x) \leq x^2\). What is \(\lim_{x \to 0} f(x) \)? Is there enough information to evaluate \(\lim_{x \to \frac{1}{2}} f(x) \)? Explain.

2. State the Squeeze Theorem carefully.

3. If you want to evaluate \(\lim_{h \to 0} \frac{\sin 5h}{3h} \), it is a good idea to rewrite the limit in terms of the variable (choose one):

 (a) \(\theta = 5h \)
 (b) \(\theta = 3h \)
 (c) \(\theta = \frac{5h}{3} \)

Exercises

1. State precisely the hypothesis and conclusions of the Squeeze Theorem for the situation in Figure 6.

2. In Figure 7, is \(f \) squeezed by \(u \) and \(l \) at \(x = 3 \)? At \(x = 2 \)?
3. What does the Squeeze Theorem say about \(\lim_{x \to a} f(x) \) if the limits \(\lim_{x \to a} f(x) = \lim_{x \to a} u(x) = 6 \) and \(f, u, \) and \(l \) are related as in Figure 8? The inequality \(f(x) \leq u(x) \) is not satisfied for all \(x \). Does this affect the validity of your conclusion?

![Graph of functions](image)

Figure 8

4. Determine \(\lim_{x \to a} f(x) \) assuming \(\cos x \leq f(x) \leq 1 \).

5. State whether the inequality provides sufficient information to determine \(\lim_{x \to a} f(x) \), and if so, find the limit.
 (a) \(4x - 5 \leq f(x) \leq x^2 \)
 (b) \(2x - 1 \leq f(x) \leq x^2 \)
 (c) \(4x - x^2 \leq f(x) \leq x^2 + 2 \)
 (d) **GU** Plot the graphs of \(u(x) = 1 + |x - \frac{7}{2}| \) and \(l(x) = \sin x \) on the same set of axes. What can you say about \(\lim_{x \to \frac{7}{2}} f(x) \) if \(f \) is squeezed by \(l \) and \(u \) at \(x = \frac{7}{2} \)?

In Exercises 7–16, evaluate using the Squeeze Theorem.

7. \(\lim_{x \to 0} x^2 \cos \frac{1}{x} \)
8. \(\lim_{x \to 0} x \sin \frac{1}{x} \)
9. \(\lim_{x \to 1} (x - 1) \sin \frac{\pi}{x - 1} \)
10. \(\lim_{x \to 3} \frac{x^2 - 9}{x - 3} \)
11. \(\lim_{t \to 0} (2t - 1) \cos \frac{1}{t} \)
12. \(\lim_{x \to 0^+} \sqrt{x} \cos(\pi/x) \)
13. \(\lim_{t \to 2} (t^2 - 4) \cos \frac{1}{t - 2} \)
14. \(\lim_{x \to 0} \tan x \cos \left(\frac{\sin 1}{x} \right) \)
15. \(\lim_{\theta \to \frac{\pi}{2}} \cos \theta \cos(\tan \theta) \)
16. \(\lim_{t \to 0^+} \sin^2 \left(\frac{1}{t} \right) t^{3/2} \)

In Exercises 17–26, evaluate using Theorem 2 as necessary:

17. \(\lim_{x \to 0} \tan x \)
18. \(\lim_{x \to 0} \sin x \sec x \)
19. \(\lim_{t \to 0} \frac{\sqrt{t^2 + 9} \sin t}{t} \)
20. \(\lim_{t \to 0} \frac{\sin^2 t}{t} \)
21. \(\lim_{x \to 0} \frac{x^2}{\sin^2 x} \)
22. \(\lim_{t \to 0} \frac{1 - \cos t}{t^2} \)
23. \(\lim_{\theta \to 0} \frac{\sec \theta - 1}{\theta} \)
24. \(\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta} \)
25. \(\lim_{t \to 0} \frac{\sin t}{t} \)
26. \(\lim_{t \to 0} \frac{\cos t - \cos^2 t}{t} \)

27. Let \(L = \lim_{x \to 0} \frac{\sin 14x}{x} \).
 (a) Show, by letting \(\theta = 14x \), that \(L = \lim_{\theta \to 0} 14 \frac{\sin \theta}{\theta} \).
 (b) Compute \(L \).

28. Evaluate \(\lim_{h \to 0} \frac{\sin 9h}{h} \). **Hint:** \(\lim_{h \to 0} \frac{\sin 9h}{h} = \left(\frac{9}{7} \right) \left(\frac{\sin 9h}{9h} \right) \left(\frac{7h}{\sin 7h} \right) \).

In Exercises 29–48, evaluate the limit.

29. \(\lim_{h \to 0} \frac{\sin 9h}{h} \)
30. \(\lim_{h \to 0} \frac{\sin 4h}{4h} \)
31. \(\lim_{h \to 0} \frac{\sin h}{h^5} \)
32. \(\lim_{x \to \frac{1}{3}} \frac{x}{\sin 3x} \)
33. \(\lim_{x \to 0} \frac{\sin 7\theta}{\sin 3\theta} \)
34. \(\lim_{x \to 0} \frac{\tan 4x}{9x} \)
35. \(\lim_{x \to 0} \frac{\tan 4x}{x} \)
36. \(\lim_{t \to 0} \frac{\tan 4t}{t \sec t} \)
37. \(\lim_{h \to 0} \frac{\sin 2h \sin 3h}{h^2} \)
38. \(\lim_{z \to 0} \frac{\sin(z/3)}{z} \)
39. \(\lim_{\theta \to 0} \frac{\sin(-3\theta)}{\sin(4\theta)} \)
40. \(\lim_{x \to 0} \frac{\tan 4x}{x} \)
41. \(\lim_{x \to 0} \frac{\sec 8x}{\sec 4x} \)
42. \(\lim_{x \to 0} \frac{\sin 5x \sin 2x}{x \sin 3x \sin 5x} \)
43. \(\lim_{x \to 0} \frac{\sin 3x \sin 2x}{x \sin 5x} \)
44. \(\lim_{h \to 0} \frac{1 - \cos 2h}{h} \)
45. \(\lim_{h \to 0} \frac{\sin(2h)/(1 - \cos h)}{h^2} \)
46. \(\lim_{t \to 0} \frac{1 - \cos 2t}{\sin^2 3t} \)
47. \(\lim_{\theta \to 0} \frac{\cos 2\theta - \cos \theta}{\theta} \)
48. \(\lim_{h \to 0} \frac{1 - \cos 3h}{h} \)

49. Calculate \(\lim_{x \to 0^-} \frac{\sin x}{|x|} \).

50. Use the identity \(\sin 3\theta = 3 \sin \theta - 4 \sin^3 \theta \) to evaluate the limit \(\lim_{\theta \to 0} \frac{\sin 3\theta - 3 \sin \theta}{\theta^3} \).

51. Prove the following result:

\[
\lim_{\theta \to 0} \frac{\csc \theta - \cot \theta}{\theta} = 0
\]

52. **GU** Investigate \(\lim_{h \to 0} \frac{1 - \cos h}{h^2} \) numerically (and graphically if you have a graphing utility). Then prove that the limit is equal to \(\frac{1}{2} \). **Hint:** See the proof of Theorem 2.

In Exercises 53–55, evaluate using the result of Exercise 52.

53. \(\lim_{h \to 0} \frac{\cos 3h - 1}{h^2} \)
54. \(\lim_{h \to 0} \frac{\cos 3h - 1}{h^2} \)
55. \(\lim_{h \to 0} \frac{1 - \cos h}{h^2} \)

56. Use the Squeeze Theorem to prove that if \(\lim_{x \to c} |f(x)| = 0 \), then \(\lim_{x \to c} f(x) = 0 \).
Further Insights and Challenges

57. Use the result of Exercise 52 to prove that for \(m \neq 0 \),
\[
\lim_{x \to 0} \frac{\cos mx - 1}{x^2} = -\frac{m^2}{2}
\]

58. Using a diagram of the unit circle and the Pythagorean Theorem, show that
\[
\sin^2 \theta \leq (1 - \cos \theta)^2 + \sin^2 \theta \leq \theta^2
\]

Conclude that \(\sin^2 \theta \leq 2(1 - \cos \theta) \leq \theta^2 \) and use this to give an alternative proof of Eq. (9) in Exercise 51. Then give an alternative proof of the result in Exercise 52.

59. (a) Investigate \(\lim_{x \to c} \frac{\sin x - \sin c}{x - c} \) numerically for the five values \(c = 0, \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \pi \).
(b) Can you guess the answer for general \(c \)?
(c) Check numerically that your answer to (b) works for two other values of \(c \).

2.7 Limits at Infinity

So far we have considered limits as \(x \) approaches a number \(c \). It is also important to consider limits where \(x \) approaches \(\infty \) or \(-\infty \), which we refer to as limits at infinity. In applications, limits at infinity arise naturally when we describe the “long-term” behavior of a system as in Figure 1.

The notation \(x \to \infty \) indicates that \(x \) increases without bound, and \(x \to -\infty \) indicates that \(x \) decreases (through negative values) without bound. We write

- \(\lim_{x \to \infty} f(x) = L \) if \(f(x) \) gets closer and closer to \(L \) as \(x \to \infty \).
- \(\lim_{x \to -\infty} f(x) = L \) if \(f(x) \) gets closer and closer to \(L \) as \(x \to -\infty \).

As before, “closer and closer” means that \(|f(x) - L| \) becomes arbitrarily small. In either case, the line \(y = L \) is called a horizontal asymptote. We use the notation \(x \to \pm \infty \) to indicate that we are considering both infinite limits, as \(x \to \infty \) and as \(x \to -\infty \).

Infinite limits describe the asymptotic behavior of a function, which is determined by the behavior of the graph as we move out indefinitely to the right or the left.

Example 1 Discuss the asymptotic behavior in Figure 2.

Solution The function \(g \) approaches \(L = 7 \) as we move to the right and it approaches \(L = 3 \) as we move to left, so
\[
\lim_{x \to \infty} g(x) = 7, \quad \lim_{x \to -\infty} g(x) = 3
\]

Accordingly, the lines \(y = 7 \) and \(y = 3 \) are horizontal asymptotes of \(g \).

A function may approach an infinite limit as \(x \to \pm \infty \). We write
\[
\lim_{x \to \infty} f(x) = \infty \quad \text{or} \quad \lim_{x \to -\infty} f(x) = \infty
\]
if \(f(x) \) becomes arbitrarily large as \(x \to \infty \) or \(-\infty \). Similar notation is used if \(f(x) \) approaches \(-\infty \) as \(x \to \pm \infty \). For example, we see in Figure 3(A) that
\[
\lim_{x \to \infty} 2^x = \infty \quad \text{and} \quad \lim_{x \to -\infty} 2^x = 0
\]
However, limits at infinity do not always exist. For example, \(f(x) = \sin x \) oscillates indefinitely [Figure 3(B)], so
\[
\lim_{x \to \infty} \sin x \quad \text{and} \quad \lim_{x \to -\infty} \sin x
\]
do not exist.

The limits at infinity of the power functions \(f(x) = x^n \) are easily determined. If \(n > 0 \), then \(x^n \) certainly increases without bound as \(x \to \infty \), so (Figure 4)
\[
\lim_{x \to \infty} x^n = \infty \quad \text{and} \quad \lim_{x \to \infty} \frac{1}{x^n} = 0
\]
To describe the limits as \(x \to -\infty \), assume that \(n \) is a whole number so that \(x^n \) is defined for \(x < 0 \). If \(n \) is even, then \(x^n \) becomes large and positive as \(x \to -\infty \), and if \(n \) is odd, it becomes large and negative. In summary,

THEOREM 1 For all \(n > 0 \),
\[
\lim_{x \to \infty} x^n = \infty \quad \text{and} \quad \lim_{x \to \infty} \frac{1}{x^n} = 0
\]
If \(n \) is a positive whole number,
\[
\lim_{x \to \infty} x^n = \begin{cases}
\infty & \text{if } n \text{ is even} \\
-\infty & \text{if } n \text{ is odd}
\end{cases}
\quad \text{and} \quad \lim_{x \to \infty} \frac{1}{x^n} = 0
\]

Note also that if \(p \) and \(q \) are positive integers, then
\[
\lim_{x \to -\infty} x^{p/q} = \begin{cases}
-\infty & \text{if } q \text{ is odd} \\
\text{undefined} & \text{if } q \text{ is even}
\end{cases}
\]

The Basic Limit Laws (Theorem 1 in Section 2.3) are valid for limits at infinity. For example, the Sum and Constant Multiple Laws yield
\[
\lim_{x \to \infty} \left(3 - 4x^{-3} + 5x^{-5} \right) = \lim_{x \to \infty} 3 - 4 \lim_{x \to \infty} x^{-3} + 5 \lim_{x \to \infty} x^{-5}
\]
\[
= 3 + 0 + 0 = 3
\]

EXAMPLE 2 Calculate \(\lim_{x \to \infty} \frac{20x^2 - 3x}{3x^5 - 4x^2 + 5} \).

Solution It would be nice if we could apply the Quotient Law directly, but this law is valid only if the denominator has a finite, nonzero limit. Our limit has the indeterminate form \(\infty/\infty \) because
\[
\lim_{x \to \infty} (20x^2 - 3x) = \infty \quad \text{and} \quad \lim_{x \to \infty} (3x^5 - 4x^2 + 5) = \infty
\]
The way around this difficulty is to divide the numerator and denominator by \(x^5 \) (the highest power of \(x \) in the denominator):
\[
\frac{20x^2 - 3x}{3x^5 - 4x^2 + 5} = \frac{x^{-5}(20x^2 - 3x)}{x^{-5}(3x^5 - 4x^2 + 5)} = \frac{20x^{-3} - 3x^{-4}}{3 - 4x^{-3} + 5x^{-5}}
\]
Now we can use the Quotient Law:
\[
\lim_{x \to \infty} \frac{20x^2 - 3x}{3x^3 - 4x^2 + 5} = \lim_{x \to \infty} \frac{(20x^{-3} - 3x^{-4})}{(3 - 4x^{-3} + 5x^{-3})} = 0 = \frac{0}{3} = 0
\]

In general, if
\[
f(x) = \frac{a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0}{b_mx^m + b_{m-1}x^{m-1} + \cdots + b_0}
\]
where \(a_n \neq 0\) and \(b_m \neq 0\), divide the numerator and denominator by \(x^m\):
\[
f(x) = \frac{a_n + a_{n-1}x^{-1} + \cdots + a_0x^{-m}}{b_m + b_{m-1}x^{-1} + \cdots + b_0x^{-m}}
\]

The quotient in parentheses approaches the finite limit \(a_n/b_m\) because
\[
\lim_{x \to \infty} (a_n + a_{n-1}x^{-1} + \cdots + a_0x^{-m}) = a_n
\]
\[
\lim_{x \to \infty} (b_m + b_{m-1}x^{-1} + \cdots + b_0x^{-m}) = b_m
\]
This also holds true for \(x \to -\infty\), and therefore,
\[
\lim_{x \to \pm \infty} f(x) = \lim_{x \to \pm \infty} \frac{a_n + a_{n-1}x^{-1} + \cdots + a_0x^{-m}}{b_m + b_{m-1}x^{-1} + \cdots + b_0x^{-m}} = \frac{a_n}{b_m} \lim_{x \to \pm \infty} x^{-m}
\]

Theorem 2 Limits at Infinity of a Rational Function

The asymptotic behavior of a rational function depends only on the leading terms of its numerator and denominator. If \(a_n, b_m \neq 0\), then
\[
\lim_{x \to \pm \infty} \frac{a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0}{b_mx^m + b_{m-1}x^{m-1} + \cdots + b_0} = \frac{a_n}{b_m} \lim_{x \to \pm \infty} x^{-m}
\]

Here are some examples:

- **n = m:**
 \[
 \lim_{x \to \infty} \frac{3x^4 - 7x + 9}{7x^4 - 4} = \frac{3}{7} \lim_{x \to \infty} x^0 = \frac{3}{7}
 \]
- **n < m:**
 \[
 \lim_{x \to \infty} \frac{3x^3 - 7x + 9}{7x^4 - 4} = \frac{3}{7} \lim_{x \to \infty} x^{-1} = 0
 \]
- **n > m, n - m odd:**
 \[
 \lim_{x \to -\infty} \frac{3x^8 - 7x + 9}{7x^9 - 4} = \frac{3}{7} \lim_{x \to -\infty} x^5 = -\infty
 \]
- **n > m, n - m even:**
 \[
 \lim_{x \to -\infty} \frac{3x^7 - 7x + 9}{7x^8 - 4} = \frac{3}{7} \lim_{x \to -\infty} x^4 = \infty
 \]

Our method can be adapted to noninteger exponents and algebraic functions.

Example 3 Calculate the limits

(a) \(\lim_{x \to \infty} \frac{3x^{7/2} + 7x^{-1/2}}{x^2 - x^{1/2}}\)

(b) \(\lim_{x \to \infty} \frac{x^2}{\sqrt{x^3 + 1}}\)

Solution

(a) As before, divide the numerator and denominator by \(x^2\), which is the highest power of \(x\) occurring in the denominator (this means multiply by \(x^{-2}\)):

\[
\frac{3x^{7/2} + 7x^{-1/2}}{x^2 - x^{1/2}} = \frac{x^{-2}}{x^{-2}} \cdot \frac{3x^{7/2} + 7x^{-1/2}}{x^2 - x^{1/2}} = \frac{3x^{3/2} + 7x^{-5/2}}{1 - x^{-3/2}}
\]
\[
\lim_{x \to \infty} \frac{3x^{7/2} + 7x^{-1/2}}{x^2 - x^{1/2}} = \lim_{x \to \infty} (3x^{3/2} + 7x^{-5/2}) = \infty = \frac{\infty}{1} = \infty
\]

(b) \(\lim_{x \to \infty} \frac{x^2}{\sqrt{x^3 + 1}}\)
The key is to observe that the denominator of \(\frac{x^2}{\sqrt{x^3 + 1}} \) “behaves” like \(x^{3/2} \):

\[
\sqrt{x^3 + 1} = \sqrt{x^3(1 + x^{-3})} = x^{3/2} \sqrt{1 + x^{-3}} \quad \text{for } x > 0
\]

This suggests that we divide the numerator and denominator by \(x^{3/2} \):

\[
\frac{x^2}{\sqrt{x^3 + 1}} = \frac{x^{3/2}}{x^{3/2} \sqrt{1 + x^{-3}}} = \frac{x^{1/2}}{\sqrt{1 + x^{-3}}}
\]

Then apply the Quotient Law:

\[
\lim_{x \to \infty} \frac{x^2}{\sqrt{x^3 + 1}} = \lim_{x \to \infty} \frac{x^{1/2}}{\sqrt{1 + x^{-3}}} = \frac{\infty}{1} = \infty
\]

EXAMPLE 4 Calculate the limits at infinity of \(f(x) = \frac{12x + 25}{\sqrt{16x^2 + 100x + 500}} \).

Solution Divide the numerator and denominator by \(x \) (multiply by \(x^{-1} \)), but notice the difference between \(x \) positive and \(x \) negative. For \(x > 0 \),

\[
x^{-1} \sqrt{16x^2 + 100x + 500} = \sqrt{x^{-2} \left(16x^2 + 100x + 500 \right)} = \sqrt{16 + \frac{100}{x} + \frac{500}{x^2}}
\]

\[
\lim_{x \to \infty} \frac{12x + 25}{\sqrt{16x^2 + 100x + 500}} = \lim_{x \to \infty} \frac{12 + \frac{25}{x}}{\sqrt{16 + \frac{100}{x} + \frac{500}{x^2}}} = 12 \sqrt{16} = 3
\]

However, if \(x < 0 \), then \(x = -\sqrt{x^2} \) and

\[
x^{-1} \sqrt{16x^2 + 100x + 500} = -\sqrt{x^{-2} \left(16x^2 + 100x + 500 \right)} = -\sqrt{16 + \frac{100}{x} + \frac{500}{x^2}}
\]

So the limit as \(x \to -\infty \) is \(-3\) instead of \(3\) (Figure 5):

\[
\lim_{x \to -\infty} \frac{12x + 25}{\sqrt{16x^2 + 100x + 500}} = \lim_{x \to -\infty} \frac{12 + \frac{25}{x}}{\sqrt{16 + \frac{100}{x} + \frac{500}{x^2}}} = \frac{12}{-\sqrt{16}} = -3
\]

2.7 SUMMARY

- **Limits as infinity:**
 - \(\lim_{x \to \infty} f(x) = L \) if \(|f(x) - L| \) becomes arbitrarily small as \(x \) increases without bound.
 - \(\lim_{x \to -\infty} f(x) = L \) if \(|f(x) - L| \) becomes arbitrarily small as \(x \) decreases without bound.
 - \(\lim_{x \to \infty} a^x = \infty \) and \(\lim_{x \to -\infty} a^x = 0 \) for \(a > 1 \)

- A horizontal line \(y = L \) is a **horizontal asymptote** if

\[
\lim_{x \to \infty} f(x) = L \quad \text{and/or} \quad \lim_{x \to -\infty} f(x) = L
\]

A function can have 0, 1 or 2 horizontal asymptotes.
• If \(n > 0 \), then \(\lim_{x \to \infty} x^n = \infty \) and \(\lim_{x \to -\infty} x^{-n} = 0 \). If \(n > 0 \) is a whole number, then

\[
\lim_{x \to -\infty} x^n = \begin{cases}
\infty & \text{if } n \text{ is even} \\
-\infty & \text{if } n \text{ is odd}
\end{cases}
\] and \(\lim_{x \to -\infty} x^{-n} = 0 \)

• If \(f(x) = \frac{a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0}{b_mx^m + b_{m-1}x^{m-1} + \cdots + b_0} \) with \(a_n, b_m \neq 0 \), then

\[
\lim_{x \to \pm\infty} f(x) = \frac{a_n}{b_m} \lim_{x \to \pm\infty} x^{n-m}
\]

2.7 EXERCISES

Preliminary Questions

1. Assume that

\[
\lim_{x \to \infty} f(x) = L \quad \text{and} \quad \lim_{x \to L} g(x) = \infty
\]

Which of the following statements are correct?

(a) \(x = L \) is a vertical asymptote of \(g \).

(b) \(y = L \) is a horizontal asymptote of \(g \).

(c) \(x = L \) is a vertical asymptote of \(f \).

(d) \(y = L \) is a horizontal asymptote of \(f \).

2. What are the following limits?

(a) \(\lim_{x \to -\infty} x^3 \)

(b) \(\lim_{x \to -\infty} x^3 \)

(c) \(\lim_{x \to -\infty} x^4 \)

3. Sketch the graph of a function that approaches a limit as \(x \to \infty \) but does not approach a limit (either finite or infinite) as \(x \to -\infty \).

4. What is the sign of \(a \) if \(f(x) = ax^3 + x + 1 \) satisfies

\[
\lim_{x \to -\infty} f(x) = \infty
\]

5. What is the sign of the coefficient multiplying \(x^7 \) if \(f \) is a polynomial of degree 7 such that \(\lim_{x \to -\infty} f(x) = \infty \)?

6. Explain why \(\lim_{x \to \infty} \sin \frac{1}{x} \) exists but \(\lim_{x \to 0} \sin \frac{1}{x} \) does not exist. What is \(\lim_{x \to \infty} \sin \frac{1}{x} \)?

Exercises

1. What are the horizontal asymptotes of the function in Figure 6?

![Figure 6](image)

2. Sketch the graph of a function \(f \) that has both \(y = -1 \) and \(y = 5 \) as horizontal asymptotes.

3. Sketch the graph of a function \(f \) with a single horizontal asymptote \(y = 3 \).

4. Sketch the graphs of two functions \(f \) and \(g \) that have both \(y = -2 \) and \(y = 4 \) as horizontal asymptotes but \(\lim_{x \to \infty} f(x) \neq \lim_{x \to \infty} g(x) \).

5. Investigate the asymptotic behavior of \(f(x) = \frac{x^3}{x^3 + x} \) numerically and graphically:

(a) Make a table of values of \(f(x) \) for \(x = \pm 50, \pm 100, \pm 500, \pm 1000 \).

(b) Plot the graph of \(f \).

(c) What are the horizontal asymptotes of \(f \)?

6. Investigate \(\lim_{x \to \pm\infty} \frac{12x + 1}{\sqrt{4x^2 + 9}} \) numerically and graphically:

(a) Make a table of values of \(f(x) = \frac{12x + 1}{\sqrt{4x^2 + 9}} \) for \(x = \pm 100, \pm 500, \pm 1000, \pm 10,000 \).

(b) Plot the graph of \(f \).

(c) What are the horizontal asymptotes of \(f \)?

7. \(\lim_{x \to \infty} \frac{x}{x + 9} \)

8. \(\lim_{x \to \infty} \frac{3x^2 + 20x}{4x^2 + 9} \)

9. \(\lim_{x \to \infty} \frac{3x^2 + 20x}{2x^4 + 3x^3 - 29} \)

10. \(\lim_{x \to \infty} \frac{4}{x + 5} \)

11. \(\lim_{x \to \infty} \frac{7x - 9}{4x + 3} \)

12. \(\lim_{x \to \infty} \frac{9x^2 - 2}{6 - 29x} \)

13. \(\lim_{x \to \infty} \frac{7x^2 - 9}{4x + 3} \)

14. \(\lim_{x \to \infty} \frac{5x - 9}{4x^3 + 2x + 7} \)

15. \(\lim_{x \to \infty} \frac{3x^3 - 10}{x + 4} \)

16. \(\lim_{x \to \infty} \frac{2x^5 + 3x^4 - 31x}{8x^4 - 51x^2 + 12} \)

In Exercises 17–22, find the horizontal asymptotes.

17. \(f(x) = \frac{2x^2 - 3x}{8x^2 + 8} \)

18. \(f(x) = \frac{8x^3 - x^2}{7 + 11x - 4x^3} \)

19. \(f(x) = \frac{\sqrt{36x^4 + 7}}{9x + 4} \)

20. \(f(x) = \frac{\sqrt{36x^4 + 7}}{9x^2 + 4} \)

21. \(f(t) = \frac{3^t}{1 + 5^{-t}} \)

22. \(f(t) = \frac{t^{1/3}}{(64t^2 + 9)^{1/6}} \)
In Exercises 23–30, evaluate the limit.

23. \(\lim_{x \to \infty} \frac{\sqrt{x^4 + 3x + 2}}{4x^3 + 1} \)

24. \(\lim_{x \to \infty} \frac{\sqrt{x^4 + 20x}}{10x - 2} \)

25. \(\lim_{x \to \infty} \frac{8x^2 + 7x^{1/3}}{\sqrt{16x^4 + 6}} \)

26. \(\lim_{x \to \infty} \frac{4x - 3}{\sqrt{25x^2 + 4x}} \)

27. \(\lim_{t \to \infty} \frac{f^4/3 + t^{1/3}}{(4t^2/3 + 1)^2} \)

28. \(\lim_{t \to \infty} \frac{f^4/3 - 9t^{1/3}}{8(t^4 + 2)^{1/3}} \)

29. \(\lim_{x \to \infty} \frac{|x| + x}{x + 1} \)

30. \(\lim_{x \to \infty} \frac{4 + 5x^2}{x - 5} \)

31. Determine the limits at infinity of \(g(t) = 5(t^{-1/2}) \).

32. Show that \(\lim_{x \to \infty} (\sqrt{x^2 + 1} - x) = 0 \). Hint: Observe that

\[\sqrt{x^2 + 1} - x = \frac{1}{\sqrt{x^2 + 1} + x} \]

33. According to the Michaelis–Menten equation (Figure 7), when an enzyme is combined with a substrate of concentration \(s \) (in millimoles), the reaction rate (in micromolars/min) is

\[R(s) = \frac{As}{K + s} \quad (A, K \text{ constants}) \]

(a) Show, by computing \(\lim_{s \to K} R(s) \), that \(A \) is the limiting reaction rate as the concentration \(s \) approaches \(K \).

(b) Show that the reaction rate \(R(s) \) attains one-half of the limiting value \(A \) when \(s = K \).

(c) For a certain reaction, \(K = 1.25 \text{ mM} \) and \(A = 0.1 \). For which concentration \(s \) is \(R(s) \) equal to 75% of its limiting value?

FIGURE 7 Canadian-born biochemist Maud Menten is best known for her fundamental work on enzyme kinetics with German scientist Leonor Michaelis. She was also an accomplished painter, clarinetist, mountain climber, and master of numerous languages.

Further Insights and Challenges

43. Every limit as \(x \to \infty \) can be rewritten as a one-sided limit as \(t \to 0^+ \), where \(t = x^{-1} \). Setting \(g(t) = f(t^{-1}) \), we have

\[\lim_{x \to \infty} f(x) = \lim_{t \to 0^+} g(t) \]

Show that \(\lim_{x \to \infty} \frac{3x^2 + x}{2x^2 + 5} = \lim_{t \to 0^+} \frac{3 - t}{2 + 5t^2} \), and evaluate using the Quotient Law.

44. Rewrite the following as one-sided limits as in Exercise 43 and evaluate.

34. Suppose that the average temperature of Earth is \(T(t) = 283 + 3(1 - 10^{-0.03t}) \) kelvins, where \(t \) is the number of years since 2000.

(a) Calculate the long-term average \(L = \lim_{t \to \infty} T(t) \).

(b) At what time is \(T(t) \) within one-half a degree of its limiting value?

In Exercises 35–40, calculate the limit.

35. \(\lim_{x \to \infty} (\sqrt{4x^4 + 9x - 2x^2}) \)

36. \(\lim_{x \to \infty} (\sqrt{9x^3 + x - x^{3/2}}) \)

37. \(\lim_{x \to \infty} \frac{1}{x} \)

38. \(\lim_{x \to \infty} \frac{1}{x - 1} \)

39. \(\lim_{x \to \infty} \frac{\pi x^2 + 1}{4 - 3x^2} \)

40. \(\lim_{x \to \infty} \frac{8t}{t + 10^t} \)

41. Let \(P(n) \) be the perimeter of an \(n \)-gon inscribed in a unit circle (Figure 8).

(a) Explain, intuitively, why \(P(n) \) approaches \(2\pi \) as \(n \to \infty \).

(b) Show that \(P(n) = 2n \sin \left(\frac{\pi}{n} \right) \).

(c) Combine (a) and (b) to conclude that \(\lim_{n \to \infty} \frac{\pi}{n} \sin \left(\frac{\pi}{n} \right) = 1 \).

(d) Use this to give another argument that \(\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \).

FIGURE 8

42. Physicists have observed that Einstein’s theory of special relativity reduces to Newtonian mechanics in the limit as \(c \to \infty \), where \(c \) is the speed of light. This is illustrated by a stone tossed up vertically from ground level so that it returns to Earth later. Using Newton’s Laws, we find that the stone’s maximum height is \(h = g/8 \) meters (\(g = 9.8 \text{ m/s}^2 \)). According to special relativity, the stone’s mass depends on its velocity divided by \(c \), and the maximum height is

\[h(c) = \frac{c}{2} \frac{1}{g^2} + 1/4 - c^2/g \]

Prove that \(\lim_{c \to \infty} h(c) = g/8 \).

(a) \(\lim_{x \to \infty} \frac{3 - 12x^3}{4x^3 + 3x + 1} \)

(b) \(\lim_{x \to \infty} x \sin \frac{1}{x} \)

(c) \(\lim_{x \to \infty} 21/x \)

45. Let \(G(b) = \lim_{x \to \infty} (1 + b^x)^{1/x} \) for \(b \geq 0 \). Investigate \(G(b) \) numerically and graphically for \(b = 0.2, 0.8, 2, 3, 5 \) (and additional values if necessary). Then make a conjecture for the value of \(G(b) \) as a function of \(b \). Draw a graph of \(y = G(b) \). Does \(G \) appear to be continuous? We will evaluate \(G(b) \) using L’Hôpital’s Rule in Section 7.7 (see Exercise 67 there).
2.8 Intermediate Value Theorem

The Intermediate Value Theorem (IVT) says, roughly speaking, that a continuous function cannot skip values. Consider a plane that takes off and climbs from 0 to 10,000 m in 20 min. The plane must reach every altitude between 0 and 10,000 m during this 20-min interval. Thus, at some moment, the plane’s altitude must have been exactly 8371 m. Of course, this assumes that the plane’s motion is continuous, so its altitude cannot jump abruptly from, say, 8000 to 9000 m.

To state this conclusion formally, let \(A(t) \) be the plane’s altitude at time \(t \). The IVT asserts that for every altitude \(M \) between 0 and 10,000, there is a time \(t_0 \) between 0 and 20 such that \(A(t_0) = M \). In other words, the graph of \(A \) must intersect the horizontal line \(y = M \) [Figure 1(A)].

By contrast, a discontinuous function can skip values. The greatest integer function \(f(x) = \lfloor x \rfloor \) in Figure 1(B) satisfies \(\lfloor 1 \rfloor = 1 \) and \(\lfloor 2 \rfloor = 2 \), but it does not take on the value 1.5 (or any other value between 1 and 2).

THEOREM 1 Intermediate Value Theorem

If \(f \) is continuous on a closed interval \([a, b]\), then for every value \(M \) between \(f(a) \) and \(f(b) \), there exists at least one value \(c \in (a, b) \) such that \(f(c) = M \).

Graphically, as in Figure 2, the result appears obvious. For a continuous function, every horizontal line at height \(M \) between \(f(a) \) and \(f(b) \) is forced to hit the continuous graph and therefore there must be at least one value \(c \) in \((a, b)\) such that \(f(c) = M \). The proof appears in Appendix B.

EXAMPLE 1 Prove that the equation \(\sin x = 0.3 \) has at least one solution.

Solution We may apply the IVT because \(f(x) = \sin x \) is continuous. We choose an interval where we suspect that a solution exists. The desired value 0.3 lies between the two values of the function

\[
\sin 0 = 0 \quad \text{and} \quad \sin \frac{\pi}{2} = 1
\]

so the interval \([0, \frac{\pi}{2}]\) will work (Figure 3). The IVT tells us that \(\sin x = 0.3 \) has at least one solution in \((0, \frac{\pi}{2})\).

The IVT can be used to show the existence of zeros of functions. If \(f \) is continuous and takes on both positive and negative values—say, \(f(a) < 0 \) and \(f(b) > 0 \)—then the IVT guarantees that \(f(c) = 0 \) for some \(c \) between \(a \) and \(b \). This is extremely useful in a case where we cannot explicitly solve for the zero but would like to know that it is there.

COROLLARY 2 Existence of Zeros

If \(f \) is continuous on \([a, b]\) and if \(f(a) \) and \(f(b) \) are nonzero and have opposite signs, then \(f \) has a zero in \((a, b)\).

We can locate zeros of functions to arbitrary accuracy using the Bisection Method. The idea is to find an interval \([a, b]\) such that the function has opposite signs at the end points. Then Corollary 2 tells us that there is a zero on this interval. To find its location...
more precisely, we cut the interval into two equal subintervals. Then, check the signs at the end points of each of these intervals to see which one Corollary 2 tells us has a zero. (But keep in mind that there may be more than one zero, so both could contain a zero). Next we repeat the process on this smaller interval. Eventually, we narrow down on the zero. This is illustrated in the next example.

Example 2 The Bisection Method Show that \(f(x) = \cos^2 x - 2 \sin \frac{x}{2} \) has a zero in \((0, 2)\). Then locate the zero more accurately using the Bisection Method.

Solution Using a calculator, we find that \(f(0) \) and \(f(2) \) have opposite signs:

\[
f(0) = 1 > 0, \quad f(2) \approx -0.786 < 0
\]

Corollary 2 guarantees that \(f(x) = 0 \) has a solution in \((0, 2)\) (Figure 4).

To locate a zero more accurately, divide \([0, 2]\) into two intervals \([0, 1]\) and \([1, 2]\). At least one of these intervals must contain a zero of \(f \). To determine which, evaluate \(f \) at the midpoint \(m = 1 \). A calculator gives \(f(1) \approx -0.203 < 0 \), and since \(f(0) = 1 \), we see that

\[
f(x) \text{ takes on opposite signs at the endpoints of } [0, 1]
\]

Therefore, \((0, 1)\) must contain a zero. We discard \([1, 2]\) because both \(f(1) \) and \(f(2) \) are negative.

The Bisection Method consists of continuing this process until we narrow down the location of the zero to any desired accuracy. In the following table, the process is carried out three times:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Midpoint of interval</th>
<th>Function values</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>([0, 1])</td>
<td>(\frac{1}{2})</td>
<td>(f(\frac{1}{2}) \approx 0.521)</td>
<td>(f(\frac{1}{2}) \approx -0.203)</td>
</tr>
<tr>
<td>([\frac{1}{2}, 1])</td>
<td>(\frac{3}{4})</td>
<td>(f(\frac{3}{4}) \approx 0.163)</td>
<td>(f(\frac{3}{4}) \approx -0.203)</td>
</tr>
<tr>
<td>([\frac{3}{4}, 1])</td>
<td>(\frac{7}{8})</td>
<td>(f(\frac{7}{8}) \approx -0.0231)</td>
<td>(f(\frac{7}{8}) \approx 0.163)</td>
</tr>
</tbody>
</table>

We conclude that \(f \) has a zero \(c \) satisfying \(0.75 < c < 0.875 \).

Conceptual Insight The IVT seems to state the obvious, namely that a continuous function cannot skip values. Yet its proof (given in Appendix B) is subtle because it depends on the completeness property of real numbers. To highlight the subtlety, observe that the IVT is false for functions defined only on the rational numbers. For example, \(f(x) = x^2 \) is continuous, but it does not have the intermediate value property if we restrict its domain to the rational numbers. Indeed, \(f(0) = 0 \) and \(f(2) = 4 \), but \(f(c) = 2 \) has no solution for \(c \) rational. The solution \(c = \sqrt{2} \) is “missing” from the set of rational numbers because it is irrational. No doubt the IVT was always regarded as obvious, but it was not possible to give a correct proof until the completeness property was clarified in the second half of the nineteenth century.

2.8 Summary

- The Intermediate Value Theorem (IVT) says that a continuous function cannot skip values.
- More precisely, if \(f \) is continuous on \([a, b]\) with \(f(a) \neq f(b) \), and if \(M \) is a number between \(f(a) \) and \(f(b) \), then \(f(c) = M \) for some \(c \in (a, b) \).
2.8 EXERCISES

Preliminary Questions

1. Prove that \(f(x) = x^2 \) takes on the value 0.5 in the interval [0, 1].

2. The temperature in Vancouver was 8°C at 6 AM and rose to 20°C at noon. Which assumption about temperature allows us to conclude that the temperature was 15°C at some moment of time between 6 AM and noon?

3. What is the graphical interpretation of the IVT?

4. Show that the following statement is false by drawing a graph that provides a counterexample:

5. Assume that \(f \) is continuous on [1, 5] and that \(f(1) = 20, f(5) = 100 \). Determine whether each of the following statements is always true, never true, or sometimes true.
 (a) \(f(c) = 3 \) has a solution with \(c \in [1, 5] \).
 (b) \(f(c) = 75 \) has a solution with \(c \in [1, 5] \).
 (c) \(f(c) = 50 \) has no solution with \(c \in [1, 5] \).
 (d) \(f(c) = 30 \) has exactly one solution with \(c \in [1, 5] \).

Exercises

1. Use the IVT to show that \(f(x) = x^3 + x \) takes on the value 9 for some \(x \in [1, 2] \).

2. Show that \(g(t) = \frac{t}{t+1} \) takes on the value 0.499 for some \(t \) in [0, 1].

3. Show that \(g(t) = t^2 \tan t \) takes on the value \(\frac{1}{2} \) for some \(t \in [0, \frac{\pi}{2}] \).

4. Show that \(f(x) = \frac{x^2}{x^2 + 1} \) takes on the value 0.4.

5. Show that \(\cos x = x \) has a solution in the interval [0, 1]. Hint: Show that \(f(x) = x - \cos x \) has a zero in [0, 1].

6. Use the IVT to find an interval of length \(\frac{1}{2} \) containing a root of \(f(x) = x^3 + 2x + 1 \).

In Exercises 7–16, prove using the IVT.

7. \(\sqrt{c} + \sqrt{c + 2} = 3 \) has a solution.

8. For all integers \(n \), \(\sin nx = \cos x \) for some \(x \in [0, \pi] \).

9. \(\sqrt{2} \) exists. Hint: Consider \(f(x) = x^2 \).

10. A positive number \(c \) has an \(n \)th root for all positive integers \(n \).

11. For all positive integers \(k \), \(\cos x = x^k \) has a solution.

12. \(2^x = bx \) has a solution if \(b > 2 \).

13. \(2^x + 3^x = 4^x \) has a solution.

14. \(\tan x = x \) has infinitely many solutions.

15. \(2^x + 1/x = -4 \) has a solution.

16. \(x = \sin x + \cos x \) has a solution.

17. Use the Intermediate Value Theorem to show that the equation \(x^6 - 8x^4 + 10x^2 - 1 = 0 \) has at least six distinct solutions.

If \(f \) is continuous and has a root in \([a, b]\), then \(f(a) \) and \(f(b) \) have opposite signs.

18. Given \(f(x) = \begin{cases} x & \text{for } x < 0 \\ x^2 & \text{for } x \geq 0 \end{cases} \) for the interval \([-1, 1]\).

19. Given \(g(x) = \begin{cases} -x & \text{for } x < 0 \\ x^3 + 1 & \text{for } x \geq 0 \end{cases} \) for the interval \([-1, 1]\).

20. Given \(j(x) = \begin{cases} -x^2 & \text{for } x < 0 \\ 1 & \text{for } x = 0 \\ x & \text{for } x > 0 \end{cases} \) for the interval \([-2, 2]\).

21. Carry out three steps of the Bisection Method for \(f(x) = 2^x - x^3 \) as follows:
 (a) Show that \(f \) has a zero in \([1, 1.5]\).
 (b) Show that \(f \) has a zero in \([1.25, 1.5]\).
 (c) Determine whether \([1.25, 1.375]\) or \([1.375, 1.5]\) contains a zero.

22. Figure 5 shows that \(f(x) = x^3 - 8x - 1 \) has a root in the interval \([2.75, 3]\). Apply the Bisection Method twice to find an interval of length \(\frac{1}{10} \) containing this root.

\textbf{FIGURE 5} Graph of \(y = x^3 - 8x - 1 \).
23. Find an interval of length $\frac{1}{2}$ in $[1, 2]$ containing a root of the equation $x^3 + 3x - 10 = 0$.

24. Show that $\tan^3 \theta - 8 \tan^2 \theta + 17 \tan \theta - 8 = 0$ has a root in $[0.5, 0.6]$. Apply the Bisection Method twice to find an interval of length 0.025 containing this root.

In Exercises 25–28, draw the graph of a function f on $[0, 4]$ with the given property.

25. Jump discontinuity at $x = 2$ and does not satisfy the conclusion of the IVT

26. Jump discontinuity at $x = 2$ and satisfies the conclusion of the IVT on $[0, 4]$.

27. Infinite one-sided limits at $x = 2$ and does not satisfy the conclusion of the IVT.

28. Infinite one-sided limits at $x = 2$ and satisfies the conclusion of the IVT on $[0, 4]$.

29. Can Corollary 2 be applied to $f(x) = x^{-1}$ on $[-1, 1]$? Does f have any roots?

30. $x^6 - 8x^4 + 10x^2 - 1 = 0$ has at least six distinct solutions.

Further Insights and Challenges

31. Take any map and draw a circle on it anywhere (Figure 6). Prove that at any moment in time there exists a pair of diametrically opposite points A and B on that circle corresponding to locations where the temperatures at that moment are equal. *Hint: Let θ be an angular coordinate along the circle and let $f(\theta)$ be the difference in temperatures at the locations corresponding to θ and $\theta + \pi$."

![Figure 6](image)

32. Show that if f is continuous and $0 \leq f(x) \leq 1$ for $0 \leq x \leq 1$, then $f(c) = c$ for some c in $[0, 1]$ (Figure 7).

![Figure 7](image)

33. Use the IVT to show that if f is continuous and one-to-one on an interval $[a, b]$, then f is either an increasing or a decreasing function.

34. **Ham Sandwich Theorem** Figure 8(A) shows a slice of ham. Prove that for any angle θ ($0 \leq \theta \leq \pi$), it is possible to cut the slice in half with a cut of incline θ. *Hint: The lines of inclination θ are given by the equations $y = (\tan \theta)x + b$, where b varies from $-\infty$ to ∞. Each such line divides the slice into two pieces (one of which may be empty). Let $A(b)$ be the amount of ham to the left of the line minus the amount to the right, and let A be the total area of the ham. Show that $A(b) = -A$ if b is sufficiently large and $A(b) = A$ if b is sufficiently negative. Then use the IVT. This works if $\theta \neq 0$ or $\frac{\pi}{2}$. If $\theta = 0$, define $A(b)$ as the amount of ham above the line $y = b$ minus the amount below. How can you modify the argument to work when $\theta = \frac{\pi}{2}$ (in which case $\tan \theta = \infty$)?

35. Figure 8(B) shows a slice of ham on a piece of bread. Prove that it is possible to slice this open-faced sandwich so that each part has equal amounts of ham and bread. *Hint: By Exercise 34, for all $0 \leq \theta \leq \pi$ there is a line $L(\theta)$ of incline θ (which we assume is unique) that divides the ham into two equal pieces. Let $B(\theta)$ denote the amount of bread to the left of (or above) $L(\theta)$ minus the amount to the right (or below). Notice that $L(\pi)$ and $L(0)$ are the same line, but $B(\pi) = -B(0)$ since left and right get interchanged as the angle moves from 0 to π. Assume that B is continuous and apply the IVT. (By a further extension of this argument, one can prove the full “Ham Sandwich Theorem,” which states that if you allow the knife to cut at a slant, then it is possible to cut a sandwich consisting of a slice of ham and two slices of bread so that all three layers are divided in half.)

![Figure 8](image)

SECTION 2.9 The Formal Definition of a Limit

In this section, we reexamine the definition of a limit in order to state it in a more rigorous and precise fashion. Why is this necessary? In Section 2.2, we defined limits by saying that $\lim_{x \to c} f(x) = L$ if $|f(x) - L|$ becomes arbitrarily small when x is sufficiently close (but not equal) to c. The problem with this definition lies in the phrases “arbitrarily small” and “sufficiently close.” We must find a way to specify just how close is sufficiently close.
A "rigorous proof" in mathematics is a proof based on a complete chain of logic without any gaps or ambiguity. The formal definition of a limit is a key ingredient of rigorous proofs in calculus. A few such proofs are included in Appendix D. More complete developments can be found in textbooks on the branch of mathematics called "analysis."

The Size of the Gap

Recall that the distance from \(f(x) \) to \(L \) is \(|f(x) - L| \). It is convenient to refer to the quantity \(|f(x) - L| \) as the gap between the value \(f(x) \) and the limit \(L \).

Let's reexamine the trigonometric limit

\[
\lim_{x \to 0} \frac{\sin x}{x} = 1
\]

In this example, \(f(x) = \frac{\sin x}{x} \) and \(L = 1 \), so Eq. (1) tells us that the gap \(|f(x) - 1| \) gets arbitrarily small when \(x \) is sufficiently close, but not equal, to 0 [Figure 1(A)].

Suppose we want the gap \(|f(x) - 1| \) to be less than 0.2. How close to 0 must \(x \) be? Figure 1(B) shows that \(f(x) \) lies within 0.2 of \(L = 1 \) for all values of \(x \) in the interval \([-1, 1]\). In other words, the following statement is true:

If \(0 < |x| < 1 \), then \(|\frac{\sin x}{x} - 1| < 0.2 \)

If we insist instead that the gap be smaller than 0.004, we can check by zooming in on the graph, as in Figure 1(C), that

If \(0 < |x| < 0.15 \), then \(|\frac{\sin x}{x} - 1| < 0.004 \)

It would seem that this process can be continued: By zooming in on the graph, we can find a small interval around \(c = 0 \), where the gap \(|f(x) - L| \) is smaller than any prescribed positive number.

To express this in a precise fashion, we follow time-honored tradition in using the Greek letters \(\epsilon \) (epsilon) and \(\delta \) (delta) to denote small numbers specifying the sizes of the gap and the quantity \(|x - c| \), respectively. In our case, \(c = 0 \) and \(|x - c| = |x| \). The precise meaning of Eq. (1) is that for every choice of \(\epsilon > 0 \), there exists some \(\delta \) (depending on \(\epsilon \)) such that

If \(0 < |x| < \delta \), then \(|\frac{\sin x}{x} - 1| < \epsilon \)

The number \(\delta \) pins down just how close is "sufficiently close" for a given \(\epsilon \). With this motivation, we are ready to state the formal definition of the limit.
The formal definition of a limit is often called the \(\epsilon \)-\(\delta \) definition. The tradition of using the symbols \(\epsilon \) and \(\delta \) originated in the writings of Augustin-Louis Cauchy on calculus and analysis in the 1820s.

If the symbols \(\epsilon \) and \(\delta \) seem to make this definition too abstract, keep in mind that we can take \(\epsilon = 10^{-m} \) and \(\delta = 10^{-m} \). Thus, \(\lim_{x \to c} f(x) = L \) if, for any \(n \), there exist \(m > 0 \) such that if \(0 < |x - c| < 10^{-m} \), then \(|f(x) - L| < 10^{-n} \).

FORMAL DEFINITION OF A LIMIT Suppose that \(f(x) \) is defined for all \(x \) in an open interval containing \(c \) (but not necessarily at \(x = c \)). Then

\[
\lim_{x \to c} f(x) = L
\]

if for all \(\epsilon > 0 \), there exists \(\delta > 0 \) such that

\[
\text{if } 0 < |x - c| < \delta, \text{ then } |f(x) - L| < \epsilon
\]

The condition \(0 < |x - c| < \delta \) in this definition excludes \(x = c \). In other words, the limit depends only on values of \(f(x) \) near \(c \) but not on \(f(c) \) itself. As we have seen in previous sections, the limit may exist even when \(f(c) \) is not defined.

EXAMPLE 1 Let \(f(x) = 8x + 3 \).

(a) Prove that \(\lim_{x \to 3} f(x) = 27 \) using the formal definition of the limit.

(b) Find values of \(\delta \) that work for \(\epsilon = 0.2 \) and \(0.001 \).

Solution

(a) We break the proof into two steps.

Step 1. Relate the gap to \(|x - c| \).

We must find a relation between two absolute values: \(|f(x) - L| \) for \(L = 27 \) and \(|x - c| \) for \(c = 3 \). Observe that

\[
|f(x) - 27| = |(8x + 3) - 27| = |8x - 24| = 8|x - 3|
\]

Thus, the gap is 8 times as large as \(|x - 3| \).

Step 2. Choose \(\delta \) (in terms of \(\epsilon \)).

We can now see how to make the gap small: If \(|x - 3| < \frac{\epsilon}{8} \), then the gap is less than \(8 \left(\frac{\epsilon}{8} \right) = \epsilon \). Therefore, for any \(\epsilon > 0 \), we choose \(\delta = \frac{\epsilon}{8} \). With this choice, the following statement holds:

\[
\text{If } 0 < |x - 3| < \delta, \text{ then } |f(x) - 27| < \epsilon, \text{ where } \delta = \frac{\epsilon}{8}
\]

Since we have specified \(\delta \) for all \(\epsilon > 0 \), we have fulfilled the requirements of the formal definition, thus proving rigorously that \(\lim_{x \to 3} (8x + 3) = 27 \).

(b) For the particular choice \(\epsilon = 0.2 \), we may take \(\delta = \frac{0.2}{8} = 0.025 \):

\[
\text{If } 0 < |x - 3| < 0.025, \text{ then } |f(x) - 27| < 0.2
\]

This statement is illustrated in Figure 2. But note that any positive \(\delta \) smaller than 0.025 will also work. For example, the following statement is also true, although it places an unnecessary restriction on \(x \):

\[
\text{If } 0 < |x - 3| < 0.019, \text{ then } |f(x) - 27| < 0.2
\]

Similarly, to make the gap less than \(\epsilon = 0.001 \), we may take

\[
\delta = \frac{\epsilon}{8} = \frac{0.001}{8} = 0.000125
\]

The difficulty in applying the limit definition lies in trying to relate \(|f(x) - L| \) to \(|x - c| \). The next two examples illustrate how this can be done in special cases.
EXAMPLE 2 Prove that \(\lim_{x \to 2} x^2 = 4 \).

Solution Let \(f(x) = x^2 \).

Step 1. Relate the gap to \(|x - c|\).

In this case, we must relate the gap \(|f(x) - 4| = |x^2 - 4|\) to the quantity \(|x - 2|\) (Figure 3). This is more difficult than in the previous example because the gap is not a constant multiple of \(|x - 2|\). To proceed, consider the factorization

\[
|x^2 - 4| = |x + 2||x - 2|
\]

Because we are going to require that \(|x - 2|\) be small, we may as well assume from the outset that \(|x - 2| < 1\), which means that \(1 < x < 3\). In this case, \(|x + 2|\) is less than \(5\) and the gap satisfies

\[
\text{If } |x - 2| < 1, \text{ then } |x^2 - 4| = |x + 2||x - 2| < 5|x - 2| \tag{2}
\]

Step 2. Choose \(\delta \) (in terms of \(\epsilon \)).

We see from Eq. (2) that if \(|x - 2|\) is smaller than both \(\frac{\epsilon}{5}\) and \(1\), then the gap satisfies

\[
|x^2 - 4| < 5|x - 2| < 5\left(\frac{\epsilon}{5}\right) = \epsilon
\]

Therefore, the following statement holds for all \(\epsilon > 0 \):

\[
\text{If } 0 < |x - 2| < \delta, \text{ then } |x^2 - 4| < \epsilon, \text{ where } \delta \text{ is the smaller of } \frac{\epsilon}{5} \text{ and } 1
\]

We have specified \(\delta \) for all \(\epsilon > 0 \), so we have fulfilled the requirements of the formal limit definition, thus proving that \(\lim_{x \to 2} x^2 = 4 \).

EXAMPLE 3 Prove that \(\lim_{x \to 3} \frac{1}{x} = \frac{1}{3} \).

Solution

Step 1. Relate the gap to \(|x - c|\).

The gap is equal to

\[
\left| \frac{1}{x} - \frac{1}{3} \right| = \left| \frac{3 - x}{3x} \right| = \left| x - 3 \right| \left| \frac{1}{3x} \right|
\]

Because we are going to require that \(|x - 3|\) be small, we may as well assume from the outset that \(|x - 3| < 1\), or equivalently, \(2 < x < 4\). Now observe that if \(x > 2\), then \(3x > 6\) and \(\frac{1}{3x} < \frac{1}{6}\), so the following inequality is valid if \(|x - 3| < 1\):

\[
\left| f(x) - \frac{1}{3} \right| = \left| \frac{3 - x}{3x} \right| = \left| \frac{1}{3x} \right| |x - 3| < \frac{1}{6} |x - 3| \tag{3}
\]

Step 2. Choose \(\delta \) (in terms of \(\epsilon \)).

By Eq. (3), if \(|x - 3| < 1\) and \(|x - 3| < 6\epsilon\), then

\[
\left| \frac{1}{x} - \frac{1}{3} \right| < \frac{1}{6} |x - 3| < \frac{1}{6} (6\epsilon) = \epsilon
\]
Therefore, given any $\epsilon > 0$, we let δ be the smaller of the numbers 6ϵ and 1. Then we have:

\[
\text{If } 0 < |x - 3| < \delta, \quad \text{then } \left| \frac{1}{x} - \frac{1}{3} \right| < \epsilon, \text{ where } \delta \text{ is the smaller of } 6\epsilon \text{ and } 1
\]

Again, we have fulfilled the requirements of the formal limit definition, thus proving rigorously that $\lim_{x \to 3} \frac{1}{x} = \frac{1}{3}$.

GRAPHICAL INSIGHT Keep the graphical interpretation of limits in mind. In Figure 4(A), $f(x)$ approaches L as $x \to c$ because for any $\epsilon > 0$, we can make the gap less than ϵ by taking δ sufficiently small. By contrast, the function in Figure 4(B) has a jump discontinuity at $x = c$. The gap cannot be made small, no matter how small δ is. Therefore, the limit does not exist.

Proving Limit Theorems

In practice, the formal definition of the limit is rarely used to evaluate limits. Most limits are evaluated using the Basic Limit Laws or other techniques such as the Squeeze Theorem. However, the formal definition allows us to prove these laws in a rigorous fashion and thereby ensure that calculus is built on a solid foundation. We illustrate by proving the Sum Law. Other proofs are given in Appendix D.

Proof of the Sum Law Assume that

\[
\lim_{x \to c} f(x) = L \quad \text{and} \quad \lim_{x \to c} g(x) = M
\]

We must prove that $\lim_{x \to c} (f(x) + g(x)) = L + M$.

Apply the Triangle Inequality (see margin) with $a = f(x) - L$ and $b = g(x) - M$:

\[
|(f(x) + g(x)) - (L + M)| \leq |f(x) - L| + |g(x) - M|
\]

Each term on the right in (4) can be made small by the limit definition. More precisely, given $\epsilon > 0$, we can choose δ such that $|f(x) - L| < \frac{\epsilon}{2}$ and $|g(x) - M| < \frac{\epsilon}{2}$ if $0 < |x - c| < \delta$ (in principle, we might choose different δ’s for f and g, but we may then use the smaller of the two δ’s). Thus, Eq. (4) gives

\[
\text{If } 0 < |x - c| < \delta, \quad \text{then } |f(x) + g(x) - (L + M)| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
\]

This proves that

\[
\lim_{x \to c} (f(x) + g(x)) = L + M = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)
\]
2.9 SUMMARY

- Informally speaking, the statement \(\lim_{x \to c} f(x) = L \) means that the gap \(|f(x) - L|\) tends to 0 as \(x\) approaches \(c\).
- The formal definition (called the \(\epsilon-\delta\) definition): \(\lim_{x \to c} f(x) = L \) if, for all \(\epsilon > 0\), there exists a \(\delta > 0\) such that
 \[
 \text{if } 0 < |x - c| < \delta, \text{ then } |f(x) - L| < \epsilon
 \]

2.9 EXERCISES

Preliminary Questions

1. Given that \(\lim_{x \to 0} \cos x = 1 \), which of the following statements is true?

 (a) If \(|\cos x - 1|\) is very small, then \(x\) is close to 0.

 (b) There is an \(\epsilon > 0\) such that if \(0 < |\cos x - 1| < \epsilon\), then \(|x| < 10^{-5}\).

 (c) There is a \(\delta > 0\) such that if \(0 < |x| < \delta\), then \(|\cos x - 1| < 10^{-5}\).

 (d) There is a \(\delta > 0\) such that if \(0 < |x - 1| < \delta\), then \(|\cos x| < 10^{-5}\).

2. Suppose it is known that for a given \(\epsilon \) and \(\delta\), if \(0 < |x - 3| < \delta\), then \(|f(x) - 2| < \epsilon \). Which of the following statements must also be true?

 (a) If \(0 < |x - 3| < 2\delta\), then \(|f(x) - 2| < \epsilon \).

 (b) If \(0 < |x - 3| < \delta\), then \(|f(x) - 2| < 2\epsilon \).

 (c) If \(0 < |x - 3| < \frac{\delta}{2}\), then \(|f(x) - 2| < \frac{\epsilon}{2}\).

 (d) If \(0 < |x - 3| < \frac{\delta}{2}\), then \(|f(x) - 2| < \epsilon \).

Exercises

1. Based on the information conveyed in Figure 5(A), find values of \(L\), \(\epsilon\), and \(\delta > 0\) such that the following statement holds: If \(|x| < \delta\), then \(|f(x) - L| < \epsilon\).

2. Based on the information conveyed in Figure 5(B), find values of \(c\), \(L\), \(\epsilon\), and \(\delta > 0\) such that the following statement holds: If \(0 < |x - c| < \delta\), then \(|f(x) - L| < \epsilon\).

3. Consider \(\lim_{x \to 2} f(x) \), where \(f(x) = 8x + 3\).

 (a) Show that \(|f(x) - 35| = 8|x - 4|\).

 (b) Show that for any \(\epsilon > 0\), if \(0 < |x - 4| < \delta\), then \(|f(x) - 35| < \epsilon\), where \(\delta = \frac{\epsilon}{8}\). Explain how this proves rigorously that \(\lim_{x \to 4} f(x) = 35 \).

4. Consider \(\lim_{x \to 2} f(x) \), where \(f(x) = 4x - 1\).

 (a) Show that if \(0 < |x - 2| < \delta\), then \(|f(x) - 7| < 4\delta\).

 (b) Find a \(\delta\) such that

 \[
 \text{if } 0 < |x - 2| < \delta, \text{ then } |f(x) - 7| < 0.01
 \]

 (c) Prove rigorously that \(\lim_{x \to 2} f(x) = 7 \).

5. Consider \(\lim_{x \to} x^2 = 4 \) (refer to Example 2).

 (a) Show that if \(0 < |x - 2| < 0.01\), then \(|x^2 - 4| < 0.05\).

 (b) Show that if \(0 < |x - 2| < 0.0002\), then \(|x^2 - 4| < 0.0009\).

 (c) Find a value of \(\delta\) such that if \(0 < |x - 2| < \delta\), then \(|x^2 - 4| < 0.01\).

6. With regard to the limit \(\lim_{x \to 5} x^2 = 25 \),

 (a) show that if \(4 < x < 6\), then \(|x^2 - 25| < 11|x - 5|\). \(Hint:\) Write \(|x^2 - 25| = |x + 5| \cdot |x - 5|\).

 (b) find a \(\delta\) such that if \(0 < |x - 5| < \delta\), then \(|x^2 - 25| < 10^{-3}\).

 (c) give a rigorous proof of the limit by showing that if \(0 < |x - 5| < \delta\), then \(|x^2 - 25| < \epsilon\), where \(\delta\) is the smaller of \(\frac{\epsilon}{11}\) and 1.

7. Refer to Example 3 to find a value of \(\delta > 0\) such that

 \[
 \text{if } 0 < |x - 3| < \delta, \text{ then } \left|\frac{1}{x} - \frac{1}{3}\right| < 10^{-4}
 \]

8. Use Figure 6 to find a value of \(\delta > 0\) such that the following statement holds: If \(0 < |x - 2| < \delta\), then \(\left|\frac{1}{x^2} - \frac{1}{4}\right| < \epsilon\) for \(\epsilon = 0.03\). Then find a value of \(\delta\) that works for \(\epsilon = 0.01\).

9. [GU] Plot \(f(x) = \sqrt{2x - 1}\) together with the horizontal lines \(y = 2.9\) and \(y = 3.1\). Use this plot to find a value of \(\delta > 0\) such that if \(0 < |x - 5| < \delta\), then \(\left|\sqrt{2x - 1} - 3\right| < 0.1\).
16. Adapt the argument in Example 1 to prove rigorously that
\(\lim_{x \to c} (ax + b) = ac + b \), where \(a, b, c \) are arbitrary.

17. Adapt the argument in Example 2 to prove rigorously that
\(\lim_{x \to c} x^2 = c^2 \) for all \(c \).

18. Adapt the argument in Example 3 to prove rigorously that
\(\lim_{x \to c} x^{-1} = \frac{1}{c} \) for all \(c \neq 0 \).

In Exercises 19–24, use the formal definition of the limit to prove the statement rigorously.

19. \[\lim_{x \to 4} \sqrt{x} = 2 \]
20. \[\lim_{x \to 1} (3x^2 + x) = 4 \]
21. \[\lim_{x \to 1} x^3 = 1 \]
22. \[\lim_{x \to 0} (x^2 + x^3) = 0 \]
23. \[\lim_{x \to -2} x^{-2} = \frac{1}{4} \]
24. \[\lim_{x \to 0} x \sin \frac{1}{x} = 0 \]

25. Let \(f(x) = \frac{x}{|x|} \). Prove rigorously that \(\lim_{x \to 0} f(x) \) does not exist.
\textit{Hint:} Show that for any \(L \), there always exists some \(x \) such that \(|x| < \delta \) but \(|f(x) - L| \geq \frac{1}{2} \), no matter how small \(\delta \) is taken.

26. Prove rigorously that \(\lim_{x \to 0} x = 0 \).

27. Let \(f(x) = \min(x, x^2) \), where \(\min(a, b) \) is the minimum of \(a \) and \(b \). Prove rigorously that \(\lim_{x \to 1} f(x) = 1 \).

28. Prove rigorously that \(\lim_{x \to 0} \sin \frac{1}{x} \) does not exist.

29. First, use the identity
\[\sin x + \sin y = 2 \sin \left(\frac{x + y}{2} \right) \cos \left(\frac{x - y}{2} \right) \]
to verify the relation
\[\sin(a + h) - \sin a = h \sin(h/2) \cos \left(\frac{a + h}{2} \right) \]
Then use the inequality \(| \sin x | \leq 1 \) for \(x \neq 0 \) to show that
\[|\sin(a + h) - \sin a| < |h| \]
for all \(a \). Finally, prove rigorously that
\(\lim_{x \to a} \sin x = \sin a \).

Further Insights and Challenges

30. **Uniqueness of the Limit** Prove that a function converges to at most one limiting value. In other words, use the limit definition to prove that if \(\lim_{x \to c} f(x) = L_1 \) and \(\lim_{x \to c} f(x) = L_2 \), then \(L_1 = L_2 \).

In Exercises 31–33, prove the statement using the formal limit definition.

31. The Constant Multiple Law [Theorem 1, part (ii) in Section 2.3].
32. The Squeeze Theorem [Theorem 1 in Section 2.6].
33. The Product Law [Theorem 1, part (iii) in Section 2.3]. \textit{Hint:} Use the identity
\[f(x)g(x) - LM = (f(x) - L)g(x) + L(g(x) - M) \]

34. Let \(f(x) = 1 \) if \(x \) is rational and \(f(x) = 0 \) if \(x \) is irrational. Prove that \(\lim_{x \to c} f(x) \) does not exist for any \(c \). \textit{Hint:} There exist rational and irrational numbers arbitrarily close to any \(c \).

35. Here is a function with strange continuity properties:
\[f(x) = \begin{cases}
1 & \text{if } x \text{ is the rational number } p/q \text{ in lowest terms} \\
q & \text{if } x \text{ is the irrational number} \\
0 & \text{if } x \text{ is the irrational number}
\end{cases} \]

(a) Show that \(f \) is discontinuous at \(c \) if \(c \) is rational. \textit{Hint:} There exist irrational numbers arbitrarily close to \(c \).
(b) Show that \(f \) is continuous at \(c \) if \(c \) is irrational. \textit{Hint:} Let \(I \) be the interval \([x : |x - c| < \delta]\). Show that for any \(Q > 0 \), \(I \) contains at most finitely many fractions \(p/q \) with \(q < Q \). Conclude that there is a \(\delta \) such that all fractions in \([x : |x - c| < \delta] \) have a denominator larger than \(Q \).

36. Write a formal definition of the following:
\[
\lim_{x \to \infty} f(x) = L
\]

\section*{CHAPTER REVIEW EXERCISES}

1. The position of a particle at time \(t \) (s) is \(s(t) = \sqrt{t^2 + 1} \) m. Compute its average velocity over \([2, 5]\) and estimate its instantaneous velocity at \(t = 2 \).

2. The “wellhead” price \(p \) of natural gas in the United States (in dollars per 1000 ft\(^3\)) on the first day of each month in 2012 is listed in the table below.

<table>
<thead>
<tr>
<th>J</th>
<th>F</th>
<th>M</th>
<th>A</th>
<th>M</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.89</td>
<td>2.46</td>
<td>2.25</td>
<td>1.89</td>
<td>1.94</td>
<td>2.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>A</th>
<th>S</th>
<th>O</th>
<th>N</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.59</td>
<td>2.86</td>
<td>2.71</td>
<td>3.03</td>
<td>3.35</td>
<td>3.35</td>
</tr>
</tbody>
</table>

Compute the average rate of change of \(p \) (in dollars per 1000 ft\(^3\) per month) over the quarterly periods January–March, April–June, and July–September.

3. For a positive integer \(n \), let \(P(n) \) be the number of partitions of \(n \), that is, the number of ways of writing \(n \) as a sum of one or more positive integers. For example, \(P(4) = 5 \) since the number 4 can be partitioned in five different ways: 4, 3 + 1, 2 + 2, 2 + 1 + 1, and 1 + 1 + 1 + 1. Suppose \(P \) is a continuous function whose values at positive integers are known. Use Figure 1 to estimate the rate of change of \(P \) at \(n = 12 \).

![Graph of P(n)](image)

4. The average velocity \(v \) (m/s) of an oxygen molecule in the air at temperature \(T \) (°C) is \(v = 25.7\sqrt{273.15 + T} \). What is the average speed at \(T = 25^\circ \) (room temperature)? Estimate the rate of change of average velocity with respect to temperature at \(T = 25^\circ \). What are the units of this rate?

In Exercises 5–10, estimate the limit numerically to two decimal places or state that the limit does not exist.

5. \(\lim_{x \to 0} \frac{1 - \cos(x)}{x^2} \)

6. \(\lim_{x \to 1} \frac{1}{x^{1/(x-1)}} \)

7. \(\lim_{x \to 2} \frac{x^2 - 4}{x^2 - 4} \)

8. \(\lim_{x \to 2} \frac{x - 2}{2^x - 4} \)

9. \(\lim_{x \to 1} \left(\frac{7}{1 - x^2} - \frac{3}{1 - x^3} \right) \)

10. \(\lim_{x \to 2} \frac{3^x - 9}{5^x - 25} \)

37. Write a formal definition of the following:
\[
\lim_{x \to a} f(x) = \infty
\]

In Exercises 11–50, evaluate the limit if it exists. If not, determine whether the one-sided limits exist (finite or infinite).

11. \(\lim_{x \to 4} (3 + x^{1/2}) \)

12. \(\lim_{x \to 1} \frac{5 - x^2}{4x + 7} \)

13. \(\lim_{x \to -2} \frac{4}{x^3} \)

14. \(\lim_{x \to -1} \frac{3x^2 + 4x + 1}{x + 1} \)

15. \(\lim_{t \to 9} \frac{\sqrt{7 - t}}{t - 9} \)

16. \(\lim_{x \to 3} \frac{\sqrt{x + 1} - 2}{x - 3} \)

17. \(\lim_{x \to 1} \frac{x^3 - x}{x - 1} \)

18. \(\lim_{h \to 0} \frac{(2a + h)^2 - 2a^2}{h} \)

19. \(\lim_{t \to 6} \frac{t - 6}{\sqrt{t} - 3} \)

20. \(\lim_{x \to 0} \frac{1 - \sqrt{x^2 + 1}}{x^2} \)

21. \(\lim_{x \to 1} \frac{1}{x + 1} \)

22. \(\lim_{y \to 2} \frac{3y^2 + 5y - 2}{6y^2 - 5y + 1} \)

23. \(\lim_{x \to 1} \frac{x^3 - 2x}{x - 1} \)

24. \(\lim_{a \to b} \frac{a^2 - 3ab + 2b^2}{a - b} \)

25. \(\lim_{x \to 0} \frac{4x^3 - 4x}{4x^3 - 1} \)

26. \(\lim_{x \to 0} \frac{\sin 5x}{3x} \)

27. \(\lim_{x \to 1.5} \frac{1}{x} \)

28. \(\lim_{x \to 0} \frac{\sec 4x}{\tan 3x} \)

29. \(\lim_{x \to -3} \frac{z + 3}{z^2 + 4z + 3} \)

30. \(\lim_{x \to 1} \frac{x^3 - ax^2 + ax - 1}{x - 1} \)

31. \(\lim_{x \to b} \frac{x^3 - b^3}{x - b} \)

32. \(\lim_{x \to 0} \frac{\sin 4x}{3x} \)

33. \(\lim_{x \to 0} \frac{1}{3x} - \frac{1}{x(x + 3)} \)

34. \(\lim_{x \to 3} \frac{3 \tan(x \theta)}{4} \)

35. \(\lim_{x \to 0} \frac{|x|}{x} \)

36. \(\lim_{x \to 0} \frac{|x|}{x} \)

37. \(\lim_{x \to 0} \frac{\theta \sec \theta}{2} \)

38. \(\lim_{y \to 3} \frac{(\sin \frac{\pi}{y})^{-1/2}}{2} \)

39. \(\lim_{x \to 0} \frac{\cos \theta - 2}{\theta} \)

40. \(\lim_{x \to 4} \frac{3x - 12}{x - 4} \)

41. \(\lim_{x \to 0} \frac{x - 3}{x^2 - x} \)

42. \(\lim_{t \to 0} \frac{\sin^2 t}{t^3} \)

43. \(\lim_{x \to 1} \frac{1}{\sqrt{x^2 - 9} - 1} \)

44. \(\lim_{t \to 2} \frac{\sqrt{t^2 + 1}}{t^2} \)

45. \(\lim_{x \to 2} \frac{\sqrt{x + 3} - 1}{x - 2} \)

46. \(\lim_{x \to 2} \frac{1}{x - 1} \)

47. \(\lim_{x \to 2} \frac{1}{x} \)

48. \(\lim_{x \to 2} \frac{1}{x - 2} \)

49. \(\lim_{x \to 2} \frac{1}{x^2 - 4} \)

50. \(\lim_{x \to 2} \frac{1}{x - 2} \)
45. \(\lim_{x \to \frac{\pi}{2}} \tan x \)
46. \(\lim_{t \to 0} \frac{1}{t} \)
47. \(\lim_{t \to 0^+} \sqrt{t} \cos \frac{1}{t} \)
48. \(\lim_{x \to \infty} \frac{x^2 - 24}{x^2 - 25} \)
49. \(\lim_{x \to 0} \frac{\cos x - 1}{\sin x} \)
50. \(\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta} \)

51. Find the left- and right-hand limits of the function \(f \) in Figure 2 at \(x = 0, 2, 4 \). State whether \(f \) is left- or right-continuous (or both) at these points.

![Figure 2](image)

52. Sketch the graph of a function \(f \) such that
(a) \(\lim_{x \to 2^+} f(x) = 1 \), \(\lim_{x \to 2^-} f(x) = 3 \)
(b) \(\lim_{x \to 4} f(x) \) exists but does not equal \(f(4) \).

53. Graph \(h \) and describe the discontinuity:
\[
h(x) = \begin{cases} 2^x & \text{for } x \leq 0 \\ x^{-1/2} & \text{for } x > 0 \end{cases}
\]
Is \(h \) left- or right-continuous?

54. Sketch the graph of a function \(g \) such that
\[
\lim_{x \to -3^-} g(x) = \infty, \quad \lim_{x \to -3^+} g(x) = -\infty, \quad \lim_{x \to 4} g(x) = \infty
\]

55. Find the points of discontinuity of
\[
g(x) = \begin{cases} \cos \left(\frac{2x}{7} \right) & \text{for } |x| < 1 \\ |x - 1| & \text{for } |x| \geq 1 \end{cases}
\]
Determine the type of discontinuity and whether \(g \) is left- or right-continuous.

56. Show that \(f(x) = x^2 \sin x \) is continuous on its domain.

57. Find a constant \(b \) such that \(h \) is continuous at \(x = 2 \), where
\[
h(x) = \begin{cases} x + 1 & \text{for } |x| < 2 \\ b - x^2 & \text{for } |x| \geq 2 \end{cases}
\]
With this choice of \(b \), find all points of discontinuity.

In Exercises 58–63, find the horizontal asymptotes of the function by computing the limits at infinity.

58. \(f(x) = \frac{9x^2 - 4}{2x^2 - x} \)
59. \(f(x) = \frac{x^2 - 3x^4}{x - 1} \)
60. \(f(u) = \frac{8u - 3}{\sqrt{16u^2} + 6} \)
61. \(f(u) = \frac{2u^2 - 1}{\sqrt{6 + u^2}} \)
62. \(f(x) = \frac{3x^{2/3} + 9x^{3/7}}{7x^{4/5} - 4x^{-1/3}} \)
63. \(f(t) = \frac{t^{1/3} - t^{-1/3}}{(t - t^{-1})^{1/3}} \)
64. Calculate (a)–(d), assuming that
(a) \(\lim_{x \to 3} f(x) = 6 \), \(\lim_{x \to 3} g(x) = 4 \)
(b) \(\lim_{x \to 3} x^2 f(x) \)
(c) \(\lim_{x \to 3} \frac{f(x)}{g(x)} \)
(d) \(\lim_{x \to 3} (2g(x)^3 - g(x)^{3/2}) \)
65. Assume that the following limits exist:
\[
A = \lim_{x \to a^+} f(x), \quad B = \lim_{x \to a^-} g(x), \quad L = \lim_{x \to a} \frac{f(x)}{g(x)}
\]
Prove that if \(L = 1 \), then \(A = B \). \(\text{Hint:} \) You cannot use the Quotient Law if \(B = 0 \), so apply the Product Law to \(L \) and \(B \) instead.
66. \(\text{GU} \) Define \(g(t) = (1 + 2^{1/2})^{-1} \) for \(t \neq 0 \). How should \(g(0) \) be defined to make \(g \) left-continuous at \(t = 0 \)?
67. In the notation of Exercise 65, give an example where \(L \) exists but neither \(A \) nor \(B \) exists.
68. True or false?
(a) If \(\lim_{x \to 3} f(x) \) exists, then \(\lim_{x \to 3^+} f(x) = f(3) \).
(b) If \(\lim_{x \to 0} f(x) \) exists, then \(\lim_{x \to 0} f(0) = 0 \).
(c) If \(\lim_{x \to 8} f(x) = 8 \), then \(\lim_{x \to 8} \frac{1}{f(x)} = \frac{1}{8} \).
(d) If \(\lim_{x \to 5^+} f(x) = 4 \) and \(\lim_{x \to 5^-} f(x) = 8 \), then \(\lim_{x \to 5} f(x) = 6 \).
(e) If \(\lim_{x \to 0} \frac{f(x)}{x} = 1 \), then \(\lim_{x \to 0} f(x) = 0 \).
(f) If \(\lim_{x \to 2} f(x) = 2 \), then \(\lim_{x \to 2} f(x)^2 = 8 \).
69. \(\text{GU} \) Let \(f(x) = \left\lfloor \frac{1}{x} \right\rfloor \), where \(\lfloor x \rfloor \) is the greatest integer function. Show that for \(x \neq 0 \),
\[
\frac{1}{x} - 1 < \left\lfloor \frac{1}{x} \right\rfloor < \frac{1}{x}
\]
Then use the Squeeze Theorem to prove that
\[
\lim_{x \to 0} \left\lfloor \frac{1}{x} \right\rfloor = 1
\]
\(\text{Hint:} \) Treat the one-sided limits separately.
70. Let \(r_1 \) and \(r_2 \) be the roots of \(f(x) = ax^2 - 2x + 20 \). Observe that \(f \) “approaches” the linear function \(L(x) = -2x + 20 \) as \(a \to 0 \). Because \(r = 10 \) is the unique root of \(L \), we might expect one of the roots of \(f \) to approach 10 as \(a \to 0 \) (Figure 3). Prove that the roots can be labeled so that \(\lim_{a \to 0} r_1 = 10 \) and \(\lim_{a \to 0} r_2 = \infty \).

\(\text{Figure 3} \) Graphs of \(f(x) = ax^2 - 2x + 20 \).
71. Use the IVT to prove that the curves \(y = x^2 \) and \(y = \cos x \) intersect.
72. Use the IVT to prove that \(f(x) = x^3 - \frac{x^2 + 2}{\cos x + 2} \) has a root in the interval \([0, 2]\).
73. Use the IVT to show that \(2 - x^2 = x \) has a solution on \((0, 1)\).
74. Use the Bisection Method to locate a solution of \(x^2 - 7 = 0 \) to two decimal places.
75. Give an example of a (discontinuous) function that does not satisfy the conclusion of the IVT on \([-1, 1]\). Then show that the function

\[
 f(x) = \begin{cases}
 \sin \frac{1}{x} & x \neq 0 \\
 0 & x = 0
\end{cases}
\]

satisfies the conclusion of the IVT on every interval \([-a, a]\).

76. Let \(f(x) = \frac{1}{x + 2} \).
 (a) Show that if \(|x - 2| < 1\), then \(|f(x) - \frac{1}{4}| < \frac{|x - 2|}{12} \). Hint: Observe that if \(|x - 2| < 1\), then \(|4(x + 2)| > 12\).
 (b) Find \(\delta > 0 \) such that if \(|x - 2| < \delta\), then \(|f(x) - \frac{1}{4}| < 0.01. \)
 (c) Prove rigorously that \(\lim_{x \to 2} f(x) = \frac{1}{4} \).

77. Plot the function \(f(x) = x^{1/3} \). Use the zoom feature to find a \(\delta > 0 \) such that if \(|x - 8| < \delta\), then \(|x^{1/3} - 2| < 0.05\).

78. Use the fact that \(f(x) = 2^x \) is increasing to find a value of \(\delta \) such that \(|2^x - 8| < 0.001\) if \(|x - 2| < \delta. \) Hint: Find \(c_1 \) and \(c_2 \) such that \(7.999 < f(c_1) < f(c_2) < 8.001 \).

79. Prove rigorously that \(\lim_{x \to -1} (4 + 8x) = -4. \)

80. Prove rigorously that \(\lim_{x \to 3} (x^2 - x) = 6. \)
The velocity at any given moment in free fall is given by evaluating the derivative of the position function at that time. (GermanSkydive/Shutterstock)

3 DIFFERENTIATION

Differential calculus is the study of the derivative, and differentiation is the process of computing derivatives. What is a derivative? There are three equally important answers: A derivative is a rate of change, it is the slope of a tangent line, and (more formally), it is the limit of a difference quotient, as we will explain shortly. In this chapter, we explore all three facets of the derivative and develop the basic rules of differentiation. When you master these techniques, you will possess one of the most useful and flexible tools that mathematics has to offer.

3.1 Definition of the Derivative

We begin with two questions: What is the precise definition of a tangent line? And how can we compute its slope? To answer these questions, let’s return to the relationship between tangent and secant lines first mentioned in Section 2.1.

The secant line through distinct points \(P = (a, f(a)) \) and \(Q = (x, f(x)) \) on the graph of a function \(f \) has slope [Figure 1(A)]

\[
\frac{\Delta f}{\Delta x} = \frac{f(x) - f(a)}{x - a}
\]

where

\[
\Delta f = f(x) - f(a) \quad \text{and} \quad \Delta x = x - a
\]

The expression \(\frac{f(x) - f(a)}{x - a} \) is called the difference quotient.

Now observe what happens as \(Q \) approaches \(P \) or, equivalently, as \(x \) approaches \(a \). Figure 2 suggests that the secant lines get progressively closer to the tangent line. If we imagine \(Q \) moving toward \(P \), then the secant line appears to rotate into the tangent line as in (D). Therefore, we may expect the slopes of the secant lines to approach the slope of the tangent line.

FIGURE 1 The secant line has slope \(\Delta f/\Delta x \). Our goal is to compute the slope of the tangent line at \((a, f(a))\).

FIGURE 2 The secant lines approach the tangent line as \(Q \) approaches \(P \).
Based on this intuition, we define the **derivative** $f'(a)$ (which is read “f prime of a”) at a point $x = a$ as the limit

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

There is another way of writing the difference quotient using a new variable h:

$$h = x - a$$

We have $x = a + h$ and, for $x \neq a$ (Figure 3),

$$\frac{f(x) - f(a)}{x - a} = \frac{f(a + h) - f(a)}{h}$$

The variable h approaches 0 as $x \to a$, so we can rewrite the derivative as

$$f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

Each way of writing the derivative is useful. The version using h is often more convenient in computations.

DEFINITION The Derivative The derivative of f at a point a is the limit of the difference quotients (if it exists):

$$f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

When the limit exists, we say that f is **differentiable** at a. An equivalent definition of the derivative at a point a is

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

We can now define the tangent line in a precise way, as the line of slope $f'(a)$ through $P = (a, f(a))$.

DEFINITION Tangent Line Assume that f is differentiable at a. The tangent line to the graph of $y = f(x)$ at $P = (a, f(a))$ is the line through P of slope $f'(a)$. The equation of the tangent line in point-slope form is

$$y - f(a) = f'(a)(x - a)$$

EXAMPLE 1 Equation of a Tangent Line Find an equation of the tangent line to the graph of $f(x) = x^2$ at $x = 5$.

Solution First, we must compute $f'(5)$. We are free to use either Eq. (1) or Eq. (2). Using Eq. (2), we have

$$f'(5) = \lim_{x \to 5} \frac{f(x) - f(5)}{x - 5} = \lim_{x \to 5} \frac{x^2 - 25}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 5)}{x - 5} = \lim_{x \to 5} (x + 5) = 10$$

Next, we apply Eq. (3) with $a = 5$. Because $f(5) = 25$, an equation of the tangent line is $y - 25 = 10(x - 5)$, or in slope-intercept form, $y = 10x - 25$ (Figure 4).
If instead, we had used Eq. (1) to find \(f'(5) \), we obtain the same slope:
\[
f'(5) = \lim_{h \to 0} \frac{f(5 + h) - f(5)}{h} = \lim_{h \to 0} \frac{(5 + h)^2 - 5^2}{h}
\]
\[
= \lim_{h \to 0} \frac{(25 + 10h + h^2) - 25}{h} = \lim_{h \to 0} (10 + h) = 10
\]

Isaac Newton referred to calculus as the “method of fluxions” (from the Latin word for “flow”), but the term “differential calculus,” introduced in its Latin form “calculus differentialis” by Gottfried Wilhelm Leibniz, eventually won out and was adopted universally.

EXAMPLE 2 Compute \(f'(3) \), where \(f(x) = x^2 - 8x \).

Solution Using Eq. (1), we write the difference quotient at \(a = 3 \) as
\[
\frac{f(a + h) - f(a)}{h} = \frac{f(3 + h) - f(3)}{h} \quad (h \neq 0)
\]

Step 1. Write out the numerator of the difference quotient.
\[
f(3 + h) - f(3) = ((3 + h)^2 - 8(3 + h)) - (3^2 - 8(3))
\]
\[
= ((9 + 6h + h^2) - (24 + 8h)) - (9 - 24)
\]
\[
= h^2 - 2h
\]

Step 2. Divide by \(h \) and simplify.
\[
\frac{f(3 + h) - f(3)}{h} = \frac{h^2 - 2h}{h} = \frac{h(h - 2)}{h} = h - 2 \quad \text{(cancel \(h \))}
\]

Step 3. Compute the limit.
\[
f'(3) = \lim_{h \to 0} \frac{f(3 + h) - f(3)}{h} = \lim_{h \to 0} (h - 2) = -2
\]

EXAMPLE 3 Sketch the graph of \(f(x) = \frac{1}{x} \) and the tangent line at \(x = 2 \).

(a) Based on the sketch, do you expect \(f'(2) \) to be positive or negative?
(b) Find an equation of the tangent line at \(x = 2 \).

Solution The graph and tangent line at \(x = 2 \) are shown in Figure 5.

(a) We see that the tangent line has negative slope, so \(f'(2) \) must be negative.
(b) We compute \(f'(2) \) in three steps as before.

Step 1. Write out the numerator of the difference quotient.
\[
f(2 + h) - f(2) = \frac{1}{2 + h} - \frac{1}{2} = \frac{2}{2(2 + h)} - \frac{2 + h}{2(2 + h)} = -\frac{h}{2(2 + h)}
\]

Step 2. Divide by \(h \) and simplify.
\[
\frac{f(2 + h) - f(2)}{h} = \frac{1}{h} \left(-\frac{h}{2(2 + h)} \right) = -\frac{1}{2(2 + h)}
\]
Step 3. Compute the limit.

\[
f'(2) = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} = \lim_{h \to 0} \frac{-1}{2(2 + h)} = -\frac{1}{4}
\]

The function value is \(f(2) = \frac{1}{2} \), so the tangent line passes through \((2, \frac{1}{2}) \) and has equation

\[
y - \frac{1}{2} = -\frac{1}{4}(x - 2)
\]

In slope-intercept form, \(y = -\frac{1}{4}x + 1 \).

The graph of a linear function \(f(x) = mx + b \) (where \(m \) and \(b \) are constants) is a line of slope \(m \). The tangent line at any point coincides with the line itself (Figure 6), so we should expect that \(f'(a) = m \) for all \(a \). Let’s check this by computing the derivative:

\[
f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h} = \lim_{h \to 0} \frac{(m(a + h) + b) - (ma + b)}{h}
\]

\[
= \lim_{h \to 0} \frac{mh}{h} = \lim_{h \to 0} m = m
\]

If \(m = 0 \), then \(f(x) = b \) is constant and \(f'(a) = 0 \) (Figure 7). In summary,

THEOREM 1 Derivative of Linear and Constant Functions

- If \(f(x) = mx + b \) is a linear function, then \(f'(a) = m \) for all \(a \).
- If \(f(x) = b \) is a constant function, then \(f'(a) = 0 \) for all \(a \).

EXAMPLE 4 Find the derivative of \(f(x) = 9x - 5 \) at \(x = 2 \) and \(x = 5 \).

Solution We have \(f'(a) = 9 \) for all \(a \). Hence, \(f'(2) = f'(5) = 9 \).

EXAMPLE 5 Determine the derivative of the function \(f \) whose graph appears in Figure 8 at \(x = 2, 3, 4 \).

Solution At \(x = 2 \), the graph is a line with slope given by

\[
m = \frac{f(3) - f(0)}{3 - 0} = \frac{3 - 0}{3 - 0} = 1
\]

Hence, \(f'(2) = 1 \).

At \(x = 3 \), there is no well-defined tangent line, since the limit of the slopes of the secant lines as \(x \) approaches 3 from the left is different from the limit of the slopes of the secant lines as \(x \) approaches 3 from the right. So the derivative \(f'(3) \) does not exist.

At \(x = 4 \), the tangent line passes through the two points \((3, 2) \) and \((5, 0) \). Hence, it has slope \(m = \frac{2 - 0}{3 - 5} = -1 \). Therefore, \(f'(4) = -1 \).

Estimating the Derivative

Approximations to the derivative are useful in situations where we cannot evaluate \(f'(a) \) exactly. Since the derivative is the limit of difference quotients, the difference quotient should give a good numerical approximation when \(h \) is sufficiently small:

\[
f'(a) \approx \frac{f(a + h) - f(a)}{h} \quad \text{if } h \text{ is small}
\]

Graphically, this says that for small \(h \), the slope of the secant line is nearly equal to the slope of the tangent line (Figure 9).
Example 6 Estimate the derivative of \(f(x) = \sin x \) at \(x = \frac{\pi}{6} \).

Solution We calculate the difference quotient for several small values of \(h \):

\[
\frac{\sin(\frac{\pi}{6} + h) - \sin \frac{\pi}{6}}{h}
\]

Table 1 suggests that the limit has a decimal expansion beginning 0.866. In other words, \(f'(\frac{\pi}{6}) \approx 0.866 \).

<table>
<thead>
<tr>
<th>(h > 0)</th>
<th>(\frac{\sin(\frac{\pi}{6} + h) - 0.5}{h})</th>
<th>(h < 0)</th>
<th>(\frac{\sin(\frac{\pi}{6} + h) - 0.5}{h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.863511</td>
<td>-0.01</td>
<td>0.868511</td>
</tr>
<tr>
<td>0.001</td>
<td>0.865775</td>
<td>-0.001</td>
<td>0.866275</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.866000</td>
<td>-0.0001</td>
<td>0.866050</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.8660229</td>
<td>-0.00001</td>
<td>0.8660279</td>
</tr>
</tbody>
</table>

In the next example, we use graphical reasoning to determine the accuracy of the estimates obtained in Example 6.

Example 7 Determining Accuracy Graphically Let \(f(x) = \sin x \). Show that the approximation \(f'(\frac{\pi}{6}) \approx 0.8660 \) is accurate to four decimal places.

Solution Observe in Figure 10 that the position of the secant line relative to the tangent line depends on whether \(h \) is positive or negative. When \(h > 0 \), the slope of the secant line is smaller than the slope of the tangent line, but it is larger when \(h < 0 \). This tells us that the difference quotients in the second column of Table 1 are smaller than \(f'(\frac{\pi}{6}) \) and those in the fourth column are greater than \(f'(\frac{\pi}{6}) \). From the last line in Table 1 we may conclude that

\[
0.866022 \leq f'(\frac{\pi}{6}) \leq 0.866028
\]

It follows that the estimate \(f'(\frac{\pi}{6}) \approx 0.8660 \) is accurate to four decimal places. In Section 3.6, we will see that the exact value is \(f'(\frac{\pi}{6}) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \approx 0.8660254 \), just about midway between 0.866022 and 0.866028.

Conceptual Insight Are Limits Really Necessary? It is natural to ask whether limits are really necessary. The tangent line is easy to visualize. Is there perhaps a better or simpler way to find its equation? History gives one answer: The methods of calculus based on limits have stood the test of time and are used more widely today than ever before. History aside, we can see directly why limits play such a crucial role. The slope of a line can be computed if the coordinates of two points \(P = (x_1, y_1) \) and \(Q = (x_2, y_2) \) on the line are known:

\[
\text{Slope of line} = \frac{y_2 - y_1}{x_2 - x_1}
\]

This formula cannot be applied to the tangent line because we know only that it passes through the single point \(P = (a, f(a)) \). Limits provide an ingenious way around this obstacle. We choose a point \(Q = (a + h, f(a + h)) \) on the graph near \(P \) and form the secant line. The slope of this secant line is just an approximation to the slope of the tangent line:

\[
\text{Slope of secant line} = \frac{f(a + h) - f(a)}{h} \approx \text{slope of tangent line}
\]

But this approximation improves as \(h \to 0 \), and by taking the limit, we convert our approximations into the exact slope.
3.1 SUMMARY

- The difference quotient:
 \[f(a+h) - f(a) \]
 \[h \]

 The difference quotient is the slope of the secant line through the points \(P = (a, f(a)) \) and \(Q = (a+h, f(a+h)) \) on the graph of \(f \).
- The derivative \(f'(a) \) is defined by the following equivalent limits:
 \[f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \]

 If the limit exists, we say that \(f \) is differentiable at \(x = a \).
- By definition, the tangent line at \(P = (a, f(a)) \) is the line through \(P \) with slope \(f'(a) \) [assuming that \(f'(a) \) exists].
- Equation of the tangent line in point-slope form:
 \[y - f(a) = f'(a)(x - a) \]
- To calculate \(f'(a) \) using the limit definition:

 Step 1. Write out the numerator of the difference quotient.
 Step 2. Divide by \(h \) and simplify.
 Step 3. Compute the derivative by taking the limit.
- For small values of \(h \), we have the estimate \(f'(a) \approx \frac{f(a+h) - f(a)}{h} \).

3.1 EXERCISES

Preliminary Questions

1. Which of the lines in Figure 11 are tangent to the curve?

![Figure 11](image)

2. What are the two ways of writing the difference quotient?

Exercises

1. Let \(f(x) = 5x^2 \). Show that \(f(3+h) = 5h^2 + 30h + 45 \). Then show that
 \[\frac{f(3+h) - f(3)}{h} = 5h + 30 \]
 and compute \(f'(3) \) by taking the limit as \(h \to 0 \).

2. Let \(f(x) = 2x^3 - 3x - 5 \). Show that the secant line through \((2, f(2)) \) and \((2+h, f(2+h)) \) has slope \(2h + 5 \). Then use this formula to compute the slope of:
 (a) The secant line through \((2, f(2)) \) and \((3, f(3)) \)
 (b) The tangent line at \(x = 2 \) (by taking a limit)

In Exercises 3–8, compute \(f'(a) \) in two ways, using Eq. (1) and Eq. (2).

3. \(f(x) = x^2 + 9x, \quad a = 0 \)
4. \(f(x) = x^2 + 9x, \quad a = 2 \)
5. \(f(x) = 3x^2 + 4x + 2, \quad a = -1 \)
6. \(f(x) = x^3, \quad a = 2 \)
7. \(f(x) = x^3 + 2x, \quad a = 1 \)
8. \(f(x) = x^\frac{1}{3}, \quad a = 2 \)

In Exercises 9–12, refer to Figure 12.

9. Find the slope of the secant line through \((2, f(2)) \) and \((2.5, f(2.5)) \). Is it larger or smaller than \(f'(2) \)? Explain.

10. Estimate \(\frac{f(2+h) - f(2)}{h} \) for \(h = -0.5 \). What does this quantity represent? Is it larger or smaller than \(f'(2) \)? Explain.
11. Estimate $f'(1)$ and $f'(2)$.

12. Find a value of h for which \(\frac{f(2 + h) - f(2)}{h} = 0 \).

13. Determine $f'(a)$ for $a = 1, 2, 4, 7$.

14. For which values of x is $f'(x) < 0$?

15. Which is larger, $f'(5.5)$ or $f'(6.5)$?

16. Show that $f'(3)$ does not exist.

In Exercises 13–16, refer to Figure 13.

17. $f(x) = 7x - 9$

18. $f(x) = 12$

19. $g(t) = 8 - 3t$

20. $k(z) = 14z + 12$

21. Find an equation of the tangent line at $x = 3$, assuming that $f(3) = 5$ and $f'(3) = 2$.

22. Find $f(3)$ and $f'(3)$, assuming that the tangent line to $y = f(x)$ at $a = 3$ has equation $y = 5x + 2$.

23. Describe the tangent line at an arbitrary point on the “curve” $y = 2x + 8$.

24. Suppose that $f(2 + h) - f(2) = 3h^2 + 5h$. Calculate:
(a) The slope of the secant line through $(2, f(2))$ and $(6, f(6))$
(b) $f'(2)$

25. Let $f(x) = \frac{1}{x}$. Does $f(-2 + h)$ equal $\frac{1}{-2 + h}$ or $\frac{1}{-2} + \frac{1}{h}$? Compute the difference quotient at $a = -2$ with $h = 0.5$.

26. Let $f(x) = \sqrt{x}$. Does $f(5 + h)$ equal $\sqrt{5 + h}$ or $\sqrt{5} + \sqrt{h}$? Compute the difference quotient at $a = 5$ with $h = 1$.

27. Let $f(x) = \frac{1}{\sqrt{x}}$. Compute $f'(5)$ by showing that
\[
\frac{f(5 + h) - f(5)}{h} = -\frac{1}{\sqrt{5}(\sqrt{5 + h} + \sqrt{5})}
\]

28. Find an equation of the tangent line to the graph of $f(x) = \frac{1}{\sqrt{x}}$ at $x = 9$.

In Exercises 29–46, use the limit definition to compute $f'(a)$ and find an equation of the tangent line.

29. $f(x) = 2x^2 + 10x$, $a = 3$

30. $f(x) = 4 - x^2$, $a = -1$

31. $f(t) = t - 2r^2$, $a = 3$

32. $f(x) = 8x^3$, $a = 1$

33. $f(x) = x^3 + x$, $a = 0$

34. $f(t) = 2r^3 + 4t$, $a = 4$

35. $f(x) = x^{-1}$, $a = 8$

36. $f(x) = x + x^{-1}$, $a = 4$

37. $f(x) = \frac{1}{x + 3}$, $a = -2$

38. $f(t) = \frac{2}{1-t}$, $a = -1$

39. $f(x) = \sqrt{x} + 4$, $a = 1$

40. $f(t) = \sqrt{3t + 5}$, $a = -1$

41. $f(x) = \frac{1}{\sqrt{x}}$, $a = 4$

42. $f(x) = \frac{1}{\sqrt{2x + 1}}$, $a = 4$

43. $f(t) = \sqrt{t^2 + 1}$, $a = 3$

44. $f(x) = x^{-2}$, $a = -1$

45. $f(x) = \frac{1}{x^2 + 1}$, $a = 0$

46. $f(t) = t^{-3}$, $a = 1$

47. Figure 14 displays data collected by the biologist Julian Huxley (1887–1975) on the average antler weight W of male red deer as a function of age t. Estimate the derivative at $t = 4$. For which values of t is the slope of the tangent line equal to zero? For which values is it negative?

48. Figure 15(A) shows the graph of $f(x) = \sqrt{x}$. The close-up in Figure 15(B) shows that the graph is nearly a straight line near $x = 16$. Estimate the slope of this line and take it as an estimate for $f'(16)$. Then compute $f'(16)$ and compare with your estimate.

49. Let $f(x) = \frac{4}{1 + 2x}$.
(a) Plot f over $[-2, 2]$. Then zoom in near $x = 0$ until the graph appears straight, and estimate the slope $f'(0)$.
(b) Use (a) to find an approximate equation to the tangent line at $x = 0$. Plot this line and $y = f(x)$ on the same set of axes.
50. Let \(f(x) = \cot x \). Estimate \(f'(\frac{\pi}{4}) \) graphically by zooming in on a plot of \(f \) near \(x = \frac{\pi}{4} \).

51. Determine the intervals along the \(x \)-axis on which the derivative in Figure 16 is positive.

52. Sketch the graph of \(f(x) = \sin x \) on \([0, \pi]\) and guess the value of \(f'(\frac{\pi}{2}) \). Then calculate the difference quotient at \(x = \frac{\pi}{2} \) for two small positive and negative values of \(h \). Are these calculations consistent with your guess?

In Exercises 53–58, each limit represents a derivative \(f'(a) \). Find \(f(x) \) and \(a \).

53. \(\lim_{h \to 0} \frac{(5 + h)^3 - 125}{h} \)

54. \(\lim_{x \to 5} \frac{x^3 - 125}{x - 5} \)

55. \(\lim_{h \to 0} \frac{\sin \left(\frac{\pi}{6} + h \right) - 0.5}{h} \)

56. \(\lim_{x \to \frac{1}{2}} \frac{x^4 - 1}{x - \frac{1}{2}} \)

57. \(\lim_{h \to 0} \frac{5^2 + h - 25}{h} \)

58. \(\lim_{h \to 0} \frac{5h - 1}{h} \)

59. Apply the method of Example 7 to \(f(x) = \sin x \) to determine \(f'(\frac{\pi}{2}) \) accurately to four decimal places.

60. Apply the method of Example 7 to \(f(x) = \cos x \) to determine \(f'(\frac{\pi}{2}) \) accurately to four decimal places. Use a graph of \(f \) to explain how the method works in this case.

61. For each graph in Figure 17, determine whether \(f'(1) \) is larger or smaller than the slope of the secant line between \(x = 1 \) and \(x = 1 + h \) for \(h > 0 \). Explain.

62. Refer to the graph of \(f(x) = 2^x \) in Figure 18.
 (a) Explain graphically why, for \(h > 0 \),
 \[
 \frac{f(h) - f(0)}{h} \leq f'(0) \leq \frac{f(h) - f(0)}{-h}
 \]
 (b) Use (a) to show that \(0.69314 \leq f'(0) \leq 0.69315 \).
 (c) Similarly, compute \(f'(x) \) to four decimal places for \(x = 1, 2, 3, 4 \).
 (d) Now compute the ratios \(f'(x)/f'(0) \) for \(x = 1, 2, 3, 4 \). Can you guess an approximate formula for \(f'(x) \)?

63. Sketch the graph of \(f(x) = x^{5/2} \) on \([0, 6]\).
 (a) Use the sketch to justify the inequalities for \(h > 0 \):
 \[
 \frac{f(4) - f(4 - h)}{h} \leq f'(4) \leq \frac{f(4 + h) - f(4)}{h}
 \]
 (b) Use (a) to compute \(f'(4) \) to four decimal places.
 (c) Use a graphing utility to plot \(y = f(x) \) and the tangent line at \(x = 4 \), utilizing your estimate for \(f'(4) \).

64. Verify that \(P = (1, \frac{1}{2}) \) lies on the graphs of both \(f(x) = 1/(1 + x^2) \) and \(L(x) = \frac{1}{2} + m(x - 1) \) for every slope \(m \). Plot \(y = f(x) \) and \(y = L(x) \) on the same axes for several values of \(m \) until you find a value of \(m \) for which \(y = L(x) \) appears tangent to the graph of \(f \). What is your estimate for \(f'(1) \)?

65. Use a plot of \(f(x) = x^4 \) to estimate the value \(c \) such that \(f'(c) = 0 \). Find \(c \) to sufficient accuracy so that
 \[
 \frac{|f(c + h) - f(c)|}{h} \leq 0.006 \quad \text{for} \quad h = \pm 0.001
 \]

66. Plot \(f(x) = x^4 \) and \(y = 2x + a \) on the same graph for several values of \(a \) until the line becomes tangent to the graph. Then estimate the value \(c \) such that \(f'(c) = 2 \).

In Exercises 67–73, estimate derivatives using the symmetric difference quotient (SDQ), defined as the average of the difference quotients at \(h \) and \(-h \):

\[
\frac{1}{2} \left(\frac{f(a + h) - f(a)}{h} + \frac{f(a - h) - f(a)}{-h} \right) = \frac{f(a + h) - f(a - h)}{2h}
\]

The SDQ usually gives a better approximation to the derivative than the difference quotient.

67. The vapor pressure of water at temperature \(T \) (in kelvins) is the atmospheric pressure \(P \) at which no net evaporation takes place. Use the following table to estimate \(P'(T) \) for \(T = 303, 313, 323, 333, 343 \) by computing the SDQ given by Eq. (4) with \(h = 10 \).

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>293</th>
<th>303</th>
<th>313</th>
<th>323</th>
<th>333</th>
<th>343</th>
<th>353</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) (atm)</td>
<td>0.0278</td>
<td>0.0482</td>
<td>0.0808</td>
<td>0.1311</td>
<td>0.2067</td>
<td>0.3173</td>
<td>0.4754</td>
</tr>
</tbody>
</table>

68. Use the SDQ with \(h = 1 \) year to estimate \(P'(T) \) in the years 2005, 2007, 2009, 2011, where \(P(T) \) is the U.S. ethanol production (Figure 19). Express your answer in the correct units.
In Exercises 69–70, traffic speed \(S \) along a certain road (in kilometers per hour) varies as a function of traffic density \(q \) (number of cars per kilometer of road). Use the following data to answer the questions:

\[
\begin{array}{c|cccccc}
q \text{ (density)} & 60 & 70 & 80 & 90 & 100 \\
S \text{ (speed)} & 72.5 & 67.5 & 63.5 & 60 & 56
\end{array}
\]

69. Estimate \(S'(80) \).

70. Explain why \(V = qS \), called \textit{traffic volume}, is equal to the number of cars passing a point per hour. Use the data to estimate \(V'(80) \).

Exercises 71–73: The current (in amperes) at time \(t \) (in seconds) flowing in the circuit in Figure 20 is given by Kirchhoff’s Law:

\[
i(t) = CV'(t) + R^{-1}V(t)
\]

where \(V(t) \) is the voltage (in volts, \(V \)), \(C \) the capacitance (in farads, \(F \)), and \(R \) the resistance (in ohms, \(\Omega \)).

71. Calculate the current at \(t = 3 \) if

\[
v(t) = 0.5t + 4 \ V
\]

where \(C = 0.01 \ F \) and \(R = 100 \ \Omega \).

72. Use the following data to estimate \(V'(10) \) (by an SDQ). Then estimate \(i(10) \), assuming \(C = 0.03 \) and \(R = 1000 \).

\[
\begin{array}{cccccc}
\text{ } & t & 9.8 & 9.9 & 10 & 10.1 & 10.2 \\
\text{ } & v(t) & 256.52 & 257.32 & 258.11 & 258.9 & 259.69 \\
\text{ } & i(t) & 32.34 & 33.22 & 34.1 & 34.98 & 35.86
\end{array}
\]

73. Assume that \(R = 200 \ \Omega \) but \(C \) is unknown. Use the following data to estimate \(V'(4) \) (by an SDQ) and deduce an approximate value for the capacitance \(C \).

Further Insights and Challenges

74. The SDQ usually approximates the derivative much more closely than does the ordinary difference quotient. Let \(f(x) = x^2 \) and \(a = 0 \). Compute the SDQ with \(h = 0.001 \) and the ordinary difference quotients with \(h = \pm 0.001 \). Compare with the actual value, which is \(f'(0) = \ln 2 \).

75. Explain how the symmetric difference quotient defined by Eq. (4) can be interpreted as the slope of a secant line.

76. Which of the two functions in Figure 21 satisfies the inequality

\[
\frac{f(a + h) - f(a - h)}{2h} \leq \frac{f(a + h) - f(a)}{h}
\]

for \(h > 0 \)? Explain in terms of secant lines.

77. Show that if \(f \) is a quadratic polynomial, then the SDQ at \(x = a \) (for any \(h \neq 0 \)) is equal to \(f'(a) \). Explain the graphical meaning of this result.

78. Let \(f(x) = x^{-2} \). Compute \(f'(1) \) by taking the limit of the SDQs (with \(a = 1 \)) as \(h \to 0 \).

3.2 The Derivative as a Function

In the previous section, we computed the derivative \(f'(a) \) for specific values of \(a \). It is also useful to view the derivative as a function \(f' \) whose value at \(x = a \) is \(f'(a) \). The function \(f' \) is still defined as a limit, but the fixed number \(a \) is replaced by the variable \(x \):

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}
\]

If \(y = f(x) \), we also write \(y' \) or \(y'(x) \) for \(f'(x) \).
Often, the domain of \(f' \) is clear from the context. If so, we usually do not mention the domain explicitly.

The domain of \(f' \) consists of all values of \(x \) in the domain of \(f \) for which the limit in Eq. (1) exists. We say that \(f \) is **differentiable** on \((a, b)\) if \(f'(x) \) exists for all \(x \) in \((a, b)\). When \(f'(x) \) exists for all \(x \) in the interval or intervals on which \(f(x) \) is defined, we say simply that \(f \) is differentiable.

Example 1 Prove that \(f(x) = x^3 - 12x \) is differentiable. Compute \(f'(x) \) and find an equation of the tangent line at \(x = -3 \).

Solution We compute \(f'(x) \) in three steps as in the previous section.

Step 1. Write out the numerator of the difference quotient.

\[
\frac{f(x + h) - f(x)}{h} = \frac{(x + h)^3 - 12(x + h) - (x^3 - 12x)}{h} = \frac{x^3 + 3x^2h + 3xh^2 + h^3 - 12x - 12h - (x^3 - 12x)}{h} = \frac{3x^2h + 3xh^2 + h^3 - 12h}{h} = \frac{h(3x^2 + 3xh + h^2 - 12)}{h} \quad \text{(factor out} \ h) \]

Step 2. Divide by \(h \) and simplify.

\[
\frac{f(x + h) - f(x)}{h} = \frac{3x^2 + 3xh + h^2 - 12}{h} = 3x^2 + 3xh + h^2 - 12 \quad (h \neq 0)
\]

Step 3. Compute the limit.

\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2 - 12) = 3x^2 - 12
\]

In this limit, \(x \) is treated as a constant because it does not change as \(h \to 0 \). We see that the limit exists for all \(x \), so \(f \) is differentiable and \(f'(x) = 3x^2 - 12 \).

Now evaluate:

\[
f'(-3) = 3(-3)^2 - 12 = 15
\]

This is the slope of the tangent line. Since \(f(-3) = 9 \), the line passes through \((-3, 9)\). So an equation of the tangent line at \(x = -3 \) is \(y - 9 = 15(x + 3) \) or \(y = 15x + 54 \) (Figure 1).

Example 2 Prove that \(y = x^{-2} \) is differentiable and calculate \(y' \).

Solution The domain of \(f(x) = x^{-2} \) is \(\{x : x \neq 0\} \), so assume that \(x \neq 0 \). We compute \(f'(x) \) directly, without the separate steps of the previous example:

\[
y' = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{1}{(x + h)^2} - \frac{1}{x^2}
\]

\[
= \lim_{h \to 0} \frac{x^2 - (x + h)^2}{x^2(x + h)^2} = \lim_{h \to 0} \frac{1}{h} \left(\frac{x^2 - (x + h)^2}{x^2(x + h)^2} \right)
\]

\[
= \lim_{h \to 0} \frac{-h(2x + h)}{x^2(x + h)^2} = \lim_{h \to 0} \frac{2x + h}{x^2(x + h)^2} \quad \text{(cancel} \ h) \]

\[
= -\frac{2x + 0}{x^2(x + 0)^2} = -\frac{2x}{x^4} = -2x^{-3}
\]

The limit exists for all \(x \neq 0 \), so \(y \) is differentiable and \(y' = -2x^{-3} \).
Leibniz Notation

The “prime” notation \(y' \) and \(f'(x) \) was introduced by the French mathematician Joseph Louis Lagrange (1736–1813). There is another standard notation for the derivative that we owe to Leibniz (Figure 2):

\[
\frac{df}{dx} \quad \text{or} \quad \frac{dy}{dx}
\]

In Example 2, we showed that the derivative of \(y = x^{-2} \) is \(y' = -2x^{-3} \). In Leibniz notation, we would write

\[
\frac{dy}{dx} = -2x^{-3} \quad \text{or} \quad \frac{d}{dx} x^{-2} = -2x^{-3}
\]

To specify the value of the derivative for a fixed value of \(x \), say, \(x = 4 \), we write

\[
\frac{df}{dx} \bigg|_{x=4} \quad \text{or} \quad \frac{dy}{dx} \bigg|_{x=4}
\]

You should not think of \(\frac{dy}{dx} \) as the fraction “\(dy \) divided by \(dx \).” The expressions \(dy \) and \(dx \) are called differentials. They play a role in some situations (in linear approximation and in more advanced calculus). At this stage, we treat them merely as symbols with no independent meaning.

CONCEPTUAL INSIGHT Leibniz notation is widely used for several reasons. First, it reminds us that the derivative \(\frac{df}{dx} \), although not itself a ratio, is in fact a limit of ratios \(\Delta f / \Delta x \). Second, the notation specifies the independent variable. This is useful when variables other than \(x \) are used. For example, if the independent variable is \(t \), we write \(\frac{df}{dt} \). Third, we often think of \(\frac{d}{dx} \) as an “operator” that performs differentiation on functions. In other words, we apply the operator \(\frac{d}{dx} \) to \(f \) to obtain the derivative \(\frac{df}{dx} \). We will see other advantages of Leibniz notation when we discuss the Chain Rule in Section 3.7.

A main goal of this chapter is to develop the basic rules of differentiation. These rules enable us to find derivatives without computing limits. For example, in Theorem 1 of the previous section, we stated the following fact in slightly different notation. We will prove it again directly.

THEOREM 1 The Constant Rule For any constant \(c \),

\[
\frac{d}{dx} (c) = 0
\]

Proof If \(f(x) = c \), then

\[
f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0
\]

Here is another useful rule that is straightforward to prove:

THEOREM 2 The \(x \) Rule

\[
\frac{d}{dx} (x) = 1
\]
Proof If \(f(x) = x \), then
\[
f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{(x + h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = 1.
\]

This next theorem will prove to be incredibly useful for differentiating polynomials. It includes the last rule as a special case.

Theorem 3 The Power Rule For all exponents \(n \),
\[
\frac{d}{dx} x^n = nx^{n-1}
\]

Proof We prove this only for the case that \(n \) is a positive integer. Let \(f(x) = x^n \). Then
\[
f'(a) = \lim_{x \to a} \frac{x^n - a^n}{x - a}
\]
To simplify the difference quotient, we need to generalize the following identities:
\[
x^2 - a^2 = (x - a)(x + a)\\
x^3 - a^3 = (x - a)(x^2 + xa + a^2)\\
x^4 - a^4 = (x - a)(x^3 + x^2a + xa^2 + a^3)
\]
The generalization is
\[
x^n - a^n = (x - a)(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \ldots + xa^{n-2} + a^{n-1})
\]
To verify Eq. (4), observe that the right-hand side is equal to
\[
x(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \ldots + xa^{n-2} + a^{n-1}) - a(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \ldots + xa^{n-2} + a^{n-1})
\]
When we carry out the multiplications, all terms cancel except the first and the last, so only \(x^n - a^n \) remains, as required.
Equation (4) gives us
\[
\frac{x^n - a^n}{x - a} = x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \ldots + a^{n-2} + a^{n-1} \quad (x \neq a)
\]
Therefore,
\[
f'(a) = \lim_{x \to a} \left(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \ldots + a^{n-2} + a^{n-1} \right)
\]
\[
= a^{n-1} + a^{n-2}a + a^{n-3}a^2 + \ldots + aa^{n-2} + a^{n-1} \quad (n \text{ terms})
\]
\[
= na^{n-1}
\]
This proves that \(f'(a) = na^{n-1} \), which we may also write as \(f'(x) = nx^{n-1} \).

We make a few remarks before proceeding:
- It may be helpful to remember the Power Rule in words: To differentiate \(x^n \), “bring down the exponent and subtract one (from the exponent).”
\[
\frac{d}{dx} x^{\text{exponent}} = (\text{exponent}) x^{\text{exponent}-1}
\]
• The Power Rule is valid for all exponents, whether negative, fractional, or irrational:

\[
\frac{d}{dx} x^{-3/5} = -\frac{3}{5} x^{-8/5}, \quad \frac{d}{dx} x^{\sqrt{2}} = \sqrt{2} x^{\sqrt{2}-1}
\]

• The Power Rule can be applied with any variable, not just \(x\). For example,

\[
\frac{d}{dz} z^2 = 2z, \quad \frac{d}{dt} t^{20} = 20t^{19}, \quad \frac{d}{dr} r^{1/2} = \frac{1}{2} r^{-1/2}
\]

Next, we state the Linearity Rules for derivatives, which are analogous to the linearity laws for limits.

THEOREM 4 Linearity Rules Assume that \(f\) and \(g\) are differentiable. Then

Sum and Difference Rules: \(f + g\) and \(f - g\) are differentiable, and

\[
(f + g)' = f' + g', \quad (f - g)' = f' - g'
\]

Constant Multiple Rule: For any constant \(c\), \(cf\) is differentiable and

\[
(cf)' = cf'
\]

Proof To prove the Sum Rule, we use the definition

\[
(f + g)'(x) = \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}
\]

This difference quotient is equal to a sum (\(h \neq 0\)):

\[
\frac{f(x+h) + g(x+h)) - (f(x) + g(x))}{h} = \frac{f(x+h) - f(x)}{h} + \frac{g(x+h) - g(x)}{h}
\]

Therefore, by the Sum Law for limits,

\[
(f + g)'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f'(x) + g'(x)
\]

as claimed. The Difference and Constant Multiple Rules are proved similarly.

EXAMPLE 3 Find the points on the graph of \(f(t) = t^3 - 12t + 4\) where the tangent line is horizontal (Figure 3).

Solution We calculate the derivative:

\[
\frac{df}{dt} = \frac{d}{dt} (t^3 - 12t + 4)
\]

\[
= \frac{d}{dt} t^3 - \frac{d}{dt} (12t) + \frac{d}{dt} 4 \quad \text{(Sum and Difference Rules)}
\]

\[
= \frac{d}{dt} t^3 - 12 \frac{d}{dt} t + 0 \quad \text{(Constant Multiple Rule and Constant Rule)}
\]

\[
= 3t^2 - 12 \quad \text{(Power Rule)}
\]

Note in the second line that the derivative of the constant 4 is zero. The tangent line is horizontal at points where the slope \(f'(t)\) is zero, so we solve

\[
f'(t) = 3t^2 - 12 = 0 \quad \Rightarrow \quad t = \pm 2
\]

Now \(f(2) = -12\) and \(f(-2) = 20\). Hence, the tangent lines are horizontal at \((2, -12)\) and \((-2, 20)\).
EXAMPLE 4 Calculate \(\frac{dg}{dt} \bigg|_{t=1} \), where \(g(t) = t^{-3} + 2 \sqrt{t} - t^{-4/5} \).

Solution We differentiate term-by-term using the Power Rule without justifying the intermediate steps. Writing \(\sqrt{t} \) as \(t^{1/2} \), we have

\[
\frac{dg}{dt} = \frac{d}{dt} \left(t^{-3} + 2t^{1/2} - t^{-4/5} \right) = -3t^{-4} + 2 \left(\frac{1}{2} \right) t^{-1/2} - \left(-\frac{4}{5} \right) t^{-9/5}
\]

\[
= -3t^{-4} + t^{-1/2} + \frac{4}{5} t^{-9/5}
\]

\[
\left. \frac{dg}{dt} \right|_{t=1} = -3 + 1 + \frac{4}{5} = -\frac{6}{5}
\]

The Derivative and Behavior of the Graph

The derivative \(f' \) gives us important information about the graph of \(f \). For example, the sign of \(f'(x) \) tells us whether the tangent line has positive or negative slope. When the tangent line has positive slope, it slopes upward and the graph must be increasing. When the tangent line has negative slope, it slopes downward and the graph must be decreasing. The magnitude of \(f'(x) \) reveals how steep the slope is.

EXAMPLE 5 Graphical Insight How is the graph of \(f(x) = x^3 - 12x^2 + 36x - 16 \) related to the derivative \(f'(x) = 3x^2 - 24x + 36 \)?

Solution The derivative \(f'(x) = 3x^2 - 24x + 36 = 3(x - 6)(x - 2) \) is negative for \(2 < x < 6 \) and positive elsewhere [Figure 4(B)]. The following table summarizes this sign information [Figure 4(A)]:

<table>
<thead>
<tr>
<th>Property of (f'(x))</th>
<th>Property of the Graph of (f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f'(x) < 0) for (2 < x < 6)</td>
<td>Tangent has negative slope for (2 < x < 6) (graph is decreasing).</td>
</tr>
<tr>
<td>(f'(2) = f'(6) = 0)</td>
<td>Tangent is horizontal at (x = 2) and (x = 6).</td>
</tr>
<tr>
<td>(f'(x) > 0) for (x < 2) and (x > 6)</td>
<td>Tangent has positive slope for (x < 2) and (x > 6) (graph is increasing).</td>
</tr>
</tbody>
</table>

Note also that \(f'(x) \to \infty \) as \(|x| \) becomes large. This corresponds to the fact that the tangent lines to the graph of \(f \) get steeper as \(|x| \) grows large.

EXAMPLE 6 Identifying the Derivative The graph of \(f \) is shown in Figure 5(A). Which graph, (B) or (C), is the graph of \(f' \)?

Solution In Figure 5(A) we see that on the intervals (0, 1) and (4, 7), the graph is decreasing, and therefore the tangent lines to the graph have negative slope. Thus, \(f'(x) \) is negative on these intervals. Similarly, on the intervals (1, 4) and (7, \(\infty \)), the graph is increasing, and therefore the tangent lines have positive slope and \(f'(x) \) is positive (see the table in the margin). Only (C) has these properties, so (C) is the graph of \(f' \).
Differentiability, Continuity, and Local Linearity

In the rest of this section, we examine the concept of differentiability more closely. We begin by proving that a differentiable function is necessarily continuous. In particular, a differentiable function cannot have any jumps. Figure 6 shows why: Although the secant lines from the right approach the line \(L \) (which is tangent to the right half of the graph), the secant lines from the left approach the vertical (and their slopes tend to \(\infty \)).

Theorem 5 Differentiability Implies Continuity

If \(f \) is differentiable at \(x = c \), then \(f \) is continuous at \(x = c \).

Proof By definition, if \(f \) is differentiable at \(x = c \), then the following limit exists:

\[
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
\]

We must prove that \(\lim_{x \to c} f(x) = f(c) \), because this is the definition of continuity at \(x = c \). To relate the two limits, consider the equation (valid for \(x \neq c \))

\[
f(x) - f(c) = (x - c) \frac{f(x) - f(c)}{x - c}
\]

Both factors on the right approach a limit as \(x \to c \), so

\[
\lim_{x \to c} (f(x) - f(c)) = \lim_{x \to c} \left((x - c) \frac{f(x) - f(c)}{x - c} \right)
= \left(\lim_{x \to c} (x - c) \right) \left(\lim_{x \to c} \frac{f(x) - f(c)}{x - c} \right)
= 0 \cdot f'(c) = 0
\]

by the Product Law for limits. The Sum Law now yields the desired conclusion:

\[
\lim_{x \to c} f(x) = \lim_{x \to c} (f(x) - f(c)) + \lim_{x \to c} f(c) = 0 + f(c) = f(c)
\]

Most of the functions encountered in this text are differentiable, but exceptions exist, as the next example shows.

Example 7 Continuous But Not Differentiable

Show that \(f(x) = |x| \) is continuous but not differentiable at \(x = 0 \).

Solution The function \(f \) is continuous at \(x = 0 \) because \(\lim_{x \to 0} |x| = 0 = f(0) \). On the other hand,

\[
f'(0) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{|0 + h| - |0|}{h} = \lim_{h \to 0} \frac{|h|}{h}
\]

This limit does not exist [and hence \(f \) is not differentiable at \(x = 0 \)] because

\[
\frac{|h|}{h} = \begin{cases}
1 & \text{if } h > 0 \\
-1 & \text{if } h < 0
\end{cases}
\]

and thus the one-sided limits are not equal:

\[
\lim_{h \to 0^+} \frac{|h|}{h} = 1 \quad \text{and} \quad \lim_{h \to 0^-} \frac{|h|}{h} = -1
\]
CHAPTER 3 DIFFERENTIATION

Differentiability has an important graphical interpretation in terms of local linearity. We say that \(f \) is locally linear at \(x = a \) if the graph looks more and more like a straight line as we zoom in on the point \((a, f(a))\). In this context, the adjective linear means “resembling a line,” and local indicates that we are concerned only with the behavior of the graph near \((a, f(a))\). The graph of a locally linear function may be very wavy or nonlinear, as in Figure 7. But as soon as we zoom in on a sufficiently small piece of the graph, it begins to appear straight.

Not only does the graph look like a line as we zoom in on a point, but as Figure 7 suggests, the “zoom line” is the tangent line. Thus, the relation between differentiability and local linearity can be expressed as follows:

If \(f'(a) \) exists, then \(f \) is locally linear at \(x = a \): As we zoom in on the point \((a, f(a))\), the graph becomes nearly indistinguishable from its tangent line.

Local linearity gives us a graphical way to understand why \(f(x) = |x| \) is not differentiable at \(x = 0 \) (as shown in Example 7). Figure 8 shows that the graph of \(f(x) = |x| \) has a corner at \(x = 0 \), and this corner does not disappear, no matter how closely we zoom in on the origin. Since the graph does not straighten out under zooming, \(f \) is not locally linear at \(x = 0 \), and we cannot expect \(f'(0) \) to exist.

Another way that a continuous function can fail to be differentiable is if the tangent line exists but is vertical (in which case the slope of the tangent line is undefined).

EXAMPLE 8 Vertical Tangents Show that \(f(x) = x^{1/3} \) is not differentiable at \(x = 0 \).

Solution The limit defining \(f'(0) \) is infinite:

\[
\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{h^{1/3} - 0}{h} = \lim_{h \to 0} \frac{h^{1/3}}{h} = \lim_{h \to 0} \frac{1}{h^{2/3}} = \infty
\]

Therefore, \(f'(0) \) does not exist (Figure 9).

As a final remark, we mention that there are more complicated ways in which a continuous function can fail to be differentiable. Figure 10 shows the graph of \(f(x) = x \sin \frac{1}{x} \). If we define \(f(0) = 0 \), then \(f \) is continuous but not differentiable at \(x = 0 \). The secant lines keep oscillating and never settle down to a limiting position (see Exercise 97).
The Derivative as a Function

SECTION 3.2

The derivative $f'(a)$ is the function whose value at $x = a$ is the derivative $f'(a)$.

We have several different notations for the derivative of $y = f(x)$:

- y'
- $y'(x)$
- $f'(x)$
- $\frac{dy}{dx}$
- $\frac{df}{dx}$

The value of the derivative at $x = a$ is written

- $y'(a)$
- $f'(a)$
- $\frac{dy}{dx}\bigg|_{x=a}$
- $\frac{df}{dx}\bigg|_{x=a}$

THEOREM 6 Rules for Taking a Derivative

- $\frac{d}{dx} (c) = 0$
- $\frac{d}{dx} x^n = nx^{n-1}$
- $(f + g)' = f' + g'$
- $(cf)' = cf'$

- Differentiability implies continuity: If f is differentiable at $x = a$, then f is continuous at $x = a$. However, there exist continuous functions that are not differentiable.

- If $f'(a)$ exists, then f is locally linear in the following sense: As we zoom in on the point $(a, f(a))$, the graph becomes nearly indistinguishable from its tangent line.

3.2 EXERCISES

Preliminary Questions

1. What is the slope of the tangent line through the point $(2, f(2))$ if $f'(x) = x^3$?

2. Evaluate $(f - g)'(1)$ and $(3f + 2g)'(1)$, assuming that $f'(1) = 3$ and $g'(1) = 5$.

FIGURE 10

(A) Graph of $f(x) = x \sin \frac{1}{x}$

(B) Secant lines do not settle down to a limiting position.
3. To which of the following does the Power Rule apply?
(a) \(f(x) = x^2 \)
(b) \(f(x) = 2^x \)
(c) \(f(x) = x^\pi \)
(d) \(f(x) = \pi^x \)
(e) \(f(x) = x^6 \)
(f) \(f(x) = x^{-4/5} \)

4. Choose (a) or (b). The derivative does not exist if the tangent line is:
(a) horizontal
(b) vertical.

5. If \(f \) is differentiable at \(x = c \), is \(f \) necessarily continuous at \(x = c \)? Do there exist continuous functions that are not differentiable?

Exercises
In Exercises 1–6, compute \(f'(x) \) using the limit definition.
1. \(f(x) = 3x - 7 \)
2. \(f(x) = x^2 + 3x \)
3. \(f(x) = x^3 \)
4. \(f(x) = 1 - x^{-1} \)
5. \(f(x) = x - \sqrt{x} \)
6. \(f(x) = x^{-1/2} \)

In Exercises 7–14, use the Power Rule to compute the derivative.
7. \(\frac{d}{dx} x^4 \bigg|_{x=2} \)
8. \(\frac{d}{dt} t^{-3} \bigg|_{t=4} \)
9. \(\frac{d}{dt} t^{2/3} \bigg|_{t=8} \)
10. \(\frac{d}{dt} t^{-2/5} \bigg|_{t=1} \)
11. \(\frac{d}{dx} x^{0.35} \)
12. \(\frac{d}{dx} x^{14/3} \)
13. \(\frac{d}{dt} \sqrt{7t} \)
14. \(\frac{d}{dt} t^{-2.5} \)

In Exercises 15–18, compute \(f'(x) \) and find an equation of the tangent line to the graph at \(x = a \).
15. \(f(x) = x^4, \quad a = 2 \)
16. \(f(x) = x^{-2}, \quad a = 5 \)
17. \(f(x) = 5x - 32\sqrt{x}, \quad a = 4 \)
18. \(f(x) = \sqrt[3]{x}, \quad a = 8 \)
19. Find an equation of the tangent line to \(y = 1/\sqrt{x} \) at \(x = 9 \).
20. Find a point on the graph of \(y = \sqrt{x} \) where the tangent line has slope 10.

In Exercises 21–32, calculate the derivative.
21. \(f(x) = 2x^3 - 3x^2 + 5 \)
22. \(f(x) = 2x^3 - 3x^2 + 2x \)
23. \(f(x) = 4x^{5/3} - 3x^{-2} - 12 \)
24. \(f(x) = x^{5/4} + 4x^{-3/2} + 11x \)
25. \(g(z) = 7z^{-5/4} + z^{-5} + 9 \)
26. \(h(t) = 6\sqrt{t} + \frac{1}{\sqrt{t}} \)
27. \(f(s) = \sqrt[4]{s} + \sqrt[3]{s} \)
28. \(W(y) = 6y^4 + 7y^{2/3} \)
29. \(g(x) = \pi^2 \)
30. \(f(x) = x^\pi \)
31. \(h(t) = \sqrt{2t} \)
32. \(R(z) = \frac{z^{5/3} - 4z^{3/2}}{z} \) Hint: Simplify.

In Exercises 33–36, calculate the derivative by expanding or simplifying the function.
33. \(P(s) = (4s - 3)^2 \)
34. \(Q(r) = (1 - 2r)(3r + 5) \)
35. \(g(x) = \frac{x^2 + 4x^{1/2}}{x^2} \)
36. \(s(t) = 1 - \frac{2t}{t^{1/2}} \)

In Exercises 37–42, calculate the derivative indicated.
37. \(\frac{dT}{dC} \bigg|_{C=8} \)
38. \(\frac{dP}{dV} \bigg|_{V=-2} \)
39. \(\frac{ds}{dz} \bigg|_{z=2} \), \(s = 4z - 16z^2 \)
40. \(\frac{dR}{dW} \bigg|_{W=1} \), \(R = W^{\pi/2} \)
41. \(\frac{dr}{dt} \bigg|_{t=4} \), \(r = \frac{t^2 + 1}{t^{1/2}} \)
42. \(\frac{dp}{dh} \bigg|_{h=32} \), \(p = 16h^{0.2} + 8h^{-0.8} \)

43. Match the functions in graphs (A)–(D) with their derivatives (I)–(III) in Figure 11. Note that two of the functions have the same derivative. Explain why.

![Figure 11](image)

44. Of the two functions \(f \) and \(g \) in Figure 12, which is the derivative of the other? Justify your answer.

![Figure 12](image)

45. Assign the labels \(y = f(x), \ y = g(x) \), and \(y = h(x) \) to the graphs in Figure 13 in such a way that \(f'(x) = g(x) \) and \(g'(x) = h(x) \).

![Figure 13](image)

46. According to the peak oil theory, first proposed in 1956 by geophysicist M. Hubbert, the total amount of crude oil \(Q(t) \) produced worldwide up to time \(t \) has a graph like that in Figure 14. (a) Sketch the derivative \(Q'(t) \) for \(1900 \leq t \leq 2150 \). What does \(Q'(t) \) represent?
(b) In which year (approximately) does \(Q'(t) \) take on its maximum value?
(c) What is \(L = \lim_{t \to \infty} Q(t) \)? And what is its interpretation?
(d) What is the value of \(\lim_{t \to \infty} Q'(t) \)?

![Graph of Total oil production up to time \(t \).](image)

47. Use the table of values of \(f \) to determine which of (A) or (B) in Figure 15 is the graph of \(f' \). Explain.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>10</td>
<td>55</td>
<td>98</td>
<td>139</td>
<td>177</td>
<td>210</td>
<td>237</td>
<td>257</td>
<td>268</td>
</tr>
</tbody>
</table>

![Graphs of functions](image)

48. Let \(R \) be a variable and \(r \) a constant. Compute the derivatives:

(a) \(\frac{d}{dR} R \)
(b) \(\frac{d}{dR} r \)
(c) \(\frac{d}{dR} r^2 R^3 \)

49. Compute the derivatives, where \(c \) is a constant.

(a) \(\frac{d}{dt} c^3 \)
(b) \(\frac{d}{dx} (5x + 4c^2) \)
(c) \(\frac{d}{dy} (9c^2y^3 - 24c) \)

50. Find the points on the graph of \(f(x) = 12x - x^3 \) where the tangent line is horizontal.

51. Find the points on the graph of \(y = x^2 + 3x - 7 \) at which the slope of the tangent line is equal to 4.

52. Find the values of \(x \) where \(y = x^3 \) and \(y = x^2 + 5x \) have parallel tangent lines.

53. Determine \(a \) and \(b \) such that \(p(x) = x^2 + ax + b \) satisfies \(p(1) = 0 \) and \(p'(1) = 4 \).

54. Find all values of \(x \) such that the tangent line to \(y = 4x^2 + 11x + 2 \) is steeper than the tangent line to \(y = x^3 \).

55. Let \(f(x) = x^3 - 3x + 1 \). Show that \(f'(x) \geq -3 \) for all \(x \) and that, for every \(m > -3 \), there are precisely two points where \(f'(x) = m \). Indicate the position of these points and the corresponding tangent lines for one value of \(m \) in a sketch of the graph of \(f \).

56. Show that the tangent lines to \(y = \frac{1}{2} x^3 - x^2 \) at \(x = a \) and at \(x = b \) are parallel if \(a = b \) or \(a + b = 2 \).

57. Compute the derivative of \(f(x) = x^{3/2} \) using the limit definition. Hint: Show that

\[
\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \frac{(x + h)^{3/2} - x^{3/2}}{h}
\]

58. Sketch the graph of a continuous function on \((0, 5)\) that is differentiable except at \(x = 1 \) and \(x = 4 \).

59. Show, using the limit definition of the derivative, that \(f(x) = x^2 - 4 \) is not differentiable at \(x = 2 \).

60. The average speed (in meters per second) of a gas molecule is

\[
v_{avg} = \sqrt{\frac{8RT}{\pi M}}
\]

where \(T \) is the temperature (in kelvins), \(M \) is the molar mass (in kilograms per mole), and \(R = 8.31 \). Calculate \(v_{avg}/T \) at \(T = 300 \) K for oxygen, which has a molar mass of 0.032 kg/mol.

61. Biologists have observed that the pulse rate \(P \) (in beats per minute) in animals is related to body mass \(m \) (in kilograms) by the approximate formula \(P = 200 m^{-1/4} \). This is one of many allometric scaling laws prevalent in biology. Is \(P \) an increasing or decreasing function of \(m \)? Find an equation of the tangent line at the points on the graph in Figure 16 that represent goat \((m = 33)\) and man \((m = 68)\).

62. Some studies suggest that kidney mass \(K \) in mammals (in kilograms) is related to body mass \(m \) (in kilograms) by the approximate formula \(K = 0.007 m^{0.85} \). Calculate \(dK/dm \) at \(m = 68 \). Then calculate the derivative with respect to \(m \) of the relative kidney-to-mass ratio \(K/m \) at \(m = 68 \).

63. The Clausius–Clapeyron Law relates the vapor pressure of water \(P \) (in atmospheres) to the temperature \(T \) (in kelvins):

\[
\frac{dP}{dT} = k \frac{P}{T^2}
\]

where \(k \) is a constant. Estimate \(dP/dT \) for \(T = 303, 313, 323, 333, 343, 353 \) using the data and the approximation

\[
\frac{dP}{dT} \approx \frac{P(T + 10) - P(T - 10)}{20}
\]

<table>
<thead>
<tr>
<th>(T) (K)</th>
<th>293</th>
<th>303</th>
<th>313</th>
<th>323</th>
<th>333</th>
<th>343</th>
<th>353</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P) (atm)</td>
<td>0.0278</td>
<td>0.0482</td>
<td>0.0808</td>
<td>0.1311</td>
<td>0.2067</td>
<td>0.3173</td>
<td>0.4754</td>
</tr>
</tbody>
</table>

Do your estimates seem to confirm the Clausius–Clapeyron Law? What is the approximate value of \(k \)?
64. Let \(L \) be the tangent line to the hyperbola \(xy = 1 \) at \(x = a \), where \(a > 0 \). Show that the area of the triangle bounded by \(L \) and the coordinate axes does not depend on \(a \).

65. In the setting of Exercise 64, show that the point of tangency is the midpoint of the segment of \(L \) lying in the first quadrant.

66. Match functions (A)–(C) with their derivatives (I)–(III) in Figure 17.

\[
\begin{align*}
(A) & \quad (I) \\
(B) & \quad (II) \\
(C) & \quad (III)
\end{align*}
\]

In Exercises 71–76, find the points \(c \) (if any) such that \(f'(c) \) does not exist.

71. \(f(x) = |x - 1| \)
72. \(f(x) = |x| \)
73. \(f(x) = x^{2/3} \)
74. \(f(x) = x^{3/2} \)
75. \(f(x) = |x^2 - 1| \)
76. \(f(x) = |x - 1|^2 \)

77. \(f(x) = (x - 1)|x|, \quad a = 0 \)
78. \(f(x) = (x - 3)^{5/3}, \quad a = 3 \)
79. \(f(x) = (x - 3)^{1/3}, \quad a = 3 \)
80. \(f(x) = \sin(x^{1/3}), \quad a = 0 \)
81. \(f(x) = |\sin x|, \quad a = 0 \)
82. \(f(x) = |x - \sin x|, \quad a = 0 \)

83. Find the coordinates of the point \(P \) in Figure 20 at which the tangent line passes through \((5, 0)\).

84. Plot the derivative \(f' \) of \(f(x) = 2x^3 - 10x^{-1} \) for \(x > 0 \) (set the bounds of the viewing box appropriately) and observe that \(f'(x) > 0 \). What does the positivity of \(f'(x) \) tell us about the graph of \(f \) itself? Plot \(f \) and confirm this conclusion.

Exercises 85–88 refer to Figure 21. Length QR is called the subnormal, and length RT is called the subnormal.

85. Calculate the subnormal of \(f(x) = x^2 + 3x \) at \(x = 2 \).
86. Show that for \(n \neq 0 \), the subnormal of \(f(x) = x^n \) at \(x = c \) is equal to \(c/n \).
87. Prove in general that the subnormal at \(P \) is \(|f'(x)f(x)|\).
88. Show that \(FR \) has length \(|f(x)|\sqrt{1 + f'(x)^2} \).
SECTION 3.3 Product and Quotient Rules 117

Further Insights and Challenges

92. Two small arches have the shape of parabolas. The first is given by \(f(x) = 1 - x^2 \) for \(-1 \leq x \leq 1\) and the second by \(g(x) = 4 - (x - 4)^2 \) for \(2 \leq x \leq 6\). A board is placed on top of these arches so it rests on both (Figure 22). What is the slope of the board? \textit{Hint:} Find the tangent line to \(y = f(x) \) that intersects \(y = g(x) \) in exactly one point.

93. A vase is formed by rotating \(y = x^2 \) around the \(y \)-axis. If we drop in a marble, it will either touch the bottom point of the vase or be suspended above the bottom by touching the sides (Figure 23). How small must the marble be to touch the bottom?

94. Let \(f \) be a differentiable function, and set the function \(g(x) = f(x + c) \), where \(c \) is a constant. Use the limit definition to show that \(g'(x) = f'(x + c) \). Explain this result graphically, recalling that the graph of \(g \) is obtained by shifting the graph of \(f \) \(c \) units to the left (if \(c > 0 \)) or right (if \(c < 0 \)).

95. Negative Exponents Let \(n \) be a whole number. Use the Power Rule for \(x^n \) to calculate the derivative of \(f(x) = x^{-n} \) by showing that

\[
\frac{f(x+h) - f(x)}{h} = \frac{-1}{x^n(x+h)^n} - x^n
\]

96. Verify the Power Rule for the exponent \(1/n \), where \(n \) is a positive integer, using the following trick: Rewrite the difference quotient for \(y = x^{1/n} \) at \(x = b \) in terms of

\[
a = (b + h)^{1/n} \quad \text{and} \quad a = b^{1/n}
\]

97. Infinitely Rapid Oscillations Define

\[
f(x) = \begin{cases}
 x \sin \frac{1}{x} & \text{if } x \neq 0 \\
 0 & \text{if } x = 0
\end{cases}
\]

Show that \(f \) is continuous at \(x = 0 \) but \(f'(0) \) does not exist (see Figure 10).

98. For which values of \(c \) does the equation \(x^2 + 4 = cx \) have a unique solution? \textit{Hint:} Draw a graph.

3.3 Product and Quotient Rules

This section covers the \textbf{Product Rule} and \textbf{Quotient Rule} for computing derivatives. These two rules, together with the Chain Rule and implicit differentiation (covered in later sections), make up an extremely effective “differentiation toolkit.”

Theorem 1 Product Rule If \(f \) and \(g \) are differentiable functions, then \(f g \) is differentiable and

\[
(fg)'(x) = f'(x)g(x) + f(x)g'(x)
\]
It may be helpful to remember the Product Rule in words: The derivative of a product is equal to the derivative of the first function times the second function plus the first function times the derivative of the second function:

\[(\text{First})' \cdot \text{Second} + \text{First} \cdot (\text{Second})'\]

We prove the Product Rule after presenting three examples.

Example 1 Find the derivative of \(h(x) = x^2(9x + 2)\).

Solution This function is a product:

\[h(x) = x^2 \cdot (9x + 2)\]

By the Product Rule (in Leibniz notation),

\[h'(x) = \frac{d}{dx}(x^2)(9x + 2) + \frac{d}{dx}(9x + 2)(x^2)\]

\[= 2x(9x + 2) + (x^2)(9) = 27x^2 + 4x\]

Example 2 Find the derivative of \(y = (2 + x^{-1})(x^{3/2} + 1)\).

Solution Use the Product Rule:

\[y' = (2 + x^{-1})' (x^{3/2} + 1) + (2 + x^{-1}) (x^{3/2} + 1)\]

\[= (-x^{-2}) (x^{3/2} + 1) + (2 + x^{-1}) \left(\frac{3}{2} x^{1/2} \right) \quad \text{(compute the derivatives)}\]

\[= -x^{-1/2} - x^{-2} + 3x^{1/2} + \frac{3}{2} x^{-1/2} = \frac{1}{2} x^{-1/2} - x^{-2} + 3x^{1/2} \quad \text{(simplify)}\]

In the previous two examples, we could have avoided the Product Rule by expanding the function. Thus, the result of Example 2 can be obtained as follows:

\[y = (2 + x^{-1})(x^{3/2} + 1) = 2x^{3/2} + 2 + x^{1/2} + x^{-1}\]

\[y' = \frac{d}{dx}(2x^{3/2} + 2 + x^{1/2} + x^{-1}) = 3x^{1/2} + \frac{1}{2} x^{-1/2} - x^{-2}\]

In many cases, the function cannot be expanded and we must use the Product Rule. One such function is \(f(x) = x \cos x\) whose derivative we find in Section 3.6.

Proof of the Product Rule According to the limit definition of the derivative,

\[(fg)'(x) = \lim_{h \to 0} \frac{f(x + h)g(x + h) - f(x)g(x)}{h}\]

We can interpret the numerator as the area of the shaded region in Figure 1: the area of the larger rectangle \(f(x + h)g(x + h)\) minus the area of the smaller rectangle \(f(x)g(x)\). This shaded region is the union of two rectangular strips, so we obtain the following identity [which we can also obtain algebraically by adding and subtracting the term \(f(x)g(x)\) from the left-hand side and then manipulating the result algebraically]:

\[f(x + h)g(x + h) - f(x)g(x) = \left(f(x + h) - f(x) \right)g(x) + f(x + h)(g(x + h) - g(x))\]

Now use this identity to write \((fg)'(x)\) as a sum of two limits:

\[(fg)'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} g(x) + \lim_{h \to 0} \frac{f(x + h)}{h} g(x + h) - g(x)\]

Show that this equals \(f'(x)g(x)\). Show that this equals \(f(x)g'(x)\).
The use of the Sum Law is valid, provided that each limit on the right exists. To check that the first limit exists and to evaluate it, we note that f is differentiable. Thus,

$$\lim_{h \to 0} \frac{f(x + h) - f(x)}{h} g(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \lim_{h \to 0} g(x) = f'(x) g(x)$$

The second limit is similar, but using the facts f is continuous (because it is differentiable) and g is differentiable:

$$\lim_{h \to 0} \frac{f(x + h) g(x + h) - g(x)}{h} = \lim_{h \to 0} f(x + h) \lim_{h \to 0} \frac{g(x + h) - g(x)}{h} = f(x) g'(x)$$

Using Eq. (2) and Eq. (3) in Eq. (1), we conclude that fg is differentiable and that $(fg)'(x) = f'(x)g(x) + f(x)g'(x)$ as claimed.

CONCEPTUAL INSIGHT The Product Rule was first stated by the 29-year-old Leibniz in 1675, the year he developed some of his major ideas on calculus. To document his process of discovery for posterity, he recorded his thoughts and struggles, the moments of inspiration as well as the mistakes. In a manuscript dated November 11, 1675, Leibniz suggests incorrectly that $(fg)'$ equals $f'g'$. He then catches his error by taking $f(x) = g(x) = x$ and noticing that

$$(x^2)' = 2x \quad \text{is not equal to} \quad f'(x)g'(x) = 1 \cdot 1 = 1$$

Ten days later, on November 21, Leibniz writes down the correct Product Rule and comments, “Now this is a really noteworthy theorem.”

With the benefit of hindsight, we can point out that Leibniz might have avoided his error if he had paid attention to units. Suppose $f(t)$ and $g(t)$ represent distances in meters, where t is time in seconds. Then $(fg)'$ has units of m2/s. This cannot equal $f'g'$, which has units of (m/s)(m/s) = m2/s2.

The next theorem states the rule for differentiating quotients. Note, in particular, that $(f/g)'$ is not equal to the quotient f'/g'.

THEOREM 2 Quotient Rule If f and g are differentiable functions, then f/g is differentiable for all x such that $g(x) \neq 0$, and

$$\left(\frac{f}{g} \right)'(x) = \frac{g(x)f'(x) - f(x)g'(x)}{g(x)^2}$$

The numerator in the Quotient Rule is equal to the bottom times the derivative of the top minus the top times the derivative of the bottom:

$$\frac{\text{Bottom} \cdot (\text{Top}') - \text{Top} \cdot (\text{Bottom}')}{\text{Bottom}^2}$$

Proof of the Quotient Rule Let $Q(x) = f(x)/g(x)$. Our goal is to find the formula for $Q'(x)$. Then $f(x) = Q(x)g(x)$. Differentiating both sides, utilizing the Product Rule for the right side, we obtain $f'(x) = Q'(x)g(x) + Q(x)g'(x)$. Solving for $Q'(x)$, we obtain

$$Q'(x) = \frac{f'(x) - Q(x)g'(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

as we wanted to show.

An alternative proof appears in Exercises 58–60.
EXAMPLE 3 Compute the derivative of \(f(x) = \frac{x}{1+x^2} \).

Solution Apply the Quotient Rule:

\[
\frac{d}{dx} \left(\frac{x}{1+x^2} \right) = \frac{(1+x^2) \cdot 1 - x \cdot (2x)}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2}
\]

EXAMPLE 4 Find the tangent line to the graph of \(f(x) = \frac{3x^2+x-2}{4x^3+1} \) at \(x = 1 \).

Solution

\[
f'(x) = \frac{d}{dx} \left(\frac{3x^2+x-2}{4x^3+1} \right) = \frac{(4x^3+1)(6x+x^2) - (3x^2+x-2)(12x^2)}{(4x^3+1)^2} = \frac{12x^4+8x^3+6x+1}{(4x^3+1)^2}
\]

At \(x = 1 \),

\[
f(1) = \frac{3+1-2}{4+1} = \frac{2}{5}, \quad f'(1) = \frac{-12-8+24+6+1}{25} = \frac{11}{25}
\]

An equation of the tangent line at \((1, \frac{2}{5})\) is

\[y - \frac{2}{5} = \frac{11}{25} (x - 1) \quad \text{or} \quad y = \frac{11}{25} x - \frac{1}{25}\]

EXAMPLE 5 Power Delivered by a Battery The power that a battery supplies to an apparatus such as a laptop depends on the internal resistance of the battery. For a battery of voltage \(V \) and internal resistance \(r \), the total power delivered to an apparatus of resistance \(R \) (Figure 2) is

\[
P = \frac{V^2 R}{(R+r)^2}
\]

(a) Calculate \(\frac{dP}{dR} \), assuming that \(V \) and \(r \) are constants.

(b) Where, in the graph of \(P \) versus \(R \), is the tangent line horizontal?

Solution

(a) Because \(V \) is a constant, we obtain (using the Quotient Rule)

\[
\frac{dP}{dR} = V^2 \frac{d}{dR} \left(\frac{R}{(R+r)^2} \right) = V^2 \frac{(R+r)^2 \cdot \frac{d}{dR} R - R \cdot \frac{d}{dR} (R+r)^2}{(R+r)^4}
\]
SECTION 3.3 Product and Quotient Rules

We have \(\frac{d}{dr}R = 1 \), and \(\frac{d}{dt}t = 0 \) because \(r \) is a constant. Thus,
\[
\frac{d}{dR} (R + r)^2 = \frac{d}{dR} (R^2 + 2rR + r^2) = \frac{d}{dR}R^2 + 2r \frac{d}{dR}R + \frac{d}{dR}r^2 = 2R + 2r + 0 = 2(R + r)
\]

Using Eq. (5) in Eq. (4), we obtain
\[
\frac{dP}{dR} = \frac{V^2 (R + r)^2 - 2R(R + r)}{(R + r)^4} = \frac{V^2 (R + r) - 2R}{(R + r)^3} = \frac{V^2 - 2R}{(R + r)^3}
\]

(b) The tangent line is horizontal when the derivative is zero. We see from Eq. (6) that the derivative is zero when \(R = 0 \)—that is, when \(R = r \).

GRAPHICAL INSIGHT Figure 3 shows that the point where the tangent line is horizontal is the maximum point on the graph. This proves an important result in circuit design: Maximum power is delivered when the resistance of the load (apparatus) is equal to the internal resistance of the battery.

3.3 SUMMARY

- Two basic rules of differentiation:
 - Product Rule: \((fg)' = f'g + fg'\)
 - Quotient Rule: \(\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}\)
- Remember: The derivative of \(fg \) is not equal to \(f'g' \). Similarly, the derivative of \(f/g \) is not equal to \(f'/g' \).

3.3 EXERCISES

Preliminary Questions
1. Are the following statements true or false? If false, state the correct version.
 - (a) \(fg \) denotes the function whose value at \(x \) is \(f(g(x)) \).
 - (b) \(f/g \) denotes the function whose value at \(x \) is \(f(x)/g(x) \).
 - (e) The derivative of the product is the product of the derivatives.

 \(\frac{d}{dx} f(x) = x^3(2x^2 + 1) \)
 \(\frac{d}{dx} f(x) = (3x - 5)(2x^2 - 3) \)
 \(\frac{d}{dx} f(x) = \sqrt{x}(1 - x^3) \)
 \(\frac{d}{dx} f(x) = (3x^4 + 2x^6)(x - 2) \)
 \(\frac{dh}{ds} \bigg|_{s=4} = h(s) = (s^{-1/2} + 2s)(7 - s^{-1}) \)
 \(y = (t - 8t^{-1})(t + t^2) \)
 \(\frac{d}{dx} f(x) = \frac{x}{x - 2} \)
 \(\frac{d}{dx} f(x) = \frac{x + 4}{x^2 + x + 1} \)
 \(\frac{d}{dt} g(t) = \frac{t^2 + 1}{t^2 - 1} \)
 \(\frac{d}{dz} w(z) = \frac{z^2}{\sqrt{z^2} + z} \)
 \(g(x) = \frac{1}{1 + x^{3/2}} \)
 \(h(s) = \frac{s^{3/2}}{s^2 + 1} \)

Exercises
In Exercises 1–6, use the Product Rule to calculate the derivative.
1. \(f(x) = x^3(2x^2 + 1) \)
2. \(f(x) = (3x - 5)(2x^2 - 3) \)
3. \(f(x) = \sqrt{x}(1 - x^3) \)
4. \(f(x) = (3x^4 + 2x^6)(x - 2) \)
5. \(\frac{dh}{ds} \bigg|_{s=4} = h(s) = (s^{-1/2} + 2s)(7 - s^{-1}) \)
6. \(y = (t - 8t^{-1})(t + t^2) \)

In Exercises 7–12, use the Quotient Rule to calculate the derivative.
7. \(f(x) = \frac{x}{x - 2} \)
8. \(f(x) = \frac{x + 4}{x^2 + x + 1} \)
9. \(\frac{dg}{dt} \bigg|_{t=2} = g(t) = \frac{t^2 + 1}{t^2 - 1} \)
10. \(\frac{dw}{dz} \bigg|_{z=9} = w = \frac{z^2}{\sqrt{z^2} + z} \)
11. \(g(x) = \frac{1}{1 + x^{3/2}} \)
12. \(h(s) = \frac{s^{3/2}}{s^2 + 1} \)
In Exercises 13–16, calculate the derivative in two ways. First use the Product or Quotient Rule; then rewrite the function algebraically and apply the Power Rule directly.

13. \(f(t) = (2t + 1)(t^2 - 2) \)
14. \(f(x) = x^2(3 + x^{-1}) \)
15. \(h(t) = \frac{t^2 - 1}{t - 1} \)
16. \(g(x) = \frac{x^3 + 2x^2 + 3x - 1}{x} \)

In Exercises 17–38, calculate the derivative.

17. \(f(x) = (x^3 + 5)(x^3 + x + 1) \)
18. \(f(x) = \left(\frac{1}{x} - x^2 \right)(x^3 + 1) \)
19. \(\frac{dy}{dx} \bigg|_{x=3} \), \(y = \frac{1}{x + 10} \)
20. \(\frac{dz}{dx} \bigg|_{x=-2} \), \(z = \frac{x}{3x^2 + 1} \)
21. \(f(x) = (\sqrt{x} + 1)(\sqrt{x} - 1) \)
22. \(f(x) = \frac{9\sqrt{x}^5/2 - 2}{x} \)
23. \(\frac{dy}{dx} \bigg|_{x=2} \), \(y = \frac{x^4 - 4}{x^2 - 5} \)
24. \(f(x) = \frac{x^4 - x - 1}{x + 1} \)
25. \(\frac{dz}{dx} \bigg|_{x=1} \), \(z = \frac{1}{x^3 + 1} \)
26. \(f(x) = \frac{3x^3 - x^2 + 2}{\sqrt{x}} \)
27. \(h(t) = \frac{t}{(t+1)(t^2 + 1)} \)
28. \(f(x) = x^3/2(2x^4 - 3x + x^{-1/2}) \)
29. \(f(x) = 3^{1/2} \cdot 5^{1/2} \)
30. \(h(x) = \pi^2(x - 1) \)
31. \(f(x) = (x + 3)(x - 1)(x - 5) \)
32. \(h(x) = 3(x + 4)(x^2 + 1) \)
33. \(f(x) = \frac{x^3/2(x^2 + 1)}{x + 1} \)
34. \(g(z) = \frac{(z - 2)(z^2 + 1)}{z} \)
35. \(g(z) = \frac{(z^2 - 4)}{(z - 1)} \cdot \frac{(z^2 - 1)}{(z + 2)} \) \(\text{Hint: Simplify first.} \)
36. \(\frac{d}{dx} \left((ax + b)(abx^2 + 1) \right) \) \((a, b \text{ constants}) \)
37. \(\frac{d}{dt} \left(\frac{xt - 4}{t^2 - x} \right) \) \((x \text{ constant}) \)
38. \(\frac{d}{dx} \left(\frac{ax + b}{cx + d} \right) \) \((a, b, c, d \text{ constants}) \)

In Exercises 39–42, calculate the derivative using the values:

<table>
<thead>
<tr>
<th>(f(4))</th>
<th>(f'(4))</th>
<th>(g(4))</th>
<th>(g'(4))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-2</td>
<td>5</td>
<td>-1</td>
</tr>
</tbody>
</table>

39. \((fg)'(4) \) and \((f/g)'(4) \)
40. \(F'(4) \), where \(F(x) = x^2 f(x) \)
41. \(G'(4) \), where \(G(x) = (g(x))^2 \)
42. \(H'(4) \), where \(H(x) = \frac{x}{g(x)f(x)} \)

43. Calculate \(F'(0) \), where
\[
F(x) = \frac{x^9 + x^8 + 4x^5 - 7x}{x^4 - 3x^2 + 2x + 1}
\]
\text{Hint: Do not calculate } F'(x). \text{ Instead, write } F(x) = f(x)/g(x) \text{ and express } F'(0) \text{ directly in terms of } f(0), f'(0), g(0), g'(0).

44. Proceed as in Exercise 43 to calculate \(F'(0) \), where
\[
F(x) = \left(1 + x + x^{4/3} + x^{5/3}\right) \frac{3x^3 + 5x^4 + 5x + 1}{8x^9 - 7x^4 + 1}
\]

45. Verify the formula \((x^3)' = 3x^2 \) by writing \(x^3 = x \cdot x \cdot x \) and applying the Product Rule.

46. \(\text{GU} \) Plot the derivative of \(f(x) = x/(x^2 + 1) \) over \([-4, 4]\). Use the graph to determine the intervals on which \(f'(x) > 0 \) and \(f'(x) < 0 \). Then plot \(f \) and describe how the sign of \(f'(x) \) is reflected in the graph of \(f \).

47. \(\text{GU} \) Plot \(f(x) = x/(x^2 - 1) \) (in a suitably bounded viewing box). Use the plot to determine whether \(f'(x) \) is positive or negative on its domain \(\{x : x \neq \pm 1\} \). Then compute \(f'(x) \) and confirm your conclusion algebraically.

48. Let \(P = V^2 R/(R + r)^2 \) as in Example 5. Calculate \(dP/dr \), assuming that \(r \) is variable and \(R \) is constant.

49. Find all values of \(a \) such that the tangent line to \(f(x) = \frac{x - 1}{x + 8} \) at \(x \) passes through the origin (Figure 4).

![Figure 4](image-url)

50. Current \(I \) (amperes), voltage \(V \) (volts), and resistance \(R \) (ohms) in a circuit are related by Ohm’s Law, \(I = V/R \).

(a) Calculate \(\frac{dI}{dR} \) if \(V \) is constant with value \(V = 24 \).

(b) Calculate \(\frac{dV}{dR} \) if \(I \) is constant with value \(I = 4 \).

51. The revenue per month earned by the Couture clothing chain at time \(t \) is \(R(t) = N(t)S(t) \), where \(N(t) \) is the number of stores and \(S(t) \) is average revenue per store per month. Couture embarks on a two-part campaign: (A) to build new stores at a rate of 5 stores per month, and (B) to use advertising to increase average revenue per store at a rate of \($10,000 \) per month. Assume that \(N(0) = 50 \) and \(S(0) = $150,000 \).

(a) Show that total revenue will increase at the rate \(\frac{dR}{dt} = 5S(t) + 10,000N(t) \).

Note that the two terms in the Product Rule correspond to the separate effects of increasing the number of stores on the one hand, and the average revenue per store on the other.

(b) Calculate \(\frac{dR}{dt} \) at \(t = 0 \), which choice will grow revenue most rapidly?

52. The \textit{tip speed ratio} of a turbine (Figure 5) is the ratio \(R = T/W \), where \(T \) is the speed of the tip of a blade and \(W \) is the speed of the wind. (Engineers have found empirically that a turbine with \(n \) blades extracts maximum power from the wind when \(R = 2\pi/n \).) Calculate \(dR/dt \) (in minutes) if \(W = 35 \text{ km/h} \) and \(W \) decreases at a rate of 4 \text{ km/h per minute}, and the tip speed has constant value \(T = 150 \text{ km/h} \).
and solve for differentiable. Compute the derivative of \(59. \) Derivative of the Reciprocal

\[
\text{Hint: Show that the Power Rule holds for}\n\text{63. The Power Rule Revisited}\n\text{Further Insights and Challenges}\n\text{62. Carry out Maria Agnesi’s proof of the Quotient Rule from her book on calculus, published in 1748: Assume that}\n\text{66. Figure 7 is the graph of a polynomial with roots at}\n\text{Exercises 64 and 65: A basic fact of algebra states that}\n\text{Let } f(x) = g(x) = x. \text{Show that } (f/g)' \neq f'/g'.
\text{Show that } (f^2)' = 2f f'.
\text{Show that } (f^3)' = 3f^2 f'.
\text{Exercises 64 and 65: A basic fact of algebra states that c is a root of a polynomial f if and only if } f(x) = (x - c)g(x) \text{ for some polynomial g. We say that c is a multiple root if } f(x) = (x - c)^2 h(x), \text{where h is a polynomial.}
\text{Show that } f is a multiple root of f if and only if c is a root of both f and f'.
\text{Use Exercise 64 to determine whether } c = -1 \text{ is a multiple root:}
(a) \quad x^5 + 2x^4 - 4x^3 - 8x^2 - x + 2
(b) \quad x^4 + x^3 - 5x^2 - 3x + 2
\text{Figure 7 is the graph of a polynomial with roots at A, B, and C. Which of these is a multiple root? Explain your reasoning using Exercise 64.}
\text{Recall the notation for the average rate of change of a function } y = f(x) \text{ over an interval } [x_0, x_1]:
\Delta y = \text{change in } y = f(x_1) - f(x_0)
\Delta x = \text{change in } x = x_1 - x_0
\text{Average Rate of Change} = \frac{\Delta y}{\Delta x} = \frac{f(x_1) - f(x_0)}{x_1 - x_0}
In our prior discussion in Section 2.1, limits and derivatives had not yet been introduced. Now that we have them at our disposal, we can define the instantaneous rate of change of y with respect to x at x = x₀:

\[
\text{Instantaneous Rate of Change } = f'(x₀) = \lim_{Δx \to 0} \frac{Δy}{Δx} = \lim_{x₁ \to x₀} \frac{f(x₁) - f(x₀)}{x₁ - x₀}
\]

Keep in mind the geometric interpretations: The average rate of change is the slope of the secant line (Figure 1), and the instantaneous rate of change is the slope of the tangent line (Figure 2).

Leibniz notation \(dy/dx\) is particularly convenient because it specifies that we are considering the rate of change of \(y\) with respect to the independent variable \(x\). The rate \(dy/dx\) is measured in units of \(y\) per unit of \(x\). For example, the rate of change of temperature with respect to time has units such as degrees per minute, whereas the rate of change of temperature with respect to altitude has units such as degrees per kilometer.

EXAMPLE 1 Table 1 contains data on the temperature \(T\) on the surface of Mars at Martian time \(t\), collected by the NASA Pathfinder space probe.

(a) Calculate the average rate of change of temperature \(T\) from 6:11 AM to 9:05 AM.

(b) Use Figure 3 to estimate the rate of change at \(t = 12:28\) PM.

Solution

(a) The time interval [6:11, 9:05] has length 2 h, 54 min, or \(Δt = 2.9\) h. According to Table 1, the change in temperature over this time interval is

\[
ΔT = -44.3 - (-71.6) = 27.3°C
\]

The average rate of change is the ratio

\[
\frac{ΔT}{Δt} = \frac{27.3}{2.9} \approx 9.4°C/h
\]

(b) The rate of change is the derivative \(dT/dt\), which is equal to the slope of the tangent line through the point (12:28, -22.3) in Figure 3. To estimate the slope, we must choose a second point on the tangent line. Let’s use the point labeled A, whose coordinates are approximately (4:48, -51). The time interval from 4:48 AM to 12:28 PM has length 7 h, 40 min, or \(Δt \approx 7.67\) h, and

\[
\frac{dT}{dt} = \text{slope of tangent line} \approx \frac{-22.3 - (-51)}{7.67} \approx 3.7°C/h
\]

EXAMPLE 2 Let \(A = πr²\) be the area of a circle of radius \(r\).

(a) Compute \(dA/dr\) at \(r = 2\) and \(r = 5\).

(b) Why is \(dA/dr\) larger at \(r = 5\)?
Solution The rate of change of area with respect to radius is the derivative
\[\frac{dA}{dr} = \pi r^2 \]

(a) We have
\[\frac{dA}{dr} \bigg|_{r=2} = 2\pi (2) \approx 12.57 \quad \text{and} \quad \frac{dA}{dr} \bigg|_{r=5} = 2\pi (5) \approx 31.42 \]

(b) The derivative \(dA/dr \) measures how the area of the circle changes when \(r \) increases. Figure 4 shows that when the radius increases by \(\Delta r \), the area increases by a band of thickness \(\Delta A \). The area of the band is greater at \(r = 5 \) than at \(r = 2 \). Therefore, the derivative is larger (and the tangent line is steeper) at \(r = 5 \). In general, for a fixed \(\Delta r \), the change in area \(\Delta A \) is greater when \(r \) is larger.

\[\lim_{\Delta r \to 0} \frac{\Delta A}{\Delta r} = 2\pi r \]

For small values of \(h \), the difference quotient is close to the derivative itself:
\[f'(x_0) \approx \frac{f(x_0 + h) - f(x_0)}{h} \]

This approximation generally improves as \(h \) gets smaller, but in some applications, the approximation is already useful with \(h = 1 \). Setting \(h = 1 \) in Eq. (2) gives
\[f'(x_0) \approx f(x_0 + 1) - f(x_0) \]

In other words, \(f'(x_0) \) is approximately equal to the change in \(f \) caused by a 1-unit change in \(x \) when \(x = x_0 \).

EXAMPLE 3 Stopping Distance For speeds \(s \) between 30 and 75 mph, the stopping distance of an automobile after the brakes are applied is approximately \(F(s) = 1.1s + 0.05s^2 \) ft. For \(s = 60 \) mph:

(a) Estimate the change in stopping distance if the speed is increased by 1 mph.
(b) Compare your estimate with the actual increase in stopping distance.

Solution
(a) We have
\[F'(s) = \frac{d}{ds}(1.1s + 0.05s^2) = 1.1 + 0.1s \text{ ft/mph} \]
\[F'(60) = 1.1 + 6 = 7.1 \text{ ft/mph} \]

Using Eq. (3), we estimate
\[\frac{F(61) - F(60)}{1} \approx F'(60) = 7.1 \text{ ft} \]

Thus, when you increase your speed from 60 to 61 mph, your stopping distance increases by roughly 7 ft.

(b) The actual change in stopping distance is \(F(61) - F(60) = 253.15 - 246 = 7.15 \), so the estimate in (a) is fairly accurate.
Marginal Cost in Economics

Let \(C(x) \) denote the dollar cost (including labor and parts) of producing \(x \) units of a particular product. The number \(x \) of units manufactured is called the production level. To study the relation between costs and production, economists define the marginal cost at production level \(x_0 \) as the cost of producing 1 additional unit:

\[\text{Marginal cost} = C(x_0 + 1) - C(x_0) \]

In this setting, Eq. (3) usually gives a good approximation, so we take \(C'(x_0) \) as an estimate of the marginal cost.

EXAMPLE 4 Cost of an Air Flight

Company data suggest that the total dollar cost of a certain flight is approximately \(C(x) = 0.0005x^3 - 0.38x^2 + 120x \), where \(x \) is the number of passengers (Figure 5).

(a) Estimate the marginal cost of an additional passenger if the flight already has 150 passengers.

(b) Compare your estimate with the actual cost of an additional passenger.

(c) Is it more expensive to add a passenger when \(x = 150 \) or when \(x = 200 \)?

Solution

The derivative is \(C'(x) = 0.0015x^2 - 0.76x + 120 \).

(a) We estimate the marginal cost at \(x = 150 \) by the derivative

\[C'(150) = 0.0015(150)^2 - 0.76(150) + 120 = 39.75 \]

Thus, it costs approximately $39.75 to add one additional passenger.

(b) The actual cost of adding one additional passenger is

\[C(151) - C(150) \approx 11,177.10 - 11,137.50 = 39.60 \]

Our estimate of $39.75 is close enough for practical purposes.

(c) The marginal cost at \(x = 200 \) is approximately

\[C'(200) = 0.0015(200)^2 - 0.76(200) + 120 = 28 \]

Since 39.75 > 28, it is more expensive to add a passenger when \(x = 150 \).

Linear Motion

Recall that linear motion is motion along a straight line. This includes horizontal motion along a straight highway and vertical motion of a falling object. Let \(s(t) \) denote the position or distance from the origin at time \(t \). Velocity is the rate of change of position with respect to time:

\[v(t) = \text{velocity} = \frac{ds}{dt} \]

The sign of \(v(t) \) indicates the direction of motion. For example, if \(s(t) \) is the height above ground, then \(v(t) > 0 \) indicates that the object is rising. Speed is defined as the absolute value of velocity \(|v(t)|\).

Figure 6 shows the position of a car as a function of time. Remember that the height of the graph represents the car’s distance from the point of origin. The slope of the tangent line is the velocity. Here are some facts we can glean from the graph:

- **Speeding up or slowing down?** The tangent lines get steeper in the interval \([0, 1]\), so the car was speeding up during the first hour. They get flatter in the interval \([1, 2]\), so the car slowed down in the second hour.

- **Standing still** The graph is horizontal over \([2, 3]\) (perhaps the driver stopped at a restaurant for an hour).

- **Returning to the same spot** The graph rises and falls in the interval \([3, 4]\), indicating that the driver returned to the restaurant (perhaps she left her cell phone there).
- **Average velocity** The graph rises more over [0, 2] than over [3, 5], so the average velocity was greater over the first 2 hours than over the last two hours.

EXAMPLE 5 A truck enters the off-ramp of a highway at \(t = 0 \). Its position after \(t \) seconds is \(s(t) = 25t - 0.3t^3 \) m for \(0 \leq t \leq 5 \).

(a) How fast is the truck going at the moment it enters the off-ramp?

(b) Is the truck speeding up or slowing down?

Solution The truck’s velocity at time \(t \) is \(v(t) = \frac{d}{dt}(25t - 0.3t^3) = 25 - 0.9t^2 \).

(a) The truck enters the off-ramp with velocity \(v(0) = 25 \) m/s.
(b) Since \(v(t) = 25 - 0.9t^2 \) is decreasing (Figure 7), the truck is slowing down.

Motion Under the Influence of Gravity

Galileo discovered that the height \(s(t) \) and velocity \(v(t) \) at time \(t \) (seconds) of an object tossed vertically in the air near the earth’s surface are given by the formulas

\[
\begin{align*}
 s(t) &= s_0 + v_0 t - \frac{1}{2}gt^2, \\
 v(t) &= \frac{ds}{dt} = v_0 - gt
\end{align*}
\]

The constants \(s_0 \) and \(v_0 \) are the initial values:

- \(s_0 = s(0) \), the position at time \(t = 0 \).
- \(v_0 = v(0) \), the velocity at \(t = 0 \).
- \(-g \) is the acceleration due to gravity on the surface of the earth (negative because the up direction is positive), where

\[g \approx 9.8 \text{ m/s}^2 \quad \text{or} \quad g \approx 32 \text{ ft/s}^2 \]

A simple observation enables us to find the object’s maximum height. Since velocity is positive as the object rises and negative as it falls back to Earth, the object reaches its maximum height at the moment of transition, when it is neither rising nor falling. At that moment, its velocity is zero. In other words, the maximum height is attained when \(v(t) = 0 \). At this moment, the tangent line to the graph of \(s \) is horizontal (Figure 8).

EXAMPLE 6 Finding the Maximum Height A stone is shot with a slingshot vertically upward with an initial velocity of 50 m/s from an initial height of 10 m.

(a) Find the velocity \(t = 2 \) and \(t = 7 \). Explain the change in sign.

(b) What is the stone’s maximum height and when does it reach that height?

Solution Apply Eq. (4) with \(s_0 = 10 \), \(v_0 = 50 \), and \(g = 9.8 \):

\[
\begin{align*}
 s(t) &= 10 + 50t - 4.9t^2, \\
 v(t) &= 50 - 9.8t
\end{align*}
\]

(a) Therefore,

\[
v(2) = 50 - 9.8(2) = 30.4 \text{ m/s}, \quad v(7) = 50 - 9.8(7) = -18.6 \text{ m/s}
\]

At \(t = 2 \), the stone is rising and its velocity \(v(2) \) is positive (Figure 8). At \(t = 7 \), the stone is already on the way down and its velocity \(v(7) \) is negative.

(b) Maximum height is attained when the velocity is zero, so we solve

\[
v(t) = 50 - 9.8t = 0 \quad \Rightarrow \quad t = \frac{50}{9.8} \approx 5.1
\]

The stone reaches maximum height at \(t = 5.1 \) s. Its maximum height is

\[s(5.1) = 10 + 50(5.1) - 4.9(5.1)^2 \approx 137.6 \text{ m} \]
In the previous example, we specified the initial values of position and velocity. In the next example, the goal is to determine initial velocity.

EXAMPLE 7 Finding Initial Conditions What initial velocity \(v_0 \) is required for a bullet, fired vertically from ground level, to reach a maximum height of 2 km?

Solution We need a formula for maximum height as a function of initial velocity \(v_0 \). The initial height is \(s_0 = 0 \), so the bullet’s height is \(s(t) = v_0 t - \frac{1}{2}gt^2 \) by Galileo’s formula. Maximum height is attained when the velocity is zero:

\[
v(t) = v_0 - gt = 0 \quad \Rightarrow \quad t = \frac{v_0}{g}
\]

The maximum height is the value of \(s(t) \) at \(t = v_0/g \):

\[
s\left(\frac{v_0}{g}\right) = v_0 \left(\frac{v_0}{g}\right) - 1/2 g \left(\frac{v_0}{g}\right)^2 = \frac{v_0^2}{g} - \frac{1}{2} \frac{v_0^2}{g} = \frac{v_0^2}{2g}
\]

Now we can solve for \(v_0 \) using the value \(g = 9.8 \text{ m/s}^2 \) (note that 2 km = 2000 m).

\[
\text{Maximum height} = \frac{v_0^2}{2g} = \frac{v_0^2}{2(9.8)} = 2000 \text{ m}
\]

This yields \(v_0 = \sqrt{(2)(9.8)(2000)} \approx 198 \text{ m/s} \). In reality, the initial velocity would have to be considerably greater to overcome air resistance.

HISTORICAL PERSPECTIVE

Galileo Galilei (1564–1642) discovered the laws of motion for falling objects on the earth’s surface around 1600. This paved the way for Newton’s general laws of motion. How did Galileo arrive at his formulas? The motion of a falling object is too rapid to measure directly, without modern photographic or electronic apparatus. To get around this difficulty, Galileo experimented with balls rolling down an incline (Figure 9). For a sufficiently flat incline, he was able to measure the motion with a water clock and found that the velocity of the rolling ball is proportional to time. He then reasoned that motion in free-fall is just a faster version of motion down an incline and deduced the formula \(v(t) = -gt \) for falling objects (assuming zero initial velocity).

Prior to Galileo, it had been assumed incorrectly that heavy objects fall more rapidly than lighter ones. Galileo realized that this was not true (as long as air resistance is negligible), and indeed, the formula \(v(t) = -gt \) shows that the velocity depends on time but not on the weight of the object. Interestingly, 300 years later, another great physicist, Albert Einstein, was deeply puzzled by Galileo’s discovery that all objects fall at the same rate regardless of their weight. He called this the Principle of Equivalence and sought to understand why it was true. In 1916, after a decade of intensive work, Einstein developed the General Theory of Relativity, which finally gave a full explanation of the Principle of Equivalence in terms of the geometry of space and time.

3.4 SUMMARY

- The (instantaneous) rate of change of \(y = f(x) \) with respect to \(x \) at \(x = x_0 \) is defined as the derivative

\[
f'(x_0) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}
\]

- The rate \(dy/dx \) is measured in units of \(y \) per unit of \(x \).

- For linear motion, velocity \(v(t) \) is the rate of change of position \(s(t) \) with respect to time—that is, \(v(t) = s'(t) \).

- In some applications, \(f'(x_0) \) provides a good estimate of the change in \(f \) due to a 1-unit increase in \(x \) when \(x = x_0 \):

\[
f'(x_0) \approx f(x_0 + 1) - f(x_0)
\]
- Marginal cost is the cost of producing one additional unit. If \(C(x) \) is the cost of producing \(x \) units, then the marginal cost at production level \(x_0 \) is \(C(x_0 + 1) - C(x_0) \). The derivative \(C'(x_0) \) is often a good estimate for marginal cost.

- Galileo’s formulas for an object rising or falling under the influence of gravity near the Earth’s surface ignoring air resistance (\(s_0 = \) initial position, \(v_0 = \) initial velocity):

\[
s(t) = s_0 + v_0t - \frac{1}{2}gt^2, \quad v(t) = v_0 - gt
\]

where \(g \approx 9.8 \text{ m/s}^2 \), or \(g \approx 32 \text{ ft/s}^2 \). Maximum height is attained when \(v(t) = 0 \).

3.4 Exercises

Preliminary Questions

1. Which units might be used for each rate of change?
 (a) Pressure (in atmospheres) in a water tank with respect to depth
 (b) The rate of a chemical reaction (change in concentration with respect to time with concentration in moles per liter)

2. Two trains travel from New Orleans to Memphis in 4 h. The first train travels at a constant velocity of 90 mph, but the velocity of the second train varies. What was the second train’s average velocity during the trip?

3. Estimate \(f(26) \), assuming that
 \[
f(25) = 43, \quad f'(25) = 0.75
\]

4. The population \(P(t) \) of Freedonia in 2009 was \(P(2009) = 5 \) million.
 (a) What is the meaning of \(P'(2009) \)?
 (b) Estimate \(P(2010) \) if \(P'(2009) = 0.2 \).

Exercises

In Exercises 1–8, find the rate of change.

1. Area of a square with respect to its side \(s \) when \(s = 5 \)
2. Volume of a cube with respect to its side \(s \) when \(s = 5 \)
3. Cube root \(\sqrt[3]{3} \) with respect to \(x \) when \(x = 1, 8, 27 \)
4. The reciprocal \(1/x \) with respect to \(x \) when \(x = 1, 2, 3 \)
5. The diameter of a circle with respect to radius
6. Surface area \(A \) of a sphere with respect to radius \(r \) (\(A = 4\pi r^2 \))
7. Volume \(V \) of a cylinder with respect to radius if the height is equal to the radius
8. Speed of sound \(v \) (in m/s) with respect to air temperature \(T \) (in kelvins), where \(v = 20\sqrt{T} \)

In Exercises 9–11, refer to Figure 10, the graph of distance \(s \) from the origin as a function of time for a car trip.

9. Find the average velocity over each interval.
 (a) \([0, 0.5]\) (b) \([0.5, 1]\) (c) \([1, 1.5]\) (d) \([1, 2]\)
10. At what time is velocity at a maximum?
11. Match the descriptions (i)–(iii) with the intervals (a)–(c).
 (i) Velocity increasing
 (ii) Velocity decreasing
 (iii) Velocity negative
 (a) \([0, 0.5]\) (b) \([2.5, 3]\) (c) \([1.5, 2]\)

Figure 10 Distance from the origin versus time for a car trip.

Figure 11

12. Use the data from Table 1 in Example 1 to calculate the average rate of change of Martian temperature \(T \) with respect to time \(t \) over the interval from 8:36 AM to 9:34 AM.
13. Use Figure 3 from Example 1 to estimate the instantaneous rate of change of Martian temperature with respect to time (in degrees Celsius) at \(t = 4 \) AM.
14. The temperature (in degrees Celsius) of an object at time \(t \) (in minutes) is
 \[
 T(t) = \frac{3}{8}t^2 - 15t + 180 \quad \text{for} \quad 0 \leq t \leq 20.
 \]
 At what rate is the object cooling at \(t = 10 \)? (Give correct units.)
15. The velocity (in centimeters per second) of blood molecules flowing through a capillary of radius \(0.008 \text{ cm} \) is \(v = 6.4 \times 10^{-8} - 0.001r^2 \), where \(r \) is the distance from the molecule to the center of the capillary. Find the rate of change of velocity with respect to \(r \) when \(r = 0.004 \text{ cm} \).
16. Figure 11 displays the voltage \(V \) across a capacitor as a function of time while the capacitor is being charged. Estimate the rate of change of voltage at \(t = 20 \text{ s} \). Indicate the values in your calculation and include proper units. Does voltage change more quickly or more slowly as time goes on? Explain in terms of tangent lines.
17. Use Figure 12 to estimate dT/dh at $h = 30$ and 70, where T is atmospheric temperature (in degrees Celsius) and h is altitude (in kilometers). Where is dT/dh equal to zero?

![Figure 12 Atmospheric temperature versus altitude.](image)

18. The earth exerts a gravitational force of $F(r) = (2.99 \times 10^{16})/r^2$ newtons on an object with a mass of 75 kg located r meters from the center of the earth. Find the rate of change of force with respect to distance r at the surface of the earth.

19. Calculate the rate of change of escape velocity $v_{esc} = (2.82 \times 10^7)\sqrt{\ell - 1/2}$ m/s with respect to distance r from the center of the earth.

20. The power delivered by a battery to an apparatus of resistance R (in ohms) is $P = 2.25R/(R + 0.5)^2$ watts (W). Find the rate of change of power with respect to resistance for $R = 3 \Omega$ and $R = 5 \Omega$.

21. The position of a particle moving in a straight line during a 5-s trip is $s(t) = t^2 - t + 10$ cm. Find a time t at which the instantaneous velocity is equal to the average velocity for the entire trip beginning at $t = 0$.

22. The height (in meters) of a helicopter at time t (in minutes) is $s(t) = 600t - 3t^2$ for $0 \leq t \leq 12$.
 (a) Plot s and velocity v as functions of time.
 (b) Find the velocity at $t = 8$ and $t = 10$.
 (c) Find the maximum height of the helicopter.

23. A particle moving along a line has position $s(t) = t^4 - 18t^2$ m at time t seconds. At which times does the particle pass through the origin? At which times is the particle instantaneously motionless (i.e., it has zero velocity)?

24. Plot the position of the particle in Exercise 23. What is the farthest distance to the left of the origin attained by the particle?

25. A bullet is fired in the air vertically from ground level with an initial velocity 200 m/s. Find the bullet’s maximum velocity and maximum height.

26. Find the velocity of an air conditioner accidentally dropped from a height of 300 m at the moment it hits the ground.

27. A ball tossed in the air vertically from ground level returns to earth 4 s later. Find the initial velocity and maximum height of the ball.

28. Olivia is gazing out a window from the tenth floor of a building when a bucket (dropped by a window washer) passes by. She notes that it hits the ground 1.5 s later. Determine the floor from which the bucket was dropped if each floor is 5 m high and the window is in the middle of the tenth floor. Neglect air friction.

29. Show that for an object falling according to Galileo’s formula, the average velocity over any time interval $[t_1, t_2]$ is equal to the average of the instantaneous velocities at t_1 and t_2.

30. An object falls under the influence of gravity near the earth’s surface. Which of the following statements is true? Explain.
 (a) Distance traveled increases by equal amounts in equal time intervals.
 (b) Velocity increases by equal amounts in equal time intervals.
 (c) The derivative of velocity increases with time.

31. By Faraday’s Law, if a conducting wire of length ℓ meters moves at velocity v m/s perpendicular to a magnetic field of strength B (in teslas), a voltage of size $V = B\ell v$ is induced in the wire. Assume that $B = 2$ and $\ell = 0.5$.
 (a) Calculate dV/dv.
 (b) Find the rate of change of V with respect to time t if $v(t) = 4t + 9$.

32. The voltage V, current I, and resistance R in a circuit are related by Ohm’s Law: $V = IR$, where the units are volts, amperes, and ohms. Assume that voltage is constant with $V = 12$ volts (V). Calculate (specifying units):
 (a) The average rate of change of I with respect to R for the interval from $R = 8$ to $R = 8.1$
 (b) The rate of change of I with respect to R when $R = 8$
 (c) The rate of change of R with respect to I when $I = 1.5$

33. Ethan finds that with h hours of tutoring, he is able to answer correctly $S(h)$ percent of the problems on a math exam. Which would you expect to be larger: $S'(3)$ or $S'(30)$? Explain.

34. Suppose $\theta(t)$ measures the angle between a clock’s minute and hour hands. What is $\theta'(t)$ at 3 o’clock?

35. To determine drug dosages, doctors estimate a person’s body surface area (BSA) (in meters squared) using the formula $BSA = \sqrt{h \ell m/60}$, where h is the height in centimeters and m the mass in kilograms. Calculate the rate of change of BSA with respect to mass for a person of constant height $h = 180$. What is this rate at $m = 70$ and $m = 80$? Express your result in the correct units. Does BSA increase more rapidly with respect to mass at lower or higher body mass?

36. The atmospheric CO2 level $A(t)$ at Mauna Loa, Hawaii, at time t (in parts per million by volume) is recorded by the Scripps Institution of Oceanography. Reading across, the annual values for the 4-year intervals are

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.54</td>
<td>0.28</td>
<td>1.03</td>
<td>1.69</td>
<td>1.02</td>
<td>1.73</td>
<td>1.36</td>
</tr>
<tr>
<td>Value</td>
<td>2.13</td>
<td>0.48</td>
<td>1.25</td>
<td>1.62</td>
<td>1.56</td>
<td>1.60</td>
<td>2.66</td>
</tr>
</tbody>
</table>

 (b) In which of the years from (a) did the approximation to $A'(t)$ take on its largest and smallest values?
 (c) In which of these years does the approximation suggest that the CO2 level was the most constant?

37. The tangent lines to the graph of $f(x) = x^2$ grow steeper as x increases. At what rate do the slopes of the tangent lines increase?
38. Figure 13 shows the height \(y \) of a mass oscillating at the end of a spring, through one cycle of the oscillation. Sketch the graph of velocity as a function of time.

\[y \]

In Exercises 39–46, use Eq. (3) to estimate the unit change.

39. Estimate \(\sqrt{2} - \sqrt{1} \) and \(\sqrt{101} - \sqrt{100} \). Compare your estimates with the actual values.

40. Estimate \(f(4) - f(3) \) if \(f'(x) = 2^{-3} \). Then estimate \(f(4) \), assuming that \(f(3) = 12 \).

41. Let \(F(s) = 1.1s + 0.05s^2 \) be the stopping distance as in Example 3. Calculate \(F(65) \) and estimate the increase in stopping distance if speed is increased from 65 to 66 mph. Compare your estimate with the actual increase.

42. According to Kleiber’s Law, the metabolic rate \(P \) (in kilocalories per day) and body mass \(m \) (in kilograms) of an animal are related by a three-quarter-power law \(P = 73.3m^{3/4} \). Estimate the increase in metabolic rate when body mass increases from 60 to 61 kg.

43. The dollar cost of producing \(x \) bagels is given by the function \(C(x) = 300 + 0.25x - 0.5(x/1000)^3 \). Determine the cost of producing 2000 bagels and estimate the cost of the 2001st bagel. Compare your estimate with the actual cost of the 2001st bagel.

44. Suppose the dollar cost of producing \(x \) video cameras is \(C(x) = 500x - 0.003x^2 + 10^{-8}x^3 \).

(a) Estimate the marginal cost at production level \(x = 5000 \) and compare it with the actual cost \(C(5001) - C(5000) \).

(b) Compare the marginal cost at \(x = 5000 \) with the average cost per camera, defined as \(C(x)/x \).

45. Demand for a commodity generally decreases as the price is raised. Suppose that the demand for oil (per capita per year) is \(D(p) = 900/p \) barrels, where \(p \) is the dollar price per barrel. Find the demand when \(p = 40 \). Estimate the decrease in demand if \(p \) rises to \$41 and the increase if \(p \) declines to \$39.

46. The reproduction rate \(f \) of the fruit fly \(Drosophila melanogaster \), grown in bottles in a laboratory, decreases with the number of flies in the bottle. A researcher has found the number of offspring per female per day to be approximately \(f(p) = (34 - 0.612p)p^{0.658} \).

(a) Calculate \(f(15) \) and \(f'(15) \).

(b) Estimate the decrease in daily offspring per female when \(p \) is increased from 15 to 16. Is this estimate larger or smaller than the actual value \(f(16) - f(15) \)?

(c) \[\text{GU} \] Plot \(f \) for \(5 \leq p \leq 25 \) and verify that \(f(p) \) is a decreasing function of \(p \). Do you expect \(f'(p) \) to be positive or negative? Plot \(f' \) and confirm your expectation.

47. According to Stevens’ Law in psychology, the perceived magnitude of a stimulus is proportional (approximately) to a power of the actual intensity \(I \) of the stimulus. Experiments show that the perceived brightness \(B \) of a light satisfies \(B = kI^{2/3} \), where \(I \) is the light intensity, whereas the perceived heaviness \(H \) of a weight satisfies \(H = kW^{1/2} \) (\(k \) is a constant that is different in the two cases). Compute \(dB/dI \) and \(dH/dW \) and state whether they are increasing or decreasing functions. Then explain the following statements:

(a) A 1-unit increase in light intensity is felt more strongly when \(I \) is small than when \(I \) is large.

(b) Adding another pound to a load \(W \) is felt more strongly when \(W \) is large than when \(W \) is small.

48. Let \(M(t) \) be the mass (in kilograms) of a plant as a function of time (in years). Recent studies by Niklas and Enquist have suggested that a remarkably wide range of plants (from algae and grass to palm trees) obey a three-quarter-power growth law—that is, \(\frac{dM}{dt} = CM^{3/4} \) for some constant \(C \).

(a) If a tree has a growth rate of 6 kg/year when \(M = 100 \) kg, what is its growth rate when \(M = 125 \) kg?

(b) If \(M = 0.5 \) kg, how much more mass must the plant acquire to double its growth rate?

Further Insights and Challenges

Exercises 49–51: The Lorenz curve \(y = F(r) \) is used by economists to study income distribution in a given country (see Figure 14). By definition, \(F(r) \) is the fraction of the total income that goes to the bottom \(r \)th part of the population, where \(0 \leq r \leq 1 \). For example, if \(F(0.4) = 0.245 \), then the bottom 40% of households receive 24.5% of the total income. Note that \(F(0) = 0 \) and \(F(1) = 1 \).

49. Our goal is to find an interpretation for \(F'(r) \). The average income for a group of households is the total income going to the group divided by the number of households in the group. The national average income is \(A = T/N \), where \(N \) is the total number of households and \(T \) is the total income earned by the entire population.

(a) Show that the average income among households in the bottom \(r \)th part is equal to \((F(r)/r)A \).

(b) Show more generally that the average income of households belonging to an interval \([r, r + \Delta r]\) is equal to \(\frac{F(r + \Delta r) - F(r)}{\Delta r} A \).

(c) Let \(0 \leq r \leq 1 \). A household belongs to the \(100r \)th percentile if its income is greater than or equal to the income of 100r% of all households. Pass to the limit as \(\Delta r \to 0 \) in (b) to derive the following interpretation: A household in the \(100r \)th percentile has income \(F'(r)A \). In particular, a household in the \(100r \)th percentile receives more than the national average if \(F'(r) > 1 \) and less if \(F'(r) < 1 \).

(d) For the Lorenz curves \(L_1 \) and \(L_2 \) in Figure 14(B), what percentage of households have above-average income?

50. The following table provides values of \(F(r) \) for the United States in 2010. Assume that the national average income was \(A = 66,000 \).

<table>
<thead>
<tr>
<th>(r)</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(r))</td>
<td>0</td>
<td>0.033</td>
<td>0.118</td>
<td>0.264</td>
<td>0.480</td>
<td>1</td>
</tr>
</tbody>
</table>

(a) What was the average income in the lowest 40% of households?

(b) Show that the average income of the households belonging to the interval \([0.4, 0.6]\) was \$48,180.
(e) Estimate $F'(0.5)$. Estimate the income of households in the 50th percentile? Was it greater or less than the national average?

51. Use Exercise 49(c) to prove:
(a) $F'(r)$ is an increasing function of r.
(b) Income is distributed equally (all households have the same income) if and only if $F(r) = r$ for $0 \leq r \leq 1$.

52. (CAS) Studies of Internet usage show that Web site popularity is described quite well by Zipf’s Law, according to which the nth most popular Web site receives roughly the fraction $1/n$ of all visits. Suppose that on a particular day, the nth most popular site had approximately $V(n) = 10^5/n$ visitors (for $n \leq 15,000$).

(a) Verify that the top 50 Web sites received nearly 45% of the visits. \textit{Hint:} Let $T(N)$ denote the sum of $V(n)$ for $1 \leq n \leq N$. Use a computer algebra system to compute $T(50)$ and $T(15,000)$.

(b) Verify, by numerical experimentation, that when Eq. (3) is used to estimate $V(n+1) - V(n)$, the error in the estimate decreases as n grows larger. Find (again, by experimentation) an N such that the error is at most 10 for $n \geq N$.

(c) Using Eq. (3), show that for $n \geq 100$, the nth Web site received at most 100 more visitors than the $(n+1)$st Web site.

In Exercises 53 and 54, the average cost per unit at production level x is defined as $C_{\text{avg}}(x) = C(x)/x$, where $C(x)$ is the cost of producing x units. Average cost is a measure of the efficiency of the production process.

53. Show that $C_{\text{avg}}(x)$ is equal to the slope of the line through the origin and the point $(x, C(x))$ on the graph of $y = C(x)$. Using this interpretation, determine whether average cost or marginal cost is greater at points A, B, C, D in Figure 15.

54. The cost in dollars of producing alarm clocks is given by $C(x) = 50x^3 - 750x^2 + 3740x + 3750$, where x is in units of 1000.

(a) Calculate the average cost at $x = 4, 6, 8, 10$.

(b) Use the graphical interpretation of average cost to find the production level x_0 at which average cost is lowest. What is the relation between average cost and marginal cost at x_0 (see Figure 16)?

3.5 Higher Derivatives

Higher derivatives are obtained by repeatedly differentiating a function $y = f(x)$. If f' is differentiable, then the \textbf{second derivative}, denoted f'' or y'', is the derivative

$$f''(x) = \frac{d}{dx} (f'(x))$$

The second derivative is the rate of change of $f'(x)$. The next example highlights the difference between the first and second derivatives.
By convention, we set
\[n! = n(n - 1)(n - 2) \cdots 2(1) \]
Thus,
\[
1! = 1, \quad 2! = (2)(1) = 2 \\
3! = (3)(2)(1) = 6
\]
By convention, we set 0! = 1.

EXAMPLE 1 Figure 1 and Table 1 show the number of cell phone subscribers \(C(t) \) in the United States in year \(t \). Discuss \(C'(t) \) and \(C''(t) \).

![Figure 1](image-url)
FIGURE 1 Number of cell phone users \(C \) in the United States in millions.

<table>
<thead>
<tr>
<th>Year</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number in millions</td>
<td>277</td>
<td>301</td>
<td>316</td>
<td>326</td>
</tr>
<tr>
<td>Yearly increase</td>
<td>24</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Solution We will show that \(C'(t) \) is positive but \(C''(t) \) is negative. According to Table 1, the number of cell phone users each year was greater than the previous year, so the rate of change \(C'(t) \) is certainly positive. However, the amount of increase declined from 24 million in 2010 to 10 million in 2012. So although \(C'(t) \) is positive, \(C''(t) \) decreases from one year to the next, and therefore its rate of change \(C'''(t) \) is negative. Figure 1 supports this conclusion: The slopes of the segments in the graph are decreasing.

The process of differentiation can be continued, provided that the derivatives exist.

The third derivative, denoted \(f'''(x) \) or \(f^{(3)}(x) \), is the derivative of \(f''(x) \). More generally, the \(n \)th derivative \(f^{(n)}(x) \) is the derivative of the \((n - 1) \)st derivative. We call \(f(x) \) the zeroeth derivative and \(f'(x) \) the first derivative. In Leibniz notation, we write

\[
\frac{df}{dx}, \quad \frac{d^2f}{dx^2}, \quad \frac{d^3f}{dx^3}, \quad \frac{d^4f}{dx^4}, \ldots
\]

EXAMPLE 2 Calculate \(f'''(-1) \) for \(f(x) = 3x^5 - 2x^2 + 7x^{-2} \).

Solution We must calculate the first three derivatives:

\[
\begin{align*}
 f'(x) &= \frac{d}{dx}(3x^5 - 2x^2 + 7x^{-2}) = 15x^4 - 4x - 14x^{-3} \\
 f''(x) &= \frac{d}{dx}(15x^4 - 4x - 14x^{-3}) = 60x^3 - 4 + 42x^{-4} \\
 f'''(x) &= \frac{d}{dx}(60x^3 - 4 + 42x^{-4}) = 180x^2 - 168x^{-5}
\end{align*}
\]

At \(x = -1 \), \(f'''(-1) = 180 + 168 = 348 \).

Polynomials have a special property: Their higher derivatives are eventually the zero function. More precisely, if \(f \) is a polynomial of degree \(k \), then \(f^{(n)}(x) \) is zero for \(n > k \). Table 2 illustrates this property for \(f(x) = x^5 \). By contrast, the higher derivatives of a nonpolynomial function are never the zero function (see Exercise 87, Section 5.3).

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(f''(x))</th>
<th>(f'''(x))</th>
<th>(f^{(4)}(x))</th>
<th>(f^{(5)}(x))</th>
<th>(f^{(6)}(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x^5)</td>
<td>5(x^4)</td>
<td>20(x^3)</td>
<td>60(x^2)</td>
<td>120(x)</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>

EXAMPLE 3 Calculate the first four derivatives of \(y = x^{-1} \). Then find the pattern and determine a general formula for \(y^{(n)} \).

Solution By the Power Rule,

\[
y'(x) = -x^{-2}, \quad y'' = 2x^{-3}, \quad y''' = -2(3)x^{-4}, \quad y^{(4)} = 2(3)(4)x^{-5}
\]

We see that \(y^{(n)}(x) \) is equal to \(\pm n!x^{-n-1} \). Now observe that the sign alternates. Since the odd-order derivatives occur with a minus sign, the sign of \(y^{(n)}(x) \) is \((-1)^n\). In general, therefore, \(y^{(n)}(x) = (-1)^n n! x^{-n-1} \).
EXAMPLE 4 Find an equation of the tangent line to \(y = f'(x) \) at \(x = 4 \) where \(f(x) = x^{3/2} \).

Solution The slope of the tangent line to \(y = f'(x) \) at \(x = 4 \) is the derivative \(f''(4) \). So we compute the first two derivatives and their values at \(x = 4 \):

\[
\begin{align*}
 f'(x) &= \frac{3}{2}x^{1/2}, \\
 f'(4) &= \frac{3}{2}(4)^{1/2} = 3 \\
 f''(x) &= \frac{3}{4}x^{-1/2}, \\
 f''(4) &= \frac{3}{4}(4)^{-1/2} = \frac{3}{8}
\end{align*}
\]

Therefore, an equation of the tangent line is

\[
y - f'(4) = f''(4)(x - 4) \quad \Rightarrow \quad y - 3 = \frac{3}{8}(x - 4)
\]

In slope-intercept form, the equation is \(y = \frac{3}{8}x + \frac{9}{4} \).

EXAMPLE 5 Acceleration Due to Gravity Find the acceleration \(a(t) \) of a ball tossed vertically in the air from ground level with an initial velocity of 12 m/s. How does \(a(t) \) describe the change in the ball’s velocity as it rises and falls?

Solution The ball’s height at time \(t \) is \(s(t) = s_0 + v_0t - \frac{1}{2}gt^2 \) m by Galileo’s formula [Figure 2(A)]. In our case, \(s_0 = 0 \) and \(v_0 = 12 \), so \(s(t) = 12t - 4.9t^2 \) m. Therefore, \(v(t) = s'(t) = 12 - 9.8t \) m/s and the ball’s acceleration is

\[
a(t) = s''(t) = \frac{d}{dt}(12 - 9.8t) = -9.8 \text{ m/s}^2
\]

As expected, the acceleration is constant with value \(-9.8 \text{ m/s}^2\). As the ball rises and falls, its velocity decreases from 12 to \(-12 \text{ m/s}\) at the constant rate \(-g \) [Figure 2(B)].

GRAPHICAL INSIGHT Can we visualize the rate represented by \(f''(x) \)? The second derivative is the rate at which \(f'(x) \) is changing, so \(f''(x) \) is large if the slopes of the tangent lines change rapidly, as in Figure 3(A). Similarly, \(f''(x) \) is small if the slopes of the tangent lines change slowly—in this case, the curve is relatively flat, as in Figure 3(B). If \(f \) is a linear function [Figure 3(C)], then the tangent line does not change at all and \(f''(x) = 0 \). Thus, \(f''(x) \) measures the “bending” or concavity of the graph.

EXAMPLE 6 Identify curves I and II in Figure 4(B) as the graphs of \(f' \) or \(f'' \) for the function \(f \) in Figure 4(A).
3.5 Higher Derivatives

The higher derivatives \(f', f'', f''', \ldots \) are defined by successive differentiation:

\[
f''(x) = \frac{d}{dx} f'(x) = \frac{d^2 f}{dx^2}, \quad f'''(x) = \frac{d}{dx} f''(x) = \frac{d^3 f}{dx^3} \ldots
\]

The \(n \)th derivative is denoted \(f^{(n)}(x) = \frac{d^n f}{dx^n} \).

- The second derivative plays an important role: It is the rate at which \(f'(x) \) changes. Graphically, \(f''(x) \) measures how fast the tangent lines change direction and thus measures the "bending" of the graph.

- If \(s(t) \) is the position of an object at time \(t \), then \(s'(t) \) is velocity and \(s''(t) \) is acceleration.

3.5 EXERCISES

Preliminary Questions

1. On September 4, 2003, the Wall Street Journal printed the headline "Stocks Go Higher, Though the Pace of Their Gains Slows." Rephrase this headline as a statement about the first and second derivatives of stock prices and sketch a possible graph.

2. True or false? The third derivative of position with respect to time is zero for an object falling to Earth under the influence of gravity. Explain.

3. Which type of polynomial satisfies \(f'''(x) = 0 \) for all \(x \)?

4. What is the sixth derivative of \(f(x) = x^6 \)?

Exercises

In Exercises 1–16, calculate \(y' \) and \(y'' \).

- \(y = 14x^2 \)
- \(y = x^4 - 25x^2 + 2x \)
- \(y = \frac{4}{3\pi}r^3 \)
- \(y = 20t^{4/5} - 6t^{2/3} \)
- \(y = e^{t/2} \)
- \(y = \theta^2(2\theta + 7) \)
- \(y = \frac{x - 4}{x} \)
- \(y = s^{-1/2}(s + 1) \)

In Exercises 17–26, calculate the derivative indicated.

- \(f^{(4)}(1), \quad f(x) = x^4 \)
- \(g'''(-1), \quad g(t) = -4t^{-5} \)
- \(\frac{d^2 y}{dt^2} \bigg|_{t=1}, \quad y = 4t^3 + 3t^2 \)
- \(\frac{d^4 f}{dt^4} \bigg|_{t=1}, \quad f(t) = 6t^9 - 2t^5 \)
- \(\frac{d^4 x}{dt^4} \bigg|_{t=16}, \quad x = t^{3/4} \)
- \(f'''(-3), \quad f(x) = \frac{12}{x} - x^3 \)
- \(f''(1), \quad f(t) = \frac{t}{t + 1} \)
- \(h''(1), \quad h(u) = \frac{1}{\sqrt{u} + 1} \)
- \(g''(1), \quad g(x) = \frac{\sqrt{x}}{x + 1} \)

27. Calculate \(f^{(k)}(0) \) for \(0 \leq k \leq 5 \), where \(y = x^4 + ax^3 + bx^2 + cx + d \) (with \(a, b, c, d \) the constants).
28. Which of the following satisfy \(f^{(k)}(x) = 0 \) for all \(k \geq 6 \)?
 (a) \(f(x) = 7x^4 + 4 + x^{-1} \)
 (b) \(f(x) = x^3 - 2 \)
 (c) \(f(x) = \sqrt{x} \)
 (d) \(f(x) = 1 - x^6 \)
 (e) \(f(x) = x^{9/5} \)
 (f) \(f(x) = 2x^2 + 3x^5 \)

29. Use the result in Example 3 to find \(\frac{d^6}{dx^6} x^{-1} \).

30. Calculate the first five derivatives of \(f(x) = \sqrt{x} \).
 (a) Show that \(f^{(n)}(x) \) is a multiple of \(x^{-n+1/2} \).
 (b) Show that \(f^{(n)}(x) \) alternates in sign as \((-1)^n \) for \(n \geq 1 \).
 (c) Find a formula for \(f^{(n)}(x) \) for \(n \geq 2 \). Hint: Verify that the coefficient is \(\pm 1 \cdot 3 \cdot 5 \cdots \frac{2n-3}{2n} \).

In Exercises 31–36, find a general formula for \(f^{(n)}(x) \).

31. \(f(x) = x^{-2} \)
32. \(f(x) = (x + 2)^{-1} \)
33. \(f(x) = x^{-1/2} \)
34. \(f(x) = x^{-3/2} \)
35. \(f(x) = \frac{x + 1}{x^2} \)
36. \(f(x) = \frac{x - 1}{x^2} \)

37. (a) Find the acceleration at time \(t = 5 \) min of a helicopter whose height is \(s(t) = 300t - 4t^3 \) m.
 (b) Plot the acceleration \(s'' \) for \(0 \leq t \leq 6 \). How does this graph show that the helicopter is slowing down during this time interval?

38. Find an equation of the tangent to the graph of \(y = f'(x) \) at \(x = 3 \), where \(f(x) = x^4 \).

39. Figure 5 shows \(f, f', \) and \(f'' \). Determine which is which.

40. The second derivative \(f'' \) is shown in Figure 6. Which of (A) or (B) is the graph of \(f \) and which is \(f' \)?

41. Figure 7 shows the graph of the position \(s \) of an object as a function of time \(t \). Determine the intervals on which the acceleration is positive.

42. Find a polynomial \(f(x) \) that satisfies the equation \(xf'' + f(x) = x^2 \).

43. Find all values of \(n \) such that \(y = x^n \) satisfies \(x^2y'' - 2xy' = 4y \).

44. Which of the following descriptions could not apply to Figure 8? Explain.
 (a) Graph of acceleration when velocity is constant
 (b) Graph of velocity when acceleration is constant
 (c) Graph of position when acceleration is zero

45. According to one model that takes into account air resistance, the acceleration \(a(t) \) (in m/s²) of a skydiver of mass \(m \) in free-fall satisfies
 \[a(t) = -9.8 + \frac{k}{m} v(t)^2 \]
 where \(v(t) \) is velocity (negative since the object is falling) and \(k \) is a constant. Suppose that \(m = 75 \) kg and \(k = 14 \) kg/m.
 (a) What is the object’s velocity when \(a(t) = -4.9 \)?
 (b) What is the object’s velocity when \(a(t) = 0 \)? This velocity is the object’s terminal velocity.

46. According to one model that attempts to account for air resistance, the distance \(s(t) \) (in meters) traveled by a falling raindrop satisfies
 \[\frac{d^2 s}{dt^2} = g - 0.0005 \left(\frac{d s}{dt} \right)^2 \]
 where \(D \) is the raindrop diameter and \(g = 9.8 \) m/s². Terminal velocity \(v_{\text{term}} \) is defined as the velocity at which the drop has zero acceleration (one can show that velocity approaches \(v_{\text{term}} \) as time proceeds).
 (a) Show that \(v_{\text{term}} = \sqrt{2000gD} \).
 (b) Find \(v_{\text{term}} \) for drops of diameter \(10^{-3} \) m and \(10^{-4} \) m.
 (c) In this model, do raindrops accelerate more rapidly at higher or lower velocities?

47. A servomotor controls the vertical movement of a drill bit that will drill a pattern of holes in sheet metal. The maximum vertical speed of the drill bit is 4 in./s, and while drilling the hole, it must move no more than 2.6 in./s to avoid warping the metal. During a cycle, the bit begins and ends at rest, quickly approaches the sheet metal, and quickly returns to its initial position after the hole is drilled. Sketch possible graphs of the drill bit’s vertical velocity and acceleration. Label the point where the bit enters the sheet metal.

In Exercises 48 and 49, refer to the following. In a 1997 study, Boardman and Lave related the traffic speed \(S \) on a two-lane road to traffic density \(Q \) (number of cars per mile of road) by the formula
 \[S = 2882Q^{-1} - 0.052Q + 31.73 \]
 for \(60 \leq Q \leq 400 \). (Figure 9).
Further Insights and Challenges

52. Find the 100th derivative of
\[p(x) = (x + x^5 + x^7)^{10}(1 + x^2)^{11}(x^3 + x^5 + x^7) \]

53. What is \(p^{(99)}(x) \) for \(p(x) \) as in Exercise 52?

54. Use the Product Rule twice to find a formula for \((fg)^{\prime\prime}\) in terms of \(f \) and \(g \) and their first and second derivatives.

55. Use the Product Rule to find a formula for \((fg)^{(n)}\) and compare your result with the expansion of \((a + b)^3\). Then try to guess the general formula for \((fg)^{(n)}\).

(b) Show that \(d^2 S/dQ^2 > 0 \). Then use the fact that \(dS/dQ < 0 \) and \(d^2 S/dQ^2 > 0 \) to justify the following statement: A 1-unit increase in traffic density slows down traffic more when \(Q \) is small than when \(Q \) is large.

(c) [QU] Plot \(dS/dQ \). Which property of this graph shows that \(d^2 S/dQ^2 > 0 \)?

50. CAS Use a computer algebra system to compute \(f^{(k)}(x) \) for \(k = 1, 2, 3 \) for the following functions:

(a) \(f(x) = (1 + x^3)^{5/3} \)

(b) \(f(x) = \frac{1 - x^4}{1 - 5x - 6x^2} \)

51. CAS Let \(f(x) = \frac{x^2 + 2}{x - 1} \). Use a computer algebra system to compute the \(f^{(k)}(x) \) for \(1 \leq k \leq 4 \). Can you find a general formula for \(f^{(k)}(x) \)?

56. Compute
\[\Delta f(x) = \lim_{h \to 0} \frac{f(x + h) + f(x - h) - 2f(x)}{h^2} \]

for the following functions:

(a) \(f(x) = x \)

(b) \(f(x) = x^2 \)

(c) \(f(x) = x^3 \)

Based on these examples, what do you think the limit \(\Delta f \) represents?

3.6 Trigonometric Functions

We can use the rules developed so far to differentiate functions involving powers of \(x \), but we cannot yet handle the trigonometric functions. What is missing are the formulas for the derivatives of \(\sin x \) and \(\cos x \). Fortunately, their derivatives are simple—each is the derivative of the other up to a sign.

Recall our convention: Angles are measured in radians, unless otherwise specified.

THEOREM 1 Derivative of Sine and Cosine

The functions \(y = \sin x \) and \(y = \cos x \) are differentiable and

\[\frac{d}{dx} \sin x = \cos x \quad \text{and} \quad \frac{d}{dx} \cos x = -\sin x \]

Proof We must go back to the definition of the derivative:

\[\frac{d}{dx} \sin x = \lim_{h \to 0} \frac{\sin(x + h) - \sin x}{h} \]

We cannot cancel the \(h \) by rewriting the difference quotient, but we can use the addition formula (see marginal note) to write the numerator as a sum of two terms:

\[\sin(x + h) - \sin x = \sin x \cos h + \cos x \sin h - \sin x \quad \text{(addition formula)} \]

\[= (\sin x \cos h - \sin x) + \cos x \sin h \]

\[= \sin x (\cos h - 1) + \cos x \sin h \]
This gives us
\[
\frac{d \sin x}{dx} = \lim_{h \to 0} \frac{\sin(x + h) - \sin x}{h} = \lim_{h \to 0} \frac{\sin x \cos h - \sin h}{h} + \lim_{h \to 0} \frac{\sin x \sin h}{h}
\]
\[= (\sin x) \lim_{h \to 0} \frac{\cos h - 1}{h} + (\cos x) \lim_{h \to 0} \frac{\sin h}{h}
\]
This equals 0.
\[+ (\cos x) \lim_{h \to 0} \frac{\sin h}{h} \text{ This equals 1.}
\]

Here, we can take \(\sin x\) and \(\cos x\) outside the limits in Eq. (2) because they do not depend on \(h\). The two limits are given by Theorem 2 in Section 2.6:
\[
\lim_{h \to 0} \frac{\cos h - 1}{h} = 0 \quad \text{and} \quad \lim_{h \to 0} \frac{\sin h}{h} = 1
\]

Therefore, Eq. (2) reduces to the formula
\[
\frac{d}{dx} \sin x = \cos x,
\]
as desired. The formula
\[
\frac{d}{dx} \cos x = -\sin x
\]
is proved similarly (see Exercise 53).

Example 1 Calculate \(f''(x)\), where \(f(x) = x \cos x\).

Solution By the Product Rule,
\[
f'(x) = x' \cos x + x(\cos x)' = \cos x - x \sin x
\]
\[f''(x) = (\cos x - x \sin x)' = -\sin x - (x' \sin x + x(\sin x)') = -2 \sin x - x \cos x
\]

Graphical Insight The formula \((\sin x)' = \cos x\) is made plausible when we compare the graphs in Figure 1. The tangent lines to the graph of \(y = \sin x\) have positive slope on the interval \((-\frac{\pi}{2}, \frac{\pi}{2})\), and on this interval, the derivative \(y' = \cos x\) is positive. Similarly, the tangent lines have negative slope on the interval \((\frac{\pi}{2}, \frac{3\pi}{2})\), where \(y' = \cos x\) is negative. The tangent lines are horizontal at \(x = -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}\), where \(\cos x = 0\).

Theorem 2 Derivatives of Standard Trigonometric Functions

\[
\frac{d}{dx} \tan x = \sec^2 x, \quad \frac{d}{dx} \sec x = \sec x \tan x
\]
\[
\frac{d}{dx} \cot x = -\csc^2 x, \quad \frac{d}{dx} \csc x = -\csc x \cot x
\]
3.6 Trigonometric Functions

EXAMPLE 2 Verify the formula $\frac{d}{dx} (\tan x) = \sec^2 x$ (Figure 2).

Solution Use the Quotient Rule and the identity $\cos^2 x + \sin^2 x = 1$:

$$
\frac{d}{dx} (\tan x) = \frac{\sin x}{\cos x} = \frac{\cos x \cdot (\sin x)’ - \sin x \cdot (\cos x)’}{\cos^2 x} \\
= \frac{\cos x \cos x - \sin x (-\sin x)}{\cos^2 x} \\
= \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x} = \sec^2 x
$$

EXAMPLE 3 Find the tangent line to the graph of $y = \tan \theta \sec \theta$ at $\theta = \frac{\pi}{4}$.

Solution By the Product Rule,

$$
y’ = (\tan \theta)’ \sec \theta + \tan \theta (\sec \theta)’ = \sec^2 \theta \sec \theta + \tan \theta (\sec \theta \tan \theta) \\
= \sec^3 \theta + \tan^2 \theta \sec \theta
$$

Now use the values $\sec \frac{\pi}{4} = \sqrt{2}$ and $\tan \frac{\pi}{4} = 1$ to compute

$$
y \left(\frac{\pi}{4}\right) = \tan \left(\frac{\pi}{4}\right) \sec \left(\frac{\pi}{4}\right) = \sqrt{2} \\
y’ \left(\frac{\pi}{4}\right) = \sec^3 \left(\frac{\pi}{4}\right) + \tan^2 \left(\frac{\pi}{4}\right) \sec \left(\frac{\pi}{4}\right) = 2\sqrt{2} + \sqrt{2} = 3\sqrt{2}
$$

An equation of the tangent line (Figure 3) is $y - \sqrt{2} = 3\sqrt{2} (\theta - \frac{\pi}{4})$.

3.6 SUMMARY

- Basic trigonometric derivatives:

 $$
 \frac{d}{dx} \sin x = \cos x, \quad \frac{d}{dx} \cos x = -\sin x
 $$

- Additional formulas:

 $$
 \frac{d}{dx} \tan x = \sec^2 x, \quad \frac{d}{dx} \sec x = \sec x \tan x \\
 \frac{d}{dx} \cot x = -\csc^2 x, \quad \frac{d}{dx} \csc x = -\csc x \cot x
 $$

3.6 EXERCISES

Preliminary Questions

1. Determine the sign (+ or −) that yields the correct formula for the following:
 (a) $\frac{d}{dx} (\sin x + \cos x) = \pm \sin x \pm \cos x$
 (b) $\frac{d}{dx} \sec x = \pm \sec x \tan x$
 (c) $\frac{d}{dx} \cot x = \pm \csc^2 x$

2. Which of the following functions can be differentiated using the rules we have covered so far?
 (a) $y = 3 \cos x \cot x$ (b) $y = \cos(x^2)$ (c) $y = 2^x \sin x$

3. Compute $\frac{d}{dx} (\sin^2 x + \cos^2 x)$ without using the derivative formulas for $\sin x$ and $\cos x$.

4. How is the addition formula used in deriving the formula $(\sin x)’ = \cos x$?
In Exercises 1–4, find an equation of the tangent line at the point indicated.

1. \(y = \sin x, \quad x = \frac{\pi}{4} \)
2. \(y = \cos x, \quad x = \frac{\pi}{3} \)
3. \(y = \tan x, \quad x = \frac{\pi}{4} \)
4. \(y = \sec x, \quad x = \frac{\pi}{6} \)

In Exercises 5–24, compute the derivative.

5. \(f(x) = \sin x \cos x \)
6. \(f(x) = x^2 \cos x \)
7. \(f(x) = \sin^2 x \)
8. \(f(x) = 9 \sec x + 12 \cot x \)
9. \(H(t) = \sin t \sec^2 t \)
10. \(h(t) = 9 \csc t + t \cot t \)
11. \(f(\theta) = \tan \theta \sec \theta \)
12. \(k(\theta) = \theta^2 \sin^2 \theta \)
13. \(f(x) = (2x^3 - 4x^{-1}) \sec x \)
14. \(f(z) = z \tan z \)
15. \(y = \frac{\sec \theta}{\theta} \)
16. \(G(z) = \frac{1}{\tan z - \cot z} \)
17. \(R(y) = \frac{3 \cos y - 4}{\sin y} \)
18. \(f(x) = \frac{x}{\sin x + 2} \)
19. \(f(x) = \frac{1 + \tan x}{1 - \tan x} \)
20. \(f(\theta) = \theta \tan \theta \sec \theta \)
21. \(f(x) = \frac{\sin x + 1}{\sin x - 1} \)
22. \(h(t) = \frac{\csc^2 t}{t} \)
23. \(R(\theta) = \frac{\cos \theta}{4 + \cos \theta} \)
24. \(g(z) = \frac{\cot z}{3 - 3 \sin z} \)

In Exercises 25–34, find an equation of the tangent line at the point specified.

25. \(y = x^3 + \cos x, \quad x = 0 \)
26. \(y = \tan \theta, \quad \theta = \frac{\pi}{6} \)
27. \(y = \frac{\sin t}{1 + \cos t}, \quad t = \frac{\pi}{4} \)
28. \(y = \sin x + 3 \cos x, \quad x = 0 \)
29. \(y = 2(\sin \theta + \cos \theta), \quad \theta = \frac{\pi}{4} \)
30. \(y = \csc x - \cot x, \quad x = \frac{\pi}{4} \)
31. \(y = (\cot t)(\cos t), \quad t = \frac{\pi}{3} \)
32. \(y = x \cos^2 x, \quad x = \frac{\pi}{4} \)
33. \(y = \frac{\sin \theta - \cos \theta}{\theta}, \quad \theta = \frac{\pi}{2} \)
34. \(y = \frac{\sin \theta - \cos \theta}{\theta}, \quad \theta = \frac{\pi}{4} \)

In Exercises 35–37, use Theorem 1 to verify the formula.

35. \(\frac{d}{dx} \cot x = -\csc^2 x \)
36. \(\frac{d}{dx} \sec x \tan x = \sec x \tan x \)
37. \(\frac{d}{dx} \csc x = -\csc x \cot x \)

38. Show that both \(y = \sin x \) and \(y = \cos x \) satisfy \(y'' = -y. \)

In Exercises 39–42, calculate the higher derivative.

39. \(f''(\theta), \quad f'(\theta) = \theta \sin \theta \)
40. \(\frac{d^2}{dt^2} \cos^2 t \)
41. \(y'', \quad y''' = \tan x \)
42. \(y'', \quad y''' = t^2 \sin t \)

43. Calculate the first five derivatives of \(f(x) = \cos x. \) Then determine \(f^{(8)}(x) \) and \(f^{(37)}(x). \)

44. Find \(y^{(157)}, \) where \(y = \sin x. \)

45. Find the values of \(x \) between 0 and \(2\pi \) where the tangent line to the graph of \(y = \sin x \) is horizontal.

46. \(\text{GU} \) Plot the graph \(f(\theta) = \sec \theta + \csc \theta \) over \([0, 2\pi]\) and determine the number of solutions to \(f'(\theta) = 0 \) in this interval graphically. Then compute \(f'(\theta) \) and find the solutions.

47. \(\text{GU} \) Let \(g(t) = t - \sin t. \)
(a) Plot the graph of \(g \) with a graphing utility for \(0 \leq t \leq 4\pi. \)
(b) Show that the slope of the tangent line is nonnegative. Verify this on your graph.
(c) For which values of \(t \) in the given range is the tangent line horizontal?

48. \(\text{CAS} \) Let \(f(x) = (\sin x)/x \) for \(x \neq 0 \) and \(f(0) = 1. \)
(a) Plot \(f \) on \([-3\pi, 3\pi]. \)
(b) Show that \(f'(c) = 0 \) if \(c = \tan c. \) Use the numerical root finder on a computer algebra system to find a good approximation to the smallest positive value \(c_0 \) such that \(f'(c_0) = 0. \)
(c) Verify that the horizontal line \(y = f(c_0) \) is tangent to the graph of \(y = f(x) \) at \(x = c_0 \) by plotting them on the same set of axes.

49. \(\text{CAS} \) Show that no tangent line to the graph of \(f(x) = \tan x \) has zero slope. What is the least slope of a tangent line? Justify by sketching the graph of \(f'(x) = (\tan x)' \).

50. The height at time \(t \) (in seconds) of a mass, oscillating at the end of a spring, is \(s(t) = 300 + 40 \sin t \) cm. Find the velocity and acceleration at \(t = \frac{\pi}{3} \) s.

51. The horizontal range \(R \) of a projectile launched from ground level at an angle \(\theta \) and initial velocity \(v_0 \) m/s is \(R = \frac{v_0^2}{g} \tan \theta \cos \theta. \) Calculate \(dR/d\theta. \) If \(\theta = 7\pi/24, \) will the range increase or decrease if the angle is increased slightly? Base your answer on the sign of the derivative.

52. Show that if \(\frac{\pi}{2} < \theta < \pi, \) then the distance along the \(x \)-axis between \(\theta \) and the point where the tangent line intersects the \(x \)-axis is equal to \(|\tan \theta| \) (Figure 4).
Further Insights and Challenges

53. Use the limit definition of the derivative and the addition law for the cosine function to prove that \(\cos x' = -\sin x \).

54. Use the addition formula for the tangent
\[
\tan(x + h) = \frac{\tan x + \tan h}{1 - \tan x \tan h}
\]
to compute \((\tan x)' \) directly as a limit of the difference quotients. You will also need to show that \(\lim_{h \to 0} \frac{\tan h}{h} = 1 \).

55. Verify the following identity and use it to give another proof of the formula \(\sin x' = \cos x \):
\[
\sin(x + h) - \sin x = 2 \cos \left(x + \frac{h}{2}\right) \sin \left(\frac{h}{2}\right)
\]
Hint: Use the addition formula to prove that \(\sin(a + b) - \sin(a - b) = 2 \cos a \sin b \).

56. Show that a nonzero polynomial function \(y = f(x) \) cannot satisfy the equation \(y'' = -y \). Use this to prove that neither \(f(x) = \sin x \) nor \(f(x) = \cos x \) is a polynomial. Can you think of another way to reach this conclusion by considering limits as \(x \to \infty \)?

57. Let \(f(x) = x \sin x \) and \(g(x) = x \cos x \).
 (a) Show that \(f'(x) = g(x) + \sin x \) and \(g'(x) = -f(x) + \cos x \).
 (b) Verify that \(f''(x) = -f(x) + 2 \cos x \) and \(g''(x) = -g(x) - 2 \sin x \).

(c) By further experimentation, try to find formulas for all higher derivatives of \(f \) and \(g \). Hint: The \(k \)th derivative depends on whether \(k \) is \(4n \), \(4n + 1 \), \(4n + 2 \), or \(4n + 3 \).

58. Figure 5 shows the geometry behind the derivative formula \(\sin x' = \cos x \). Segments \(\overline{BC} \) and \(\overline{BD} \) are parallel to the \(x \)- and \(y \)-axes. Let \(\Delta \sin \theta = \sin(\theta + h) - \sin \theta \). Verify the following statements:
 (a) \(\Delta \sin \theta = \overline{BC} \)
 (b) \(\overline{BDA} = \theta \) Hint: \(\overline{OA} \perp \overline{AD} \).
 (c) \(\overline{BD} = (\cos \theta) \overline{AD} \)

Now explain the following intuitive argument: If \(h \) is small, then \(\overline{BC} \approx \overline{BD} \) and \(\overline{AD} \approx h \), so \(\Delta \sin \theta \approx (\cos \theta)h \) and \((\sin \theta)' = \cos \theta \).

![FIGURE 5](image)

3.7 The Chain Rule

The **Chain Rule** is used to differentiate composite functions such as \(y = \cos(x^3) \) and \(y = \sqrt{x^4 + 1} \).

Recall that a **composite function** is obtained by “plugging” one function into another. The composite of \(f \) and \(g \), denoted \(f \circ g \), is defined by
\[
(f \circ g)(x) = f(g(x))
\]
For convenience, we call \(f \) the **outside** function and \(g \) the **inside** function. Often, we write the composite function as \(f(u) \), where \(u = g(x) \). For example, \(y = \cos(x^3) \) is the function \(y = \cos u \), where \(u = x^3 \).

THEOREM 1 Chain Rule If \(f \) and \(g \) are differentiable, then the composite function \((f \circ g)(x) = f(g(x)) \) is differentiable and
\[
(f(g(x)))' = f'(g(x)) \cdot g'(x)
\]

EXAMPLE 1 Calculate the derivative of \(y = \cos(x^3) \).

Solution As noted above, \(y = \cos(x^3) \) is a composite \(f(g(x)) \), where
\[
\begin{align*}
f(u) &= \cos u, \\
u &= g(x) = x^3 \\
f'(u) &= -\sin u, \\
g'(x) &= 3x^2
\end{align*}
\]
Since \(u = x^3 \), \(f'(g(x)) = f'(u) = f'(x^3) = -\sin(x^3) \). So, by the Chain Rule,
\[
\frac{d}{dx} \cos(x^3) = -\sin(x^3) \cdot \frac{3x^2}{f'(g(x)) \cdot g'(x)} = -3x^2 \sin(x^3)
\]

EXAMPLE 2 Calculate the derivative of \(y = \sqrt{x^4 + 1} \).

Solution The function \(y = \sqrt{x^4 + 1} \) is a composite \(f(g(x)) \), where
\[
f(u) = u^{1/2}, \quad u = g(x) = x^4 + 1
\]
\[
f'(u) = \frac{1}{2}u^{-1/2}, \quad g'(x) = 4x^3
\]
Note that \(f'(g(x)) = \frac{1}{2}(x^4 + 1)^{-1/2} \), so by the Chain Rule,
\[
\frac{d}{dx} \sqrt{x^4 + 1} = \frac{1}{2}(x^4 + 1)^{-1/2} \cdot \frac{d}{dx}(x^4 + 1)
\]

EXAMPLE 3 Calculate \(\frac{dy}{dx} \) for \(y = \tan\left(\frac{x}{x + 1}\right) \).

Solution The outside function is \(f(u) = \tan u \). Because \(f'(u) = \sec^2 u \), the Chain Rule gives us
\[
\frac{d}{dx} \tan\left(\frac{x}{x + 1}\right) = \sec^2\left(\frac{x}{x + 1}\right) \cdot \frac{d}{dx}\left(\frac{x}{x + 1}\right)
\]
Now, by the Quotient Rule,
\[
\frac{d}{dx}\left(\frac{x}{x + 1}\right) = \frac{(x + 1) \cdot \frac{d}{dx}x - x \cdot \frac{d}{dx}(x + 1)}{(x + 1)^2} = \frac{1}{(x + 1)^2}
\]
We obtain
\[
\frac{d}{dx} \tan\left(\frac{x}{x + 1}\right) = \sec^2\left(\frac{x}{x + 1}\right) \cdot \frac{1}{(x + 1)^2} = \frac{\sec^2\left(\frac{x}{x + 1}\right)}{(x + 1)^2}
\]

EXAMPLE 4 The daily natural gas usage in a household follows a pattern given by \(G(t) = 300(1 + \cos\frac{2\pi t}{365}) \) cubic feet per day, where \(t = 1 \) corresponds to January 1. Assuming it is not Leap Year, find the rate of change of usage on March 1, June 1, September 1 and December 1.

Solution By the Chain Rule,
\[
G'(t) = -300 \sin\left(\frac{2\pi t}{365}\right) \cdot \frac{2\pi}{365}
\]
On March 1, \(t = 60 \), so \(G'(60) = -300 \sin\left(\frac{2\pi (60)}{365}\right) \cdot \frac{2\pi}{365} \approx -4.4349 \).
On June 1, \(t = 152 \), so \(G'(152) = -300 \sin\left(\frac{2\pi (152)}{365}\right) \cdot \frac{2\pi}{365} \approx -2.5885 \).
On Sept. 1, \(t = 244 \), so \(G'(244) = -300 \sin\left(\frac{2\pi (244)}{365}\right) \cdot \frac{2\pi}{365} \approx 4.5017 \).
On Dec. 1, \(t = 335 \), so \(G'(335) = -300 \sin\left(\frac{2\pi (335)}{365}\right) \cdot \frac{2\pi}{365} \approx 2.5500 \).

It is not surprising that the derivative is negative in the spring, as usage drops as temperatures rise. The derivative is nearer 0 in the summer, as the weather remains warm, and usage does not change. Usage increases substantially in the fall and is still increasing in December.
It is instructive to write the Chain Rule in Leibniz notation. Let
\[y = f(u) = f(g(x)) \]
Then, by the Chain Rule,
\[\frac{dy}{dx} = f'(u) g'(x) = \frac{df}{du} \frac{du}{dx} \]
or
\[\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} \]

CONCEPTUAL INSIGHT In Leibniz notation, it appears as if we are multiplying fractions and the Chain Rule is simply a matter of “canceling the \(du \).” Since the symbolic expressions \(dy/du \) and \(du/dx \) are not fractions, this does not make sense literally, but it does suggest that derivatives behave as if they were fractions (this is reasonable because a derivative is a limit of fractions, namely of the difference quotients). Leibniz’s form also emphasizes a key aspect of the Chain Rule: Rates of change multiply. To illustrate, suppose that (thanks to your knowledge of calculus) your salary increases twice as fast as your friend’s. If your friend’s salary increases $4000 per year, your salary will increase at the rate of \(2 \times 4000 \) or $8000 per year. In terms of derivatives,
\[\frac{d}{dt}(\text{your salary}) = \frac{d}{dt}(\text{your salary}) \times \frac{d}{dt}(\text{friend’s salary}) \]
\[\frac{8000}{\text{year}} = 2 \times \frac{4000}{\text{year}} \]

EXAMPLE 5 Imagine a sphere whose radius \(r \) increases at a rate of 3 cm/s. At what rate is the volume \(V \) of the sphere increasing when \(r = 10 \) cm?

Solution Because we are asked to determine the rate at which \(V \) is increasing, we must find \(dV/dt \). What we are given is the rate \(dr/dt \), namely \(dr/dt = 3 \) cm/s. The Chain Rule allows us to express \(dV/dt \) in terms of \(dV/dr \) and \(dr/dt \):
\[\frac{dV}{dt} = \frac{dV}{dr} \frac{dr}{dt} \]
To compute \(dV/dr \), we use the formula for the volume of a sphere, \(V = \frac{4}{3} \pi r^3 \):
\[\frac{dV}{dr} = \frac{d}{dr} \left(\frac{4}{3} \pi r^3 \right) = 4 \pi r^2 \]
Because \(dr/dt = 3 \), we obtain
\[\frac{dV}{dt} = \frac{dV}{dr} \frac{dr}{dt} = 4 \pi r^2\times 3 = 12 \pi r^2 \]
For \(r = 10 \),
\[\frac{dV}{dt} \bigg|_{r=10} = (12 \pi) 10^2 = 1200 \pi \approx 3770 \text{ cm}^3/\text{s} \]

We now discuss some important special cases of the Chain Rule.

THEOREM 2 General Power and Exponential Rules If \(g \) is differentiable, then
\[\frac{d}{dx} \left(g(x) \right)^n = n (g(x))^{n-1} g'(x) \quad \text{(for any number } n) \]
Proof. Let $f(u) = u^n$. Then $(g(x))^n = f(g(x))$, and the Chain Rule yields

$$\frac{d}{dx} (g(x))^n = f'(g(x))g'(x) = n(g(x))^{n-1}g'(x)$$

Example 6. General Power and Exponential Rules Find the derivatives of

(a) $y = (x^2 + 7x + 2)^{-1/3}$ and (b) $y = \sec t$.

Solution Apply $\frac{d}{dx} g(x)^n = n g(x)^{n-1} g'(x)$ in (A) and (B).

(a) $\frac{d}{dx} (x^2 + 7x + 2)^{-1/3} = -\frac{1}{3}(x^2 + 7x + 2)^{-4/3} \frac{d}{dx}(x^2 + 7x + 2)$

$= -\frac{1}{3}(x^2 + 7x + 2)^{-4/3}(2x + 7)$

(b) $\frac{d}{dt} \sec t = 4 \sec^3 t \frac{d}{dt} \sec t = 4 \sec^3 t (\sec t \tan t) = 4 \sec^4 t \tan t$

Example 7. Using the Chain Rule Twice Calculate $\frac{d}{dx} \sqrt{1 + \sqrt{x^2 + 1}}$.

Solution First apply the Chain Rule with inside function $u = 1 + \sqrt{x^2 + 1}$:

$$\frac{d}{dx} \left(1 + (x^2 + 1)^{1/2}\right)^{1/2} = \frac{1}{2} \left(1 + (x^2 + 1)^{1/2}\right)^{-1/2} \frac{d}{dx} \left(1 + (x^2 + 1)^{1/2}\right)$$

Then apply the Chain Rule again to the remaining derivative:

$$\frac{d}{dx} \left(1 + (x^2 + 1)^{1/2}\right)^{1/2} = \frac{1}{2} \left(1 + (x^2 + 1)^{1/2}\right)^{-1/2} \left(\frac{1}{2} (x^2 + 1)^{-1/2} (2x)\right)$$

$= \frac{1}{2} x (x^2 + 1)^{-1/2} \left(1 + (x^2 + 1)^{1/2}\right)^{-1/2}$

Example 8. Trigonometric Derivatives in Degrees Calculate the derivative of the sine function as a function of degrees rather than radians.

Solution To solve this problem, it is convenient to use an underline to indicate a function of degrees rather than radians. For example,

$$\sin(x) = \text{sine of } x \text{ degrees}$$

The functions $f(x) = \sin x$ and $g(x) = \sin x$ are different, but they are related by

$$\sin x = \sin \left(\frac{\pi}{180} x\right)$$

because x degrees corresponds to $\frac{\pi}{180} x$ radians. By Theorem 1,

$$\frac{d}{dx} \sin x = \frac{d}{dx} \sin \left(\frac{\pi}{180} x\right) = \left(\frac{\pi}{180}\right) \cos \left(\frac{\pi}{180} x\right) = \left(\frac{\pi}{180}\right) \cos x$$

Proof of the Chain Rule The difference quotient for the composite $f \circ g$ is

$$\frac{f(g(x + h)) - f(g(x))}{h} \quad (h \neq 0)$$

Our goal is to show that $(f \circ g)'(x)$ is the product of $f'(g(x))$ and $g'(x)$, so it makes sense to write the difference quotient as a product:

$$\frac{f(g(x + h)) - f(g(x))}{h} = \frac{f(g(x + h)) - f(g(x))}{g(x + h) - g(x)} \times \frac{g(x + h) - g(x)}{h}$$
This is legitimate only if the denominator \(g(x + h) - g(x)\) is nonzero. Therefore, to continue our proof, we make the extra assumption that \(g(x + h) - g(x) \neq 0\) for all \(h\) close to but not equal to 0. This assumption is not necessary, but without it, the argument is more technical (see Exercise 105).

Under our assumption, we may use Eq. (1) to write \((f \circ g)'(x)\) as a product of two limits:

\[
(f \circ g)'(x) = \lim_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{g(x + h) - g(x)} \times \lim_{h \to 0} \frac{g(x + h) - g(x)}{h}
\]

Show that this equals \(f'(g(x))\).

The second limit on the right is \(g'(x)\). The Chain Rule will follow if we show that the first limit equals \(f'(g(x))\). To verify this, set

\[k = g(x + h) - g(x)\]

Then \(g(x + h) = g(x) + k\) and

\[
\frac{f(g(x + h)) - f(g(x))}{g(x + h) - g(x)} = \frac{f(g(x) + k) - f(g(x))}{k}
\]

The function \(g\) is continuous because it is differentiable. Therefore, \(g(x + h)\) tends to \(g(x)\) and \(k = g(x + h) - g(x)\) tends to zero as \(h \to 0\). Thus, we may rewrite the limit in terms of \(k\) to obtain the desired result:

\[
\lim_{h \to 0} \frac{f(g(x + h)) - f(g(x))}{g(x + h) - g(x)} = \lim_{k \to 0} \frac{f(g(x) + k) - f(g(x))}{k} = f'(g(x))
\]

3.7 SUMMARY

- The Chain Rule expresses \((f \circ g)'\) in terms of \(f'\) and \(g'\):
 \[
 (f(g(x)))' = f'(g(x))\cdot g'(x)
 \]
- In Leibniz notation: \(\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\), where \(y = f(u)\) and \(u = g(x)\)
- General Power Rule: \(\frac{d}{dx} (g(x))^n = n(g(x))^{n-1} \cdot g'(x)\)

3.7 EXERCISES

Preliminary Questions

1. Identify the outside and inside functions for each of these composite functions.
 (a) \(y = \sqrt{4x + 9x^2}\)
 (c) \(y = \sqrt{x} \cdot \sec x\)
 (b) \(y = \tan(x^2 + 1)\)
 (d) \(y = \sqrt{x} \cos x\)
 (e) \(y = \sec^3 x\)
 (f) \(y = \tan(4x)\)
 (d) \(y = (1 + x^{12})^4\)

2. Which of the following can be differentiated easily without using the Chain Rule?
 (a) \(y = \tan(7x^2 + 2)\)
 (b) \(y = \frac{x}{x + 1}\)
 (c) \(f(5x)'\)
 (d) \(5f'(5x)\)
 (e) \(f'(4)\)

3. Which is the derivative of \(f(5x)\)?
 (a) \(5f'(x)\)
 (b) \(5f'(5x)\)
 (c) \(f'(4)\)

4. Suppose that \(f'(4) = g(4) = g'(4) = 1\). Do we have enough information to compute \(F'(4)\), where \(F(x) = f(g(x))\)? If not, what is missing?

Exercises

In Exercises 1–4, fill in a table of the following type:

<table>
<thead>
<tr>
<th>(f(g(x)))</th>
<th>(f'(u))</th>
<th>(f'(g(x)))</th>
<th>(g'(x))</th>
<th>((f \circ g)')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(u) = u^{3/2}), (g(x) = x^4 + 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(u) = u^3), (g(x) = 3x + 5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(u) = \tan u), (g(x) = x^4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f(u) = u^4 + u), (g(x) = \cos x)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In Exercises 23–26, compute the derivative of the Chain Rule to compute the derivative.

5. \(y = (x + \sin x)^4 \)

6. \(y = \cos(x^3) \)

7. Calculate \(\frac{d}{dx} \cos u \) for the following choices of \(u(x) \):
 (a) \(u(x) = 9 - x^2 \)
 (b) \(u(x) = x^{-1} \)
 (c) \(u(x) = \tan x \)

8. Calculate \(\frac{d}{dx} f(x^2 + 1) \) for the following choices of \(f(u) \):
 (a) \(f(u) = \sin u \)
 (b) \(f(u) = 3u^{3/2} \)
 (c) \(f(u) = u^2 - u \)

9. Compute \(\frac{df}{dx} \) if \(\frac{df}{du} = 2 \) and \(\frac{du}{dx} = 6 \).

10. Compute \(\frac{df}{dx} \) at \(x = 2 \) if \(f(u) = u^2, u(2) = -5 \), and \(u'(2) = -5 \).

In Exercises 11–22, use the General Power Rule, Exponential Rule, or the Chain Rule to compute the derivative.

11. \(y = (x^4 + 5)^3 \)

12. \(y = (8x^4 + 5)^3 \)

13. \(y = \sqrt[3]{x - 3} \)

14. \(y = (4 - 2x - 3x^2)^5 \)

15. \(y = (x^2 + 9x)^{-2} \)

16. \(y = (x^3 + 3x + 9)^{-4/3} \)

17. \(y = \cos^4 \theta \)

18. \(y = \cos(9\theta + 41) \)

19. \(y = (2\cos \theta + 5\sin \theta)^3 \)

20. \(y = \sqrt[3]{9 + x + \sin x} \)

21. \(y = \sin \left(\sqrt{x^2 + 2x + 9} \right) \)

22. \(y = \tan(4 - 3x) \sec(3 - 4x) \)

In Exercises 23–26, compute the derivative of \(f \circ g \).

23. \(f(u) = \sin u \), \(g(x) = 2x + 1 \)

24. \(f(u) = 2u + 1 \), \(g(x) = \sin x \)

25. \(f(u) = u + u^{-1} \), \(g(x) = \tan x \)

26. \(f(u) = \frac{u}{u - 1} \), \(g(x) = \csc x \)

In Exercises 27 and 28, find the derivatives of \(f(g(x)) \) and \(g(f(x)) \).

27. \(f(u) = \cos u \), \(u = g(x) = x^2 + 1 \)

28. \(f(u) = u^3 \), \(u = g(x) = \frac{1}{x + 1} \)

In Exercises 29–42, use the Chain Rule to find the derivative.

29. \(y = \sin(x^2) \)

30. \(y = \sin^2 x \)

31. \(y = \sqrt{x^2 + 9} \)

32. \(y = (x^2 + 3x + 1)^{-5/2} \)

33. \(y = (x^4 - x^3 - 1)^{2/3} \)

34. \(y = (\sqrt{x + 1} + 1)^{3/2} \)

35. \(y = \left(\frac{x + 1}{x - 1} \right)^4 \)

36. \(y = \cos^3(12\theta) \)

37. \(y = \sec \frac{1}{x} \)

38. \(y = \tan(\theta^2 - 4\theta) \)

39. \(y = \tan(\theta + \cos \theta) \)

40. \(y = \sqrt{\cot^3(\theta + 1)} \)

41. \(y = \csc(9 - 2\theta^2) \)

42. \(y = \cot(\sqrt{\theta - 1}) \)

In Exercises 43–72, find the derivative using the appropriate rule or combination of rules.

43. \(y = \tan(x^2 + 4x) \)

44. \(y = \sin(x^2 + 4x) \)

45. \(y = x \cos(1 - 3x) \)

46. \(y = \sin(x^2) \cos(x^2) \)

47. \(y = (4t + 9)^{1/2} \)

48. \(y = (z + 1)^{4/2}(z^2 - 1)^3 \)

49. \(y = (x^3 + \cos x)^{-4} \)

50. \(y = \sin(\cos(x)) \)

51. \(y = \sqrt{x} \cos x \)

52. \(y = (9 - (5 - 2x^4)^3) \)

53. \(y = (\cos 6\theta + \sin x^2)^{1/2} \)

54. \(y = (x + 1)^{1/2} \)

55. \(y = \frac{x^2 + 1}{x + 2} \)

56. \(y = \sqrt{4 - 3\cos x} \)

57. \(y = \sqrt[3]{z + 1} \)

58. \(y = \sqrt{\cos^3(x + 3\cos x + 7)} \)

59. \(y = \frac{\cos(1 + x)}{1 + \cos x} \)

60. \(y = \sec(\sqrt{r^2 - 9}) \)

61. \(y = \cot(x^5) \)

62. \(y = \frac{\cos(1/x)}{1 + x^2} \)

63. \(y = (1 + \cot^5(x^4 + 1))^{9/2} \)

64. \(y = \sqrt{\cos 2x + \sin 4x} \)

65. \(y = (1 - \csc^2(1 - x^3))^{6/5} \)

66. \(y = \sin(\sqrt{\sin \theta + 1}) \)

67. \(y = \left(\frac{x}{x + 1} \right)^{-1/2} \)

68. \(y = \sec \left(1 + (4 + x)^{-3/2} \right) \)

69. \(y = \sqrt{1 + \sqrt{1 + \sqrt{x}}} \)

70. \(y = \sqrt{x + 1 + 1} \)

71. \(y = (kx + b)^{-1/3} \), \(k \) and \(b \) any constants

72. \(y = \frac{1}{\sqrt{kx^4 + b}} \), \(k, b \) constants, not both zero

In Exercises 73–76, compute the higher derivative.

73. \(\frac{d^2}{dx^2} \sin(x^2) \)

74. \(\frac{d^2}{dx^2} (x^2 + 9)^5 \)

75. \(\frac{d^3}{dx^3} (9 - x)^8 \)

76. \(\frac{d^3}{dx^3} \sin(2x) \)

77. The average molecular velocity \(v \) of a gas in a certain container is given by \(v(T) = 29\sqrt{T} \text{ m/s} \), where \(T \) is the temperature in kelvins. The temperature is related to the pressure (in atmospheres) by \(T = 200P \). Find \(\frac{dv}{dP} \) at \(P = 1.5 \).

78. The power \(P \) in a circuit is \(P = Ri^2 \), where \(R \) is the resistance and \(i \) is the current. Find \(\frac{dP}{dt} \) at \(t = 1 \) if \(R = 1000 \Omega \) and \(i \) varies according to \(\dot{i} = \sin(4\pi t) \) (time in seconds).

79. An expanding sphere has radius \(r = 0.4t \) cm at time \(t \) (in seconds). Let \(V \) be the sphere’s volume. Find \(\frac{dV}{dt} \) when \(a \) \(r = 3 \) and \(b \) \(t = 3 \).
80. From a 2005 study by the Fisheries Research Services in Aberdeen, Scotland, we infer that the average length in centimeters of the species *Clupea harengus* (Atlantic herring) as a function of age t (in years) can be modeled by the function

$$ L(t) = 32 \left(1 - \left(1 + 0.37t + 0.068t^2 + 0.0085t^3 + 0.0009t^4 \right)^{-1} \right). $$

for $0 \leq t \leq 13$. See Figure 1.

(a) How fast is the average length changing at age $t = 6$ years?

(b) Use a plot of $g'(t)$ to estimate the age t at which average length is changing at a rate of 5 cm/yr.

![FIGURE 1](https://example.com/figure1.png)

FIGURE 1 Average length of the species *Clupea harengus*.

(© A & J Viscogliosi/McAlpine)

81. According to a 1999 study by Starkey and Scarnecchia, the average weight (in kilograms) at age t (in years) for channel catfish in the Lower Yellowstone River (Figure 2) is approximated by the function

$$ W(t) = (0.14 + 0.115t + 0.002t^2 + 0.000023t^3)^{3.4}. $$

Find the rate at which average weight is changing at $t = 10$ years.

![FIGURE 2](https://example.com/figure2.png)

FIGURE 2 Average weight of channel catfish at age t.

(© Doug James/Dreamstime.com)

82. Calculate $M'(0)$ in terms of the constants a, b, k, and m, where

$$ M(t) = \left(a + (b - a) \left(1 + knt + \frac{1}{2} (knt)^2 \right) \right)^{1/m}. $$

83. With notation as in Example 8, calculate

(a) $\frac{d}{d\theta} \sin \theta \bigg|_{\theta = 60^\circ}$

(b) $\frac{d}{d\theta} \left(\theta + \tan \theta \right) \bigg|_{\theta = 45^\circ}$

84. Assume that

$$ f(0) = 2, \quad f'(0) = 3, \quad h(0) = -1, \quad h'(0) = 7 $$

Calculate the derivatives of the following functions at $x = 0$:

(a) $(f(x))^3$

(b) $f(7x)$

(c) $f(4x)h(5x)$

85. Compute the derivative of $h(\sin x)$ at $x = \frac{\pi}{6}$, assuming that $h'(0.5) = 10$.

86. Let $F(x) = f(g(x))$, where the graphs of f and g are shown in Figure 3. Estimate $g''(2)$ and $f''(g(2))$ and compute $F'(2)$.

![FIGURE 3](https://example.com/figure3.png)

In Exercises 87–90, use the table of values to calculate the derivative of the function at the given point.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>4</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>$f'(x)$</td>
<td>5</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>$g(x)$</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>$g'(x)$</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

87. $f(g(x))$, $x = 6$

88. $g(f(x))$, $x = 1$

89. $g(\sqrt{x})$, $x = 16$

90. $f(2x + g(x))$, $x = 1$

91. The price (in dollars) of a computer component is $P = 2C - 18C^{-1}$, where C is the manufacturer’s cost to produce it. Assume that cost at time t (in years) is $C = 9 + 3t^{-1}$. Determine the rate of change of price with respect to time at $t = 3$.

92. (GU) Plot the “astroid” $y = (4 - x^{2/3})^{3/2}$ for $0 \leq x \leq 8$. Show that the part of every tangent line in the first quadrant has a constant length 8.

93. According to the U.S. standard atmospheric model, developed by the National Oceanic and Atmospheric Administration for use in aircraft and rocket design, atmospheric temperature T (in degrees Celsius), pressure P (kPa = 1000 pascals), and altitude h (in meters) are related by these formulas (valid in the troposphere $h \leq 11,000$):

$$ T = 15.04 - 0.000649h, \quad P = 101.29 + \left(\frac{T + 273.1}{288.08} \right)^{5.256}. $$

Use the Chain Rule to calculate dP/dh. Then estimate the change in P (in pascals, Pa) per additional meter of altitude when $h = 3000$.

94. Climate scientists use the Stefan–Boltzmann Law $R = \sigma T^4$ to estimate the change in the earth’s average temperature T (in kelvins) caused by a change in the radiation R (in joules per square meter per second) that the earth receives from the sun. Here, $\sigma = 5.67 \times 10^{-8}$ Js$^{-1}$m$^{-2}$K$^{-4}$. Calculate dR/dt, assuming that $T = 283$ and $dT/dt = 0.05$ K/year. What are the units of the derivative?

95. In the setting of Exercise 94, calculate the yearly rate of change of T if $T = 283$ K and R increases at a rate of 0.5 Js$^{-1}$m$^{-2}$ per year.

96. (CAS) Use a computer algebra system to compute $f^{(k)}(x)$ for $k = 1, 2, 3$ for the following functions:

(a) $f(x) = \cot(x^2)$

(b) $f(x) = \sqrt{x^3 + 1}$

97. Use the Chain Rule to express the second derivative of $f \circ g$ in terms of the first and second derivatives of f and g.

98. Compute the second derivative of $\sin(g(x))$ at $x = 2$, assuming that $g(2) = \frac{\pi}{4}$, $g'(2) = 5$, and $g''(2) = 3$.
Further Insights and Challenges

99. Show that if \(f, g, \) and \(h \) are differentiable, then
\[
[f(g(h(x)))]' = f'(g(h(x)))g'(h(x))h'(x)
\]

100. Show that differentiation reverses parity: If \(f \) is even, then \(f' \) is odd, and if \(f \) is odd, then \(f' \) is even. \(\text{Hint: Differentiate} \ f(-x). \)

101. (a) Sketch a graph of any even function \(f \) and explain graphically why \(f' \) is odd.
(b) Suppose that \(f' \) is even. Is \(f \) necessarily odd? \(\text{Hint: Check whether this is true for linear functions.} \)

102. Power Rule for Fractional Exponents
Let \(f(u) = u^q \) and \(g(x) = x^{p/q} \). Assume that \(g \) is differentiable.
(a) Show that \(f(g(x)) = x^p \) (recall the Laws of Exponents).
(b) Apply the Chain Rule and the Power Rule for whole-number exponents to show that \(f'(g(x))g'(x) = px^{p-1} \).
(c) Then derive the Power Rule for \(x^{p/q} \).

103. Prove that for all whole numbers \(n \geq 1 \),
\[
\frac{d^n}{dx^n} \sin x = \sin \left(x + \frac{n\pi}{2} \right)
\]
\(\text{Hint: Use the identity} \ \cos x = \sin \left(x + \frac{\pi}{2} \right). \)

104. A Discontinuous Derivative
Use the limit definition to show that \(g(0) \) exists but \(g'(0) \neq \lim_{x \to 0} g'(x) \), where
\[
g(x) = \begin{cases}
 x^2 \sin \frac{1}{x} & x \neq 0 \\
 0 & x = 0
\end{cases}
\]

105. Chain Rule
This exercise proves the Chain Rule without the special assumption made in the text. For any number \(b \), define a new function
\[
F(u) = \frac{f(u) - f(b)}{u - b} \quad \text{for all} \quad u \neq b
\]
(a) Show that if we define \(F(b) = f'(b) \), then \(F \) is continuous at \(u = b \).
(b) Take \(b = g(a) \). Show that if \(x \neq a \), then for all \(a \),
\[
\frac{f(u) - f(g(a))}{u - a} = F(u) \frac{g(x) - g(a)}{x - a}
\]
Note that both sides are zero if \(u = g(a) \).
(c) Substitute \(u = g(x) \) in Eq. (2) to obtain
\[
\frac{f(g(x)) - f(g(a))}{x - a} = F(g(x)) \frac{g(x) - g(a)}{x - a}
\]
Derive the Chain Rule by computing the limit of both sides as \(x \to a \).

3.8 Implicit Differentiation

We have developed the basic techniques for calculating a derivative \(dy/dx \) when \(y \) is given in terms of \(x \) by a formula—such as \(y = x^3 + 1 \). But suppose that \(y \) is determined instead by an equation such as
\[
y^4 + xy = x^3 - x + 2
\]
In this case, we say that \(y \) is defined \textit{implicitly}. How can we find the slope of the tangent line at a point on the graph (Figure 1)? Although it may be difficult or even impossible to solve for \(y \) explicitly as a function of \(x \), we can find \(dy/dx \) using the method of \textit{implicit differentiation}.

To illustrate, consider the equation of the unit circle (Figure 2):
\[
x^2 + y^2 = 1
\]
Compute \(dy/dx \) by taking the derivative of both sides of the equation:
\[
\frac{d}{dx} (x^2 + y^2) = \frac{d}{dx} (1)
\]
\[
2x + \frac{d}{dx} (y^2) = 0
\]
\[
2x + 2y \frac{dy}{dx} = 0
\]
How do we handle the term \(\frac{d}{dx} (y^2) \)? We use the Chain Rule. Think of \(y \) as a function \(y = f(x) \). Then \(y^2 = (f(x))^2 \) and by the Chain Rule,
\[
\frac{d}{dx} y^2 = \frac{d}{dx} (f(x))^2 = 2f(x) \frac{df}{dx} = 2y \frac{dy}{dx}
\]
Equation (2) becomes \(2x + 2y \frac{dy}{dx} = 0\), and we can solve for \(\frac{dy}{dx}\) if \(y \neq 0\):

\[
\frac{dy}{dx} = -\frac{x}{y}
\]

Example 1 Use Eq. (3) to find the slope of the tangent line at the point \(P = \left(\frac{3}{5}, \frac{4}{5}\right)\) on the unit circle.

Solution Set \(x = \frac{3}{5}\) and \(y = \frac{4}{5}\) in Eq. (3):

\[
\left.\frac{dy}{dx}\right|_P = -\frac{x}{y} = -\frac{3}{5} \cdot \frac{5}{4} = -\frac{3}{4}
\]

In this particular example, we could have computed \(\frac{dy}{dx}\) directly, without implicit differentiation. The upper semicircle is the graph of \(y = \sqrt{1 - x^2}\) and

\[
\frac{dy}{dx} = \frac{d}{dx} \sqrt{1 - x^2} = \frac{1}{2} (1 - x^2)^{-1/2} \frac{d}{dx} (1 - x^2) = -\frac{x}{\sqrt{1 - x^2}}
\]

This formula expresses \(\frac{dy}{dx}\) in terms of \(x\) alone, whereas Eq. (3) expresses \(\frac{dy}{dx}\) in terms of both \(x\) and \(y\), as is typical when we use implicit differentiation. The two formulas agree because \(y = \sqrt{1 - x^2}\).

Before presenting additional examples, let’s examine again how the factor \(\frac{dy}{dx}\) arises when we differentiate an expression involving \(y\) with respect to \(x\). It would not appear if we were differentiating with respect to \(y\). Thus,

\[
\frac{d}{dy} \sin y = (\cos y) \frac{dy}{dy} = \cos y
\]

Notice what happens if we insist on applying the Chain Rule to \(\frac{d}{dy} \sin y\). The extra factor appears, but it is equal to 1:

\[
\frac{d}{dy} \sin y = (\cos y) \frac{dy}{dy} = \cos y
\]

Similarly, the Product Rule applied to \(xy\) yields

\[
\frac{d}{dx} (xy) = \frac{dx}{dx} y + \frac{dy}{dx} x = y + x \frac{dy}{dx}
\]

The Quotient Rule applied to \(t^2/y\) yields

\[
\frac{d}{dt} \left(\frac{t^2}{y}\right) = \frac{y \frac{d}{dt} t^2 - t^2 \frac{dy}{dt}}{y^2} = \frac{2ty - t^2 \frac{dy}{dt}}{y^2}
\]

Example 2 Find an equation of the tangent line at the point \(P = (1, 1)\) on the curve (Figure 1)

\[y^4 + xy = x^3 - x + 2\]

Solution We break up the calculation into two steps.

Step 1. Differentiate both sides of the equation with respect to \(x\).

Note that each occurrence of \(y\) in the original equation generates an additional \(\frac{dy}{dx}\) upon differentiation.

\[
\frac{d}{dx} y^4 + \frac{d}{dx} (xy) = \frac{d}{dx} (x^3 - x + 2)
\]

\[
4y^3 \frac{dy}{dx} + \left(y + x \frac{dy}{dx}\right) = 3x^2 - 1
\]
Step 2. Solve for \(\frac{dy}{dx} \).

Move the terms involving \(\frac{dy}{dx} \) in Eq. (4) to the left and place the remaining terms on the right:

\[
4y^3 \frac{dy}{dx} + x \frac{dy}{dx} = 3x^2 - 1 - y
\]

Then factor out \(\frac{dy}{dx} \) and divide:

\[
(4y^3 + x) \frac{dy}{dx} = 3x^2 - 1 - y
\]

\[
\frac{dy}{dx} = \frac{3x^2 - 1 - y}{4y^3 + x}
\]

To find the derivative at \(P = (1, 1) \), apply Eq. (5) with \(x = 1 \) and \(y = 1 \):

\[
\left. \frac{dy}{dx} \right|_{(1,1)} = \frac{3 \cdot 1^2 - 1 - 1}{4 \cdot 1^3 + 1} = \frac{1}{5}
\]

An equation of the tangent line is \(y - 1 = \frac{1}{5} (x - 1) \) or \(y = \frac{1}{5} x + \frac{4}{5} \).

CONCEPTUAL INSIGHT The graph of an equation does not always define a function because there may be more than one \(y \)-value for a given value of \(x \). Implicit differentiation works because the graph is generally made up of several pieces called **branches**, each of which does define a function (a proof of this fact relies on the Implicit Function Theorem from advanced calculus). For example, the branches of the unit circle \(x^2 + y^2 = 1 \) are the graphs of the functions \(y = \sqrt{1 - x^2} \) and \(y = -\sqrt{1 - x^2} \). Similarly, the graph in Figure 3 has an upper and a lower branch. In most examples, the branches are differentiable except at certain exceptional points where the tangent line may be vertical.

![Figure 3](image-url)

EXAMPLE 3 Calculate \(\frac{dy}{dx} \) at the point \(\left(\frac{\pi}{4}, \frac{\pi}{4} \right) \) on the curve \(\sqrt{2} \cos(x + y) = \cos x - \cos y \)

Solution We follow the steps of the previous example, this time writing \(y' \) for \(\frac{dy}{dx} \):

\[
\frac{d}{dx} \left(\sqrt{2} \cos(x + y) \right) = \frac{d}{dx} \cos x - \frac{d}{dx} \cos y
\]

\[
- \sqrt{2} \sin(x + y) \cdot (1 + y') = - \sin x + (\sin y) y'
\]

\[
- \sqrt{2} \sin(x + y) - \sqrt{2} y' \sin(x + y) = - \sin x + y' \sin y
\]

\[
- y' \left(\sin y + \sqrt{2} \sin(x + y) \right) = \sqrt{2} \sin(x + y) - \sin x \quad \text{(place } y'\text{-terms on left)}
\]

\[
y' = \frac{\sin x - \sqrt{2} \sin(x + y)}{\sin y + \sqrt{2} \sin(x + y)}
\]
The derivative at the point \((-\frac{\pi}{4}, \frac{\pi}{4})\) is

\[
\frac{dy}{dx} \bigg|_{(-\frac{\pi}{4}, \frac{\pi}{4})} = \sin\frac{\pi}{4} - \sqrt{2}\sin\left(\frac{\pi}{4} + \frac{\pi}{4}\right) - \sqrt{2}\sin\left(\frac{\pi}{4} + \frac{\pi}{4}\right) = \frac{1}{2}.
\]

EXAMPLE 4
Shortcut to Derivative at a Specific Point
Calculate \(\frac{dy}{dt} \bigg|_{P}\) at the point \(P = (0, \frac{5\pi}{2})\) on the curve (Figure 4):

\[y \cos(y + t + t^2) = t^3\]

Solution
As before, differentiate both sides of the equation (we write \(y'\) for \(\frac{dy}{dt}\)):

\[
\frac{d}{dt}y \cos(y + t + t^2) = \frac{d}{dt}t^3
\]

\[y' \cos(y + t + t^2) - y \sin(y + t + t^2)(y' + 1 + 2t) = 3t^2\]

We could continue to solve for \(y'\), but that is not necessary. Instead, we can substitute \(t = 0, y = \frac{5\pi}{2}\) directly in Eq. (6) to obtain

\[
y' \cos\left(\frac{5\pi}{2} + 0 + 0^2\right) - \left(\frac{5\pi}{2}\right) \sin\left(\frac{5\pi}{2} + 0 + 0^2\right)(y' + 1 + 0) = 0
\]

\[0 - \left(\frac{5\pi}{2}\right)(1)(y' + 1) = 0\]

This gives us \(y' + 1 = 0\) or \(y' = -1\).

Finding Higher Order Derivatives Implicitly

We may need to find a higher order derivative of a function that is defined implicitly, as in the next example.

EXAMPLE 5
Find a formula for \(\frac{d^2y}{dx^2}\) if \(y\) is defined implicitly as a function of \(x\) by \(x^2 + 4y^2 = 7\).

Solution
We differentiate with respect to \(x\), writing \(y'\) for \(\frac{dy}{dx}\):

\[2x + 8yy' = 0\]

Solving for \(y'\), we obtain

\[y' = \frac{-x}{4y}\]

Differentiating again with respect to \(x\), we obtain

\[
y'' = \frac{-x^2}{16y^2} = -\frac{y + xy'}{4y^2}
\]

Substituting in the fact that \(y' = \frac{-x}{4y}\) yields

\[y'' = \frac{-y + x(-x/4y)}{4y^2} = \frac{-4y^2 - x^2}{16y^3}\]

3.8 SUMMARY

- Implicit differentiation is used to compute \(dy/dx\) when \(x\) and \(y\) are related by an equation.

Step 1. Take the derivative of both sides of the equation with respect to \(x\).
Step 2. Solve for dy/dx by collecting the terms involving dy/dx on one side and the remaining terms on the other side of the equation.

- Remember to include the factor dy/dx when differentiating expressions involving y with respect to x. For instance,

$$\frac{d}{dx} \sin y = (\cos y) \frac{dy}{dx}$$

3.8 Exercises

Preliminary Questions

1. Which differentiation rule is used to show $\frac{d}{dx} \sin y = \cos y \frac{dy}{dx}$?
2. One of (a)–(c) is incorrect. Find and correct the mistake.
 (a) $\frac{d}{dy} \sin(y^2) = 2y \cos(y^2)$
 (b) $\frac{d}{dx} \sin(x^2) = 2x \cos(x^2)$
 (c) $\frac{d}{dx} \sin(y^2) = 2y \cos(y^2)$
3. On an exam, Jason was asked to differentiate the equation
 $$x^2 + 2xy + y^3 = 7$$
 Find the errors in Jason’s answer: $2x + 2xy' + 3y^2 = 0$.
4. Which of (a) or (b) is equal to $\frac{d}{dx} (x \sin t)$?
 (a) $(x \cos t) \frac{dt}{dx}$
 (b) $(x \cos t) \frac{dt}{dx} + \sin t$

Exercises

1. Show that if you differentiate both sides of $x^2 + 2y = 6$, the result is $2x + 6y \frac{dy}{dt} = 0$. Then solve for dy/dx and evaluate it at the point $(2, 1)$.
2. Show that if you differentiate both sides of $xy + 4x + 2y = 1$, the result is $(x + 2) \frac{dx}{dt} + y + 4 = 0$. Then solve for dy/dx and evaluate it at the point $(1, -1)$.

In Exercises 3–8, differentiate the expression with respect to x, assuming that $y = f(x)$.

3. x^2y^3
4. $\frac{x^3}{y^2}$
5. $(x^2 + y^2)^{3/2}$
6. $\tan(xy)$
7. $\frac{y}{y+1}$
8. $\sin \left(\frac{y}{x} \right)$

In Exercises 9–26, calculate the derivative with respect to x.

9. $3y^3 + x^2 = 5$
10. $x^5 - 2y = 4x^3 + x$
11. $x^2y + 2xy^3 = x + y$
12. $xy^2 + x^2y^3 - x^3 = 3$
13. $x^3 y^5 = 1$
14. $x^4 + y^4 = 1$
15. $\frac{y}{x} + \frac{x}{y} = 2y$
16. $\sqrt{x + y} = \frac{1}{x} + \frac{1}{y}$
17. $y^{-2/3} + x^{3/2} = 1$
18. $x^{1/2} + y^{2/3} = -4y$
19. $y + \frac{1}{y} = x^2 + x$
20. $\sin(xy) = t$
21. $\sin(x + y) = x + \cos y$
22. $\tan(x^2y) = (x + y)^3$
23. $\tan(x + y) = \tan x + \tan y$
24. $x \sin y - y \cos x = 2$
25. $x + \cos(3x - y) = xy$
26. $2x^2 - x - y = \sqrt{x^4 + y^4}$
27. Show that $x + yx^{-1} = 1$ and $y = x - x^2$ define the same curve [except that $(0, 0)$ is not a solution of the first equation] and that implicit differentiation yields $y' = yx^{-1} - x$ and $y' = 1 - 2x$. Explain why these formulas produce the same values for the derivative.
28. Use the method of Example 4 to compute $\frac{dy}{dx}|_p$ at $P = (2, 1)$ on the curve $y^2x^3 + y^3x^4 - 10x + y = 5$.

In Exercises 29 and 30, find dy/dx at the given point.

29. $(x + 2)^2 - 6(2y + 3)^2 = 3$, $(1, -1)$
30. $\sin^2(3y) = x + y$, \(\left(\frac{2 - \pi}{4}, \frac{\pi}{4} \right) \)

In Exercises 31–38, find an equation of the tangent line at the given point.

31. $xy + x^2y^2 = 6$, $(2, 1)$
32. $x^{2/3} + y^{2/3} = 2$, $(1, 1)$
33. $x^2 + \sin y = xy^2 + 1$, $(1, 0)$
34. $\sin(x - y) = x \cos \left(y + \frac{\pi}{4} \right)$, \(\left(\frac{\pi}{4}, \frac{\pi}{4} \right) \)
35. $2x^{1/2} + 4y^{-1/2} = xy$, $(1, 4)$
36. $\frac{x}{x + 1} + \frac{x}{y + 1} = 1$, $(1, 1)$
37. $\sin(2x - y) = \frac{x^2}{y}$, $(0, \pi)$
38. $x + \sqrt{x} = y^2 + y^4$, $(1, 1)$
39. Find the points on the graph of $y^2 = x^3 - 3x + 1$ (Figure 5) where the tangent line is horizontal.
 (a) First show that $2yy' = 3x^2 - 3$, where $y' = dy/dx$.
 (b) Do not solve for y'. Rather, set $y' = 0$ and solve for x. This yields two values of x where the slope may be zero.
(e) Show that the positive value of x does not correspond to a point on the graph.

(d) The negative value corresponds to the two points on the graph where the tangent line is horizontal. Find their coordinates.

\[\text{FIGURE 5} \text{ Graph of } y^2 = x^3 - 3x + 1. \]

40. Show, by differentiating the equation, that if the tangent line at a point (x, y) on the curve $x^2 y - 2x + 8y = 2$ is horizontal, then $xy = 1$. Then substitute $y = x^{-1}$ in $x^2 y - 2x + 8y = 2$ to show that the tangent line is horizontal at the points $(2, \frac{1}{2})$ and $(-4, -\frac{1}{2})$.

41. Find all points on the graph of $3x^2 + 4y^2 + 3xy = 24$ where the tangent line is horizontal (Figure 6).

\[\text{FIGURE 6} \text{ Graph of } 3x^2 + 4y^2 + 3xy = 24. \]

42. Show that no point on the graph of $x^2 - 3xy + y^2 = 1$ has a horizontal tangent line.

43. Figure 1 shows the graph of $y^4 + xy = x^3 - x + 2$. Find dy/dx at the two points on the graph with x-coordinate 0 and find an equation of the tangent line at $(1, 1)$.

44. **Folium of Descartes** The curve $x^3 + y^3 = 3xy$ (Figure 7) was first discussed in 1638 by the French philosopher-mathematician René Descartes, who called it the folium (meaning "leaf"). Descartes’s scientific colleague Gilles de Roberval called it the jasmine flower. Both men believed incorrectly that the leaf shape in the first quadrant was repeated in each quadrant, giving the appearance of petals of a flower. Find an equation of the tangent line at the point $(\frac{3}{2}, \frac{3}{4})$.

\[\text{FIGURE 7} \text{ Folium of Descartes: } x^3 + y^3 = 3xy. \]

45. Find a point on the folium $x^3 + y^3 = 3xy$ other than the origin at which the tangent line is horizontal.

46. **GU** Plot $x^3 + y^3 = 3xy + b$ for several values of b and describe how the graph changes as $b \to 0$. Then compute dy/dx at the point $(b^{1/3}, 0)$. How does this value change as $b \to \infty$? Do your plots confirm this conclusion?

47. Find the x-coordinates of the points where the tangent line is horizontal on the **trident curve** $xy = x^3 - 5x^2 + 2x - 1$, so named by Isaac Newton in his treatise on curves published in 1710 (Figure 8). Hint: $2x^3 - 5x^2 + 1 = (2x - 1)(x^2 - 2x - 1)$.

\[\text{FIGURE 8} \text{ Trident curve: } xy = x^3 - 5x^2 + 2x - 1. \]

48. Find an equation of the tangent line at each of the four points on the curve $(x^2 + y^2 - 4x)^2 = 2(x^2 + y^2)$ where $x = 1$. This curve (Figure 9) is an example of a **limaçon of Pascal**, named after the father of the French philosopher Blaise Pascal, who first described it in 1650.

\[\text{FIGURE 9} \text{ Limaçon: } (x^2 + y^2 - 4x)^2 = 2(x^2 + y^2). \]

49. Find the derivative at the points where $x = 1$ on the folium $(x^2 + y^2)^2 = \frac{25}{4}xy^2$. See Figure 10.

\[\text{FIGURE 10} \text{ Folium curve: } (x^2 + y^2)^2 = \frac{25}{4}xy^2. \]

50. **CAS** Plot $(x^2 + y^2)^2 = 12(x^2 - y^2) + 2$ for $-4 \leq x \leq 4$, $-4 \leq y \leq 4$ using a computer algebra system. How many horizontal tangent lines does the curve appear to have? Find the points where these occur.

51. Calculate dx/dy for the equation $y^4 + 1 = y^2 + x^2$ and find the points on the graph where the tangent line is vertical.
52. Show that the tangent lines at \(x = 1 \pm \sqrt{2} \) to the conchoid with equation \((x - 1)^2(x^2 + y^2) = 2x^2\) are vertical (Figure 11).

![Figure 11](image)

\[(x - 1)^2(x^2 + y^2) = 2x^2. \]

53. **CAS** Use a computer algebra system to plot \(y^2 = x^3 - 4x \) for \(-4 \leq x \leq 4, -4 \leq y \leq 4\). Show that if \(dx/dy = 0 \), then \(y = 0 \). Conclude that the tangent line is vertical at the points where the curve intersects the \(x \)-axis. Does your plot confirm this conclusion?

54. Show that for all points \(P \) on the graph in Figure 12, the segments \(OP \) and \(PR \) have equal length.

![Figure 12](image)

\[\text{Tangent line} \]

In Exercises 55–58, use implicit differentiation to calculate higher derivatives.

55. Consider the equation \(y^3 - \frac{3}{2}x^2 = 1 \).

(a) Show that \(y' = x/y^2 \) and differentiate again to show that

\[y'' = \frac{y^2 - 2yxy'}{y^4}. \]

(b) Express \(y'' \) in terms of \(x \) and \(y \) using part (a).

56. Use the method of the previous exercise to show that \(y'' = -y^{-3} \) on the circle \(x^2 + y^2 = 1 \).

57. Calculate \(y'' \) at the point \((1, 1)\) on the curve \(xy^2 + y - 2 = 0 \) by the following steps:

(a) Find \(y' \) by implicit differentiation and calculate \(y' \) at the point \((1, 1)\).

(b) Differentiate the expression for \(y' \) found in (a). Then compute \(y'' \) at \((1, 1)\) by substituting \(x = 1, y = 1 \), and the value of \(y' \) found in (a).

58. Use the method of the previous exercise to compute \(y'' \) at the point \((1, 1)\) on the curve \(x^3 + y^3 = 3x + y - 2 \).

In Exercises 59–61, \(x \) and \(y \) are functions of a variable \(t \) and use implicit differentiation to relate \(dy/dt \) and \(dx/dt \).

59. Differentiate \(xy = 1 \) with respect to \(t \) and derive the relation \(\frac{dy}{dt} = -\frac{y}{x} \frac{dx}{dt} \).

60. Differentiate

\[x^3 + 3xy^2 = 1 \]

with respect to \(t \) and express \(dy/dt \) in terms of \(dx/dt \), as in Exercise 59.

61. Calculate \(dy/dt \) in terms of \(dx/dt \).

(a) \(x^3 - y^3 = 1 \)

(b) \(y^4 + 2xy + x^2 = 0 \)

62. The volume \(V \) and pressure \(P \) of gas in a piston (which vary in time \(t \)) satisfy \(PV^{3/2} = C \), where \(C \) is a constant. Prove that

\[\frac{dP}{dV} = \frac{-3}{2} \frac{P}{V} \]

The ratio of the derivatives is negative. Could you have predicted this from the relation \(PV^{3/2} = C \)?

Further Insights and Challenges

63. Show that if \(P \) lies on the intersection of the two curves \(x^2 - y^2 = c \) and \(xy = d \) \((c, d \text{ constants})\), then the tangents to the curves at \(P \) are perpendicular.

64. The **lemniscate curve** \((x^2 + y^2)^2 = 4(x^2 - y^2) \) was discovered by Jacob Bernoulli in 1694, who noted that it is “shaped like a figure 8, or a knot, or the bow of a ribbon.” Find the coordinates of the four points at which the tangent line is horizontal (Figure 13).

![Figure 13](image)

\[(x^2 + y^2)^2 = 4(x^2 - y^2). \]

65. Divide the curve in Figure 14 into five branches, each of which is the graph of a function. Sketch the branches.

![Figure 14](image)

\[y^5 - y = x^2y + x + 1. \]
3.9 Related Rates

In related-rate problems, the goal is to calculate an unknown rate of change in terms of other rates of change that are known. The “sliding ladder problem” is a good example: A ladder leans against a wall as the bottom is pulled away at constant velocity. How fast does the top of the ladder move? What is interesting and perhaps surprising is that the top and bottom travel at different speeds. Figure 1 shows this clearly: The bottom travels the same distance over each time interval, but the top travels farther during the second time interval than the first. In other words, the top is speeding up while the bottom moves at a constant speed. In the next example, we use calculus to find the velocity of the ladder’s top.

Example 1 Sliding Ladder Problem A 5-m ladder leans against a wall. The bottom of the ladder is 1.5 m from the wall at time \(t = 0 \) and slides away from the wall at a rate of 0.8 m/s. Find the velocity of the top of the ladder at time \(t = 1 \).

Solution The first step in any related-rate problem is to choose variables for the relevant quantities. Since we are considering how the top and bottom of the ladder change position, we use variables (Figure 2):

- \(x = x(t) \) distance from the bottom of the ladder to the wall
- \(h = h(t) \) height of the ladder’s top

Both \(x \) and \(h \) are functions of time. The velocity of the bottom is \(\frac{dx}{dt} = 0.8 \) m/s. The unknown velocity of the top is \(\frac{dh}{dt} \), and the initial distance from the bottom to the wall is \(x(0) = 1.5 \) m, so we can restate the problem as

Compute \(\frac{dh}{dt} \) at \(t = 1 \) given that \(\frac{dx}{dt} = 0.8 \) m/s and \(x(0) = 1.5 \) m

To solve this problem, we need an equation relating \(x \) and \(h \) (Figure 2). This is provided by the Pythagorean Theorem:

\[
x^2 + h^2 = 5^2
\]

To calculate \(\frac{dh}{dt} \), we differentiate both sides of this equation with respect to \(t \):

\[
\frac{d}{dt}x^2 + \frac{d}{dt}h^2 = \frac{d}{dt}5^2
\]

\[
2x\frac{dx}{dt} + 2h\frac{dh}{dt} = 0
\]

Therefore, \(\frac{dh}{dt} = -\frac{x}{h} \frac{dx}{dt} \), and because \(\frac{dx}{dt} = 0.8 \) m/s, the velocity of the top is

\[
\frac{dh}{dt} = -\frac{0.8x}{h} \text{ m/s}
\]

To apply this formula, we must find \(x \) and \(h \) at time \(t = 1 \). Since the bottom slides away at 0.8 m/s and \(x(0) = 1.5 \), we have \(x(1) = 2.3 \) and \(h(1) = \sqrt{5^2 - 2.3^2} \approx 4.44 \). We obtain (note that the answer is negative because the ladder top is falling)

\[
\left. \frac{dh}{dt} \right|_{t=1} = -\frac{0.8x(1)}{h(1)} \approx -\frac{0.8 \times 2.3}{4.44} \approx -0.41 \text{ m/s}
\]
A puzzling feature of Eq. (1) is that the velocity \(\frac{dh}{dt} \), which is equal to \(-0.8x/h\), becomes infinite as \(h \rightarrow 0 \) (as the top of the ladder gets close to the ground). Since this is impossible, our mathematical model must break down as \(h \rightarrow 0 \). In fact, one can show that the ladder’s top loses contact with the wall before reaching the bottom and from that moment on, the formula is no longer valid.

In the next examples, we divide the solution into three steps that can be followed when working the exercises.

EXAMPLE 2 Filling a Rectangular Tank Water pours into a fish tank at a rate of 0.3 m³/min. How fast is the water level rising if the base of the tank is a rectangle of dimensions 2 × 3 m?

Solution To solve a related-rate problem, it is useful to draw a diagram if possible. Figure 3 illustrates our problem.

Step 1. Identify variables and restate the problem.
First, we must recognize that the rate at which water pours into the tank is the derivative of water volume with respect to time. Therefore, let \(V \) be the volume and \(h \) the height of the water at time \(t \). Then

\[
\frac{dV}{dt} = \text{rate at which water is added to the tank}
\]
\[
\frac{dh}{dt} = \text{rate at which the water level is rising}
\]

Now we can restate our problem in terms of derivatives:

Compute \(\frac{dh}{dt} \) given that \(\frac{dV}{dt} = 0.3 \) m³/min

Step 2. Find an equation relating the variables and differentiate with respect to time.
We need a relation between \(V \) and \(h \). We have \(V = 6h \) since the tank’s base has area 6 m². Therefore,

\[
\frac{dV}{dt} = 6 \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = \frac{1}{6} \frac{dV}{dt}
\]

Step 3. Use the data to find the unknown derivative.
Because \(\frac{dV}{dt} = 0.3 \), the water level rises at the rate

\[
\frac{dh}{dt} = \frac{1}{6} \frac{dV}{dt} = \frac{1}{6} (0.3) = 0.05 \text{ m/min}
\]

Note that \(\frac{dh}{dt} \) has units of meters per minute because \(h \) and \(t \) are in meters and minutes, respectively.

The set-up in the next example is similar but more complicated because the water tank has the shape of a circular cone. We use similar triangles to derive a relation between the volume and height of the water. We also need the formula \(V = \frac{1}{3} \pi hr^2 \) for the volume of a circular cone of height \(h \) and radius \(r \).

EXAMPLE 3 Filling a Conical Tank Water pours into a conical tank of height 10 m and radius 4 m at a rate of 6 m³/min.

(a) At what rate is the water level rising when the level is 5 m high?
(b) As time passes, what happens to the rate at which the water level rises?
Solution

(a) Step 1. Assign variables and restate the problem.
As in the previous example, let V and h be the volume and height of the water in the tank at time t. Our problem, in terms of derivatives, is

Compute $\frac{dh}{dt}$ at $h = 5$ given that $\frac{dV}{dt} = 6 \text{ m}^3/\text{min}$

Step 2. Find an equation relating the variables and differentiate with respect to time.
When the water level is h, the volume of water in the cone is $V = \frac{1}{3} \pi h r^2$, where r is the radius of the cone at height h. In order to use this relation, we eliminate the variable r. Using similar triangles in Figure 4, we see that

$$\frac{r}{h} = \frac{4}{10}$$

or

$$r = 0.4h$$

Therefore,

$$V = \frac{1}{3} \pi h (0.4h)^2 = \left(\frac{0.16}{3}\right) \pi h^3$$

$$\frac{dV}{dt} = (0.16)\pi h^2 \frac{dh}{dt}$$

Step 3. Use the data to find the unknown derivative.
We are given $\frac{dV}{dt} = 6$. Using this in Eq. (2), we obtain

$$(0.16)\pi h^2 \frac{dh}{dt} = 6$$

$$\frac{dh}{dt} = \frac{6}{(0.16)\pi h^2}$$

When $h = 5$, the level is rising at a rate of $\frac{dh}{dt} = \frac{6}{(0.16)\pi 5^2} \approx 0.48 \text{ m/min}$.

(b) Eq. (3) shows that $\frac{dh}{dt}$ is inversely proportional to h^2. As h increases, the water level rises more slowly. This is reasonable if you consider that a thin slice of the cone of width Δh has more volume when h is large, so more water is needed to raise the level when h is large (Figure 5).

EXAMPLE 4 Tracking a Rocket

A spy uses a telescope to track a rocket launched vertically from a launching pad 6 km away, as in Figure 6. At a certain moment, the angle θ between the telescope and the ground is equal to $\frac{\pi}{3}$ and is changing at a rate of 0.9 radians rad/min. What is the rocket’s velocity at that moment?

Solution

Step 1. Assign variables and restate the problem.
Let y be the height of the rocket at time t. Our goal is to compute the rocket’s velocity $\frac{dy}{dt}$ when $\theta = \frac{\pi}{3}$ so we can restate the problem as follows:

Compute $\frac{dy}{dt}$ at $\theta = \frac{\pi}{3}$ given that $\frac{d\theta}{dt} = 0.9 \text{ rad/min}$ when $\theta = \frac{\pi}{3}$
Step 2. Find an equation relating the variables and differentiate.
We need a relation between θ and y. As we see in Figure 6,
\[\tan \theta = \frac{y}{6} \]
Now differentiate with respect to time:
\[\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{6} \frac{dy}{dt} \]
\[\frac{dy}{dt} = \frac{6 \cos^2 \theta}{d\theta/dt} \]

Step 3. Use the given data to find the unknown derivative.
At the given moment, $\theta = \frac{\pi}{3}$ and $d\theta/dt = 0.9$, so Eq. (4) yields
\[\frac{dy}{dt} = \frac{6 \cos^2(\pi/3)}{(0.9)} = \frac{6}{(0.5)^2}(0.9) = 21.6 \text{ km/min} \]
The rocket’s velocity at this moment is 21.6 km/min, or approximately 1296 km/h. ■

EXAMPLE 5 Farmer John’s tractor, traveling at 3 m/s, pulls a rope attached to a bale of hay through a pulley. With dimensions as indicated in Figure 7, how fast is the bale rising when the tractor is 5 m from the bale?

Solution

Step 1. Assign variables and restate the problem. Let x be the horizontal distance from the tractor to the bale of hay, and let h be the height above ground of the top of the bale. The tractor is 5 m from the bale when $x = 5$, so we can restate the problem as follows:

<table>
<thead>
<tr>
<th>Compute $\frac{dh}{dt}$</th>
<th>given that $\frac{dx}{dt} = 3 \text{ m/s}$</th>
</tr>
</thead>
</table>

Step 2. Find an equation relating the variables and differentiate.
Let L be the total length of the rope. From Figure 7 (using the Pythagorean Theorem),
\[L = \sqrt{x^2 + 4.5^2} + (6 - h) \]
Although the length L is not given, it is a constant, and therefore $dL/dt = 0$. Thus,
\[\frac{dL}{dt} = \frac{d}{dt} \left(\sqrt{x^2 + 4.5^2} + (6 - h) \right) = \frac{x \frac{dx}{dt}}{\sqrt{x^2 + 4.5^2}} - \frac{dh}{dt} = 0 \]

Step 3. Use the given data to find the unknown derivative.
Apply Eq. (5) with $x = 5$ and $dx/dt = 3$. The bale is rising at the rate
\[\frac{dh}{dt} = \frac{x \frac{dx}{dt}}{\sqrt{x^2 + 4.5^2}} = \frac{(5)(3)}{\sqrt{5^2 + 4.5^2}} \approx 2.23 \text{ m/s} \]

3.9 SUMMARY

- Related-rate problems present us with situations in which two or more variables are related and we are asked to compute the rate of change of one of the variables in terms of the rates of change of the other variable(s).
• Draw a diagram if possible. It may also be useful to break the solution into three steps:

Step 1. Identify relevant variables and restate the problem.

Step 2. Find an equation that relates the variables and differentiate with respect to time.

This gives us an equation relating the known and unknown derivatives. Remember not to substitute the specific values for the variables until after you have computed all derivatives.

Step 3. Use the given data to find the unknown derivative.

• Two facts from geometry arise often in related-rate problems: the Pythagorean Theorem and Theorem of Similar Triangles (ratios of corresponding sides are equal).

3.9 Exercises

Preliminary Questions

1. Assign variables and restate the following problem in terms of known and unknown derivatives (but do not solve it): How fast is the volume of a cube increasing if its side increases at a rate of 0.5 cm/s?
2. What is the relation between \(dV/dt \) and \(dr/dt \) if \(V = \frac{1}{3} \pi r^3 \)?

In Questions 3 and 4, water pours into a cylindrical glass of radius 4 cm. Let \(V \) and \(h \) denote the volume and water level respectively, at time \(t \).

3. Restate this question in terms of \(dV/dt \) and \(dh/dt \): How fast is the water level rising if water pours in at a rate of 1 cm/min?

4. Restate this question in terms of \(dV/dt \) and \(dh/dt \): At what rate is water pouring in if the water level rises at a rate of 1 cm/min?

Exercises

In Exercises 1 and 2, consider a rectangular bathtub whose base is 18 ft².

1. How fast is the water level rising if water is filling the tub at a rate of 0.7 ft³/min?
2. At what rate is water pouring into the tub if the water level rises at a rate of 0.8 ft/min?
3. The radius of a circular oil slick expands at a rate of 2 m/min.
 - (a) How fast is the area of the oil slick increasing when the radius is 25 m?
 - (b) If the radius is 0 at time \(t = 0 \), how fast is the area increasing after 3 min?
4. At what rate is the diagonal of a cube increasing if its edges are increasing at a rate of 2 cm/s?

In Exercises 5–8, assume that the radius \(r \) of a sphere is expanding at a rate of 30 cm/min. The volume of a sphere is \(V = \frac{4}{3} \pi r^3 \) and its surface area is \(4 \pi r^2 \). Determine the given rate.

5. Volume with respect to time when \(r = 15 \) cm
6. Volume with respect to time at \(t = 2 \) min, assuming that \(r = 0 \) at \(t = 0 \)
7. Surface area with respect to time when \(r = 40 \) cm
8. Surface area with respect to time at \(t = 2 \) min, assuming that \(r = 10 \) at \(t = 0 \)

In Exercises 9–12, refer to a 5-m ladder sliding down a wall, as in Figures 1 and 2. The variable \(h \) is the height of the ladder's top at time \(t \), and \(x \) is the distance from the wall to the ladder's bottom.

9. Assume the bottom slides away from the wall at a rate of 0.8 m/s. Find the velocity of the top of the ladder at \(t = 2 \) s if the bottom is 1.5 m from the wall at \(t = 0 \) s.
10. Suppose that the top is sliding down the wall at a rate of 1.2 m/s. Calculate \(dx/dt \) when \(h = 3 \) m.
11. Suppose that \(h(0) = 4 \) and the top slides down the wall at a rate of 1.2 m/s. Calculate \(x \) and \(dx/dt \) at \(t = 2 \) s.
12. What is the relation between \(h \) and \(x \) at the moment when the top and bottom of the ladder move at the same speed?
13. A conical tank has height 3 m and radius 2 m at the top. Water flows in at a rate of 2 m³/min. How fast is the water level rising when it is 2 m?
14. Follow the same set-up as in Exercise 13, but assume that the water level is rising at a rate of 0.3 m/min when it is 2 m. At what rate is water flowing in?
15. The radius \(r \) and height \(h \) of a circular cone change at a rate of 2 cm/s. How fast is the volume of the cone increasing when \(r = 10 \) and \(h = 20 \)?

16. A road perpendicular to a highway leads to a farmhouse located 2 km away (Figure 8). An automobile travels past the farmhouse at a speed of 80 km/h. How fast is the distance between the automobile and the farmhouse increasing when the automobile is 6 km past the intersection of the highway and the road?

[FIGURE 8]
17. A man of height 1.8 m walks away from a 5-m lamppost at a speed of 1.2 m/s (Figure 9). Find the rate at which his shadow is increasing in length.

![Figure 9](image)

18. As Claudia walks away from a 264-cm lamppost, the tip of her shadow moves twice as fast as she does. What is Claudia’s height?

19. At a given moment, a plane passes directly above a radar station at an altitude of 6 km.
 (a) The plane’s speed is 800 km/h. How fast is the distance between the plane and the station changing half a minute later?
 (b) How fast is the distance between the plane and the station changing when the plane passes directly above the station?

20. In the setting of Exercise 19, let \(\theta \) be the angle that the line through the radar station and the plane makes with the horizontal. How fast is \(\theta \) changing 12 min after the plane passes over the radar station?

21. A hot air balloon rising vertically is tracked by an observer located 4 km from the lift-off point. At a certain moment, the angle between the observer’s line of sight and the horizontal is \(\frac{\pi}{3} \), and it is changing at a rate of 0.2 rad/min. How fast is the balloon rising at this moment?

22. A laser pointer is placed on a platform that rotates at a rate of 20 revolutions per minute. The beam hits a wall 8 m away, producing a dot of light that moves horizontally along the wall. Let \(\theta \) be the angle between the beam and the line through the searchlight perpendicular to the wall (Figure 10). How fast is this dot moving when \(\theta = \frac{\pi}{6} \)?

![Figure 10](image)

23. A rocket travels vertically at a speed of 1200 km/h. The rocket is tracked through a telescope by an observer located 16 km from the launching pad. Find the rate at which the angle between the telescope and the ground is increasing 3 min after lift-off.

24. Using a telescope, you track a rocket that was launched 4 km away, recording the angle \(\theta \) between the telescope and the ground at half-second intervals. Estimate the velocity of the rocket if \(\theta(10) = 0.205 \) and \(\theta(10.5) = 0.225 \).

25. A police car traveling south toward Sioux Falls at 160 km/h pursues a truck traveling east away from Sioux Falls, Iowa, at 140 km/h (Figure 11). At time \(t = 0 \), the police car is 20 km north and the truck is 30 km east of Sioux Falls. Calculate the rate at which the distance between the vehicles is changing:
 (a) At time \(t = 0 \)
 (b) 5 min later

![Figure 11](image)

26. A car travels down a highway at 25 m/s. An observer stands 150 m from the highway.
 (a) How fast is the distance from the observer to the car increasing when the car passes in front of the observer? Explain your answer without making any calculations.
 (b) How fast is the distance increasing 20 s later?

27. In the setting of Exercise 5, at a certain moment, the tractor’s speed is 3 m/s and the bale is rising at 2 m/s. How far is the tractor from the bale at this moment?

28. Placido pulls a rope attached to a wagon through a pulley at a rate of \(q \) m/s. With dimensions as in Figure 12:
 (a) Find a formula for the speed of the wagon in terms of \(q \) and the variable \(x \) in the figure.
 (b) Find the speed of the wagon when \(x = 0.6 \) if \(q = 0.5 \) m/s.

![Figure 12](image)

29. Julian is jogging around a circular track of radius 50 m. In a coordinate system with its origin at the center of the track, Julian’s \(x \)-coordinate is changing at a rate of \(-1.25 \) m/s when his coordinates are \((40, 30)\). Find \(dy/dt \) at this moment.

30. A particle moves counterclockwise around the ellipse with equation \(9x^2 + 16y^2 = 25 \) (Figure 13).
 (a) In which of the four quadrants is \(dx/dt > 0 \)? Explain.
 (b) Find a relation between \(dx/dt \) and \(dy/dt \).
 (c) At what rate is the \(x \)-coordinate changing when the particle passes the point \((1, 1)\) if its \(y \)-coordinate is increasing at a rate of \(6 \) m/s?
 (d) Find \(dy/dt \) when the particle is at the top and bottom of the ellipse.

![Figure 13](image)
In Exercises 31 and 32, assume that the pressure P (in kilopascals) and volume V (in cubic centimeters) of an expanding gas are related by $PV^b = C$, where b and C are constants (this holds in an adiabatic expansion, without heat gain or loss).

31. Find dP/dt if $b = 1.2$, $P = 8$ kPa, $V = 100$ cm2, and $dV/dt = 20$ cm3/min.

32. Find b if $P = 25$ kPa, $dP/dt = 12$ kPa/min, $V = 100$ cm2, and $dV/dt = 20$ cm3/min.

33. The base x of the right triangle in Figure 14 increases at a rate of 5 cm/s, while the height remains constant at $h = 20$. How fast is the angle θ changing when $x = 20$?

34. Two parallel paths 15 m apart run east–west through the woods. Brooke jogs east on one path at 10 km/h, while Jamail walks west on the other path at 6 km/h. If they pass each other at time $t = 0$, how far apart are they 3 s later, and how fast is the distance between them changing at that moment?

35. A particle travels along a curve $y = f(x)$ as in Figure 15. Let $L(t)$ be the particle’s distance from the origin.

(a) Show that $dL/dt = \left(x + f(x)f'(x) \right) dx/dt$ if the particle’s location at time t is $P = (x, f(x))$.

(b) Calculate $L'(t)$ when $x = 1$ and $x = 2$ if $f(x) = \sqrt{3x^2 - 8x + 9}$ and $dx/dt = 4$.

36. Let θ be the angle in Figure 15, where $P = (x, f(x))$. In the setting of the previous exercise, show that

$$\frac{d\theta}{dt} = \left(\frac{x f'(x) - f(x)}{\sqrt{x^2 + f(x)^2}} \right) \frac{dx}{dt}$$

37. A baseball player runs from home plate toward first base at 20 ft/s. How fast is the player’s distance from second base changing when the player is halfway to first base?

38. Player 1 runs to first base at a speed of 20 ft/s, while Player 2 runs from second base to third base at a speed of 15 ft/s. Let s be the distance between the two players. How fast is s changing when Player 1 is 30 ft from home plate and Player 2 is 60 ft from second base?

39. The conical watering pail in Figure 17 has a grid of holes. Water flows out through the holes at a rate of kA m3/min, where k is a constant and A is the surface area of the part of the cone in contact with the water. This surface area is $A = \pi r \sqrt{h^2 + r^2}$ and the volume is $V = \frac{1}{3}\pi r^2 h$. Calculate the rate dh/dt at which the water level changes at $h = 0.3$ m, assuming that $k = 0.25$ m.

Further Insights and Challenges

40. A bowl contains water that evaporates at a rate proportional to the surface area of water exposed to the air (Figure 18). Let $A(h)$ be the cross-sectional area of the bowl at height h.

(a) Explain why $V(h + \Delta h) - V(h) \approx A(h) \Delta h$ if Δh is small.

(b) Use (a) to argue that $\frac{dV}{dh} = A(h)$.

(c) Show that the water level h decreases at a constant rate.
41. A roller coaster has the shape of the graph in Figure 19. Show that when the roller coaster passes the point \((x, f(x)) \), the vertical velocity of the roller coaster is equal to \(f'(x) \) times its horizontal velocity.

42. Two trains leave a station at \(t = 0 \) and travel with constant velocity \(v \) along straight tracks that make an angle \(\theta \).
 (a) Show that the trains are separating from each other at a rate \(v \sqrt{2 - 2 \cos \theta} \).
 (b) What does this formula give for \(\theta = \pi \)?

43. As the wheel of radius \(r \) cm in Figure 20 rotates, the rod of length \(L \) attached at point \(P \) drives a piston back and forth in a straight line.

Let \(x \) be the distance from the origin to point \(Q \) at the end of the rod, as shown in the figure.
(a) Use the Pythagorean Theorem to show that
\[
L^2 = (x - r \cos \theta)^2 + r^2 \sin^2 \theta
\]
(b) Differentiate Eq. (6) with respect to \(t \) to prove that
\[
2(x - r \cos \theta) \frac{dx}{dt} + r \sin \theta \frac{d\theta}{dt} + 2r^2 \sin \theta \cos \theta \frac{d\theta}{dt} = 0
\]
(c) Calculate the speed of the piston when \(\theta = \frac{\pi}{2} \), assuming that \(r = 10 \) cm, \(L = 30 \) cm, and the wheel rotates at 4 revolutions per minute.

44. A spectator seated 300 m away from the center of a circular track of radius 100 m watches an athlete run laps at a speed of 5 m/s. How fast is the distance between the spectator and athlete changing when the runner is approaching the spectator and the distance between them is 250 m? Hint: The diagram for this problem is similar to Figure 20, with \(r = 100 \) and \(x = 300 \).

CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function \(f \) whose graph is shown in Figure 1.
1. Compute the average rate of change of \(f(x) \) over \([0, 2] \). What is the graphical interpretation of this average rate?
2. For which value of \(h \) is \(\frac{f(0.7 + h) - f(0.7)}{h} \) equal to the slope of the secant line between the points where \(x = 0.7 \) and \(x = 1.1 \)?
3. Estimate \(\frac{f(0.7 + h) - f(0.7)}{h} \) for \(h = 0.3 \). Is this number larger or smaller than \(f'(0.7) \)?
4. Estimate \(f'(0.7) \) and \(f'(1.1) \).

In Exercises 5–8, compute \(f'(a) \) using the limit definition and find an equation of the tangent line to the graph of \(f \) at \(x = a \).
5. \(f(x) = x^2 - x, \quad a = 1 \)
6. \(f(x) = 5 - 3x, \quad a = 2 \)
7. \(f(x) = x^{-1}, \quad a = 4 \)
8. \(f(x) = x^3, \quad a = -2 \)

In Exercises 9–12, compute \(dy/dx \) using the limit definition.
9. \(y = 4 - x^2 \)
10. \(y = \sqrt{2x + 1} \)
11. \(y = \frac{1}{2 - x} \)
12. \(y = \frac{1}{(x - 1)^2} \)

In Exercises 13–16, express the limit as a derivative.
13. \(\lim_{h \to 0} \frac{\sqrt{1 + h} - 1}{h} \)
14. \(\lim_{x \to 1} \frac{x^3 + 1}{x + 1} \)
15. \(\lim_{t \to \pi} \frac{\sin t \cos t}{t - \pi} \)
16. \(\lim_{\theta \to \pi} \frac{\cos \theta - \sin \theta + 1}{\theta - \pi} \)

17. Find \(f(4) \) and \(f'(4) \) if the tangent line to the graph of \(f \) at \(x = 4 \) has equation \(y = 3x - 14 \).
18. Each graph in Figure 2 shows the graph of a function \(f \) and its derivative \(f' \). Determine which is the function and which is the derivative.

![Figure 2](image)

FIGURE 2 Graph of \(f \).

19. Is (A), (B), or (C) the graph of the derivative of the function shown in Figure 3?

![Figure 3](image)

FIGURE 3

20. Sketch the graph of \(f' \) if the graph of \(f \) appears as in Figure 4.

![Figure 4](image)

FIGURE 4

21. Sketch the graph of a continuous function \(f \) if the graph of \(f' \) appears as in Figure 5 and \(f(0) = 0 \).

![Figure 5](image)

FIGURE 5

22. Let \(N(t) \) be the percentage of a state population infected with a flu virus on week \(t \) of an epidemic. What percentage is likely to be infected in week 4 if \(N(3) = 8 \) and \(N'(3) = 1.2? \)

23. A girl’s height \(h(t) \) (in centimeters) is measured at time \(t \) (in years) for \(0 \leq t \leq 14 \):

\[
52, \ 75.1, \ 87.5, \ 96.7, \ 104.5, \ 111.8, \ 118.7, \ 125.2, \ 131.5, \ 137.5, \ 143.3, \ 149.2, \ 155.3, \ 160.8, \ 164.7
\]

(a) What is the average growth rate over the 14-year period?
(b) Is the average growth rate larger over the first half or the second half of this period?
(c) Estimate \(h'(t) \) (in centimeters per year) for \(t = 3, 8 \).

24. A planet’s period \(P \) (number of days to complete one revolution around the sun) is approximately \(0.1994^{3/2} \), where \(A \) is the average distance (in millions of kilometers) from the planet to the sun.

(a) Calculate \(P \) and \(dP/dA \) for Earth using the value \(A = 150 \).
(b) Estimate the increase in \(P \) if \(A \) is increased to 152.

In Exercises 25 and 26, use the following table of values for the number \(A(t) \) of automobiles (in millions) manufactured in the United States in year \(t \).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(A(t))</td>
<td>6.55</td>
<td>8.58</td>
<td>8.83</td>
<td>9.67</td>
<td>7.32</td>
<td>6.72</td>
<td>8.50</td>
</tr>
</tbody>
</table>

25. What is the interpretation of \(A'(t)? \) Estimate \(A'(1971) \). Does \(A'(1974) \) appear to be positive or negative?

26. Given the data, which of (A)–(C) in Figure 6 could be the graph of the derivative \(A' \)? Explain.

![Figure 6](image)

FIGURE 6

In Exercises 27–52, compute the derivative.

27. \(y = 3x^5 - 7x^2 + 4 \)
28. \(y = 4x^{-3/2} \)
29. \(y = r^{-7.3} \)
30. \(y = 4x^2 - x^{-2} \)
31. \(y = \frac{x+1}{x^2+1} \)
32. \(y = \frac{3t - 2}{4t - 9} \)
33. \(y = (x^3 - 9x)^6 \)
34. \(y = (3r^2 + 20r^{-3})^6 \)
35. \(y = (2 + 9x^2)^{3/2} \)
36. \(y = (x + 1)^3(x + 4)^4 \)
37. \(y = \frac{z}{\sqrt{1 - z}} \)
38. \(y = \left(1 + \frac{1}{x}\right)^3 \)
39. \(y = \frac{x^4 + \sqrt{x}}{x^2} \)
40. \(y = \frac{1}{(1 - x)\sqrt{2 - x}} \)
41. \(y = \sqrt{x + \sqrt{x + \sqrt{x}}} \)
42. \(h(z) = (z + (z + 1)^{1/2})^{-3/2} \)
43. \(y = \tan(t^{-3}) \)
44. \(y = 4 \cos(2 - 3x) \)
45. \(y = \sin(2x) \cos^2x \)
46. \(y = \sin \left(\frac{4}{7}\right) \)
47. \(y = \frac{t}{1 + \sec t} \)
48. \(y = z \csc(9z + 1) \)
49. \(y = \frac{8}{1 + \cot \theta} \)
50. \(y = \tan(\cos x) \)
51. \(y = \tan(\sqrt{1 + \csc \theta}) \)
52. \(y = \cos(\cos(\cos(\theta))) \)

In Exercises 53–58, use the following table of values to calculate the derivative of the given function at \(x = 2 \):

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(g(x))</th>
<th>(f'(x))</th>
<th>(g'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>-3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>-2</td>
<td>3</td>
</tr>
</tbody>
</table>

53. \(S(x) = 3f(x) - 2g(x) \)
54. \(H(x) = f(x)g(x) \)
55. \(R(x) = \frac{f(x)}{g(x)} \)
56. \(G(x) = f(g(x)) \)
57. \(F(x) = f(g(2x)) \)
58. \(K(x) = f(x^2) \)

59. Find the points on the graph of \(f(x) = x^3 - 3x^2 + x + 4 \) where the tangent line has slope 10.
60. Find the points on the graph of \(x^2/3 + y^2/3 = 1 \) where the tangent line has slope 1.
61. Find \(a \) such that the tangent lines to \(y = x^3 - 2x^2 + x + 1 \) at \(x = a \) and \(x = a + 1 \) are parallel.

62. Use the table to compute the average rate of change of Candidate A’s percentage of votes over the intervals from day 20 to day 15, day 15 to day 10, and day 10 to day 5. If this trend continues over the last 5 days before the election, will Candidate A win?

<table>
<thead>
<tr>
<th>Days Before Election</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candidate A</td>
<td>44.8%</td>
<td>46.8%</td>
<td>48.3%</td>
<td>49.3%</td>
</tr>
<tr>
<td>Candidate B</td>
<td>55.2%</td>
<td>53.2%</td>
<td>51.7%</td>
<td>50.7%</td>
</tr>
</tbody>
</table>

In Exercises 63–68, calculate \(y'' \).

63. \(y = 12x^3 - 5x^2 + 3x \)
64. \(y = x^{-2/5} \)
65. \(y = \sqrt{2x} + 3 \)
66. \(y = \frac{4x}{x + 1} \)
67. \(y = \tan(x^2) \)
68. \(y = \sin^2(4x + 9) \)

In Exercises 69–74, compute \(\frac{dy}{dx} \).

69. \(x^3 - y^3 = 4 \)
70. \(4x^2 - 9y^2 = 36 \)
71. \(y = xy^2 + 2x^2 \)
72. \(\frac{y}{x} = x + y \)
73. \(y = \sin(x + y) \)
74. \(\tan(x + y) = xy \)

75. In Figure 7, label the graphs \(f \), \(f' \), and \(f'' \).

76. Let \(f(x) = x^2 \sin(x^{-1}) \) for \(x \neq 0 \) and \(f(0) = 0 \). Show that \(f'(x) \) exists for all \(x \) (including \(x = 0 \)) but that \(f' \) is not continuous at \(x = 0 \) (Figure 8).

77. Show that the total revenue \(R = pq \) satisfies \(\frac{dR}{dp} = q(1 + E) \).
78. A commercial bakery can sell \(q \) chocolate cakes per week at price \(p \), where \(q = 50(p - 10) \) for \(5 < p < 10 \).

\(a \) Show that \(E(p) = \frac{2p - 10}{p - 10} \).

\(b \) Show, by computing \(E(8) \), that if \(p = 8 \), then a 1% increase in price reduces demand by approximately 3%.

79. The monthly demand (in thousands) for flights between Chicago and St. Louis at the price \(p \) is \(q = 40 - 0.2p \). Calculate the price elasticity of demand when \(p = 150 \) and estimate the percentage increase in number of additional passengers if the ticket price is lowered by 1%.

80. How fast does the water level rise in the tank in Figure 9 when the water level is \(h = 4 \) m and water pours in at \(20 \text{ m}^3/\text{min} \)?

81. The minute hand of a clock is 8 cm long, and the hour hand is 5 cm long. How fast is the distance between the tips of the hands changing at 3 o’clock?

82. Chloe and Bao are in motorboats at the center of a lake. At time \(t = 0 \), Chloe begins traveling south at a speed of 50 km/h. One minute later, Bao takes off, heading east at a speed of 40 km/h. At what rate is the distance between them increasing at \(t = 12 \text{ min} \)?

83. A bead slides down the curve \(xy = 10 \). Find the bead’s horizontal velocity at time \(t = 2 \) s if its height at time \(t \) seconds is \(y = 400 - 16t^2 \text{ cm} \).
84. In Figure 10, \(x \) is increasing at 2 cm/s, \(y \) is increasing at 3 cm/s, and \(\theta \) is decreasing such that the area of the triangle has the constant value 4 cm².

(a) How fast is \(\theta \) decreasing when \(x = 4 \), \(y = 4 \)?

(b) How fast is the distance between \(P \) and \(Q \) changing when \(x = 4 \), \(y = 4 \)?

85. A light moving at 0.8 m/s approaches a man standing 4 m from a wall (Figure 11). The light is 1 m above the ground. How fast is the tip \(P \) of the man’s shadow moving when the light is 7 m from the wall?
4 APPLICATIONS OF THE DERIVATIVE

This chapter puts the derivative to work. The first and second derivatives are used to analyze functions and their graphs and to solve optimization problems (finding minimum and maximum values of a function). Newton’s Method in Section 4.7 employs the derivative to approximate solutions of equations.

4.1 Linear Approximation and Applications

In some situations we are interested in determining the “effect of a small change.” For example:

- How does a small change in angle affect the distance of a basketball shot? (Exercise 39)
- How are revenues at the box office affected by a small change in ticket prices? (Exercise 29)
- The cube root of 27 is 3. How much larger is the cube root of 27.2? (Exercise 7)

In each case, we have a function f and we’re interested in the change

$$\Delta f = f(a + \Delta x) - f(a)$$

where Δx is small. The Linear Approximation uses the derivative to estimate Δf without computing it exactly. By definition, the derivative is the limit

$$f'(a) = \lim_{\Delta x \to 0} \frac{f(a + \Delta x) - f(a)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x}$$

So when Δx is small, we have $\Delta f / \Delta x \approx f'(a)$, and thus,

$$\Delta f \approx f'(a) \Delta x$$

Linear Approximation of Δf

If f is differentiable at $x = a$ and Δx is small, then

$$\Delta f \approx f'(a) \Delta x$$

where $\Delta f = f(a + \Delta x) - f(a)$. Therefore,

$$f(a + \Delta x) \approx f(a) + f'(a) \Delta x$$

Keep in mind the different roles played by Δf and $f'(a) \Delta x$. The quantity of interest is the actual change Δf. We estimate it by $f'(a) \Delta x$. The Linear Approximation tells us that up to a small error, Δf is directly proportional to Δx when Δx is small.

GRAPHICAL INSIGHT

The Linear Approximation is sometimes called the tangent line approximation. Why? Observe in Figure 1 that Δf is the vertical change in the graph from $x = a$ to $x = a + \Delta x$. For a straight line, the vertical change is equal to the slope times the horizontal change Δx, and since the tangent line has slope $f'(a)$, its vertical change is $f'(a) \Delta x$. So the Linear Approximation approximates Δf by the vertical change in the tangent line. When Δx is small, the two quantities are nearly equal.
The Linear Approximation

\[\Delta f \approx f'(a)\Delta x \]

where \(\Delta f = f(a + \Delta x) - f(a) \) yields the approximation for the value of the function at \(a + \Delta x \) to be

\[f(a + \Delta x) \approx f(a) + f'(a)\Delta x \]

The error in the Linear Approximation is the quantity

\[\text{Error} = |\Delta f - f'(a)\Delta x| \]

Example 1 Use the Linear Approximation to estimate \(\frac{1}{10} \frac{1}{10} \), and hence \(\frac{1}{10} \frac{1}{10} \).

How accurate is your estimate?

Solution We apply the Linear Approximation to \(f(x) = \frac{1}{x} \) with \(a = 10 \) and \(\Delta x = 0.2 \):

\[\Delta f = f(10.2) - f(10) = \frac{1}{10.2} - \frac{1}{10} \]

We have \(f'(x) = -x^{-2} \) and \(f'(10) = -0.1 \), so \(\Delta f \) is approximated by

\[f'(10)\Delta x = (-0.01)(0.2) = -0.002 \]

In other words,

\[\frac{1}{10.2} - \frac{1}{10} \approx -0.002 \]

Then, we have

\[\frac{1}{10.2} \approx \frac{1}{10} + (-0.002) \approx 0.098 \]

A calculator gives the value \(\frac{1}{10} \frac{1}{10} \approx -0.00196 \) and thus our error is less than \(10^{-4} \):

\[\text{Error} \approx |-0.00196 - (-0.002)| = 0.00004 < 10^{-4} \]

Differential Notation The Linear Approximation to \(y = f(x) \) is often written using the “differentials” \(dx \) and \(dy \). In this notation, \(dx \) is used interchangeably with \(\Delta x \) to represent the change in \(x \), and \(dy \) is the corresponding vertical change in the tangent line:

\[dy = f'(a)dx \]

Let \(\Delta y = f(a + \Delta x) - f(a) \). Then the Linear Approximation says

\[\Delta y \approx dy \]

This is simply another way of writing \(\Delta f \approx f'(a)\Delta x \).

Example 2 Differential Notation How much larger is \(\sqrt[3]{8.1} \) than \(\sqrt[3]{8} = 2 \)?

Solution We are interested in \(\sqrt[3]{8.1} - \sqrt[3]{8} \), so we apply the Linear Approximation to \(f(x) = x^{1/3} \) with \(a = 8 \) and change \(\Delta x = dx = 0.1 \).

Step 1. Write out \(\Delta y \).

\[\Delta y = f(a + \Delta x) - f(a) = \sqrt[3]{8 + 0.1} - \sqrt[3]{8} = \sqrt[3]{8.1} - 2 \]

Step 2. Compute \(dy \).

\[f'(x) = \frac{1}{3}x^{-2/3} \quad \text{and} \quad f'(8) = \left(\frac{1}{3}\right)8^{-2/3} = \left(\frac{1}{3}\right)\left(\frac{1}{4}\right) = \frac{1}{12} \]

Therefore, \(dy = f'(8)dx = \frac{1}{12}(0.1) \approx 0.0083 \).
Step 3. Use the Linear Approximation.

\[\Delta y \approx dy \quad \Rightarrow \quad \sqrt{8.1} - 2 \approx 0.0083 \]

Thus, \(\sqrt{8.1} \) is larger than \(\sqrt{8} \) by approximately the amount 0.0083, and \(\sqrt{8.1} \approx 2.0083 \).

When engineers need to monitor the change in position of an object with great accuracy, they may use a cable position transducer (Figure 2). This device detects and records the movement of a metal cable attached to the object. Its accuracy is affected by changes in temperature because heat causes the cable to stretch. The Linear Approximation can be used to estimate these effects.

Example 3 Thermal Expansion

A thin metal cable has length \(L = 12 \) cm when the temperature is \(T = 21^\circ \text{C} \). Estimate the change in length when \(T \) rises to \(24^\circ \text{C} \), assuming that

\[\frac{dL}{dT} = kL \]

where \(k = 1.7 \times 10^{-5} \text{ cm}^2/\text{C} \) (\(k \) is called the coefficient of thermal expansion).

Solution How does the Linear Approximation apply here? We will use the differential \(dL \) to estimate the actual change in length \(\Delta L \) when \(T \) increases from \(21^\circ \text{C} \) to \(24^\circ \text{C} \)—that is, when \(dT = \Delta T = 3^\circ \text{C} \). By Eq. (3), the differential \(dL \) is

\[dL = \left(\frac{dL}{dT} \right) dT \]

By Eq. (5), since \(L = 12 \),

\[\frac{dL}{dT} \bigg|_{L=12} = kL = (1.7 \times 10^{-5})(12) \approx 2 \times 10^{-4} \text{ cm}^2/\text{C} \]

The Linear Approximation \(\Delta L \approx dL \) tells us that the change in length is approximately

\[\Delta L \approx \left(\frac{dL}{dT} \right) dT \approx (2 \times 10^{-4})(3) = 6 \times 10^{-4} \text{ cm} \]

Suppose that we measure the diameter \(D \) of a circle and use this result to compute the area of the circle. If our measurement of \(D \) is inexact, the area computation will also be inexact. What is the effect of the measurement error on the resulting area computation? This can be estimated using the Linear Approximation, as in the next example.

Example 4 Effect of an Inexact Measurement

The Cheezy Pizza Parlor claims that its pizzas are circular with diameter 50 cm (Figure 3).

(a) What is the area of the pizza?

(b) Estimate the quantity of pizza lost or gained if the diameter is off by at most 1.2 cm.

Solution First, we need a formula for the area \(A \) of a circle in terms of its diameter \(D \). Since the radius is \(r = D/2 \), the area is

\[A(D) = \pi r^2 = \pi \left(\frac{D}{2} \right)^2 = \frac{\pi}{4} D^2 \]

(a) If \(D = 50 \) cm, then the pizza has area \(A(50) = \left(\frac{\pi}{4} \right)(50)^2 \approx 1963.5 \text{ cm}^2 \).

(b) If the actual diameter is equal to \(50 + \Delta D \), then the loss or gain in pizza area is \(\Delta A = A(50 + \Delta D) - A(50) \). Observe that \(A'(D) = \frac{\pi}{2} D \) and \(A'(50) = 25\pi \approx 78.5 \text{ cm} \), so the Linear Approximation yields

\[\Delta A = A(50 + \Delta D) - A(50) \approx A'(50) \Delta D \approx (78.5) \Delta D \]
Because ΔD is at most ± 1.2 cm, the loss or gain in pizza is no more than around

$$\Delta A \approx \pm (78.5)(1.2) \approx \pm 94.2 \text{ cm}^2$$

This is a loss or gain of approximately 4.8%.

Linearization

To approximate the function f itself rather than the change Δf, we use the linearization $L(x)$ “centered at $x = a$,” defined by

$$L(x) = f'(a)(x - a) + f(a)$$

Notice that $y = L(x)$ is the equation of the tangent line at $x = a$ (Figure 4). For values of x close to a, $L(x)$ provides a good approximation to $f(x)$.

Approximating f by Its Linearization If f is differentiable at $x = a$ and x is close to a, then

$$f(x) \approx L(x) = f(a) + f'(a)(x - a)$$

CONCEPTUAL INSIGHT Keep in mind that the linearization and the Linear Approximation are two ways of saying the same thing. Indeed, when we apply the linearization with $x = a + \Delta x$ and rearrange, we obtain the Linear Approximation:

$$f(x) \approx f(a) + f'(a)(x - a)$$

$$f(a + \Delta x) \approx f(a) + f'(a) \Delta x \quad (\text{since } \Delta x = x - a)$$

$$f(a + \Delta x) - f(a) \approx f'(a) \Delta x$$

EXAMPLE 5 Compute the linearization of $f(x) = \sqrt{x}$ at $a = 1$ (Figure 5).

Solution We evaluate $f(x)$ and its derivative $f'(x) = \frac{1}{2}x^{-1/2}$ at $a = 1$ to obtain $f(1) = \sqrt{1} = 1$ and $f'(1) = \frac{1}{2}$. The linearization at $a = 1$ is

$$L(x) = f(1) + f'(1)(x - 1) = 1 + \frac{1}{2}(x - 1) = \frac{1}{2}x + \frac{1}{2}$$

The linearization can be used to approximate function values. The following table compares values of the linearization to values obtained from a calculator for the function $f(x) = \sqrt{x}$ of the previous example. Note that the error is large for $x = 9$, as expected, because 9 is not close to the center $a = 1$ (Figure 5).

<table>
<thead>
<tr>
<th>x</th>
<th>\sqrt{x}</th>
<th>Linearization at $a = 1$</th>
<th>Calculator</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>$\sqrt{1.1}$</td>
<td>$L(1.1) = \frac{1}{2}(1.1) + \frac{1}{2} = 1.05$</td>
<td>1.0488</td>
<td>0.0012</td>
</tr>
<tr>
<td>0.98</td>
<td>$\sqrt{0.98}$</td>
<td>$L(0.98) = \frac{1}{2}(0.98) + \frac{1}{2} = 0.99$</td>
<td>0.98995</td>
<td>$5 \cdot 10^{-5}$</td>
</tr>
<tr>
<td>9</td>
<td>$\sqrt{9}$</td>
<td>$L(9) = \frac{1}{2}(9) + \frac{1}{2} = 5$</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

In the next example, we compute the **percentage error**, which is often more important than the error itself. By definition,
Approximation depends on how much the curve bends.

Error Bound:

\[E \leq \frac{1}{2} K (\Delta x)^2 \]

where \(K \) is the max value of \(|f''(x)|\) on the interval \([a, a + \Delta x]\).

EXAMPLE 6 Estimate \(\tan\left(\frac{\pi}{4} + 0.02\right) \) and compute the percentage error.

Solution We find the linearization of \(f(x) = \tan x \) at \(a = \frac{\pi}{4} \):

\[
\begin{align*}
f\left(\frac{\pi}{4}\right) &= \tan\left(\frac{\pi}{4}\right) = 1, \\
f'\left(\frac{\pi}{4}\right) &= \sec^2\left(\frac{\pi}{4}\right) = (\sqrt{2})^2 = 2 \\
L(x) &= f\left(\frac{\pi}{4}\right) + f'\left(\frac{\pi}{4}\right) (x - \frac{\pi}{4}) = 1 + 2\left(x - \frac{\pi}{4}\right)
\end{align*}
\]

At \(x = \frac{\pi}{4} + 0.02 \), the linearization yields the estimate

\[
\tan\left(\frac{\pi}{4} + 0.02\right) \approx L\left(\frac{\pi}{4} + 0.02\right) = 1 + 2(0.02) = 1.04
\]

A calculator gives \(\tan\left(\frac{\pi}{4} + 0.02\right) \approx 1.0408 \), so

\[
\text{Percentage error} \approx \frac{|1.0408 - 1.04|}{1.0408} \times 100 \approx 0.08\%
\]

The Size of the Error

The examples in this section may have convinced you that the Linear Approximation yields a good approximation to \(\Delta f \) when \(\Delta x \) is small, but if we want to rely on the Linear Approximation, we need to know more about the size of the error:

\[
E = \text{Error} = |\Delta f - f'(a)\Delta x|
\]

Remember that the error \(E \) is simply the vertical gap between the graph and the tangent line (Figure 6). In Section 9.4, we will prove the following Error Bound:

\[
E \leq \frac{1}{2} K (\Delta x)^2
\]

where \(K \) is the maximum value of \(|f''(x)|\) on the interval from \(a \) to \(a + \Delta x \).

The Error Bound tells us two important things. First, it says that the error is small when the second derivative (and hence \(K \)) is small. This makes sense, because \(f''(x) \) measures how quickly the tangent lines change direction. When \(|f''(x)|\) is smaller, the graph is flatter and the Linear Approximation is more accurate over a larger interval around \(x = a \) (compare the graphs in Figure 7).

Second, the Error Bound tells us that the error is of \(\text{order 2 in \(\Delta x \)} \), meaning that \(E \) is no larger than a constant times \((\Delta x)^2\). So if \(\Delta x \) is small, say, \(\Delta x = 10^{-n} \), then \(E \) has a substantially smaller order of magnitude, since \((\Delta x)^2 = 10^{-2n}\). In particular, \(E/\Delta x \) tends to zero (because \(E/\Delta x < K \Delta x \)), so the Error Bound tells us that the graph becomes nearly indistinguishable from its tangent line as we zoom in on the graph around \(x = a \). This is a precise version of the “local linearity” property discussed in Section 3.2.
4.1 SUMMARY

• Let \(\Delta f = f(a + \Delta x) - f(a) \). The Linear Approximation is the estimate

\[
\Delta f \approx f'(a) \Delta x \quad \text{(for } \Delta x \text{ small)} \quad \text{and} \quad f(a + \Delta x) \approx f(a) + f'(a) \Delta x
\]

• Differential notation: \(dx = \Delta x \) is the change in \(x \), \(dy = f'(a)dx \), \(\Delta y = f(a + \Delta x) - f(a) \). In this notation, the Linear Approximation reads

\[
\Delta y \approx dy \quad \text{(for } dx \text{ small)}
\]

• The linearization of \(f(x) \) at \(x = a \) is the function

\[
L(x) = f(a) + f'(a)(x - a)
\]

• The Linear Approximation is equivalent to the approximation

\[
f(x) \approx L(x) \quad \text{(for } x \text{ close to } a)
\]

• The error in the Linear Approximation is the quantity

\[
\text{Error} = \left| \frac{\Delta f - f'(a) \Delta x}{\Delta x} \right|
\]

In many cases, the percentage error is more important than the error itself:

\[
\text{Percentage error} = \left| \frac{\text{error}}{\text{actual value}} \right| \times 100\%
\]

4.1 EXERCISES

Preliminary Questions

1. True or False? The Linear Approximation says that the vertical change in the graph is approximately equal to the vertical change in the tangent line.
2. Estimate \(g(1.2) - g(1) \) if \(g'(1) = 4 \).
3. Estimate \(f(2.1) \) if \(f(2) = 1 \) and \(f'(2) = 3 \).
4. Complete the following sentence: The Linear Approximation shows that up to a small error, the change in output \(\Delta f \) is directly proportional to \(\ldots \).

Exercises

In Exercises 1–6, use Eq. (2) to estimate \(\Delta f = f(3.02) - f(3) \).

1. \(f(x) = x^2 \)
2. \(f(x) = x^4 \)
3. \(f(x) = x^{-1} \)
4. \(f(x) = \frac{1}{x+1} \)
5. \(f(x) = \sqrt{x+6} \)
6. \(f(x) = \tan \frac{\pi x}{3} \)

7. The cube root of 27 is 3. How much larger is the cube root of 27.2?

Estimate using the Linear Approximation.

8. Estimate \(\sin \left(\frac{\pi}{2} + 0.1 \right) - \sin \frac{\pi}{2} \) using differentials.

In Exercises 9–12, use Eq. (2) to estimate \(\Delta f \). Use a calculator to compute both the error and the percentage error.

9. \(f(x) = \sqrt{1+x}, \ a = 3, \ \Delta x = 0.2 \)
10. \(f(x) = 2x^2 - x, \ a = 5, \ \Delta x = -0.4 \)
11. \(f(x) = \frac{1}{1 + x^2}, \ a = 3, \ \Delta x = 0.5 \)
12. \(f(x) = \tan \left(\frac{x}{4} + \frac{\pi}{4} \right), \ a = 0, \ \Delta x = 0.01 \)

In Exercises 13–16, estimate \(\Delta y \) using differentials [Eq. (4)].

13. \(y = \cos x, \ a = \frac{\pi}{6}, \ dx = 0.014 \)
14. \(y = \tan^2 x, \ a = \frac{\pi}{4}, \ dx = -0.02 \)
15. \(y = \frac{10 - x^2}{2 + x^2}, \ a = 1, \ dx = 0.01 \)
16. \(y = \frac{3 - \sqrt{x}}{\sqrt{x} + 3}, \ a = 1, \ dx = -0.1 \)

In Exercises 17–24, estimate using the Linear Approximation and find the error using a calculator.

17. \(\sqrt{26} - \sqrt{25} \)
18. \(16.5^{1/4} - 16^{1/4} \)
19. \(\frac{1}{\sqrt{101}} - \frac{1}{10} \)
20. \(\frac{1}{\sqrt{99}} - \frac{1}{10} \)
21. \(9^{1/3} - 2 \)
22. \(\frac{1}{(27.5)^{1/3}} - \frac{1}{243} \)
23. \(\sin(0.023) \).

24. \(\tan\left(\frac{\pi}{4} + 0.01\right) - 1 \).

25. Estimate \(f(4.03) \) for \(f(x) \) as in Figure 8.

26. At a certain moment, an object in linear motion has velocity \(100 \) m/s. Estimate the distance traveled over the next quarter-second, and explain how this is an application of the Linear Approximation.

27. Which is larger: \(\sqrt{2.1} - \sqrt{2} \) or \(\sqrt{9.1} - \sqrt{9} \)? Explain using the Linear Approximation.

28. Estimate \(\sin 61^\circ - \sin 60^\circ \) using the Linear Approximation. \textit{Hint:} Express \(\Delta \theta \) in radians.

29. Box office revenue at a multiplex cinema in Paris is \(R(p) = 3600p - 100p^3 \) euros per showing when the ticket price is \(p \) euros. Calculate \(R(p) \) for \(p = 9 \) and use the Linear Approximation to estimate \(\Delta R \) if \(p \) is raised or lowered by 0.5 euros.

30. The \textit{stopping distance} for an automobile is \(F(s) = 1.1s + 0.05s^2 \) ft, where \(s \) is the speed in mph. Use the Linear Approximation to estimate the change in stopping distance per additional mph when \(s = 35 \) and when \(s = 55 \).

31. A thin silver wire has length \(L = 18 \) cm when the temperature is \(T = 30^\circ \text{C} \). Estimate \(\Delta L \) when \(T \) decreases to \(25^\circ \text{C} \) if the coefficient of thermal expansion is \(k = 1.9 \times 10^{-5} \text{C}^{-1} \) (see Example 3).

32. At a certain moment, the temperature in a snake cage satisfies \(dT/dt = 0.008^\circ \text{C/s} \). Estimate the rise in temperature over the next 10 s.

33. The atmospheric pressure \(P \) at altitude \(h = 20 \) km is \(P = 5.5 \) kilopascals. Estimate \(P \) at altitude \(h = 20.5 \) km assuming that \(dP/dh = -0.87 \).

(a) Estimate \(\Delta P \) at \(h = 20 \) when \(\Delta h = 0.5 \).

(b) Compute the actual change, and compute the percentage error in the Linear Approximation.

34. The resistance \(R \) of a copper wire at temperature \(T = 20^\circ \text{C} \) is \(R = 15 \) \(\Omega \). Estimate the resistance at \(T = 22^\circ \text{C} \), assuming that \(dR/dT \big|_{T=20} = 0.06 \Omega^\circ \text{C}^{-1} \).

35. Newton’s Law of Gravitation shows that if a person weighs \(w \) pounds on the surface of the earth, then his or her weight at distance \(x \) from the center of the earth is \(W(x) = \frac{wR^2}{x^2} \) \(\text{for} \ x \geq R \).

(a) Show that the weight lost at altitude \(h \) miles above the earth’s surface is approximately \(\Delta W \approx -(0.0005w)h \). \textit{Hint:} Use the Linear Approximation with \(dx = h \).

(b) Estimate the weight lost by a 200-lb football player flying in a jet at an altitude of 7 miles.

36. Using Exercise 35(a), estimate the altitude at which a 130-lb pilot would weigh 129.5 lb.

37. A stone tossed vertically into the air with initial velocity \(v \) cm/s reaches a maximum height of \(h = v^2/1960 \) cm.

(a) Estimate \(\Delta h \) if \(v = 700 \) cm/s and \(\Delta v = 1 \) cm/s.

(b) Estimate \(\Delta h \) if \(v = 1000 \) cm/s and \(\Delta v = 1 \) cm/s.

(c) In general, does a 1 cm/s increase in \(v \) lead to a greater change in \(h \) at low or high initial velocities? Explain.

38. The side \(s \) of a square carpet is measured at 6 m. Estimate the maximum error in the area \(A \) of the carpet if \(s \) is accurate to within 2 cm.

In Exercises 39 and 40, use the following fact derived from Newton’s Laws: An object released at an angle \(\theta \) with initial velocity \(v \) ft/s travels a horizontal distance

\[s = \frac{1}{2}v^2 \sin 2\theta \] ft (Figure 10)

39. A player located 18.1 ft from the basket launches a successful jump shot from a height of 10 ft (level with the rim of the basket), at an angle \(\theta = 34^\circ \) and initial velocity \(v = 25 \) ft/s.

(a) Show that \(\Delta s \approx 0.255 \Delta \theta \) ft for a small change of \(\Delta \theta \).

(b) Is it likely that the shot would have been successful if the angle had been off by \(2^\circ \)?

40. Estimate \(\Delta s \) if \(\theta = 34^\circ \), \(v = 25 \) ft/s, and \(\Delta v = 2 \).

41. The radius of a spherical ball is measured at \(r = 25 \) cm. Estimate the maximum error in the volume and surface area if \(r \) is accurate to within 0.5 cm.

42. The dosage \(D \) of diphenhydramine for a dog of body mass \(w \) kg is \(D = 4.7w^{2/3} \) mg. Estimate the maximum allowable error in \(w \) for a cocker spaniel of mass \(w = 10 \) kg if the percentage error in \(D \) must be less than 3%.
43. The volume (in liters) and pressure P (in atmospheres) of a certain gas satisfy $PV = 24$. A measurement yields $V = 4$ with a possible error of ±0.3 L. Compute P and estimate the maximum error in this computation.

44. In the notation of Exercise 43, assume that a measurement yields $V = 4$. Estimate the maximum allowable error in V if P must have an error of less than 0.2 atm.

In Exercises 45–54, find the linearization at $x = a$.

45. $f(x) = x^4, \quad a = 1$
46. $f(x) = \frac{1}{x}, \quad a = 2$
47. $f(\theta) = \sin^2 \theta, \quad a = \frac{\pi}{2}$
48. $g(x) = \frac{x^2}{x - 3}, \quad a = 4$
49. $y = (1 + x)^{-1/2}, \quad a = 0$
50. $y = (1 + x)^{-1/2}, \quad a = 3$
51. $y = (1 + x^2)^{-1/2}, \quad a = 0$
52. $y = \frac{1 - x}{1 + x}, \quad a = 4$
53. $y = \frac{\sin x}{x}, \quad a = \frac{\pi}{2}$
54. $y = \frac{\sin x}{x}, \quad a = \frac{\pi}{4}$

55. What is $f(2)$ if the linearization of $f(x)$ at $a = 2$ is $L(x)$ at $a = 16$? Plot f and L on the same set of axes and determine whether the estimate is too large or too small.

56. Compute the linearization of $f(x) = 3x - 4$ at $a = 0$ and $a = 2$. Prove more generally that a linear function coincides with its linearization at $x = a$ for all a.

57. Estimate $\sqrt{15.2}$ using the linearization $L(x)$ of $f(x) = \sqrt{x}$ at $a = 16$. Plot f and L on the same set of axes and determine whether the estimate is too large or too small.

Further Insights and Challenges

71. Compute dy/dx at the point $P = (2, 1)$ on the curve $y^3 + 3xy = 7$ and show that the linearization at P is $L(x) = -\frac{1}{2}x + \frac{3}{2}$. Use $L(x)$ to estimate the y-coordinate of the point on the curve where $x = 2.1$.

72. Apply the method of Exercise 71 to $P = (0.5, 1)$ on $y^3 + y - 2x = 1$ to estimate the y-coordinate of the point on the curve where $x = 0.55$.

73. Apply the method of Exercise 71 to $P = (-1, 2)$ on $y^4 + 7xy = 2$ to estimate the solution of $y^4 - 7y + 2 = 0$.

4.2 Extreme Values

In many applications, it is important to find the minimum or maximum value of a function f. For example, a physician needs to know the maximum drug concentration in a patient’s bloodstream when a drug is administered. This amounts to finding the highest point on the graph of C, the concentration at time t (Figure 1).

We refer to the maximum and minimum values (max and min for short) as extreme values or extrema (singular: extremum) and to the process of finding them as optimization. Sometimes, we are interested in finding the min or max for x in a particular interval I, rather than on the entire domain of f.

Definition Extreme Values on an Interval Let f be a function on an interval I and let $a \in I$. We say that $f(a)$ is the

- Absolute minimum of f on I if $f(a) \leq f(x)$ for all $x \in I$.
- Absolute maximum of f on I if $f(a) \geq f(x)$ for all $x \in I$.

Does every function have a minimum or maximum value? Clearly not, as we see by taking $f(x) = x$. Indeed, $f(x) = x$ increases without bound as $x \to \infty$ and decreases
without bound as \(x \to -\infty \). In fact, extreme values do not always exist even if we restrict ourselves to an interval \(I \). Figure 2 illustrates what can go wrong if \(I \) is open or \(f \) has a discontinuity.

- **Discontinuity:** (A) shows a discontinuous function with no maximum value. The values of \(f(x) \) get arbitrarily close to 3 from below, but 3 is not the maximum value because \(f(x) \) never actually takes on the value 3.
- **Open interval:** In (B), \(g(x) \) is defined on the open interval \((a, b)\). It has no max because it tends to 10 on the left without ever reaching this value.

Fortunately, our next theorem guarantees that extreme values exist when the function is continuous and \(I \) is closed [Figure 2(C)].

THEOREM 1 *Existence of Extrema on a Closed Interval*
A continuous function \(f \) on a closed (bounded) interval \(I = [a, b] \) takes on both a minimum and a maximum value on \(I \).

CONCEPTUAL INSIGHT Why does Theorem 1 require a closed interval? Think of the graph of a continuous function as a string. If the interval is closed, the string is pinned down at the two endpoints and cannot fly off to infinity (or approach a min/max without reaching it) as in Figure 2(B). Intuitively, therefore, it must have a highest and lowest point. However, a rigorous proof of Theorem 1 relies on the *completeness property* of the real numbers (see Appendix D).

Local Extrema and Critical Points

We focus now on the problem of finding extreme values. A key concept is that of a local minimum or maximum.

DEFINITION *Local Extrema*
We say that \(f(c) \) is a
- **Local minimum** occurring at \(x = c \) if \(f(c) \) is the minimum value of \(f \) on some open interval (in the domain of \(f \)) containing \(c \).
- **Local maximum** occurring at \(x = c \) if \(f(c) \) is the maximum value of \(f \) on some open interval (in the domain of \(f \)) containing \(c \).

A local max occurs at \(x = c \) if \((c, f(c))\) is the highest point on the graph within some small box [Figure 3(A)]. Thus, \(f(c) \) is greater than or equal to all other nearby values, but it does not have to be the absolute maximum value of \(f \). Local minima are similar. Figure 3(B) illustrates the difference between local and absolute extrema: \(f(a) \) is the absolute max on \([a, b]\) but is not a local max because \(f(x) \) takes on larger values to the left of \(x = a \).
How do we find the local extrema? The crucial observation is that the tangent line at a local min or max is horizontal [Figure 4(A)]. In other words, if \(f(c) \) is a local min or max, then \(f'(c) = 0 \). However, this assumes that \(f \) is differentiable. Otherwise, the tangent line may not exist, as in Figure 4(B). To take both possibilities into account, we define the notion of a critical point.

DEFINITION Critical Points A number \(c \) in the domain of \(f \) is called a critical point if either \(f'(c) = 0 \) or \(f'(c) \) does not exist.

- **EXAMPLE 1** Find the critical points of \(f(x) = x^3 - 9x^2 + 24x - 10 \).

 Solution The function \(f \) is differentiable everywhere (Figure 5), so the critical points are the solutions of \(f'(x) = 0 \):

 \[
 f'(x) = 3x^2 - 18x + 24 = 3(x^2 - 6x + 8) = 3(x - 2)(x - 4) = 0
 \]

 The critical points are the roots \(c = 2 \) and \(c = 4 \).

- **EXAMPLE 2** Nondifferentiable Function Find the critical points of \(f(x) = |x| \).

 Solution As we see in Figure 6, \(f'(x) = -1 \) for \(x < 0 \) and \(f'(x) = 1 \) for \(x > 0 \). Therefore, \(f'(x) = 0 \) has no solutions with \(x \neq 0 \). However, \(f'(0) \) does not exist. Thus, \(c = 0 \) is a critical point.

 The next theorem tells us that we can find local extrema by solving for the critical points. It is one of the most important results in calculus.

THEOREM 2 Fermat's Theorem on Local Extrema If \(f(c) \) is a local min or max, then \(c \) is a critical point of \(f \).
Proof Suppose that \(f(c) \) is a local minimum (the case of a local maximum is similar). If \(f'(c) \) does not exist, then \(c \) is a critical point and there is nothing more to prove. So assume that \(f'(c) \) exists. We must then prove that \(f'(c) = 0 \).

Because \(f(c) \) is a local minimum, we have \(f(c + h) \geq f(c) \) for all sufficiently small \(h \neq 0 \). Equivalently, \(f(c + h) - f(c) \geq 0 \). Now divide this inequality by \(h \):

\[
\frac{f(c + h) - f(c)}{h} \geq 0 \quad \text{if} \quad h > 0
\]

\[
\frac{f(c + h) - f(c)}{h} \leq 0 \quad \text{if} \quad h < 0
\]

Figure 7 shows the graphical interpretation of these inequalities. Taking the one-sided limits of both sides of (1) and (2), we obtain

\[
f'(c) = \lim_{h \to 0^+} \frac{f(c + h) - f(c)}{h} \geq \lim_{h \to 0^+} 0 = 0
\]

\[
f'(c) = \lim_{h \to 0^-} \frac{f(c + h) - f(c)}{h} \leq \lim_{h \to 0^-} 0 = 0
\]

Thus, \(f'(c) \geq 0 \) and \(f'(c) \leq 0 \). The only possibility is \(f'(c) = 0 \) as claimed.

CONCEPTUAL INSIGHT Fermat’s Theorem does not claim that all critical points yield local extrema. “False positives” may exist—that is, we might have \(f'(c) = 0 \) without \(f(c) \) being a local min or max. For example, \(f(x) = x^3 \) has derivative \(f'(x) = 3x^2 \) and \(f'(0) = 0 \), but \(f(0) \) is neither a local min nor max (Figure 8). The origin is a point of inflection (studied in Section 4.4), where the tangent line crosses the graph.

Optimizing on a Closed Interval

Finally, we have all the tools needed for optimizing a continuous function on a closed interval. Theorem 1 guarantees that the extreme values exist, and the next theorem tells us where to find them, namely among the critical points or endpoints of the interval.

THEOREM 3 Extreme Values on a Closed Interval Assume that \(f \) is continuous on \([a, b]\) and let \(f(c) \) be the minimum or maximum value on \([a, b]\). Then \(c \) is either a critical point or one of the endpoints \(a \) or \(b \).

Proof If \(c \) is one of the endpoints \(a \) or \(b \), there is nothing to prove. If not, then \(c \) belongs to the open interval \((a, b)\). In this case, \(f(c) \) is also a local min or max because it is the min or max on \((a, b)\). By Fermat’s Theorem, \(c \) is a critical point.

EXAMPLE 3 Find the extrema of \(f(x) = 2x^3 - 15x^2 + 24x + 7 \) on \([0, 6]\).

Solution The extreme values occur at critical points or endpoints by Theorem 3, so we can break up the problem neatly into two steps.

Step 1. Find the critical points.

The function \(f \) is differentiable, so we find the critical points by solving

\[f'(x) = 6x^2 - 30x + 24 = 6(x - 1)(x - 4) = 0 \]

The critical points are \(c = 1 \) and \(4 \).

Step 2. Compare values of \(f(x) \) at the critical points and endpoints.

<table>
<thead>
<tr>
<th>(x)-value</th>
<th>Value of (f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (critical point)</td>
<td>(f(1) = 18)</td>
</tr>
<tr>
<td>4 (critical point)</td>
<td>(f(4) = -9) min</td>
</tr>
<tr>
<td>0 (endpoint)</td>
<td>(f(0) = 7)</td>
</tr>
<tr>
<td>6 (endpoint)</td>
<td>(f(6) = 43) max</td>
</tr>
</tbody>
</table>
The maximum value of \(f(x) \) on \([0, 6]\) is the largest of the values in this table, namely \(f(6) = 43 \). Similarly, the minimum is \(f(4) = -9 \). See Figure 9.

Example 4 Function with a Cusp. Find the maximum of \(f(x) = 1 - (x - 1)^{2/3} \) on \([-1, 2]\).

Solution First, find the critical points:

\[
f'(x) = -\frac{2}{3}(x - 1)^{-1/3} = -\frac{2}{3(x - 1)^{1/3}}
\]

The equation \(f'(x) = 0 \) has no solutions because \(f'(x) \) is never zero. However, \(f'(x) \) does not exist at \(x = 1 \), so \(c = 1 \) is a critical point (Figure 10).

Next, compare values of \(f(x) \) at the critical points and endpoints:

<table>
<thead>
<tr>
<th>(x)-value</th>
<th>Value of (f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (critical point)</td>
<td>(f(1) = 1) max</td>
</tr>
<tr>
<td>-1 (endpoint)</td>
<td>(f(-1) \approx -0.59) min</td>
</tr>
<tr>
<td>2 (endpoint)</td>
<td>(f(2) = 0)</td>
</tr>
</tbody>
</table>

In the next example, the critical points lie outside the interval \([a, b]\), so they are not relevant to the problem.

Example 5 A Critical Point Lying Outside the Interval. Find the extreme values of \(f(x) = \frac{x}{x^2 + 5} \) on \([4, 8]\) (Figure 11).

Solution Compute \(f'(x) \) using the quotient rule and solve for the critical points:

\[
f'(x) = \frac{(x^2 + 5)(x)^' - x(x^2 + 5)^'}{(x^2 + 5)^2} = \frac{(x^2 + 5) - x(2x)}{(x^2 + 5)^2} = \frac{5 - x^2}{(x^2 + 5)^2} = 0
\]

We see that \(f''(x) = 0 \) if \(5 - x^2 = 0 \). Hence, the critical points are \(c = \pm \sqrt{5} \approx \pm 2.2 \), both of which lie outside the interval \([4, 8]\). Therefore, the min and max of \(f \) on \([4, 8]\) occur at the endpoints. In fact, \(f(4) = \frac{4}{24} \approx 0.169 \) and \(f(8) = \frac{8}{69} \approx 0.116 \). Therefore, \(f(4) \) is the max and \(f(8) \) is the min on the interval \([4, 8]\).

Example 6 Trigonometric Function. Find the minimum and maximum of the function \(f(x) = \sin x + \cos^2 x \) on \([0, 2\pi]\) (Figure 12).

Solution First, solve for the critical points:

\[
f'(x) = \cos x - 2 \sin x \cos x = \cos x(1 - 2 \sin x) = 0 \quad \Rightarrow \quad \cos x = 0 \text{ or } \sin x = \frac{1}{2}
\]

\[
\cos x = 0 \quad \Rightarrow \quad x = \frac{\pi}{2}, \frac{3\pi}{2} \quad \text{and} \quad \sin x = \frac{1}{2} \quad \Rightarrow \quad x = \frac{\pi}{6}, \frac{5\pi}{6}
\]

Then compare the values of \(f(x) \) at the critical points and endpoints:

<table>
<thead>
<tr>
<th>(x)-value</th>
<th>Value of (f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\pi}{2}) (critical point)</td>
<td>(f\left(\frac{\pi}{2}\right) = 1 + 0^2 = 1)</td>
</tr>
<tr>
<td>(\frac{3\pi}{2}) (critical point)</td>
<td>(f\left(\frac{3\pi}{2}\right) = -1 + 0^2 = -1) min</td>
</tr>
<tr>
<td>(\frac{\pi}{6}) (critical point)</td>
<td>(f\left(\frac{\pi}{6}\right) = \frac{1}{2} + \left(\sqrt{3}\right)^2 = \frac{5}{4}) max</td>
</tr>
<tr>
<td>(\frac{5\pi}{6}) (critical point)</td>
<td>(f\left(\frac{5\pi}{6}\right) = \frac{1}{2} + \left(-\sqrt{3}\right)^2 = \frac{5}{4}) max</td>
</tr>
<tr>
<td>0 and (2\pi) (endpoints)</td>
<td>(f(0) = f(2\pi) = 1)</td>
</tr>
</tbody>
</table>
Rolle’s Theorem

As an application of our optimization methods, we prove Rolle’s Theorem: If \(f \) is differentiable and takes on the same value at two different points \(a \) and \(b \), then somewhere between these two points the derivative is zero. Graphically, if the secant line between \(x = a \) and \(x = b \) is horizontal, then at least one tangent line between \(a \) and \(b \) is also horizontal (Figure 13).

THEOREM 4 Rolle’s Theorem Assume that \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\). If \(f(a) = f(b) \), then there exists a number \(c \) between \(a \) and \(b \) such that \(f'(c) = 0 \).

Proof Since \(f \) is continuous and \([a, b]\) is closed, \(f \) has a min and a max in \([a, b]\). Where do they occur? If either the min or the max occurs at a point \(c \) in the open interval \((a, b)\), then \(f(c) \) is a local extreme value and \(f'(c) = 0 \) by Fermat’s Theorem (Theorem 2). Otherwise, both the min and the max occur at the endpoints. However, \(f(a) = f(b) \), so in this case, the min and max coincide and \(f \) is a constant function with zero derivative. Then, \(f'(c) = 0 \) for all \(c \in (a, b) \).

EXAMPLE 7 Illustrating Rolle’s Theorem Verify Rolle’s Theorem for \(f(x) = x^4 - x^2 \) on \([-2, 2]\).

Solution The hypotheses of Rolle’s Theorem are satisfied because \(f \) is differentiable (and therefore continuous) everywhere, and \(f(2) = f(-2) = 0 \):

\[
\begin{align*}
f(2) &= 2^4 - 2^2 = 12, \\
f(-2) &= (-2)^4 - (-2)^2 = 12
\end{align*}
\]

We must verify that \(f'(c) = 0 \) has a solution in \((-2, 2)\), so we solve \(f'(x) = 4x^3 - 2x = 2x(2x^2 - 1) = 0 \). The solutions are \(c = 0 \) and \(c = \pm 1/\sqrt{2} \approx \pm 0.707 \). They all lie in \((-2, 2)\), so Rolle’s Theorem is satisfied with three values of \(c \).

EXAMPLE 8 Using Rolle’s Theorem Show that \(f(x) = x^3 + 9x - 4 \) has precisely one real root.

Solution First, we note that \(f(0) = -4 \) is negative and \(f(1) = 6 \) is positive. By the Intermediate Value Theorem (Section 2.8), \(f \) has at least one root \(a \) in \([0, 1]\). If \(f \) had a second root \(b \), then \(f(a) = f(b) = 0 \) and Rolle’s Theorem would imply that \(f'(c) = 0 \) for some \(c \in (a, b) \). This is not possible because \(f'(x) = 3x^2 + 9 \geq 9 \), so \(f'(c) = 0 \) has no solutions. We conclude that \(a \) is the only real root of \(f \) (Figure 14).

4.2 SUMMARY

- The *extreme values* of \(f \) on an interval \(I \) are the minimum and maximum values of \(f \) for \(x \in I \) (also called *absolute extrema* on \(I \)).
- Basic Theorem: If \(f \) is continuous on a closed interval \([a, b]\), then \(f \) has both a min and a max on \([a, b]\).
- \(f(c) \) is a local minimum if \(f(x) \geq f(c) \) for all \(x \) in some open interval around \(c \). Local maxima are defined similarly.
- \(x = c \) is a critical point of \(f \) if either \(f'(c) = 0 \) or \(f'(c) \) does not exist.
- Fermat’s Theorem: If \(f(c) \) is a local min or max, then \(c \) is a critical point.
- To find the extreme values of a continuous function \(f \) on a closed interval \([a, b]\):

 Step 1. Find the critical points of \(f \) in \([a, b]\).

 Step 2. Calculate \(f(x) \) at the critical points in \([a, b]\) and at the endpoints.

 The min and max on \([a, b]\) are the smallest and largest among the values computed in Step 2.
- Rolle’s Theorem: If \(f \) is continuous on \([a, b]\) and differentiable on \((a, b)\), and if \(f(a) = f(b) \), then there exists \(c \) between \(a \) and \(b \) such that \(f'(c) = 0 \).
Sometime in the 1630s, in the decade before Isaac Newton was born, the French mathematician Pierre de Fermat invented a general method for finding extreme values. Fermat said, in essence, that if you want to find extrema, you must set the derivative equal to zero and solve for the critical points, just as we have done in this section. He also described a general method for finding tangent lines that is not essentially different from our method of derivatives. For this reason, Fermat is often regarded as an inventor of calculus, together with Newton and Leibniz.

At around the same time, René Descartes (1596-1650) developed a different but less effective approach to finding tangent lines. Descartes, after whom Cartesian coordinates are named, was a profound thinker—the leading philosopher and scientist of his time in Europe. He is regarded today as the father of modern philosophy and the founder (along with Fermat) of analytic geometry. A dispute developed when Descartes learned through an intermediary that Fermat had criticized his work on optics. Sensitive and stubborn, Descartes retaliated by attacking Fermat’s method of finding tangents and only after some third-party refereeing did he admit that Fermat was correct. He wrote:

...Seeing the last method that you use for finding tangents to curved lines, I can reply to it in no other way than to say that it is very good and that, if you had explained it in this manner at the outset, I would have not contradicted it at all.

However, in subsequent private correspondence, Descartes was less generous, referring at one point to some of Fermat’s work as “le galimatias le plus ridicule”—meaning the most ridiculous gibberish. Today Fermat is recognized as one of the greatest mathematicians of his age who made far-reaching contributions in several areas of mathematics.

4.2 EXERCISES

Preliminary Questions

1. What is the definition of a critical point?

In Questions 2 and 3, choose the correct conclusion.

2. If \(f \) is not continuous on \([0, 1]\), then
 (a) \(f \) has no extreme values on \([0, 1]\).
 (b) \(f \) might not have any extreme values on \([0, 1]\).

3. If \(f \) is continuous but has no critical points in \([0, 1]\), then
 (a) \(f \) has no min or max on \([0, 1]\).
 (b) Either \(f(0) \) or \(f(1) \) is the minimum value on \([0, 1]\).

4. Fermat’s Theorem does not claim that if \(f'(c) = 0 \), then \(f(c) \) is a local extreme value (this is false). What does Fermat’s Theorem assert?

Exercises

1. The following questions refer to Figure 15.
 (a) How many critical points does \(f \) have on \([0, 8]\)?
 (b) What is the maximum value of \(f \) on \([0, 8]\)?
 (c) What are the local maximum values of \(f \)?
 (d) Find a closed interval on which both the minimum and maximum values of \(f \) occur at critical points.
 (e) Find an interval on which the minimum value occurs at an endpoint.

2. State whether \(f(x) = x^{-1} \) (Figure 16) has a minimum or maximum value on the following intervals:
 (a) \((0, 2)\)
 (b) \((1, 2)\)
 (c) \([1, 2]\)

3. In Exercises 3–16, find all critical points of the function.
 3. \(f(x) = x^2 - 2x + 4 \)
 4. \(f(x) = 7x - 2 \)
 5. \(f(x) = x^3 - \frac{9}{2}x^2 - 54x + 2 \)
 6. \(f(t) = 8t^3 - t^2 \)
7. \(f(x) = x^{-1} - x^{-2} \)
8. \(g(z) = \frac{1}{\zeta - 1} - \frac{1}{\zeta} \)
9. \(f(x) = \frac{x}{x^2 + 1} \)
10. \(f(x) = \frac{x^2}{x^2 - 4x + 8} \)
11. \(f(t) = t - 4\sqrt{t} + 1 \)
12. \(f(t) = 4t - \sqrt{t^2 + 1} \)
13. \(f(x) = x^2\sqrt{1 - x^2} \)
14. \(f(x) = x + |2x + 1| \)
15. \(g(\theta) = \sin^2 \theta \)
16. \(R(\theta) = \cos \theta + \sin^2 \theta \)
17. Let \(f(x) = x^2 - 4x + 1 \).
(a) Find the critical point of \(f \) and compute \(f(c) \).
(b) Compute the value of \(f(x) \) at the endpoints of the interval \([0, 4]\).
(c) Determine the min and max of \(f \) on \([0, 4]\).
(d) Find the extreme values of \(f \) on \([0, 1]\).
18. Find the extreme values of \(f(x) = 2x^3 - 9x^2 + 12x \) on \([0, 3]\) and \([0, 2]\).
19. Find the critical points of \(f(x) = \sin x + \cos x \) and determine the extreme values on \([0, \frac{\pi}{2}]\).
20. Compute the critical points of \(h(t) = (t^2 - 1)^{1/3} \). Check that your answer is consistent with Figure 17. Then find the extreme values of \(h \) on \([0, 1]\) and on \([0, 2]\).

![Figure 17](image-url)

21. **GU** Plot \(f(x) = 2\sqrt{x} - x \) on \([0, 4]\) and determine the maximum value graphically. Then verify your answer using calculus.
22. **GU** Plot \(f(x) = 2x^3 - 9x^2 + 12x \) on \([0, 3]\) and locate the extreme values graphically. Then verify your answer using calculus.
23. **CAS** Approximate the critical points of \(g(x) = x \cos x \) on \([0, 2\pi]\), and estimate the minimum value of \(g \) on \([0, 2\pi]\).
24. **CAS** Approximate the critical points of \(g(x) = \tan^2 x - 5x \) on \((-\frac{\pi}{2}, \frac{\pi}{2})\), and estimate the minimum value of \(g \) on \((-\frac{\pi}{2}, \frac{\pi}{2})\).

In Exercises 25–50, find the minimum and maximum value of the function on the given interval by comparing values at the critical points and endpoints.

25. \(y = 2x^2 + 4x + 5 \) \([-2, 2]\)
26. \(y = 2x^2 + 4x + 5 \) \([0, 2]\)
27. \(y = 6t - t^2 \) \([0, 5]\)
28. \(y = 6t - t^2 \) \([4, 6]\)
29. \(y = x^3 - 6x^2 + 8 \) \([1, 6]\)
30. \(y = x^3 + x^2 - x \) \([-2, 2]\)
31. \(y = 2t^3 + 3t^2 \) \([1, 2]\)
32. \(y = x^3 - 12x^2 + 21x \) \([0, 2]\)
33. \(y = e^{x^5} - 80x \) \([-3, 3]\)
34. \(y = 2x^5 + 5x^2 \) \([-2, 2]\)
35. \(y = \frac{x^2 + 1}{x - 4} \) \([5, 6]\)
36. \(y = \frac{1 - x}{x^2 + 3x} \) \([1, 4]\)
37. \(y = x - \frac{4x}{x + 1} \) \([0, 3]\)
38. \(y = 2\sqrt{x^2 + 1} - x \) \([0, 2]\)
39. \(y = (2 + x)\sqrt{2 + (2 - x)^2} \) \([0, 2]\)
40. \(y = \sqrt{1 + x^2} - 2x \) \([0, 1]\)
41. \(y = \sqrt{x + x^2 - 2\sqrt{x}} \) \([0, 4]\)
42. \(y = (t - t^3)^{1/3} \) \([-1, 2]\)
43. \(y = \sin x \cos x \) \([0, \frac{\pi}{2}]\)
44. \(y = x + \sin x \) \([0, 2\pi]\)
45. \(y = \sqrt{2}\theta - \sec \theta \) \([0, \frac{\pi}{2}]\)
46. \(y = \cos \theta + \sin \theta \) \([0, 2\pi]\)
47. \(y = \theta - 2 \sin \theta \) \([0, 2\pi]\)
48. \(y = 4 \sin^3 \theta - 3 \cos^2 \theta \) \([0, 2\pi]\)
49. \(y = \tan x - 2x \) \([0, 1]\)
50. \(y = \sec^2 x - 2 \tan x \) \([-\frac{\pi}{2}, \frac{\pi}{2}]\)
51. Let \(f(\theta) = 2\sin 2\theta + \sin 4\theta \).
(a) Show that \(\theta \) is a critical point if \(\cos 4\theta = -\cos 2\theta \).
(b) Show, using a unit circle, that \(\cos \theta_1 = -\cos \theta_2 \) if and only if \(\theta_1 = \pi \pm \theta_2 + 2\pi k \) for an integer \(k \).
(c) Show that \(\!\cos 4\theta = -\cos 2\theta \) if and only if \(\theta = \frac{\pi}{2} + \pi k \) or \(\theta = \frac{\pi}{6} + (\frac{1}{2})k \).
(d) Find the six critical points of \(f \) on \([0, 2\pi]\) and find the extreme values of \(f \) on this interval.
(e) **GU** Check your results against a graph of \(f \).
52. **GU** Find the critical points of \(f(x) = 2 \cos 3x + 3 \cos 2x \) in \([0, 2\pi]\). Check your answer against a graph of \(f \).

In Exercises 53–56, find the critical points and the extreme values on \([0, 4]\). In Exercises 55 and 56, refer to Figure 18.

53. \(y = |x - 2| \)
54. \(y = |3x - 9| \)
55. \(y = |x^2 + 4x - 12| \)
56. \(y = |\cos x| \)

![Figure 18](image-url)

In Exercises 57–60, verify Rolle’s Theorem for the given interval by checking \(f(a) = f(b) \) and then finding a value \(c \) in \((a, b)\) such that \(f’(c) = 0 \).

57. \(f(x) = x + x^{-1} \) \([\frac{1}{2}, 2]\)
58. \(f(x) = \sin x \) \([\frac{\pi}{4}, \frac{3\pi}{4}]\)
59. \(f(x) = \frac{x^2}{8x - 15} \) \([3, 5]\)
60. \(f(x) = \sin^2 x - \cos^2 x \) \([\frac{\pi}{4}, \frac{3\pi}{4}]\)
61. Prove that \(f(x) = x^3 + 2x^3 + 4x - 12 \) has precisely one real root.
62. Prove that \(f(x) = x^3 + 3x^2 + 6x \) has precisely one real root.
63. Prove that \(f(x) = x^4 + 5x^3 + 4x \) has no root \(c \) satisfying \(c > 0 \).

Hint: Note that \(x = 0 \) is a root and apply Rolle’s Theorem.

64. Prove that \(c = 4 \) is the largest root of \(f(x) = x^4 - 8x^2 - 128 \).

65. The position of a mass oscillating at the end of a spring is \(s(t) = A \sin \omega t \), where \(A \) is the amplitude and \(\omega \) is the angular frequency. Show that the speed \(|v(t)| \) is at a maximum when the acceleration \(a(t) \) is zero and that \(|a(t)| \) is at a maximum when \(v(t) \) is zero.

66. The concentration \(C(t) \) (in milligrams per cubic centimeter) of a drug in a patient’s bloodstream after \(t \) hours is

\[
C(t) = \frac{0.016t}{t^2 + 4t + 4}
\]

Find the maximum concentration in the time interval \([0, 8]\) and the time at which it occurs.

67. In 1919 physicist Alfred Betz argued that the maximum efficiency of a wind turbine is around 59%. If wind enters a turbine with speed \(v_1 \) and exits with speed \(v_2 \), then the power extracted is the difference in kinetic energy per unit time:

\[
P = \frac{1}{2} m v_1^2 - \frac{1}{2} m v_2^2 \text{ watts}
\]

where \(m \) is the mass of wind flowing through the rotor per unit time (Figure 19). Betz assumed that \(m = \rho A (v_1 + v_2)/2 \), where \(\rho \) is the density of air and \(A \) is the area swept out by the rotor. Wind flowing undisturbed through the same area \(A \) would have mass per unit time \(\rho Av_1 \) and power \(P_0 = \frac{1}{2} \rho Av_1^2 \). The fraction of power extracted by the turbine is \(F = P/P_0 \).

(a) Show that \(F \) depends only on the ratio \(r = v_2/v_1 \) and is equal to \(F(r) = \frac{1}{2} (1 - r^2)(1 + r) \), where \(0 \leq r \leq 1 \).

(b) Show that the maximum value of \(F \), called the Betz Limit, is 16/27 \(\approx 0.59 \).

(c) Explain why Betz’s formula for \(F \) is not meaningful for \(r \) close to zero. Hint: How much wind would pass through the turbine if \(v_2 = 0 \)? Is this realistic?

68. The Bohr radius \(a_0 \) of the hydrogen atom is the value of \(r \) that minimizes the energy

\[
E(r) = \frac{\hbar^2}{2mr^2} - \frac{e^2}{4\pi\epsilon_0 r}
\]

where \(\hbar, m, e, \) and \(\epsilon_0 \) are physical constants. Show that \(a_0 = 4\pi\epsilon_0\hbar^2/(me^2) \). Assume that the minimum occurs at a critical point, as suggested by Figure 20.

69. The response of a circuit or other oscillatory system to an input of frequency \(\omega \) (“omega”) is described by the function

\[
\phi(\omega) = \frac{1}{\sqrt{(\omega^2_0 - \omega^2)^2 + 4D^2\omega^2}}
\]

Both \(\omega_0 \) (the natural frequency of the system) and \(D \) (the damping factor) are positive constants. The graph of \(\phi \) is called a resonance curve, and the positive frequency \(\omega_0 > 0 \), where \(\phi \) takes its maximum value, if it exists, is called the resonant frequency. Show that \(\omega_0 = \sqrt{\omega^2_0 - 2D^2} \) if \(0 < D < \omega_0/\sqrt{2} \) and that no resonant frequency exists otherwise (Figure 21).

70. Bees build honeycomb structures out of cells with a hexagonal base and three rhombus-shaped faces on top, as in Figure 22. We can show that the surface area of this cell is

\[
A(\theta) = 6hs + \frac{3}{2}s^2(\sqrt{3} \csc \theta - \cot \theta)
\]

with \(h, s, \) and \(\theta \) as indicated in the figure. Remarkably, bees “know” which angle \(\theta \) minimizes the surface area (and therefore requires the least amount of wax).

(a) Show that \(\theta \approx 54.7^\circ \) (assume \(h \) and \(s \) are constant). Hint: Find the critical point of \(A(\theta) \) for \(0 < \theta < \pi/2 \).

(b) Confirm, by graphing \(f(\theta) = \sqrt{3} \csc \theta - \cot \theta \), that the critical point indeed minimizes the surface area.

71. Find the maximum of \(y = x^a - x^b \) on \([0, 1]\), where \(0 < a < b \). In particular, find the maximum of \(y = x^5 - x^{10} \) on \([0, 1]\).
In Exercises 72–74, plot the function using a graphing utility and find its critical points and extreme values on \([-5, 5]\).

72. \(y = \frac{1}{1 + |x - 1|}\)

73. \(y = \frac{1}{1 + |x - 1|} + \frac{1}{1 + |x - 4|}\)

74. \(y = \frac{x}{|x^2 - 1| + |x^2 - 4|}\)

75. (a) Use implicit differentiation to find the critical points on the curve \(27x^2 = (x^2 + y^2)^3\).

 (b) Plot the curve and the horizontal tangent lines on the same set of axes.

76. Sketch the graph of a continuous function on \((0, 4]\) with a minimum value but no maximum value.

77. Sketch the graph of a function on \((0, 4]\) having a local minimum but no absolute minimum.

78. Sketch the graph of a function on \([0, 4]\) having

 (a) Two local maxima and one local minimum.

 (b) An absolute minimum that occurs at an endpoint, and an absolute maximum that occurs at a critical point.

79. Sketch the graph of a function \(f\) on \([0, 4]\) with a discontinuity such that \(f\) has an absolute minimum but no absolute maximum.

Further Insights and Challenges

80. A rainbow is produced by light rays that enter a raindrop (assumed spherical) and exit after being reflected internally as in Figure 23. The angle between the incoming and reflected rays is \(\theta = 4r - 2i\), where the angle of incidence \(i\) and refraction \(r\) are related by Snell’s Law \(\sin i = n \sin r\) with \(n \approx 1.33\) (the index of refraction for air and water).

 (a) Use Snell’s Law to show that \(\frac{dr}{di} = \frac{n \cos r}{\cos i}\).

 (b) Show that the maximum value \(\theta_{\text{max}}\) of \(\theta\) occurs when \(i\) satisfies \(\cos i = \sqrt{\frac{n^2 - 1}{3}}\). Hint: Show that \(\frac{d\theta}{di} = 0\) if \(\cos i = \frac{n}{2} \cos r\). Then use Snell’s Law to eliminate \(r\).

 (c) Show that \(\theta_{\text{max}} \approx 42.53^\circ\).

![Figure 23](image)

81. Show that the extreme values of \(f(x) = a \sin x + b \cos x\) are \(\pm \sqrt{a^2 + b^2}\).

82. Show, by considering its minimum, that \(f(x) = x^2 - 2x + 3\) takes on only positive values. More generally, find the conditions on \(r\) and \(s\) under which the quadratic function \(f(x) = x^2 + rx + s\) takes on only positive values. Give examples of \(r\) and \(s\) for which \(f\) takes on both positive and negative values.

83. Show that if the quadratic polynomial \(f(x) = x^2 + rx + s\) takes on both positive and negative values, then its minimum value occurs at the midpoint between the two roots.

84. Generalize Exercise 83: Show that if the horizontal line \(y = c\) intersects the graph of \(f(x) = x^2 + rx + s\) at two points \((x_1, f(x_1))\) and \((x_2, f(x_2))\), then \(f\) takes its minimum value at the midpoint \(M = \frac{x_1 + x_2}{2}\) (Figure 24).

![Figure 24](image)

85. A cubic polynomial may have a local min and max, or it may have neither (Figure 25). Find conditions on the coefficients \(a\) and \(b\) of

\[
f(x) = \frac{1}{3}x^3 + \frac{1}{2}ax^2 + bx + c\]

that ensure \(f\) has neither a local min nor a local max. Hint: Apply Exercise 82 to \(f'(x)\).

![Figure 25](image)

86. Find the min and max of

\[f(x) = x^p (1 - x)^q\]

on \([0, 1]\) where \(p, q > 0\).

87. Prove that if \(f\) is continuous and \(f(a)\) and \(f(b)\) are local minima where \(a < b\), then there exists a value \(c\) between \(a\) and \(b\) such that \(f(c)\) is a local maximum. (Hint: Apply Theorem 1 to the interval \([a, b]\).) Show that continuity is a necessary hypothesis by sketching the graph of a function (necessarily discontinuous) with two local minima but no local maximum.
CHAPTER 4 APPLICATIONS OF THE DERIVATIVE

4.3 The Mean Value Theorem and Monotonicity

We have taken for granted that if \(f'(x) \) is positive, the function \(f \) is increasing, and if \(f'(x) \) is negative, \(f \) is decreasing. In this section, we prove this rigorously using an important result called the Mean Value Theorem (MVT). Then we develop a method for “testing” critical points—that is, for determining whether they correspond to local minima or maxima.

The MVT says that a secant line between two points \((a, f(a))\) and \((b, f(b))\) on a graph is parallel to at least one tangent line in the interval \((a, b)\) (Figure 1). Since the secant line between \((a, f(a))\) and \((b, f(b))\) has slope \(\frac{f(b) - f(a)}{b - a} \) and since two lines are parallel if they have the same slope, the MVT is claiming that there exists a point \(c \) between \(a \) and \(b \) such that

\[
\frac{f'(c)}{\text{Slope of tangent line}} = \frac{f(b) - f(a)}{b - a} \quad \text{Slope of secant line}
\]

THEOREM 1 The Mean Value Theorem Assume that \(f \) is continuous on the closed interval \([a, b]\) and differentiable on \((a, b)\). Then there exists at least one value \(c \) in \((a, b)\) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}
\]

Rolle’s Theorem (Section 4.2) is the special case of the MVT in which \(f(a) = f(b) \). In this case, the conclusion is that \(f'(c) = 0 \).

GRAPHICAL INSIGHT Imagine what happens when a secant line is moved parallel to itself. Eventually, it becomes a tangent line, as shown in Figure 2. This is the idea behind the MVT. We present a formal proof at the end of this section.

CONCEPTUAL INSIGHT The conclusion of the MVT can be rewritten as

\[
f(b) - f(a) = f'(c)(b - a)
\]

We can think of this as a variation on the Linear Approximation, which says

\[
f(b) - f(a) \approx f'(a)(b - a)
\]

The MVT turns this approximation into an equality by replacing \(f'(a) \) with \(f'(c) \) for a suitable choice of \(c \) in \((a, b)\).

EXAMPLE 1 Verify the MVT with \(f(x) = \sqrt{x}, a = 1, \) and \(b = 9 \).

Solution First, compute the slope of the secant line (Figure 3):

\[
\frac{f(b) - f(a)}{b - a} = \frac{\sqrt{9} - \sqrt{1}}{9 - 1} = \frac{3 - 1}{9 - 1} = \frac{1}{4}
\]

We must find \(c \) such that \(f'(c) = 1/4 \). The derivative is \(f'(x) = \frac{1}{2\sqrt{x}} \), and

\[
f'(c) = \frac{1}{2\sqrt{c}} = \frac{1}{4} \Rightarrow 2\sqrt{c} = 4 \Rightarrow c = 4
\]

The value \(c = 4 \) lies in \((1, 9)\) and satisfies \(f'(4) = \frac{1}{4} \). This verifies the MVT.

As a first application, we prove that a function with zero derivative is constant.
We say that f is “nondecreasing” if
\[f(x_1) \leq f(x_2) \quad \text{for} \quad x_1 \leq x_2 \]
“Nonincreasing” is defined similarly. In Theorem 2, if we assume that $f'(x) \geq 0$ (instead of > 0), then f is nondecreasing on (a, b). If $f'(x) \leq 0$, then f is nonincreasing on (a, b).

Figure 4 Increasing function: Tangent lines have positive slope.

Decreasing function: Tangent lines have negative slope.

Corollary If f is differentiable and $f'(x) = 0$ for all $x \in (a, b)$, then f is constant on (a, b). In other words, $f(x) = C$ for some constant C.

Proof If a_1 and b_1 are any two distinct points in (a, b), then, by the MVT, there exists c between a_1 and b_1 such that
\[f(b_1) - f(a_1) = f'(c)(b_1 - a_1) = 0 \quad \text{(since $f'(c) = 0$)} \]
Thus, $f(b_1) = f(a_1)$. This says that $f(x)$ is constant on (a, b).

Increasing/Decreasing Behavior of Functions

We prove now that the sign of the derivative determines whether a function f is increasing or decreasing. Recall that f is
- **Increasing on (a, b)** if $f(x_1) < f(x_2)$ for all $x_1, x_2 \in (a, b)$ such that $x_1 < x_2$.
- **Decreasing on (a, b)** if $f(x_1) > f(x_2)$ for all $x_1, x_2 \in (a, b)$ such that $x_1 < x_2$.

We say that f is **monotonic** on (a, b) if it is either increasing or decreasing on (a, b).

Theorem 2 The Sign of the Derivative Let f be a differentiable function on an open interval (a, b).

- If $f'(x) > 0$ for $x \in (a, b)$, then f is increasing on (a, b).
- If $f'(x) < 0$ for $x \in (a, b)$, then f is decreasing on (a, b).

Proof Suppose first that $f'(x) > 0$ for all $x \in (a, b)$. The MVT tells us that for any two points $x_1 < x_2$ in (a, b), there exists c between x_1 and x_2 such that
\[f(x_2) - f(x_1) = f'(c)(x_2 - x_1) > 0 \]
The inequality holds because $f'(c)$ and $(x_2 - x_1)$ are both positive. Therefore, $f(x_2) > f(x_1)$, as required. The case $f'(x) < 0$ is similar.

Graphical Insight Theorem 2 confirms our graphical intuition (Figure 4):

- $f'(x) > 0$ \Rightarrow Tangent lines have positive slope \Rightarrow f increasing
- $f'(x) < 0$ \Rightarrow Tangent lines have negative slope \Rightarrow f decreasing

Example 2 Show that the function $f(x) = 3x - \cos 2x$ is increasing.

Solution The derivative $f'(x) = 3 + 2 \sin 2x$ satisfies $f'(x) > 0$ for all x. Indeed, $\sin 2x \geq -1$, and thus $3 + 2 \sin 2x \geq 3 - 2 = 1$. Therefore, f is an increasing function on the entire real line $(-\infty, \infty)$ [Figure 5].

\[f(x) = 3x - \cos 2x \]

Figure 5

Example 3 Find the intervals on which $f(x) = x^2 - 2x - 3$ is monotonic.

Solution The derivative $f'(x) = 2x - 2 = 2(x - 1)$ is positive for $x > 1$ and negative for $x < 1$. By Theorem 2, f is decreasing on the interval $(-\infty, 1)$ and increasing on the interval $(1, \infty)$, as confirmed in Figure 6.

\[f(x) = x^2 - 2x - 3 \]

Figure 6 Graph of $f(x) = x^2 - 2x - 3$.
Testing Critical Points

There is a useful test for determining whether a critical point is a min or max (or neither) based on the sign change of the derivative $f'(x)$.

To explain the term “sign change,” suppose that a function $g(x)$ satisfies $g(x) = 0$. We say that $g(x)$ changes from positive to negative at $x = c$ if $g(x) > 0$ to the left of c and $g(x) < 0$ to the right of c for x within a small open interval around c (Figure 7). A sign change from negative to positive is defined similarly. Observe in Figure 7 that $y = g(x)$ changes from positive to negative at $x = c$ but $g(x)$ does not change sign at $x = 5$.

Now suppose that $f'(c) = 0$ and that $f'(x)$ changes sign at $x = c$, say, from $+$ to $-$. Then f is increasing to the left of c and decreasing to the right, so $f(c)$ is a local maximum. Similarly, if $f'(x)$ changes sign from $-$ to $+$, then $f(c)$ is a local minimum. See Figure 8(A).

Figure 8(B) illustrates a case where $f'(c) = 0$ but $f'(x)$ does not change sign. In this case, $f'(x) > 0$ for all x near but not equal to c, so f is increasing and has neither a local min nor a local max at c. The same analysis holds true when $f'(c)$ does not exist.

Theorem 3 First Derivative Test for Critical Points

Let c be a critical point of f. Then

- $f'(x)$ changes from $+$ to $-$ at c implies $f(c)$ is a local maximum.
- $f'(x)$ changes from $-$ to $+$ at c implies $f(c)$ is a local minimum.

To carry out the First Derivative Test, we make a useful observation: $f'(x)$ can change sign at a critical point, but it cannot change sign on the interval between two consecutive critical points (this can be proved even if f' is not assumed to be continuous). So we can determine the sign of $f'(x)$ on an interval between consecutive critical points by evaluating $f'(x)$ at any test point x_0 inside the interval. The sign of $f'(x)$ is the sign of $f'(x)$ on the entire interval.

Example 4 Analyze the critical points of $f(x) = x^3 - 27x - 20$.

Solution Our analysis will confirm the picture in Figure 8(A).

Step 1. Find the critical points.

The roots of $f'(x) = 3x^2 - 27 = 3(x^2 - 9) = 0$ are $c = \pm 3$.
Step 2. Find the sign of $f'(x)$ on the intervals between the critical points.

The critical points $c = \pm 3$ divide the real line into three intervals:

$$(-\infty, -3), \quad (-3, 3), \quad (3, \infty)$$

To determine the sign of $f'(x)$ on these intervals, we choose a test point inside each interval and evaluate. For example, in $(-\infty, -3)$ we choose $x = -4$. Because $f'(-4) = 21 > 0$, $f'(x)$ is positive on the entire interval $(-\infty, -3)$. Similarly,

$$f'(-4) = 21 > 0 \quad \Rightarrow \quad f'(x) > 0 \quad \text{for all} \quad x \in (-\infty, -3)$$

$$f'(0) = -27 < 0 \quad \Rightarrow \quad f'(x) < 0 \quad \text{for all} \quad x \in (-3, 3)$$

$$f'(4) = 21 > 0 \quad \Rightarrow \quad f'(x) > 0 \quad \text{for all} \quad x \in (3, \infty)$$

This information is displayed in the following sign diagram:

```
\begin{array}{c|c|c|c|c|c|c|c}
\hline
\text{Behavior of } f(x) & - & + & - & + \\
\text{Sign of } f'(x) & \downarrow & \uparrow & \downarrow & \uparrow \\
\hline
\end{array}
```

Step 3. Use the First Derivative Test.

- $c = -3$: $f'(x)$ changes from $+\text{ to } -$ \Rightarrow $f(-3) = 34$ is a local maximum value.
- $c = 3$: $f'(x)$ changes from $-\text{ to } +$ \Rightarrow $f(3) = -74$ is a local minimum value.

Example 5 Analyze the critical points and the increase/decrease behavior of $f(x) = \cos^2 x + \sin x$ in $(0, \pi)$.

Solution First, find the critical points:

$$f'(x) = -2 \cos x \sin x + \cos x = (\cos x)(1 - 2 \sin x) = 0 \quad \Rightarrow \quad \cos x = 0 \text{ or } \sin x = \frac{1}{2}$$

The critical points are $\frac{\pi}{6}$, $\frac{\pi}{2}$, and $\frac{5\pi}{6}$. They divide $(0, \pi)$ into four intervals:

$$\left(0, \frac{\pi}{6}\right), \quad \left(\frac{\pi}{6}, \frac{\pi}{2}\right), \quad \left(\frac{\pi}{2}, \frac{5\pi}{6}\right), \quad \left(\frac{5\pi}{6}, \pi\right)$$

We determine the sign of $f'(x)$ by evaluating $f'(x)$ at a test point inside each interval. Since $\frac{\pi}{6} \approx 0.52$, $\frac{\pi}{2} \approx 1.57$, $\frac{5\pi}{6} \approx 2.62$, and $\pi \approx 3.14$, we can use the following test points:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of $f'(x)$</th>
<th>Behavior of $f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, \frac{\pi}{6})$</td>
<td>$f'(0.5) \approx 0.04$</td>
<td>$+$</td>
<td>↑</td>
</tr>
<tr>
<td>$(\frac{\pi}{6}, \frac{\pi}{2})$</td>
<td>$f'(1) \approx -0.37$</td>
<td>$-$</td>
<td>↓</td>
</tr>
<tr>
<td>$(\frac{\pi}{2}, \frac{5\pi}{6})$</td>
<td>$f'(2) \approx 0.34$</td>
<td>$+$</td>
<td>↑</td>
</tr>
<tr>
<td>$(\frac{5\pi}{6}, \pi)$</td>
<td>$f'(3) \approx -0.71$</td>
<td>$-$</td>
<td>↓</td>
</tr>
</tbody>
</table>

Now apply the First Derivative Test:

- Local max at $c = \frac{\pi}{6}$ and $c = \frac{5\pi}{6}$ because $f'(x)$ changes from $+\text{ to } -$.
- Local min at $c = \frac{\pi}{2}$ because $f'(x)$ changes from $-\text{ to } +$.

The behavior of $f(x)$ and $f'(x)$ is reflected in the graphs in Figure 9.

Example 6 A Critical Point Without a Sign Transition Analyze the critical points of $f(x) = \frac{1}{4}x^3 - x^2 + x$.

Solution The derivative is $f'(x) = x^2 - 2x + 1 = (x-1)^2$, so $c = 1$ is the only critical point. However, $(x-1)^2 \geq 0$, so $f'(x)$ does not change sign at $c = 1$, and therefore $f(1)$ is neither a local min nor a local max. See Figure 10.
EXAMPLE 7 A Critical Point Where \(f'(x) \) Is Undefined

Analyze the critical points of \(f(x) = (1 - x)^{2/3} \).

Solution The derivative is \(f'(x) = -\frac{2}{3}(1 - x)^{-1/3} = \frac{2}{3(1-x)^{4/3}} \). The only critical point occurs at \(c = 1 \), when \(f'(x) \) is undefined. For \(x < 1 \), \(f'(x) \) is negative. For \(x > 1 \), \(f'(x) \) is positive. So \(f'(x) \) changes sign as we pass through \(c = 1 \), and by the First Derivative Test, \(f(c) \) is a local minimum. See Figure 11.

Proof of the MVT Let \(m = \frac{f(b) - f(a)}{b - a} \) be the slope of the secant line joining \((a, f(a)) \) and \((b, f(b)) \). The secant line has equation \(y = mx + r \) for some \(r \) (Figure 12). The value of \(r \) is not important, but you can check that \(r = f(a) - ma \). Now consider the function

\[
G(x) = f(x) - (mx + r)
\]

As indicated in Figure 12, \(G(x) \) is the vertical distance between the graph and the secant line at \(x \) (it is negative at points where the graph of \(f \) lies below the secant line). This distance is zero at the endpoints, and therefore, \(G(a) = G(b) = 0 \). By Rolle’s Theorem (Section 4.2), there exists a point \(c \) in \((a, b) \) such that \(G'(c) = 0 \). But \(G'(x) = f'(x) - m \), so \(G'(c) = f'(c) - m = 0 \), and \(f'(c) = m \) as desired.

4.3 SUMMARY

- The Mean Value Theorem (MVT): If \(f \) is continuous on \([a, b] \) and differentiable on \((a, b) \), then there exists at least one value \(c \) in \((a, b) \) such that

\[
f'(c) = \frac{f(b) - f(a)}{b - a}
\]

This conclusion can also be written

\[
f(b) - f(a) = f'(c)(b - a)
\]

- Important corollary of the MVT: If \(f'(x) = 0 \) for all \(x \in (a, b) \), then \(f \) is constant on \((a, b) \).
- The sign of \(f'(x) \) determines whether \(f \) is increasing or decreasing:

\[
\begin{align*}
 f'(x) > 0 & \text{ for } x \in (a, b) \Rightarrow f \text{ is increasing on } (a, b) \\
f'(x) < 0 & \text{ for } x \in (a, b) \Rightarrow f \text{ is decreasing on } (a, b)
\end{align*}
\]

- The sign of \(f'(x) \) can change only at the critical points, so \(f \) is monotonic (increasing or decreasing) on the intervals between the critical points.
- To find the sign of \(f'(x) \) on the interval between two critical points, calculate the sign of \(f'(x_0) \) at any test point \(x_0 \) in that interval.
- First Derivative Test: If \(f \) is differentiable and \(c \) is a critical point, then

<table>
<thead>
<tr>
<th>Sign Change of (f'(x)) at (c)</th>
<th>Type of Critical Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>From + to -</td>
<td>Local maximum</td>
</tr>
<tr>
<td>From - to +</td>
<td>Local minimum</td>
</tr>
</tbody>
</table>

4.3 EXERCISES

Preliminary Questions

1. For which value of \(m \) is the following statement correct? If \(f(2) = 3 \) and \(f(4) = 9 \), and \(f \) is differentiable, then \(f \) has a tangent line of slope \(m \).

2. Assume \(f \) is differentiable. Which of the following statements does not follow from the MVT?

(a) If \(f \) has a secant line of slope 0, then \(f \) has a tangent line of slope 0.
(b) If \(f(5) < f(9) \), then \(f'(c) > 0 \) for some \(c \in (5, 9) \).
(c) If \(f \) has a tangent line of slope 0, then \(f \) has a secant line of slope 0.
(d) If \(f'(x) > 0 \) for all \(x \), then every secant line has positive slope.

3. Can a function with the real numbers as its domain that takes on only negative values have a positive derivative? If so, sketch an example.

4. For \(f \) with derivative as in Figure 13:
 (a) Is \(f(c) \) a local minimum or maximum?
 (b) Is \(f \) a decreasing function?

Exercises

In Exercises 1–8, find a point \(c \) satisfying the conclusion of the MVT for the given function and interval.

1. \(y = x^{-1} \), \([2, 8]\)
2. \(y = \sqrt{x} \), \([9, 25]\)
3. \(y = \cos x - \sin x \), \([0, 2\pi]\)
4. \(y = \frac{x}{x + 2} \), \([1, 4]\)
5. \(y = x^3 \), \([-4, 5]\)
6. \(y = (x - 1)(x - 3) \), \([1, 3]\)
7. \(y = x \sin x \), \([-\frac{\pi}{2}, \frac{\pi}{2}]\)
8. \(y = x - \sin(\pi x) \), \([-1, 1]\)

In Exercises 9–12, find a point \(c \) satisfying the conclusion of the MVT for the given function and interval. Then draw the graph of the function, the secant line between the endpoints of the graph and the tangent line at \((c, f(c))\), to see that the secant and tangent lines are, in fact, parallel.

9. \(y = x^2 \), \([0, 1]\)
10. \(y = x^{2/3} \), \([0, 8]\)
11. \(f(x) = \frac{1}{1 + x^2} \), \([0, 1]\)
12. \(y = \sqrt{x} \), \([0, 3]\)

13. **GU** Let \(f(x) = x^5 + x^2 \). The secant line between \(x = 0 \) and \(x = 1 \) has slope 2 (check this), so by the MVT, \(f'(c) = 2 \) for some \(c \in (0, 1) \). Plot \(f \) and the secant line on the same axes. Then plot \(y = 2x + b \) for different values of \(b \) until the line becomes tangent to the graph of \(f \). Zoom in on the point of tangency to estimate the \(x \)-coordinate of the point of tangency.

14. **GU** Plot the derivative of \(f(x) = 3x^5 - 5x^3 \). Describe its sign changes and use this to determine the local extreme values of \(f \). Then graph \(f \) to confirm your conclusions.

15. Determine the intervals on which \(f'(x) \) is positive and negative, assuming that Figure 14 is the graph of \(f' \).

16. Determine the intervals on which \(f \) is increasing or decreasing, assuming that Figure 14 is the graph of \(f \).

17. State whether \(f(2) \) and \(f(4) \) are local minima or local maxima, assuming that Figure 14 is the graph of \(f' \).

18. Figure 15 shows the graph of the derivative \(f' \) of a function \(f \). Find the critical points of \(f \) and determine whether they are local minima, local maxima, or neither.

In Exercises 19–22, sketch the graph of a function \(f \) whose derivative \(f' \) has the given description.

19. \(f'(x) > 0 \) for \(x > 3 \) and \(f'(x) < 0 \) for \(x < 3 \)
20. \(f'(x) > 0 \) for \(x < 1 \) and \(f'(x) < 0 \) for \(x > 1 \)
21. \(f'(x) \) is negative on \((1, 3)\) and positive everywhere else.
22. \(f'(x) \) makes the sign transitions \(+, -,, -\).

In Exercises 23–26, find all critical points of \(f \) and use the First Derivative Test to determine whether they are local minima or maxima.

23. \(f(x) = 4 + 6x - x^2 \)
24. \(f(x) = x^3 - 12x - 4 \)
25. \(f(x) = \frac{x^2}{x + 1} \)
26. \(f(x) = x^3 + x^{-3} \)

In Exercises 27–50, find the critical points and the intervals on which the function is increasing or decreasing. Use the First Derivative Test to determine whether the critical point is a local min or max (or neither).

27. \(y = -x^2 + 7x - 17 \)
28. \(y = 5x^2 + 6x - 4 \)
29. \(y = x^3 - 12x^2 \)
30. \(y = x(x - 2)^3 \)
31. \(y = 3x^4 + 8x^3 - 6x^2 - 24x \)
32. \(y = x^2 + (10 - x)^2 \)
33. \(y = \frac{1}{3}x^3 + \frac{1}{2}x^2 + 2x + 4 \)
34. \(y = x^4 + x^3 \)
35. \(y = x^5 + x^3 + 1 \)
36. \(y = x^5 + x^3 + x \)
37. \(y = x^4 - 4x^{3/2} \ (x > 0) \)
38. \(y = x^{5/2} - x^2 \ (x > 0) \)
39. \(y = x + x^{-1} \ (x > 0) \)
40. \(y = x^2 - 4x^{-1} \ (x > 0) \)
41. \(y = \frac{1}{x^2 + 1} \)
42. \(y = \frac{2x + 1}{x^2 + 1} \)
43. \(y = \frac{x^3}{x^2 + 1} \)
44. \(y = \frac{x^3}{x^2 - 3} \)
45. \(y = \theta + \sin \theta + \cos \theta \)
46. \(y = \sin \theta + \sqrt{3} \cos \theta \)
47. \(y = \sin^2 \theta + \sin \theta \)
48. \(y = \theta - 2 \cos \theta \), \([0, 2\pi]\)
49. \(y = x^{1/3} \)
50. \(y = x^{2/3} - x^2 \)

51. Show that \(f(x) = x^2 + bx + c \) is decreasing on \((-\infty, -\frac{b}{2})\) and increasing on \((-\frac{b}{2}, \infty)\).

52. Show that \(f(x) = x^3 - 2x^2 + 2x \) is an increasing function. **Hint:** Find the minimum value of \(f' \).
53. Find conditions on a and b that ensure $f(x) = x^3 + ax + b$ is increasing on $(-\infty, \infty)$.

54. Let $h(x) = x^2 - 1$ and suppose that $f'(x) = h(x)$. Plot h and use the plot to describe the local extrema and the increasing/decreasing behavior of f. Sketch a plausible graph for f itself.

55. Sam made two statements that Deborah found dubious.
 (a) “The average velocity for my trip was 70 mph; at no point in time did my speedometer read 70 mph.”
 (b) “A policeman clocked me going 70 mph, but my speedometer never read 65 mph.”

In each case, which theorem did Deborah apply to prove Sam’s statement false: the Intermediate Value Theorem or the Mean Value Theorem? Explain.

56. Determine where $f(x) = (1,000 - x)^2 + x^2$ is decreasing. Use this to decide which is larger: $800^2 + 200^2$ or $600^2 + 400^2$.

Further Insights and Challenges

63. Show that a cubic function $f(x) = x^3 + ax^2 + bx + c$ is increasing on $(-\infty, \infty)$ if $b > \frac{a^2}{3}$.

64. Prove that if $f(0) = g(0)$ and $f'(x) \leq g'(x)$ for all $x \geq 0$, then $f(x) \leq g(x)$ for all $x \geq 0$. Hint: Show that the function given by $y = f(x) - g(x)$ is nonincreasing.

65. Use Exercise 64 to prove that $x \leq \tan x$ for $0 \leq x < \frac{\pi}{2}$.

66. Use Exercise 64 and the inequality $\sin x \leq x$ for $x \geq 0$ (established in Theorem 3 of Section 2.6) to prove the following assertions for all $x \geq 0$ (each assertion follows from the previous one):
 (a) $\cos x \geq 1 - \frac{x^2}{2!}$
 (b) $\sin x \geq x - \frac{x^3}{6}$
 (c) $\cos x \leq 1 - \frac{x^2}{2} + \frac{x^4}{24}$

Can you guess the next inequality in the series?

67. Suppose that f is a function such that $f(0) = 1$ and for all x, $f'(x) = f(x)$ and $f(x) > 0$ (in Chapter 7, we will see that f is the exponential function $f(x) = e^x$). Prove that for all $x \geq 0$ (each assertion follows from the previous one),
 (a) $f(x) \geq 1$
 (b) $f(x) \geq 1 + x$
 (c) $f(x) \geq 1 + x + \frac{x^2}{2}$

Then prove by induction that for every whole number n and all $x \geq 0$,

$$f(x) \geq 1 + x + \frac{x^2}{2!} + \cdots + \frac{1}{n!} x^n$$

68. Assume that f'' exists and $f''(x) = 0$ for all x. Prove that $f(x) = mx + b$, where $m = f'(0)$ and $b = f(0)$.

69. Define $f(x) = x^3 \sin \left(\frac{1}{x}\right)$ for $x \neq 0$ and $f(0) = 0$.
 (a) Show that f' is continuous at $x = 0$ and that $x = 0$ is a critical point of f.
 (b) Examine the graphs of f and f'. Can the First Derivative Test be applied?
 (c) Show that $f(0)$ is neither a local min nor a local max.

70. Suppose that $f(x)$ satisfies the following equation (an example of a differential equation):

$$f''(x) = -f(x)$$

(a) Show that $f(x)^2 + f'(x)^2 = f(0)^2 + f'(0)^2$ for all x. Hint: Show that the function on the left has zero derivative.
 (b) Verify that $\sin x$ and $\cos x$ satisfy Eq. (1), and deduce that $\sin^2 x + \cos^2 x = 1$.

71. Suppose that functions f and g satisfy Eq. (1) and have the same initial values—that is, $f(0) = g(0)$ and $f'(0) = g'(0)$. Prove that $f(x) = g(x)$ for all x. Hint: Apply Exercise 70(a) to $f - g$.

72. Use Exercise 71 to prove $f(x) = \sin x$ is the unique solution of Eq. (1) such that $f(0) = 0$ and $f'(0) = 1$; and $g(x) = \cos x$ is the unique solution such that $g(0) = 1$ and $g'(0) = 0$. This result can be used to develop all the properties of the trigonometric functions “analytically”—that is, without reference to triangles.

4.4 The Shape of a Graph

In the previous section, we studied the increasing/decreasing behavior of a function, as determined by the sign of the derivative. Another important property is concavity, which refers to the way the graph bends. Informally, a curve is concave up if it bends up and concave down if it bends down (Figure 1).
To analyze concavity in a precise fashion, let’s examine how concavity is related to tangent lines and derivatives. Observe in Figure 2 that when \(f \) is concave up, \(f' \) is increasing (the slopes of the tangent lines increase as we move to the right). Similarly, when \(f \) is concave down, \(f' \) is decreasing. This suggests the following definition.

Concave up: Slopes of tangent lines are increasing.

Concave down: Slopes of tangent lines are decreasing.

DEFINITION Concavity Let \(f \) be a differentiable function on an open interval \((a, b)\).

Then

- \(f \) is **concave up** on \((a, b)\) if \(f' \) is increasing on \((a, b)\).
- \(f \) is **concave down** on \((a, b)\) if \(f' \) is decreasing on \((a, b)\).

EXAMPLE 1 Concavity and Stock Prices The stocks of two companies, Arenot Industries (AI) and Blurbenthal Business Associates (BBA), went up in value, and both currently sell for $75 (Figure 3). However, one is clearly a better investment than the other. Explain in terms of concavity.

Solution The graph of Stock AI is concave down, so its growth rate (first derivative) is declining as time goes on. The graph of Stock BBA is concave up, so its growth rate is increasing. If these trends continue, Stock BBA is the better investment.

GRAPHICAL INSIGHT Keep in mind that a function can decrease while its derivative increases. In Figure 4, the derivative \(f' \) is increasing. Although the tangent lines are getting less steep, their slopes are becoming less negative.

The concavity of a function is determined by the **sign** of its second derivative. Indeed, if \(f''(x) > 0 \), then \(f' \) is increasing and hence \(f \) is concave up. Similarly, if \(f''(x) < 0 \), then \(f' \) is decreasing and \(f \) is concave down.

THEOREM 1 Test for Concavity Assume that \(f''(x) \) exists for all \(x \in (a, b) \).

- If \(f''(x) > 0 \) for all \(x \in (a, b) \), then \(f \) is concave up on \((a, b)\).
- If \(f''(x) < 0 \) for all \(x \in (a, b) \), then \(f \) is concave down on \((a, b)\).

Of special interest are the points on the graph where the concavity changes. We say that \(P = (c, f(c)) \) is a **point of inflection** of \(f \) if the concavity changes from up to down or from down to up at \(x = c \). Figure 5 shows a curve made up of two arcs—one is concave up and the other is concave down. A critical point \(c \) is just a single number, whereas a point of inflection \((c, f(c))\) is a point in the xy-plane.
down and one is concave up (the word “arc” refers to a piece of a curve). The point \(P \) where the arcs are joined is a point of inflection. We will denote points of inflection in graphs by a solid square \(\blacksquare \).

According to Theorem 1, the concavity of \(f \) is determined by the sign of \(f''(x) \). Therefore, a point of inflection is a point where \(f''(x) \) changes sign.

Theorem 2 Test for Inflection Points If \(f''(c) = 0 \) or \(f''(c) \) does not exist and \(f''(x) \) changes sign at \(x = c \), then \(f \) has a point of inflection at \(x = c \).

Example 2 Find the points of inflection of \(f(x) = \cos x \) on \([0, 2\pi]\).

Solution We have \(f'(x) = -\sin x \), and \(f''(x) = 0 \) for \(x = \frac{\pi}{2}, \frac{3\pi}{2} \). Figure 6 shows that \(f''(x) \) changes sign at \(x = \frac{\pi}{2} \) and \(\frac{3\pi}{2} \), so \(f \) has a point of inflection at both points.

Example 3 Points of Inflection and Intervals of Concavity Find the points of inflection and the intervals on which \(f(x) = 3x^5 - 5x^4 + 1 \) is concave up and concave down.

Solution The first derivative is \(f'(x) = 15x^4 - 20x^3 \) and

\[
f''(x) = 60x^3 - 60x^2 = 60x^2(x - 1)
\]

The zeros of \(f''(x) = 60x^2(x - 1) \) are \(x = 0 \) and \(x = 1 \). They divide the \(x \)-axis into three intervals: \((-\infty, 0)\), \((0, 1)\), and \((1, \infty)\). We determine the sign of \(f''(x) \) and the concavity of \(f \) by computing “test values” within each interval (Figure 7):

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of (f''(x))</th>
<th>Behavior of (f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, 0))</td>
<td>(f''(-1) = -120)</td>
<td>-</td>
<td>Concave down</td>
</tr>
<tr>
<td>((0, 1))</td>
<td>(f''(\frac{1}{2}) = -\frac{15}{4})</td>
<td>-</td>
<td>Concave down</td>
</tr>
<tr>
<td>((1, \infty))</td>
<td>(f''(2) = 240)</td>
<td>+</td>
<td>Concave up</td>
</tr>
</tbody>
</table>

We can read off the points of inflection from this table:

* \(c = 0 \): no point of inflection, because \(f''(x) \) does not change sign at 0.
* \(c = 1 \): point of inflection, because \(f''(x) \) changes sign at 1.

Usually, we find the inflection points by solving \(f''(x) = 0 \). However, an inflection point can also occur at a point \((c, f(c))\), where \(f''(c) \) does not exist.

Example 4 A Case Where the Second Derivative Does Not Exist Find the points of inflection of \(f(x) = x^{5/3} \).

Solution In this case, \(f'(x) = \frac{5}{3}x^{2/3} \) and \(f''(x) = \frac{10}{9}x^{-1/3} \). Although \(f''(0) \) does not exist, \(f''''(x) \) does change sign at \(x = 0 \):

\[
f''(x) = \frac{10}{9x^{1/3}} \begin{cases} > 0 & \text{for } x > 0 \\ < 0 & \text{for } x < 0 \end{cases}
\]

Therefore, the concavity of \(f \) changes at \(x = 0 \), and \((0, 0)\) is a point of inflection (Figure 8).
The Shape of a Graph

4.4

Graphical Insight Points of inflection are easy to spot on the graph of the first derivative \(f' \). If \(f''(c) = 0 \) and \(f''(x) \) changes sign at \(x = c \), then the increasing/decreasing behavior of \(f' \) changes at \(x = c \). Thus, inflection points of \(f \) occur where \(f' \) has a local min or max (Figure 9).

Second Derivative Test for Critical Points

There is a simple test for critical points based on concavity. Suppose that \(f'(c) = 0 \). As we see in Figure 10, \(f(c) \) is a local max if \(f \) is concave down, and it is a local min if \(f \) is concave up. Concavity is determined by the sign of \(f''(x) \), so we obtain the following Second Derivative Test. (See Exercise 57 for a detailed proof.)

\[
\begin{align*}
\text{Concave down—local max:} & \quad f''(c) > 0 \\
\text{Concave up—local min:} & \quad f''(c) < 0
\end{align*}
\]

The mnemonic device appearing in Figure 11 provides an easy way to remember the test.

Example 5 Analyze the critical points of \(f(x) = 2x^3 + 3x^2 - 12x \).

Solution First we find the critical points by solving

\[
f'(x) = 6x^2 + 6x - 12 = 6(x^2 + x - 2) = 6(x + 2)(x - 1) = 0
\]

The critical points are \(c = -2, 1 \) (Figure 12) and \(f''(x) = 12x + 6 \), so by the Second Derivative Test,

\[
\begin{align*}
f''(-2) &= -24 + 6 = -18 < 0 \quad \Rightarrow \quad f(-2) \text{ is a local max} \\
f''(1) &= 12 + 6 = 18 > 0 \quad \Rightarrow \quad f(1) \text{ is a local min}
\end{align*}
\]

Example 6 Second Derivative Test Inconclusive Analyze the critical points of \(f(x) = x^5 - 5x^4 \).

Solution The first two derivatives are

\[
\begin{align*}
f'(x) &= 5x^4 - 20x^3 = 5x^3(x - 4) \\
f''(x) &= 20x^3 - 60x^2
\end{align*}
\]

The critical points are \(c = 0, 4 \), and the Second Derivative Test yields

\[
\begin{align*}
f''(0) &= 0 \quad \Rightarrow \quad \text{Second Derivative Test fails} \\
f''(4) &= 320 > 0 \quad \Rightarrow \quad f(4) \text{ is a local min}
\end{align*}
\]
The Second Derivative Test fails at \(c = 0 \), so we fall back on the First Derivative Test. Choosing test points to the left and right of \(c = 0 \), we find
\[
\begin{align*}
 f'(-1) &= 5 + 20 = 25 > 0 \quad \Rightarrow \quad f'(x) \text{ is positive on } (-\infty, 0) \\
 f'(1) &= 5 - 20 = -15 < 0 \quad \Rightarrow \quad f'(x) \text{ is negative on } (0, 4)
\end{align*}
\]
Since \(f'(x) \) changes from + to − at \(c = 0 \), \(f(0) \) is a local max (Figure 13).

4.4 SUMMAR
- A differentiable function \(f \) is concave up on \((a, b)\) if \(f' \) is increasing and concave down if \(f' \) is decreasing on \((a, b)\).
- The signs of the first two derivatives provide the following information:

<table>
<thead>
<tr>
<th>First Derivative</th>
<th>Second Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f' > 0)</td>
<td>(f'' > 0)</td>
</tr>
<tr>
<td>(f' < 0)</td>
<td>(f'' < 0)</td>
</tr>
</tbody>
</table>

- A point of inflection is a point \((c, f(c))\) where the concavity changes from concave up to concave down, or vice versa.
- If \(f''(c) = 0 \) or does not exist and \(f''(x) \) changes sign at \(c \), then \((c, f(c))\) is a point of inflection.
- Second Derivative Test: If \(f'(c) = 0 \) and \(f''(c) \) exists, then
 - \(f(c) \) is a local maximum value if \(f''(c) < 0 \).
 - \(f(c) \) is a local minimum value if \(f''(c) > 0 \).
 - The test fails if \(f''(c) = 0 \).

If this test fails, use the First Derivative Test.

4.4 EXERCISES

Preliminary Questions

1. If \(f \) is concave up, then \(f' \) is (choose one):
 (a) increasing. (b) decreasing.
2. What conclusion can you draw if \(f'(c) = 0 \) and \(f''(c) < 0 \)?
3. True or False? If \(f(c) \) is a local min, then \(f''(c) \) must be positive.
4. True or False? If \(f''(x) \) changes from + to − at \(x = c \), then \(f \) has a point of inflection at \(x = c \).

Exercises

1. Match the graphs in Figure 14 with the description:
 (a) \(f''(x) < 0 \) for all \(x \).
 (b) \(f''(x) \) goes from + to −.
 (c) \(f''(x) > 0 \) for all \(x \).
 (d) \(f''(x) \) goes from − to +.

2. Match each statement with a graph in Figure 15 that represents company profits as a function of time.
 (a) The outlook is great: The growth rate keeps increasing.
 (b) We’re losing money, but not as quickly as before.
 (c) We’re losing money, and it’s getting worse as time goes on.
 (d) We’re doing well, but our growth rate is leveling off.
 (e) Business had been cooling off, but now it’s picking up.
 (f) Business had been picking up, but now it’s cooling off.

FIGURE 15

In Exercises 3–14, determine the intervals on which the function is concave up or down and find the points of inflection.

3. \(y = x^2 - 4x + 3 \)
4. \(y = t^3 - 6t^2 + 4 \)
5. \(y = 10x^3 - x^5 \)
6. \(y = 5x^2 + x^4 \)
7. \(y = \theta - 2 \sin \theta, \quad [0, 2\pi] \)
8. \(y = \theta + \sin^2 \theta, \quad [0, \pi] \)
9. \(y = x(x - 8\sqrt{x}) \quad (x \geq 0) \)
10. \(y = x^{7/2} - 35x^2 \)
11. \(y = (x - 2)(1 - x^3) \)
12. \(y = x^{7/5} \)
13. \(y = \frac{1}{x^2 + 3} \)
14. \(y = \frac{x}{x^2 + 9} \)
15. The position of an ambulance in kilometers on a straight road over a period of 4 h is given by the graph in Figure 16.
(a) Describe the motion of the ambulance.
(b) Explain what the fact that this graph is concave up tells us about the speed of the ambulance.

![Figure 16](image)

16. The position of a bicyclist on a straight road in kilometers over a period of 4 h is given by the graph in Figure 17, where inflection points occur when \(t = 0.5 \) and \(t = 2.2 \).
(a) Describe the motion of the bicyclist.
(b) Explain what the concavity of the graph over various intervals tells us about the speed of the bicyclist.

![Figure 17](image)

17. The growth of a sunflower during the first 100 days after sprouting is modeled well by the logistic curve \(y = h(t) \) shown in Figure 18. Estimate the growth rate at the point of inflection and explain its significance. Then make a rough sketch of the first and second derivatives of \(h \).

![Figure 18](image)

18. Assume that Figure 19 is the graph of \(f \). Where do the points of inflection of \(f \) occur, and on which interval is \(f \) concave down?

![Figure 19](image)

19. Repeat Exercise 18 but assume that Figure 19 is the graph of the derivative \(f' \).

20. Repeat Exercise 18 but assume that Figure 19 is the graph of the second derivative \(f'' \).

21. Figure 20 shows the derivative \(f' \) on \([0, 1.2]\). Locate the points of inflection of \(f \) and the points where the local minima and maxima occur. Determine the intervals on which \(f \) has the following properties:
(a) Increasing
(b) Decreasing
(c) Concave up
(d) Concave down

![Figure 20](image)

22. Leticia has been selling solar-powered laptop chargers through her website, with monthly sales as recorded below. In a report to investors, she states, “Sales reached a point of inflection when I started using pay-per-click advertising.” In which month did that occur? Explain.

<table>
<thead>
<tr>
<th>Month</th>
<th>Sales</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
</tr>
<tr>
<td>7</td>
<td>230</td>
</tr>
<tr>
<td>8</td>
<td>340</td>
</tr>
</tbody>
</table>

In Exercises 23–34, find the critical points and apply the Second Derivative Test (or state that it fails).

23. \(f(x) = x^3 - 12x^2 + 45x \)
24. \(f(x) = x^4 - 8x^2 + 1 \)
25. \(f(x) = 3x^4 - 8x^3 + 6x^2 \)
26. \(f(x) = x^5 - x^3 \)
27. \(f(x) = \frac{x^2 - 8x}{x + 1} \)
28. \(f(x) = \frac{1}{x^2 - x + 2} \)
29. \(y = 6x^{3/2} - 4x^{1/2} \)
30. \(y = 9x^{7/3} - 21x^{1/2} \)
31. \(f(x) = \sin^2 x + \cos x \), \([0, \pi]\)
32. \(y = \frac{1}{\sin x + 4}, \quad [0, 2\pi]\)
33. \(f(x) = 2 + \tan^2 x, \quad (-\frac{\pi}{2}, \frac{\pi}{2})\)
34. \(f(x) = \sin x \cos^3 x \), \([0, \pi]\)

In Exercises 35–48, find the intervals on which \(f \) is concave up or down, the points of inflection, the critical points, and the local minima and maxima.

35. \(f(x) = x^3 - 2x^2 + x \)
36. \(f(x) = x^2(x - 4) \)
37. \(f(t) = t^2 - t^3 \)
38. \(f(x) = 2x^4 - 3x^2 + 2 \)
39. \(f(x) = x^2 - 8x^{1/2}, \quad (x \geq 0) \)
40. \(f(x) = x^{3/2} - 4x^{-1/2}, \quad (x > 0) \)
41. \(f(x) = \frac{x}{x^2 + 27} \)
42. \(f(x) = \frac{1}{x^4 + 1} \)
43. \(f(x) = x^{5/3} - x \)
44. \(f(x) = (x - 1)^{3/5} \)
45. \(f(\theta) = \theta + \sin \theta, \quad [0, 2\pi] \)
46. \(f(x) = \cos^2 x, \quad [0, \pi] \)
47. \(f(x) = \tan x, \quad (-\frac{\pi}{2}, \frac{\pi}{2}) \)
48. \(f(x) = \frac{x}{x^6 + 5} \)
49. Sketch the graph of an increasing function such that \(f''(x) \) changes from + to − at \(x = 2 \) and from − to + at \(x = 4 \). Do the same for a decreasing function.

In Exercises 50–52, sketch the graph of a function \(f \) satisfying all of the given conditions.

50. \(f'(x) > 0 \) and \(f''(x) < 0 \) for all \(x \).

51. (i) \(f'(x) > 0 \) for all \(x \), and
 (ii) \(f''(x) < 0 \) for \(x < 0 \) and \(f''(x) > 0 \) for \(x > 0 \).

52. (i) \(f'(x) < 0 \) for \(x < 0 \) and \(f'(x) > 0 \) for \(x > 0 \), and
 (ii) \(f''(x) < 0 \) for \(|x| > 2 \), and \(f''(x) > 0 \) for \(|x| < 2 \).

53. An infectious flu spreads slowly at the beginning of an epidemic. The infection process accelerates until a majority of the susceptible individuals are infected, at which point the process slows down.
 (a) If \(R(t) \) is the number of individuals infected at time \(t \), describe the concavity of the graph of \(R \) near the beginning and end of the epidemic.
 (b) Describe the status of the epidemic on the day that \(R \) has a point of inflection.

54. Water is pumped into a sphere at a constant rate (Figure 21). Let \(h(t) \) be the water level at time \(t \). Sketch the graph of \(h \) (approximately, but with the correct concavity). Where does the point of inflection occur?

55. Water is pumped into a sphere of radius \(R \) at a variable rate in such a way that the water level rises at a constant rate (Figure 21). Let \(V(t) \) be the volume of water in the tank at time \(t \). Sketch the graph \(V \) (approximately, but with the correct concavity). Where does the point of inflection occur?

Further Insights and Challenges

In Exercises 57–59, assume that \(f \) is differentiable.

57. **Proof of the Second Derivative Test** Let \(c \) be a critical point such that \(f''(c) > 0 \) (the case \(f''(c) < 0 \) is similar).
 (a) Show that \(f''(c) = \lim_{h \to 0} \frac{f'(c + h) - f'(c)}{h} \).
 (b) Use (a) to show that there exists an open interval \((a, b)\) containing \(c \) such that \(f'(x) < 0 \) if \(a < x < c \) and \(f'(x) > 0 \) if \(c < x < b \).

58. Prove that if \(f'' \) exists and \(f''(x) > 0 \) for all \(x \), then the graph of \(f \) "sits above" its tangent lines.
 (a) For any \(c \), set \(G(x) = f(x) - f'(c)(x - c) - f(c) \). It is sufficient to prove that \(G(x) \geq 0 \) for all \(c \). Explain why with a sketch.
 (b) Show that \(G(c) = G'(c) = 0 \) and \(G''(c) > 0 \) for all \(x \). Conclude that \(G''(x) < 0 \) for \(x < c \) and \(G'(x) > 0 \) for \(x > c \). Then deduce, using the MVT, that \(G(x) > G(c) \) for \(x \neq c \).

59. Assume that \(f'' \) exists and let \(c \) be a point of inflection of \(f \).
 (a) Use the method of Exercise 58 to prove that the tangent line at \(x = c \) crosses the graph (Figure 22). Hint: Show that \(G(x) \) changes sign at \(x = c \).
 (b) Verify this conclusion for \(f(x) = \frac{x}{3x^2 + 1} \) by graphing \(f \) and the tangent line at each inflection point on the same set of axes.

Figure 22 Tangent line crosses graph at point of inflection.

56. (Continuation of Exercise 55) If the sphere has radius \(R \), the volume of water is \(V = \pi (Rh^2 - \frac{3}{2}h^3) \), where \(h \) is the water level. Assume the level rises at a constant rate of 1 (i.e., \(h = t \)).
 (a) Find the inflection point of \(V \). Does this agree with your conclusion in Exercise 55?
 (b) Plot \(V \) for \(R = 1 \).

60. Let \(C(x) \) be the cost of producing \(x \) units of a certain good. Assume that the graph of \(C \) is concave up.
 (a) Show that the average cost \(A(x) = C(x)/x \) is minimized at the production level \(x_0 \) such that average cost equals marginal cost—that is, \(A(x_0) = C'(x_0) \).
 (b) Show that the line through \((0,0)\) and \((x_0, C(x_0))\) is tangent to the graph of \(C \).

61. Let \(f \) be a polynomial of degree \(n \geq 2 \). Show that \(f \) has at least one point of inflection if \(n \) is odd. Then give an example to show that \(f \) need not have a point of inflection if \(n \) is even.

62. **Critical and Inflection Points** If \(f'(c) = 0 \) and \(f(c) \) is neither a local min nor a local max, must \(x = c \) be a point of inflection? This is true for "reasonable" functions (including the functions studied in this text), but it is not true in general. Let \[f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases} \]
 (a) Use the limit definition of the derivative to show that \(f'(0) \) exists and \(f'(0) = 0 \).
 (b) Show that \(f(0) \) is neither a local min nor a local max.
 (c) Show that \(f'(x) \) changes sign infinitely often near \(x = 0 \). Conclude that \(x = 0 \) is not a point of inflection.
4.5 Graph Sketching and Asymptotes

In this section, our goal is to sketch graphs using the information provided by the first two derivatives \(f' \) and \(f'' \). We will see that a useful sketch can be produced without plotting a large number of points. Although nowadays almost all graphs are produced by computer (including, of course, the graphs in this textbook), sketching graphs by hand is a useful way of solidifying your understanding of the basic concepts in this chapter.

Most graphs are made up of smaller arcs that have one of the four basic shapes, corresponding to the four possible sign combinations of \(f' \) and \(f'' \) (Figure 1). Since \(f' \) and \(f'' \) can each have sign + or −, the sign combinations are

++ + – –
–+ – + –
−− − − +
++ + − –

In this notation, the first sign refers to \(f' \) and the second sign to \(f'' \). For instance, −+ indicates that \(f'(x) < 0 \) and \(f''(x) > 0 \). We use a slanted arrow over the first sign to indicate whether the function is increasing or decreasing, and an upturned or downturned \(\cup \) over the second sign to indicate the concavity.

In graph sketching, we focus on the transition points, where the basic shape changes due to a sign change in either \(f' \) (local min or max) or \(f'' \) (point of inflection). In this section, local extrema are indicated by solid dots, and points of inflection are indicated by green solid squares (Figure 2).

In graph sketching, we must also pay attention to asymptotic behavior—that is, to the behavior of \(f(x) \) as \(x \) approaches either \(±\infty \) or a vertical asymptote.

The next three examples treat polynomials. Recall from Section 2.7 that the limits at infinity of a polynomial

\[
f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0
\]

(assuming that \(a_n \neq 0 \)) are determined by

\[
\lim_{x \to \infty} f(x) = a_n \lim_{x \to \infty} x^n
\]

In general, then, the graph of a polynomial “wiggles” up and down a finite number of times and then tends to positive or negative infinity. Typical examples appear in Figure 3.

EXAMPLE 1 Quadratic Polynomial Sketch the graph of \(f(x) = x^2 - 4x + 3 \).

Solution Note that \(f(x) = (x - 1)(x - 3) \) so the graph intersects the \(x \)-axis at \(x = 1 \) and \(x = 3 \). We have \(f'(x) = 2x - 4 = 2(x-2) \). We can see directly that \(f'(x) \) is negative for \(x < 2 \) and positive for \(x > 2 \), but let’s confirm this using test values, as in previous sections:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of (f')</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, 2))</td>
<td>(f'(1) = -2)</td>
<td>−</td>
</tr>
<tr>
<td>((2, \infty))</td>
<td>(f'(3) = 2)</td>
<td>+</td>
</tr>
</tbody>
</table>

Furthermore, \(f''(x) = 2 \) is positive, so the graph is everywhere concave up. To sketch the graph, plot the local minimum \((2, -1)\), the \(y \)-intercept, and the roots \(x = 1, 3 \). Since the leading term of \(f \) is \(x^2 \), \(f(x) \) tends to \(\infty \) as \(x \to \pm\infty \). This asymptotic behavior is noted by the arrows in Figure 4.
Example 2 Cubic Polynomial Sketch the graph of \(f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 3 \).

Solution

Step 1. Determine the signs of \(f' \) and \(f'' \).

First, solve for the critical points:

\[
f'(x) = x^2 - x - 2 = (x + 1)(x - 2) = 0
\]

The critical points \(c = -1, 2 \) divide the x-axis into three intervals \((-\infty, -1), (-1, 2), \text{ and } (2, \infty)\), on which we determine the sign of \(f' \) by computing test values:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of (f')</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, -1))</td>
<td>(f'(-2) = 4)</td>
<td>+</td>
</tr>
<tr>
<td>((-1, 2))</td>
<td>(f'(0) = -2)</td>
<td>−</td>
</tr>
<tr>
<td>((2, \infty))</td>
<td>(f'(3) = 4)</td>
<td>+</td>
</tr>
</tbody>
</table>

Next, solve \(f''(x) = 2x - 1 = 0 \). The solution is \(c = \frac{1}{2} \) and we have

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of (f'')</th>
</tr>
</thead>
<tbody>
<tr>
<td>((-\infty, \frac{1}{2}))</td>
<td>(f''(0) = -1)</td>
<td>−</td>
</tr>
<tr>
<td>((\frac{1}{2}, \infty))</td>
<td>(f''(1) = 1)</td>
<td>+</td>
</tr>
</tbody>
</table>

Step 2. Note transition points and sign combinations.

This step merges the information about \(f' \) and \(f'' \) in a sign diagram (Figure 5). There are three transition points:

- \(c = -1 \): local max since \(f' \) changes from + to − at \(c = -1 \).
- \(c = \frac{1}{2} \): corresponds to a point of inflection since \(f'' \) changes sign at \(c = \frac{1}{2} \).
- \(c = 2 \): local min since \(f' \) changes from − to + at \(c = 2 \).

In Figure 6(A), we plot the transition points and, for added accuracy, the y-intercept \(f(0) \), using the values

\[
f(-1) = \frac{25}{6}, \quad f\left(\frac{1}{2}\right) = \frac{23}{12}, \quad f(0) = 3, \quad f(2) = -\frac{1}{3}
\]

Step 3. Draw arcs of appropriate shape and asymptotic behavior.

The leading term of \(f(x) \) is \(\frac{1}{3}x^3 \). Therefore, \(\lim_{x \to \infty} f(x) = \infty \) and \(\lim_{x \to -\infty} f(x) = -\infty \).

To create the sketch, it remains only to connect the transition points by arcs of the appropriate concavity and asymptotic behavior, as in Figure 6(B) and (C).

Example 3 Sketch the graph of \(f(x) = 3x^4 - 8x^3 + 6x^2 + 1 \).

Solution

Step 1. Determine the signs of \(f' \) and \(f'' \).

First, solve for the transition points:

\[
f'(x) = 12x^3 - 24x^2 + 12x = 12x(x - 1)^2 = 0 \quad \Rightarrow \quad x = 0, 1
\]

\[
f''(x) = 36x^2 - 48x + 12 = 12(x - 1)(3x - 1) = 0 \quad \Rightarrow \quad x = \frac{1}{3}, 1
\]
The signs of f' and f'' are recorded in the following tables:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of f'</th>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of f''</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(-\infty, 0)$</td>
<td>$f'(-1) = -48$</td>
<td>$-$</td>
<td>$(-\infty, \frac{1}{2})$</td>
<td>$f''(0) = 12$</td>
<td>$+$</td>
</tr>
<tr>
<td>$(0, 1)$</td>
<td>$f'\left(\frac{1}{2}\right) = \frac{3}{2}$</td>
<td>$+$</td>
<td>$(\frac{1}{2}, 1)$</td>
<td>$f''\left(\frac{1}{2}\right) = -3$</td>
<td>$-$</td>
</tr>
<tr>
<td>$(1, \infty)$</td>
<td>$f'(2) = 24$</td>
<td>$+$</td>
<td>$(1, \infty)$</td>
<td>$f''(2) = 60$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

Step 2. Note transition points and sign combinations.

The transition points $c = 0$, $\frac{1}{2}$, 1 divide the x-axis into four intervals (Figure 7). The type of sign change determines the nature of the transition point:

- $c = 0$: local min since f' changes from $-$ to $+$ at $c = 0$.
- $c = \frac{1}{2}$: corresponds to a point of inflection since f'' changes sign at $c = \frac{1}{2}$.
- $c = 1$: neither a local min nor a local max since f' does not change sign, but it is a point of inflection since $f''(x)$ changes sign at $c = 1$.

We plot the transition points $c = 0$, $\frac{1}{2}$, 1 in Figure 8(A) using function values $f(0) = 1$, $f\left(\frac{1}{2}\right) = \frac{3\pi}{5}$, and $f(1) = 2$.

Step 3. Draw arcs of appropriate shape and asymptotic behavior.

Before drawing the arcs, we note that $f(x)$ has leading term $3x^4$, so $f(x)$ tends to ∞ as $x \to \infty$ and as $x \to -\infty$. We obtain Figure 8(B).

![Figure 7](image7.png)

Figure 7 $f(x) = 3x^4 - 8x^3 + 6x^2 + 1$.

Figure 8 $f(x) = 3x^4 - 8x^3 + 6x^2 + 1$.

Example 4 Trigonometric Function Sketch $f(x) = \cos x + \frac{1}{2}x$ over $[0, \pi]$.

Solution First, we find the transition points for x in $[0, \pi]$:

$$f'(x) = -\sin x + \frac{1}{2} = 0 \quad \Rightarrow \quad x = \pi, \frac{5\pi}{6}$$

$$f''(x) = -\cos x = 0 \quad \Rightarrow \quad x = \frac{\pi}{2}$$

The sign combinations are shown in the following tables:

<table>
<thead>
<tr>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of f'</th>
<th>Interval</th>
<th>Test Value</th>
<th>Sign of f''</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(0, \pi)$</td>
<td>$f'\left(\frac{\pi}{2}\right) = 0.24$</td>
<td>$+$</td>
<td>$(0, \frac{\pi}{2})$</td>
<td>$f''(0) = -3$</td>
<td>$-$</td>
</tr>
<tr>
<td>$(\pi, \frac{5\pi}{6})$</td>
<td>$f'\left(\frac{\pi}{2}\right) = -1$</td>
<td>$-$</td>
<td>$(\frac{\pi}{2}, \frac{5\pi}{6})$</td>
<td>$f''(\frac{\pi}{2}) = \frac{\sqrt{2}}{2}$</td>
<td>$+$</td>
</tr>
<tr>
<td>$(\frac{5\pi}{6}, \pi)$</td>
<td>$f'\left(\frac{\pi}{2}\right) \approx 0.24$</td>
<td>$+$</td>
<td>$(\frac{5\pi}{6}, \pi)$</td>
<td>$f''(\frac{5\pi}{6}) \approx 0.44$</td>
<td>$+$</td>
</tr>
</tbody>
</table>

We record the sign changes and transition points in Figure 9 and sketch the graph using the values:

$f(0) = 1$, $f\left(\frac{\pi}{6}\right) \approx 1.13$, $f\left(\frac{\pi}{2}\right) \approx 0.79$, $f\left(\frac{5\pi}{6}\right) \approx 0.44$, $f(\pi) \approx 0.57$
The next two examples deal with horizontal and vertical asymptotes.

Example 5 Sketch the graph of \(f(x) = \frac{3x + 2}{2x - 4} \).

Solution The function \(f \) is not defined for all \(x \). This plays a role in our analysis so we add a Step 0 to our procedure.

Step 0. Determine the domain of \(f \).
Since \(f(x) \) is not defined for \(x = 2 \), the domain of \(f \) consists of the two intervals \((-\infty, 2)\) and \((2, \infty)\). We must analyze \(f \) on these intervals separately.

Step 1. Determine the signs of \(f' \) and \(f'' \).
Calculation shows that
\[
f'(x) = -\frac{4}{(x-2)^2}, \quad f''(x) = \frac{8}{(x-2)^3}
\]
Although \(f'(x) \) is not defined at \(x = 2 \), we do not call it a critical point because \(x = 2 \) is not in the domain of \(f \). In fact, \(f'(x) \) is negative for \(x \neq 2 \), so \(f \) is decreasing and has no critical points.
On the other hand, \(f''(x) > 0 \) for \(x > 2 \) and \(f''(x) < 0 \) for \(x < 2 \). Although \(f''(x) \) changes sign at \(x = 2 \), we do not call \(x = 2 \) a point of inflection because it is not in the domain of \(f \).

Step 2. Note transition points and sign combinations.
There are no transition points in the domain of \(f \).

\[
\begin{array}{c|c|c}
\text{Interval} & f'(x) < 0 \text{ and } f''(x) < 0 & f'(x) < 0 \text{ and } f''(x) > 0 \\
\hline
(-\infty, 2) & \checkmark & \checkmark \\
(2, \infty) & \checkmark & \checkmark \\
\end{array}
\]

Step 3. Draw arcs of appropriate shape and asymptotic behavior.
The following limits show that \(y = \frac{3}{2} \) is a horizontal asymptote:
\[
\lim_{x \to \pm \infty} \frac{3x + 2}{2x - 4} = \lim_{x \to \pm \infty} \frac{3 + 2x^{-1}}{2 - 4x^{-1}} = \frac{3}{2}
\]
The line \(x = 2 \) is a vertical asymptote because \(f(x) \) has infinite one-sided limits
\[
\lim_{x \to 2^+} \frac{3x + 2}{2x - 4} = -\infty, \quad \lim_{x \to 2^-} \frac{3x + 2}{2x - 4} = \infty
\]
To verify this, note that for \(x \) near 2, the denominator \(2x - 4 \) is small and negative if \(x < 2 \) and small and positive if \(x > 2 \), whereas the numerator \(3x + 4 \) is positive.

Figure 10(A) summarizes the asymptotic behavior. What does the graph look like to the right of \(x = 2 \)? It is decreasing and concave up since \(f' < 0 \) and \(f'' > 0 \), and it approaches the asymptotes. The only possibility is the right-hand curve in Figure 10(B).
To the left of \(x = 2 \), the graph is decreasing, is concave down, and approaches the asymptotes. The \(x \)-intercept is \(x = -\frac{3}{2} \) because \(f\left(-\frac{3}{2}\right) = 0 \) and the \(y \)-intercept is \(y = f(0) = -\frac{1}{2} \).

![Figure 10](image)
EXAMPLE 6 Sketch the graph of \(f(x) = \frac{1}{x^2 - 1} \).

Solution The function \(f \) is defined for \(x \neq \pm 1 \). By calculation,

\[
\begin{align*}
 f'(x) &= -\frac{2x}{(x^2 - 1)^2}, \\
 f''(x) &= \frac{6x^2 + 2}{(x^2 - 1)^3}
\end{align*}
\]

For \(x \neq \pm 1 \), the denominator of \(f'(x) \) is positive. Therefore, \(f'(x) \) and \(x \) have opposite signs:

- \(f'(x) > 0 \) for \(x < 0 \), \(f'(x) < 0 \) for \(x > 0 \), \(x = 0 \) is a local max

The sign of \(f''(x) \) is equal to the sign of \(x^2 - 1 \) because \(6x^2 + 2 \) is positive:

- \(f''(x) > 0 \) for \(x < -1 \) or \(x > 1 \) and \(f''(x) < 0 \) for \(-1 < x < 1 \)

Figure 11 summarizes the sign information.

The \(x \)-axis, \(y = 0 \), is a horizontal asymptote because

\[
\lim_{x \to \infty} \frac{1}{x^2 - 1} = 0 \quad \text{and} \quad \lim_{x \to -\infty} \frac{1}{x^2 - 1} = 0
\]

The lines \(x = \pm 1 \) are vertical asymptotes. To determine the one-sided limits, note that \(f(x) < 0 \) for \(-1 < x < 1 \) and \(f(x) > 0 \) for \(|x| > 1 \). Therefore, as \(x \to \pm 1 \), \(f(x) \) approaches \(-\infty\) from within the interval \((-1, 1)\), and it approaches \(\infty \) from outside \((-1, 1)\) (Figure 12). We display the sketch in Figure 13.

Vertical Asymptote	Left-Hand Limit	Right-Hand Limit
\(x = -1 \) | \(\lim_{x \to -1^-} \frac{1}{x^2 - 1} = \infty \) | \(\lim_{x \to -1^+} \frac{1}{x^2 - 1} = -\infty \)
\(x = 1 \) | \(\lim_{x \to 1^-} \frac{1}{x^2 - 1} = -\infty \) | \(\lim_{x \to 1^+} \frac{1}{x^2 - 1} = \infty \)

4.5 SUMMARY

- Most graphs are made up of arcs that have one of the four basic shapes (Figure 14):

<table>
<thead>
<tr>
<th>Sign Combination</th>
<th>Curve Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>++</td>
<td>(f' > 0), (f'' > 0)</td>
</tr>
<tr>
<td>+−</td>
<td>(f' > 0), (f'' < 0)</td>
</tr>
<tr>
<td>−+</td>
<td>(f' < 0), (f'' > 0)</td>
</tr>
<tr>
<td>−−</td>
<td>(f' < 0), (f'' < 0)</td>
</tr>
</tbody>
</table>

A transition point is a point in the domain of f at which either f' changes sign (local min or max) or f'' changes sign (point of inflection).

It is convenient to break up the curve-sketching process into steps:

Step 0. Determine the domain of f.

Step 1. Determine the signs of f' and f''.

Step 2. Note transition points and sign combinations.

Step 3. Determine the asymptotic behavior of $f(x)$.

Step 4. Draw arcs of appropriate shape and asymptotic behavior.

4.5 Exercises

Preliminary Questions

1. Sketch an arc where f' and f'' have the sign combination $++$. Do the same for $-+$.

2. If the sign combination of f' and f'' changes from $++$ to $+-$ at $x = c$, then (choose the correct answer):
 - (a) $f(c)$ is a local min.
 - (b) $f(c)$ is a local max.
 - (c) $(c, f(c))$ is a point of inflection.

3. The second derivative of the function $f(x) = (x - 4)^{-1}$ is $f''(x) = 2(x - 4)^{-3}$. Although $f''(x)$ changes sign at $x = 4$, f does not have a point of inflection at $x = 4$. Why not?

Exercises

1. Determine the sign combinations of f' and f'' for each interval A–G in Figure 15.

2. State the sign change at each transition point A–G in Figure 16. Example: $f'(x)$ goes from $+$ to $-$ at A.

3. In Exercises 3–6, draw the graph of a function for which f' and f'' take on the given sign combinations.

 3. $++$, $+-$, $--$
 4. $+-$, $--$, $++$
 5. $--$, $+-$, $--$
 6. $-+$, $++$, $--$

4. Sketch the graph of $y = x^2 - 5x + 4$.

5. Sketch the graph of $y = 12 - 5x - 2x^2$.

6. Sketch the graph of $f(x) = x^3 - 3x^2 + 2$. Include the zeros of f, which are $x = 1$ and $1 \pm \sqrt{3}$ (approximately $-0.73, 2.73$).
12. Show that \(f(x) = x^3 - 3x^2 + 6x \) has a point of inflection but no local extreme values. Sketch the graph.

13. Extend the sketch of the graph of \(f(x) = \cos x + \frac{1}{2}x \) in Example 4 to the interval \([0, 5\pi]\).

14. Sketch the graphs of \(y = x^{2/3} \) and \(y = x^{4/3} \).

In Exercises 15–36, find the transition points, intervals of increase/decrease, concavity, and asymptotic behavior. Then sketch the graph, with this information indicated.

15. \(y = x^3 + 24x^2 \)

16. \(y = x^3 - 3x + 5 \)

17. \(y = x^2 - 4x^3 \)

18. \(y = \frac{1}{4}x^3 + x^2 + 3x \)

19. \(y = 4 - 2x^2 + \frac{1}{6}x^4 \)

20. \(y = 7x^4 - 6x^2 + 1 \)

21. \(y = x^5 + 5x \)

22. \(y = x^5 - 15x^3 \)

23. \(y = x^4 - 3x^3 + 4x \)

24. \(y = x^2(x - 4)^2 \)

25. \(y = x^7 - 14x^6 \)

26. \(y = x^6 - 9x^4 \)

27. \(y = x - 4\sqrt{x} \)

28. \(y = \sqrt{x} + \sqrt{16 - x} \)

29. \(y = x(8 - x)\) \(1/3\)

30. \(y = (x^2 - 4x)^{1/3} \)

31. \(y = (2x - x^2)^{1/3} \)

32. \(y = (x^3 - 3x)^{1/3} \)

33. \(y = x - x^{-1} \)

34. \(y = x^2 - x^{-2} \)

35. \(y = x^3 - 48x^2 \)

36. \(y = x^2 - x + x^{-1} \)

37. Sketch the graph of \(f(x) = 18(x - 3)(x - 1)^{2/3} \) using the formulas

\[
\frac{df}{dx} = \frac{30(x - 2)}{(x - 1)^{1/3}}, \quad f''(x) = \frac{20(x - \frac{2}{3})}{(x - 1)^{4/3}}
\]

38. Sketch the graph of \(f(x) = \frac{x}{x^2 + 1} \) using the formulas

\[
\frac{df}{dx} = \frac{1 - x^2}{(1 + x^2)^2}, \quad f''(x) = \frac{2(x^2 - 3)}{(x^2 + 1)^3}
\]

CAS In Exercises 39–42, sketch the graph of the function, indicating all transition points. If necessary, use a graphing utility or computer algebra system to locate the transition points numerically.

39. \(y = x^3 - \frac{4}{x^2 + 1} \)

40. \(y = 12\sqrt{x^2 + 2x + 4} - x^2 \)

41. \(y = x^4 - 4x^2 + x + 1 \)

42. \(y = 2\sqrt{x} - \sin x, \quad 0 \leq x \leq 2\pi \)

In Exercises 43–48, sketch the graph over the given interval, with all transition points indicated.

43. \(y = x + \sin x, \quad [0, 2\pi] \)

44. \(y = \sin x + \cos x, \quad [0, 2\pi] \)

45. \(y = 2\sin x - \cos^2 x, \quad [0, 2\pi] \)

46. \(y = \sin x + \frac{\sqrt{3}}{2}x, \quad [0, 2\pi] \)

47. \(y = \sin x + \sqrt{3}\cos x, \quad [0, \pi] \)

48. \(y = \sin x - \frac{1}{2}\sin 2x, \quad [0, \pi] \)

49. Are all sign transitions possible? Explain with a sketch why the transitions \(++\rightarrow --\) and \(--\rightarrow +--\) do not occur if the function is differentiable. (See Exercise 78 for a proof.)

50. Suppose that \(f \) is twice differentiable satisfying (i) \(f(0) = 1 \), (ii) \(f'(x) > 0 \) for all \(x \neq 0 \), and (iii) \(f''(x) < 0 \) for \(x < 0 \) and \(f''(x) > 0 \) for \(x > 0 \). Let \(g(x) = f(x^2) \).

(a) Sketch a possible graph of \(f \).

(b) Prove that \(g \) has no points of inflection and a unique local extreme value at \(x = 0 \). Sketch a possible graph of \(g \).

51. Which of the graphs in Figure 19 cannot be the graph of a polynomial? Explain.

52. Which curve in Figure 20 is the graph of \(y = \frac{2x^4 - 1}{1 + x^4} \)? Explain on the basis of horizontal asymptotes.

53. Match the graphs in Figure 21 with the two functions \(y = \frac{3x}{x^2 - 1} \) and \(y = \frac{3x^2}{x^2 - 1} \). Explain.

54. Match the functions below with their graphs in Figure 22.

(a) \(y = \frac{1}{x^2 - 1} \)

(b) \(y = \frac{x^2 + 1}{x^2 - 1} \)

(c) \(y = \frac{1}{x^2 + 1} \)

(d) \(y = \frac{x}{x^2 - 1} \)
In Exercises 73–77, we explore functions whose graphs approach a nonhorizontal line as \(x \to \infty \). A line \(y = ax + b \) is called a slant asymptote if

\[
\lim_{x \to \infty} (f(x) - (ax + b)) = 0
\]

or

\[
\lim_{x \to -\infty} (f(x) - (ax + b)) = 0
\]

73. Let \(f(x) = \frac{x^2}{x - 1} \) (Figure 23). Verify the following:

(a) \(f(0) \) is a local max and \(f(2) \) a local min.

(b) \(f \) is concave down on \((-\infty, 1)\) and concave up on \((1, \infty)\).

(c) \(\lim_{x \to 1^-} f(x) = -\infty \) and \(\lim_{x \to 1^+} f(x) = \infty \).

(d) \(y = x + 1 \) is a slant asymptote of \(f \) as \(x \to \pm\infty \).

(e) The slant asymptote lies above the graph of \(f \) for \(x < 1 \) and below the graph for \(x > 1 \).

74. If \(f(x) = P(x)/Q(x) \), where \(P \) and \(Q \) are polynomials of degrees \(m + 1 \) and \(m \), then by long division, we can write

\[
f(x) = (ax + b) + P_1(x)/Q(x)
\]

where \(P_1 \) is a polynomial of degree \(< m \). Show that \(y = ax + b \) is the slant asymptote of \(f(x) \). Use this procedure to find the slant asymptotes of the following functions:

(a) \(y = \frac{x^2}{x + 2} \)

(b) \(y = \frac{x^3 + x}{x^2 + x + 1} \)

75. Sketch the graph of

\[
f(x) = \frac{x^2}{x + 1}
\]

Proceed as in the previous exercise to find the slant asymptote.

76. Show that \(y = 3x \) is a slant asymptote for \(f(x) = 3x + x^{-2} \). Determine whether \(f(x) \) approaches the slant asymptote from above or below and make a sketch of the graph.

77. Sketch the graph of \(f(x) = \frac{1 - x^2}{2 - x} \).

78. Assume that \(f' \) and \(f'' \) exist for all \(x \) and let \(c \) be a critical point of \(f \). Show that \(f(x) \) cannot make a transition from \(++ \) to \(- - \) at \(x = c \). Hint: Apply the MVT to \(f'(x) \).

79. Assume that \(f'' \) exists and \(f''(x) > 0 \) for all \(x \). Show that \(f(x) \) cannot be negative for all \(x \). Hint: Show that \(f'(b) \neq 0 \) for some \(b \) and use the result of Exercise 58 in Section 4.4.

4.6 Applied Optimization

Optimization plays a role in a wide range of disciplines, including the physical sciences, economics, and biology. For example, scientists have studied how migrating birds choose an optimal velocity \(v \) that maximizes the distance they can travel without stopping, given the energy that can be stored as body fat (Figure 1).
In many optimization problems, the first step is to write down the **objective function**. This is the function whose minimum or maximum we seek. Once we find the objective function, we can apply the techniques developed in this chapter. Our first examples require optimization on a closed interval \([a, b]\). Let’s recall the steps for finding extrema developed in Section 4.2:

(i) Find the critical points of \(f\) in \([a, b]\).
(ii) Evaluate \(f(x)\) at the critical points and the endpoints \(a\) and \(b\).
(iii) The largest and smallest values are the extreme values of \(f\) on \([a, b]\).

Example 1 A piece of wire of length \(L\) is bent into the shape of a rectangle (Figure 2). Which dimensions produce the rectangle of maximum area?

Solution The rectangle has area \(A = xy\), where \(x\) and \(y\) are the lengths of the sides. Since \(A\) depends on two variables \(x\) and \(y\), we cannot find the maximum until we eliminate one of the variables. We can do this because the variables are related: The rectangle has perimeter \(L = 2x + 2y\), so \(y = \frac{1}{2}L - x\). This allows us to rewrite the area in terms of \(x\) alone to obtain the objective function

\[
A(x) = x \left(\frac{1}{2}L - x \right) = \frac{1}{2}Lx - x^2
\]

On which interval does the optimization take place? The sides of the rectangle are non-negative, so we require both \(x \geq 0\) and \(\frac{1}{2}L - x \geq 0\). Thus, \(0 \leq x \leq \frac{1}{2}L\). Our problem is to maximize \(A(x)\) on the closed interval \([0, \frac{1}{2}L]\).

We solve \(A'(x) = \frac{1}{2}L - 2x = 0\) to obtain the critical point \(x = \frac{1}{4}L\) and compare:

- **Endpoints:**

 \[
 A(0) = 0 \\
 A \left(\frac{1}{2}L \right) = \frac{1}{2}L \left(\frac{1}{2}L - \frac{1}{2}L \right) = 0
 \]

- **Critical point:**

 \[
 A \left(\frac{1}{4}L \right) = \left(\frac{1}{4} \right) \left(\frac{1}{2}L - \frac{1}{4} \right) = \frac{1}{16}L^2
 \]

The largest value occurs for \(x = \frac{1}{4}L\), and in this case, \(y = \frac{1}{2}L - \frac{1}{4}L = \frac{1}{4}L\). The rectangle of maximum area is the square of sides \(x = y = \frac{1}{4}L\).

Example 2 Minimizing Travel Time Your task is to build a road joining a ranch to a highway that enables drivers to reach the city in the shortest time (Figure 3). How should this be done if the speed limit is 60 km/h on the road and 110 km/h on the highway? The perpendicular distance from the ranch to the highway is 30 km, and the city is 50 km down the highway.

Solution This problem is more complicated than the previous one, so we’ll analyze it in three steps. You can follow these steps to solve other optimization problems.

Step 1. Choose variables.

We need to determine the point \(Q\) where the road will join the highway. So let \(x\) be the distance from \(Q\) to the point \(P\) where the perpendicular joins the highway.

Step 2. Find the objective function and the interval.

Our objective function is the time \(T(x)\) of the trip as a function of \(x\). To find a formula for \(T(x)\), recall that distance traveled at constant velocity \(v\) is \(d = vt\), and the time
required to travel a distance \(d\) is \(t = \frac{d}{v}\). The road has length \(\sqrt{30^2 + x^2}\) by the Pythagorean Theorem, so at velocity \(v = 60\) km/h, it takes
\[\frac{\sqrt{30^2 + x^2}}{60}\] hours to travel from the ranch to \(Q\).

The strip of highway from \(Q\) to the city has length \(50 - x\). At velocity \(v = 110\) km/h, it takes
\[\frac{50 - x}{110}\] hours to travel \(Q\) to the city.

The total number of hours for the trip is
\[T(x) = \frac{\sqrt{30^2 + x^2}}{60} + \frac{50 - x}{110}\]

Our interval is \(0 \leq x \leq 50\) because the road joins the highway somewhere between \(P\) and the city. So our task is to minimize \(T\) on \([0, 50]\) (Figure 4).

Step 3. Optimize.

Solve for the critical points:
\[T'(x) = \frac{x}{60\sqrt{30^2 + x^2}} - \frac{1}{110} = 0\]
\[110x = 60\sqrt{30^2 + x^2} \Rightarrow 11x = 6\sqrt{30^2 + x^2} \Rightarrow\]
\[121x^2 = 36(30^2 + x^2) \Rightarrow 85x^2 = 32,400 \Rightarrow x = \sqrt{\frac{32,400}{85}} \approx 19.52\]

To find the minimum value of \(T\), we compare the values of \(T(x)\) at the critical point and the endpoints of \([0, 50]\):
\[T(0) \approx 0.95\text{ h}, \quad T(19.52) \approx 0.87\text{ h}, \quad T(50) \approx 0.97\text{ h}\]

We conclude that the travel time is minimised if the road joins the highway at a distance \(x \approx 19.52\) km along the highway from \(P\).

EXAMPLE 3 Optimal Price

All units in a 30-unit apartment building are rented out when the monthly rent is set at \(r = 1000\) month. A survey reveals that for each $40 increase in rent, one additional apartment becomes vacant. Suppose that each occupied unit costs $120/month in maintenance. Which rent \(r\) maximizes monthly profit?

Solution

Step 1. Choose variables.

Our goal is to maximize the total monthly profit \(P\). Let \(r\) be the monthly rent and let \(N(r)\) be the number of occupied units when the rent is set at \(r\).

Step 2. Find the objective function and the interval.

Since one unit becomes vacant with each $40 increase in rent above $1000, we find that \((r - 1000)/40\) units are vacant when \(r > 1000\). Therefore,
\[N(r) = 30 - \frac{1}{40}(r - 1000) = 55 - \frac{1}{40}r\]

Total monthly profit is equal to the number of occupied units times the profit per unit, which is \(r - 120\) (because each unit costs $120 in maintenance), so
\[P(r) = N(r)(r - 120) = \left(55 - \frac{1}{40}r\right)(r - 120) = -6600 + 58r - \frac{1}{40}r^2\]
Which interval of \(r \)-values should we consider? There is no reason to lower the rent below \(r = 1000 \) because all units are already occupied when \(r = 1000 \). On the other hand, \(N(r) = 0 \) for \(r = 40 \cdot 55 = 2200 \). Therefore, zero units are occupied when \(r = 2200 \) and it makes sense to take \(1000 \leq r \leq 2200 \).

Step 3. Optimize.
Solve for the critical points:
\[
P'(r) = 58 - \frac{1}{20}r = 0 \quad \Rightarrow \quad r = 1160
\]
and compare values at the critical point and the endpoints:
\[
P(1000) = 26,400, \quad P(1160) = 27,040, \quad P(2200) = 0
\]
We conclude that the profit is maximized when the rent is set at \(r = $1160 \). In this case, 26 units are occupied. Note that if the maximum profit had occurred at a price that gave us a fractional number of units occupied, we could not have achieved that maximum. Instead, we would have taken the price corresponding to rounding the fractional number up or down to the integer number of units that maximized our profit.

Open Versus Closed Intervals

When we have to optimize over an open interval, there is no guarantee that a min or max exists as for example in Figure 5 (unlike the case of closed intervals). However, if a min or max does exist, then it must occur at a critical point (because it is also a local min or max). Often, we can show that a min or max exists by examining \(f(x) \) near the endpoints of the open interval. If \(f(x) \) tends to infinity at the endpoints (as in Figure 7), then a minimum occurs at a critical point somewhere in the interval.

Example 4 Design a cylindrical can of volume 900 cm\(^3\) so that it uses the least amount of metal (Figure 6). In other words, minimize the surface area of the can (including its top and bottom).

Solution

Step 1. Choose variables.
We must specify the can’s radius and height. Therefore, let \(r \) be the radius and \(h \) the height. Let \(A \) be the surface area of the can.

Step 2. Find the objective function and the interval.
We compute \(A \) as a function of \(r \) and \(h \):
\[
A = \pi r^2 + \pi r^2 + 2\pi rh = 2\pi r^2 + 2\pi rh
\]
The can’s volume is \(V = \pi r^2 h \). Since we require that \(V = 900 \text{ cm}^3 \), we have the constraint equation \(\pi r^2 h = 900 \). Thus, \(h = \frac{900}{\pi r^2} \) and
\[
A(r) = 2\pi r^2 + 2\pi r \left(\frac{900}{\pi r^2} \right) = 2\pi r^2 + \frac{1800}{r}
\]
The radius \(r \) can take on any positive value, so we minimize \(A(r) \) on \((0, \infty)\).
Step 3. Optimize the function.

Observe that \(A(r) \) tends to infinity as \(r \) approaches the endpoints of \((0, \infty)\):

- \(A(r) \to \infty \) as \(r \to 0 \) (because of the \(r^2 \) term).
- \(A(r) \to \infty \) as \(r \to \infty \) (because of the \(1/r \) term).

Therefore, \(A(r) \) must take on a minimum value at a critical point in \((0, \infty)\) (Figure 7).

We solve in the usual way:

\[
\frac{dA}{dr} = 4\pi r - \frac{1800}{r^2} = 0 \quad \Rightarrow \quad r^3 = \frac{450}{\pi} \quad \Rightarrow \quad r = \left(\frac{450}{\pi}\right)^{1/3} \approx 5.23 \text{ cm}
\]

We also need to calculate the height:

\[
h = \frac{900}{\pi r^2} = 2 \left(\frac{450}{\pi}\right) r^{-2} = 2 \left(\frac{450}{\pi}\right) \frac{450}{\pi}^{-2/3} = 2 \left(\frac{450}{\pi}\right)^{1/3} \approx 10.46 \text{ cm}
\]

Notice that the optimal dimensions satisfy \(h = 2r \). In other words, the optimal can is as tall as it is wide.

Example 5 Optimization Problem with No Solution

Is it possible to design a cylinder of volume 900 cm\(^3\) with the largest possible surface area?

Solution

The answer is no. In the previous example, we showed that a cylinder of volume 900 and radius \(r \) has surface area

\[
A(r) = 2\pi r^2 + \frac{1800}{r}
\]

This function has no maximum value because it tends to infinity as \(r \to 0 \) or \(r \to \infty \) (Figure 7). This means that a cylinder of fixed volume has a large surface area if it is either very fat and short (\(r \) large) or very tall and skinny (\(r \) small).

The Principle of Least Distance states that a light beam reflected in a mirror travels along the shortest path. More precisely, a beam traveling from \(A \) to \(B \), as in Figure 8, is reflected at the point \(P \) for which the path \(APB \) has minimum length. In the next example, we show that this minimum occurs when the angle of incidence is equal to the angle of reflection, that is, \(\theta_1 = \theta_2 \).

Example 6

Show that if \(P \) is the point for which the path \(APB \) in Figure 8 has minimal length, then \(\theta_1 = \theta_2 \).

Solution

By the Pythagorean Theorem, the path \(APB \) has length

\[
f(x) = AP + PB = \sqrt{x^2 + h_1^2} + \sqrt{(L-x)^2 + h_2^2}
\]

with \(x, h_1, \) and \(h_2 \) as in the figure. The function \(f \) tends to infinity as \(x \) approaches \(\pm \infty \) (i.e., as \(P \) moves arbitrarily far to the right or left), so \(f \) takes on its minimum value at a critical point \(x \) such that (see Figure 9)

\[
f'(x) = \frac{x}{\sqrt{x^2 + h_1^2}} - \frac{L-x}{\sqrt{(L-x)^2 + h_2^2}} = 0
\]
It is not necessary to solve for x because our goal is not to find the critical point, but rather to show that $\theta_1 = \theta_2$. To do this, we rewrite Eq. (1) as

$$\frac{x}{\sqrt{x^2 + h_1^2}} = \frac{L-x}{\sqrt{(L-x)^2 + h_2^2}}$$

Referring to Figure 8, we see that this equation says $\cos \theta_1 = \cos \theta_2$, and since θ_1 and θ_2 lie between 0 and $\frac{\pi}{2}$, we conclude that $\theta_1 = \theta_2$ as claimed.

CONCEPTUAL INSIGHT The examples in this section were selected because they lead to optimization problems where the min or max occurs at a critical point. Often, the critical point represents the best compromise between “competing factors.” In Example 3, we maximized profit by finding the best compromise between raising the rent and keeping the apartment units occupied. In Example 4, our solution minimizes surface area by finding the best compromise between height and width. In daily life, however, we often encounter endpoint rather than critical point solutions. For example, to run 10 m in minimal time, you should run as fast as you can—the solution is not a critical point but rather an endpoint (your maximum speed).

4.6 SUMMARY

- There are usually three main steps in solving an applied optimization problem:

 Step 1. Choose variables.

 Determine which quantities are relevant, often by drawing a diagram, and assign appropriate variables.

 Step 2. Find the objective function and the interval.

 Restate as an optimization problem for a function f over an interval. If f depends on more than one variable, use a constraint equation to write f as a function of just one variable.

 Step 3. Optimize the objective function.

- If the interval is open, f does not necessarily take on a minimum or maximum value. But if it does, these must occur at critical points within the interval. To determine if a min or max exists, analyze the behavior of f as x approaches the endpoints of the interval.

4.6 EXERCISES

Preliminary Questions

1. The problem is to find the right triangle of perimeter 10 whose area is as large as possible. What is the constraint equation relating the base b and height h of the triangle?

2. Describe a way of showing that a continuous function on an open interval (a, b) has a minimum value.

3. Is there a rectangle of area 100 of largest perimeter? Explain.

Exercises

1. Find the dimensions x and y of the rectangle of maximum area that can be formed using 3 m of wire.

 (a) What is the constraint equation relating x and y?

 (b) Find a formula for the area in terms of x alone.

 (c) What is the interval of optimization? Is it open or closed?

 (d) Solve the optimization problem.

2. Wire of length 12 m is divided into two pieces and each piece is bent into a square. How should this be done in order to minimize the sum of the areas of the two squares?

 (a) Express the sum of the areas of the squares in terms of the lengths x and y of the two pieces.

 (b) What is the constraint equation relating x and y?

 (c) What is the interval of optimization? Is it open or closed?

 (d) Solve the optimization problem.
3. A rectangular bird sanctuary is being created with one side along a straight riverbank. The remaining three sides are to be enclosed with a protective fence. If there are 12 km of fence available, find the dimensions of the rectangle to maximize the area of the sanctuary.

4. The rectangular bird sanctuary with one side along a straight river is to be constructed so that it contains 8 km² of area. Find the dimensions of the rectangle to minimize the amount of fence necessary to enclose the remaining three sides.

5. Find two positive real numbers such that the sum of the first number squared and the second number is 48 and their product is a maximum.

6. Find two positive real numbers such that they sum to 108 and the product of the first times the square of the second is a maximum.

7. A wire of length 12 m is divided into two pieces and the pieces are bent into a square and a circle. How should this be done in order to minimize the sum of their areas?

8. Find the positive number x such that the sum of x and its reciprocal is as small as possible. Does this problem require optimization over an open interval or a closed interval?

9. Find two positive real numbers such that they add to 40 and their product is as large as possible.

10. Find two positive real numbers x and y such that they add to 120 and x^2y is as large as possible.

11. Find two positive real numbers x and y such that their product is 800 and $x + 2y$ is as small as possible.

12. A flexible tube of length 4 m is bent into an L-shape. Where should the bend be made to minimize the distance between the two ends?

13. Find the dimensions of the box with square base with:
 (a) Volume 12 and the minimal surface area.
 (b) Surface area 20 and maximal volume.

14. A jewelry box with a square base is to be built with copper plated sides, nickel plated bottom and top, and a volume of 40 cm³. If nickel plating costs $2 per cm² and copper plating costs $1 per cm², find the dimensions of the box to minimize the cost of the materials.

15. A rancher will use 600 m of fencing to build a corral in the shape of a semicircle on top of a rectangle (Figure 10). Find the dimensions that maximize the area of the corral.

16. What is the maximum area of a rectangle inscribed in a right triangle with legs of length 3 and 4 as in Figure 11. The sides of the rectangle are parallel to the legs of the triangle.

17. Find the dimensions of the rectangle of maximum area that can be inscribed in a circle of radius $r = 4$ (Figure 12).

18. Find the dimensions x and y of the rectangle inscribed in a circle of radius r that maximizes the quantity xy^2.

19. In the article “Do Dogs Know Calculus?” the author Timothy Pennings explained how he noticed that when he threw a ball diagonally into Lake Michigan along a straight shoreline, his dog Elvis seemed to pick the optimal point in which to enter the water so as to minimize his time to reach the ball, as in Figure 13. He timed the dog and found Elvis could run at 6.4 m/s on the sand and swim at 0.91 m/s. If Tim stood at point A and threw the ball to a point B in the water, which was a perpendicular distance 10 m from point C on the shore, where C is a distance 15 m from where he stood, at what distance x from point C did Elvis enter the water if the dog effectively minimized his time to reach the ball?

20. A four-wheel-drive vehicle is transporting an injured hiker to the hospital from a point that is 30 km from the nearest point on a straight road. The hospital is 50 km down that road from that nearest point. If the vehicle can drive at 30 kph over the terrain and at 120 kph on the road, how far down the road should the vehicle aim to reach the road to minimize the time it takes to reach the hospital?

21. Find the point on the line $y = x$ closest to the point $(1, 0)$. *Hint:* It is equivalent and easier to minimize the square of the distance.

22. Find the point P on the parabola $y = x^2$ closest to the point $(3, 0)$ (Figure 14).
23. Find the coordinates of the point on the graph of \(y = x + 2x^{-1} \) closest to the origin in the region \(x > 0 \) (Figure 15).

24. Problem of Tartaglia (1500–1557) Among all positive numbers \(a, b \) whose sum is 8, find those for which the product of the two numbers and their difference is largest.

25. Find the angle \(\theta \) that maximizes the area of the isosceles triangle whose legs have length \(\ell \) (Figure 16), using the fact the area is given by \(A = \frac{1}{2} \ell^2 \sin \theta \).

26. A right circular cone (Figure 17) has volume \(V = \frac{1}{3} \pi r^2 h \) and surface area \(S = \pi r \sqrt{r^2 + h^2} \). Find the dimensions of the cone with surface area 1 and maximal volume.

27. Find the area of the largest isosceles triangle that can be inscribed in a circle of radius 1 (Figure 18).

28. Find the radius and height of a cylindrical can of total surface area \(A \) whose volume is as large as possible. Does there exist a cylinder of surface area \(A \) and minimal total volume?

29. A poster of area 6000 cm\(^2\) has blank margins of width 10 cm on the top and bottom and 6 cm on the sides. Find the dimensions that maximize the printed area.

30. According to postal regulations, a carton is classified as “oversized” if the sum of its height and girth (perimeter of its base) exceeds 108 in. Find the dimensions of a carton with a square base that is not oversized and has maximum volume.

31. Kepler’s Wine Barrel Problem In his work *Nova stereometria doliorum vinariorum* (New Solid Geometry of a Wine Barrel), published in 1615, astronomer Johannes Kepler stated and solved the following problem: Find the dimensions of the cylinder of largest volume that can be inscribed in a sphere of radius \(R \). *Hint:* Show that an inscribed cylinder has volume \(2\pi x(R^2 - x^2) \), where \(x \) is one-half the height of the cylinder.

32. Find the angle \(\theta \) that maximizes the area of the trapezoid with a base of length 4 and sides of length 2, as in Figure 19.

33. A landscape architect wishes to enclose a rectangular garden of area 1000 m\(^2\) on one side by a brick wall costing $90/m and on the other three sides by a metal fence costing $30/m. Which dimensions minimize the total cost?

34. The amount of light reaching a point at a distance \(r \) from a light source \(A \) of intensity \(I_A \) is \(I_A/r^2 \). Suppose that a second light source \(B \) of intensity \(I_B = 4I_A \) is located 10 m from \(A \). Find the point on the segment joining \(A \) and \(B \) where the total amount of light is at a minimum.

35. Find the maximum area of a rectangle inscribed in the region bounded by the graph of \(y = \frac{4-x}{2+x} \) and the axes (Figure 20).

36. Find the maximum area of a triangle formed by the axes and a tangent line to the graph of \(y = (x+1)^{-2} \) with \(x > 0 \).

37. Find the maximum area of a rectangle circumscribed around a rectangle of sides \(L \) and \(H \). *Hint:* Express the area in terms of the angle \(\theta \) (Figure 21).
38. A contractor is engaged to build steps up the slope of a hill that has the shape of the graph of \(y = \frac{x^2(120 - x)}{6400} \) for \(0 \leq x \leq 80 \) with \(x \) in meters (Figure 22). What is the maximum vertical rise of a stair if each stair has a horizontal length of \(\frac{1}{3} \) m.

39. Find the equation of the line through \(P = (4, 12) \) such that the triangle bounded by this line and the axes in the first quadrant has minimal area.

40. Let \(P = (a, b) \) lie in the first quadrant. Find the slope of the line through \(P \) such that the triangle bounded by this line and the axes in the first quadrant has minimal area. Then show that \(P \) is the midpoint of the hypotenuse of this triangle.

41. Archimedes’s Problem A spherical cap (Figure 23) of radius \(r \) and height \(h \) has volume \(V = \pi h^2 (r - \frac{1}{2}h) \) and surface area \(S = 2\pi rh \). Prove that the hemisphere encloses the largest volume among all spherical caps of fixed surface area \(S \).

42. Find the isosceles triangle of smallest area (Figure 24) that circumscribes a circle of radius 1 (from Thomas Simpson’s The Doctrine and Application of Fluxions, a calculus text that appeared in 1750).

43. A box of volume 72 \(\text{m}^3 \) with a square bottom and no top is constructed out of two different materials. The cost of the bottom is $40/\text{m}^2$ and the cost of the sides is $30/\text{m}^2$. Find the dimensions of the box that minimize total cost.

44. Find the dimensions of a cylinder of volume 1 \(\text{m}^3 \) of minimal cost if the top and bottom are made of material that costs twice as much as the material for the side.

45. Your task is to design a rectangular industrial warehouse consisting of three separate spaces of equal size as in Figure 25. The wall materials cost $500 per linear meter and your company allocates $2,400,000 for that part of the project involving the walls.

(a) Which dimensions maximize the area of the warehouse?

(b) What is the area of each compartment in this case?

46. Suppose, in the previous exercise, that the warehouse consists of \(n \) separate spaces of equal size. Find a formula in terms of \(n \) for the maximum possible area of the warehouse.

47. According to a model developed by economists E. Heady and J. Pe-sek, if fertilizer made from \(N \) pounds of nitrogen and \(P \) pounds of phosphate is used on an acre of farmland, then the yield of corn (in bushels per acre) is

\[
Y = 7.5 + 0.6N + 0.7P - 0.001N^2 - 0.002P^2 + 0.001NP
\]

A farmer intends to spend $30/acre on fertilizer. If nitrogen costs 25 cents/lb and phosphate costs 20 cents/lb, which combination of \(N \) and \(P \) produces the highest yield of corn?

48. Experiments show that the quantities \(x \) of corn and \(y \) of soybean required to produce a hog of weight \(Q \) satisfy \(Q = 0.5x^{1/2}y^{1/4} \). The unit of \(x \) and \(y \) is the cwt, an agricultural unit equal to 100 lb. Find the values of \(x \) and \(y \) that minimize the cost of a hog of weight \(Q = 2.5 \) cwt if corn costs $3/cwt and soy costs $7/cwt.

49. All units in a 100-unit apartment building are rented out when the monthly rent is set at \(r = \$900/\text{month} \). Suppose that one unit becomes vacant with each $10 increase in rent and that each occupied unit costs \$80/month in maintenance. Which rent maximizes monthly profit?

50. An 8-billion-bushel corn crop brings a price of $2.40/bushel. A commodity broker uses the rule of thumb: If the crop is reduced by \(x \) percent, then the price increases by 10\(x \) cents. Which crop size results in maximum revenue and what is the price per bushel? Hint: Revenue is equal to price times crop size.

51. The monthly output of a Spanish light bulb factory is \(P = 2L K^2 \) (in millions), where \(L \) is the cost of labor and \(K \) is the cost of equipment (in millions of euros). The company needs to produce 1.7 million units per month. Which values of \(L \) and \(K \) would minimize the total cost \(L + K^2 \)?

52. The rectangular plot in Figure 26 has size 100 m \(\times \) 200 m. Pipe is to be laid from \(A \) to point \(P \) on side \(BC \) and from there to \(C \). The cost of laying pipe along the side of the plot is $45/m and the cost through the plot is $80/m (since it is underground).

(a) Let \(f(x) \) be the total cost, where \(x \) is the distance from \(P \) to \(B \). Determine \(f(x) \), but note that \(f \) is discontinuous at \(x = 0 \) (when \(x = 0 \), the cost of the entire pipe is $45/ft).
(b) What is the most economical way to lay the pipe? What if the cost along the sides is $65/m?

53. Brandon is on one side of a river that is 50 m wide and wants to reach a point 200 m downstream on the opposite side as quickly as possible by swimming diagonally across the river and then running the rest of the way. Find the best route if Brandon can swim at 1.5 m/s and run at 4 m/s.

54. Snell’s Law When a light beam travels from a point \(A \) above a swimming pool to a point \(B \) below the water (Figure 27), it chooses the path that takes the least time. Let \(v_1 \) be the velocity of light in air and \(v_2 \) the velocity in water (it is known that \(v_1 > v_2 \)). Prove Snell’s Law of Refraction:

\[
\sin \theta_1 \frac{v_1}{v_2} = \sin \theta_2
\]

55. Vascular Branching A small blood vessel of radius \(r \) branches off at an angle \(\theta \) from a larger vessel of radius \(R \) to supply blood along a path from \(A \) to \(B \). According to Poiseuille’s Law, the total resistance to blood flow is proportional to

\[
T = \left(\frac{a - b \cot \theta}{R^4} + \frac{b \csc \theta}{r^4} \right)
\]

where \(a \) and \(b \) are as in Figure 28. Show that the total resistance is minimized when \(\cos \theta = (r/R)^4 \).

57. Which values of \(A \) and \(B \) maximize the volume of the box if \(h = 10 \) cm and \(AB = 900 \) cm.

58. Which value of \(h \) maximizes the volume of the box if \(A = B \)?

59. Given \(n \) numbers \(x_1, \ldots, x_n \), find the value of \(x \) minimizing the sum of the squares:

\[
(x - x_1)^2 + (x - x_2)^2 + \cdots + (x - x_n)^2
\]

First solve for \(n = 2, 3 \) and then try it for arbitrary \(n \).

60. A billboard of height \(b \) is mounted on the side of a building with its bottom edge at a distance \(h \) from the street as in Figure 30. At what distance \(x \) should an observer stand from the wall to maximize the angle of observation \(\theta \)?

61. Solve Exercise 60 again using geometry rather than calculus. There is a unique circle passing through points \(B \) and \(C \) that is tangent to the street. Let \(R \) be the point of tangency. Note that the two angles labeled \(\psi \) in Figure 30 are equal because they subtend equal arcs on the circle.

(a) Show that the maximum value of \(\theta \) is \(\theta = \psi \). Hint: Show that \(\psi = \theta + \angle PBA \), where \(A \) is the intersection of the circle with \(PC \).

(b) Prove that this agrees with the answer to Exercise 60.

(c) Show that \(\angle QRB = \angle RCB \) for the maximal angle \(\psi \).

62. Optimal Delivery Schedule A gas station sells \(Q \) gallons of gasoline per year, which is delivered \(N \) times per year in equal shipments of \(Q/N \) gallons. The cost of each delivery is \(d \) dollars and the yearly storage costs are \(sQT \), where \(T \) is the length of time (a fraction of
a year) between shipments and \(s \) is a constant. Show that costs are minimized for \(N = \sqrt{2Qd} \). (Hint: \(T = 1/N \).) Find the optimal number of deliveries if \(Q = 2 \) million gal, \(d = \$8000 \), and \(s = 30 \) cents/gal-year. Your answer should be a whole number, so compare costs for the two integer values of \(N \) nearest the optimal value.

63. Victor Klee’s Endpoint Maximum Problem
Given 40 m of straight fence, your goal is to build a rectangular enclosure using 80 additional meters of fence that encompasses the greatest area. Let \(A(x) \) be the area of the enclosure, with \(x \) as in Figure 31.
(a) Find the maximum value of \(A(x) \).
(b) Which interval of \(x \) values is relevant to our problem? Find the maximum value of \(A(x) \) on this interval.

64. Let \((a, b)\) be a fixed point in the first quadrant and let \(S(d) \) be the sum of the distances from \((d, 0)\) to the points \((0,0)\), \((a,b)\), and \((a,−b)\). (a) Find the value of \(d \) for which \(S(d) \) is minimal. The answer depends on whether \(b < \sqrt{3}a \) or \(b ≥ \sqrt{3}a \). Hint: Show that \(d = 0 \) when \(b ≥ \sqrt{3}a \).
(b) [GU] Let \(a = 1 \). Plot \(S \) for \(b = 0.5, \sqrt{3}, 3 \) and describe the position of the minimum.

65. The force \(F \) (in Newtons) required to move a box of mass \(m \) kg in motion by pulling on an attached rope (Figure 32) is

\[
F(\theta) = \frac{fmg}{\cos \theta + f \sin \theta}
\]

where \(\theta \) is the angle between the rope and the horizontal, \(f \) is the coefficient of static friction, and \(g = 9.8 \) m/s\(^2\). Find the angle \(\theta \) that minimizes the required force \(F \), assuming \(f = 0.4 \). Hint: Find the maximum value of \(\cos \theta + f \sin \theta \).

66. In the setting of Exercise 65, show that for any \(f \) the minimal force required is proportional to \(1/\sqrt{1 + f^2} \).

67. Bird Migration
Ornithologists have found that the power (in joules per second) consumed by a certain pigeon flying at velocity \(v \) m/s is described well by the function \(P(v) = 17v^{-1} + 10^{-3}v^3 \) joules/s. Assume that the pigeon can store \(5 \times 10^8 \) joules of usable energy as body fat.
(a) Show that at velocity \(v \), a pigeon can fly a total distance of \(D(v) = (5 \times 10^8)/P(v) \) if it uses all of its stored energy.
(b) Find the velocity \(v_p \) that minimizes \(P \).
(c) Migrating birds are smart enough to fly at the velocity that maximizes distance traveled rather than minimizes power consumption. Show that the velocity \(v_d \) which maximizes \(D(v) \) satisfies \(P'(v_d) = P(v_d)/v_d \). Show that \(v_d \) is obtained graphically as the velocity coordinate of the point where a line through the origin is tangent to the graph of \(P \) (Figure 33).

68. The problem is to put a “roof” of side \(s \) on an attic room of height \(h \) and width \(b \). Find the smallest length \(s \) for which this is possible if \(b = 27 \) and \(h = 8 \) (Figure 34).

69. Redo Exercise 68 for arbitrary \(b \) and \(h \).

70. Find the maximum length of a pole that can be carried horizontally around a corner joining corridors of widths \(a \) and \(b \) (Figure 35).

71. Redo Exercise 70 for arbitrary widths \(a \) and \(b \).

72. Find the minimum length \(\ell \) of a beam that can clear a fence of height \(h \) and touch a wall located \(b \) ft behind the fence (Figure 36).

73. [?] A basketball player stands \(d \) feet from the basket. Let \(h \) and \(a \) be as in Figure 37. Using physics, one can show that if the player releases the ball at an angle \(\theta \), then the initial velocity required to make the ball go through the basket satisfies

\[
v^2 = \frac{16d}{\cos^2 \theta (\tan \theta - \tan a)}
\]

(a) Explain why this formula is meaningful only for \(\alpha < \theta < \frac{\pi}{2} \). Why does \(v \) approach infinity at the endpoints of this interval?
(b) [GU] Take \(\alpha = \frac{\pi}{10} \) and plot \(v^2 \) as a function of \(\theta \) for \(\frac{\pi}{10} < \theta < \frac{\pi}{2} \). Verify that the minimum occurs at \(\theta = \frac{\pi}{4} \). (c) Set \(F(\theta) = \cos^2 \theta (\tan \theta - \tan a) \). Explain why \(v \) is minimized for \(\theta \) such that \(F(\theta) \) is maximized.
(d) Verify that \(F' (\theta) = \cos(\alpha - 2\theta) \sec \alpha \) (you will need to use the addition formula for \(\cos \)). Show that maximum value of \(F \) on \(\left[\alpha, \frac{\pi}{2} \right] \) occurs at \(\theta_0 = \frac{\alpha}{2} + \frac{\pi}{4} \).
(e) For a given α, the optimal angle for shooting the basket is θ_0 because it minimizes v^2 and therefore minimizes the energy required to make the shot (energy is proportional to v^2). Show that the velocity v_{opt} at the optimal angle θ_0 satisfies

$$v_{\text{opt}}^2 \equiv \frac{32d \cos \alpha}{1 - \sin \alpha} = \frac{32d^2}{-h + \sqrt{d^2 + h^2}}$$

(f) Show with a graph that for fixed d (say, $d = 15$ ft, the distance of a free throw), v_{opt}^2 is an increasing function of h. Use this to explain why taller players have an advantage and why it can help to jump while shooting.

FIGURE 37

Further Insights and Challenges

75. Tom and Ali drive along a highway represented by the graph of f in Figure 39. During the trip, Ali views a billboard represented by the segment BC along the y-axis. Let Q be the y-intercept of the tangent line to $y = f(x)$ at $x = a$. Show that θ is maximized at the value of x for which the angles $\angle QPB$ and $\angle QPC$ are equal. This generalizes Exercise 61 (c) which corresponds to the case $f(x) = 0$. Hints:

(a) Show that $\frac{dy}{dx} = \frac{b - f(x)}{x^2 + (f(x))^2}$.

(b) Show that the y-coordinate of Q is $f(x) - x f'(x)$.

(c) Show that the condition $\frac{dPQ}{dx} = 0$ is equivalent to $PQ^2 = BQ \cdot CQ$.

(d) Conclude that $\triangle QPB$ and $\triangle QCP$ are similar triangles.

FIGURE 39

Seismic Prospecting Exercises 76–78 are concerned with determining the thickness d of a layer of soil that lies on top of a rock formation. Geologists send two sound pulses from point A to point D separated by a distance s. The first pulse travels directly from A to D along the surface of the earth. The second pulse travels down to the rock formation, then along its surface, and then back up to D (path $ABCD$), as in Figure 40. The pulse travels with velocity v_1 in the soil and v_2 in the rock.

76. (a) Show that the time required for the first pulse to travel from A to D is $t_1 = \frac{s}{v_1}$.

(b) Show that the time required for the second pulse is

$$t_2 = \frac{2d}{v_1} \sec \theta + \frac{s - 2d \tan \theta}{v_2}$$

provided that

$$\tan \theta \leq \frac{s}{2d}$$

(Note: If this inequality is not satisfied, then point B does not lie to the left of C.)

(c) Show that t_2 is minimized when $\sin \theta = v_1/v_2$.

77. In this exercise, assume that $v_2/v_1 \leq \sqrt{1 + (d/s)^2}$.

(a) Show that inequality (2) holds if $\sin \theta = v_1/v_2$.

(b) Show that the minimal time for the second pulse is

$$t_2 = \frac{2d}{v_1} \left(1 - k^2\right)^{1/2} + \frac{s}{v_2}$$

where $k = v_1/v_2$.

(c) Conclude that $t_2 = \frac{2d(1 - k^2)^{1/2} + s}{v_2} + k$.

FIGURE 38

74. Three towns A, B, and C are to be joined by an underground fiber cable as illustrated in Figure 38(A). Assume that C is located directly below the midpoint of AB. Find the junction point P that minimizes the total amount of cable used.

(a) First show that P must lie directly above C. Hint: Use the result of Example 6 to show that if the junction is placed at point Q in Figure 38(B), then we can reduce the cable length by moving Q horizontally over to the point P lying above C.

(b) With x as in Figure 38(A), let $f(x)$ be the total length of cable used. Show that f has a unique critical point c. Compute c and show that $0 \leq c \leq L$ if and only if $D \leq 2\sqrt{3} L$.

(c) Find the minimum of f on $[0, L]$ in two cases: $D = 2, L = 4$ and $D = 8, L = 2$.
78. Conclude that the shortest path (d) the points (1/s, t2/t1) did not lie on a straight line.

79. In this exercise, we use Figure 41 to prove Heron’s principle of Example 6 without calculus. By definition, C is the reflection of B across the line MN (so that BC is perpendicular to MN and BN = CN). Let P be the intersection of AC and MN. Use geometry to justify the following:
(a) ΔPNC and ΔBCN are congruent and θ1 = θ2.
(b) The path APB and APC have equal length.
(c) Similarly AQB and AQC have equal length.
(d) The path APC is shorter than AQC for all Q ≠ P.
Conclude that the shortest path AQB occurs for Q = P.

80. A jewelry designer plans to incorporate a component made of gold in the shape of a frustum of a cone of height 1 cm and fixed lower radius r (Figure 42). The upper radius x can take on any value between 0 and r. Note that x = 0 and x = r correspond to a cone and cylinder, respectively. As a function of x, the surface area (not including the top and bottom) is

\[S(x) = \pi r (r + x), \]

where x is the slant height as indicated in the figure. Which value of x yields the least expensive design [the minimum value of S(x) for 0 ≤ x ≤ r]?
(a) Show that S(x) = \[\pi (r + x) \sqrt{1 + (r - x)^2}\].
(b) Show that if r < \[\sqrt{2}\], then S is an increasing function. Conclude that the cone (x = 0) has minimal area in this case.
(c) Assume that r > \[\sqrt{2}\]. Show that S has two critical points x1 < x2 in (0, r), and that S(x1) is a local maximum, and S(x2) is a local minimum.
(d) Conclude that the minimum occurs at x = 0 or x2.
(e) Find the minimum in the cases r = 1.5 and r = 2.
(f) Challenge: Let \(e = \sqrt{\sqrt{3}}/2\). Prove that the minimum occurs at x = 0 (cone) if \(\sqrt{2} < r < e\), but the minimum occurs at x = x2 if r > e.

4.7 Newton’s Method

Newton’s Method is a procedure for finding numerical approximations to zeros of functions. Numerical approximations are important because it is often impossible to find the zeros exactly. For example, the polynomial \(f(x) = x^5 - x - 1\) has one real root c (see Figure 1), but we can prove, using an advanced branch of mathematics called Galois Theory, that there is no algebraic formula for this root. Newton’s Method shows that \(c \approx 1.1673\), and with enough computation, we can compute c to any desired degree of accuracy.

In Newton’s Method, we begin by choosing a number \(x_0\), which we believe is close to a root of the equation \(f(x) = 0\). This starting value \(x_0\) is called the initial guess. Newton’s Method then produces a sequence \(x_0, x_1, x_2, \ldots\) of successive approximations that, in favorable situations, converge to a root.

Figure 2 illustrates the procedure. Given an initial guess \(x_0\), we draw the tangent line to the graph at \((x_0, f(x_0))\). The approximation \(x_1\) is defined as the x-coordinate of the point where the tangent line intersects the x-axis. To produce the second approximation \(x_2\) (also called the second iterate), we apply this procedure to \(x_1\).

Let’s derive a formula for \(x_1\). The tangent line at \((x_0, f(x_0))\) has equation

\[y = f(x_0) + f'(x_0)(x - x_0) \]
Newton’s Method

To approximate a root of \(f(x) = 0 \):

Step 1. Choose an initial guess \(x_0 \) (close to the desired root if possible).

Step 2. Generate successive approximations \(x_1, x_2, \ldots \), where

\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]

and so on. Notice in Figure 2 that \(x_1 \) is closer to the root than \(x_0 \) and that \(x_2 \) is closer still. This is typical: The successive approximations usually converge to the actual root. However, there are cases where Newton’s Method fails (see Figure 4).

Newton’s Method is an example of an iterative procedure. To “iterate” means to repeat, and in Newton’s Method, we use Eq. (1) repeatedly to produce the sequence of approximations.

Example 1 Approximating \(\sqrt{5} \) Calculate the first three approximations \(x_1, x_2, x_3 \) to a root of \(f(x) = x^2 - 5 \) using the initial guess \(x_0 = 2 \).

Solution We have \(f'(x) = 2x \). Therefore,

\[
x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = x_0 - \frac{x_0^2 - 5}{2x_0}
\]

We compute the successive approximations as follows:

\[
x_1 = 2 - \frac{2^2 - 5}{2 \cdot 2} = 2.25
\]

\[
x_2 = 2.25 - \frac{2.25^2 - 5}{2 \cdot 2.25} \approx 2.23611
\]

\[
x_3 = 2.23611 - \frac{2.23611^2 - 5}{2 \cdot 2.23611} \approx 2.23606797789
\]
CHAPTER 4 APPLICATIONS OF THE DERIVATIVE

This sequence provides successive approximations to a root of \(x^2 - 5 = 0\), namely

\[
\sqrt{5} = 2.236067977499789696\ldots
\]

Observe that \(x_3\) is accurate to within an error of less than \(10^{-9}\). This is impressive accuracy for just three iterations of Newton’s Method.

How Many Iterations Are Required?

How many iterations of Newton’s Method are required to approximate a root to within a given accuracy? There is no definitive answer, but in practice, it is usually safe to assume that if \(x_n\) and \(x_{n+1}\) agree to \(m\) decimal places, then the approximation \(x_n\) is correct to these \(m\) places.

Example 2

Let \(c\) be the smallest positive solution of \(\sin 3x = \cos x\).

(a) Use a computer-generated graph to choose an initial guess \(x_0\) for \(c\).

(b) Use Newton’s Method to approximate \(c\) to within an error of at most \(10^{-6}\).

Solution

(a) A solution of \(\sin 3x = \cos x\) is a zero of the function \(f(x) = \sin 3x - \cos x\). Figure 3 shows that the smallest zero is approximately halfway between 0 and \(\frac{\pi}{4}\). Because \(\frac{\pi}{4} \approx 0.785\), a good initial guess is \(x_0 = 0.4\).

(b) Since \(f'(x) = 3\cos 3x + \sin x\), Eq. (1) yields the formula

\[
x_{n+1} = x_n - \frac{\sin 3x_n - \cos x_n}{3\cos 3x_n + \sin x_n}
\]

With \(x_0 = 0.4\) as the initial guess, the first four iterates are

\[
\begin{align*}
x_1 & \approx 0.3925647447 \\
x_2 & \approx 0.3926990382 \\
x_3 & \approx 0.3926990816987196 \\
x_4 & \approx 0.3926990816987241
\end{align*}
\]

Stopping here, we can be fairly confident that \(x_4\) approximates the smallest positive root \(c\) to at least 12 places. In fact, \(c = \frac{\pi}{8}\) and \(x_4\) is accurate to 16 places.

Which Root Does Newton’s Method Compute?

Sometimes, Newton’s Method computes no root at all. In Figure 4, the iterates diverge to infinity. In practice, however, Newton’s Method usually converges quickly, and if a particular choice of \(x_0\) does not lead to a root, the best strategy is to try a different initial guess, consulting a graph if possible. If \(f(x) = 0\) has more than one root, different initial guesses \(x_0\) may lead to different roots.

Example 3

Figure 5 shows that \(f(x) = x^4 - 6x^2 + x + 5\) has four real roots.

(a) Show that with \(x_0 = 0\), Newton’s Method converges to the root near -2.

(b) Show that with \(x_0 = -1\), Newton’s Method converges to the root near -1.
Solution We have \(f'(x) = 4x^3 - 12x + 1 \) and
\[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = \frac{x_n^4 - 6x_n^2 + x_n + 5}{4x_n^3 - 12x_n + 1} = \frac{3x_n^4 - 6x_n^2 - 5}{4x_n^3 - 12x_n + 1}
\]
(a) On the basis of Table 1, we can be confident that when \(x_0 = 0 \), Newton’s Method converges to a root near \(-2.3\). Notice in Figure 5 that this is not the closest root to \(x_0 \).
(b) Table 2 suggests that with \(x_0 = -1 \), Newton’s Method converges to the root near \(-0.9\).

<table>
<thead>
<tr>
<th>(x_n)</th>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_0)</td>
<td>0</td>
<td>-5</td>
<td>-3.9179954</td>
<td>-3.1669480</td>
<td>-2.6871270</td>
<td>-2.4363303</td>
<td>-2.3572979</td>
<td>-2.3495000</td>
</tr>
<tr>
<td>(x_1)</td>
<td>-1</td>
<td>-0.8888888888</td>
<td>-0.8882866140</td>
<td>-0.88828656234358</td>
<td>-0.8882865623435759</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.7 SUMMARY

- Newton’s Method: To find a sequence of numerical approximations to a root of \(f \), begin with an initial guess \(x_0 \). Then construct the sequence \(x_0, x_1, x_2, \ldots \) using the formula
 \[
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
\]
You should choose the initial guess \(x_0 \) as close as possible to a root, possibly by referring to a graph. In favorable cases, the sequence converges rapidly to a root.
- If \(x_n \) and \(x_{n+1} \) agree to \(m \) decimal places, it is usually safe to assume that \(x_n \) agrees with a root to \(m \) decimal places.

4.7 EXERCISES

Preliminary Questions

1. How many iterations of Newton’s Method are required to compute a root if \(f \) is a linear function?

2. What happens in Newton’s Method if your initial guess happens to be a zero of \(f \)?

3. What happens in Newton’s Method if your initial guess happens to be a local min or max of \(f \)?

4. Is the following a reasonable description of Newton’s Method: “A root of the equation of the tangent line to the graph of \(f \) is used as an approximation to a root of \(f \) itself”? Explain.

Exercises

In this exercise set, all approximations should be carried out using Newton’s Method.

_In Exercises 1–6, apply Newton’s Method to \(f \) and initial guess \(x_0 \) to calculate \(x_1, x_2, x_3 \)._

1. \(f(x) = x^2 - 6, \quad x_0 = 2 \)
2. \(f(x) = x^2 - 3x + 1, \quad x_0 = 3 \)
3. \(f(x) = x^3 - 10, \quad x_0 = 2 \)
4. \(f(x) = x^3 + x + 1, \quad x_0 = -1 \)
5. \(f(x) = \cos x - 4x, \quad x_0 = 1 \)
6. \(f(x) = 1 - x \sin x, \quad x_0 = 7 \)
7. Use Figure 6 to choose an initial guess \(x_0 \) to the unique real root of \(x^3 + 2x + 5 = 0 \) and compute the first three Newton iterates.
8. Approximate a solution of $\sin x = \cos 2x$ in the interval $[0, \frac{\pi}{2}]$ to three decimal places. Then find the exact solution and compare with your approximation.

9. Approximate the point of intersection of the graphs $y = x^2 + 4 + 1/x$ and $y = 2/x^2$ to three decimal places (Figure 7).

10. The first positive solution of $\sin x = 0$ is $x = \pi$. Use Newton’s Method to calculate π to four decimal places.

In Exercises 11–14, approximate to three decimal places using Newton’s Method and compare with the value from a calculator.

11. $\sqrt{11}$
12. $5^{1/3}$
13. $2^{7/3}$
14. $3^{-1/4}$

15. Approximate the largest positive root of $f(x) = x^4 - 6x^2 + x + 5$ to within an error of at most 10^{-4}. Refer to Figure 5.

16. Largest positive root of $f(x) = x^3 - 5x + 1$

17. Negative root of $f(x) = x^5 - 20x + 10$

18. Positive solution of $\sin \theta = 0.8$?

19. Positive solution of $4 \cos x = x^2$

20. Let x_1, x_2 be the estimates to a root obtained by applying Newton’s Method with $x_0 = 1$ to the function graphed in Figure 8. Estimate the numerical values of x_1 and x_2, and draw the tangent lines used to obtain them.

21. [GU] Find the smallest positive value of x at which $y = x$ and $y = \tan x$ intersect. Hint: Draw a plot.

22. In 1535 the mathematician Antonio Fior challenged his rival Niccolo Tartaglia to solve this problem: A tree stands 12 braccia high; it is broken into two parts at such a point that the height of the part left standing is the cube root of the length of the part cut away. What is the height of the part left standing? Show that this is equivalent to solving $x^3 + x = 12$ and finding the height to three decimal places, Tartaglia, who had discovered the secret of solving the cubic equation, was able to determine the exact answer:

$$x = \left(\frac{\sqrt[3]{2919} + 54 - \sqrt[3]{2919} - 54}{\sqrt{3}}\right)^{1/3}$$

23. Find (to two decimal places) the coordinates of the point P in Figure 9 where the tangent line to $y = \cos x$ passes through the origin.

Newton’s Method is often used to determine interest rates in financial calculations. In Exercises 24–26, r denotes a yearly interest rate expressed as a decimal (rather than as a percent).

24. If P dollars are deposited every month in an account earning interest at the yearly rate r, then the value S of the account after N years is

$$S = P \left(\frac{b^{12N+1} - b}{b - 1}\right), \quad \text{where } b = 1 + \frac{r}{12}$$

You have decided to deposit $P = 100$ per month.

(a) Determine S after 5 years if $r = 0.07$ (i.e., 7%).

(b) Show that to save $10,000 after 5 years, you must earn interest at a rate r determined by the equation $611 - 101b + 100 = 0$. Use Newton’s Method to solve for b. Then find r. Note that $b = 1$ is a root, but you want the root satisfying $b > 1$.

25. If you borrow L dollars for N years at a yearly interest rate r, your monthly payment of P dollars is calculated using the equation

$$L = P \left(\frac{1 - b^{-12N}}{b - 1}\right), \quad \text{where } b = 1 + \frac{r}{12}$$

(a) Find P if $L = 5000$, $N = 3$, and $r = 0.08$ (8%).

(b) You are offered a loan of $L = 5000$ to be paid back over 3 years with monthly payments of $P = 200$. Use Newton’s Method to compute b and find the implied interest rate r of this loan. Hint: Show that

$$(L/P)b^{12N+1} - (1 + L/P)b^{12N} + 1 = 0$$

26. If you deposit P dollars in a retirement fund every year for N years with the intention of then withdrawing Q dollars per year for M years, you must earn interest at a rate r satisfying

$$P(b^N - 1) = Q(1 - b^{-M}), \quad \text{where } b = 1 + r$$

Assume that 2000 is deposited each year for 30 years and the goal is to withdraw $10,000 per year for 25 years. Use Newton’s Method to compute b and then find r. Note that $b = 1$ is a root, but you want the root satisfying $b > 1$.

27. There is no simple formula for the position at time t of a planet P in its orbit (an ellipse) around the sun. Introduce the auxiliary circle and angle θ in Figure 10 (note that P determines θ because it is the central angle of point B on the circle). Let $a = OA$ and $e = OS/OA$ (the eccentricity of the orbit).

(a) Show that sector BSA has area $(a^2/2)(\theta - \epsilon \sin \theta)$.

(b) By Kepler’s Second Law, the area of sector BSA is proportional to the time t elapsed since the planet passed point A, and because the circle has area πa^2, BSA has area $\pi a^2(t/T)$, where T is the period of the orbit. Deduce Kepler’s Equation:

$$\frac{2\pi t}{T} = \theta - \epsilon \sin \theta$$
(e) The eccentricity of Mercury’s orbit is approximately \(e = 0.2 \). Use Newton’s Method to find \(\theta \) after a quarter of Mercury’s year has elapsed \((r = T/4) \). Convert \(\theta \) to degrees. Has Mercury covered more than a quarter of its orbit at \(r = T/4 \)?

Newton’s Method converges for the initial choices \(x_0 = 1.85, 1.7, \) and \(1.55 \). The answer shows that a small change in \(x_0 \) can have a significant effect on the outcome of Newton’s Method.

28. The roots of \(f(x) = \frac{1}{4}x^3 - 4x + 1 \) to three decimal places are \(-3.583, 0.251, \) and \(3.332 \) (Figure 11). Determine the root to which the graph of \(f(x) = \frac{1}{4}x^3 - 4x + 1 \) converges.

29. What happens when you apply Newton’s Method to find a zero of \(f(x) = x^{1/3} \)? Note that \(x = 0 \) is the only zero.

30. What happens when you apply Newton’s Method to the equation \(x^3 - 20x = 0 \) with the unlucky initial guess \(x_0 = 2 \)?

Further Insights and Challenges

31. Newton’s Method can be used to compute reciprocals without performing division. Let \(c > 0 \) and set \(f(x) = x^{-1} - c \).

(a) Show that \(x - (f(x)/f'(x)) = 2x - cx^2 \).

(b) Calculate the first three iterates of Newton’s Method with \(c = 10.3 \) and the two initial guesses \(x_0 = 0.1 \) and \(x_0 = 0.5 \).

(c) Explain graphically why \(x_0 = 0.5 \) does not yield a sequence converging to \(1/10.3 \).

In Exercises 32 and 33, consider a metal rod of length \(L \) fastened at both ends. If you cut the rod and weld on an additional segment of length \(m \), leaving the ends fixed, the rod will bow up into a circular arc of radius \(R \) (unknown), as indicated in Figure 12.

32. Let \(h \) be the maximum vertical displacement of the rod.

(a) Show that \(L = 2R \sin \theta \) and conclude that \(h = L(1 - \cos \theta) \).

(b) Show that \(L + m = 2R \theta \) and then prove \(\sin \theta \approx \frac{L}{L + m} \).

33. Let \(L = 3 \) and \(m = 1 \). Apply Newton’s Method to Eq. (2) to estimate \(\theta \), and use this to estimate \(h \).

34. Quadratic Convergence to Square Roots

Let \(f(x) = x^2 - c \) and let \(e_n = x_n - \sqrt{c} \) be the error in \(x_n \).

(a) Show that \(x_{n+1} = \frac{1}{2}(x_n + c/x_n) \) and \(e_{n+1} = e_n^2/2x_n \).

(b) Show that if \(x_0 > \sqrt{c} \) then \(x_n > \sqrt{c} \) for all \(n \). Explain graphically.

(c) Show that if \(x_0 > \sqrt{c} \), then \(e_{n+1} \leq e_n^2/(2\sqrt{c}) \).

CHAPTER REVIEW EXERCISES

In Exercises 1–6, estimate using the Linear Approximation or linearization, and use a calculator to estimate the error:

1. \(8.1^{1/3} - 2 \)
2. \(\frac{1}{\sqrt{4.1}} - \frac{1}{2} \)
3. \(625^{1/4} - 624^{1/4} \)
4. \(1001 \)
5. \(1.002 \)
6. \(\sqrt{33} \)

In Exercises 7–12, find the linearization at the point indicated.

7. \(y = \sqrt{x}, \ a = 25 \)
8. \(v(t) = 32t - 4t^2, \ a = 2 \)

9. \(A(r) = \frac{4}{3}\pi r^3, \ a = 3 \)
10. \(V(h) = 4h(2 - h)(4 - 2h), \ a = 1 \)
11. \(P(\theta) = \sin(3\theta + \pi), \ a = \frac{\pi}{4} \)
12. \(R(t) = \tan \left(\pi \left(t - \frac{1}{2} \right) \right), \ a = \frac{1}{4} \)

In Exercises 13–18, use the Linear Approximation.

13. The position of an object in linear motion at time \(t \) is \(s(t) = 0.4t^2 + (t + 1)^{-1} \). Estimate the distance traveled over the time interval \([4, 4.2]\).
14. A bond that pays $10,000 in 6 years is offered for sale at a price P. The percentage yield Y of the bond is
\[Y = 100 \left(\frac{10,000}{P} \right)^{1/6} - 1 \]
Verify that if $P = 7500$, then $Y = 4.91\%$. Estimate the drop in yield if the price rises to $7700.

15. When a bus pass from Albuquerque to Los Alamos is priced at p dollars, a bus company takes in a monthly revenue of $R(p) = 1.5p^2 - 0.01p^3$ (in thousands of dollars).
(a) Estimate ΔR if the price rises from 50 to 53.
(b) If $p = 80$, how will revenue be affected by a small increase in price? Explain using the Linear Approximation.

16. A store sells 80 MP4 players per week when the players are priced at $P = 75$. Estimate the number N sold if P is raised to 80, assuming that $dN/dP = -4$. Estimate N if the price is lowered to 69.

17. The circumference of a sphere is measured at $C = 100$ cm. Estimate the maximum percentage error in V if the error in C is at most 3 cm.

18. Show that $\sqrt{a^2 + b} \approx a + \frac{b}{2}$ if b is small. Use this to estimate $\sqrt{26}$ and find the error using a calculator.

19. Use the Intermediate Value Theorem to prove that $\sin x - \cos x = 3x$ has a solution, and use Rolle’s Theorem to show that this solution is unique.

20. Show that $f(x) = 2x^3 + 2x + \sin x + 1$ has precisely one real root.

21. Verify the MVT for $f(x) = x + \frac{1}{x}$ on $[2, 5]$.

22. Suppose that $f(1) = 5$ and $f'(x) \geq 2$ for $x \geq 1$. Use the MVT to show that $f(8) \geq 19$.

23. Use the MVT to prove that if $f'(x) \leq 2$ for $x > 0$ and $f(0) = 4$, then $f(x) \leq 2x + 4$ for all $x \geq 0$.

24. A function f has derivative $f'(x) = \frac{1}{x^4 + 1}$. Where on the interval $[1, 4]$ does f take on its maximum value?

In Exercises 25–30, find the critical points and determine whether they are minima, maxima, or neither.

25. $f(x) = x^3 - 4x^2 + 4x$
26. $f(x) = x^2 + 2x - 3$
27. $g(\theta) = \sin^2 \theta + \theta$
28. $h(\theta) = 2 \cos \theta + 3 \sin \theta$

In Exercises 31–38, find the extreme values on the interval.

31. $f(x) = x(10 - x)$, $[-1, 3]$
32. $f(x) = 6x^4 - 4x^6$, $[-2, 2]$
33. $g(\theta) = \sin^2 \theta - \cos \theta$, $[0, 2\pi]$
34. $R(t) = \frac{t}{t^2 + t + 1}$, $[0, 3]$
35. $f(x) = x^{2/3} - 2x^{1/3}$, $[-1, 3]$
36. $f(x) = 4x - \tan^2 x$, $[-\frac{\pi}{2}, \frac{\pi}{2}]$
37. $f(x) = x - x^{3/2}$, $[0, 2]$
38. $f(x) = \sec x - \cos x$, $[-\frac{\pi}{2}, \frac{\pi}{2}]$

39. Find the critical points and extreme values of $f(x) = |x - 1| + |2x - 6|$ in $[0, 8]$.

40. Match the description of f with the graph of its derivative f' in Figure 1.
(a) f is increasing and concave up.
(b) f is decreasing and concave up.
(c) f is increasing and concave down.

41. $y = x^3 - 4x^2 + 4x$
42. $y = x - 2\cos x$
43. $y = \frac{x^2}{x^4 + 4}$
44. $y = \frac{x}{(x^2 - 4)^{1/3}}$
45. $f(x) = \frac{x^3 - x}{x^4 + 1}$
46. $f(x) = \sin 2x - 4\cos x$

In Exercises 47–56, sketch the graph, noting the transition points and asymptotic behavior.

47. $y = 12x - 3x^2$
48. $y = 8x^2 - x^4$
49. $y = x^3 - 2x^2 + 3$
50. $y = 4x - x^{3/2}$
51. $y = \frac{x}{x^3 + 1}$
52. $y = \frac{x}{(x^2 - 4)^{2/3}}$
53. $y = \frac{1}{|x + 2|} + 1$
54. $y = \sqrt[3]{x^2 - x}$ on $[0, 2\pi]$
55. $y = \sqrt{\sin x - \cos x}$ on $[0, 2\pi]$
56. $y = 2x - \tan x$ on $[0, 2\pi]$
57. Draw a curve $y = f(x)$ for which f' and f'' have signs as indicated in Figure 2.

58. Find the dimensions of a cylindrical can with a bottom but no top of volume 4m^3 that uses the least amount of metal.

59. A rectangular box of height h with a square base of side b has volume $V = 4 \text{m}^3$. Two of the side faces are made of material costing $400/\text{m}^2$. The remaining sides cost $200/\text{m}^2$. Which values of b and h minimize the cost of the box?

60. The corn yield on a certain farm is
\[Y = -0.118x^2 + 8.5x + 12.9 \] (bushels per acre)
where x is the number of corn plants per acre (in thousands). Assume that corn seed costs 1.25 (per thousand seeds) and that corn can be sold for $1.50/bushel. Let $P(x)$ be the profit (revenue minus the cost of seeds) at planting level x.
(a) Compute $P(x_0)$ for the value x_0 that maximizes yield Y.

Figure 1 Graphs of the derivative.

Figure 2
(b) Find the maximum value of \(P(x) \). Does maximum yield lead to maximum profit?

61. A quantity \(N(t) \) satisfies \(\frac{dN}{dt} = \frac{2}{t} - \frac{8}{t^2} \) for \(t \geq 4 \) (in days). At which time is \(N \) increasing most rapidly?

62. A truck gets 10 miles per gallon (mpg) of diesel fuel traveling along an interstate highway at 50 mph. This mileage decreases by 0.15 mpg for each mile per hour increase above 50 mph.

(a) If the truck driver is paid $30/h and diesel fuel costs \(P = $3/gal \), which speed \(v \) between 50 and 70 mph will minimize the cost of a trip along the highway? Notice that the actual cost depends on the length of the trip, but the optimal speed does not.

(b) Plot cost as a function of \(v \) (choose the length arbitrarily) and verify your answer to part (a).

(c) Do you expect the optimal speed \(v \) to increase or decrease if fuel costs go down to \(P = $2/gal \)? Plot the graphs of cost as a function of \(v \) for \(P = 2 \) and \(P = 3 \) on the same axis and verify your conclusion.

63. Find the maximum volume of a right-circular cone placed upside-down in a right-circular cone of radius \(R = 3 \) and height \(H = 4 \) as in Figure 3. A cone of radius \(r \) and height \(h \) has volume \(\frac{1}{3} \pi r^2 h \).

64. Redo Exercise 63 for arbitrary \(R \) and \(H \).

65. Show that the maximum area of a parallelogram \(ADEF \) that is inscribed in a triangle \(ABC \), as in Figure 4, is equal to one-half the area of \(\triangle ABC \).

66. A box of volume 8 m\(^3\) with a square top and bottom is constructed out of two types of metal. The metal for the top and bottom costs $50/m\(^2\) and the metal for the sides costs $30/m\(^2\). Find the dimensions of the box that minimize total cost.

67. Let \(f \) be a function whose graph does not pass through the x-axis and let \(Q = (a, 0) \). Let \(P = (x_0, f(x_0)) \) be the point on the graph closest to \(Q \) (Figure 5). Prove that \(PQ \) is perpendicular to the tangent line to the graph of \(x_0 \). *Hint:* Find the minimum value of the square of the distance from \((x, f(x)) \) to \((a, 0) \).

68. Take a circular piece of paper of radius \(R \), remove a sector of angle \(\theta \) (Figure 6), and fold the remaining piece into a cone-shaped cup. Which angle \(\theta \) produces the cup of largest volume?

69. Use Newton’s Method to estimate \(\sqrt[3]{25} \) to four decimal places.

70. Use Newton’s Method to find a root of \(f(x) = x^2 - x - 1 \) to four decimal places.
The basic problem in integral calculus is finding the area under a curve. You may wonder why calculus deals with two seemingly unrelated topics: tangent lines on the one hand and areas on the other. One reason is that both are computed using limits. A deeper connection is revealed by the Fundamental Theorem of Calculus, discussed in Sections 5.4 and 5.5. This theorem expresses the “inverse” relationship between integration and differentiation. It plays a truly fundamental role in nearly all applications of calculus, both theoretical and practical.

5.1 Approximating and Computing Area

Why might we be interested in the area under a graph? Consider an object moving in a straight line with constant velocity v (assumed positive). The distance traveled over a time interval $[t_1, t_2]$ is equal to $v \Delta t$, where $\Delta t = (t_2 - t_1)$ is the time elapsed. This is the well-known formula

\[
\text{Distance traveled} = \frac{v \Delta t}{\Delta t} \times \text{time elapsed}
\]

Because v is constant, the graph of velocity is a horizontal line (Figure 1) and $v \Delta t$ is equal to the area of the rectangular region under the graph of velocity over $[t_1, t_2]$. So we can write Eq. (1) as

\[
\text{Distance traveled} = \text{area under the graph of velocity over } [t_1, t_2]
\]

There is, however, an important difference between these two equations: Eq. (1) makes sense only if velocity v is constant, whereas Eq. (2) is correct even if the velocity changes with time (we will prove this in Section 5.6). Thus, the advantage of expressing distance traveled as an area is that it enables us to deal with much more general types of motion.

To see why Eq. (2) might be true in general, let’s consider the case where velocity changes over time but is constant on intervals. In other words, we assume that the object’s velocity changes abruptly from one interval to the next as in Figure 2. The distance traveled over each time interval is equal to the area of the rectangle above that interval, so the total distance traveled is the sum of the areas of the rectangles. In Figure 2,

\[
\text{Distance traveled over } [0, 8] = 10 + 15 + 30 + 10 = 65 \text{ m}
\]

Our strategy when velocity changes continuously (Figure 3) is to approximate the area under the graph by sums of areas of rectangles and then pass to a limit. This idea leads to the concept of an integral.
CHAPTER 5 THE INTEGRAL

FIGURE 3 Distance traveled is equal to the area under the graph. It is approximated by the sum of the areas of the rectangles.

Recall the two-step procedure for finding the slope of the tangent line (the derivative): First approximate the slope using secant lines and then compute the limit of these approximations. In Integral Calculus, there are also two steps:

- First, approximate the area under the graph using rectangles.
- Then compute the exact area (the integral) as the limit of these approximations.

Approximating Area by Rectangles

Our goal is to compute the area under the graph of a function \(f \). In this section, we assume that \(f \) is continuous and positive, so that the graph of \(f \) lies above the \(x \)-axis (Figure 4). The first step is to approximate the area using rectangles.

To begin, choose a whole number \(N \) and divide \([a, b]\) into \(N \) subintervals of equal width, as in Figure 4(A). The full interval \([a, b]\) has width \(b - a \), so each subinterval has width \(\Delta x = (b - a)/N \). The right endpoints of the subintervals are

\[
x_1 = a + \Delta x, \quad x_2 = a + 2\Delta x, \ldots, \quad x_{N-1} = a + (N - 1)\Delta x, \quad x_N = a + N\Delta x
\]

Note that the last right endpoint is \(x_N = b \) because

\[
a + N\Delta x = a + N((b - a)/N) = b.
\]

Next, as in Figure 4(B), construct, above each subinterval, a rectangle whose height is the value of \(f(x) \) at the right endpoint of the subinterval.

FIGURE 4

The sum of the areas of these rectangles provides an approximation to the area under the graph. The first rectangle has base \(\Delta x \) and height \(f(x_1) \), so its area is \(f(x_1)\Delta x \). Similarly, the second rectangle has height \(f(x_2) \) and area \(f(x_2)\Delta x \), etc. The sum of the areas of the rectangles is denoted \(R_N \) and is called the \(N \)th right-endpoint approximation:

\[
R_N = f(x_1)\Delta x + f(x_2)\Delta x + \cdots + f(x_N)\Delta x
\]

Factoring out \(\Delta x \), we obtain the formula

\[
R_N = \Delta x \left(f(x_1) + f(x_2) + \cdots + f(x_N) \right)
\]

In words: \(R_N \) is equal to \(\Delta x \) times the sum of the function values at the right endpoints of the subintervals.

EXAMPLE 1 Calculate \(R_4 \) and \(R_6 \) for \(f(x) = x^2 \) on the interval \([1, 3]\).

Solution

Step 1. Determine \(\Delta x \) and the right endpoints.

To calculate \(R_4 \), divide \([1, 3]\) into four subintervals of width \(\Delta x = \frac{3 - 1}{4} = \frac{1}{2} \). The
right endpoints are the numbers \(x_j = a + j \Delta x = 1 + j \left(\frac{1}{2} \right) \) for \(j = 1, 2, 3, 4 \). They are spaced at intervals of \(\frac{1}{2} \) beginning at \(\frac{3}{2} \), so, as we see in Figure 5(A), the right endpoints are \(\frac{3}{2}, \frac{5}{2}, \frac{7}{2}, \frac{9}{2} \).

Step 2. Calculate \(\Delta x \) times the sum of function values.

\(R_4 \) is \(\Delta x \) times the sum of the function values at the right endpoints:

\[
R_4 = \frac{1}{2} \left(f \left(\frac{3}{2} \right) + f \left(\frac{4}{2} \right) + f \left(\frac{5}{2} \right) + f \left(\frac{6}{2} \right) \right)
\]

\[
= \frac{1}{2} \left(\left(\frac{3}{2} \right)^2 + \left(\frac{4}{2} \right)^2 + \left(\frac{5}{2} \right)^2 + \left(\frac{6}{2} \right)^2 \right) = \frac{43}{4} = 10.75
\]

\(R_6 \) is similar: \(\Delta x = \frac{3-1}{6} = \frac{1}{3} \), and the right endpoints are spaced at intervals of \(\frac{1}{3} \) beginning at \(\frac{4}{3} \) and ending at 3, as in Figure 5(B). Thus,

\[
R_6 = \frac{1}{3} \left(f \left(\frac{4}{3} \right) + f \left(\frac{5}{3} \right) + f \left(\frac{6}{3} \right) + f \left(\frac{7}{3} \right) + f \left(\frac{8}{3} \right) + f \left(\frac{9}{3} \right) \right)
\]

\[
= \frac{1}{3} \left(\frac{16}{9} + \frac{25}{9} + \frac{36}{9} + \frac{49}{9} + \frac{64}{9} + \frac{81}{9} \right) = \frac{271}{27} \approx 10.037
\]

![Figure 5](image.png)

Summation Notation

Summation notation is a standard notation for writing sums in compact form. The sum of numbers \(a_m, \ldots, a_n \) \((m \leq n) \) is denoted

\[
\sum_{j=m}^{n} a_j = a_m + a_{m+1} + \cdots + a_n
\]

The Greek letter \(\sum \) (capital sigma) stands for “sum,” and the notation \(\sum_{j=m}^{n} \) tells us to start the summation at \(j = m \) and end it at \(j = n \). For example,

\[
\sum_{j=1}^{5} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55
\]

In this summation, the \(j \)th term is \(a_j = j^2 \). We refer to \(j^2 \) as the general term. The letter \(j \) is called the summation index. It is also referred to as a dummy variable because any other letter can be used instead. For example,

\[
\sum_{k=4}^{6} (k^2 - 2k) = (4^2 - 2(4)) + (5^2 - 2(5)) + (6^2 - 2(6)) = 47
\]

\[
\sum_{m=7}^{9} 1 = 1 + 1 + 1 = 3 \quad \text{(because } a_7 = a_8 = a_9 = 1)\]
The usual commutative, associative, and distributive laws of addition give us the following rules for manipulating summations.

Linearity of Summations

- \(\sum_{j=m}^{n} (a_j + b_j) = \sum_{j=m}^{n} a_j + \sum_{j=m}^{n} b_j \)
- \(\sum_{j=m}^{n} Ca_j = C \sum_{j=m}^{n} a_j \) (C any constant)
- \(\sum_{j=1}^{n} C = nC \) (C any constant and \(n \geq 1 \))

For example,

\[
\sum_{j=3}^{5} (j^2 + j) = (3^2 + 3) + (4^2 + 4) + (5^2 + 5)
\]

is equal to

\[
\sum_{j=3}^{5} j^2 + \sum_{j=3}^{5} j = (3^2 + 4^2 + 5^2) + (3 + 4 + 5)
\]

Linearity can be used to write a single summation as a sum of several summations. For example,

\[
\sum_{k=0}^{100} (7k^2 - 4k + 9) = \sum_{k=0}^{100} 7k^2 + \sum_{k=0}^{100} (-4k) + \sum_{k=0}^{100} 9
\]

\[
= 7 \sum_{k=0}^{100} k^2 - 4 \sum_{k=0}^{100} k + 9 \sum_{k=0}^{100} 1
\]

It is convenient to use summation notation when working with area approximations. For example, \(R_N \) is a sum with general term \(f(x) \):

\[
R_N = \Delta x \left[f(x_1) + f(x_2) + \cdots + f(x_N) \right]
\]

The summation extends from \(j = 1 \) to \(j = N \), so we can write \(R_N \) concisely as

\[
R_N = \Delta x \sum_{j=1}^{N} f(x_j)
\]

We shall make use of two other rectangular approximations to area: the left-endpoint and the midpoint approximations. Divide \([a, b]\) into \(N \) subintervals as before. In the **left-endpoint approximation** \(L_N \), the heights of the rectangles are the values of \(f(x) \) at the left endpoints [Figure 6(A)]. These left endpoints are

\[
x_0 = a, \ x_1 = a + \Delta x, \ x_2 = a + 2\Delta x, \ \ldots, \ x_{N-1} = a + (N - 1)\Delta x
\]

and the sum of the areas of the left-endpoint rectangles is

\[
L_N = \Delta x \left(f(x_0) + f(x_1) + f(x_2) + \cdots + f(x_{N-1}) \right)
\]

Note that both \(R_N \) and \(L_N \) have general term \(f(x) \), but the sum for \(L_N \) runs from \(j = 0 \) to \(j = N - 1 \) rather than from \(j = 1 \) to \(j = N \):
In the **midpoint approximation** M_N, the heights of the rectangles are the values of $f(x)$ at the midpoints of the subintervals rather than at the endpoints. As we see in Figure 6(B), the midpoints are

$$\frac{x_0 + x_1}{2}, \frac{x_1 + x_2}{2}, \ldots, \frac{x_{N-1} + x_N}{2}$$

The sum of the areas of the midpoint rectangles is

$$M_N = \Delta x \left(f \left(\frac{x_0 + x_1}{2} \right) + f \left(\frac{x_1 + x_2}{2} \right) + \cdots + f \left(\frac{x_{N-1} + x_N}{2} \right) \right)$$

In summation notation,

$$M_N = \Delta x \sum_{j=0}^{N-1} f \left(\frac{x_j + x_{j+1}}{2} \right)$$

EXAMPLE 2 Calculate R_6, L_6, and M_6 for $f(x) = x^{-1}$ on $[2, 4]$.

Solution In this case, $\Delta x = (b - a)/N = (4 - 2)/6 = \frac{1}{3}$. The general term in the summation for R_6 and L_6 is

$$f(x_j) = f(a + j \Delta x) = f \left(2 + j \left(\frac{1}{3} \right) \right) = \frac{1}{2 + \frac{1}{3}j} = \frac{3}{6 + j}$$

Therefore (Figure 7),

$$R_6 = \frac{1}{3} \sum_{j=1}^{6} f(x_j) = \frac{1}{3} \sum_{j=1}^{6} \frac{3}{6 + j}$$

$$= \frac{1}{3} \left(\frac{3}{7} + \frac{3}{8} + \frac{3}{9} + \frac{3}{10} + \frac{3}{11} + \frac{3}{12} \right) \approx 0.653$$

In L_6, the sum begins at $j = 0$ and ends at $j = 5$:

$$L_6 = \frac{1}{3} \sum_{j=0}^{5} \frac{3}{6 + j} = \frac{1}{3} \left(\frac{3}{6} + \frac{3}{7} + \frac{3}{8} + \frac{3}{9} + \frac{3}{10} + \frac{3}{11} \right) \approx 0.737$$

The general term in M_6 is

$$f \left(\frac{x_j + x_{j+1}}{2} \right)$$
In this case, the midpoints are $\frac{13}{6}, \frac{15}{6}, \frac{17}{6}, \frac{19}{6}, \frac{21}{6}$, and $\frac{23}{6}$. Summing up from $j = 0$ to 5, we obtain (Figure 8)
\[
M_6 = \frac{1}{3} \left(f \left(\frac{13}{6} \right) + f \left(\frac{15}{6} \right) + f \left(\frac{17}{6} \right) + f \left(\frac{19}{6} \right) + f \left(\frac{21}{6} \right) + f \left(\frac{23}{6} \right) \right) \\
= \frac{1}{3} \left(\frac{6}{13} + \frac{6}{15} + \frac{6}{17} + \frac{6}{19} + \frac{6}{21} + \frac{6}{23} \right) \approx 0.692
\]

GRAPHICAL INSIGHT Monotonic Functions Observe in Figure 7 that the left-endpoint rectangles for $f(x) = x^{-1}$ extend above the graph and the right-endpoint rectangles lie below it. The exact area A must lie between R_6 and L_6, and so, according to the previous example, $0.65 \leq A \leq 0.74$. More generally, when f is monotonic (increasing or decreasing), the exact area lies between R_N and L_N (Figure 9):
- f increasing $\Rightarrow L_N \leq$ area under graph $\leq R_N$
- f decreasing $\Rightarrow R_N \leq$ area under graph $\leq L_N$

Notice that M_6 lies between R_6 and L_6. This is always the case for a monotonic function. (See Problem 93.)

Computing Area as the Limit of Approximations

Figure 10 shows several right-endpoint approximations. Notice that the error in computing the area, corresponding to the yellow region above the graph, gets smaller as the number of rectangles increases. In fact, it appears that we can make the error as small as we please by taking the number N of rectangles large enough. If so, it makes sense to consider the limit as $N \to \infty$, as this should give us the exact area under the curve. The next theorem guarantees that the limit exists (see Theorem 8 in Appendix D for a proof and Exercise 87 for a special case).

THEOREM 1 If f is continuous on $[a, b]$, then the endpoint and midpoint approximations approach one and the same limit as $N \to \infty$. In other words, there is a value L such that
\[
\lim_{N \to \infty} R_N = \lim_{N \to \infty} L_N = \lim_{N \to \infty} M_N = L
\]

If $f(x) \geq 0$ on $[a, b]$, we define the area under the graph over $[a, b]$ to be L.

CONCEPTUAL INSIGHT In calculus, limits are used to define basic quantities that otherwise would not have a precise meaning. Theorem 1 allows us to define area as a limit L in much the same way that we define the slope of a tangent line as the limit of slopes of secant lines.

The next three examples illustrate Theorem 1 using formulas for **power sums**. The kth power sum is defined as the sum of the kth powers of the first N integers. We shall use the power sum formulas for $k = 1, 2, 3$.
A method for proving power sum formulas is developed in Exercises 44–47 of Section 1.3. Formulas (3)–(5) can also be verified using the method of induction.

Power Sums

\[
\sum_{j=1}^{N} j = 1 + 2 + \ldots + N = \frac{N(N+1)}{2} = \frac{N^2}{2} + \frac{N}{2}
\]

\[
\sum_{j=1}^{N} j^2 = 1^2 + 2^2 + \ldots + N^2 = \frac{N(N+1)(2N+1)}{6} = \frac{N^3}{3} + \frac{N^2}{2} + \frac{N}{6}
\]

\[
\sum_{j=1}^{N} j^3 = 1^3 + 2^3 + \ldots + N^3 = \frac{N^2(N+1)^2}{4} = \frac{N^4}{4} + \frac{N^3}{2} + \frac{N^2}{4}
\]

For example, by Eq. (4),

\[
\sum_{j=1}^{6} j^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = \frac{6^3}{3} + \frac{6^2}{2} + \frac{6}{6} = 91
\]

As a first illustration, we compute the area of a right triangle “the hard way.”

EXAMPLE 3

Find the area \(A \) under the graph of \(f(x) = x \) over \([0, 4]\) in three ways:

(\textbf{a}) Using geometry

(\textbf{b}) \(\lim_{N \to \infty} R_N \)

(\textbf{c}) \(\lim_{N \to \infty} L_N \)

Solution

The region under the graph is a right triangle with base \(b = 4 \) and height \(h = 4 \) (Figure 11).

(\textbf{a}) By geometry, \(A = \frac{1}{2}bh = \left(\frac{1}{2}\right)(4)(4) = 8 \).

(\textbf{b}) We compute this area again as a limit. Since \(\Delta x = (b-a)/N = 4/N \) and \(f(x) = x \),

\[
f(x_j) = f(a + j \Delta x) = f \left(0 + j \left(\frac{4}{N} \right) \right) = \frac{4j}{N}
\]

\[
R_N = \Delta x \sum_{j=1}^{N} f(x_j) = 4 \sum_{j=1}^{N} \frac{j}{N} = 16 \sum_{j=1}^{N} \frac{j}{N}
\]

In the last equality, we factored out \(4/N \) from the sum. This is valid because \(4/N \) is a constant that does not depend on \(j \). Now use formula (3):

\[
R_N = 16 \sum_{j=1}^{N} j = 16 \frac{N(N+1)}{2} = 8 \frac{N^2}{2} + 8 \frac{N}{N}
\]

Figure 11 The right-endpoint approximations approach the area of the triangle.
The second term $8/N$ tends to zero as N approaches ∞, so

$$A = \lim_{N \to \infty} R_N = \lim_{N \to \infty} \left(8 + \frac{8}{N} \right) = 8$$

As expected, this limit yields the same value as the formula $\frac{1}{2}bh$.

(c) The left-endpoint approximation is similar, but the sum begins at $j = 0$ and ends at $j = N - 1$:

$$L_N = \frac{16}{N^2} \sum_{j=0}^{N-1} j = \frac{16}{N^2} \sum_{j=1}^{N-1} j = \frac{16}{N^2} \left(\frac{(N-1)N}{2} \right) = 8 - \frac{8}{N}$$

Note in the second step that we replaced the sum beginning at $j = 0$ with a sum beginning at $j = 1$. This is valid because the term for $j = 0$ is zero and may be dropped. Again, we find that $A = \lim_{N \to \infty} L_N = \lim_{N \to \infty} \left(8 - \frac{8}{N} \right) = 8$.

In the next example, we compute the area under a curved graph. Unlike the previous example, it is not possible to compute this area directly using geometry.

Example 4 Let A be the area under the graph of $f(x) = 2x^2 - x + 3$ over $[2, 4]$ (Figure 12). Compute A as the limit $\lim_{N \to \infty} R_N$.

Solution

Step 1. Express R_N in terms of power sums.

In this case, $\Delta x = (4 - 2)/N = 2/N$ and

$$R_N = \Delta x \sum_{j=1}^{N} f(x_j) = \Delta x \sum_{j=1}^{N} f(a + j\Delta x) = \frac{2}{N} \sum_{j=1}^{N} \left(2 + \frac{2j}{N} \right)$$

Let’s use algebra to simplify the general term. Since $f(x) = 2x^2 - x + 3$,

$$f \left(2 + \frac{2j}{N} \right) = 2 \left(2 + \frac{2j}{N} \right)^2 - \left(2 + \frac{2j}{N} \right) + 3$$

$$= 2 \left(4 + \frac{8j}{N} + \frac{4j^2}{N^2} \right) - \left(2 + \frac{2j}{N} \right) + 3 = \frac{8}{N^2} j^2 + \frac{14}{N} j + 9$$

Now we can express R_N in terms of power sums:

$$R_N = \frac{2}{N} \sum_{j=1}^{N} \left(\frac{8}{N^2} j^2 + \frac{14}{N} j + 9 \right) = \frac{2}{N} \sum_{j=1}^{N} \frac{8}{N^2} j^2 + \frac{2}{N} \sum_{j=1}^{N} \frac{14}{N} j + \frac{2}{N} \sum_{j=1}^{N} 9$$

$$= \frac{16}{N^3} \sum_{j=1}^{N} j^2 + \frac{28}{N^2} \sum_{j=1}^{N} j + \frac{18}{N} \sum_{j=1}^{N} 1$$

Step 2. Use the formulas for the power sums.

Using formulas (3) and (4) for the power sums in Eq. (7), we obtain

$$R_N = \frac{16}{N^3} \left(\frac{N^3}{3} + \frac{N^2}{2} + \frac{N}{6} \right) + \frac{28}{N^2} \left(\frac{N^2}{2} + \frac{N}{2} \right) + \frac{18}{N} \left(\frac{N}{3} \right)$$

$$= \left(\frac{16}{3} + \frac{8}{N} + \frac{8}{3N^2} \right) + \left(14 + \frac{14}{N} \right) + 18$$

$$= \frac{112}{3} + \frac{22}{N} + \frac{8}{3N^2}$$
Step 3. Calculate the limit.

\[A = \lim_{N \to \infty} R_N = \lim_{N \to \infty} \left(\frac{112}{3} + \frac{22}{N} + \frac{8}{3N^2} \right) = \frac{112}{3} \]

Example 5 Prove that for all \(b > 0 \), the area \(A \) under the graph of \(f(x) = x^2 \) over \([0, b]\) is equal to \(b^3/3 \), as indicated in Figure 13.

Solution We'll compute with \(R_N \). We have \(\Delta x = (b - 0)/N = b/N \) and

\[
R_N = \Delta x \sum_{j=1}^{N} f(x_j) = \Delta x \sum_{j=1}^{N} f(0 + j \Delta x) = \frac{b}{N} \sum_{j=1}^{N} \left(0 + j \frac{b}{N} \right)^2 = \frac{b}{N} \sum_{j=1}^{N} \left(j^2 \frac{b^2}{N^2} \right)
\]

By the formula for the power sum recalled in the margin,

\[
R_N = \frac{b^3}{N^3} \left(\frac{N^3}{3} + \frac{N^2}{2} + \frac{N}{6} \right) = \frac{b^3}{3} + \frac{b^3}{2N} + \frac{b^3}{6N^2}
\]

\[
A = \lim_{N \to \infty} R_N = \lim_{N \to \infty} \left(\frac{b^3}{3} + \frac{b^3}{2N} + \frac{b^3}{6N^2} \right) = \frac{b^3}{3}
\]

The area under the graph of any polynomial can be calculated using power sum formulas as in the examples above. For other functions, the limit defining the area may be difficult or impossible to evaluate directly. Consider \(f(x) = \sin x \) on the interval \([\pi/4, 3\pi/4]\). In this case (Figure 14), \(\Delta x = (3\pi/4 - \pi/4)/N = \pi/(2N) \) and the area \(A \) is

\[
A = \lim_{N \to \infty} R_N = \lim_{N \to \infty} \Delta x \sum_{j=1}^{N} f(0 + j \Delta x) = \lim_{N \to \infty} \frac{\pi}{2N} \sum_{j=1}^{N} \sin \left(\frac{\pi j}{4} + \frac{\pi j}{2N} \right)
\]

With some work, we can show that the limit is equal to \(A = \sqrt{2} \). However, in Section 5.4, we will see that it is much easier to apply the Fundamental Theorem of Calculus, which reduces area computations to the problem of finding antiderivatives.

Historical Perspective

Jacob Bernoulli (1654–1705)

We used the formulas for the 4th power sums for \(k = 1, 2, 3 \). Do similar formulas exist for all powers \(k \)? This problem was studied in the seventeenth century and eventually solved around 1690 by the great Swiss mathematician Jacob Bernoulli. Of this discovery, he wrote

With the help of these formulas it took me less than half of a quarter of an hour to find that the 10th powers of the first 1000 numbers being added together will yield the sum

\[
\sum_{j=1}^{n} j^k = \frac{1}{k+1} n^{k+1} + \frac{1}{2} n^{k} + \frac{k}{12} n^{k-1} + \ldots
\]

The dots indicate terms involving smaller powers of \(n \) whose coefficients are expressed in terms of the so-called Bernoulli numbers. For example,

\[
\sum_{j=1}^{n} j^4 = \frac{1}{5} n^5 + \frac{1}{2} n^4 + \frac{1}{3} n^3 - \frac{1}{30} n
\]

These formulas are available on most computer algebra systems.
5.1 SUMMARY

• Approximations to the area under the graph of \(f \) over the interval \([a, b]\)
 \[
 \Delta x = \frac{b - a}{N}, \quad x_j = a + j \Delta x
 \]

 \[
 R_N = \Delta x \sum_{j=1}^{N} f(x_j) = \Delta x \left(f(x_1) + f(x_2) + \cdots + f(x_N) \right)
 \]

 \[
 L_N = \Delta x \sum_{j=0}^{N-1} f(x_j) = \Delta x \left(f(x_0) + f(x_1) + \cdots + f(x_{N-1}) \right)
 \]

 \[
 M_N = \Delta x \sum_{j=0}^{N-1} f \left(\frac{x_j + x_{j+1}}{2} \right)
 \]

 \[
 = \Delta x \left(f \left(\frac{x_0 + x_1}{2} \right) + \cdots + f \left(\frac{x_{N-1} + x_N}{2} \right) \right)
 \]

• If \(f \) is continuous on \([a, b]\), then the endpoint and midpoint approximations approach one and the same limit \(L \):
 \[
 \lim_{N \to \infty} R_N = \lim_{N \to \infty} L_N = \lim_{N \to \infty} M_N = L
 \]

• If \(f(x) \geq 0 \) on \([a, b]\), we take \(L \) as the definition of the area under the graph of \(y = f(x) \) over \([a, b]\).

5.1 EXERCISES

Preliminary Questions

1. What are the right and left endpoints if \([2, 5]\) is divided into six subintervals?

2. The interval \([1, 5]\) is divided into eight subintervals.
 (a) What is the left endpoint of the last subinterval?
 (b) What are the right endpoints of the first two subintervals?

3. Which of the following pairs of sums are not equal?
 (a) \(\sum_{i=1}^{4} i \), \(\sum_{\ell=1}^{4} \ell \)
 (b) \(\sum_{j=1}^{4} j^2 \), \(\sum_{k=2}^{5} k^2 \)

4. Explain: \(\sum_{j=1}^{100} j = \sum_{j=0}^{100} j \), but \(\sum_{j=0}^{100} 1 \) is not equal to \(\sum_{j=1}^{100} 1 \).

5. Explain why \(L_{100} \geq R_{100} \) for \(f(x) = x^{-2} \) on \([3, 7]\).

Exercises

1. Figure 15 shows the velocity of an object over a 3-minute (min) interval. Determine the distance traveled over the intervals \([0, 3]\) and \([1, 2.5]\) (remember to convert from kilometers per hour to kilometers per minute).

2. An ostrich (Figure 16) runs with velocity 20 km/h for 2 minutes (min), 12 km/h for 3 min, and 40 km/h for another minute. Compute the total distance traveled and indicate with a graph how this quantity can be interpreted as an area.

Figure 15

- Distance vs. time graph showing the velocity of an object.

Figure 16

- Ostrich running at various speeds. (© Daryl Balfour/Gallo Images/Alamy)
3. A rainstorm hit Portland, Maine, in October 1996, resulting in record rainfall. The rainfall rate \(R(t) \) on October 21 is recorded, in centimeters per hour, in the following table, where \(t \) is the number of hours since midnight. Compute the total rainfall during this 24-hour period and indicate on a graph how this quantity can be interpreted as an area.

<table>
<thead>
<tr>
<th>(t) (h)</th>
<th>0–2</th>
<th>2–4</th>
<th>4–9</th>
<th>9–12</th>
<th>12–20</th>
<th>20–24</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R(t)) (cm)</td>
<td>0.5</td>
<td>0.3</td>
<td>1.0</td>
<td>2.5</td>
<td>1.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

4. The velocity of an object is \(v(t) = 12t \) m/s. Use Eq. (2) and geometry to find the distance traveled over the time intervals [0, 2] and [2, 5].

5. Compute \(R_2 \) and \(L_5 \) over [0, 1] using the following values:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td>40</td>
</tr>
</tbody>
</table>

6. Compute \(R_3, L_5 \), and \(M_3 \) to estimate the distance traveled over [0, 3] if the velocity at half-second intervals is as follows:

<table>
<thead>
<tr>
<th>(t) (s)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v) (m/s)</td>
<td>0</td>
<td>12</td>
<td>18</td>
<td>25</td>
<td>20</td>
<td>14</td>
<td>20</td>
</tr>
</tbody>
</table>

7. Let \(f(x) = 2x + 3 \).
 (a) Compute \(R_6 \) and \(L_6 \) over [0, 3].
 (b) Use geometry to find the exact area \(A \) and compute the errors \(|A - R_6| \) and \(|A - L_6| \) in the approximations.

8. Repeat Exercise 7 for \(f(x) = 20 - 3x \) over [2, 4].

9. Calculate \(R_3 \) and \(L_3 \) for \(f(x) = x^2 - x + 4 \) over [1, 4]. Then sketch the graph of \(f \) and the rectangles that make up each approximation. Is the area under the graph larger or smaller than \(R_3 \)? Is it larger or smaller than \(L_3 \)?

10. Let \(f(x) = \sqrt{x^2 + 1} \) and \(\Delta x = \frac{1}{4} \). Sketch the graph of \(f \) and draw the right-endpoint rectangles whose area is represented by the sum \(\sum_{i=1}^{6} f(1 + i\Delta x)\Delta x \).

11. Estimate \(R_3, M_3, \) and \(L_6 \) over [0, 1.5] for the function in Figure 17.

12. Calculate the area of the shaded rectangles in Figure 18. Which approximation do these rectangles represent?

13. Let \(f(x) = x^2 \).
 (a) Sketch the function over the interval [0, 2] and the rectangles corresponding to \(L_4 \). Calculate the area contained within them.
 (b) Sketch the function over the interval [0, 2] again but with the rectangles corresponding to \(R_4 \). Calculate the area contained within them.
 (c) Make a conclusion about the area under the curve \(f(x) = x^2 \) over the interval [0, 2].

14. Let \(f(x) = x^2 \).
 (a) Sketch the function over the interval [0, 4] and the rectangles corresponding to \(L_4 \). Calculate the area contained within them.
 (b) Sketch the function over the interval [0, 4] again but with the rectangles corresponding to \(R_4 \). Calculate the area contained within them.
 (c) Make a conclusion about the area under the curve \(f(x) = \sqrt{x} \) over the interval [0, 4].

In Exercises 15–22, calculate the approximation for the given function and interval.

15. \(R_3 \), \(f(x) = 7 - x \), [3, 5]

16. \(L_6 \), \(f(x) = \sqrt{6x + 2} \), [1, 3]

17. \(M_6 \), \(f(x) = 4x + 3 \), [5, 8]

18. \(R_5 \), \(f(x) = x^2 + x \), [−1, 1]

19. \(M_5 \), \(f(x) = \frac{1}{x^2 + 1} \), [1, 5]

20. \(M_4 \), \(f(x) = \sqrt{x} \), [3, 5]

21. \(L_4 \), \(f(x) = \cos^2 x \), \([\frac{\pi}{6}, \frac{\pi}{2}]\)

22. \(L_6 \), \(f(x) = x^2 + 3|x| \), [−2, 1]

In Exercises 23–28, write the sum in summation notation.

23. \(4^2 + 5^2 + 6^2 + 7^2 + 8^2 \)

24. \((2^2 + 2) + (3^2 + 3) + (4^2 + 4) + (5^2 + 5)\)

25. \((2^2 + 2) + (3^2 + 2) + (4^2 + 2) + (5^2 + 2)\)

26. \(\sqrt{1 + 1^3} + \sqrt{2 + 2^3} + \cdots + \sqrt{n + n^3} \)

27. \(\frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \cdots + \frac{n}{(n + 1)(n + 2)} \)

28. \(\sin(\pi) + \sin\left(\frac{\pi}{2}\right) + \sin\left(\frac{\pi}{3}\right) + \cdots + \sin\left(\frac{\pi}{n + 1}\right) \)

29. Calculate the sums:
 (a) \(\sum_{i=1}^{5} i \)
 (b) \(\sum_{i=0}^{5} i \)
 (c) \(\sum_{k=2}^{4} k^3 \)

30. Calculate the sums:
 (a) \(\sum_{j=3}^{4} \sin\left(\frac{\pi}{j}\right) \)
 (b) \(\sum_{k=3}^{5} k^{-1} \)
 (c) \(\sum_{j=0}^{2} j^{-1} \)
31. Let \(b_1 = 4, b_2 = 1, b_3 = 2, \) and \(b_4 = -4. \) Calculate:

(a) \(\sum_{i=2}^{4} b_i \)
(b) \(\sum_{j=1}^{2} (2^{i-j} - b_j) \)
(c) \(\sum_{k=1}^{3} k b_k \)

32. Assume that \(a_1 = -5, \sum_{i=1}^{10} a_i = 20, \) and \(\sum_{i=1}^{10} b_i = 7. \) Calculate:

(a) \(\sum_{i=1}^{10} (4a_i + 3) \)
(b) \(\sum_{i=2}^{10} a_i \)
(c) \(\sum_{i=1}^{10} (2a_i - 3b_i) \)

33. Calculate \(\sum_{j=1}^{200} j. \) Hint: Write as a difference of two sums and use formula (3).

34. Calculate \(\sum_{j=1}^{30} (2j + 1)^2. \) Hint: Expand and use formulas (3)–(4).

In Exercises 35–42, use linearity and formulas (3)–(5) to rewrite and evaluate the sums.

35. \(\sum_{j=1}^{20} 8j^3 \)
36. \(\sum_{k=1}^{30} (4k - 3) \)
37. \(\sum_{n=1}^{150} n^2 \)
38. \(\sum_{k=1}^{200} k^3 \)
39. \(\sum_{j=0}^{50} j(j - 1) \)
40. \(\sum_{j=2}^{30} (6j + 4j^2)/3 \)
41. \(\sum_{m=1}^{30} (4 - m)^3 \)
42. \(\sum_{m=1}^{20} (5 + 3m/2)^2 \)

In Exercises 43–46, use formulas (3)–(5) to evaluate the limit.

43. \(\lim_{N \to \infty} \sum_{i=1}^{N} \frac{i}{N^2} \)
44. \(\lim_{N \to \infty} \sum_{j=1}^{N} \frac{j^3}{N^4} \)
45. \(\lim_{N \to \infty} \sum_{i=1}^{N} i^2 - i + 1/N \)
46. \(\lim_{N \to \infty} \sum_{i=1}^{N} \left(\frac{i^3}{N^4} - \frac{20}{N} \right) \)

In Exercises 47–52, calculate the limit for the given function and interval. Verify your answer by using geometry.

47. \(\lim_{N \to \infty} R_N, \ f(x) = 9x, \ [0, 2] \)
48. \(\lim_{N \to \infty} R_N, \ f(x) = 3x + 6, \ [1, 4] \)
49. \(\lim_{N \to \infty} L_N, \ f(x) = \frac{1}{2}x + 2, \ [0, 4] \)
50. \(\lim_{N \to \infty} L_N, \ f(x) = 4x - 2, \ [1, 3] \)
51. \(\lim_{N \to \infty} M_N, \ f(x) = x, \ [0, 2] \)
52. \(\lim_{N \to \infty} M_N, \ f(x) = 12 - 4x, \ [2, 6] \)
53. Show, for \(f(x) = 3x^2 + 4x \) over [0, 2], that

\[R_N = \frac{2}{N} \sum_{j=1}^{N} \left(\frac{12j^2}{N^2} + \frac{8j}{N} \right) \]

Then evaluate \(\lim_{N \to \infty} R_N. \)

54. Show, for \(f(x) = 3x^3 - x^2 \) over [1, 5], that

\[R_N = \frac{4}{N} \sum_{j=1}^{N} \left(\frac{192j^3}{N^3} + \frac{128j^2}{N^2} + \frac{28j}{N} + 2 \right) \]

Then evaluate \(\lim_{N \to \infty} R_N. \)

In Exercises 55–62, find a formula for \(R_N \) and compute the area under the graph as a limit.

55. \(f(x) = x^2, \ [0, 1] \)
56. \(f(x) = x^2, \ [-1, 5] \)
57. \(f(x) = 6x^2 - 4, \ [2, 5] \)
58. \(f(x) = x^2 + 7x, \ [6, 11] \)
59. \(f(x) = x^3 - x, \ [0, 2] \)
60. \(f(x) = 2x^3 + x^2, \ [-2, 2] \)
61. \(f(x) = 2x + 1, \ [a, b] \) \((a, b \) constants with \(a < b) \)
62. \(f(x) = x^2, \ [a, b] \) \((a, b \) constants with \(a < b) \)

In Exercises 63–66, describe the area represented by the limits.

63. \(\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \left(\frac{j}{N} \right)^4 \)
64. \(\lim_{N \to \infty} \frac{3}{N} \sum_{j=1}^{N} \left(2 + \frac{3j}{N} \right)^4 \)
65. \(\lim_{N \to \infty} \frac{5}{N} \sum_{j=0}^{N-1} \left(-2 + \frac{5j}{N} \right)^4 \)
66. \(\lim_{N \to \infty} \frac{\pi}{2N} \sum_{j=1}^{N} \sin \left(\frac{\pi}{N} - \frac{\pi}{N} + \frac{j\pi}{N} \right) \)

In Exercises 67–72, express the area under the graph as a limit using the approximation indicated (in summation notation), but do not evaluate.

67. \(R_N, \ f(x) = \sin x \) over \([0, \pi]\)
68. \(R_N, \ f(x) = x^{-1} \) over \([1, 7]\)
69. \(L_N, \ f(x) = \sqrt{2x + 1} \) over \([7, 11]\)
70. \(L_N, \ f(x) = \cos x \) over \([\pi, 3\pi]\)
71. \(M_N, \ f(x) = \tan x \) over \([1/2, 1]\)
72. \(M_N, \ f(x) = x^2 \) over \([3, 5]\)

73. Evaluate \(\lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \left(1 - \left(\frac{j}{N} \right)^2 \right) \) by interpreting it as the area of a portion of a familiar geometric figure.

In Exercises 74–76, let \(f(x) = x^2 \) and let \(R_N, L_N, \) and \(M_N \) be the approximations for the interval \([0, 1]\).

74. \(\square \) Show that \(R_N = \frac{1}{3} + \frac{1}{2N^2} + \frac{1}{6N^2} \). Interpret the quantity \(\frac{1}{2N^2} + \frac{1}{6N^2} \) as the area of a region.

75. Show that

\[L_N = \frac{1}{3} - \frac{1}{2N} + \frac{1}{6N^2}, \quad M_N = \frac{1}{3} - \frac{1}{12N^2} \]

Then rank the three approximations \(R_N, L_N, \) and \(M_N \) in order of increasing accuracy (use Exercise 74).
76. For each of \(R_N, L_N, \) and \(M_N, \) find the smallest integer \(N \) for which the error is less than 0.001.

In Exercises 77–82, use the Graphical Insight on page 230 to obtain bounds on the area.

77. Let \(A \) be the area under \(f(x) = \sqrt{x} \) over \([0, 1]\). Prove that 0.51 \(\leq A \leq 0.77 \) by computing \(R_4 \) and \(L_4 \). Explain your reasoning.

78. Use \(R_5 \) and \(L_5 \) to show that the area under \(y = x^{-2} \) over \([10, 13]\) satisfies 0.0218 \(\leq A \leq 0.0244 \).

79. Use \(R_4 \) and \(L_4 \) to show that the area under the graph of \(y = \sin x \) over \([0, \frac{\pi}{2}]\) satisfies 0.79 \(\leq A \leq 1.19 \).

Further Insights and Challenges

83. Although the accuracy of \(R_N \) generally improves as \(N \) increases, this need not be true for small values of \(N \). Draw the graph of a positive continuous function \(f \) on an interval such that \(R_1 \) is closer than \(R_2 \) to the exact area under the graph. Can such a function be monotonic?

84. Draw the graph of a positive continuous function on an interval such that \(R_2 \) and \(L_2 \) are both smaller than the exact area under the graph. Can such a function be monotonic?

85. Explain graphically: The endpoint approximations are less accurate when \(f'(x) \) is large.

86. Prove that for any function \(f \) on \([a, b]\),

\[
R_N - L_N = \frac{b-a}{N} (f(b) - f(a))
\]

87. In this exercise, we prove that \(\lim_{N \to \infty} R_N = \infty \) and \(\lim_{N \to \infty} L_N \) exist and are equal if \(f \) is increasing [the case of \(f \) decreasing is similar].

We use the concept of a least upper bound discussed in Appendix B.

(a) Explain with a graph why \(L_N \leq R_M \) for all \(N, M \geq 1 \).

(b) By (a), the sequence \(\{L_N\} \) is bounded, so it has a least upper bound \(L \). By definition, \(L \) is the smallest number such that \(L_N \leq L \) for all \(N \). Show that \(L \leq R_M \) for all \(M \).

(c) According to (b), \(L_N \leq L \leq R_N \) for all \(N \). Use Eq. (8) to show that \(\lim_{N \to \infty} L_N = L \) and \(\lim_{N \to \infty} R_N = L \).

88. Use Eq. (8) to show that if \(f \) is positive and monotonic, then the area \(A \) under its graph over \([a, b]\) satisfies

\[
|R_N - A| \leq \frac{b-a}{N} |f(b) - f(a)|
\]

In Exercises 89–90, use Eq. (9) to find a value of \(N \) such that \(|R_N - A| < 10^{-4} \) for the given function and interval.

89. \(f(x) = \sqrt{x}, \quad [1, 4] \)

90. \(f(x) = \sqrt{x^2 - 1}, \quad [0, 3] \)

91. Prove that if \(f \) is positive and monotonic, then \(M_N \) lies between \(R_N \) and \(L_N \) and is closer to the actual area under the graph than both \(R_N \) and \(L_N \). Hint: In the case that \(f \) is increasing, Figure 19 shows that the part of the error in \(R_N \) due to the \(i \)th rectangle is the sum of the areas \(A + B + D, \) and for \(M_N \) it is \(|B - E| \). On the other hand, \(A \geq E \).

5.2 The Definite Integral

In the previous section, we saw that if \(f \) is continuous on an interval \([a, b]\), then the endpoint and midpoint approximations approach a common limit \(L \) as \(N \to \infty \):

\[
L = \lim_{N \to \infty} R_N = \lim_{N \to \infty} L_N = \lim_{N \to \infty} M_N
\]

When \(f(x) \geq 0 \), \(L \) is the area under the graph of \(f \). In a moment, we will state formally that \(L \) is the definite integral of \(f \) over \([a, b]\). Before doing so, we introduce more general approximations called Riemann sums.

Recall that \(R_N, L_N, \) and \(M_N \) use rectangles of equal width \(\Delta x \), whose heights are the values of \(f(x) \) at the endpoints or midpoints of the subintervals. In Riemann sum approximations, we relax these requirements: The rectangles need not have equal width, and the height may be any value of \(f(x) \) within the subinterval.
To specify a Riemann sum, we choose a partition and a set of sample points:

- **Partition** P of size N: a choice of points that divides $[a, b]$ into N subintervals.

 \[P : a = x_0 < x_1 < \cdots < x_N = b \]

- **Sample points** $C = \{c_1, \ldots, c_N\}$: c_i belongs to the subinterval $[x_{i-1}, x_i]$ for all $i = 1, \ldots, N$.

See Figures 1 and 2(A). The length of the ith subinterval $[x_{i-1}, x_i]$ is

\[\Delta x_i = x_i - x_{i-1} \]

The norm of P, denoted $\|P\|$, is the maximum of the lengths Δx_i.

To specify a Riemann sum, we choose a partition and a set of sample points:

- **Partition** P of size N: a choice of points that divides $[a, b]$ into N subintervals.

 \[P : a = x_0 < x_1 < \cdots < x_N = b \]

- **Sample points** $C = \{c_1, \ldots, c_N\}$: c_i belongs to the subinterval $[x_{i-1}, x_i]$ for all $i = 1, \ldots, N$.

See Figures 1 and 2(A). The length of the ith subinterval $[x_{i-1}, x_i]$ is

\[\Delta x_i = x_i - x_{i-1} \]

The norm of P, denoted $\|P\|$, is the maximum of the lengths Δx_i.

Given P and C, we construct the rectangle of height $f(c_i)$ and base Δx_i over each subinterval $[x_{i-1}, x_i]$, as in Figure 2(B). This rectangle has area $f(c_i)\Delta x_i$ if $f(c_i) \geq 0$. If $f(c_i) < 0$, the rectangle extends below the x-axis, and $f(c_i)\Delta x_i$ is the negative of its area. The Riemann sum is the sum

\[R(f, P, C) = \sum_{i=1}^{N} f(c_i)\Delta x_i = f(c_1)\Delta x_1 + f(c_2)\Delta x_2 + \cdots + f(c_N)\Delta x_N \]

Example 1 Calculate the Riemann sum $R(f, P, C)$, where $f(x) = 8 + 12\sin x - 4x$ on $[0, 4]$.

\[P : x_0 = 0 < x_1 = 1 < x_2 = 1.8 < x_3 = 2.9 < x_4 = 4 \quad C = \{0.4, 1.2, 2, 3.5\} \]

What is the norm $\|P\|$?

Solution The widths of the subintervals in the partition (Figure 3) are

\[\Delta x_1 = x_1 - x_0 = 1 - 0 = 1, \quad \Delta x_2 = x_2 - x_1 = 1.8 - 1 = 0.8 \]

\[\Delta x_3 = x_3 - x_2 = 2.9 - 1.8 = 1.1, \quad \Delta x_4 = x_4 - x_3 = 4 - 2.9 = 1.1 \]

The norm of the partition is $\|P\| = 1.1$ since the two longest subintervals have width 1.1.

Using a calculator, we obtain

\[R(f, P, C) \approx 11.07(1) + 14.38(0.8) + 10.91(1.1) - 10.2(1.1) \approx 23.35 \]

Note in Figure 2(C) that as the norm $\|P\|$ tends to zero (meaning that the rectangles get thinner), the number of rectangles N tends to ∞ and they approximate the area under the graph more closely. This leads to the following definition: f is **integrable** over $[a, b]$ if all of the Riemann sums (not just the endpoint and midpoint approximations) approach one and the same limit L as $\|P\|$ tends to zero. Formally, we write

\[L = \lim_{\|P\| \to 0} R(f, P, C) = \lim_{\|P\| \to 0} \sum_{i=1}^{N} f(c_i)\Delta x_i \]
The notation \(\int f(x) \, dx \) was introduced by Leibniz in 1686. The symbol \(\int \) is an elongated \(S \) standing for “summation.” The differential \(dx \) corresponds to the length \(\Delta x_i \) along the \(x \)-axis.

One of the greatest mathematicians of the nineteenth century and perhaps second only to his teacher C. F. Gauss, Riemann transformed the fields of geometry, analysis, and number theory. Albert Einstein based his General Theory of Relativity on Riemann’s geometry. The “Riemann Hypothesis” dealing with prime numbers is one of the great unsolved problems in present-day mathematics. The Clay Foundation has offered a $1 million prize for its solution (http://claymath.org/millenium-problems/riemann-hypothesis).

The notation \(\int f(x) \, dx \) was introduced by Leibniz in 1686. The symbol \(\int \) is an elongated \(S \) standing for “summation.” The differential \(dx \) corresponds to the length \(\Delta x_i \) along the \(x \)-axis.
Indeed, if \(f(c_i) < 0 \), then the corresponding rectangle lies below the \(x \)-axis and has signed area \(f(c_i) \Delta x_i \) (Figure 5). The limit of the Riemann sums is the signed area of the region between the graph and the \(x \)-axis:

\[
\int_a^b f(x) \, dx = \text{signed area of region between the graph and } x\text{-axis over } [a, b]
\]

EXAMPLE 2 Signed Area

Calculate \(\int_0^5 (3 - x) \, dx \) and \(\int_0^5 |3 - x| \, dx \).

Solution

The region between \(y = 3 - x \) and the \(x \)-axis consists of two triangles of areas \(\frac{9}{2} \) and 2 [Figure 6(A)]. However, the second triangle lies below the \(x \)-axis, so it has signed area \(-2\). In the graph of \(y = |3 - x| \), both triangles lie above the \(x \)-axis [Figure 6(B)]. Therefore,

\[
\int_0^5 (3 - x) \, dx = \frac{9}{2} - 2 = \frac{5}{2} \quad \text{and} \quad \int_0^5 |3 - x| \, dx = \frac{9}{2} + 2 = \frac{13}{2}
\]
Proof These properties follow from the corresponding linearity properties of sums and limits. For example, Riemann sums are additive:

\[
R(f + g, P, C) = \sum_{i=1}^{N} (f(c_i) + g(c_i)) \Delta x_i = \sum_{i=1}^{N} f(c_i) \Delta x_i + \sum_{i=1}^{N} g(c_i) \Delta x_i = R(f, P, C) + R(g, P, C)
\]

By the additivity of limits,

\[
\int_{a}^{b} (f(x) + g(x)) \, dx = \lim_{||P|| \to 0} R(f + g, P, C) = \lim_{||P|| \to 0} R(f, P, C) + \lim_{||P|| \to 0} R(g, P, C) = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx
\]

The second property is proved similarly.

Example 3 Calculate \(\int_{0}^{3} (2x^2 - 5) \, dx \) using the formula

\[
\int_{0}^{b} x^2 \, dx = \frac{b^3}{3}
\]

Solution

\[
\int_{0}^{3} (2x^2 - 5) \, dx = 2 \int_{0}^{3} x^2 \, dx + \int_{0}^{3} (-5) \, dx \quad \text{(linearity)}
\]

\[
= 2 \left(\frac{3^3}{3} \right) - 5(3 - 0) = 3 \quad \text{[Eqs. (5) and (4)]}
\]

So far we have used the notation \(\int_{a}^{b} f(x) \, dx \) with the understanding that \(a < b \). It is convenient to define the definite integral for arbitrary \(a \) and \(b \).

Definition Reversing the Limits of Integration For \(a < b \), we set

\[
\int_{b}^{a} f(x) \, dx = - \int_{a}^{b} f(x) \, dx
\]

For example, by Eq. (5),

\[
\int_{0}^{5} x^2 \, dx = -\int_{5}^{0} x^2 \, dx = -\frac{5^3}{3} = -\frac{125}{3}
\]

When \(a = b \), the interval \([a, b] = [a, a]\) has length zero and we define the definite integral to be zero:

\[
\int_{a}^{a} f(x) \, dx = 0
\]
EXAMPLE 4 Prove that, for all \(b \) (positive or negative),
\[
\int_{0}^{b} x \, dx = \frac{1}{2} b^2
\]

Solution If \(b > 0 \), \(\int_{0}^{b} x \, dx \) is the area \(\frac{1}{2} b^2 \) of a triangle of base \(b \) and height \(b \). If \(b < 0 \), \(\int_{0}^{b} x \, dx \) is the signed area \(-\frac{1}{2} b^2 \) of the triangle in Figure 8, and Eq. (7) follows from the rule for reversing limits of integration:
\[
\int_{0}^{b} x \, dx = \int_{b}^{0} x \, dx = -\left(-\frac{1}{2} b^2 \right) = \frac{1}{2} b^2
\]

Definite integrals satisfy an important additivity property: If \(f \) is integrable and \(a \leq b \leq c \) as in Figure 9, then the integral from \(a \) to \(c \) is equal to the integral from \(a \) to \(b \) plus the integral from \(b \) to \(c \). We state this in the next theorem (a formal proof can be given using Riemann sums).

THEOREM 4 Additivity for Adjacent Intervals Let \(a \leq b \leq c \), and assume that \(f \) is integrable. Then
\[
\int_{a}^{c} f(x) \, dx = \int_{a}^{b} f(x) \, dx + \int_{b}^{c} f(x) \, dx
\]
This theorem remains true as stated even if the condition \(a \leq b \leq c \) is not satisfied (Exercise 87).

EXAMPLE 5 Calculate \(\int_{4}^{7} x^2 \, dx \).

Solution Before we can apply the formula \(\int_{0}^{b} x^2 \, dx = b^3/3 \) from Example 3, we must use the additivity property for adjacent intervals to write
\[
\int_{0}^{7} x^2 \, dx = \int_{0}^{4} x^2 \, dx + \int_{4}^{7} x^2 \, dx
\]
Now we can compute our integral as a difference:
\[
\int_{4}^{7} x^2 \, dx = \int_{0}^{7} x^2 \, dx - \int_{0}^{4} x^2 \, dx = \left(\frac{1}{3} \right) 7^3 - \left(\frac{1}{3} \right) 4^3 = 93
\]

Another basic property of the definite integral is that larger functions have larger integrals (Figure 10).

THEOREM 5 Comparison Theorem If \(f \) and \(g \) are integrable and \(g(x) \leq f(x) \) for \(x \) in \([a, b] \), then
\[
\int_{a}^{b} g(x) \, dx \leq \int_{a}^{b} f(x) \, dx
\]

Proof If \(g(x) \leq f(x) \), then for any partition and choice of sample points, we have \(g(c_i) \Delta x_i \leq f(c_i) \Delta x_i \) for all \(i \). Therefore, the Riemann sums satisfy
\[
\sum_{i=1}^{N} g(c_i) \Delta x_i \leq \sum_{i=1}^{N} f(c_i) \Delta x_i
\]
Taking the limit as the norm $\|P\|$ tends to zero, we obtain

$$\int_a^b g(x) \, dx = \lim_{\|P\| \to 0} \sum_{i=1}^N g(c_i) \Delta x_i \leq \lim_{\|P\| \to 0} \sum_{i=1}^N f(c_i) \Delta x_i = \int_a^b f(x) \, dx$$

EXAMPLE 6 Prove the inequality $\int_1^4 \frac{1}{x^2} \, dx \leq \int_1^4 \frac{1}{x} \, dx$.

Solution If $x \geq 1$, then $x^2 \geq x$, and $x^{-2} \leq x^{-1}$ (Figure 11). Therefore, the inequality follows from the Comparison Theorem, applied with $g(x) = x^{-2}$ and $f(x) = x^{-1}$.

Suppose there are numbers m and M such that $m \leq f(x) \leq M$ for x in $[a, b]$. We call m and M lower and upper bounds for $f(x)$ on $[a, b]$. By the Comparison Theorem,

$$\int_a^b m \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b M \, dx$$

This says simply that the integral of f lies between the areas of two rectangles (Figure 12).

EXAMPLE 7 Prove the inequalities $\frac{3}{4} \leq \int_{1/2}^2 \frac{1}{x} \, dx \leq 3$.

Solution Because $f(x) = x^{-1}$ is decreasing (Figure 13), its minimum value on $[\frac{1}{2}, 2]$ is $m = f(2) = \frac{1}{2}$ and its maximum value is $M = f\left(\frac{1}{2}\right) = 2$. By Eq. (8),

$$\frac{1}{2} \left(2 - \frac{1}{2}\right) = \frac{3}{4} \leq \int_{1/2}^2 \frac{1}{x} \, dx \leq 2 \left(2 - \frac{1}{2}\right) = 3$$

5.2 SUMMARY

- A Riemann sum $R(f, P, C)$ for the interval $[a, b]$ is defined by choosing a partition

 $$P : a = x_0 < x_1 < x_2 < \cdots < x_N = b$$

 and sample points $C = \{c_i\}$, where $c_i \in [x_{i-1}, x_i]$. Let $\Delta x_i = x_i - x_{i-1}$. Then

 $$R(f, P, C) = \sum_{i=1}^N f(c_i) \Delta x_i$$

- The maximum of the widths Δx_i is called the norm $\|P\|$ of the partition.
- The definite integral is the limit of the Riemann sums (if it exists):

 $$\int_a^b f(x) \, dx = \lim_{\|P\| \to 0} R(f, P, C)$$

 We say that f is integrable over $[a, b]$ if the limit exists.
- Theorem: If f is continuous on $[a, b]$, then f is integrable over $[a, b]$.
- $\int_a^b f(x) \, dx = \text{signed area}$ of the region between the graph of f and the x-axis.
Properties of definite integrals:
\[\int_a^b (f(x) + g(x)) \, dx = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \]
\[\int_a^b Cf(x) \, dx = C \int_a^b f(x) \, dx \quad \text{for any constant } C \]
\[\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx \]
\[\int_a^a f(x) \, dx = 0 \]
\[\int_a^b f(x) \, dx + \int_c^b f(x) \, dx = \int_c^b f(x) \, dx \quad \text{for all } a, b, c \]

Formulas:
\[\int_a^b Cd \, dx = C(b-a) \quad (C \text{ any constant}) \]
\[\int_0^b x \, dx = \frac{1}{2}b^2 \]
\[\int_0^b x^2 \, dx = \frac{1}{3}b^3 \]

Comparison Theorem: If \(f(x) \leq g(x) \) on \([a, b]\), then
\[\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx \]
If \(m \leq f(x) \leq M \) on \([a, b]\), then
\[m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a) \]

5.2 EXERCISES

Preliminary Questions

1. What is \(\int_3^5 \, dx \) [the function is \(f(x) = 1 \)]?

2. Let \(I = \int_2^7 f(x) \, dx \), where \(f \) is continuous. State whether the following are true or false:
 (a) \(I \) is the area between the graph and the \(x \)-axis over \([2, 7]\).
 (b) If \(f(x) \geq 0 \), then \(I \) is the area between the graph and the \(x \)-axis over \([2, 7]\).

3. Explain graphically: \(\int_0^\pi \cos x \, dx = 0 \).

4. Which is negative, \(\int_{-5}^{-1} 8 \, dx \) or \(\int_{-5}^{-1} 8 \, dx \)?

Exercises

In Exercises 1–10, draw a graph of the signed area represented by the integral and compute it using geometry.

1. \(\int_{-3}^3 2x \, dx \)
2. \(\int_{-2}^3 (2x + 4) \, dx \)
3. \(\int_{-2}^1 (3x + 4) \, dx \)
4. \(\int_{-2}^1 4 \, dx \)
5. \(\int_6^8 (7 - x) \, dx \)
6. \(\int_{\pi/2}^{3\pi/2} \sin x \, dx \)
7. \(\int_0^5 \sqrt{25 - x^2} \, dx \)
8. \(\int_{-2}^3 |x| \, dx \)
9. \(\int_{-2}^2 (2 - |x|) \, dx \)
10. \(\int_{-2}^5 (3 + x - 2|x|) \, dx \)

11. Calculate \(\int_0^{10} (8 - x) \, dx \) in two ways:
 (a) As the limit \(\lim_{N \to \infty} R_N \)
 (b) By sketching the relevant signed area and using geometry
12. Calculate \(\int_{-1}^{4} (4x - 8) \, dx \) in two ways:
 (a) As the limit \(\lim_{N \to \infty} R_N \)
 (b) By using geometry

In Exercises 13 and 14, refer to Figure 14.

13. Evaluate: (a) \(\int_{0}^{2} f(x) \, dx \) \(\quad \) (b) \(\int_{0}^{6} f(x) \, dx \)

14. Evaluate: (a) \(\int_{1}^{4} f(x) \, dx \) \(\quad \) (b) \(\int_{1}^{6} |f(x)| \, dx \)

In Exercises 15 and 16, refer to Figure 15.

15. Evaluate \(\int_{0}^{3} g(t) \, dt \) and \(\int_{3}^{5} g(t) \, dt \).

16. Find \(a, b, \) and \(c \) such that \(\int_{0}^{a} g(t) \, dt \) and \(\int_{b}^{c} g(t) \, dt \) are as large as possible.

17. Describe the partition \(P \) and the set of sample points \(C \) for the Riemann sum shown in Figure 16. Compute the value of the Riemann sum.

18. Compute \(R(f, P, C) \) for \(f(x) = x^2 + x \) for the partition \(P \) and the set of sample points \(C \) in Figure 16. [The curve shown is not \(f(x) = x^2 + x \).]

In Exercises 19–22, calculate the Riemann sum \(R(f, P, C) \) for the given function, partition, and choice of sample points. Also, sketch the graph of \(f \) and the rectangles corresponding to \(R(f, P, C) \).

19. \(f(x) = x, \quad P = \{1, 1.2, 1.5, 2\}, \quad C = \{1, 1.1, 1.4, 1.9\} \)

20. \(f(x) = 2x + 3, \quad P = \{-4, -1, 1, 4, 8\}, \quad C = \{-3, 0, 2, 5\} \)

21. \(f(x) = x^2 + x, \quad P = \{2, 3, 4.5, 5\}, \quad C = \{2, 3.5, 5\} \)

22. \(f(x) = \sin x, \quad P = \{0, \frac{\pi}{6}, \frac{\pi}{4}\}, \quad C = \{0.4, 0.7, 1.2\} \)

In Exercises 23–28, sketch the signed area represented by the integral. Indicate the regions of positive and negative area.

23. \(\int_{0}^{\pi/4} (4x - x^2) \, dx \)

24. \(\int_{-\pi/4}^{\pi/4} \tan x \, dx \)

25. \(\int_{-\pi}^{0} \sin x \, dx \)

26. \(\int_{0}^{3\pi} \sin x \, dx \)

27. \(\int_{0}^{6} (|12 - 4x| - 4) \, dx \)

28. \(\int_{-2}^{2} (t^2 - 1)(t^2 - 4) \, dx \)

In Exercises 29–32, determine the sign of the integral without calculating it. Draw a graph if necessary.

29. \(\int_{-2}^{1} x^4 \, dx \)

30. \(\int_{-2}^{1} x^3 \, dx \)

31. \(\int_{0}^{2\pi} x \sin x \, dx \)

32. \(\int_{0}^{2\pi} \sin x \, dx \)

In Exercises 33–42, use properties of the integral and the formulas in the summary to calculate the integrals.

33. \(\int_{0}^{4} (6t - 3) \, dt \)

34. \(\int_{-3}^{2} (4x + 7) \, dx \)

35. \(\int_{0}^{9} x^2 \, dx \)

36. \(\int_{0}^{2} x^2 \, dx \)

37. \(\int_{0}^{1} (u^2 - 2u) \, du \)

38. \(\int_{0}^{1/2} (12y^2 + 6y) \, dy \)

39. \(\int_{-3}^{1} (7r^2 + r + 1) \, dt \)

40. \(\int_{-3}^{3} (9x - 4x^2) \, dx \)

41. \(\int_{-a}^{1} (x^2 + x) \, dx \)

42. \(\int_{a}^{a^2} x^2 \, dx \)

In Exercises 43–47, calculate the integral, assuming that

\[\int_{0}^{5} f(x) \, dx = 5, \quad \int_{0}^{5} g(x) \, dx = 12 \]

43. \(\int_{0}^{5} (f(x) + g(x)) \, dx \)

44. \(\int_{0}^{5} \left(2f(x) - \frac{1}{3}g(x) \right) \, dx \)

45. \(\int_{5}^{0} g(x) \, dx \)

46. \(\int_{0}^{5} (f(x) - x) \, dx \)

47. Is it possible to calculate \(\int_{0}^{5} g(x) f(x) \, dx \) from the information given?
48. Prove by computing the limit of right-endpoint approximations:

\[\int_{0}^{b} x^3 \, dx = \frac{b^4}{4} \]

In Exercises 49–54, evaluate the integral using the formulas in the summary and Eq. (9).

49. \(\int_{0}^{3} x^3 \, dx \)

50. \(\int_{1}^{3} x^3 \, dx \)

51. \(\int_{0}^{1} (x - x^3) \, dx \)

52. \(\int_{0}^{1} (2x^3 - x + 4) \, dx \)

53. \(\int_{0}^{1} (12x^3 + 24x^2 - 8x) \, dx \)

54. \(\int_{-2}^{2} (2x^3 - 3x^2) \, dx \)

In Exercises 55–58, calculate the integral, assuming that

55. \(\int_{0}^{1} f(x) \, dx = 1 \)

56. \(\int_{0}^{2} f(x) \, dx = 4 \)

57. \(\int_{1}^{4} f(x) \, dx = 7 \)

58. \(\int_{4}^{1} f(x) \, dx \)

59. \(\int_{0}^{3} f(x) \, dx + \int_{3}^{7} f(x) \, dx \)

60. \(\int_{2}^{9} f(x) \, dx - \int_{4}^{9} f(x) \, dx \)

61. \(\int_{2}^{9} f(x) \, dx - \int_{2}^{5} f(x) \, dx \)

62. \(\int_{3}^{7} f(x) \, dx + \int_{2}^{9} f(x) \, dx \)

In Exercises 63–66, calculate the integral, assuming that \(f \) is integrable and \(\int_{1}^{b} f(x) \, dx = 1 - b^{-1} \) for all \(b > 0 \).

63. \(\int_{1}^{5} f(x) \, dx \)

64. \(\int_{3}^{5} f(x) \, dx \)

65. \(\int_{1}^{6} (3f(x) - 4) \, dx \)

66. \(\int_{1/2}^{1} f(x) \, dx \)

67. Explain the difference in graphical interpretation between \(\int_{a}^{b} f(x) \, dx \) and \(\int_{a}^{b} |f(x)| \, dx \).

68. Use the graphical interpretation of the definite integral to explain the inequality

\[\left| \int_{a}^{b} f(x) \, dx \right| \leq \int_{a}^{b} |f(x)| \, dx \]

where \(f \) is continuous. Explain also why equality holds if and only if either \(f(x) \geq 0 \) for all \(x \) or \(f(x) \leq 0 \) for all \(x \).

69. Let \(f(x) = x \). Find an interval \([a, b]\) such that

\[\left| \int_{a}^{b} f(x) \, dx \right| = \frac{1}{2} \quad \text{and} \quad \int_{a}^{b} |f(x)| \, dx = \frac{3}{2} \]

70. Evaluate \(I = \int_{0}^{2\pi} \sin^2 x \, dx \) and \(J = \int_{0}^{2\pi} \cos^2 x \, dx \) as follows. First show with a graph that \(I = J \). Then prove that \(I + J = 2\pi \).

In Exercises 71–74, calculate the integral.

71. \(\int_{0}^{6} |3 - x| \, dx \)

72. \(\int_{1}^{3} |2x - 4| \, dx \)

73. \(\int_{-1}^{1} |x^3| \, dx \)

74. \(\int_{0}^{2} |x^2 - 1| \, dx \)

75. Use the Comparison Theorem to show that

\[\int_{0}^{1} x^5 \, dx \leq \int_{0}^{1} x^4 \, dx, \quad \int_{1}^{2} x^4 \, dx \leq \int_{1}^{2} x^5 \, dx \]

76. Prove that \(\frac{1}{3} \leq \int_{1}^{6} \frac{1}{x} \, dx \leq \frac{1}{2} \).

77. Prove that \(0.0198 \leq \int_{0.2}^{0.3} \sin x \, dx \leq 0.0296 \). Hint: Show that \(0.198 \leq \sin x \leq 0.296 \) for \(x \) in \([0.2, 0.3]\).

78. Prove that \(0.277 \leq \int_{\pi/8}^{\pi/4} \cos x \, dx \leq 0.363 \).

79. Prove that \(0 \leq \int_{\pi/4}^{\pi/2} \frac{\sin x}{x} \, dx \leq \frac{\sqrt{2}}{2} \).

80. Find upper and lower bounds for \(\int_{0}^{1} \frac{dx}{\sqrt{5x^3 + 4}} \).

81. Suppose that \(f(x) \leq g(x) \) on \([a, b]\). By the Comparison Theorem, \(\int_{a}^{b} f(x) \, dx \leq \int_{a}^{b} g(x) \, dx \). Is it also true that \(f'(x) \leq g'(x) \)? Explain.

82. State whether true or false. If false, sketch the graph of a counterexample.

(a) If \(f(x) > 0 \), then \(\int_{a}^{b} f(x) \, dx > 0 \).

(b) If \(\int_{a}^{b} f(x) \, dx > 0 \), then \(f(x) > 0 \).

83. Explain graphically: If \(f \) is an odd function, then \(\int_{-a}^{a} f(x) \, dx = 0 \).

84. Compute \(\int_{-1}^{1} (\sin x)(\sin^2 x + 1) \, dx \).

85. Let \(k \) and \(b \) be positive. Show, by comparing the right-endpoint approximations, that

\[\int_{0}^{b} x^k \, dx = b^{k+1} \int_{0}^{1} x^k \, dx \]
86. Suppose that \(f \) and \(g \) are continuous functions such that, for all \(a \),

\[
\int_{-a}^{a} f(x) \, dx = \int_{-a}^{a} g(x) \, dx
\]

Give an intuitive argument showing that \(f(0) = g(0) \). Explain your idea with a graph.

87. Theorem 4 remains true without the assumption \(a \leq b \leq c \). Verify this for the cases \(b < a < c \) and \(c < a < b \).

5.3 The Indefinite Integral

In earlier chapters, we have seen how useful it is to be able to find the derivative of a function. But what about the inverse problem? Given the derivative of an unknown function, find the function itself. For example, in physics we may know the velocity \(v(t) \) (the derivative) and wish to compute the position \(s(t) \) of an object. Since \(s'(t) = v(t) \), this amounts to finding a function whose derivative is \(v(t) \). A function \(F \) whose derivative is \(f \) is called an antiderivative of \(f \).

Antiderivatives

A function \(F \) is an antiderivative of \(f \) on an open interval \((a, b) \) if

\[
F'(x) = f(x)
\]

for all \(x \) in \((a, b) \).

Examples:

- \(F(x) = -\cos x \) is an antiderivative of \(f(x) = \sin x \) because for all values of \(x \),

\[
F'(x) = \frac{d}{dx} (-\cos x) = \sin x = f(x)
\]

- \(F(x) = \frac{1}{2} x^3 \) is an antiderivative of \(f(x) = x^2 \) because for all values of \(x \),

\[
F'(x) = \frac{d}{dx} \left(\frac{1}{2} x^3 \right) = x^2 = f(x)
\]

One critical observation is that antiderivatives are not unique. We are free to add a constant \(C \) because the derivative of a constant is zero, and so, if \(F'(x) = f(x) \), then \((F(x) + C)' = f(x) \). For example, each of the following is an antiderivative of \(x^2 \):

\[
\frac{1}{3} x^3, \quad \frac{1}{3} x^3 + 5, \quad \frac{1}{3} x^3 - 4
\]

Are there any antiderivatives of \(f \) other than those obtained by adding a constant to a given antiderivative \(F \)? Our next theorem says that the answer is no if \(f \) is defined on an open interval \((a, b) \).

Theorem 1 The General Antiderivative

Let \(y = F(x) \) be an antiderivative of \(y = f(x) \) on \((a, b) \). Then every other antiderivative on \((a, b) \) is of the form \(y = F(x) + C \) for some constant \(C \).

Proof

If \(y = G(x) \) is a second antiderivative of \(y = f(x) \), set \(H(x) = G(x) - F(x) \). Then \(H'(x) = G'(x) - F'(x) = f(x) - f(x) = 0 \). By the Corollary to the Mean Value Theorem in Section 4.3, \(H(x) \) must be a constant—say, \(H(x) = C \)—and therefore \(G(x) = F(x) + C \).

Graphical Insight

The graph of \(y = F(x) + C \) is obtained by shifting the graph of \(y = F(x) \) vertically by \(C \) units. Since vertical shifting moves the tangent lines without changing their slopes, it makes sense that all of the functions \(y = F(x) + C \) have the same derivative (Figure 1). Theorem 1 tells us that conversely, if two graphs have parallel tangent lines, then one graph is obtained from the other by a vertical shift.
We often describe the general antiderivative of a function in terms of an arbitrary constant \(C \), as in the following example.

Example 1 Find two antiderivatives of \(f(x) = \cos x \). Then determine the general antiderivative.

Solution The functions \(F(x) = \sin x \) and \(G(x) = \sin x + 2 \) are both antiderivatives of \(f(x) = \cos x \). The general antiderivative is \(F(x) = \sin x + C \), where \(C \) is any constant.

The process of finding an antiderivative is called integration. We will see why in the next section, when we discuss the connection between antiderivatives and areas under curves given by the Fundamental Theorem of Calculus. Anticipating this result, we begin using the integral sign \(\int \), the standard notation for antiderivatives.

Notation Indefinite Integral

The notation

\[
\int f(x) \, dx = F(x) + C
\]

means that \(F'(x) = f(x) \).

We say that \(y = F(x) + C \) is the general antiderivative or indefinite integral of \(y = f(x) \).

The expression \(f(x) \) appearing in the integral sign is called the integrand. The symbol \(dx \) is a differential. It is part of the integral notation and serves to indicate the independent variable. The constant \(C \) is called the constant of integration.

Some indefinite integrals can be evaluated by reversing the familiar derivative formulas. For example, we obtain the indefinite integral of \(y = x^n \) by reversing the Power Rule for derivatives.

Theorem 2 Power Rule for Integrals

\[
\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1
\]

Proof We just need to verify that \(F(x) = \frac{x^{n+1}}{n+1} + C \) is an antiderivative of \(f(x) = x^n \):

\[
F'(x) = \frac{d}{dx} \left(\frac{x^{n+1}}{n+1} + C \right) = \frac{1}{n+1} ((n+1)x^n) = x^n
\]

In words, the Power Rule for Integrals says that to integrate a power of \(x \), “add one to the exponent and then divide by the new exponent.” Here are some examples:

\[
\int x^5 \, dx = \frac{1}{6} x^6 + C, \quad \int x^{-9} \, dx = -\frac{1}{8} x^{-8} + C, \quad \int x^{3/5} \, dx = \frac{5}{8} x^{8/5} + C
\]

The Power Rule is not valid for \(n = -1 \). In fact, for \(n = -1 \), we obtain the meaningless result

\[
\int x^{-1} \, dx = \frac{x^{0+1}}{n+1} + C = \frac{x^0}{0} + C \quad \text{(meaningless)}
\]

It turns out that the antiderivative of \(f(x) = x^{-1} \) is the natural logarithm. We will prove this in Section 7.3.
The indefinite integral obeys the usual linearity rules that allow us to integrate “term by term.” These rules follow from the linearity rules for the derivative (see Exercise 81).

THEOREM 3 Linearity of the Indefinite Integral

- **Sum Rule:** \[\int (f(x) + g(x)) \, dx = \int f(x) \, dx + \int g(x) \, dx \]
- **Multiples Rule:** \[\int cf(x) \, dx = c \int f(x) \, dx \]

EXAMPLE 2 Evaluate \(\int (3x^4 - 5x^{2/3} + x^{-3}) \, dx \).

Solution We integrate term by term and use the Power Rule:

\[
\int (3x^4 - 5x^{2/3} + x^{-3}) \, dx = \int 3x^4 \, dx - \int 5x^{2/3} \, dx + \int x^{-3} \, dx \\
= 3 \int x^4 \, dx - 5 \int x^{2/3} \, dx + \int x^{-3} \, dx \\
= 3 \left(\frac{x^5}{5} \right) - 5 \left(\frac{x^{5/3}}{5/3} \right) + \frac{x^{-2}}{-2} + C \\
= \frac{3}{5} x^5 - \frac{3}{5} x^{5/3} - \frac{1}{2} x^{-2} + C
\]

To check the answer, we verify that the derivative is equal to the integrand:

\[
\frac{d}{dx} \left(\frac{3}{5} x^5 - \frac{3}{5} x^{5/3} - \frac{1}{2} x^{-2} + C \right) = 3x^4 - 5x^{2/3} + x^{-3}
\]

EXAMPLE 3 Evaluate \(\int \left(\frac{5}{x^2} - 3x^{-10} \right) \, dx \).

Solution

\[
\int \left(\frac{5}{x^2} - 3x^{-10} \right) \, dx = 5 \int \frac{dx}{x^2} - 3 \int x^{-10} \, dx \\
= 5 (x^{-1}) - 3 \left(\frac{x^{-9}}{-9} \right) + C \\
= 5x^{-1} - \frac{1}{3} x^{-9} + C
\]

The differentiation formulas for the trigonometric functions give us the following integration formulas. Each formula can be checked by differentiation.

Basic Trigonometric Integrals

\[
\int \sin x \, dx = -\cos x + C, \quad \int \cos x \, dx = \sin x + C \\
\int \sec^2 x \, dx = \tan x + C, \quad \int \csc^2 x \, dx = -\cot x + C \\
\int \sec x \tan x \, dx = \sec x + C, \quad \int \csc x \cot x \, dx = -\csc x + C
\]

Similarly, for any constant \(k \neq 0 \), the formulas

\[
\frac{d}{dx} \sin(kx) = k \cos(kx), \quad \frac{d}{dx} \cos(kx) = -k \sin(kx)
\]
translate to the following indefinite integral formulas:

\[
\int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \\
\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C
\]

- **Example 4** Evaluate \(\int (\sin 8t + 20 \cos 9t) \, dt \).

Solution

\[
\int (\sin 8t + 20 \cos 9t) \, dt = \int \sin 8t \, dt + 20 \int \cos 9t \, dt \\
= -\frac{1}{8} \cos 8t + \frac{20}{9} \sin 9t + C
\]

Initial Conditions

We can think of an antiderivative as a solution to the differential equation

\[
\frac{dy}{dx} = f(x)
\]

In general, a differential equation is an equation relating an unknown function and its derivatives. The unknown in Eq. (1) is a function \(y = F(x) \) whose derivative is \(f(x) \); that is, \(y = F(x) \) is an antiderivative of \(y = f(x) \).

Eq. (1) has infinitely many solutions (because the antiderivative is not unique), but we can specify a particular solution by imposing an initial condition—that is, by requiring that the solution satisfy \(y(x_0) = y_0 \) for some fixed values \(x_0 \) and \(y_0 \). A differential equation with an initial condition is called an initial value problem.

- **Example 5** Solve \(\frac{dy}{dx} = 4x^7 \) subject to the initial condition \(y(0) = 4 \).

Solution First, find the general antiderivative:

\[
y(x) = \int 4x^7 \, dx = \frac{1}{2} x^8 + C
\]

Then choose \(C \) so that the initial condition is satisfied: \(y(0) = 0 + C = 4 \). This yields \(C = 4 \), and our solution is \(y = \frac{1}{2} x^8 + 4 \).

- **Example 6** Solve the initial value problem \(\frac{dy}{dt} = \sin(\pi t) \), \(y(2) = 2 \).

Solution First, find the general antiderivative:

\[
y(t) = \int \sin(\pi t) \, dt = -\frac{1}{\pi} \cos(\pi t) + C
\]

Then solve for \(C \) by evaluating at \(t = 2 \):

\[
y(2) = -\frac{1}{\pi} \cos(2\pi) + C = 2 \quad \Rightarrow \quad C = 2 + \frac{1}{\pi}
\]

The solution of the initial value problem is \(y(t) = -\frac{1}{\pi} \cos(\pi t) + 2 + \frac{1}{\pi} \).

- **Example 7** A car traveling with velocity 24 m/s begins to slow down at time \(t = 0 \) s with a constant deceleration of \(a = -6 \) m/s\(^2\). Find (a) the velocity \(v(t) \) at time \(t \), and (b) the distance traveled before the car comes to a halt.
\textbf{Solution (a)} The derivative of velocity is acceleration, so \textit{velocity is the antiderivative of acceleration}:

\[v(t) = \int a \, dt = \int (-6) \, dt = -6t + C \]

The initial condition \(v(0) = C = 24 \, \text{m/s} \) gives us \(v(t) = -6t + 24 \).

\textbf{(b)} Position is the antiderivative of velocity, so the car’s position in meters is

\[s(t) = \int v(t) \, dt = \int (-6t + 24) \, dt = -3t^2 + 24t + C_1 \]

where \(C_1 \) is a constant. We are not told where the car is at \(t = 0 \), so let us set \(s(0) = 0 \) for convenience, obtaining \(C_1 = 0 \). With this choice, \(s(t) = -3t^2 + 24t \). This is the distance traveled from time \(t = 0 \).

The car comes to a halt when its velocity is zero, so we solve

\[v(t) = -6t + 24 = 0 \quad \Rightarrow \quad t = 4 \, \text{s} \]

The distance traveled before coming to a halt is \(s(4) = -3(4^2) + 24(4) = 48 \, \text{m} \).

\section*{5.3 SUMMARY}

- \(F \) is called an \textit{antiderivative} of \(f \) if \(F'(x) = f(x) \).
- Any two antiderivatives of \(f \) on an interval \((a, b)\) differ by a constant.
- The general antiderivative is denoted by the indefinite integral:

\[\int f(x) \, dx = F(x) + C \]

- Integration formulas:

\[\int 0 \, dx = C \]

\[\int k \, dx = kx + C \quad (k \neq 0) \]

\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1) \]

\[\int \sin(kx) \, dx = -\frac{1}{k} \cos(kx) + C \quad (k \neq 0) \]

\[\int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \quad (k \neq 0) \]

\[\int cf(x) \, dx = c \int f(x) \, dx \]

\[\int f(x) + g(x) \, dx = \int f(x) \, dx + \int g(x) \, dx \]

- To solve an initial value problem \(\frac{dy}{dx} = f(x), \ y(x_0) = y_0 \), first find the general antiderivative \(y = F(x) + C \). Then determine \(C \) using the initial condition \(F(x_0) + C = y_0 \).

\section*{5.3 EXERCISES}

\textbf{Preliminary Questions}

1. Find an antiderivative of the function \(f(x) = 0 \).
2. Is there a difference between finding the general antiderivative of a function \(f \) and evaluating \(\int f(x) \, dx \)?
3. Jacques was told that \(f \) and \(g \) have the same derivative, and he wonders whether \(f(x) = g(x) \). Does Jacques have sufficient information to answer his question?
4. Suppose that \(F'(x) = f(x) \) and \(G'(x) = g(x) \). Which of the following statements are true? Explain.
(a) If \(f = g \), then \(F = G \).
(b) If \(F \) and \(G \) differ by a constant, then \(f = g \).
(c) If \(f \) and \(g \) differ by a constant, then \(F = G \).

Exercises
In Exercises 1–8, find the general antiderivative of \(f \) and check your answer by differentiating.

1. \(f(x) = 18x^2 \)
2. \(f(x) = x^{-3/5} \)
3. \(f(x) = 2x^4 - 24x^2 + 12x^{-1} \)
4. \(f(x) = 9x + 15x^{-2} \)
5. \(f(x) = 2 \cos x - 9 \sin x \)
6. \(f(x) = 4x^7 - 3 \cos x \)
7. \(f(x) = \sin 2x + 12 \cos 3x \)
8. \(f(x) = \sin (4 - 9x) \)

9. Match functions (a)–(d) with their antiderivatives (i)–(iv).
 (a) \(f(x) = \sin x \)
 (i) \(F(x) = \cos (1 - x) \)
 (b) \(f(x) = x \sin (x^2) \)
 (ii) \(F(x) = -\cos x \)
 (c) \(f(x) = \sin (1 - x) \)
 (iii) \(F(x) = -\frac{1}{2} \cos (x^2) \)
 (d) \(f(x) = x \sin x \)
 (iv) \(F(x) = \sin x - x \cos x \)

In Exercises 10–38, evaluate the indefinite integral.

10. \(\int (9x + 2) \, dx \)
11. \(\int (4 - 18x) \, dx \)
12. \(\int x^{-3} \, dx \)
13. \(\int t^{-6/11} \, dt \)
14. \(\int (5t^3 - t^{-3}) \, dt \)
15. \(\int (18t^5 - 10t^4 - 28t) \, dt \)
16. \(\int 14x^{9/5} \, dx \)
17. \(\int (x^{-4/5} - x^{2/3} + 5^{1/4}) \, dz \)
18. \(\int \frac{3}{2} \, dx \)
19. \(\int \frac{1}{\sqrt{x}} \, dx \)
20. \(\int \frac{dx}{x^{3/2}} \)
21. \(\int \frac{36 \, dt}{t^3} \)
22. \(\int x(x^2 - 4) \, dx \)
23. \(\int (t^{1/2} + 1)(t + 1) \, dt \)
24. \(\int \frac{12 - z}{\sqrt{z}} \, dz \)
25. \(\int \frac{x^3 + 3x - 4}{x^2} \, dx \)
26. \(\int \left(\frac{1}{3} \sin x - \frac{1}{4} \cos x \right) \, dx \)
27. \(\int 12 \sec x \tan x \, dx \)
28. \(\int (\theta + \sec^2 \theta) \, d\theta \)
29. \(\int (\csc t \cot t) \, dt \)
30. \(\int \sin (7t) \, dx \)
31. \(\int \sec^2 (-3\theta) \, d\theta \)
32. \(\int (\theta - \cos (-\theta)) \, d\theta \)
33. \(\int 25 \sec^2 (3z) \, dz \)
34. \(\int \sec x \tan x \, dx \)
35. \(\int \sec 12t \tan 12t \, dt \)
36. \(\int 5 \cos (4\theta + 3) \, d\theta \)
37. \(\int \sec 4x (3 \sec 4x - 5 \tan 4x) \, dx \)
38. \(\int \sec (x + 5) \tan (x + 5) \, dx \)
39. \(\int \left(\cos (3\theta) - \frac{1}{2} \sec^2 \left(\frac{\theta}{4} \right) \right) \, d\theta \)
40. In Figure 2, is graph (A) or graph (B) the graph of an antiderivative of \(y = f(x) \)?

41. In Figure 3, which of graphs (A), (B), and (C) is not the graph of an antiderivative of \(y = f(x) \)? Explain.

42. Show that \(F(x) = \frac{1}{4}(x + 13)^3 \) is an antiderivative of \(f(x) = (x + 13)^2 \).

In Exercises 43–46, verify by differentiation.

43. \(\int (x + 13)^6 \, dx = \frac{1}{7}(x + 13)^7 + C \)
44. \(\int (x + 13)^5 \, dx = -\frac{1}{4}(x + 13)^{-4} + C \)
45. \(\int (4x + 13)^2 \, dx = \frac{1}{12}(4x + 13)^3 + C \)
46. \(\int (ax + by)^n \, dx = \frac{1}{a(n + 1)}(ax + by)^{n+1} + C \) (for \(n \neq -1 \))

In Exercises 47–62, solve the initial value problem.
47. \(\frac{dy}{dx} = x^3, \ y(0) = 4 \)
48. \(\frac{dy}{dt} = 3 - 2t, \ y(0) = -5 \)
49. \(\frac{dy}{dt} = 2t + 9e^2, \ y(1) = 2 \)
50. \(\frac{dy}{dx} = 8x^3 + 3x^2 \), \(y(2) = 0 \)
51. \(\frac{dy}{dt} = \sqrt{t} \), \(y(1) = 1 \)
52. \(\frac{dz}{dt} = t^{-3/2} \), \(z(4) = -1 \)
53. \(\frac{dy}{dx} = (3x + 2)^3 \), \(y(0) = 1 \)
54. \(\frac{dy}{dt} = (4t + 3)^{-2} \), \(y(1) = 0 \)
55. \(\frac{dy}{dx} = \sin x \), \(y \left(\frac{\pi}{2} \right) = 1 \)
56. \(\frac{dy}{dx} = \sin 2x \), \(y \left(\frac{\pi}{4} \right) = 4 \)
57. \(\frac{dy}{dx} = \cos 5x \), \(y(\pi) = 3 \)
58. \(\frac{dy}{dx} = \sec^2 3x \), \(y \left(\frac{\pi}{4} \right) = 2 \)
59. \(\frac{dy}{d\theta} = 6 \sec 3\theta \tan 3\theta \), \(y \left(\frac{\pi}{12} \right) = -4 \)
60. \(\frac{dy}{dt} = 4t - \sin 2t \), \(y(0) = 2 \)
61. \(\frac{dy}{d\theta} = \cos \left(3\pi - \frac{1}{2} \theta \right) \), \(y(3\pi) = 8 \)
62. \(\frac{dy}{dx} = \frac{1}{x^2} - \csc^2 x \), \(y \left(\frac{\pi}{2} \right) = 0 \)

In Exercises 63–69, first find \(f' \) and then find \(f \).
63. \(f'''(x) = 12x \), \(f'(0) = 1 \), \(f(0) = 2 \)
64. \(f'''(x) = x^3 - 2x \), \(f'(1) = 0 \), \(f(1) = 2 \)
65. \(f'''(x) = x^3 - 2x + 1 \), \(f'(0) = 1 \), \(f(0) = 0 \)
66. \(f'''(x) = x^3 - 2x + 1 \), \(f'(1) = 0 \), \(f(1) = 4 \)
67. \(f''(t) = t^{-3/2} \), \(f'(4) = 1 \), \(f(4) = 4 \)
68. \(f'''(\theta) = \cos \theta \), \(f' \left(\frac{\pi}{2} \right) = 1 \), \(f \left(\frac{\pi}{2} \right) = 6 \)
69. \(f'''(t) = \cos t \), \(f'(0) = 2 \), \(f(0) = -2 \)

70. Show that \(F(x) = \tan^2 x \) and \(G(x) = \sec^2 x \) have the same derivative. What can you conclude about the relation between \(F \) and \(G \)? Verify this conclusion directly.

Further Insights and Challenges

82. Find constants \(c_1 \) and \(c_2 \) such that \(F(x) = c_1 x \sin x + c_2 \cos x \) is an antiderivative of \(f(x) = x \cos x \).
83. Find constants \(c_1 \) and \(c_2 \) such that \(F(x) = c_1 x \cos x + c_2 \sin x \) is an antiderivative of \(f(x) = x \sin x \).
84. Suppose that \(F'(x) = f(x) \) and \(G'(x) = g(x) \). Is it true that \(y = F(x) + G(x) \) is an antiderivative of \(y = f(x)g(x) \)? Confirm or provide a counterexample.
85. Suppose that \(F'(x) = f(x) \).
 (a) Show that \(y = \frac{1}{2} F(2x) \) is an antiderivative of \(y = f(2x) \).
 (b) Find the general antiderivative of \(y = f(kx) \) for \(k \neq 0 \).
86. Find an antiderivative for \(f(x) = |x| \).
87. Using Theorem 1, prove that if \(F'(x) = f(x) \), where \(f \) is a polynomial of degree \(n - 1 \), then \(F \) is a polynomial of degree \(n \). Then prove that if \(g \) is any function such that \(g^{(n)}(x) = 0 \), then \(g \) is a polynomial of degree at most \(n \).
88. The Power Rule for antiderivatives does not apply to \(f(x) = x^{-1} \). Which of the graphs in Figure 4 could plausibly represent an antiderivative of \(f(x) = x^{-1} \)?

![Figure 4](image-url)
5.4 The Fundamental Theorem of Calculus, Part I

Having so far introduced both derivatives and integrals, a very reasonable question is why they appear together in this topic called Calculus. The answer is the Fundamental Theorem of Calculus (FTC), which is one of the most important theorems in all of mathematics. This foundational result reveals an unexpected connection between the two main operations of calculus: differentiation and integration. The theorem has two parts. Although they are closely related, we discuss them in separate sections to emphasize the different ways they are used. The first part of the Fundamental Theorem of Calculus will allow us to compute definite integrals without having to take limits of Riemann sums.

REMINDER

\[F is called an \textit{antiderivative} of \ f \ if \ F'(x) = f(x). \ We say also that \ F \ is an \textit{indefinite integral} of \ f, \ and we use the notation \ \int f(x) \, dx = F(x) + C. \]

To explain FTC I, recall a result from Example 5 of Section 5.2:

\[\int_{4}^{7} x^2 \, dx = \left(\frac{1}{3} \right) 7^3 - \left(\frac{1}{3} \right) 4^3 = 93 \]

Now observe that \(F(x) = \frac{1}{3} x^3 \) is an antiderivative of \(f(x) = x^2 \), so we can write

\[\int_{4}^{7} x^2 \, dx = F(7) - F(4) \]

According to FTC I, this is no coincidence; this relation between the definite integral and the antiderivative holds in general.

THEOREM 1 The Fundamental Theorem of Calculus, Part I

Assume that \(f \) is continuous on \([a, b]\). If \(F \) is an antiderivative of \(f \) on \([a, b]\), then

\[\int_{a}^{b} f(x) \, dx = F(b) - F(a) \]

Proof

The quantity \(F(b) - F(a) \) is the total change in \(F \) (also called the “net change”) over the interval \([a, b]\). Our task is to relate it to the integral of \(F'(x) = f(x) \). There are two main steps.

Step 1. Write total change as a sum of small changes.

Given any partition \(P \) of \([a, b]\):

\[P : x_0 = a < x_1 < x_2 < \ldots < x_N = b \]

we can break up \(F(b) - F(a) \) as a sum of changes over the intervals \([x_{i-1}, x_i]\):

\[F(b) - F(a) = (F(x_1) - F(a)) + (F(x_2) - F(x_1)) + \cdots + (F(b) - F(x_{N-1})) \]

On the right-hand side, \(F(x_1) \) is canceled by \(-F(x_1)\) in the second term, \(F(x_2) \) is canceled by \(-F(x_2)\), etc. (Figure 1). In summation notation,

\[F(b) - F(a) = \sum_{i=1}^{N} (F(x_i) - F(x_{i-1})) \]

FIGURE 1 Note the cancellation when we write \(F(b) - F(a) \) as a sum of small changes \(F(x_i) - F(x_{i-1}) \).

\[y = F(x) \]

\[F(b) - F(a) \]

\[F(x_1) - F(x_0) \]

\[F(x_2) - F(x_1) \]

\[F(x_N - 1) - F(x_{N-1}) \]

\[x = x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ b = x_4 \]
Step 2. Interpret Eq. (2) as a Riemann sum.

The Mean Value Theorem tells us that there is a point c^*_i in $[x_{i-1}, x_i]$ such that

$$F(x_i) - F(x_{i-1}) = F'(c^*_i)(x_i - x_{i-1}) = f(c^*_i)(x_i - x_{i-1}) = f(c^*_i) \Delta x_i$$

Therefore, Eq. (2) can be written

$$F(b) - F(a) = \sum_{i=1}^{N} f(c^*_i) \Delta x_i$$

This sum is the Riemann sum $R(f, P, C^*)$ with sample points $C^* = \{c^*_i\}$.

Now, f is integrable (Theorem 1, Section 5.2), so $R(f, P, C^*)$ approaches $\int_a^b f(x) \, dx$ as the norm $\|P\|$ tends to zero. On the other hand, $R(f, P, C^*)$ is equal to $F(b) - F(a)$ with our particular choice C^* of sample points. This proves the desired result:

$$F(b) - F(a) = \lim_{\|P\| \to 0} R(f, P, C^*) = \int_a^b f(x) \, dx$$

CONCEPTUAL INSIGHT A Tale of Two Graphs In the proof of FTC I, we used the MVT to write a small change in $F(x)$ in terms of the derivative $F'(x) = f(x)$:

$$F(x_i) - F(x_{i-1}) = f(c^*_i) \Delta x_i$$

But $f(c^*_i) \Delta x_i$ is the area of a thin rectangle that approximates a sliver of area under the graph of f (Figure 2). **This is the essence of the Fundamental Theorem:** the total change $F(b) - F(a)$ is equal to the sum of small changes $F(x_i) - F(x_{i-1})$, which in turn is equal to the sum of the areas of rectangles in a Riemann sum approximation for $f(x)$. We derive the Fundamental Theorem itself by taking the limit as the width of the rectangles tends to zero.

FIGURE 2

FTC I tells us that if we can find an antiderivative of f, then we can compute the definite integral easily, without calculating any limits. It is for this reason that we use the integral sign \int for both the definite integral $\int_a^b f(x) \, dx$ and the indefinite integral (antiderivative) $\int f(x) \, dx$.

Notation $F(b) - F(a)$ is denoted $F(x)|^b_a$.

In this notation, the FTC reads

$$\int_a^b f(x) \, dx = F(x)|^b_a$$
EXAMPLE 1 Calculate the area under the graph of \(f(x) = x^3 \) over \([2, 4]\).

Solution Since \(F(x) = \frac{1}{4}x^4 \) is an antiderivative of \(f(x) = x^3 \), FTC I gives us

\[
\int_2^4 x^3 \, dx = F(4) - F(2) = \frac{1}{4}x^4 \bigg|_2^4 = \frac{1}{4}4^4 - \frac{1}{4}2^4 = 60
\]

EXAMPLE 2 Find the area under \(g(x) = x^{-3/4} + 3x^{5/3} \) over \([1, 3]\).

Solution The function \(G(x) = 4x^{1/4} + \frac{9}{8}x^{8/3} \) is an antiderivative of \(g \). The area (Figure 3) is equal to

\[
\int_1^3 (x^{-3/4} + 3x^{5/3}) \, dx = G(x) \bigg|_1^3 = \left(4x^{1/4} + \frac{9}{8}x^{8/3} \right) \bigg|_1^3
\]

\[
= \left(4 \cdot 3^{1/4} + \frac{9}{8} \cdot 3^{8/3} \right) - \left(4 \cdot 1^{1/4} + \frac{9}{8} \cdot 1^{8/3} \right)
\]

\[
\approx 26.325 - 5.125 = 21.2
\]

EXAMPLE 3 Calculate \(\int_{-\pi/4}^{\pi/4} \sec^2 x \, dx \) and sketch the corresponding region.

Solution Figure 4 shows the region. Recall that \((\tan x)' = \sec^2 x \). Therefore,

\[
\int_{-\pi/4}^{\pi/4} \sec^2 x \, dx = \tan x \bigg|_{-\pi/4}^{\pi/4} = \tan \left(\frac{\pi}{4} \right) - \tan \left(-\frac{\pi}{4} \right) = 1 - (-1) = 2
\]

We know that the definite integral is equal to the signed area between the graph and the \(x \)-axis. Needless to say, the FTC “knows” this also: When you evaluate an integral using the FTC, you obtain the signed area.

EXAMPLE 4 Evaluate (a) \(\int_0^\pi \sin x \, dx \) and (b) \(\int_0^{2\pi} \sin x \, dx \).

Solution

(a) Since \((-\cos x)' = \sin x \), the area of one “hump” (Figure 5) is

\[
\int_0^\pi \sin x \, dx = -\cos x \bigg|_0^\pi = -\cos \pi - (-\cos 0) = (-1) - (-1) = 2
\]

(b) We expect the signed area over \([0, 2\pi]\) to be zero since the second hump lies below the \(x \)-axis, and indeed,

\[
\int_0^{2\pi} \sin x \, dx = -\cos x \bigg|_0^{2\pi} = (-\cos(2\pi)) - (-\cos 0) = -1 - (-1) = 0
\]

EXAMPLE 5 Evaluate \(\int_{-1}^4 (4 - 2t) \, dt \).

Solution The function \(F(t) = 4t - t^2 \) is an antiderivative of \(f(t) = 4 - 2t \), to the definite integral (the signed area under the graph in Figure 6) is

\[
\int_{-1}^4 (4 - 2t) \, dt = (4t - t^2) \bigg|_{-1}^4 = (4 \cdot 4 - 4^2) - \left(4 \cdot (-1) - (-1)^2 \right) = 0 - (-5) = 5
\]
CONCEPTUAL INSIGHT Which Antiderivative? Antiderivatives are unique only to within an additive constant (Section 5.3). Does it matter which antiderivative is used in the FTC? The answer is no. If \(F \) and \(G \) are both antiderivatives of \(f \), then \(F(b) - F(a) = (G(b) + C) - (G(a) + C) = G(b) - G(a) \)

The constant cancels

The two antiderivatives yield the same value for the definite integral:

\[
\int_a^b f(x) \, dx = F(b) - F(a) = G(b) - G(a)
\]

5.4 SUMMARY

- The Fundamental Theorem of Calculus, Part I, states that
 \[
 \int_a^b f(x) \, dx = F(b) - F(a)
 \]
 where \(F \) is an antiderivative of \(f \). FTC I is used to evaluate definite integrals in cases where we can find an antiderivative of the integrand.
- Basic antiderivative formulas for evaluating definite integrals:
 \[
 \begin{align*}
 \int x^n \, dx &= \frac{x^{n+1}}{n+1} + C \quad \text{for } n \neq -1 \\
 \int \sin x \, dx &= -\cos x + C, \quad \int \cos x \, dx = \sin x + C \\
 \int \sec^2 x \, dx &= \tan x + C, \quad \int \csc^2 x \, dx = -\cot x + C \\
 \int \sec x \tan x \, dx &= \sec x + C, \quad \int \csc x \cot x \, dx = -\csc x + C
 \end{align*}
 \]

5.4 EXERCISES

Preliminary Questions

1. Suppose that \(F'(x) = f(x) \) and \(F(0) = 3, F(2) = 7 \).
 (a) FTC I is valid only for positive functions.
 (b) To use FTC I, you have to choose the right antiderivative.
 (c) If you cannot find an antiderivative of \(f \), then the definite integral does not exist.

2. Suppose that \(f \) is a negative function with antiderivative \(F \) such that \(F(1) = 7 \) and \(F(3) = 4 \). What is the area (a positive number) between the \(x \)-axis and the graph of \(f \) over \([1, 3]\)?

3. Are the following statements true or false? Explain.

Exercises

In Exercises 1–4, sketch the region under the graph of the function and find its area using FTC I.

1. \(f(x) = x^2 \), \([0, 1]\)
2. \(f(x) = 2x - x^2 \), \([0, 2]\)
3. \(f(x) = x^{-2} \), \([1, 2]\)
4. \(f(x) = \cos x \), \([0, \frac{\pi}{2}]\)

In Exercises 5–32, evaluate the integral using FTC I.

5. \(\int_3^6 x \, dx \)
6. \(\int_0^9 2 \, dx \)
7. \(\int_0^1 (4x - 9x^2) \, dx \)
8. \(\int_{-3}^2 u^2 \, du \)
9. \(\int_0^2 (12x^5 + 3x^2 - 4x) \, dx \)
10. \(\int_{-2}^2 (10x^9 + 3x^5) \, dx \)
11. \(\int_3^0 (2t^3 - 6t^2) \, dt \)
12. \(\int_{-1}^1 (5u^4 + u^2 - u) \, du \)
13. \(\int_0^4 \sqrt[3]{y} \, dy \)
14. \(\int_1^8 x^{4/3} \, dx \)
15. \(\int_{1/16}^{1} t^{1/4} \, dt \)
16. \(\int_{4}^{1} t^{5/2} \, dt \)
17. \(\int_{1}^{3} \frac{dt}{t^2} \)
18. \(\int_{1}^{4} x^{-4} \, dx \)
19. \(\int_{1/2}^{8} \frac{dx}{x^3} \)
20. \(\int_{-2}^{1} \frac{1}{x^3} \, dx \)
21. \(\int_{1}^{2} (x^2 - x^{-2}) \, dx \)
22. \(\int_{1}^{9} t^{-1/2} \, dt \)
23. \(\int_{1}^{27} \frac{t + 1}{\sqrt{t}} \, dt \)
24. \(\int_{1/8}^{10r^{4/3} - 8r^{1/3}} \frac{1}{t^2} \, dt \)
25. \(\int_{0}^{3\pi/4} \sin \theta \, d\theta \)
26. \(\int_{0}^{4\pi/2} \sin x \, dx \)
27. \(\int_{0}^{\pi/2} \cos \left(\frac{1}{3} \theta \right) \, d\theta \)
28. \(\int_{\pi/3}^{5\pi/3} \cos 2x \, dx \)
29. \(\int_{0}^{\pi/6} \sec^2 \left(3t - \frac{\pi}{6} \right) \, dt \)
30. \(\int_{0}^{\pi/3} \sec \theta \tan \theta \, d\theta \)
31. \(\int_{\pi/20}^{\pi/10} \csc 5x \cot 5x \, dx \)
32. \(\int_{\pi/28}^{\pi/14} \csc^2 7y \, dy \)

In Exercises 33–38, write the integral as a sum of integrals without absolute values and evaluate.

33. \(\int_{-2}^{1} |x| \, dx \)
34. \(\int_{0}^{5} |3 - x| \, dx \)
35. \(\int_{-2}^{3} |x^3| \, dx \)
36. \(\int_{0}^{3} |x^2 - 1| \, dx \)
37. \(\int_{0}^{\pi} |\cos x| \, dx \)
38. \(\int_{0}^{5} |x^2 - 4x + 3| \, dx \)

In Exercises 39–42, evaluate the integral in terms of the constants.

39. \(\int_{1}^{b} x^3 \, dx \)
40. \(\int_{a}^{b} x^4 \, dx \)
41. \(\int_{1}^{b} x^5 \, dx \)
42. \(\int_{-x}^{x} (t^3 + r) \, dt \)

43. Calculate \(\int_{-2}^{3} f(x) \, dx \), where
\[
f(x) = \begin{cases}
12 - x^2 & \text{for } x \leq 2 \\
x^3 & \text{for } x > 2
\end{cases}
\]
44. Calculate \(\int_{0}^{2\pi} f(x) \, dx \), where
\[
f(x) = \begin{cases}
\cos x & \text{for } x \leq \pi \\
\cos x - \sin 2x & \text{for } x > \pi
\end{cases}
\]
45. Use FTC I to show that \(\int_{-1}^{1} x^n \, dx = 0 \) if \(n \) is an odd whole number. Explain graphically.
46. CAS Plot the function \(f(x) = \sin 3x - x \). Find the positive root of \(f \) to three decimal places and use it to find the area under the graph of \(f \) in the first quadrant.
47. Calculate \(F(4) \) given that \(F(1) = 3 \) and \(F'(x) = x^2 \). Hint: Express \(F(4) - F(1) \) as a definite integral.
48. Calculate \(G(16) \), where \(dG/dt = t^{-1/2} \) and \(G(9) = -5 \).
49. Does \(\int_{0}^{1} x^n \, dx \) get larger or smaller as \(n \) increases? Explain graphically.
50. Show that the area of the shaded parabolic arch in Figure 7 is equal to four-thirds the area of the triangle shown.

Further Insights and Challenges

51. Prove a famous result of Archimedes (generalizing Exercise 50): For \(r < s \), the area of the shaded region in Figure 8 is equal to four-thirds the area of triangle \(\triangle ACE \), where \(C \) is the point on the parabola at which the tangent line is parallel to secant line \(\overline{AE} \).

(a) Show that \(C \) has \(x \)-coordinate \((r + s)/2 \).

(b) Show that \(ABDE \) has area \((s - r)^3/4 \) by viewing it as a parallelogram of height \(s - r \) and base of length \(CF \).

(c) Show that \(\triangle ACE \) has area \((s - r)^3/8 \) by observing that it has the same base and height as the parallelogram.

(d) Compute the shaded area as the area under the graph minus the area of a trapezoid, and prove Archimedes’s result.

52. (a) Apply the Comparison Theorem (Theorem 5 in Section 5.2) to the inequality \(\sin x \leq x \) (valid for \(x \geq 0 \)) to prove that
\[
1 - x^2 \leq \cos x \leq 1
\]
(b) Apply it again to prove that
\[
x - \frac{x^3}{6} \leq \sin x \leq x \quad \text{(for } x \geq 0 \text{)}
\]

(c) Verify these inequalities for \(x = 0.3 \).

53. Use the method of Exercise 52 to prove that
\[
1 - \frac{x^2}{2} \leq \cos x \leq 1 - \frac{x^2}{2} + \frac{x^4}{24}
\]
\[
x - \frac{x^3}{6} \leq \sin x \leq x - \frac{x^3}{6} + \frac{x^5}{120} \quad \text{(for } x \geq 0 \text{)}
\]

Verify these inequalities for \(x = 0.1 \). Why have we specified \(x \geq 0 \) for \(\sin x \) but not for \(\cos x \)?
54. Calculate the next pair of inequalities for \(\sin x \) and \(\cos x \) by integrating the results of Exercise 53. Can you guess the general pattern?

55. Use FTC I to prove that if \(|f'(x)| \leq K \) for \(x \in [a, b] \), then \(|f(x) - f(a)| \leq K|x - a| \) for \(x \in [a, b] \).

56. (a) Use Exercise 55 to prove that \(|\sin a - \sin b| \leq |a - b| \) for all \(a, b \).

(b) Let \(f(x) = \sin(x + a) - \sin x \). Use part (a) to show that the graph of \(f \) lies between the horizontal lines \(y = \pm a \).

(c)\(\square \) Plot \(y = f(x) \) and the lines \(y = \pm a \) to verify (b) for \(a = 0.5 \) and \(a = 0.2 \).

5.5 The Fundamental Theorem of Calculus, Part II

Part I of the Fundamental Theorem says that we can use antiderivatives to compute definite integrals. This is a huge advantage over having to take limits of Riemann sums. Part II of the Fundamental Theorem says that the derivative of a certain integral is the integrand. That is to say the derivative cancels out the action of the integral on the original function.

To state Part II correctly, we introduce the **area function** of \(f \) with lower limit \(a \):

\[
A(x) = \int_a^x f(t) \, dt = \text{signed area from } a \text{ to } x
\]

In essence, we turn the definite integral into a function by treating the upper limit \(x \) as a variable (Figure 1). Note that \(A(a) = 0 \) because \(A(a) = \int_a^a f(t) \, dt = 0 \).

In some cases, we can find an explicit formula for \(A(x) \) (Figure 2).

- **EXAMPLE 1** Find a formula for the area function \(A(x) = \int_3^x t^2 \, dt \).

Solution The function \(F(t) = \frac{1}{3} t^3 \) is an antiderivative for \(f(t) = t^2 \). By FTC I,

\[
A(x) = \int_3^x t^2 \, dt = F(x) - F(3) = \frac{1}{3} x^3 - \frac{1}{3} \cdot 3^3 = \frac{1}{3} x^3 - 9
\]

Note, in the previous example, that the **derivative of \(A \) is \(f \)** itself:

\[
A'(x) = \frac{d}{dx} \left(\frac{1}{3} x^3 - 9 \right) = x^2
\]

FTC II states that this relation always holds: The derivative of the area function is equal to the original function.

THEOREM 5.5 Fundamental Theorem of Calculus, Part II Assume that \(f \) is continuous on an open interval \(I \) and let \(a \) be a point in \(I \). Then the area function

\[
A(x) = \int_a^x f(t) \, dt
\]

is an antiderivative of \(f \) on \(I \); that is, \(A'(x) = f(x) \). Equivalently,

\[
\frac{d}{dx} \int_a^x f(t) \, dt = f(x)
\]

Furthermore, \(A(x) \) satisfies the initial condition \(A(a) = 0 \).

Proof First, we use the additivity property of the definite integral to write the change in \(A \) over \([x, x + h] \) as an integral:

\[
A(x + h) - A(x) = \int_a^{x+h} f(t) \, dt - \int_a^x f(t) \, dt = \int_x^{x+h} f(t) \, dt
\]
In other words, \(A(x + h) - A(x) \) is equal to the area of the thin sliver between the graph and the \(x \)-axis from \(x \) to \(x + h \) in Figure 3.

To simplify the rest of the proof, we assume that \(f \) is increasing (see Exercise 50 for the general case). Then, if \(h > 0 \), this thin sliver lies between the two rectangles of heights \(f(x) \) and \(f(x + h) \) in Figure 4, and we have

\[
\frac{hf(x)}{h} \leq A(x + h) - A(x) \leq \frac{hf(x + h)}{h}
\]

Area of smaller rectangle
Area of sliver
Area of larger rectangle

Now divide by \(h \) to squeeze the difference quotient between \(f(x) \) and \(f(x + h) \):

\[
f(x) \leq \frac{A(x + h) - A(x)}{h} \leq f(x + h)
\]

We have \(\lim_{h \to 0^+} f(x + h) = f(x) \) because \(f \) is continuous, and \(\lim_{h \to 0^+} f(x) = f(x) \), so the Squeeze Theorem gives us

\[
\lim_{h \to 0^+} \frac{A(x + h) - A(x)}{h} = f(x)
\]

A similar argument shows that for \(h < 0 \),

\[
f(x + h) \leq \frac{A(x + h) - A(x)}{h} \leq f(x)
\]

Again, the Squeeze Theorem gives us

\[
\lim_{h \to 0^-} \frac{A(x + h) - A(x)}{h} = f(x)
\]

Equations (1) and (2) show that \(A'(x) \) exists and that \(A'(x) = f(x) \).

In the previous section, we saw that FTC I says that in order to evaluate \(\int_a^b f(x) \, dx \), if we can find an antiderivative \(F \) of \(f \), we just take \(F(b) - F(a) \). FTC II assures us that an antiderivative of \(f \) exists.

CONCEPTUAL INSIGHT Many applications (in the sciences, engineering, and statistics) involve functions for which there is no explicit formula. Often, however, these functions can be expressed as definite integrals (or as infinite series). This enables us to compute their values numerically and create plots using a computer algebra system. Figure 5 shows a computer-generated graph of an antiderivative of \(f(x) = \sin(x^2) \), for which there is no explicit formula.

EXAMPLE 2 Antiderivative as an Integral Let \(F \) be the particular antiderivative of \(f(x) = \sin(x^2) \) satisfying \(F(-\sqrt{\pi}) = 0 \). Express \(F(x) \) as an integral.

Solution According to FTC II, the area function with lower limit \(a = -\sqrt{\pi} \) is an antiderivative satisfying \(F(-\sqrt{\pi}) = 0 \):

\[
F(x) = \int_{-\sqrt{\pi}}^{x} \sin(t^2) \, dt
\]

EXAMPLE 3 Differentiating an Integral Find the derivative of

\[
A(x) = \int_{2}^{x} \sqrt{1 + t^3} \, dt
\]

and calculate \(A'(2) \), \(A'(3) \), and \(A(2) \).

Solution By FTC II, \(A'(x) = \sqrt{1 + x^3} \). In particular,

\[
A'(2) = \sqrt{1 + 2^3} = 3 \quad \text{and} \quad A'(3) = \sqrt{1 + 3^3} = \sqrt{28}
\]

On the other hand, \(A(2) = \int_{2}^{2} \sqrt{1 + t^3} \, dt = 0 \).
CONCEPTUAL INSIGHT The FTC shows that integration and differentiation are inverse operations. By FTC II, if you start with a continuous function \(f \) and form the integral \(\int_a^x f(t) \, dt \), then you get back the original function by differentiating:

\[
\frac{d}{dx} \int_a^x f(t) \, dt = f(x)
\]

On the other hand, by FTC I, if you differentiate first and then integrate, you also recover \(f(x) \) [but only up to a constant \(f(a) \)]:

\[
f(x) \longrightarrow f'(x) \longrightarrow \int_a^x f'(t) \, dt = f(x) - f(a)
\]

When the upper limit of the integral is a function of \(x \) rather than \(x \) itself, we use FTC II together with the Chain Rule to differentiate the integral.

EXAMPLE 4 The FTC and the Chain Rule Find the derivative of

\[
G(x) = \int_{-2}^x \sin t \, dt
\]

Solution FTC II does not apply directly because the upper limit is \(x^2 \) rather than \(x \). It is necessary to recognize that \(G \) is a composite function with outer function \(A(x) = \int_{-2}^x \sin t \, dt \):

\[
G(x) = A(x^2) = \int_{-2}^{x^2} \sin t \, dt
\]

FTC II tells us that \(A'(x) = \sin x \), so by the Chain Rule,

\[
G'(x) = A'(x^2) \cdot 2x = \sin(x^2) \cdot 2x = 2x \sin(x^2)
\]

Alternatively, we may set \(u = x^2 \) and use the Chain Rule as follows:

\[
\frac{dG}{dx} = \frac{d}{du} \int_{-2}^u \sin t \, dt \cdot \frac{du}{dx} = \left(\frac{d}{du} \int_{-2}^u \sin t \, dt \right) \frac{du}{dx} = (\sin u)2x = 2x \sin(x^2)
\]

GRAPHICAL INSIGHT Another Tale of Two Graphs FTC II tells us that \(A'(x) = f(x) \), or in other words, \(f(x) \) is the rate of change of \(A(x) \). If we did not know this result, we might come to suspect it by comparing the graphs of \(A \) and \(f \). Consider the following:

- Figure 6 shows that the increase in area \(\Delta A \) for a given \(\Delta x \) is larger when \(f(x) \) is larger.
- Figure 7 shows that the sign of \(f(x) \) determines how quickly \(A(x) \) changes, as we would expect if \(A'(x) = f(x) \).
- Figure 7 shows that the sign of \(f(x) \) determines whether \(A \) is increasing or decreasing. If \(f(x) > 0 \), then \(A \) is increasing because positive area is added as we move to the right. When \(f(x) \) turns negative, \(A \) begins to decrease because we start adding negative area.
- \(A \) has a local max at points where \(f(x) \) changes sign from + to − (the points where the area turns negative), and has a local min when \(f(x) \) changes from − to +. This agrees with the First Derivative Test.

These observations show that \(f \) “behaves” like \(A' \), as claimed by FTC II.

5.5 SUMMARY

- The area function with lower limit \(a \): \(A(x) = \int_a^x f(t) \, dt \). It satisfies \(A(a) = 0 \).
- FTC II: \(A'(x) = f(x) \), or equivalently, \(\frac{d}{dx} \int_a^x f(t) \, dt = f(x) \).
Then find a formula for 13.

Limiting integrals.

In Exercises 7–16, find formulas for the functions represented by the integrals.

(a) Is the FTC II needed to calculate G(4)?
(b) Is the FTC II needed to calculate G'(4)?
2. Which of the following is an antiderivative F of f(x) = x² satisfying F(2) = 0?
(a) \(\int_2^x 2t \, dt\)
(b) \(\int_0^2 t^2 \, dt\)
(c) \(\int_2^x t^2 \, dt\)
3. Does every continuous function have an antiderivative? Explain.
4. Let G(x) = \(\int_4^x \sin t \, dt\). Which of the following statements are correct?
(a) \(G(x)\) is the composite function \(\sin(x^3)\).
(b) \(G(x)\) is the composite function \(A(x^3)\), where \(A(x) = \int_4^x \sin t \, dt\)
(c) \(G(x)\) is too complicated to differentiate.
(d) The Product Rule is used to differentiate \(G\).
(e) The Chain Rule is used to differentiate \(G\).
(f) \(G'(x) = 3x^2 \sin(x^3)\).

In Exercises 17–20, express the antiderivative \(F\) of \(f\) satisfying the given initial condition as an integral.
17. \(f(x) = \sqrt{x^3 + 1}, \quad F(5) = 0\)
18. \(f(x) = \frac{x + 1}{x^2 + 9}, \quad F(7) = 0\)
19. \(f(x) = \sec x, \quad F(0) = 0\)
20. \(f(\theta) = \sin(\theta^3), \quad F(-\pi) = 0\)

In Exercises 21–24, calculate the derivative.
21. \(\frac{d}{dx} \int_0^x (t^5 - 9t^3) \, dt\)
22. \(\frac{d}{d\theta} \int_{\frac{\pi}{4}}^{\theta} \cot u \, du\)
23. \(\frac{d}{dt} \int_{-2}^{t} \sec(5x - 9) \, dx\)
24. \(\frac{d}{ds} \int_{-2}^{s} \tan \left(\frac{1}{1 + u^2}\right) \, du\)

25. Let \(A(x) = \int_0^x f(t) \, dt\) for \(f(x)\) in Figure 8.
(a) Calculate \(A(2), \quad A(3), \quad A'(2), \quad A'(3)\).
(b) Find formulas for \(A(x)\) on \([0, 2]\) and \([2, 4]\), and sketch the graph of \(A\).
26. Make a rough sketch of the graph of \(A(x) = \int_0^x g(t) \, dt \) for \(y = g(x) \) in Figure 9.

![Figure 9](image)

27. Verify \(\int_0^x |t| \, dt = \frac{1}{2} x |x| \). Hint: Consider \(x \geq 0 \) and \(x \leq 0 \) separately.

28. Find \(G'(1) \), where \(G(x) = \int_0^x \sqrt{t^3 + 3} \, dt \).

In Exercises 29–34, calculate the derivative.

29. \(\frac{d}{dx} \int_0^x t \, dt \)

30. \(\frac{d}{dx} \int_1^{1/x} \cos^3 t \, dt \)

31. \(\frac{d}{ds} \int_{-6}^s u^4 \, du \)

32. \(\frac{d}{dx} \int_0^x \sqrt{t} \, dt \)

Hint for Exercise 32: \(F(x) = A(x^4) - A(x^2) \).

In Exercises 35–38, with \(y = f(x) \) as in Figure 10, let

\[A(x) = \int_0^x f(t) \, dt \text{ and } B(x) = \int_0^x f(t) \, dt \]

35. Find the min and max of \(A \) on [0, 6].

36. Find the min and max of \(B \) on [0, 6].

37. Find formulas for \(A(x) \) and \(B(x) \) valid on [2, 4].

38. Find formulas for \(A(x) \) and \(B(x) \) valid on [4, 5].

![Figure 10](image)

39. Let \(A(x) = \int_0^x f(t) \, dt \), with \(y = f(x) \) as in Figure 11.

(a) Does \(A \) have a local maximum at \(P \)?

(b) Where does \(A \) have a local minimum?

(c) Where does \(A \) have a local maximum?

(d) True or false? \(A(x) < 0 \) for all \(x \) in the interval shown.

![Figure 11](image)

40. Determine \(f(x) \), given that \(\int_0^x f(t) \, dt = x^2 + x \).

41. Determine \(g(x) \) and all values of \(c \) such that

\[\int_c^x g(t) \, dt = x^2 + x - 6 \]

42. Find \(a \leq b \) such that \(\int_a^b (x^2 - 9) \, dx \) has minimal value.

In Exercises 43–44, let \(A(x) = \int_0^x f(t) \, dt \).

43. Area Functions and Concavity Explain why the following statements are true. Assume \(f \) is differentiable.

(a) If \(c \) is an inflection point of \(A \), then \(f'(c) = 0 \).

(b) \(A \) is concave up if \(f \) is increasing.

(c) \(A \) is concave down if \(f \) is decreasing.

44. Match the property of \(A \) with the corresponding property of the graph of \(f \). Assume \(f \) is differentiable.

Area function \(A \)

(a) \(A \) is decreasing.

(b) \(A \) has a local maximum.

(c) \(A \) is concave up.

(d) \(A \) goes from concave up to concave down.

Graph of \(f \)

(i) Lies below the \(x \)-axis.

(ii) Crosses the \(x \)-axis from positive to negative.

(iii) Has a local maximum.

(iv) \(f \) is increasing.

45. Let \(A(x) = \int_0^x f(t) \, dt \), with \(y = f(x) \) as in Figure 12. Determine:

(a) The intervals on which \(A \) is increasing and decreasing

(b) The values \(x \) where \(A \) has a local min or max

(c) The inflection points of \(A \)

(d) The intervals where \(A \) is concave up or concave down

![Figure 12](image)

46. Let \(f(x) = x^2 - 5x - 6 \) and \(F(x) = \int_0^x f(t) \, dt \).

(a) Find the critical points of \(F \) and determine whether they are local minima or local maxima.

(b) Find the points of inflection of \(F \) and determine whether the concavity changes from up to down or from down to up.

(c) Plot \(y = f(x) \) and \(y = F(x) \) on the same set of axes and confirm your answers to (a) and (b).

47. Sketch the graph of an increasing function \(f \) such that both \(f'(x) \) and \(A(x) = \int_0^x f(t) \, dt \) are decreasing.
48. Figure 13 shows the graph of \(f(x) = x \sin x \). Let \(F(x) = \int_0^x t \sin t \, dt \).

(a) Locate the local max and absolute max of \(F \) on \([0, 3\pi]\).
(b) Justify graphically: \(F \) has precisely one zero in \([\pi, 2\pi]\).
(c) How many zeros does \(F \) have in \([0, 3\pi]\)?
(d) Find the inflection points of \(F \) on \([0, 3\pi]\). For each one, state whether the concavity changes from up to down or from down to up.

![Figure 13: Graph of \(f(x) = x \sin x \).](image)

Further Insights and Challenges

50. **Proof of FTC II** The proof in the text assumes that \(f \) is increasing. To prove it for all continuous functions, let \(m(h) \) and \(M(h) \) denote the minimum and maximum of \(f \) on \([x, x + h]\) (Figure 14). The continuity of \(f \) implies that \(\lim_{h \to 0} m(h) = \lim_{h \to 0} M(h) = f(x) \). Show that for \(h > 0 \),

\[
hm(h) \leq A(x + h) - A(x) \leq hM(h)
\]

For \(h < 0 \), the inequalities are reversed. Prove that \(A'(x) = f(x) \).

![Figure 14: Graphical interpretation of \(A(x + h) - A(x) \).](image)

51. **Proof of FTC I** FTC I asserts that \(\int_a^b f(t) \, dt = F(b) - F(a) \) if \(F'(x) = f(x) \). Use FTC II to give a new proof of FTC I as follows.

Set \(A(x) = \int_a^x f(t) \, dt \).

(a) Show that \(F(x) = A(x) + C \) for some constant.
(b) Show that \(F(b) - F(a) = A(b) - A(a) = \int_a^b f(t) \, dt \).

52. **Can Every Antiderivative Be Expressed as an Integral?** The area function \(A(x) = \int_a^x f(t) \, dt \) is an antiderivative of \(f \) for every value of \(a \). However, not all antiderivatives are obtained in this way. The general antiderivative of \(f(x) = x \) is \(F(x) = \frac{1}{2}x^2 + C \). Show that \(F \) is an area function if \(C \leq 0 \) but not if \(C > 0 \).

53. Prove the formula

\[
\frac{d}{dx} \int_{u(x)}^{v(x)} f(t) \, dt = f(v(x))v'(x) - f(u(x))u'(x)
\]

5.6 **Net Change as the Integral of a Rate of Change**

So far we have focused on the area interpretation of the integral. In this section, we use the integral to compute net change.

Consider the following problem: Water flows into an empty bucket at a rate of \(r(t) \) liters per second. How much water is in the bucket after 4 seconds? If the rate of water flow were constant—say, 1.5 liters/second (L/s)—we would have

\[
\text{Quantity of water} = \text{flow rate} \times \text{time elapsed} = (1.5 \times 4) = 6 \text{ liters}
\]

Suppose, however, that the flow rate \(r(t) \) varies as in Figure 1. Then the quantity of water is equal to the area under the graph of \(y = r(t) \). To prove this, let \(s(t) \) be the amount of water in the bucket at time \(t \). Then \(s'(t) = r(t) \) because \(s'(t) \) is the rate at which the quantity of water is changing. Furthermore, \(s(0) = 0 \) because the bucket is initially empty. By FTC I,

\[
\int_0^4 s'(t) \, dt = s(4) - s(0) = s(4)
\]

Area under the graph of the flow rate

Water in bucket at \(t = 4 \)
More generally, $s(t_2) - s(t_1)$ is the net change in $s(t)$ over the interval $[t_1, t_2]$. FTC I yields the following result.

THEOREM 1 Net Change as the Integral of a Rate of Change

The net change in $s(t)$ over an interval $[t_1, t_2]$ is given by the integral

$$
\int_{t_1}^{t_2} s'(t) \, dt = s(t_2) - s(t_1)
$$

- **EXAMPLE 1** Water leaks from a tank at a rate of $2 + 5t$ liters/hour (L/h), where t is the number of hours after 7 AM. How much water is lost between 9 and 11 AM?

Solution Let $s(t)$ be the quantity of water in the tank at time t. Then $s'(t) = -(2 + 5t)$, where the minus sign occurs because $s(t)$ is decreasing. Since 9 AM and 11 AM correspond to $t = 2$ and $t = 4$, respectively, the net change in $s(t)$ between 9 and 11 AM is

$$
s(4) - s(2) = \int_2^4 s'(t) \, dt = - \int_2^4 (2 + 5t) \, dt
$$

$$
= - \left[\frac{2t + \frac{5}{2}t^2}{2} \right]_2^4 = (-48) - (-14) = -34 \text{ liters}
$$

The tank lost 34 liters between 9 and 11 AM.

In the next example, we estimate an integral using numerical data. We shall compute the average of the left- and right-endpoint approximations, because this is usually more accurate than either endpoint approximation alone. (In Section 8.8, this average is called the Trapezoidal Approximation.)

- **EXAMPLE 2 Traffic Flow** The number of cars per hour passing an observation point along a highway is called the traffic flow rate $q(t)$ (in cars per hour).

(a) Which quantity is represented by the integral $\int_{t_1}^{t_2} q(t) \, dt$?

(b) The flow rate is recorded at 15-minute intervals between 7:00 and 9:00 AM. Estimate the number of cars using the highway during this 2-hour (h) period.

<table>
<thead>
<tr>
<th>t</th>
<th>7:00</th>
<th>7:15</th>
<th>7:30</th>
<th>7:45</th>
<th>8:00</th>
<th>8:15</th>
<th>8:30</th>
<th>8:45</th>
<th>9:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>$q(t)$</td>
<td>1044</td>
<td>1297</td>
<td>1478</td>
<td>1844</td>
<td>1451</td>
<td>1378</td>
<td>1155</td>
<td>802</td>
<td>542</td>
</tr>
</tbody>
</table>

Solution

(a) The integral $\int_{t_1}^{t_2} q(t) \, dt$ represents the total number of cars that passed the observation point during the time interval $[t_1, t_2]$.

(b) The data values are spaced at intervals of $\Delta t = 0.25$ h. Thus,

$$
L_N = 0.25 \left(1044 + 1297 + 1478 + 1844 + 1451 + 1378 + 1155 + 802 \right)
$$

$$
\approx 2612
$$

$$
R_N = 0.25 \left(1297 + 1478 + 1844 + 1451 + 1378 + 1155 + 802 + 542 \right)
$$

$$
\approx 2487
$$

We estimate the number of cars that passed the observation point between 7 and 9 AM by taking the average of R_N and L_N:

$$
\int_7^9 q(t) \, dt \approx \frac{1}{2} (R_N + L_N) = \frac{1}{2} (2612 + 2487) \approx 2550
$$

Approximately 2550 cars used the highway between 7 and 9 AM.
CHAPTER 5 THE INTEGRAL

The Integral of Velocity

Let \(s(t) \) be the position at time \(t \) of an object in linear motion. Then the object’s velocity is \(v(t) = s'(t) \), and the integral of \(v \) is equal to the net change in position or displacement over a time interval \([t_1, t_2]\):

\[
\int_{t_1}^{t_2} v(t) \, dt = \int_{t_1}^{t_2} s'(t) \, dt = s(t_2) - s(t_1)
\]

Displacement or net change in position

We must distinguish between displacement and distance traveled. If you travel 10 km and then return to your starting point, your displacement is zero but your distance traveled is 20 km. To compute distance traveled rather than displacement, we integrate the speed \(|v(t)| \).

THEOREM 2 The Integral of Velocity For an object in linear motion with velocity \(v(t) \), then

- Displacement during \([t_1, t_2]\) = \(\int_{t_1}^{t_2} v(t) \, dt \)
- Distance traveled during \([t_1, t_2]\) = \(\int_{t_1}^{t_2} |v(t)| \, dt \)

EXAMPLE 3 A particle has velocity \(v(t) = t^3 - 10t^2 + 24t \) m/s. Compute:

(a) Displacement over \([0, 6]\)
(b) Total distance traveled over \([0, 6]\)

Indicate the particle’s trajectory with a motion diagram.

Solution First, we compute the indefinite integral:

\[
\int v(t) \, dt = \int (t^3 - 10t^2 + 24t) \, dt = \frac{1}{4}t^4 - \frac{10}{3}t^3 + 12t^2 + C
\]

(a) The displacement over the time interval \([0, 6]\) is

\[
\int_0^6 v(t) \, dt = \left. \left(\frac{1}{4}t^4 - \frac{10}{3}t^3 + 12t^2 \right) \right|_0^6 = 36 \text{ m}
\]

(b) The factorization \(v(t) = t(t - 4)(t - 6) \) shows that \(v(t) \) changes sign at \(t = 4 \). It is positive on \([0, 4]\) and negative on \([4, 6]\) as we see in Figure 2. Therefore, the total distance traveled is

\[
\int_0^6 |v(t)| \, dt = \int_0^4 v(t) \, dt - \int_4^6 v(t) \, dt
\]

We evaluate these two integrals separately:

\[
[0, 4]: \quad \int_0^4 v(t) \, dt = \left. \left(\frac{1}{4}t^4 - \frac{10}{3}t^3 + 12t^2 \right) \right|_0^4 = \frac{128}{3} \text{ m}
\]

\[
[4, 6]: \quad \int_4^6 v(t) \, dt = \left. \left(\frac{1}{4}t^4 - \frac{10}{3}t^3 + 12t^2 \right) \right|_4^6 = -\frac{20}{3} \text{ m}
\]

The total distance traveled is \(\frac{128}{3} + \frac{20}{3} = \frac{148}{3} = 49\frac{1}{3} \text{ m} \).

Figure 3 is a motion diagram indicating the particle’s trajectory. The particle travels \(\frac{128}{3} \text{ m} \) during the first 4 s and then backtracks \(\frac{20}{3} \text{ m} \) over the next 2 s.
SECTION 5.6 Net Change as the Integral of a Rate of Change

Total Versus Marginal Cost

Consider the cost $C(x)$ of a manufacturer (the dollar cost of producing x units of a particular product or commodity). The derivative $C'(x)$ is called the **marginal cost**. In Section 3.4, we defined the marginal cost at production level x_0 as the cost $C(x_0 + 1) - C(x_0)$ of producing one additional unit. Since this marginal cost is approximated well by the derivative $C'(x_0)$ for large values of x_0 compared to 1, economists often refer to $C'(x)$ itself as the marginal cost.

The cost of increasing production from a units to b units is the net change $C(b) - C(a)$, which is equal to the integral of the marginal cost:

$$\text{Cost of increasing production from } a \text{ units to } b \text{ units} = \int_a^b C'(x) \, dx$$

EXAMPLE 4 The marginal cost of producing x computer chips (in units of 1000) is $C'(x) = 300x^2 - 4000x + 40,000$ (dollars per thousand chips).

(a) Find the cost of increasing production from 10,000 to 15,000 chips.

(b) Determine the total cost of producing 15,000 chips, assuming that it costs $30,000 to set up the manufacturing run [i.e., $C(0) = 30,000$].

Solution

(a) The cost of increasing production from 10,000 ($x = 10$) to 15,000 ($x = 15$) is

$$C(15) - C(10) = \int_{10}^{15} (300x^2 - 4000x + 40,000) \, dx$$

$$= (100x^3 - 2000x^2 + 40,000x) \bigg|_{10}^{15}$$

$$= 487,500 - 300,000 = 187,500$$

(b) The cost of increasing production from 0 to 15,000 chips is

$$C(15) - C(0) = \int_{0}^{15} (300x^2 - 4000x + 40,000) \, dx$$

$$= (100x^3 - 2000x^2 + 40,000x) \bigg|_{0}^{15} = 487,500$$

The total cost of producing 15,000 chips includes the set-up costs of $30,000:

$$C(15) = C(0) + 487,500 = 30,000 + 487,500 = 517,500$$

5.6 SUMMARY

- Many applications are based on the following principle: *The net change in a quantity $s(t)$ is equal to the integral of its rate of change:*

 $$s(t_2) - s(t_1) = \int_{t_1}^{t_2} s'(t) \, dt$$

 Net change over $[t_1, t_2]$

- For an object traveling in a straight line at velocity $v(t)$,

 $$\text{Displacement during } [t_1, t_2] = \int_{t_1}^{t_2} v(t) \, dt$$

 $$\text{Total distance traveled during } [t_1, t_2] = \int_{t_1}^{t_2} |v(t)| \, dt$$

- If $C(x)$ is the cost of producing x units of a commodity, then $C'(x)$ is the marginal cost and

 $$\text{Cost of increasing production from } a \text{ units to } b \text{ units} = \int_a^b C'(x) \, dx$$

In Section 3.4, we defined the marginal cost at production level x_0 as the cost $C(x_0 + 1) - C(x_0)$ of producing one additional unit. Since this marginal cost is approximated well by the derivative $C'(x_0)$ for large values of x_0 compared to 1, economists often refer to $C'(x)$ itself as the marginal cost.
5.6 EXERCISES

Preliminary Questions

1. A hot metal object is submerged in cold water. The rate at which the object cools (in degrees per minute) is a function \(f(t) \) of time. Which quantity is represented by the integral \(\int_0^T f(t) \, dt \)?

2. A plane travels 560 km from Los Angeles to San Francisco in 1 hour (h). If the plane’s velocity at time \(t \) is \(v(t) \) km/h, what is the value of \(\int_0^1 v(t) \, dt \)?

Exercises

1. Water flows into an empty reservoir at a rate of 3000 + 20t liters per hour (L/h; \(t \) is in hours). What is the quantity of water in the reservoir after 5 h?

2. A population of insects increases at a rate of 200 + 10t + 0.25t² insects per day (\(t \) in days). Find the insect population after 3 days, assuming that there are 35 insects at \(t = 0 \).

3. A survey shows that a mayoral candidate is gaining votes at a rate of 2000t + 1000 votes per day, where \(t \) is the number of days since she announced her candidacy. How many supporters will the candidate have after 60 days, assuming that she had no supporters at \(t = 0 \)?

4. A factory produces bicycles at a rate of 95 + 3t² – 7t bicycles per week (\(t \) in weeks). How many bicycles were produced from the beginning of week 2 to the end of week 3?

5. Find the displacement of a particle moving in a straight line with velocity \(v(t) = 4t - 3 \) m/s over the time interval [2, 5].

6. Find the displacement over the time interval [1, 6] of a helicopter whose (vertical) velocity at time \(t \) is \(v(t) = 0.02t^2 + t \) m/s.

7. A cat falls from a tree (with zero initial velocity) at time \(t = 0 \). How far does the cat fall between \(t = 0.5 \) and \(t = 1 \) s? Use Galileo’s formula \(v(t) = -9.8t \) m/s.

8. A projectile is released with an initial (vertical) velocity of 100 m/s. Use the formula \(v(t) = 100 - 9.8t \) for velocity to determine the distance traveled during the first 15 s.

9. \(v(t) = 12 - 4t \), \([0, 5]\)

10. \(v(t) = 36 - 24t + 3t^2 \), \([0, 10]\)

11. \(v(t) = t^{-2} - 1 \), \([0.5, 2]\)

12. \(v(t) = \cos t \), \([0, 3\pi]\)

13. Find the net change in velocity over \([1, 4]\) of an object with \(a(t) = 8t - t^2 \) m/s².

14. Show that if acceleration is constant, then the change in velocity is proportional to the length of the time interval.

15. The traffic flow rate past a certain point on a highway is \(q(t) = 3000 + 2000t - 300t^2 \) (t in hours), where \(t = 0 \) is 8 AM. How many cars pass by in the time interval from 8 to 10 AM?

16. The marginal cost of producing \(x \) tablet computers is \(C'(x) = 120 - 0.06x + 0.00001x^2 \). What is the cost of producing 3000 units if the set-up cost is $90,000? If production is set at 3000 units, what is the cost of producing 200 additional units?

17. A small boutique produces wool sweaters at a marginal cost of \(40 - 5[x/5] \) for \(0 \leq x \leq 20 \), where \([x]\) is the greatest integer function. Find the cost of producing 20 sweaters. Then compute the average cost of the first 10 sweaters and the last 10 sweaters.

18. The rate (in liters per minute) at which water drains from a tank is recorded at half-minute intervals. Compute the average of the left- and right-endpoint approximations to estimate the total amount of water drained during the first 3 min.

<table>
<thead>
<tr>
<th>(t) (min)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r) (liters/min)</td>
<td>50</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td>42</td>
<td>40</td>
<td>38</td>
</tr>
</tbody>
</table>

19. The velocity of a car is recorded at half-second intervals (in feet per second). Use the average of the left- and right-endpoint approximations to estimate the total distance traveled during the first 4 s.

<table>
<thead>
<tr>
<th>(t) (s)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(t)) (ft/s)</td>
<td>0</td>
<td>12</td>
<td>20</td>
<td>29</td>
<td>38</td>
<td>44</td>
<td>32</td>
<td>35</td>
</tr>
</tbody>
</table>

20. To model the effects of a carbon tax on CO₂ emissions, policymakers study the marginal cost of abatement \(B(x) \), defined as the cost of increasing CO₂ reduction from \(x \) to \(x + 1 \) tons (in units of ten thousand tons—Figure 4). Which quantity is represented by the area under the curve over \([0, 3]\) in Figure 4?

21. A megawatt of power is \(10^6 \) W, or \(3.6 \times 10^9 \) joules/hour (J/h). Which quantity is represented by the area under the graph in Figure 5? Estimate the energy (in joules) consumed during the period 4 PM to 8 PM.
22. Figure 6 shows the migration rate \(M(t) \) of Ireland in the period 1988–1998. This is the rate at which people (in thousands per year) move into or out of the country.

(a) Is the following integral positive or negative? What does this quantity represent?

\[
\int_{1988}^{1998} M(t) \, dt
\]

(b) Did migration in the period 1988–1998 result in a net influx of people into Ireland or a net outflow of people from Ireland?

(c) During which two years could the Irish prime minister announce, “We’ve hit an inflection point. We are still losing population, but the trend is now improving.”

23. Let \(N(d) \) be the number of asteroids of diameter \(\leq d \) kilometers. Data suggest that the diameters are distributed according to a piecewise power law:

\[
N'(d) = \begin{cases}
1.9 \times 10^9 d^{-2.3} & \text{for } d < 70 \\
2.6 \times 10^{12} d^{-4} & \text{for } d \geq 70
\end{cases}
\]

(a) Compute the number of asteroids with a diameter between 0.1 km and 100 km.

(b) Using the approximation \(N(d + 1) - N(d) \approx N'(d) \), estimate the number of asteroids of diameter 50 km.

24. Heat Capacity

The heat capacity \(C(T) \) of a substance is the amount of energy (in joules) required to raise the temperature of 1 g by 1°C at temperature \(T \).

(a) Explain why the energy required to raise the temperature from \(T_1 \) to \(T_2 \) is the area under the graph of \(C(T) \) over \([T_1, T_2] \).

(b) How much energy is required to raise the temperature from 50°C to 100°C if \(C(T) = 6 + 0.2\sqrt{T} \)?

25. Figure 7 shows the rate \(R(t) \) of natural gas consumption (in billions of cubic feet per day) in the mid-Atlantic states (New York, New Jersey, Pennsylvania). Express the total quantity of natural gas consumed in 2009 as an integral (with respect to time \(t \) in days). Then estimate this quantity, given the following monthly values of \(R(t) \):

\[
3.18, 2.86, 2.39, 1.49, 1.08, 0.80, 1.01, 0.89, 0.89, 1.20, 1.64, 2.52
\]

Keep in mind that the number of days in a month varies with the month.

26. Cardiac output is the rate \(R \) of volume of blood pumped by the heart per unit time (in liters per minute). Doctors measure \(R \) by injecting \(A \) mg of dye into a vein leading into the heart at \(t = 0 \) and recording the concentration \(c(t) \) of dye (in milligrams per liter) pumped out at short regular time intervals (Figure 8).

(a) Explain: The quantity of dye pumped out in a small time interval \([t, t + \Delta t] \) is approximately \(Rc(t) \Delta t \).

(b) Show that \(T = R \int_0^T c(t) \, dt \), where \(T \) is large enough that all of the dye is pumped through the heart but not so large that the dye returns by recirculation.

(c) Assume \(A = 5 \) mg. Estimate \(R \) using the following values of \(c(t) \) recorded at 1-second intervals from \(t = 0 \) to \(t = 10 \):

\[
0, 0.4, 2.8, 6.5, 9.8, 8.9, 6.1, 4, 2.3, 1.1, 0
\]

27. Compute the average of \(R_N \) and \(L_N \) with \(N = 5 \) to estimate the total number of families that became extinct in the periods \(100 \leq t \leq 150 \) and \(350 \leq t \leq 400 \).

28. \(CR5 \)

Estimate the total number of extinct families from \(t = 0 \) to the present, using \(M_N \) with \(N = 544 \).
The term "integration" is used in two ways. It refers to:

- The process of finding signed area (computing a definite integral), and also
- The process of finding an antiderivative (evaluating an indefinite integral).

The consumer surplus represents the savings on the part of consumers if they pay price \(p^* \) rather than the price greater than \(p^* \) that many were willing to pay. Write down a formula for this consumer surplus. The formula will include a definite integral and it will depend on \(p^* \) and \(q^* \).

(b) The producer surplus represents the savings on the part of producers if they sell at price \(p^* \) rather than the price less than \(p^* \) that some producers were willing to accept. Write down a formula for this producer surplus.

(c) A variety of coffee shops in a town sell mocha latte supreme coffees. If the supply curve is given by \(p = \frac{10}{q^* + 1} \) and demand curve is given by \(p = \frac{10}{q^* + 1} \), determine the equilibrium point \((p^*, q^*) \) and the consumer surplus and producer surplus when the mocha latte supreme coffees are sold at price \(p^* \).

5.7 Substitution Method

Integration (antidifferentiation) is generally more difficult than differentiation. There are no sure-fire methods, and many antiderivatives cannot be expressed in terms of elementary functions. However, there are a few important general techniques. One such technique is the Substitution Method, which uses the Chain Rule “in reverse.”

Consider the integral \(\int 2x \cos(x^2) \, dx \). We can evaluate it if we remember the Chain Rule calculation

\[
\frac{d}{dx} \sin(x^2) = 2x \cos(x^2)
\]

This tells us that \(\sin(x^2) \) is an antiderivative of \(2x \cos(x^2) \), and therefore,

\[
\int 2x \cos(x^2) \, dx = \sin(x^2) + C
\]

A similar Chain Rule calculation shows that

\[
\int (1 + 3x^2) \cos(x + x^3) \, dx = \sin(x + x^3) + C
\]

In both cases, the integrand is the product of a composite function and the derivative of the inside function. The Chain Rule does not help if the derivative of the inside function is missing. For instance, we cannot use the Chain Rule to compute \(\int \cos(x + x^3) \, dx \) because the factor \((1 + 3x^2) \) does not appear.

In general, if \(F'(u) = f(u) \), then by the Chain Rule,

\[
\frac{d}{dx} F(u(x)) = F'(u(x))u'(x) = f(u(x))u'(x)
\]

This translates into the following integration formula.
THEOREM 1 The Substitution Method If $F'(x) = f(x)$, then
\[
\int f(u(x))u'(x) \, dx = F(u(x)) + C
\]

Substitution Using Differentials

Before proceeding to the examples, we discuss the procedure for carrying out substitution using differentials. Differentials are symbols such as du or dx that occur in the Leibniz notations du/dx and $\int f(x) \, dx$. In our calculations, we shall manipulate them as though they are related by an equation in which the dx "cancels":

\[du = \frac{du}{dx} \, dx \]

Equivalently, du and dx are related by
\[du = u'(x) \, dx \]

For example,
\begin{align*}
\text{If } &u = x^2, \quad \text{then } du = 2x \, dx \\
\text{If } &u = \cos(x^3), \quad \text{then } du = -3x^2 \sin(x^3) \, dx
\end{align*}

Now when the integrand has the form $f(u(x))u'(x)$, we can use Eq. (1) to rewrite the entire integral (including the dx term) in terms of u and its differential du:

\[
\int f(u(x))u'(x) \, dx = \int f(u) \, du
\]

This equation is called the Change of Variables Formula. It transforms an integral in the variable x into a (hopefully simpler) integral in the new variable u.

EXAMPLE 1 Evaluate $\int 3x^2 \sin(x^3) \, dx$.

Solution The integrand contains the composite function $\sin(x^3)$, so we set $u = x^3$. The differential $du = 3x^2 \, dx$ also appears, so we can carry out the substitution:

\[
\int 3x^2 \sin(x^3) \, dx = \int \sin(u) \frac{3x^2 \, dx}{du} = \int \sin(u) \, du
\]

Now evaluate the integral in the u-variable and replace u by x^3 in the answer:

\[
\int 3x^2 \sin(x^3) \, dx = \int \sin u \, du = -\cos u + C = -\cos(x^3) + C
\]

Let’s check our answer by differentiating:

\[
\frac{d}{dx}(-\cos(x^3)) = \sin(x^3) \frac{d}{dx} x^3 = 3x^2 \sin(x^3)
\]

EXAMPLE 2 Multiplying du by a Constant Evaluate $\int x(x^2 + 9)^5 \, dx$.

Solution We let $u = x^2 + 9$ because the composite $u^5 = (x^2 + 9)^5$ appears in the integrand. The differential $du = 2x \, dx$ does not appear as is, but we can multiply by $\frac{1}{2}$ to obtain

\[
\frac{1}{2} du = x \, dx \quad \Rightarrow \quad \frac{1}{2} u^5 \, du = x(x^2 + 9)^5 \, dx
\]
Now we can apply substitution:

\[
\int x(x^2 + 9)^5 \, dx = \int \frac{u^5}{2} \, du = \frac{1}{2} \int u^5 \, du = \frac{1}{12} u^6 + C
\]

Finally, we express the answer in terms of \(x \) by substituting \(u = x^2 + 9 \):

\[
\int x(x^2 + 9)^5 \, dx = \frac{1}{12} u^6 + C = \frac{1}{12} (x^2 + 9)^6 + C
\]

EXAMPLE 3 Evaluate \(\int \frac{(x^2 + 2x) \, dx}{(x^3 + 3x^2 + 12)^6} \).

Solution The appearance of \((x^3 + 3x^2 + 12)^{-6} \) in the integrand suggests that we try \(u = x^3 + 3x^2 + 12 \). With this choice,

\[
du = (3x^2 + 6x) \, dx = 3(x^2 + 2x) \, dx \quad \Rightarrow \quad \frac{1}{3} \, du = (x^2 + 2x) \, dx
\]

\[
\int \frac{(x^2 + 2x) \, dx}{(x^3 + 3x^2 + 12)^6} = \int \frac{u^{-6}}{(x^3 + 3x^2 + 12)^6} \, dx
\]

\[
= \frac{1}{3} \int u^{-6} \, du = \left(\frac{1}{3} \right) \left(\frac{1}{-5} \right) + C
\]

\[
= -\frac{1}{15} (x^3 + 3x^2 + 12)^{-5} + C
\]

CONCEPTUAL INSIGHT An integration method that works for a given function may fail if we change the function even slightly. In the previous example, if we replace 2 by 2.1 and consider instead \(\int \frac{(x^2 + 2.1x) \, dx}{(x^3 + 3x^2 + 12)^6} \), the Substitution Method does not work. The problem is that \((x^2 + 2.1x) \, dx \) is not a multiple of \(du = (3x^2 + 6x) \, dx \).

EXAMPLE 4 Evaluate \(\int \sin(7\theta + 5) \, d\theta \).

Solution Let \(u = 7\theta + 5 \). Then \(du = 7 \, d\theta \) and \(\frac{1}{7} \, du = d\theta \). We obtain

\[
\int \frac{\sin(7\theta + 5)}{\sin u} \, d\theta = \frac{1}{7} \int \sin u \, du = -\frac{1}{7} \cos u + C = -\frac{1}{7} \cos(7\theta + 5) + C
\]

EXAMPLE 5 Evaluate \(\int \frac{\sin(t^{1/3}) \, dt}{t^{2/3}} \).

Solution It makes sense to try \(u = t^{1/3} \) because \(du = \frac{1}{3} t^{-2/3} \, dt \), and thus the multiple \(3 \, du \) appears in the integrand. In other words,

\[
u = t^{1/3}, \quad \frac{dt}{t^{2/3}} = 3 \, du
\]

\[
\int \frac{\sin(t^{1/3}) \, dt}{t^{2/3}} = \int \sin(u) \, 3 \, du
\]

\[
= -3 \cos u + C = -3 \cos(t^{1/3}) + C
\]
EXAMPLE 6 Additional Step Necessary Evaluate \(\int x \sqrt{5x + 1} \, dx \).

Solution Since \(\sqrt{5x + 1} \) appears, we are tempted to set \(u = 5x + 1 \). Then

\[
du = 5 \, dx \quad \Rightarrow \quad \sqrt{5x + 1} \, dx = \frac{1}{5} \sqrt{u} \, du
\]

Unfortunately, the integrand is not \(\sqrt{5x + 1} \) but \(x \sqrt{5x + 1} \). To take care of the extra factor of \(x \), we solve \(u = 5x + 1 \) to obtain \(x = \frac{1}{5} (u - 1) \). Then

\[
x \sqrt{5x + 1} \, dx = \frac{1}{25} \int (u^{3/2} - u^{1/2}) \, du
\]

\[
= \frac{2}{25} \left(\frac{2}{3} u^{5/2} - \frac{2}{3} u^{3/2} \right) + C
\]

\[
= \frac{2}{125} (5x + 1)^{5/2} - \frac{2}{75} (5x + 1)^{3/2} + C
\]

Change of Variables Formula for Definite Integrals

The Change of Variables Formula can be applied to definite integrals provided that the limits of integration are changed, as indicated in the next theorem.

\[
\int_{a}^{b} f(u(x)) u'(x) \, dx = \int_{u(a)}^{u(b)} f(u) \, du
\]

Proof If \(F(x) \) is an antiderivative of \(f(x) \), then \(F(u(x)) \) is an antiderivative of \(f(u(x)) u'(x) \). FTC I shows that the two integrals are equal:

\[
\int_{a}^{b} f(u(x)) u'(x) \, dx = F(u(b)) - F(u(a))
\]

\[
\int_{u(a)}^{u(b)} f(u) \, du = F(u(b)) - F(u(a))
\]

EXAMPLE 7 Evaluate \(\int_{0}^{2} x^2 \sqrt{x^3 + 1} \, dx \).

Solution Use the substitution \(u = x^3 + 1 \), \(du = 3x^2 \, dx \):

\[
x^2 \sqrt{x^3 + 1} \, dx = \frac{1}{3} \sqrt{u} \, du
\]

By Eq. (2), the new limits of integration

\[
u(0) = 0^3 + 1 = 1 \quad \text{and} \quad u(2) = 2^3 + 1 = 9
\]

Thus,

\[
\int_{0}^{2} x^2 \sqrt{x^3 + 1} \, dx = \frac{1}{3} \int_{1}^{9} \sqrt{u} \, du = \frac{2}{9} u^{3/2} \int_{1}^{9} = \frac{52}{9}
\]

This substitution shows that the area in Figure 1 is equal to one-third of the area in Figure 2 (but note that the figures are drawn to different scales).
In the previous example, we can avoid changing the limits of integration by evaluating the integral in terms of \(x \):

\[
\int x^2 \sqrt{x^3 + 1} \, dx = \frac{1}{3} \int \sqrt{u} \, du = \frac{2}{9} u^{3/2} = \frac{2}{9} (x^3 + 1)^{3/2}
\]

This leads to the same result:

\[
\int_0^2 x^2 \sqrt{x^3 + 1} \, dx = \frac{2}{9} (x^3 + 1)^{3/2} \bigg|_0^2 = \frac{52}{9}.
\]

Example 8 Evaluate \(\int_{\pi/4}^{\pi} \tan^3 \theta \sec^2 \theta \, d\theta \).

Solution The substitution \(u = \tan \theta \) makes sense because \(du = \sec^2 \theta \, d\theta \), and therefore, \(u^3 \, du = \tan^3 \theta \sec^2 \theta \, d\theta \). The new limits of integration are

\[
u(0) = \tan 0 = 0 \quad \text{and} \quad u \left(\frac{\pi}{4} \right) = \tan \left(\frac{\pi}{4} \right) = 1
\]

Thus,

\[
\int_{\pi/4}^{\pi} \tan^3 \theta \sec^2 \theta \, d\theta = \int_0^1 u^3 \, du = \frac{u^4}{4} \bigg|_0^1 = \frac{1}{4}
\]

Example 9 Calculate the area under the graph of \(y = \frac{x}{(x^2 + 1)^2} \) over \([1, 3]\).

Solution The area (Figure 3) is equal to the integral \(\int_1^3 \frac{x}{(x^2 + 1)^2} \, dx \). We use the substitution

\[
u = x^2 + 1, \quad du = 2x \, dx, \quad \frac{1}{2} \frac{du}{u^2} = \frac{x \, dx}{(x^2 + 1)^2}
\]

The new limits of integration are \(u(1) = 1^2 + 1 = 2 \) and \(u(3) = 3^2 + 1 = 10 \), so

\[
\int_1^3 \frac{x}{(x^2 + 1)^2} \, dx = \frac{1}{2} \int_2^{10} \frac{du}{u^2} = \frac{1}{2} \frac{1}{u} \bigg|_2^{10} = -\frac{1}{20} + \frac{1}{4} = \frac{1}{5}
\]

5.7 Summary

- Try the Substitution Method when the integrand has the form \(f(u(x)) \, u'(x) \). If \(F \) is an antiderivative of \(f \), then

\[
\int f(u(x)) \, u'(x) \, dx = F(u(x)) + C
\]

- The differential of \(u(x) \) is related to \(dx \) by \(du = u'(x) \, dx \).

- The Substitution Method is expressed by the Change of Variables Formula:

\[
\int f(u(x)) \, u'(x) \, dx = \int f(u) \, du
\]

- Change of Variables Formula for definite integrals:

\[
\int_a^b f(u(x)) \, u'(x) \, dx = \int_{u(a)}^{u(b)} f(u) \, du
\]
5.7 EXERCISES

Preliminary Questions
1. Which of the following integrals is a candidate for the Substitution Method?
 (a) \(\int 5x^4 \sin(x^5) \, dx \)
 (b) \(\int \sin x \cos x \, dx \)
 (c) \(\int x^5 \sin x \, dx \)

2. Find an appropriate choice of \(u \) for evaluating the following integrals by substitution:
 (a) \(\int x(x^2 + 9)^4 \, dx \)
 (b) \(\int x^2 \sin(x^3) \, dx \)
 (c) \(\int \sin x \cos^2 x \, dx \)

3. Which of the following is equal to \(\int_0^2 x^2(x^3 + 1) \, dx \) for a suitable substitution?
 (a) \(\frac{1}{3} \int_0^2 u \, du \)
 (b) \(\int_0^9 u \, du \)
 (c) \(\frac{1}{3} \int_1^9 u \, du \)

Exercises
In Exercises 1–6, calculate \(du \).
1. \(u = x^3 - x^2 \)
2. \(u = 2x^4 + 8x^{-1} \)
3. \(u = \cos(x^2) \)
4. \(u = \tan x \)
5. \(u = \sin^4 \theta \)
6. \(u = \frac{t}{t+1} \)

In Exercises 7–22, write the integral in terms of \(u \) and \(du \). Then evaluate.
7. \(\int (x - 7)^3 \, dx \), \(u = x - 7 \)
8. \(\int (x + 25)^{-2} \, dx \), \(u = x + 25 \)
9. \(\int (3t - 4)^5 \, dt \), \(u = 3t - 4 \)
10. \(\int (2x + 7)^{3/2} \, dx \), \(u = 2x + 7 \)
11. \(\int t\sqrt{t^2 + 1} \, dt \), \(u = t^2 + 1 \)
12. \(\int (x^3 + 1) \cos(x^4 + 4x) \, dx \), \(u = x^4 + 4x \)
13. \(\int \frac{t^3}{(4 - 2t^4)^{11}} \, dt \), \(u = 4 - 2t^4 \)
14. \(\int \sqrt{4x - 1} \, dx \), \(u = 4x - 1 \)
15. \(\int x(x + 1)^9 \, dx \), \(u = x + 1 \)
16. \(\int x\sqrt{4x - 1} \, dx \), \(u = 4x - 1 \)
17. \(\int x^2\sqrt{x + 1} \, dx \), \(u = x + 1 \)
18. \(\int \sin(4\theta - 7) \, d\theta \), \(u = 4\theta - 7 \)
19. \(\int \sin^2 \theta \cos \theta \, d\theta \), \(u = \sin \theta \)
20. \(\int \sec^2 x \tan x \, dx \), \(u = \tan x \)
21. \(\int x \sec^2(x^2) \, dx \), \(u = x^2 \)
22. \(\int \sec^2(x) \sin x \, dx \), \(u = \cos x \)

In Exercises 23–26, evaluate the integral in the form \(\int a\sin(u(x)) + C \) for an appropriate choice of \(u(x) \) and constant \(a \).
23. \(\int x^3 \cos(x^4) \, dx \)
24. \(\int x^2 \cos(x^3 + 1) \, dx \)
25. \(\int x^{1/2} \cos(x^{3/2}) \, dx \)
26. \(\int x \cos\cos(x) \, dx \)

In Exercises 27–62, evaluate the indefinite integral.
27. \(\int (4x + 5)^9 \, dx \)
28. \(\int \frac{dx}{(x - 9)^5} \)
29. \(\int \frac{dt}{\sqrt{t + 12}} \)
30. \(\int (9t + 2)^{2/3} \, dt \)
31. \(\int \frac{x + 1}{(x^2 + 2x)^3} \, dx \)
32. \(\int (x + 1)(x^2 + 2x)^{3/4} \, dx \)
33. \(\int \frac{x}{\sqrt{x^2 + 9}} \, dx \)
34. \(\int \frac{2x^2 + x}{(4x^3 + 3x^2)^2} \, dx \)
35. \(\int (3x^2 + 1)(x^3 + x)^2 \, dx \)
36. \(\int \frac{5x^4 + 2x}{(x^5 + x^2)^3} \, dx \)
37. \(\int (3x + 8)^{11} \, dx \)
38. \(\int x(3x + 8)^{11} \, dx \)
39. \(\int x^2\sqrt{x^3 + 1} \, dx \)
40. \(\int x^5 \sqrt{x^3 + 1} \, dx \)
41. \(\int \frac{dx}{x + 5} \)
42. \(\int \frac{x^2 \, dx}{(x + 5)^3} \)
43. \(\int z^2(z^3 + 1)^{12} \, dz \)
44. \(\int (z^5 + 4z^2)(z^3 + 1)^{12} \, dz \)
45. \(\int (x + 2)(x + 1)^{1/4} \, dx \)
46. \(\int x^3(x^2 - 1)^{3/2} \, dx \)
47. \(\int \sin(8 - 3\theta) \, d\theta \)
48. \(\int \theta \sin(\theta^2) \, d\theta \)
Evaluate for
\[I = \int \frac{\cos \sqrt{u}}{\sqrt{u}} \, du \]
\[50. \int x^2 \sin(x^3 + 1) \, dx \]
\[51. \int \frac{\sin x \cos x}{\sin x + 1} \, dx \]
\[52. \int \sin^8 \theta \cos \theta \, d\theta \]
\[53. \int \sec^2 x (12 \tan^3 x - 6 \tan^2 x) \, dx \]
\[54. \int x^{-1/5} \sec(x^{4/5}) \tan(x^{4/5}) \, dx \]
\[55. \int \sec^2 (4x + 9) \, dx \]
\[56. \int \sec x \tan^4 x \, dx \]
\[57. \int \frac{\sec^2 \left(\frac{\sqrt{x}}{\sqrt{2}} \right) \, dx}{\sqrt{2}} \]
\[58. \int \frac{\cos 2x}{(1 + \sin 2x)^2} \, dx \]
\[59. \int 4x \cos \sqrt{4x + 4} \, dx \]
\[60. \int \cos x (3 \sin x - 1) \, dx \]
\[61. \int \sec \theta \tan \theta (\sec \theta - 1) \, d\theta \]
\[62. \int \cos t \cos (\sin t) \, dt \]

Evaluate \[\int \frac{dx}{(1 + \sqrt{3})^3} \] using \(u = 1 + \sqrt{3} \). Hint: Show that \(dx = 2u(1 - u^2) \, du \).

Can They Both Be Right? Hannah uses the substitution \(u = \tan x \) and Akiva uses \(u = \sec x \) to evaluate \(\int \tan x \sec^2 x \, dx \). Show that they obtain different answers and explain the apparent contradiction.

Evaluate \(\int \sin x \cos x \, dx \) using substitution in two different ways: first using \(u = \sin x \) and then using \(u = \cos x \). Reconcile the two different answers.

Some Choices Are Better Than Others Evaluate \[\int \sin x \cos^2 x \, dx \]
in two ways. First use \(u = \sin x \) to show that \[\int \sin x \cos^2 x \, dx = \int u \sqrt{1 - u^2} \, du \]
and evaluate the integral on the right by a further substitution. Then show that \(u = \cos x \) is a better choice.

What are the new limits of integration if we apply the substitution \(u = 3x + \pi \) to the integral \(\int_0^\pi \sin (3x + \pi) \, dx \)?

Which of the following is the result of applying the substitution \(u = 4x - 9 \) to the integral \(\int_2^8 (4x - 9)^{20} \, dx \)?

(a) \[\int_2^8 u^{20} \, du \]

(b) \[\frac{1}{4} \int_2^8 u^{20} \, du \]

Further Insights and Challenges

Use the substitution \(u = 1 + x^{1/n} \) to show that \[\int \sqrt{1 + x^{1/n}} \, dx = n \int u^{1/2} (u - 1)^{n-1} \, du \]
Evaluate for \(n = 2, 3 \).

Evaluate \(I = \int_0^{\pi/2} \frac{d\theta}{1 + \tan 600 \theta} \). Hint: Use substitution to show that \(I \) is equal to \(J = \int_0^{\pi/2} \frac{d\theta}{1 + \cot 600 \theta} \) and then check that \(I + J = \int_0^{\pi/2} d\theta \).

Use substitution to prove that \(\int_{-a}^a f(x) \, dx = 0 \) if \(f \) is an odd function.

Prove that \[\int_a^b \frac{1}{x} \, dx = \int_1^b \frac{1}{x} \, dx \] for \(a, b > 0 \). Then show that the regions under the hyperbola over the intervals \([1, 2], [2, 4], [4, 8], \ldots\) all have the same area (Figure 4).
CHAPTER REVIEW EXERCISES

In Exercises 1–4, refer to the function \(f \) whose graph is shown in Figure 1.

1. Estimate \(L_4 \) and \(M_4 \) on \([0, 4]\).
2. Estimate \(R_4 \), \(L_4 \), and \(M_4 \) on \([1, 3]\).
3. Find an interval \([a, b]\) on which \(R_4 \) is larger than \(\int_a^b f(x) \, dx \). Do the same for \(L_4 \).
4. Justify \(\frac{3}{2} \leq \int_1^2 f(x) \, dx \leq \frac{9}{4} \).

In Exercises 5–8, let \(f(x) = x^2 + 3x \).

5. Calculate \(R_5 \), \(M_5 \), and \(L_5 \) for \(f \) on the interval \([2, 5]\). Sketch the graph of \(f \) and the corresponding rectangles for each approximation.
6. Use FTC I to evaluate \(A(x) = \int_{-2}^x f(t) \, dt \).
7. Find a formula for \(R_N \) for \(f \) on \([2, 5]\) and compute \(\int_2^5 f(x) \, dx \) by taking the limit.
8. Find a formula for \(L_N \) for \(f \) on \([0, 2]\) and compute \(\int_0^2 f(x) \, dx \) by taking the limit.

9. Calculate \(R_5 \), \(M_5 \), and \(L_5 \) for \(f(x) = (x^2 + 1)^{-1} \) on the interval \([0, 1]\).
10. Let \(R_N \) be the \(N \)th right-endpoint approximation for \(f(x) = x^3 \) on \([0, 4]\) (Figure 2).
 (a) Prove that \(R_N = \frac{64(N + 1)^2}{N^2} \).
 (b) Prove that the area of the region within the right-endpoint rectangles above the graph is equal to \(\frac{64(2N + 1)}{N^2} \).

11. Which approximation to the area is represented by the shaded rectangles in Figure 3? Compute \(R_5 \) and \(L_5 \).

95. Area of an Ellipse Prove the formula \(A = \pi ab \) for the area of the ellipse with equation (Figure 6)

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

Hint: Use a change of variables to show that \(A \) is equal to \(ab \) times the area of the unit circle.
12. Calculate any two Riemann sums for \(f(x) = x^2 \) on the interval \([2, 5]\), but choose partitions with at least five subintervals of unequal widths and intermediate points that are neither endpoints nor midpoints.

In Exercises 13–16, express the limit as an integral (or multiple of an integral) and evaluate.

13. \(\lim_{N \to \infty} \frac{\pi}{6N} \sum_{j=1}^{N} \sin \left(\frac{\pi}{3} + \frac{\pi j}{6N} \right) \)

14. \(\lim_{N \to \infty} \frac{3}{N} \sum_{k=0}^{N-1} \left(10 + \frac{3k}{N} \right) \)

15. \(\lim_{N \to \infty} \frac{5}{N} \sum_{j=0}^{N} \sqrt{4 + 5j/N} \)

16. \(\lim_{N \to \infty} \frac{k^2 + 2k + \ldots + n^2}{N^{k+1}} \) (\(k > 0 \))

In Exercises 17–30, calculate the indefinite integral.

17. \(\int (4x^3 - 2x^2) \, dx \)

18. \(\int x^{9/4} \, dx \)

19. \(\int \sin(\theta - \pi) \, d\theta \)

20. \(\int \cos(5 - 7\theta) \, d\theta \)

21. \(\int (4t^3 - 12t^{-4}) \, dt \)

22. \(\int (9t^{-2/3} + 4t^{7/3}) \, dt \)

23. \(\int \sec^2 x \, dx \)

24. \(\int \tan 3\theta \sec 3\theta \, d\theta \)

25. \(\int (y + 2)^4 \, dy \)

26. \(\int \frac{3x^3 - 9}{x^2} \, dx \)

27. \(\int (\cos \theta - \theta) \, d\theta \)

28. \(\int \sec^2(12 - 25\theta) \, d\theta \)

29. \(\int \frac{8 \, dx}{x^3} \)

30. \(\int \sin(4x - 9) \, dx \)

In Exercises 31–36, solve the differential equation with the given initial condition.

31. \(\frac{dy}{dx} = 4x^3, \quad y(1) = 4 \)

32. \(\frac{dy}{dt} = 3t^2 + \cos t, \quad y(0) = 12 \)

33. \(\frac{dy}{dx} = x^{-1/2}, \quad y(1) = 1 \)

34. \(\frac{dy}{dx} = \sec^2 x, \quad y \left(\frac{\pi}{4} \right) = 2 \)

35. \(\frac{dy}{dt} = 1 + \pi \sin 3t, \quad y(\pi) = \pi \)

36. \(\frac{dy}{dt} = \cos 3\pi t + \sin 4\pi t, \quad y \left(\frac{1}{2} \right) = 0 \)

37. Find \(f(t) \) if \(f''(t) = 1 - 2t, \quad f(0) = 2, \) and \(f'(0) = -1. \)

38. At time \(t = 0, \) a driver begins decelerating at a constant rate of \(-10\) m/s\(^2\) and comes to a halt after traveling 500 m. Find the velocity at \(t = 0. \)

In Exercises 39–42, use the given substitution to evaluate the integral.

39. \(\int_0^2 \frac{dt}{4t + 12}, \quad u = 4t + 12 \)

40. \(\int \frac{(x^2 + 1) \, dx}{(x^3 + 3x)^4}, \quad u = x^3 + 3x \)

41. \(\int_0^{\pi/6} \sin x \cos^4 x \, dx, \quad u = \cos x \)

42. \(\int \sec^2(2\theta) \tan(2\theta) \, d\theta, \quad u = \tan(2\theta) \)

In Exercises 43–70, evaluate the integral.

43. \(\int (20x^4 - 9x^3 - 2x) \, dx \)

44. \(\int (12x^3 - 3x^2) \, dx \)

45. \(\int (2x^2 - 3x)^2 \, dx \)

46. \(\int_0^1 (7/3 - 2x^{1/4}) \, dx \)

47. \(\int \frac{x^5 + 3x^4}{x^2} \, dx \)

48. \(\int_1^3 r^{-4} \, dr \)

49. \(\int \frac{1}{3} (x^2 - 4) \, dx \)

50. \(\int_2^4 (x - 1)(x - 3) \, dx \)

51. \(\int_0^3 t \, dt \)

52. \(\int_2^0 (t - [t])^2 \, dt \)

53. \(\int (10t - 7)^{14} \, dt \)

54. \(\int_2^3 \sqrt{7y - 3} \, dy \)

55. \(\int \frac{(2x^3 + 3x) \, dx}{(3x^4 + 9x^2)^5} \)

56. \(\int_{-3}^{-1} \frac{x \, dx}{(x^2 + 5)^\pi} \)

57. \(\int_0^{15} \sqrt{x+4} \, dx \)

58. \(\int r^2 \sqrt{r+8} \, dr \)

59. \(\int_0^1 \cos \left(\frac{\pi}{3} (t + 2) \right) \, dt \)

60. \(\int_{\pi/2}^\pi \frac{\sin \left(\frac{5\theta - \pi}{6} \right)}{d\theta} \)

61. \(\int r^2 \sec^2 (9r^3 + 1) \, dr \)

62. \(\int \sin^2 (3\theta) \cos (3\theta) \, d\theta \)

63. \(\int \csc^2 (9 - 2\theta) \, d\theta \)

64. \(\int \sin \theta \sqrt{4 - \cos^2 \theta} \, d\theta \)

65. \(\int_0^{\pi/3} \sin \theta \cos^3 3\theta \, d\theta \)

66. \(\int_0^{\pi/6} \frac{\sec^2 t \, dt}{(\tan t - 1)^2} \)

67. \(\int y \sqrt{2y^2 + 3} \, dy \)

68. \(\int_8^1 r^2 \sqrt{r + 8} \, dr \)

69. \(\int_0^{\pi/2} \sec^2 (\cos \theta) \sin \theta \, d\theta \)

70. \(\int_{-4}^2 \frac{12 \sqrt{x^2} \, dx}{(x^2 + 2)^3} \)

71. Combine to write as a single integral:

\[\int_0^8 f(x) \, dx + \int_0^0 f(x) \, dx + \int_8^6 f(x) \, dx \]

72. Let \(A(x) = \int_0^x f(x) \, dx, \) where \(f \) is the function shown in Figure 4. Identify the location of the local minima, the local maxima, and points of inflection of \(A \) on the interval \([0, E], \) as well as the intervals where \(A \) is increasing, decreasing, concave up, or concave down. Where does the absolute maximum of \(A \) occur?
73. Find the local minima, the local maxima, and the inflection points of \(A(x) = \int_3^x \frac{t^2}{t^2 + 1} \, dt \).

74. A particle starts at the origin at time \(t = 0 \) and moves with velocity \(v(t) \) as shown in Figure 5.
(a) How many times does the particle return to the origin in the first 12 seconds?
(b) What is the particle’s maximum distance from the origin?
(c) What is the particle’s maximum distance to the left of the origin?

75. On a typical day, a city consumes water at the rate of \(r(t) = 100 + 72t - 3t^2 \) (in thousands of gallons per hour), where \(t \) is the number of hours past midnight. What is the daily water consumption? How much water is consumed between 6 pm and midnight?

76. The learning curve in a certain bicycle factory is \(L(n) = 12x^{-1/5} \) (in hours per bicycle), which means that it takes a bike mechanic \(L(n) \) hours to assemble the \(nth \) bicycle. If a mechanic has produced 24 bicycles, how long does it take her or him to produce a subsequent batch of 12?

77. Cost engineers at NASA have the task of projecting the cost \(P \) of major space projects. It has been found that the cost \(C \) of developing a projection increases with \(P \) at the rate \(dC/dP \approx 21 P^{-0.65} \), where \(C \) is in thousands of dollars and \(P \) in millions of dollars. What is the cost of developing a projection for a project whose cost turns out to be \(P = \$35 \) million?

78. An astronomer estimates that in a certain constellation, the number of stars per magnitude \(m \), per degree-squared of sky, is equal to \(A(m) = 2.4 \times 10^{-6} m^{2.4} \) (fainter stars have higher magnitudes). Determine the total number of stars of magnitude between 6 and 15 in a 1-degree-squared region of sky.

79. Evaluate \(\int_{-2}^1 \frac{x^{15}}{3 + \cos x^2} \, dx \), using the properties of odd functions.

80. Evaluate \(\int_0^1 f(x) \, dx \), assuming that \(f \) is an even continuous function such that \(\int_1^2 f(x) \, dx = 5 \), \(\int_{-2}^1 f(x) \, dx = 8 \).

81. [GU] Plot the graph of \(f(x) = \sin mx \sin nx \) on \([0, \pi]\) for the pairs \((m, n) = (2, 4), (3, 5)\) and in each case guess the value of \(I = \int_0^\pi f(x) \, dx \). Experiment with a few more values (including two cases with \(m = n \)) and formulate a conjecture for when \(I \) is zero.

82. Show that
\[
\int_0^\pi f(x) \, dx = x F(x) - G(x)
\]
where \(F'(x) = f(x) \) and \(G'(x) = F(x) \). Use this to evaluate \(\int x \cos x \, dx \).

83. Prove
\[
2 \leq \int_1^2 2^x \, dx \leq 4 \quad \text{and} \quad \frac{1}{9} \leq \int_1^2 3^{-x} \, dx \leq \frac{1}{3}
\]

84. [GU] Plot the graph of \(f(x) = x^{-2} \sin x \), and show that \(0.2 \leq \int_1^2 f(x) \, dx \leq 0.9 \).

85. Find upper and lower bounds for \(\int_0^1 f(x) \, dx \), for \(y = f(x) \) in Figure 6.

86. \(A'(x) \), where \(A(x) = \int_3^x \sin(t^2) \, dt \)

87. \(A'(\pi) \), where \(A(x) = \int_2^x \cos t \, dt \)

88. \(\frac{d}{dy} \int_2^y 3^x \, dx \)

89. \(G'(x) \), where \(G(x) = \int_{-2}^x t^3 \, dt \)

90. \(G'(2) \), where \(G(x) = \int_0^x \sqrt{t + 1} \, dt \)

91. \(H'(1) \), where \(H(x) = \int_0^x \frac{1}{t} \, dt \)

92. Explain with a graph: If \(f \) is increasing and concave up on \([a, b]\), then \(L_N \) is more accurate than \(R_N \). Which is more accurate if \(f \) is increasing and concave down?

93. Explain with a graph: If \(f \) is linear on \([a, b]\), then the \(\int_a^b f(x) \, dx = \frac{1}{2}(R_N + L_N) \) for all \(N \).
94. Let $ f $ be a positive increasing continuous function on $ [a, b] $, where $ 0 \leq a < b $ as in Figure 7. Show that the shaded region has area

$$ I = bf(b) - af(a) - \int_a^b f(x) \, dx $$

95. How can we interpret the quantity $ I $ in Eq. (1) if $ a < b \leq 0 $? Explain with a graph.
In the previous chapter, we used the integral to compute areas under curves and net change. In this chapter, we discuss some of the other quantities that are represented by integrals, including volume, average value, work, total mass, population, and fluid flow.

6.1 Area Between Two Curves

Sometimes we are interested in the area between two curves. Figure 1 shows projected electric power generation in the United States through renewable resources (wind, solar, biofuels, etc.) under two scenarios: with and without government stimulus spending. The area of the shaded region between the two graphs represents the additional energy projected to result from stimulus spending.

Now suppose that we are given two functions \(y = f(x) \) and \(y = g(x) \) such that \(f(x) \geq g(x) \) for all \(x \) in an interval \([a, b]\). We call such a region **vertically simple** since any vertical line that intersects the region does so in a single vertical line segment or point with its lower endpoint on the graph of \(y = g(x) \) and upper endpoint on the graph of \(y = f(x) \), as appears, for example, in Figure 2. Then the graph of \(y = f(x) \) lies above the graph of \(y = g(x) \) (Figure 3), and the area between the graphs is equal to the area under the top function minus the area under the bottom function, which is the integral of \(f(x) - g(x) \):

\[
\text{Area between the graphs} = \int_a^b f(x) \, dx - \int_a^b g(x) \, dx = \int_a^b (f(x) - g(x)) \, dx
\]

Figure 3 illustrates this formula in the case that both graphs lie above the \(x \)-axis. We see that the region between the graphs is obtained by removing the region under \(y = g(x) \) from the region under \(y = f(x) \).
Example 1 Find the area of the region between the graphs of the functions

\[f(x) = x^2 - 4x + 10, \quad g(x) = 4x - x^2, \quad 1 \leq x \leq 3 \]

Solution First, we must determine which graph lies on top. Figure 4 shows that \(f(x) \geq g(x) \), as we can verify directly by completing the square:

\[
f(x) - g(x) = (x^2 - 4x + 10) - (4x - x^2) = 2x^2 - 8x + 10 = 2(x - 2)^2 + 2 > 0
\]

Therefore, the region is vertically simple and by Eq. (1), the area between the graphs is

\[
\int_1^3 \left(f(x) - g(x) \right) \, dx = \int_1^3 \left((x^2 - 4x + 10) - (4x - x^2) \right) \, dx
\]

\[
= \int_1^3 (2x^2 - 8x + 10) \, dx = \left[\frac{2}{3}x^3 - 4x^2 + 10x \right]_1^3 = 12 - \frac{20}{3} = \frac{16}{3}.
\]

Before continuing with more examples, we note that Eq. (1) remains valid whenever \(f(x) \geq g(x) \), even if \(f(x) \) and \(g(x) \) are not assumed to be positive. As in Figure 5, we can simply shift the two functions up by adding to each a constant \(C \) big enough so that both functions are positive over the interval \([a, b] \). This does not change the area between them. Then by our previous result, we have

\[
\text{Area between the graphs} = \int_a^b \left((f(x) + C) - (g(x) + C) \right) \, dx
\]

\[
= \int_a^b \left(f(x) - g(x) \right) \, dx
\]

Writing \(y_{\text{top}} = f(x) \) for the top curve and \(y_{\text{bot}} = g(x) \) for the bottom curve, we obtain

\[
\text{Area between the graphs} = \int_a^b (y_{\text{top}} - y_{\text{bot}}) \, dx = \int_a^b (f(x) - g(x)) \, dx
\]

Example 2 Find the area between the graphs of \(f(x) = x^2 - 5x - 7 \) and \(g(x) = x - 12 \) over \([-2, 5]\).

Solution First, we must determine which graph lies on top.

1. **Step 1. Sketch the region (especially, find any points of intersection).**

 We know that \(y = f(x) \) is a parabola with \(y \)-intercept \(-7\) and that \(y = g(x) \) is a line with \(y \)-intercept \(-12\) (Figure 6). To determine where the graphs intersect, we look for values of \(x \) where \(f(x) = g(x) \), or equivalently, where \(f(x) - g(x) = 0 \):

 \[
f(x) - g(x) = (x^2 - 5x - 7) - (x - 12) = x^2 - 6x + 5 = (x - 1)(x - 5)
\]

 The graphs intersect where \((x - 1)(x - 5) = 0\), that is, at \(x = 1\) and \(x = 5\).

2. **Step 2. Set up the integrals and evaluate.**

 We also see that \(f(x) - g(x) \leq 0 \) for \(1 \leq x < 5 \), and thus,

 \[
f(x) \geq g(x) \text{ on } [-2, 1] \quad \text{and} \quad g(x) \geq f(x) \text{ on } [1, 5]
\]

 This tells us to subdivide our region into two vertically simple regions over \([-2, 1]\) and \([1, 5]\). Therefore, we write the area as a sum of integrals over the two intervals:
\[\int_{-2}^{5} (y_{\text{top}} - y_{\text{bot}}) \, dx = \int_{-2}^{1} (f(x) - g(x)) \, dx + \int_{1}^{5} (g(x) - f(x)) \, dx \]

\[= \int_{-2}^{1} ((x^2 - 5x - 7) - (x - 12)) \, dx + \int_{1}^{5} ((x - 12) - (x^2 - 5x - 7)) \, dx \]

\[= \int_{-2}^{1} (x^2 - 6x + 5) \, dx + \int_{1}^{5} (-x^2 + 6x - 5) \, dx \]

\[= \left(\frac{1}{3}x^3 - 3x^2 + 5x \right) \bigg|_{-2}^{1} + \left(-\frac{1}{3}x^3 + 3x^2 - 5x \right) \bigg|_{1}^{5} \]

\[= \left(\frac{7}{3} - \frac{74}{3} \right) + \left(\frac{25}{3} - \frac{-7}{3} \right) = \frac{113}{3} \]

Example 3: Calculating Area by Dividing the Region Find the area of the region bounded by the graphs of \(y = 8/x^2 \), \(y = 8x \), and \(y = x \).

Solution

Step 1. Sketch the region (especially, find any points of intersection).

The curve \(y = 8/x^2 \) cuts off a region in the sector between the two lines \(y = 8x \) and \(y = x \) (Figure 7). We find the intersection of \(y = 8/x^2 \) and \(y = 8x \) by solving

\[\frac{8}{x^2} = 8x \quad \Rightarrow \quad x^3 = 1 \quad \Rightarrow \quad x = 1 \]

and the intersection of \(y = 8/x^2 \) and \(y = x \) by solving

\[\frac{8}{x^2} = x \quad \Rightarrow \quad x^3 = 8 \quad \Rightarrow \quad x = 2 \]

Step 2. Set up the integrals and evaluate.

Figure 7 shows that \(y_{\text{bot}} = x \), but \(y_{\text{top}} \) changes at \(x = 1 \) from \(y_{\text{top}} = 8x \) to \(y_{\text{top}} = 8/x^2 \). So the region is not vertically simple. Therefore, we break up the regions into two parts, \(A \) and \(B \), each vertically simple, and compute their areas separately.

Area of \(A = \int_{0}^{1} (y_{\text{top}} - y_{\text{bot}}) \, dx = \int_{0}^{1} (8x - x) \, dx = \int_{0}^{1} 7x \, dx = \left. \frac{7}{2}x^2 \right|_{0}^{1} = \frac{7}{2} \)

Area of \(B = \int_{1}^{2} (y_{\text{top}} - y_{\text{bot}}) \, dx = \int_{1}^{2} (8 - \frac{8}{x^2} - x) \, dx = \left. \left(-\frac{8}{x} - \frac{1}{2}x^2 \right) \right|_{1}^{2} = \frac{5}{2} \)

The total area bounded by the curves is the sum \(\frac{7}{2} + \frac{5}{2} = 6 \).

![Figure 7](image_url)

Figure 7 Area bounded by \(y = 8/x^2 \), \(y = 8x \), and \(y = x \) as a sum of two areas.

Integration Along the y-Axis

Suppose we are given \(x \) as a function of \(y \), say, \(x = g(y) \). What is the meaning of the integral \(\int_{c}^{d} g(y) \, dy \)? This integral can be interpreted as signed area, where regions to the right of the \(y \)-axis have positive area and regions to the left have negative area:

\[\int_{c}^{d} g(y) \, dy = \text{signed area between graph and } y\text{-axis for } c \leq y \leq d \]
In Figure 8(A), the part of the shaded region to the left of the y-axis has negative signed area. The signed area of the entire region is

$$
\int_{-6}^{6} (y^2 - 9) \, dy = \left[\frac{1}{3} y^3 - 9y \right]_{-6}^{6} = 36
$$

Area to the right of y-axis minus area to the left of y-axis

![FIGURE 8](image)

FIGURE 8

More generally, if $g(y) \geq h(y)$ as in Figure 8(B), then the graph of $x = g(y)$ lies to the right of the graph of $x = h(y)$. In this case, we write $x_{\text{right}} = g(y)$ and $x_{\text{left}} = h(y)$ and we call the region horizontally simple, since every horizontal line that intersects the region does so in a single line segment or point such that the left endpoint is on the curve $x = h(y)$ and the right endpoint is on the curve $x = g(y)$, as in Figure 9. The formula for the area corresponding to Eq. (2) is

$$
\text{Area between the graphs} = \int_{c}^{d} (x_{\text{right}} - x_{\text{left}}) \, dy = \int_{c}^{d} (g(y) - h(y)) \, dy
$$

EXAMPLE 4 Calculate the area enclosed by the graphs of $h(y) = y^2 - 1$ and $g(y) = y^2 - \frac{1}{8} y^4 + 1$.

Solution Note that to get a sense of the graph of the second function, we can think of $g(x) = x^2 - \frac{1}{8} x^4 + 1$, and graph it using the techniques we have developed, and then reflect the graph over the line $y = x$ to obtain the graph of $g(y) = y^2 - \frac{1}{8} y^4 + 1$, as in Figure 10.

We find the points where the graphs intersect by solving $g(y) = h(y)$ for y:

$$
y^2 - \frac{1}{8} y^4 + 1 = y^2 - 1 \quad \Rightarrow \quad \frac{1}{8} y^4 - 2 = 0 \quad \Rightarrow \quad y = \pm 2
$$

Figure 10 shows that the enclosed region stretches from $y = -2$ to $y = 2$. On this interval, $g(y) \geq h(y)$ and therefore the region is horizontally simple. Thus, $x_{\text{right}} = g(y)$, $x_{\text{left}} = h(y)$, and

$$
x_{\text{right}} - x_{\text{left}} = (y^2 - \frac{1}{8} y^4 + 1) - (y^2 - 1) = 2 - \frac{1}{8} y^4
$$

The enclosed area is

$$
\int_{-2}^{2} (x_{\text{right}} - x_{\text{left}}) \, dy = \int_{-2}^{2} \left(2 - \frac{1}{8} y^4 \right) \, dy = \left(2y - \frac{1}{40} y^5 \right) \bigg|_{-2}^{2} = \frac{16}{5} - \left(-\frac{16}{5} \right) = \frac{32}{5}
$$

It would be more difficult to calculate the area of the region in Figure 10 as an integral with respect to x because the curves are not graphs of functions of x.

FIGURE 9 A horizontally simple region.

FIGURE 10
For many regions, we have a choice of whether to find the area by integrating with respect to x or with respect to y. The decision is usually based on how easy it is to obtain the curves as functions of one variable in terms of the other, together with how easy it is to subdivide the region into simple regions and then to integrate the functions involved.

Example 5 Find the area of the region that is bounded by the three curves $y = x^2$, $y = (x - 2)^2$, and $y = 0$.

Solution The area appears in Figure 11. Notice immediately that it is not vertically simple, since the top function changes over the interval $[0, 2]$. It is horizontally simple, but to calculate the area using the fact it is a horizontally simple region will take a bit of work.

So first, we do it by splitting the region into two vertically simple regions. Then the area is given by

$$
\int_0^1 x^2 \, dx + \int_1^2 (x - 2)^2 \, dx = \frac{x^3}{3} \bigg|_0^1 + \frac{(x - 2)^3}{3} \bigg|_1^2 = \frac{1}{3} + 0 - \left(-\frac{1}{3} \right) = \frac{2}{3}
$$

Now, let’s redo the problem, using the fact the region is horizontally simple. We must invert the formulas for the parabolas. The left boundary of the region, which is the right side of the parabola given by $y = x^2$, becomes $x = \sqrt{y}$. To determine the formula for the right boundary of the region, which is the left side of the parabola $y = (x - 2)^2$, we solve for x:

$$
x - 2 = \pm \sqrt{y}
$$

$$
x = 2 \pm \sqrt{y}
$$

The equation for the left side of the parabola is given by choosing the minus sign, $x = 2 - \sqrt{y}$.

Then the area is given by

$$
\int_0^1 (2 - \sqrt{y} - \sqrt{y}) \, dy = 2y - \frac{4y^{3/2}}{3} \bigg|_0^1 = \frac{2}{3}
$$

6.1 Summary

- If $f(x) \geq g(x)$ on $[a, b]$, then the area between the graphs is vertically simple and we have

 $$
 \text{Area between the graphs} = \int_a^b (y_{\text{top}} - y_{\text{bot}}) \, dx = \int_a^b (f(x) - g(x)) \, dx
 $$

- To calculate the area between $y = f(x)$ and $y = g(x)$, sketch the region to find y_{top}. If necessary, find points of intersection by solving $f(x) = g(x)$.

- Integral along the y-axis: $\int_c^d g(y) \, dy$ is equal to the signed area between the graph and the y-axis for $c \leq y \leq d$. Area to the right of the y-axis is positive and the area to the left is negative.

- If $g(y) \geq h(y)$ on $[c, d]$, then $x = g(y)$ lies to the right of $x = h(y)$ and the region is horizontally simple.

 $$
 \text{Area between the graphs} = \int_c^d (x_{\text{right}} - x_{\text{left}}) \, dy = \int_c^d (g(y) - h(y)) \, dy
 $$

6.1 Exercises

Preliminary Questions

1. What is the area interpretation of $\int_a^b (f(x) - g(x)) \, dx$ if $f(x) \geq g(x)$?

2. Is $\int_a^b (f(x) - g(x)) \, dx$ still equal to the area between the graphs of f and g if $f(x) \geq 0$ but $g(x) \leq 0$?
3. Suppose that \(f(x) \geq g(x) \) on \([0, 3]\) and \(g(x) \geq f(x) \) on \([3, 5]\). Express the area between the graphs over \([0, 5]\) as a sum of integrals.

4. Suppose that the graph of \(x = f(y) \) lies to the left of the y-axis. Is \(\int_a^b f(y) \, dy \) positive or negative?

Exercises

1. Find the area of the region between \(y = 3x^2 + 12 \) and \(y = 4x + 4 \) over \([-3, 3]\) (Figure 12).

2. Find the area of the region between the graphs of \(f(x) = 3x + 8 \) and \(g(x) = x^2 + 2x + 2 \) over \([0, 2]\).

3. Find the area of the region enclosed by the graphs of \(f(x) = x^2 + 2 \) and \(g(x) = 2x + 5 \) (Figure 13).

4. Find the area of the region enclosed by the graphs of \(f(x) = x^3 - 10x \) and \(g(x) = 6x \) (Figure 14).

In Exercises 5 and 6, sketch the region between \(y = \sin x \) and \(y = \cos x \) over the interval and find its area.

5. \(\left[\frac{\pi}{4}, \frac{\pi}{2} \right] \)

6. \([0, \pi]\)

In Exercises 7 and 8, let \(f(x) = 20 + x - x^2 \) and \(g(x) = x^2 - 5x \).

7. Sketch the region enclosed by the graphs of \(f \) and \(g \), and compute its area.

8. Sketch the region between the graphs of \(f \) and \(g \) over \([4, 8]\), and compute its area as a sum of two integrals.

9. \(\text{GU} \) Find the points of intersection of \(y = x(x^2 - 1) \) and \(y = 1 - x^2 \). Sketch the region enclosed by these curves over \([-1, 1]\) and compute its area.

10. \(\text{GU} \) Find the points of intersection of \(y = x(4 - x) \) and \(y = x^3(4 - x) \). Sketch the region enclosed by these curves over \([0, 4]\) and compute its area.

11. Sketch the region bounded by the line \(y = 2 \) and the graph of \(y = \sec^2x \) for \(-\frac{\pi}{2} < x < \frac{\pi}{2}\) and find its area.

12. Sketch the region bounded by \(y = \sqrt{4 - x^2} \) and \(y = -\sqrt{4 - x^2} \) for \(-2 \leq x \leq 2\). Write down a definite integral that gives its area, but then use geometry to find its area (and thereby determine the integral).

In Exercises 13–16, determine whether or not the region bounded by the curves is vertically simple and/or horizontally simple.

13. \(x = y^2 \), \(x = 2 - y^2 \)

14. \(y = x^2 \), \(x = y^2 \)

15. \(y = x \), \(y = 2x \), \(y = \frac{1}{x} \)

16. \(y = \sin x \) for \(0 \leq x \leq \pi\) and \(y = 1 - x \), \(y = 0 \) (Of the two regions that are bounded by these curves, take the one that does not contain the origin on its boundary.)

In Exercises 17–20, find the area of the shaded region in Figures 15–18.

17. \(y = x^3 - 2x^2 + 10 \)

18. \(y = 3x^2 + 4x - 10 \)

19. \(y = \frac{1}{2}x \)

20. \(y = \sqrt{1 - x^2} \)
20. \[y = \cos 2x \]

\[\begin{array}{c}
\text{FIGURE 18} \\
\text{Region between } y = \cos 2x \text{ and } x = 1 - \cos y \text{ over the given interval (Figure 19).}
\end{array} \]

In Exercises 21 and 22, find the area between the graphs of \(x = \sin y \) and \(x = 1 - \cos y \) over the given interval.

21. \(0 \leq y \leq \frac{\pi}{2} \)

22. \(-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \)

23. Find the area of the region lying to the right of \(x = y^2 + 4y - 22 \) and to the left of \(x = 3y + 8 \).

24. Find the area of the region lying to the right of \(x = y^2 - 5 \) and to the left of \(x = 3 - y^2 \).

25. Figure 20 shows the region enclosed by \(x = y^3 - 26y + 10 \) and \(x = 40 - 6y^2 - y^3 \). Match the equations with the curves and compute the area of the region.

26. Figure 21 shows the region enclosed by \(y = x^3 - 6x \) and \(y = 8 - 3x^2 \). Match the equations with the curves and compute the area of the region.

27. In Exercises 27 and 28, find the area enclosed by the graphs in two ways: by integrating along the \(x \)-axis and by integrating along the \(y \)-axis.

28. The semicubical parabola \(y^2 = x^3 \) and the line \(x = 1 \)

29. Region between \(y^2 = x + 5 \) and \(y^2 = 3 - x \)

30. Region between \(y = x \) and \(x + y = 8 \) over \([2, 3]\)

31. In Exercises 31–48, sketch the region enclosed by the curves and compute its area as an integral along the \(x \)- or \(y \)-axis.

32. \(y = 4 - x^2, \quad y = x^2 - 4 \)

33. \(y = x^2 - 6, \quad y = 6 - x^3, \quad y \)-axis

34. \(x + y = 4, \quad x - y = 0, \quad y + 3x = 4 \)

35. \(y = 8 - \sqrt{x}, \quad y = \sqrt{x}, \quad x = 0 \)

36. \(y = |x^2 - 4|, \quad y = 5 \)

37. \(x = |y|, \quad x = 1 - |y| \)

38. \(y = |x|, \quad y = x^2 - 6 \)

39. \(x = y^3 - 18y, \quad y + 2x = 0 \)

40. \(y = x \sqrt{x - 2}, \quad y = -x \sqrt{x - 2}, \quad x = 4 \)

41. \(x = 2y, \quad x + 1 = (y - 1)^2 \)

42. \(x + y = 1, \quad x^{1/2} + y^{1/2} = 1 \)

43. \(y = \cos x, \quad y = \cos 2x, \quad x = 0, \quad x = \frac{2\pi}{3} \)

44. \(y = \sin(2x), \quad y = \sin(4x), \quad x = 0, \quad x = \frac{\pi}{6} \)

45. \(y = \sin x, \quad y = \csc^2 x, \quad x = \frac{\pi}{4} \)

46. \(x = \sin y, \quad x = \frac{2\pi}{y} \)

47. \(y = \sin x, \quad y = x \sin(x^2), \quad 0 \leq x \leq 1 \)

48. \(y = \frac{\sin(\sqrt{x})}{\sqrt{x}}, \quad y = 0, \quad \pi^2 \leq x \leq 9\pi^2 \)

49. **CAS**

\[y = \frac{x}{\sqrt{x^2 + 1}} \quad \text{and} \quad y = (x - 1)^2 \]

on the same set of axes. Use a computer algebra system to find the points of intersection numerically and compute the area between the curves.

50. Sketch a region whose area is represented by

\[\int_{-\sqrt{2}/2}^{\sqrt{2}/2} \left(\sqrt{1 - x^2} - |x| \right) \, dx \]

and evaluate using geometry.
51. Athletes 1 and 2 run along a straight track with velocities \(v_1(t) \) and \(v_2(t) \) (in meters per second) as shown in Figure 22.
 (a) Which of the following is represented by the area of the shaded region over \([0, 10]\)?
 i. The distance between athletes 1 and 2 at time \(t = 10 \) s
 ii. The difference in the distance traveled by the athletes over the time interval \([0, 10]\)
 (b) Does Figure 22 give us enough information to determine who is ahead at time \(t = 10 \) s?
 (c) If the athletes begin at the same time and place, who is ahead at \(t = 10 \) s? At \(t = 25 \) s?

52. Express the area (not signed) of the shaded region in Figure 23 as a sum of three integrals involving \(f(x) \) and \(g(x) \).

53. Find the area enclosed by the curves \(y = c - x^2 \) and \(y = x^2 - c \) as a function of \(c \). Find the value of \(c \) for which this area is equal to 1.

54. Set up (but do not evaluate) an integral that expresses the area between the circles \(x^2 + y^2 = 2 \) and \(x^2 + (y - 1)^2 = 1 \).

55. Set up (but do not evaluate) an integral that expresses the area between the graphs of \(y = (1 + x^2)^{-1} \) and \(y = x^2 \).

56. CAS Find a numerical approximation to the area above \(y = 1 - (x/\pi) \) and below \(y = \sin x \) (find the points of intersection numerically).

57. CAS Find a numerical approximation to the area above \(y = |x| \) and below \(y = \cos x \).

58. CAS Use a computer algebra system to find a numerical approximation to the number \(c \) (besides zero) in \([0, \frac{2\pi}{3}]\), where the curves \(y = \sin x \) and \(y = \tan^2 x \) intersect. Then find the area enclosed by the graphs over \([0, c]\).

59. The back of Jon’s guitar (Figure 24) is 19 inches (in.) long. Jon measured the width at 1-in. intervals, beginning and ending \(\frac{1}{2} \) in. from the ends, obtaining the results
 \[6, 9, 10.25, 10.75, 10.75, 10.25, 9.75, 9.5, 10, 11.25, 12.75, 13.75, 14.25, 14.5, 14.5, 13.25, 11.25, 9 \]
 Use the midpoint rule to estimate the area of the back.

60. Referring to Figure 1 at the beginning of this section, estimate the projected number of additional joules produced in the years 2009–2030 as a result of government stimulus spending in 2009–2010. Note: One watt (W) is equal to 1 joule/second (J/s), and 1 gigawatt (GW) is \(10^9 \) watts.

Exercises 61 and 62 use the notation and results of Exercises 49–51 of Section 3.4. For a given country, \(F(r) \) is the fraction of total income that goes to the bottom \(r \)th fraction of households. The graph of \(y = F(r) \) is called the Lorenz curve.

61. Let \(A \) be the area between \(y = r \) and \(y = F(r) \) over the interval \([0, 1]\) (Figure 25). The Gini index is the ratio \(G = A/B \), where \(B \) is the area under \(y = r \) over \([0, 1]\).
 (a) Show that
 \[G = 2 \int_0^1 (r - F(r)) \, dr \]
 (b) Calculate \(G \) if
 \[F(r) = \begin{cases} \frac{1}{2}r & \text{for } 0 \leq r \leq \frac{1}{2} \\ \frac{5}{3}r - \frac{2}{3} & \text{for } \frac{1}{2} \leq r \leq 1 \end{cases} \]
 (c) The Gini index is a measure of income distribution, with a lower value indicating a more equal distribution. Calculate \(G \) if \(F(r) = r \) (in this case, all households have the same income by Exercise 51(b) of Section 3.4).
 (d) What is \(G \) if all of the income goes to one household? Hint: In this extreme case, \(F(r) = 0 \) for \(0 \leq r < 1 \).

62. Calculate the Gini index of the United States in the year 2010 from the Lorenz curve in Figure 25, which consists of segments joining the data points in the following table:

<table>
<thead>
<tr>
<th>(r)</th>
<th>0</th>
<th>0.2</th>
<th>0.4</th>
<th>0.6</th>
<th>0.8</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F(r))</td>
<td>0.033</td>
<td>0.118</td>
<td>0.264</td>
<td>0.480</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

 ![Figure 25](image-url) Lorenz curve for the United States in 2010.
Further Insights and Challenges

63. Find the line \(y = mx \) that divides the area under the curve \(y = x(1 - x) \) over \([0, 1]\) into two regions of equal area.

64. **CAS** Let \(c \) be the number such that the area under \(y = \sin x \) over \([0, \pi]\) is divided in half by the line \(y = cx \) (Figure 26). Find an equation for \(c \) and solve this equation numerically using a computer algebra system.

6.2 Setting Up Integrals: Volume, Density, Average Value

Which quantities are represented by integrals? Roughly speaking, integrals represent quantities that are the “total amount” of something such as area, volume, or total mass. There is a two-step procedure for computing such quantities: (1) Approximate the quantity by a sum of \(N \) terms, and (2) pass to the limit as \(N \to \infty \) to obtain an integral. We’ll use this procedure often in this and other sections.

Volume

Our first example is the volume of a solid body. Before proceeding, let’s recall that the volume of a right cylinder (Figure 1) is \(Ah \), where \(A \) is the area of the base and \(h \) is the height, measured perpendicular to the base. Here, we use the “right cylinder” in the general sense; the base does not have to be circular, but the sides are perpendicular to the base.

Suppose that the solid body extends from height \(y = a \) to \(y = b \) along the \(y \)-axis as in Figure 2. Let \(A(y) \) be the area of the horizontal cross section at height \(y \) (the intersection of the solid with the horizontal plane at height \(y \)).

To compute the volume \(V \) of the body, divide the body into \(N \) horizontal slices of thickness \(\Delta y = (b - a)/N \). The \(i \)th slice extends from \(y_{i-1} \) to \(y_i \), where \(y_i = a + i \Delta y \). Let \(V_i \) be the volume of the slice.

If \(N \) is very large, then \(\Delta y \) is very small and the slices are very thin. In this case, the \(i \)th slice is nearly a right cylinder of base \(A(y_{i-1}) \) and height \(\Delta y \), and therefore, \(V_i \approx A(y_{i-1}) \Delta y \). Summing up, we obtain

\[
V = \sum_{i=1}^{N} V_i \approx \sum_{i=1}^{N} A(y_{i-1}) \Delta y
\]

The sum on the right is a left-endpoint approximation to the integral \(\int_a^b A(y) \, dy \). If we assume that \(A \) is a continuous function, then the approximation improves in accuracy and converges to the integral as \(N \to \infty \). We conclude that the **volume of the solid is equal to the integral of its cross-sectional area**.
Volume as the Integral of Cross-Sectional Area Let $A(y)$ be the area of the horizontal cross section at height y of a solid body extending from $y = a$ to $y = b$. Then

$$\text{Volume of the solid body} = \int_{a}^{b} A(y) \, dy$$

EXAMPLE 1 Volume of a Pyramid Calculate the volume V of a pyramid of height 12 m whose base is a square of side 4 m.

Solution To use Eq. (1), we need a formula for the horizontal cross section $A(y)$.

Step 1. Find a formula for $A(y)$.

Figure 3 shows that the horizontal cross section at height y is a square. To find the side s of this square, apply the law of similar triangles to $\triangle ABC$ and to the triangle of height $12 - y$ whose base of length $\frac{1}{2}s$ lies on the cross section:

$$\frac{\text{Base}}{\text{Height}} = \frac{2}{12} = \frac{\frac{1}{2}s}{12 - y} \quad \Rightarrow \quad 2(12 - y) = 6s$$

We find that $s = \frac{1}{3}(12 - y)$, and therefore, $A(y) = s^2 = \frac{1}{9}(12 - y)^2$.

Step 2. Compute V as the integral of $A(y)$.

$$V = \int_{0}^{12} A(y) \, dy = \int_{0}^{12} \frac{1}{9}(12 - y)^2 \, dy = -\frac{1}{27}(12 - y)^3 \bigg|_{0}^{12} = 64 \text{ m}^3$$

This agrees with the result obtained using the formula $V = \frac{1}{3}Ah$ for the volume of a pyramid of base A and height h, since $\frac{1}{3}Ah = \frac{1}{3}(4^2)(12) = 64$.

EXAMPLE 2 Compute the volume V of the solid in Figure 4, whose base is the region between the inverted parabola $y = 4 - x^2$ and the x-axis, and whose vertical cross sections perpendicular to the y-axis are semicircles.

Solution To find a formula for the area $A(y)$ of the cross section, observe that $y = 4 - x^2$ can be written $x = \pm\sqrt{4 - y}$. We see in Figure 4 that the cross section at y is a semicircle of radius $r = \sqrt{4 - y}$. This semicircle has area $A(y) = \frac{1}{2}\pi r^2 = \frac{\pi}{2}(4 - y)$. Therefore,

$$V = \int_{0}^{4} A(y) \, dy = \frac{\pi}{2} \int_{0}^{4} (4 - y) \, dy = \frac{\pi}{2} \left[4y - \frac{1}{2}y^2\right]_{0}^{4} = 4\pi$$

In the next example, we compute volume using vertical rather than horizontal cross sections. This leads to an integral with respect to x rather than y.

EXAMPLE 3 Volume of a Sphere: Vertical Cross Sections Compute the volume of a sphere of radius R.

Solution As we see in Figure 5, the vertical cross section of the sphere at x is a circle whose radius r satisfies $x^2 + r^2 = R^2$ or $r = \sqrt{R^2 - x^2}$. The area of the cross section is $A(x) = \pi r^2 = \pi(R^2 - x^2)$. Therefore, the sphere has volume

$$\int_{-R}^{R} \pi (R^2 - x^2) \, dx = \pi \left[R^2x - \frac{x^3}{3}\right]_{-R}^{R} = 2\left[\pi R^3 - \frac{\pi R^3}{3}\right] = \frac{4}{3}\pi R^3$$
Density

Next, we show that the total mass of an object can be expressed as the integral of its mass density. Consider a rod of length \(\ell \). The rod’s linear mass density \(\rho \) is defined as the mass per unit length. If \(\rho \) is constant, then by definition,

\[
\text{Total mass} = \text{linear mass density} \times \text{length} = \rho \cdot \ell
\]

For example, if \(\ell = 10 \) cm and \(\rho = 9 \) g/cm, then the total mass is \(9 \cdot 10 = 90 \) g.

Now consider a rod extending along the \(x \)-axis from \(x = a \) to \(x = b \) whose density \(y = \rho(x) \) is a continuous function of \(x \), as in Figure 7. To compute the total mass \(M \), we break up the rod into \(N \) small segments of length \(\Delta x = (b - a)/N \). Then \(M = \sum_{i=1}^{N} M_i \), where \(M_i \) is the mass of the \(i \)th segment.

\[
\text{Density} \quad \rho(y)
\]

\[
\text{Mass} = \rho(x_i) \Delta x
\]

We cannot use Eq. (2) because \(\rho(x) \) is not constant, but we can argue that if \(\Delta x \) is small, then \(\rho(x) \) is nearly constant along the \(i \)th segment. If the \(i \)th segment extends from \(x_{i-1} \) to \(x_i \) and \(c_i \) is any sample point in \([x_{i-1}, x_i] \), then \(M_i \approx \rho(c_i) \Delta x \) and

\[
\text{Total mass} \quad M = \sum_{i=1}^{N} M_i \approx \sum_{i=1}^{N} \rho(c_i) \Delta x
\]

As \(N \to \infty \), the accuracy of the approximation improves. However, the sum on the right is a Riemann sum whose value approaches \(\int_{a}^{b} \rho(x) \, dx \), and thus it makes sense to define the total mass of a rod as the integral of its linear mass density:

\[
\text{Total mass} \quad M = \int_{a}^{b} \rho(x) \, dx
\]

Note the similarity in the way we use thin slices to compute volume and small pieces to compute total mass.

Example 4 Total Mass Find the total mass \(M \) of a 2-m rod of linear density \(\rho(x) = 1 + x(2 - x) \) kg/m, where \(x \) is the distance from one end of the rod.

Solution

\[
M = \int_{0}^{2} \rho(x) \, dx = \int_{0}^{2} (1 + x(2 - x)) \, dx = \left[x + x^2 - \frac{1}{3}x^3 \right]_{0}^{2} = \frac{10}{3} \text{ kg}
\]

In some situations, density is a function of distance to the origin. For example, in the study of urban populations, it might be assumed that the population density \(\rho(r) \) (in people per square kilometer) depends only on the distance \(r \) from the center of a city. Such a density function is called a radial density function.
We now derive a formula for the total population P within a radius R of the city center, assuming a radial density $\rho(r)$. First, divide the circle of radius R into N thin rings of equal width $\Delta r = R/N$ as in Figure 8.

Let P_i be the population within the ith ring, so that $P = \sum_{i=1}^{N} P_i$. If the outer radius of the ith ring is r_i, then the circumference is $2\pi r_i$, and if Δr is small, the area of this ring is approximately $2\pi r_i \Delta r$ (outer circumference times width). Furthermore, the population density within the thin ring is nearly constant with value $\rho(r_i)$. With these approximations,

$$P_i \approx \frac{2\pi r_i \Delta r}{Area \ of \ ring} \times \frac{\rho(r_i)}{Population \ density} = 2\pi r_i \rho(r_i) \Delta r$$

This last sum is a right-endpoint approximation to the integral $2\pi \int_0^R r \rho(r) \, dr$. As N tends to ∞, the approximation improves in accuracy and the sum converges to the integral. Thus, for a population with a radial density function ρ,

$$\text{Population } P \text{ within a radius } R = 2\pi \int_0^R r \rho(r) \, dr$$

Example 5 Computing Total Population The population in a certain city has radial density function $\rho(r) = 15(1 + r^2)^{-1/2}$, where r is the distance from the city center in kilometers and ρ has units of thousands per square kilometer. How many people live in the ring between 10 and 30 km from the city center?

Solution The population P (in thousands) within the ring is

$$P = 2\pi \int_{10}^{30} r(15(1 + r^2)^{-1/2}) \, dr = 2\pi(15) \int_{10}^{30} \frac{r}{(1 + r^2)^{1/2}} \, dr$$

Now use the substitution $u = 1 + r^2$, $du = 2r \, dr$. The limits of integration become $u(10) = 101$ and $u(30) = 901$:

$$P = 30\pi \int_{101}^{901} u^{-1/2} \left(\frac{1}{2}\right) \, du = 30\pi u^{1/2}_{101}^{901} \approx 1881 \text{ thousand}$$

In other words, the population is approximately 1.9 million people.

Flow Rate

When fluid flows through a tube, the **flow rate** Q is the volume per unit time of fluid passing through the tube (Figure 9). The flow rate depends on the velocity of the fluid particles. If all particles of the fluid travel with the same velocity v (say, in units of cubic meters per minute), and the tube has radius R, then

$$\text{Flow rate } Q = \text{cross-sectional area} \times \text{velocity} = \pi R^2 v \text{ cm}^3/\text{min}$$

Why is this formula true? Let’s fix an observation point P in the tube and ask: Which fluid particles flow past P in a 1-min interval? A particle travels v centimeters each minute, so it flows past P during this minute if it is located not more than v centimeters to the left of P (assuming the fluid flows from left to right). Therefore, the column of fluid flowing past P in a 1-min interval is a cylinder of radius R, length v, and volume $\pi R^2 v$ (Figure 9).

In reality, the fluid particles do not all travel at the same velocity because of friction. However, for a slowly moving fluid, the flow is **laminar**, by which we mean that the
velocity $v(r)$ depends only on the distance r from the center of the tube. The particles at the center of the tube travel most quickly, and the velocity tapers off to zero near the walls of the tube (Figure 10).

If the flow is laminar, we can express the flow rate Q as an integral. We divide the circular cross section of the tube into N thin concentric rings of width $\Delta r = R/N$ (Figure 11). The area of the ith ring is approximately $2\pi r_i \Delta r$, and the fluid particles flowing past this ring have velocity that is nearly constant with value $v(r_i)$. Therefore, we can approximate the flow rate Q_i through the ith ring by

$$Q_i \approx \text{cross-sectional area} \times \text{velocity} \approx (2\pi r_i \Delta r) v(r_i).$$

We obtain

$$Q = \sum_{i=1}^{N} Q_i \approx 2\pi \sum_{i=1}^{N} r_i v(r_i) \Delta r.$$

The sum on the right is a right-endpoint approximation to the integral $2\pi \int_0^R r v(r) \, dr$.

Once again, we let N tend to ∞ to obtain the formula

$$\text{Flow rate } Q = 2\pi \int_0^R r v(r) \, dr.$$

Note the similarity of this formula and its derivation to that of population with a radial density function.

EXAMPLE 6 Laminar Flow According to Poiseuille’s Law, the velocity of blood flowing in a blood vessel of radius R centimeters is $v(r) = k(R^2 - r^2)$, where r is the distance from the center of the vessel (in centimeters) and k is a constant. Calculate the flow Q as function of R, assuming that $k = 0.5 \text{ (cm-s)}^{-1}$.

Solution By Eq. (5),

$$Q = 2\pi \int_0^R (0.5) r (R^2 - r^2) \, dr = \pi \left(\frac{R^2}{2} - \frac{r^4}{4} \right) \bigg|_0^R = \frac{\pi}{4} R^4 \text{ cm}^3/\text{s}.$$

Note that Q is proportional to R^4 (this is true for any value of k).

Average Value

As a final example, we discuss the *average value* of a function. Recall that the average of N numbers a_1, a_2, \ldots, a_N is the sum divided by N:

$$\frac{a_1 + a_2 + \cdots + a_N}{N} = \frac{1}{N} \sum_{j=1}^{N} a_j.$$

For example, the average of 18, 25, 22, and 31 is $\frac{1}{4}(18 + 25 + 22 + 31) = 24.$
We cannot define the average value of a function \(f \) on an interval \([a, b]\) as a sum because there are infinitely many values of \(x \) to consider. But recall the formula for the right-endpoint approximation \(R_N \) (Figure 12):

\[
R_N = \frac{b-a}{N} \left(f(x_1) + f(x_2) + \cdots + f(x_N) \right)
\]

where \(x_i = a + i \left(\frac{b-a}{N} \right) \). We see that \(R_N \) divided by \(b-a \) is equal to the average of the equally spaced function values \(f(x_i) \):

\[
\frac{1}{b-a} R_N = \frac{1}{N} \sum_{i=1}^{N} f(x_i)
\]

Average of the function values

If \(N \) is large, it is reasonable to think of this quantity as an approximation to the average of \(f(x) \) on \([a, b]\). Therefore, we define the average value itself as the limit:

\[
\text{Average value} = \lim_{N \to \infty} \frac{1}{b-a} R_N(f) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx
\]

DEFINITION Average Value The **average value** of an integrable function \(f \) on \([a, b]\) is the quantity

\[
\text{Average value} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx
\]

The average value of a function is also called the **mean value**.

GRAPHICAL INSIGHT Think of the average value \(M \) of a function as the average height of its graph (Figure 13). The region under the graph has the same signed area as the rectangle of height \(M \), because \(\int_{a}^{b} f(x) \, dx = M(b-a) \).

EXAMPLE 7 Find the average value of \(f(x) = \sin x \) on \([0, \pi]\).

Solution The average value of \(f(x) = \sin x \) on \([0, \pi]\) is

\[
\frac{1}{\pi} \int_{0}^{\pi} \sin x \, dx = \left. -\frac{1}{\pi} \cos x \right|_{0}^{\pi} = \frac{1}{\pi} \left(-(-1) - (-1) \right) = \frac{2}{\pi} \approx 0.637
\]

This answer is reasonable because \(\sin x \) varies from 0 to 1 on the interval \([0, \pi]\) and the average 0.637 lies somewhere between the two extremes (Figure 13).

EXAMPLE 8 Vertical Jump of a Bushbaby The bushbaby (\(Galago senegalensis\)) is a small primate with remarkable jumping ability (Figure 14). Find the average speed during a jump if the initial vertical velocity is \(v_0 = 600 \text{ cm/s} \). Use Galileo’s formula for the height \(h(t) = v_0 t - \frac{1}{2} gt^2 \) (in centimeters, where \(g = 980 \text{ cm/s}^2 \)).

Solution The bushbaby’s height is \(h(t) = v_0 t - \frac{1}{2} gt^2 = t(v_0 - \frac{1}{2} gt) \). The height is zero at \(t = 0 \) and at \(t = \frac{2v_0}{g} = \frac{1200}{980} = 6.12 \text{ s} \), when jump ends.

The bushbaby’s velocity is \(h'(t) = v_0 - gt = 600 - 980t \). The velocity is negative for \(t > \frac{v_0}{g} = \frac{6}{9.8} \), so as we see in Figure 15, the integral of speed \(|h'(t)| \) is equal to the sum of the areas of two triangles of base \(\frac{6}{9.8} \) and height 600:

\[
\int_{0}^{6/4.9} |600 - 980t| \, dt = \frac{1}{2} \left(\frac{6}{9.8} \right) (600) + \frac{1}{2} \left(\frac{6}{9.8} \right) (600) = \frac{3600}{9.8}
\]
The average speed \overline{s} is

$$\overline{s} = \frac{1}{6/4.9} \int_{0}^{6/4.9} |600 - 980t| \, dt = \frac{1}{6/4.9} \left(\frac{3600}{9.8} \right) = 300 \text{ cm/s}$$

There is an important difference between the average of a list of numbers and the average value of a continuous function. If the average score on an exam is 84, then 84 lies between the highest and lowest scores, but it is possible that no student received a score of 84. By contrast, the Mean Value Theorem (MVT) for Integrals asserts that a continuous function always takes on its average value somewhere in the interval (Figure 16).

For example, the average of $f(x) = \sin x$ on $[0, \pi]$ is $2/\pi$ by Example 7. We have $f(c) = 2/\pi$ for $c = \sin^{-1}(2/\pi) \approx 0.69$. Since 0.69 lies in $[0, \pi]$, $f(x) = \sin x$ indeed takes on its average value at a point in the interval.

THEOREM 1 Mean Value Theorem for Integrals If f is continuous on $[a, b]$, then there exists a value $c \in [a, b]$ such that

$$f(c) = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx$$

Proof Let $M = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx$ be the average value. Because f is continuous, we can apply Theorem 1 of Section 4.2 to conclude that f takes on a minimum value m_{min} and a maximum value M_{max} on the closed interval $[a, b]$. Furthermore, by Eq. (8) of Section 5.2,

$$m_{\text{min}}(b - a) \leq \int_{a}^{b} f(x) \, dx \leq M_{\text{max}}(b - a)$$

Dividing by $(b - a)$, we find

$$m_{\text{min}} \leq M \leq M_{\text{max}}$$

In other words, the average value M lies between m_{min} and M_{max}. The Intermediate Value Theorem guarantees that $f(x)$ takes on every value between its min and max, so $f(c) = M$ for some c in $[a, b]$.

6.2 SUMMARY

- **Formulas:**
 - Volume: $V = \int_{a}^{b} A(y) \, dy$, $A(y) =$ cross-sectional area
 - Total Mass: $M = \int_{a}^{b} \rho(x) \, dx$, $\rho(x) =$ linear mass density
 - Total Population: $P = 2\pi \int_{0}^{R} r\rho(r) \, dr$, $\rho(r) =$ radial density
 - Laminar Flow Rate: $Q = 2\pi \int_{0}^{R} rv(r) \, dr$, $v(r) =$ velocity at radius r
 - Average value: $M = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx$, $f =$ any continuous function

- The MVT for Integrals: If f is continuous on $[a, b]$ with average (or mean) value M, then $f(c) = M$ for some $c \in [a, b]$.
CHAPTER 6 APPLICATIONS OF THE INTEGRAL

6.2 EXERCISES

Preliminary Questions

1. What is the average value of f on $[0, 4]$ if the area between the graph of f and the x-axis is equal to 12?

2. Find the volume of a solid extending from $y = 2$ to $y = 5$ if every cross section has area $A(y) = 5$.

3. What is the definition of flow rate?

4. Which assumption about fluid velocity did we use to compute the flow rate as an integral?

5. The average value of f on $[1, 4]$ is 5. Find $\int_1^4 f(x) \, dx$.

Exercises

1. Let V be the volume of a pyramid of height 20 whose base is a square of side 8.
 (a) Use similar triangles as in Example 1 to find the area of the horizontal cross section at a height y.
 (b) Calculate V by integrating the cross-sectional area.

2. Let V be the volume of a right circular cone of height 10 whose base is a circle of radius 4 [Figure 17(A)].
 (a) Use similar triangles to find the area of a horizontal cross section at a height y.
 (b) Calculate V by integrating the cross-sectional area.

3. Use the method of Exercise 2 to find the formula for the volume of a right circular cone of height h whose base is a circle of radius R [Figure 17(B)].

4. Calculate the volume of the ramp in Figure 18 in three ways by integrating the area of the cross sections:
 (a) Perpendicular to the x-axis (rectangles)
 (b) Perpendicular to the y-axis (triangles)
 (c) Perpendicular to the z-axis (rectangles)

5. Find the volume of liquid needed to fill a sphere of radius R to height h (Figure 19).

6. Find the volume of the wedge in Figure 20(A) by integrating the area of vertical cross sections.

7. Derive a formula for the volume of the wedge in Figure 20(B) in terms of the constants a, b, and c.

8. Let B be the solid whose base is the unit circle $x^2 + y^2 = 1$ and whose vertical cross sections perpendicular to the x-axis are equilateral triangles. Show that the vertical cross sections have area $A(x) = \sqrt{3}(1 - x^2)$ and compute the volume of B.

In Exercises 9–14, find the volume of the solid with the given base and cross sections.

9. The base is the unit circle $x^2 + y^2 = 1$, and the cross sections perpendicular to the x-axis are triangles whose height and base are equal.

10. The base is the triangle enclosed by $x + y = 1$, the x-axis, and the y-axis. The cross sections perpendicular to the y-axis are semicircles.

11. The base is the semicircle $y = \sqrt{9 - x^2}$, where $-3 \leq x \leq 3$. The cross sections perpendicular to the x-axis are squares.

12. The base is a square, one of whose sides is the interval $[0, \ell]$ along the x-axis. The cross sections perpendicular to the x-axis are rectangles of height $f(x) = x^2$.

13. The base is the region enclosed by $y = x^2$ and $y = 3$. The cross sections perpendicular to the y-axis are squares.

14. The base is the region enclosed by $y = x^2$ and $y = 3$. The cross sections perpendicular to the y-axis are rectangles of height y^3.

FIGURE 17 Right circular cones.

FIGURE 18 Ramp of length 6, width 4, and height 2.

FIGURE 19 Sphere filled with liquid to height h.

FIGURE 20
15. Find the volume of the solid whose base is the region \(|x| + |y| \leq 1\) and whose vertical cross sections perpendicular to the \(y\)-axis are semicircles (with diameter along the base).

16. Show that a pyramid of height \(h\) whose base is an equilateral triangle of side \(s\) has volume \(\sqrt{3} hs^2/12\).

17. The area of an ellipse is \(\pi ab\), where \(a\) and \(b\) are the lengths of the semimajor and semiminor axes (Figure 21). Compute the volume of a cone of height 12 whose base is an ellipse with semimajor axis \(a = 6\) and semiminor axis \(b = 4\).

18. Find the volume \(V\) of a regular tetrahedron (Figure 22) whose face is an equilateral triangle of side \(s\). The tetrahedron has height \(h = \sqrt{2/3} s\).

19. A frustum of a pyramid is a pyramid with its top cut off [Figure 23(A)]. Let \(V\) be the volume of a frustum of height \(h\) whose base is a square of side \(a\) and whose top is a square of side \(b\) with \(a \geq b \geq 0\).
 (a) Show that if the frustum were continued to a full pyramid, it would have height \(ha/(a - b)\) [Figure 23(B)].
 (b) Show that the cross section at height \(x\) is a square of side \((1/h)(a(h - x) + bx)\).
 (c) Show that \(V = \frac{1}{3}h(a^2 + ab + b^2)\). A papyrus dating to the year 1850 BCE indicates that Egyptian mathematicians had discovered this formula almost 4000 years ago.

20. A plane inclined at an angle of 45° passes through a diameter of the base of a cylinder of radius \(r\). Find the volume of the region within the cylinder and below the plane (Figure 24).

21. The solid \(S\) in Figure 25 is the intersection of two cylinders of radius \(r\) whose axes are perpendicular.
 (a) The horizontal cross section of each cylinder at distance \(y\) from the central axis is a rectangular strip. Find the strip’s width.
 (b) Find the area of the horizontal cross section of \(S\) at distance \(y\).
 (c) Find the volume of \(S\) as a function of \(r\).

22. Let \(S\) be the intersection of two cylinders of radius \(r\) whose axes intersect at an angle \(\theta\). Find the volume of \(S\) as a function of \(r\) and \(\theta\).

23. Calculate the volume of a cylinder inclined at an angle \(\theta = 30°\) with height 10 and base of radius 4 (Figure 26).

24. The areas of cross sections of Lake Nogebow at 5-m intervals are given in the table below. Figure 27 shows a contour map of the lake. Estimate the volume \(V\) of the lake by taking the average of the right- and left-endpoint approximations to the integral of cross-sectional area.

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area (million m²)</td>
<td>2.1</td>
<td>1.5</td>
<td>1.1</td>
<td>0.835</td>
<td>0.217</td>
</tr>
</tbody>
</table>
25. Find the total mass of a 1-m rod whose linear density function is
\[\rho(x) = 10(x+1)^{-2} \text{ kg/m} \]
for \(0 \leq x \leq 1 \).

26. Find the total mass of a 2-m rod whose linear density function is
\[\rho(x) = 1 + 0.5 \sin(\pi x) \text{ kg/m} \]
for \(0 \leq x \leq 2 \).

27. A mineral deposit along a strip of length 6 cm has density
\(s(x) = 0.01x(6-x) \text{ g/cm} \) for \(0 \leq x \leq 6 \). Calculate the total mass of the deposit.

28. Charge is distributed along a glass tube of length 10 cm with linear charge density \(\rho(x) = x(x^2 + 1)^{-2} \times 10^{-4} \text{ coulombs per centimeter} \) (C/cm) for \(0 \leq x \leq 10 \). Calculate the total charge.

29. Calculate the population within a 10-mile radius of the city center if the radial population density is \(\rho(r) = 4(1 + r^2)^{3/2} \) (in thousands per square mile).

30. Odzala National Park in the Republic of the Congo has a high density of gorillas. Suppose that the radial population density is \(\rho(r) = 52(1 + r^2)^{-2} \) gorillas per square kilometer, where \(r \) is the distance from a grassy clearing with a source of water. Calculate the number of gorillas within a 5-km radius of the clearing.

31. Table 1 lists the population density (in people per square kilometer) as a function of distance \(r \) (in kilometers) from the center of a rural town. Estimate the total population within a 1.2-km radius of the center by taking the average of the left- and right-endpoint approximations.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Population Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>(\rho(r))</td>
</tr>
<tr>
<td>0.0</td>
<td>125.0</td>
</tr>
<tr>
<td>0.2</td>
<td>102.3</td>
</tr>
<tr>
<td>0.4</td>
<td>83.8</td>
</tr>
<tr>
<td>0.6</td>
<td>68.6</td>
</tr>
</tbody>
</table>

32. Find the total mass of a circular plate of radius 20 cm whose mass density is the radial function \(\rho(r) = 0.03 + 0.01 \cos(\pi r^2) \text{ g/cm}^2 \).

33. The density of deer in a forest is the radial function \(\rho(r) = 150(r^2 + 2)^{-2} \) deer per square kilometer, where \(r \) is the distance (in kilometers) to a small meadow. Calculate the number of deer in the region \(2 \leq r \leq 5 \) km.

34. Show that a circular plate of radius 2 cm with radial mass density \(\rho(r) = \frac{4}{r^2} \text{ g/cm}^2 \) has finite total mass, even though the density becomes infinite at the origin.

35. Find the flow rate through a tube of radius 4 cm, assuming that the velocity of fluid particles at a distance \(r \) centimeters from the center is \(v(r) = (16 - r^2) \text{ cm/s} \).

36. The velocity of fluid particles flowing through a tube of radius 5 cm is \(v(r) = (10 - 0.3r - 0.34r^2) \text{ cm/s} \), where \(r \) centimeters is the distance from the center. What quantity per second of fluid flows through the portion of the tube where \(0 \leq r \leq 2 \)?

37. A solid rod of radius 1 cm is placed in a pipe of radius 3 cm so that their axes are aligned. Water flows through the pipe and around the rod. Find the flow rate if the velocity of the water is given by the radial function \(v(r) = 0.5(r - 1)(3 - r) \text{ cm/s} \).

38. Let \(v(r) \) be the velocity of blood in an arterial capillary of radius \(R = 4 \times 10^{-5} \text{ m} \). Use Poiseuille’s Law (Example 6) with \(k = 10^6 \text{ (m-s)}^{-1} \) to determine the velocity at the center of the capillary and the flow rate (use correct units).

In Exercises 39–48, calculate the average over the given interval.

39. \(f(x) = x^3 \), \([0, 4] \)

40. \(f(x) = x^3 \), \([-1, 1] \)

41. \(f(x) = \cos x \), \(\left[0, \frac{\pi}{4}\right] \)

42. \(f(x) = \sec^2 x \), \(\left[\frac{\pi}{6}, \frac{\pi}{3}\right] \)

43. \(f(x) = s^{-2} \), \([2, 5] \)

44. \(f(x) = \frac{\sin(x/x)}{x^2} \), \([1, 2] \)

45. \(f(x) = 2x^3 - 6x^2 \), \([-1, 3] \)

46. \(f(x) = \frac{x}{(x^2 + 16)^{3/2}} \), \([0, 3] \)

47. \(f(x) = x^n \) for \(n \geq 0, \left[0, 1\right] \)

48. \(f(x) = \sin(nx) \), \(\left[0, \pi\right] \)

49. The temperature (in degrees Celsius) at time \(t \) (in hours) in an art museum varies according to \(T(t) = 20 + 5 \cos \left(\frac{\pi}{12}t\right) \). Find the average temperature over the time periods \([0, 24] \) and \([2, 6] \).

50. A steel bar of length 3 m experiences extreme heat at its center, so that the temperature at coordinate \(x \) on the bar is given by \(T(x) = 40 \sin \left(\frac{\pi x}{4}\right) + 50^\circ C \) where the bar sits along the interval \([0, 3] \) on the \(x \)-axis. Determine the average temperature of the bar.

51. Temperature in the town of Walla Walla during the month of July follows a pattern given by \(T(t) = 10 \sin \left(\frac{\pi t}{6}\right) + 14 \sin \left(\frac{\pi t}{2}\right) + 75^\circ F \). Here, \(t \) is measured in days, and there are 31 days in July. Explain why you might see a pattern like this and compute the average temperature during the month of July.

52. The door to the garage is left open and over the next 4 hours (h), the temperature in a house in degrees Celsius is given by \(T(t) = 20e^{-t/4} \). Determine the average temperature over those 4 h.

53. A 10-cm copper wire with one end in an ice bath is heated at the other end, so that the temperature at each point \(x \) along the wire (in degrees Celsius) is given by \(T(x) = 50 \cos \left(\frac{\pi x}{20}\right) \). Find the average temperature over the wire.

54. A ball thrown in the air vertically from ground level with initial velocity 18 m/s has height \(h(t) = 18t - 9.8t^2 \) at time \(t \) (in seconds). Find the average height and the average speed over the time interval extending from the ball’s release to its return to ground level.

55. Find the average speed over the time interval \([1, 5] \) (time in seconds) of a particle whose position at time \(t \) is \(s(t) = t^3 - 6t^2 \) m.

56. An object with zero initial velocity accelerates at a constant rate of 10 m/s². Find its average velocity during the first 15 s.

57. The acceleration of a particle is \(a(t) = 60t - 4t^3 \text{ m/s}^2 \). Compute the average acceleration and the average speed over the time interval \([2, 6] \), assuming that the particle’s initial velocity is zero.

58. What is the average area of the circles whose radii vary from 0 to \(R \)?

59. Let \(M \) be the average value of \(f(x) = x^4 \) on \([0, 3]\). Find a value of \(c \) in \([0, 3]\) such that \(f(c) = M \).

60. Let \(f(x) = \sqrt{x} \). Find a value of \(c \) in \([4, 9]\) such that \(f(c) \) is equal to the average of \(f \) on \([4, 9]\).

61. Let \(M \) be the average value of \(f(x) = x^3 \) on \([0, A]\), where \(A > 0 \). Which theorem guarantees that \(f(c) = M \) has a solution \(c \) in \([0, A]\)? Find \(c \).

62. Let \(f(x) = 2 \sin x - x \). Use a computer algebra system to plot \(f \) and estimate:
 (a) the positive root \(a \) of \(f \).
 (b) the average value \(M \) of \(f \) on \([0, a]\).
 (c) a value \(c \in [0, a] \) such that \(f(c) = M \).
63. Which of \(f(x) = x \sin^2 x \) and \(g(x) = x^2 \sin^2 x \) has a larger average value over \([0, 1]\)? Over \([1, 2]\)?

64. Find the average of \(f(x) = ax + b \) over the interval \([-M, M]\), where \(a, b, \) and \(M \) are arbitrary constants.

65. Sketch the graph of a function \(f \) such that \(f(x) \geq 0 \) on \([0, 1]\) and \(f(x) \leq 0 \) on \([1, 2]\), whose average on \([0, 2] \) is negative.

66. Give an example of a function (necessarily discontinuous) that does not satisfy the conclusion of the MVT for Integrals.

Further Insights and Challenges

67. An object is tossed into the air vertically from ground level with initial velocity \(v_0 \) ft/s at time \(t = 0 \). Find the average speed of the object over the time interval \([0, T]\), where \(T \) is the time the object returns to Earth.

68. Review the MVT stated in Section 4.3 (Theorem 1, p. 182) and show how it can be used, together with the Fundamental Theorem of Calculus, to prove the MVT for Integrals.

6.3 Volumes of Revolution

A solid of revolution is a solid obtained by rotating a region in the plane about an axis. The sphere and right circular cone are familiar examples of such solids. Each of these is “swept out” as a plane region revolves around an axis (Figure 1).

We use the terms “revolve” and “rotate” interchangeably.

This method for computing the volume is referred to as the disk method because the vertical slices of the solid are circular disks.

Suppose that \(f(x) \geq 0 \) for \(a \leq x \leq b \). The solid obtained by rotating the region under the graph about the \(x \)-axis has a special feature: All vertical cross sections are circles (Figure 2). In fact, the vertical cross section at location \(x \) is a circle of radius \(R = f(x) \) and thus

\[
\text{Area of the vertical cross section} = \pi R^2 = \pi f(x)^2
\]

We know from Section 6.2 that the total volume \(V \) is equal to the integral of cross-sectional area. Therefore,

\[
V = \int_a^b \pi f(x)^2 \, dx
\]

FIGURE 1 The right circular cone and the sphere are solids of revolution.

FIGURE 2

(A) Cross section is a circle of radius \(f(x) \), (B) Solid of revolution
The cross sections of a solid of revolution are circles of radius \(R = f(x) \) and area \(\pi R^2 = \pi f(x)^2 \). The volume, given by Eq. (1), is the integral of cross-sectional area.

![Figure 3](image)

FIGURE 3 Region under \(y = x^2 \) rotated about the \(x \)-axis.

CAUTION When using the washer method, make sure you use \((f(x)^2 - g(x)^2)\) in the integrand, not \((f(x) - g(x))^2\).

Volume of Revolution: Disk Method
If \(f \) is continuous and \(f(x) \geq 0 \) on \([a, b]\), then the solid obtained by rotating the region under the graph about the \(x \)-axis has volume [with \(R = f(x) \)]

\[
V = \pi \int_a^b R^2 \, dx = \pi \int_a^b f(x)^2 \, dx
\]

EXAMPLE 1 Calculate the volume \(V \) of the solid obtained by rotating the region under \(y = x^2 \) about the \(x \)-axis for \(0 \leq x \leq 2 \).

Solution The solid is shown in Figure 3. By Eq. (1) with \(f(x) = x^2 \), its volume is

\[
V = \pi \int_0^2 R^2 \, dx = \pi \int_0^2 (x^2)^2 \, dx = \pi \left[\frac{x^5}{5} \right]_0^2 = \frac{32}{5} \pi
\]

There are some useful variations on the formula for a volume of revolution. First, consider the region between two curves \(y = f(x) \) and \(y = g(x) \), where \(f(x) \geq g(x) \geq 0 \) as in Figure 5(A). When this region is rotated about the \(x \)-axis, segment \(AB \) sweeps out the washer shown in Figure 5(B). The inner and outer radii of this washer (also called an annulus; see Figure 4) are

\[
R_{\text{outer}} = f(x), \quad R_{\text{inner}} = g(x)
\]

The washer has area \(\pi R_{\text{outer}}^2 - \pi R_{\text{inner}}^2 \) or \(\pi (f(x)^2 - g(x)^2) \), and the volume of the solid of revolution [Figure 5(C)] is the integral of this cross-sectional area:

\[
V = \pi \int_a^b (R_{\text{outer}}^2 - R_{\text{inner}}^2) \, dx = \pi \int_a^b (f(x)^2 - g(x)^2) \, dx
\]

Keep in mind that the integrand is \((f(x)^2 - g(x)^2)\), not \((f(x) - g(x))^2\).

EXAMPLE 2 Region Between Two Curves
Find the volume \(V \) obtained by revolving the region between \(y = x^2 + 4 \) and \(y = 2 \) about the \(x \)-axis for \(1 \leq x \leq 3 \).

Solution The graph of \(y = x^2 + 4 \) lies above the graph of \(y = 2 \) (Figure 6). Therefore, \(R_{\text{outer}} = x^2 + 4 \) and \(R_{\text{inner}} = 2 \). By Eq. (2),

\[
V = \pi \int_1^3 (R_{\text{outer}}^2 - R_{\text{inner}}^2) \, dx = \pi \int_1^3 ((x^2 + 4)^2 - 2^2) \, dx \\
= \pi \int_1^3 (x^4 + 8x^2 + 12) \, dx = \pi \left[\frac{1}{5}x^5 + \frac{8}{3}x^3 + 12x \right]_1^3 = \frac{2126}{15} \pi
\]

In the next example, we calculate a volume of revolution about a horizontal axis parallel to the \(x \)-axis.
EXAMPLE 3 Revolving About a Horizontal Axis Find the volume V of the “wedding band” [Figure 7(C)] obtained by rotating the region between the graphs of $f(x) = x^2 + 2$ and $g(x) = 4 - x^2$ about the horizontal line $y = -3$.

Solution First, let’s find the points of intersection of the two graphs by solving

$$f(x) = g(x) \implies x^2 + 2 = 4 - x^2 \implies x^2 = 1 \implies x = \pm 1$$

Figure 7(A) shows that $g(x) \geq f(x)$ for $-1 \leq x \leq 1$.

If we wanted to revolve about the x-axis, we would use Eq. (2). Since we want to revolve around $y = -3$, we must determine how the radii are affected. Figure 7(B) shows that when we rotate about $y = -3$, AB generates a washer whose outer and inner radii are both 3 units longer:

- $R_{\text{outer}} = g(x) + (3) = (4 - x^2) + 3 = 7 - x^2$
- $R_{\text{inner}} = f(x) + (3) = (x^2 + 2) + 3 = x^2 + 5$

The volume of revolution is equal to the integral of the area of this washer:

$$V \ (\text{about } y = -3) = \pi \int_{-1}^{1} (R_{\text{outer}}^2 - R_{\text{inner}}^2) \, dx = \pi \int_{-1}^{1} \left((g(x) + 3)^2 - (f(x) + 3)^2 \right) \, dx$$

$$= \pi \int_{-1}^{1} \left((7 - x^2)^2 - (x^2 + 5)^2 \right) \, dx$$

$$= \pi \int_{-1}^{1} \left(49 - 14x^2 + x^4 - (x^4 + 10x^2 + 25) \right) \, dx$$

$$= \pi \int_{-1}^{1} \left(24 - 24x^2 \right) \, dx = \pi (24x - 8x^3) \bigg|_{-1}^{1} = 32\pi$$

FIGURE 7

When you set up the integral for a volume of revolution, visualize the cross sections. These cross sections are washers (or disks) whose inner and outer radii depend on the axis of rotation.

We get R_{inner} by subtracting $y = -3$ from $y = g(x)$ because vertical distance is the difference of the y-coordinates. Similarly, we subtract -3 from $f(x)$ to get R_{outer}.
EXAMPLE 4 Find the volume obtained by rotating the graphs of \(f(x) = 9 - x^2 \) and \(y = 12 \) for \(0 \leq x \leq 3 \) about:

(a) the line \(y = 12 \)

(b) the line \(y = 15 \)

Solution To set up the integrals, let’s visualize the cross section. Is it a disk or a washer?

(a) Figure 8(B) shows that \(AB \) rotated about \(y = 12 \) generates a disk of radius

\[R = \text{length of } AB = 12 - f(x) = 12 - (9 - x^2) = 3 + x^2 \]

The volume when we rotate about \(y = 12 \) is

\[
V = \pi \int_{0}^{3} R^2 \, dx = \pi \int_{0}^{3} (3 + x^2)^2 \, dx = \pi \int_{0}^{3} (9 + 6x^2 + x^4) \, dx \\
= \pi \left[9x + 2x^3 + \frac{1}{5}x^5 \right]_{0}^{3} = \frac{648}{5} \pi
\]

(b) Figure 8(C) shows that \(AB \) rotated about \(y = 15 \) generates a washer. The outer radius of this washer is the distance from \(B \) to the line \(y = 15 \):

\[R_{\text{outer}} = 15 - f(x) = 15 - (9 - x^2) = 6 + x^2 \]

The inner radius is \(R_{\text{inner}} = 3 \), so the volume of revolution about \(y = 15 \) is

\[
V = \pi \int_{0}^{3} (R_{\text{outer}}^2 - R_{\text{inner}}^2) \, dx = \pi \int_{0}^{3} ((6 + x^2)^2 - 3^2) \, dx \\
= \pi \int_{0}^{3} (36 + 12x^2 + x^4 - 9) \, dx \\
= \pi \left[27x + 4x^3 + \frac{1}{5}x^5 \right]_{0}^{3} = \frac{1188}{5} \pi
\]

We can use the disk and washer methods for solids of revolution about vertical axes, but it is necessary to describe the graph as a function of \(y \)—that is, \(x = g(y) \).

EXAMPLE 5 Revolving About a Vertical Axis Find the volume of the solid obtained by rotating the region under the graph of \(f(x) = 9 - x^2 \) for \(0 \leq x \leq 3 \) about the vertical axis \(x = -2 \).

Solution Figure 9 shows that \(AB \) sweeps out a horizontal washer when rotated about the vertical line \(x = -2 \). We are going to integrate with respect to \(y \), so we need the inner and outer radii of this washer as functions of \(y \). Solving for \(x \) in \(y = 9 - x^2 \), we obtain \(x^2 = 9 - y \), or \(x = \sqrt{9 - y} \) (since \(x \geq 0 \)). Therefore,
SECTION 6.3 Volumes of Revolution 303

\[R_{\text{outer}} = \sqrt{9-y} + 2, \quad R_{\text{inner}} = 2 \]

\[R_{\text{outer}}^2 - R_{\text{inner}}^2 = (\sqrt{9-y} + 2)^2 - 2^2 = (9-y) + 4\sqrt{9-y} + 4 - 4 \]

\[= 9 - y + 4\sqrt{9-y} \]

The region extends from \(y = 0 \) to \(y = 9 \) along the \(y \)-axis, so

\[V = \pi \int_0^9 (R_{\text{outer}}^2 - R_{\text{inner}}^2) \, dy = \pi \int_0^9 (9 - y + 4\sqrt{9-y}) \, dy \]

\[= \pi \left(9y - \frac{1}{2}y^2 - \frac{8}{3}(9 - y)^{3/2} \right) \bigg|_0^9 = \frac{225}{2} \pi \]

6.3 SUMMARY

• Disk method: When you rotate the region between two graphs about an axis, the segments perpendicular to the axis generate disks or washers. The volume \(V \) of the solid of revolution is the integral of the areas of these disks or washers.

• Sketch the graphs to visualize the disks or washers.

• Figure 10(A): Region between \(y = f(x) \) and the \(x \)-axis, rotated about the \(x \)-axis.

 – Vertical cross section: a circle of radius \(R = f(x) \) and area \(\pi R^2 = \pi f(x)^2 \):

 \[V = \pi \int_a^b R^2 \, dx = \pi \int_a^b f(x)^2 \, dx \]

• Figure 10(B): Region between \(y = f(x) \) and \(y = g(x) \), rotated about the \(x \)-axis.

 – Vertical cross section: a washer of outer radius \(R_{\text{outer}} = f(x) \) and inner radius \(R_{\text{inner}} = g(x) \):

 \[V = \pi \int_a^b (R_{\text{outer}}^2 - R_{\text{inner}}^2) \, dx = \pi \int_a^b (f(x)^2 - g(x)^2) \, dx \]

• To rotate about a horizontal line \(y = c \), modify the radii appropriately.

 – Figure 10(C): \(c \geq f(x) \geq g(x) \):

 \[R_{\text{outer}} = c - g(x), \quad R_{\text{inner}} = c - f(x) \]

 – Figure 10(D): \(f(x) \geq g(x) \geq c \):

 \[R_{\text{outer}} = f(x) - c, \quad R_{\text{inner}} = g(x) - c \]

• To rotate about a vertical line \(x = c \), express \(R_{\text{outer}} \) and \(R_{\text{inner}} \) as functions of \(y \) and integrate along the \(y \) axis.
6.3 Exercises

Preliminary Questions

1. Which of the following is a solid of revolution?
 (a) Sphere (b) Pyramid (c) Cylinder (d) Cube
 2. True or false? When the region under a single graph is rotated about the x-axis, the cross sections of the solid perpendicular to the x-axis are circular disks.
 3. True or false? When the region between two graphs is rotated about the x-axis, the cross sections of the solid perpendicular to the x-axis are circular disks.

Exercises

In Exercises 1–4, (a) sketch the solid obtained by revolving the region under the graph of \(f \) about the x-axis over the given interval, (b) describe the cross section perpendicular to the x-axis located at \(x \), and (c) calculate the volume of the solid.

1. \(f(x) = x + 1 \), \([0, 3]\)
2. \(f(x) = x^2 \), \([1, 3]\)
3. \(f(x) = \sqrt{x + 1} \), \([1, 4]\)
4. \(f(x) = x^{-1} \), \([1, 4]\)

In Exercises 5–12, find the volume of revolution about the x-axis for the given function and interval.

5. \(f(x) = 3x - x^2 \), \([0, 3]\)
6. \(f(x) = \frac{1}{x^2} \), \([1, 4]\)
7. \(f(x) = x^{5/3} \), \([1, 8]\)
8. \(f(x) = 4 - x^2 \), \([0, 2]\)
9. \(f(x) = \frac{2}{x + 1} \), \([1, 3]\)
10. \(f(x) = \sqrt{x^4 + 1} \), \([1, 3]\)
11. \(f(x) = \csc x \), \([\frac{\pi}{4}, \frac{3\pi}{4}]\)
12. \(f(x) = \sqrt{\cos x \sin x} \), \([0, \frac{\pi}{4}]\)

In Exercises 13 and 14, \(R \) is the shaded region in Figure 11.

13. Which of the integrands (i)–(iv) is used to compute the volume obtained by rotating region \(R \) about \(y = -2 \)?
 (i) \((f(x))^2 + 2^2 - (g(x))^2 - 2^2\)
 (ii) \((f(x) + 2)^2 - (g(x) + 2)^2\)
 (iii) \((f(x))^2 - 2^2 - (g(x))^2 - 2^2\)
 (iv) \((f(x) - 2)^2 - (g(x) - 2)^2\)

14. Which of the following integrals expresses the volume obtained by rotating the area between \(y = f(x) \) and \(y = g(x) \) over \([a, b]\) around the x-axis? (Assume \(f(x) \geq g(x) \geq 0 \).)
 (a) \(\pi \int_a^b (f(x) - g(x))^2 \, dx \)
 (b) \(\pi \int_a^b (f(x)^2 - g(x)^2) \, dx \)

In Exercises 15–20, (a) sketch the region enclosed by the curves, (b) describe the cross section perpendicular to the x-axis located at \(x \), and (c) find the volume of the solid obtained by rotating the region about the x-axis.

15. \(y = x^2 + 2 \), \(y = 10 - x^2 \)
16. \(y = x^2 \), \(y = 2x + 3 \)
17. \(y = 16 - x \), \(y = 3x + 12 \), \(x = -1 \)
18. \(y = \frac{1}{x} \), \(y = \frac{5}{2} - x \)
19. \(y = \sec x \), \(y = 0 \), \(x = \frac{\pi}{4} \), \(x = \frac{\pi}{2} \)
20. \(y = \tan x \), \(y = 0 \), \(x = -\frac{\pi}{4} \), \(x = \frac{\pi}{4} \)
20. \(y = \sec x, \quad y = 0, \quad x = 0, \quad x = \frac{\pi}{4} \)

In Exercises 21–24, find the volume of the solid obtained by rotating the region enclosed by the graphs about the given axis.

21. \(x = \sqrt{y}, \quad x = 0; \quad 1 \leq y \leq 4 \)

22. \(x = \sqrt{\sin y}, \quad x = 0; \quad 0 \leq y \leq \pi \)

23. \(x = y^2, \quad x = \sqrt{y} \)

24. \(x = 4 - y, \quad x = 16 - y^2 \)

25. Rotation of the region in Figure 12 about the \(y \)-axis produces a solid with two types of different cross sections. Compute the volume as a sum of two integrals, one for \(-12 \leq y \leq 4\) and one for \(4 \leq y \leq 12\).

26. Let \(R \) be the region enclosed by \(y = x^2 + 2, \ y = (x - 2)^2 \) and the axes \(x = 0 \) and \(y = 0 \). Compute the volume \(V \) obtained by rotating \(R \) about the \(x \)-axis. \(\text{Hint:} \) Express \(V \) as a sum of two integrals.

In Exercises 27–32, find the volume of the solid obtained by rotating region \(A \) in Figure 13 about the given axis.

27. \(x \)-axis

28. \(y = -2 \)

29. \(y = 2 \)

30. \(y \)-axis

31. \(x = -3 \)

32. \(x = 2 \)

In Exercises 33–38, find the volume of the solid obtained by rotating region \(B \) in Figure 13 about the given axis.

33. \(x \)-axis

34. \(y = -2 \)

35. \(y = 6 \)

36. \(y \)-axis

\(\text{Hint for Exercise 36:} \) Express the volume as a sum of two integrals along the \(y \)-axis or use Exercise 30.

37. \(x = 2 \)

38. \(x = -3 \)

In Exercises 39–52, find the volume of the solid obtained by rotating the region enclosed by the graphs about the given axis.

39. \(y = x^2, \quad y = 12 - x, \quad x = 0, \quad \text{about} \ y = -2 \)

40. \(y = x^2, \quad y = 12 - x, \quad x = 0, \quad \text{about} \ y = 15 \)

41. \(y = 16 - 2x, \quad y = 6, \quad x = 0, \quad \text{about} \ x \)-axis

42. \(y = 32 - 2x, \quad y = 2 + 4x, \quad x = 0, \quad \text{about} \ y \)-axis

43. \(y = \sec x, \quad y = 1 + \frac{3}{\pi}x, \quad \text{about} \ x \)-axis

44. \(x = 2, \quad x = 3, \quad y = 16 - x^4, \quad y = 0, \quad \text{about} \ y \)-axis

45. \(y = 2\sqrt{x}, \quad y = x, \quad \text{about} \ x = -2 \)

46. \(y = 2\sqrt{x}, \quad y = x, \quad \text{about} \ y = 4 \)

47. \(y = x^3, \quad y = x^{1/3}, \quad \text{for} \ x \geq 0, \quad \text{about} \ y \)-axis

48. \(y = x^2, \quad y = x^{1/2}, \quad \text{about} \ x = -2 \)

49. \(y = \frac{9}{x^2}, \quad y = 10 - x^2, \quad x \geq 0, \quad \text{about} \ y = 12 \)

50. \(y = \frac{9}{x^2}, \quad y = 10 - x^2, \quad x \geq 0, \quad \text{about} \ x = -1 \)

51. \(y = \frac{1}{2}, \quad y = \frac{5}{2} - x, \quad \text{about} \ y \)-axis

52. \(y^2 = 4x, \quad y = x, \quad \text{about} \ y = 8 \)

53. The bowl in Figure 14(A) is 21 cm high, obtained by rotating the curve in Figure 14(B) as indicated. Estimate the volume capacity of the bowl shown by taking the average of right- and left-endpoint approximations to the integral with \(N = 7 \). The inner radii (in centimeters) starting from the top are \(0, 4, 7, 8, 10, 13, 14, 20 \).

54. The region between the graphs of \(f \) and \(g \) over \([0, 1]\) is revolved about the line \(y = -3 \). Use the midpoint approximation with values from the following table to estimate the volume \(V \) of the resulting solid:

<table>
<thead>
<tr>
<th>(x)</th>
<th>0.1</th>
<th>0.3</th>
<th>0.5</th>
<th>0.7</th>
<th>0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>(g(x))</td>
<td>2</td>
<td>3.5</td>
<td>4</td>
<td>3.5</td>
<td>2</td>
</tr>
</tbody>
</table>

55. Find the volume of the cone obtained by rotating the region under the segment joining \((0, h)\) and \((r, 0)\) about the \(y \)-axis.

56. The torus (doughnut-shaped solid) in Figure 15 is obtained by rotating the circle \((x - a)^2 + y^2 = b^2\) around the \(y \)-axis (assume that \(a > b\)). Show that it has volume \(2\pi^2 ab^2\). \(\text{Hint:} \) After simplifying it, evaluate the integral by interpreting it as the area of a circle.
57. Sketch the hypocycloid \(x^{2/3} + y^{2/3} = 1 \) and find the volume of the solid obtained by revolving it about the \(x \)-axis.

58. The solid generated by rotating the region between the branches of the hyperbola \(y^2 - x^2 = 1 \) about the \(x \)-axis is called a hyperboloid (Figure 16). Find the volume of the hyperboloid for \(-a \leq x \leq a\).

59. A “bead” is formed by removing a cylinder of radius \(r \) from the center of a sphere of radius \(R \) (Figure 17). Find the volume of the bead with \(r = 1 \) and \(R = 2 \).

![Figure 16](image)

Further Insights and Challenges

60. Find the volume \(V \) of the bead (Figure 17) in terms of \(r \) and \(R \). Then show that \(V = \frac{2}{3}\pi h^3 \), where \(h \) is the height of the bead. This formula has a surprising consequence: Since \(V \) can be expressed in terms of \(h \) alone, it follows that two beads of height 1 cm, one formed from a sphere the size of an orange and the other from a sphere the size of the earth, would have the same volume! Can you explain intuitively how this is possible?

61. The solid generated by rotating the region inside the ellipse with equation \((\frac{x}{a})^2 + (\frac{y}{b})^2 = 1\) around the \(x \)-axis is called an ellipsoid. Show that the ellipsoid has volume \(\frac{4}{3}\pi ab^2 \). What is the volume if the ellipse is rotated around the \(y \)-axis?

62. The curve \(y = f(x) \) in Figure 18, called a tractrix, has the following property: The tangent line at each point \((x, y)\) on the curve has slope \(\frac{dy}{dx} = \frac{-y}{\sqrt{1-y^2}} \).

Let \(R \) be the shaded region under the graph of \(y = f(x) \) for \(0 \leq x \leq a \) in Figure 18. Compute the volume \(V \) of the solid obtained by revolving \(R \) around the \(x \)-axis in terms of the constant \(c = f(a) \). Hint: Use the substitution \(u = f(x) \) to show that

\[
V = \pi \int_0^1 u \sqrt{1 - u^2} \, du
\]

63. Verify the formula

\[
\int_{x_1}^{x_2} (x - x_1)(x - x_2) \, dx = \frac{1}{6} (x_1 - x_2)^3
\]

Then prove that the solid obtained by rotating the shaded region in Figure 19 about the \(x \)-axis has volume \(V = \frac{2}{3}\pi BH^2 \), with \(B \) and \(H \) as in the figure. Hint: Let \(x_1 \) and \(x_2 \) be the roots of \(f(x) = ax + b - (mx + c)^2 \), where \(x_1 < x_2 \). Show that

\[
V = \pi \int_{x_1}^{x_2} f(x) \, dx
\]

and use Eq. (3).

64. Let \(R \) be the region in the unit circle lying above the cut with the line \(y = mx + b \) (Figure 20). Assume that the points where the line intersects the circle lie above the \(x \)-axis. Use the method of Exercise 63 to show that the solid obtained by rotating \(R \) about the \(x \)-axis has volume \(V = \frac{2}{3}\pi hd^2 \), with \(h \) and \(d \) as in the figure.
6.4 The Method of Cylindrical Shells

In the previous two sections, we computed volumes by integrating cross-sectional area. The Shell Method, based on cylindrical shells, is more convenient in some cases.

Consider a cylindrical shell (Figure 1) of height h, without outer radius R and inner radius r. Because the shell is obtained by removing a cylinder of radius r from the wider cylinder of radius R, it has volume

$$\pi R^2 h - \pi r^2 h = \pi h \left(R^2 - r^2 \right) = \pi h (R + r) (R - r) = \pi h (R + r) \Delta r$$

where $\Delta r = R - r$ is the width of the shell. If the shell is very thin, then R and r are nearly equal and we may replace $(R + r)$ by $2R$ to obtain

Volume of shell $\approx 2\pi Rh \Delta r = 2\pi (\text{radius}) \times (\text{height of shell}) \times (\text{thickness})$

This is the surface area of the cylinder times its thickness Δr.

Now, let us rotate the region under $y = f(x)$ from $x = a$ to $x = b$ about the y-axis as in Figure 2. The resulting solid can be divided into thin concentric shells. More precisely, we divide $[a, b]$ into N subintervals of length $\Delta x = (b - a)/N$ with endpoints x_0, x_1, \ldots, x_N. When we rotate the thin strip of area above $[x_{i-1}, x_i]$ about the y-axis, we obtain a thin shell whose volume we denote by V_i. The volume of the solid is equal to the sum

$$V = \sum_{i=1}^{N} V_i$$

The sum on the right is the volume of a cylindrical approximation that converges to V as $N \to \infty$ (Figure 3). This sum is also a right-endpoint approximation that converges to $2\pi \int_{a}^{b} xf(x) \, dx$. Thus, we obtain Eq. (2) for the volume of the solid.

Note: In the Shell Method, we integrate with respect to x when the region is rotated about the y-axis.

Volume of Revolution: The Shell Method The solid obtained by rotating the region under $y = f(x)$ over the interval $[a, b]$ about the y-axis has volume

$$V = 2\pi \int_{a}^{b} \left(\text{radius} \right) \left(\text{height of shell} \right) \, dx = 2\pi \int_{a}^{b} xf(x) \, dx$$
EXAMPLE 1 Find the volume \(V \) of the solid obtained by rotating the region under the graph of \(f(x) = 1 - 2x + 3x^2 - 2x^3 \) over \([0, 1]\) about the \(y \)-axis.

Solution The solid is shown in Figure 4. By Eq. (2),

\[
V = 2\pi \int_0^1 xf(x) \, dx = 2\pi \int_0^1 x(1 - 2x + 3x^2 - 2x^3) \, dx = 2\pi \left[\frac{1}{2}x^2 - \frac{2}{3}x^3 + \frac{3}{4}x^4 - \frac{2}{5}x^5 \right]_0^1 = \frac{11}{30}\pi
\]

CONCEPTUAL INSIGHT Shells Versus Disks and Washers When finding a volume using the Shell Method, the shell height is always parallel to the axis of rotation. When finding a volume using the Disk and Washer Method, the disk radius is always perpendicular to the axis of rotation. Some volumes can be computed equally well using either the Shell Method or the Disk and Washer Method, but in Example 1, the Shell Method is much easier. To use the Disk Method, we would need to know the radius of the disk generated at height \(y \) because we’re rotating about the \(y \)-axis (Figure 5). This would require finding the inverse \(g(y) = f^{-1}(y) \). In general: Use the Shell Method if finding the shell height is easier than finding the disk radius. Use the Disk Method when finding the disk radius is easier.

When we rotate the region between the graphs of two functions \(f \) and \(g \) satisfying \(f(x) \geq g(x) \), the vertical segment at location \(x \) generates a cylindrical shell of radius \(x \) and height \(f(x) - g(x) \) (Figure 6). Therefore, the volume is

\[
V = 2\pi \int_a^b (\text{radius}) \, (\text{height of shell}) \, dx = 2\pi \int_a^b x(f(x) - g(x)) \, dx
\]
The reasoning in Example 3 shows that if we rotate the region under \(y = f(x) \) over \([a, b]\) about the vertical line \(x = c \), then the volume is

\[
V = 2\pi \int_a^b (x - c) f(x) \, dx \quad \text{if } c \leq a
\]

\[
V = 2\pi \int_a^b (c - x) f(x) \, dx \quad \text{if } c \geq b
\]

FIGURE 6 The vertical segment at location \(x \) generates a shell of radius \(x \) and height \(f(x) - g(x) \).

FIGURE 7

FIGURE 8 Rotation about the axis \(x = -3 \).

EXAMPLE 2 Region Between Two Curves Find the volume \(V \) obtained by rotating the region enclosed by the graphs of \(f(x) = x(5 - x) \) and \(g(x) = 8 - x(5 - x) \) about the \(y \)-axis.

Solution First, find the points of intersection by solving \(x(5 - x) = 8 - x(5 - x) \). We obtain \(x^2 - 5x + 4 = (x - 1)(x - 4) = 0 \), so the curves intersect at \(x = 1, 4 \). Sketching the graphs (Figure 7), we see that \(f(x) \geq g(x) \) on the interval \([1, 4]\) and

\[
\text{Height of shell } = f(x) - g(x) = x(5 - x) - (8 - x(5 - x)) = 10x - 2x^2 - 8
\]

\[
V = 2\pi \int_1^4 \text{(radius)(height of shell)} \, dx = 2\pi \int_1^4 x(10x - 2x^2 - 8) \, dx
\]

\[
= 2\pi \left[\frac{10}{3} x^3 - \frac{1}{2} x^4 - 4x^3 \right]_1^4 = 2\pi \left(\frac{64}{3} - \left(\frac{7}{6} \right) \right) = 45\pi
\]

EXAMPLE 3 Rotating About a Vertical Axis Use the Shell Method to calculate the volume \(V \) obtained by rotating the region under the graph of \(f(x) = x^{-1/2} \) over \([1, 4]\) about the axis \(x = -3 \).

Solution If we were rotating this region about the \(y \)-axis (i.e., \(x = 0 \)), we would use Eq. (3). To rotate it around the line \(x = -3 \), we must take into account that the radius of revolution is now 3 units longer.

Figure 8 shows that the radius of the shell is now \(x - (-3) = x + 3 \). The height of the shell is still \(f(x) = x^{-1/2} \), so

\[
V = 2\pi \int_1^4 \text{(radius)(height of shell)} \, dx
\]

\[
= 2\pi \int_1^4 (x + 3)x^{-1/2} \, dx = 2\pi \left(\frac{2}{3} x^{3/2} + 6x^{1/2} \right) \bigg|_1^4 = \frac{64\pi}{3}
\]

The method of cylindrical shells can be applied to rotations about horizontal axes, but in this case, the graph must be described in the form \(x = g(y) \).

EXAMPLE 4 Rotating About the \(x \)-Axis Use the Shell Method to compute the volume \(V \) obtained by rotating the region under \(y = 9 - x^2 \) over \([0, 3]\) about the \(x \)-axis.
Solution When we rotate about the x-axis, the cylindrical shells are generated by horizontal segments and the Shell Method gives us an integral with respect to y. Therefore, we solve \(y = 9 - x^2 \) for x to obtain \(x = \sqrt{9 - y} \).

Segment \(AB \) in Figure 9 generates a cylindrical shell of radius \(y \) and height \(\sqrt{9 - y} \). Using the substitution \(u = 9 - y, du = -dy \) in the resulting integral, we obtain

\[
V = 2\pi \int_{0}^{9} (y) \sqrt{9 - y} \, dy = 2\pi \int_{0}^{9} (9 - u) \sqrt{u} \, du
\]

\[
= 2\pi \left(\frac{6u^{3/2} - \frac{2}{5}u^{5/2}}{2} \right) \bigg|_{0}^{9} = \frac{648}{5}\pi
\]

\[\blacksquare\]

\[\text{FIGURE 9} \text{ Shell generated by a horizontal segment in the region under the graph of } y = 9 - x^2.\]

6.4 SUMMARY

- Shell Method: When you rotate the region between two graphs about an axis, the segments parallel to the axis generate cylindrical shells [Figure 10(A)]. The volume \(V \) of the solid of revolution is the integral of the surface areas of these shells:

\[
\text{Surface area of shell } = 2\pi \text{ (radius) (height of shell)}
\]

- Sketch the graphs to visualize the shells.
- Figure 10(B): Region between \(y = f(x) \) (with \(f(x) \geq 0 \)) and the y-axis, rotated about the y-axis:

\[
V = 2\pi \int_{a}^{b} (x) \sqrt{y} \, dx = 2\pi \int_{a}^{b} x f(x) \, dx
\]

- Figure 10(C): Region between \(y = f(x) \) and \(y = g(x) \) (with \(f(x) \geq g(x) \geq 0 \)), rotated about the y-axis:

\[
V = 2\pi \int_{a}^{b} (x) \sqrt{y} \, dx = 2\pi \int_{a}^{b} x (f(x) - g(x)) \, dx
\]

- Rotation about a vertical axis \(x = c \).
 - Figure 10(D): \(c \leq a \), radius of shell is \((x - c) \):

\[
V = 2\pi \int_{a}^{b} (x - c) f(x) \, dx
\]

 - Figure 10(E): \(c \geq a \), radius of shell is \((c - x) \):

\[
V = 2\pi \int_{a}^{b} (c - x) f(x) \, dx
\]

- Rotation about the x-axis using the Shell Method: Write the graph as \(x = g(y) \):

\[
V = 2\pi \int_{c}^{d} \text{(radius)(height of shell)} \, dy = 2\pi \int_{c}^{d} yg(y) \, dy
\]
In Exercises 7–12, use the Shell Method to compute the volume obtained
underneath the graph of the function over the given interval about the
y-axis, and find its volume.

1. \(f(x) = x^3 \), \([0, 1]\)
2. \(f(x) = \sqrt{x} \), \([0, 4]\)
3. \(f(x) = x^{-1} \), \([1, 3]\)
4. \(f(x) = 4 - x^2 \), \([0, 2]\)
5. \(f(x) = \sqrt{x^2 + 9} \), \([0, 3]\)
6. \(f(x) = \frac{x}{\sqrt{1 + x^3}} \), \([1, 4]\)

In Exercises 15–20, sketch the solid obtained by rotating the region
underneath the graph of \(f \) over the interval about the given axis, and
calculate its volume using the Shell Method.

15. \(f(x) = x^3 \), \([0, 1]\), about \(x = 2 \)
16. \(f(x) = x^3 \), \([0, 1]\), about \(x = -2 \)
17. \(f(x) = x^{-4} \), \([-3, -1]\), about \(x = 4 \)
18. \(f(x) = \frac{1}{\sqrt{x^2 + 1}} \), \([0, 2]\), about \(x = 0 \)
19. \(f(x) = a - x \) with \(a > 0 \), \([0, a]\), about \(x = -1 \)
20. \(f(x) = 1 - x^2 \), \([-1, 1]\), \(x = c \) with \(c > 1 \)

In Exercises 21–26, sketch the enclosed region and use the Shell Method
to calculate the volume of rotation about the \(x \)-axis.

21. \(x = y \), \(y = 0 \), \(x = 1 \)
22. \(x = \frac{1}{2}y + 1 \), \(x = 3 - \frac{1}{2}y \), \(y = 0 \)
23. \(x = y(4 - y) \), \(x = 0 \)
24. \(x = y(4 - y) \), \(x = (y - 2)^2 \)
25. \(y = 4 - x^2 \), \(x = 0 \), \(y = 0 \)
26. \(y = \frac{1}{3}x^3 - 2 \), \(y = 0 \), \(x = 27 \)

27. Determine which of the following is the appropriate integrand
needed to determine the volume of the solid obtained by rotating
around the vertical axis given by \(x = -1 \) the area that is between the
curves \(y = f(x) \) and \(y = g(x) \) over the interval \([a, b]\), where \(a \geq 0 \)
and \(f(x) \geq g(x) \) over that interval.
(a) \(x(f(x) - g(x)) \)
(b) \((x + 1)(f(x) - g(x)) \)
(c) \(x((f(x) - 1) - (g(x) - 1)) \)
(d) \((x - 1)(f(x) - g(x)) \)
(e) \(x(f(x + 1) - g(x + 1)) \)

28. Let \(y = f(x) \) be a decreasing function on \([0, b]\), such that \(f(b) = 0\). Explain why \(2\pi \int_0^b x f(x) \, dx = \pi \int_0^b (h(x))^2 \, dx \), where \(h(x) \) denotes the inverse of \(f(x) \).

29. Use both the Shell and Disk Methods to calculate the volume obtained by rotating the region under the graph of \(f(x) = 8 - x^3 \) for \(0 \leq x \leq 2 \) about:
(a) the \(x \)-axis.
(b) the \(y \)-axis.

30. Sketch the solid of rotation about the \(y \)-axis for the region under the graph of the constant function \(f(x) = c \) (where \(c > 0 \)) for \(0 \leq x \leq r \).
(a) Find the volume without using integration.
(b) Use the Shell Method to compute the volume.

31. The graph in Figure 11(A) can be described by both \(y = f(x) \) and \(x = h(y) \), where \(h \) is the inverse of \(f \). Let \(V \) be the volume obtained by rotating the region under the graph about the \(y \)-axis.
(a) Describe the figures generated by rotating segments \(\overline{AB} \) and \(\overline{C'B} \) about the \(y \)-axis.
(b) Set up integrals that compute \(V \) by the Shell and Disk Methods.

32. Let \(W \) be the volume of the solid obtained by rotating the region under the graph in Figure 11(B) about the \(y \)-axis.
(a) Describe the figures generated by rotating segments \(\overline{AB} \) and \(\overline{AC'} \) about the \(y \)-axis.
(b) Set up an integral that computes \(W \) by the Shell Method.
(c) Explain the difficulty in computing \(W \) by the Washer Method.

33. Let \(R \) be the region under the graph of \(y = 9 - x^2 \) for \(0 \leq x \leq 2 \). Use the Shell Method to compute the volume of rotation of \(R \) about the \(x \)-axis as a sum of two integrals along the \(y \)-axis. Hint: The shells generated depend on whether \(y \in [0, 5] \) or \(y \in [5, 9] \).

34. Let \(R \) be the region under the graph of \(y = 4x^{-1} \) for \(1 \leq y \leq 4 \). Use the Shell Method to compute the volume of rotation of \(R \) about the \(y \)-axis as a sum of two integrals along the \(x \)-axis.

In Exercises 35–40, use the Shell Method to find the volume obtained by rotating region \(A \) in Figure 12 about the given axis.
35. \(y \)-axis
36. \(x = -3 \)
37. \(x = 2 \)
38. \(x \)-axis
39. \(y = -2 \)
40. \(y = 6 \)

In Exercises 41–46, use the most convenient method (Disk or Shell Method) to find the volume obtained by rotating region \(B \) in Figure 12 about the given axis.
41. \(y \)-axis
42. \(x = -3 \)
43. \(x = 2 \)
44. \(x \)-axis
45. \(y = -2 \)
46. \(y = 8 \)

In Exercises 47–54, use the most convenient method (Disk or Shell Method) to find the given volume of rotation.
47. Region between \(x = y(5 - y) \) and \(x = 0 \), rotated about the \(y \)-axis.
48. Region between \(x = y(5 - y) \) and \(x = 0 \), rotated about the \(x \)-axis.
49. Region bounded by \(y = x^2 \) and \(x = y^2 \), rotated about the \(y \)-axis.
50. Region bounded by \(y = x^2 \) and \(x = y^2 \), rotated about \(x = 3 \).
51. Region in Figure 13, rotated about the \(x \)-axis.
52. Region in Figure 13, rotated about the \(y \)-axis.

53. Region in Figure 14, rotated about \(x = 4 \).
54. Region in Figure 14, rotated about \(y = -2 \).

In Exercises 55–58, use the Shell Method to find the given volume of rotation.
55. A sphere of radius \(r \).
56. The “bead” formed by removing a cylinder of radius \(r \) from the center of a sphere of radius \(R \) (compare with Exercise 59 in Section 6.3).
57. The torus obtained by rotating the circle \((x - a)^2 + y^2 = b^2 \) about the \(y \)-axis, where \(a > b \) (compare with Exercise 56 in Section 6.3). Hint: Evaluate the integral by interpreting part of it as the area of a circle.
58. The “paraboloid” obtained by rotating the region between \(y = x^2 \) and \(y = c \) (\(c > 0 \)) about the \(y \)-axis.
59. Given \(a \) and \(b \), \(0 \leq a \leq b \), find a function \(f \) such that the volume obtained by rotating about the \(x \)-axis the region \(R \) under the graph of \(y = f(x) \) over the interval \([a, b]\) equals the volume obtained by rotating that same region \(R \) about the \(y \)-axis.
Further Insights and Challenges

60. The surface area of a sphere of radius r is $4\pi r^2$. Use this to derive the formula for the volume V of a sphere of radius R in a new way.

(a) Show that the volume of a thin spherical shell of inner radius r and thickness Δr is approximately $4\pi r^2 \Delta r$.

(b) Approximate V by decomposing the sphere of radius R into N thin spherical shells of thickness $\Delta r = R/N$.

(c) Show that the approximation is a Riemann sum that converges to an integral. Evaluate the integral.

61. Show that the solid (an ellipsoid) obtained by rotating the region R in Figure 15 about the y-axis has volume $\frac{4}{3}\pi a^2 b$.

62. The bell-shaped curve $y = f(x)$ in Figure 16 satisfies $\frac{dy}{dx} = -xy$. Use the Shell Method and the substitution $u = f(x)$ to show that the solid obtained by rotating the region R about the y-axis has volume $V = 2\pi(1-c)$, where $c = f(a)$. Observe that as $c \to 0$, the region R becomes infinite but the volume V approaches 2π.

6.5 Work and Energy

All physical tasks, from running up a hill to turning on a computer, require an expenditure of energy. When a force is applied to an object to move it, the energy expended is called work. When a constant force F is applied to move the object a distance d in the direction of the force, the work W is defined as “force times distance” (Figure 1):

$$W = F \cdot d$$ \hspace{1cm} (1)

The International System (SI) unit of force is the newton (abbreviated N), defined as 1 kg-m/s2. Energy and work are both measured in units of the joule (J), equal to 1 N-m. In the British system, the unit of force is the pound, and both energy and work are measured in foot-pounds (ft-lb). Another unit of energy is the calorie. One ft-lb is approximately 0.738 J or 3.088 calories.

To become familiar with the units, let’s calculate the work W required to lift a 2-kg stone 3 m above the ground. Gravity pulls down on the stone of mass m with a force equal to $-mg$, where $g = 9.8 \text{ m/s}^2$. Therefore, lifting the stone requires an upward vertical force $F = mg$, and the work expended is

$$W = (mg)h = (2 \text{ kg})(9.8 \text{ m/s}^2)(3 \text{ m}) = 58.8 \text{ J}$$

The kilogram is a unit of mass, but the pound is a unit of force. Therefore, the factor g does not appear when work against gravity is computed in the British system. The work required to lift a 2-lb stone 3 ft is

$$W = (2 \text{ lb})(3 \text{ ft}) = 6 \text{ ft-lb}$$

We are interested in the case where the force $F(x)$ varies as the object moves from a to b along the x-axis. Eq. (1) does not apply directly, but we can break up the task into a large number of smaller tasks for which Eq. (1) gives a good approximation. Divide $[a, b]$ into N subintervals of length $\Delta x = (b-a)/N$ as in Figure 2 and let W_i be the work required to move the object from x_{i-1} to x_i. If Δx is small, then the force $F(x)$ is
that Galileo did not acknowledge the work scientists…. It has always hurt me to think "That, alas, is vanity. You find it in so many Einstein commented on Newton's behavior: Shortly before his death in 1955, Albert Einstein commented on Newton's behavior: Newton refused to acknowledge Hooke's contributions in his masterwork *Principia*. Shortly before his death in 1955, Albert Einstein commented on Newton's behavior: "That, alas, is vanity. You find it in so many scientists…. It has always hurt me to think that Galileo did not acknowledge the work of Kepler".

One typical calculation involves finding the work required to stretch a spring. Assume that the free end of the spring has position $x = 0$ at equilibrium, when no force is acting (Figure 3). According to Hooke’s Law, when the spring is stretched (or compressed) to position x, it exerts a restoring force of magnitude $-kx$ in the opposite direction, where k is the spring constant. If we want to stretch the spring further, we must apply a force $F(x) = kx$ to counteract the force exerted by the spring.

EXAMPLE 1 Hooke’s Law Assuming a spring constant of $k = 400$ N/m, find the work required to:

(a) Stretch the spring 10 cm beyond equilibrium.

(b) Compress the spring 2 cm more when it is already compressed 3 cm.

Solution A force $F(x) = 400x$ N is required to stretch the spring (with x in meters). Note that centimeters must be converted to meters.

(a) The work required to stretch the spring 10 cm (0.1 m) beyond equilibrium is

$$W = \int_{0}^{0.1} 400x \, dx = 200x^2 \bigg|_{0}^{0.1} = 2 \text{ J}$$

(b) If the spring is at position $x = -3$ cm, then the work W required to compress it further to $x = -5$ cm is

$$W = \int_{-0.03}^{-0.05} 400x \, dx = 200x^2 \bigg|_{-0.03}^{-0.05} = 0.5 - 0.18 = 0.32 \text{ J}$$

Observe that we integrate from the starting point $x = -0.03$ to the ending point $x = -0.05$ (even though the lower limit of the integral is larger than the upper limit in this case).

In the next two examples, we are not moving a single object through a fixed distance, so we cannot apply Eq. (2). Rather, each thin layer of the object is moved through a different distance. The work performed is computed by “summing” (i.e., integrating) the work performed on the thin layers.

EXAMPLE 2 Building a Concrete Column Compute the work (against gravity) required to build a concrete column of height 5 m and square base of side 2 m. Assume that concrete has density 1500 kg/m3.

Solution Think of the column as a stack of n thin layers of width $\Delta y = 5/n$. The work consists of lifting up these layers and placing them on the stack (Figure 4), but the work performed on a given layer depends on how high we lift it. First, let us compute the gravitational force on a thin layer of width Δy:
On the earth’s surface, work against gravity is equal to the force mg times the vertical distance through which the object is lifted. No work against gravity is done when an object is moved sideways.

![Image](image.png)

FIGURE 4 Total work is the sum of the work performed on each layer of the column.

In Examples 2 and 3, the work performed on a thin layer is written

$$L(y) \Delta y$$

When we take the sum and let Δy approach zero, we obtain the integral of $L(y)$.

Symbolically, the Δy “becomes” the dy of the integral. Note that

$$L(y) = g \times \text{density} \times A(y)$$

$$\times (\text{vertical distance lifted})$$

where $A(y)$ is the area of the cross section.

Volume of layer = area \times width = $4 \Delta y$ m3

Mass of layer = density \times volume = $1500 \times 4 \Delta y$ kg

Force on layer = $g \times$ mass = $9.8 \times 1500 \times 4 \Delta y = 58,800 \Delta y$ N

The work performed in lifting this layer to height y is equal to the force times the distance y, which is $(58,800 \Delta y) y$. Setting $L(y) = 58,800y$, we have

$$\text{Work lifting layer to height } y \approx (58,800 \Delta y) y = L(y) \Delta y$$

This is only an approximation (although a very good one if Δy is small) because the layer has nonzero width and the cement particles at the top have been lifted a little bit higher than those at the bottom. The ith layer is lifted to height y_i, so the total work performed is

$$W \approx \sum_{i=1}^{n} L(y_i) \Delta y$$

This sum is a right-endpoint approximation to $\int_{0}^{5} L(y) \, dy$. Letting $n \to \infty$, we obtain

$$W = \int_{0}^{5} L(y) \, dy = \int_{0}^{5} 58,800y \, dy = 58,800 \int_{0}^{5} y^2 \, dy = 735,000 \text{ J}$$

EXAMPLE 3 Pumping Water out of a Tank A spherical tank of radius 5 m is filled with water. Calculate the work W performed (against gravity) in pumping out the water through a spout of height 1 m at the top. The density of water is 1000 kg/m3.

Solution The first step, as in the previous example, is to compute the work against gravity performed on a thin layer of water of width Δy. We place the origin of our coordinate system at the center of the sphere because this leads to a simple formula for the radius r of the cross section at height y (Figure 5).

Step 1. Compute work performed on a layer.

Figure 5 shows that the cross section at height y is a circle of radius $r = \sqrt{25 - y^2}$ and area $A(y) = \pi r^2 = \pi (25 - y^2)$. A thin layer has volume $A(y) \Delta y$, and to lift it, we must exert a force against gravity equal to

$$\text{Force on layer} = g \times \text{density} \times A(y) \Delta y \approx (9.8)1000\pi (25 - y^2) \Delta y$$

The layer has to be lifted a vertical distance $6 - y$, so

$$\boxed{\text{Work on layer} \approx 9800\pi (25 - y^2) \Delta y \times (6 - y) = L(y) \Delta y}$$

where $L(y) = 9800\pi (150 - 25y - 6y^2 + y^3)$.

Water exits from spout at the top.

![Diagram](image.png)

Radius at height y is $r = \sqrt{25 - y^2}$.

This layer is pumped up a vertical distance $6 - y$.

![Diagram](image.png)
Step 2. Compute total work.

Now divide the sphere into N layers and let y_i be the height of the ith layer. The work performed on the ith layer is approximately $L(y_i) \frac{\Delta y}{\Delta y}$, and therefore,

$$W \approx \sum_{i=1}^{N} L(y_i) \frac{\Delta y}{\Delta y}$$

This sum approaches the integral of $L(y)$ as $N \to \infty$ (i.e., $\Delta y \to 0$), so

$$W = \int_{-5}^{5} L(y) \, dy = 9800\pi \int_{-5}^{5} (150 - 25y - 6y^2 + y^3) \, dy$$

$$= 9800\pi \left(150y - \frac{25}{2} y^2 - 2y^3 + \frac{1}{4} y^4 \right)_{-5}^{5} = 9,800,000\pi \text{ J}$$

Note that the integral extends from -5 to 5 because the y-coordinate along the sphere varies from -5 to 5.

A liter of gasoline has an energy content of approximately 3.4×10^7 joules. Hence, the work required to pump the water out of the spout is equal to the energy content of roughly 0.9 liters (L) of gasoline.

6.5 SUMMARY

- Work performed to move an object:

 Constant force: $W = F \cdot d$, Variable force: $W = \int_{a}^{b} F(x) \, dx$

- Hooke’s Law: A spring stretched x units past equilibrium exerts a restoring force of magnitude $-kx$. A force $F(x) = kx$ is required to stretch the spring further.

- To compute work against gravity by decomposing an object into N thin layers of thickness Δy, express the work performed on a thin layer as $L(y) \frac{\Delta y}{\Delta y}$, where

 $$L(y) = g \times \text{density} \times A(y) \times (\text{vertical distance lifted})$$

 The total work performed is $W = \int_{a}^{b} L(y) \, dy$.

6.5 EXERCISES

Preliminary Questions

1. Why is integration needed to compute the work performed in stretching a spring?

2. Why is integration needed to compute the work performed in pumping water out of a tank but not to compute the work performed in lifting up the tank?

3. Which of the following represents the work required to stretch a spring (with spring constant k) a distance x beyond its equilibrium position: kx, $-kx$, $\frac{1}{2}mk^2$, $\frac{1}{2}kx^2$, or $\frac{1}{2}mx^2$?

4. What does it mean when the integral used to calculate work gives a negative answer?

Exercises

1. How much work is done raising a 4-kg mass to a height of 16 m above ground?

2. How much work is done raising a 4-lb mass to a height of 16 ft above ground?

In Exercises 3–6, compute the work (in joules) required to stretch or compress a spring as indicated, assuming a spring constant of $k = 800 \text{ N/m}$.

3. Stretching from equilibrium to 12 cm past equilibrium

4. Compressing from equilibrium to 4 cm past equilibrium

5. Stretching from 5 cm to 15 cm past equilibrium

6. Compressing 4 cm more when it is already compressed 5 cm

7. If 5 J of work are needed to stretch a spring 10 cm beyond equilibrium, how much work is required to stretch it 15 cm beyond equilibrium?
8. To create images of samples at the molecular level, atomic force microscopes use silicon micro-cantilevers that obey Hooke’s Law $F(x) = -kx$, where x is the distance through which the tip is deflected (Figure 6). Suppose that 10^{-17} J of work are required to deflect the tip a distance 10^{-8} m. Find the deflection if a force of 10^{-9} N is applied to the tip.

![Figure 6](image)

9. A spring obeys a force law $F(x) = -kx^{1.1}$ with $k = 100$ N/m$^{1.1}$. Find the work required to stretch the spring 0.3 m past equilibrium.

10. Show that the work required to stretch a spring from position a to position b is $\frac{1}{2}k(b^2 - a^2)$, where k is the spring constant. How do you interpret the negative work obtained when $|b| < |a|$?

In Exercises 11–14, use the method of Examples 2 and 3 to calculate the work against gravity required to build the structure out of a lightweight material of density 600 kg/m3.

11. Box of height 3 m and square base of side 2 m

12. Cylindrical column of height 4 m and radius 0.8 m

13. Right circular cone of height 4 m and base of radius 1.2 m

14. Hemisphere of radius 0.8 m

15. Built around 2600 BCE, the Great Pyramid of Giza in Egypt (Figure 7) is 146 m high and has a square base of side 230 m. Find the work (against gravity) required to build the pyramid if the density of the stone is estimated at 2000 kg/m3.

![Figure 7](image)

16. Calculate the work (against gravity) required to build a box of height 3 m and square base of side 2 m out of material of variable density, assuming that the density at height y is $f(y) = 1000 - 100y$ kg/m3.

In Exercises 17–22, calculate the work (in joules) required to pump all of the water out of a full tank. Distances are in meters, and the density of water is 1000 kg/m3.

17. Rectangular tank in Figure 8; water exits from a small hole at the top.

![Figure 8](image)

18. Rectangular tank in Figure 8; water exits through the spout.

19. Hemisphere in Figure 9; water exits through the spout.

![Figure 9](image)

20. Conical tank in Figure 10; water exits through the spout.

![Figure 10](image)

21. Horizontal cylinder in Figure 11; water exits from a small hole at the top. Hint: Evaluate the integral by interpreting part of it as the area of a circle.

![Figure 11](image)

22. Trough in Figure 12; water exits by pouring over the sides.

![Figure 12](image)
23. Find the work \(W \) required to empty the tank in Figure 8 through the hole at the top if the tank is half full of water.

24. Assume the tank in Figure 8 is full of water and let \(W \) be the work required to pump out half of the water through the hole at the top. Do you expect \(W \) to equal the work computed in Exercise 23? Explain and then compute \(W \).

25. Assume the tank in Figure 10 is full. Find the work required to pump out half of the water. \textit{Hint:} First, determine the level \(H \) at which the water remaining in the tank is equal to one-half the total capacity of the tank.

26. Assume that the tank in Figure 10 is full.
(a) Calculate the work \(F(y) \) required to pump out water until the water level has reached level \(y \).
(b) \textit{CAS} Plot \(F(y) \).
(c) What is the significance of \(F'(y) \) as a rate of change?
(d) \textit{CAS} If your goal is to pump out all of the water, at which water level \(y_0 \) will half of the work be done?

27. Calculate the work required to lift a 10-m chain over the side of a building (Figure 13). Assume that the chain has a density of 8 kg/m. \textit{Hint:} Break up the chain into \(N \) segments, estimate the work performed on a segment, and compute the limit as \(N \to \infty \) as an integral.

28. How much work is done lifting a 3-m chain over the side of a building if the chain has mass density 4 kg/m?

29. A 6-m chain has mass 18 kg. Find the work required to lift the chain over the side of a building.

30. A 10-m chain with mass density 4 kg/m is initially coiled on the ground. How much work is performed in lifting the chain so that it is fully extended (and one end touches the ground)?

31. How much work is done lifting a 12-m chain that has mass density 3 kg/m (initially coiled on the ground) so that its top end is 10 m above the ground?

32. A 500-kg wrecking ball hangs from a 12-m cable of density 15 kg/m attached to a crane. Calculate the work done if the crane lifts the ball from ground level to 12 m in the air by drawing in the cable.

33. Calculate the work required to lift a 3-m chain over the side of a building if the chain has a variable density of \(\rho(x) = x^2 - 3x + 10 \) kg/m for \(0 \leq x \leq 3 \).

34. A 3-m chain with linear mass density \(\rho(x) = 2x(4-x) \) kg/m lies on the ground. Calculate the work required to lift the chain from its front end so that its bottom is 2 m above ground.

35. Show that if two objects of mass \(M \) and \(m \) are separated by a distance \(r_1 \), then the work required to increase the separation to a distance \(r_2 \) is equal to \(W = GMm(r_1^{-1} - r_2^{-1}) \).

36. Use the result of Exercise 35 to calculate the work required to place a 2000-kg satellite in an orbit 1200 km above the surface of the earth. Assume that the earth is a sphere of radius \(R_e = 637 \times 10^9 \) m and mass \(M_e = 5.98 \times 10^{24} \) kg. Treat the satellite as a point mass.

37. Use the result of Exercise 35 to compute the work required to move a 1500-kg satellite from an orbit 1000 to an orbit 1500 km above the surface of the earth.

38. The pressure \(P \) and volume \(V \) of the gas in a cylinder of length 0.8 m and radius 0.2 m, with a movable piston, are related by \(PV^{1.4} = k \), where \(k \) is a constant (Figure 14). When the piston is fully extended, the gas pressure is 2000 kilopascals (kPa; 1 kilopascal is 10\(^3\) newtons per square meter).
(a) Calculate \(k \).
(b) The force on the piston is \(PA \), where \(A \) is the piston’s area. Calculate the force as a function of the length \(x \) of the column of gas.
(c) Calculate the work required to compress the gas column from 0.8 m to 0.5 m.

39. \textbf{Work-Energy Theorem} An object of mass \(m \) moves from \(x_1 \) to \(x_2 \) during the time interval \([t_1, t_2]\) due to a force \(F(x) \) acting in the direction of motion. Let \(x(t), v(t), \) and \(a(t) \) be the position, velocity, and acceleration at time \(t \). The object’s kinetic energy is \(KE = \frac{1}{2}mv^2 \).
(a) Use the Change of Variables Formula to show that the work performed is equal to
\[
W = \int_{x_1}^{x_2} F(x) \, dx = \int_{t_1}^{t_2} F(x(t))v(t) \, dt
\]
(b) Use Newton’s Second Law, \(F(x(t)) = ma(t) \), to show that
\[
\frac{d}{dt} \left(\frac{1}{2}mv^2 \right) = F(x(t))v(t)
\]
(c) Use the FTC to prove the Work-Energy Theorem: The change in kinetic energy during the time interval \([t_1, t_2]\) is equal to the work performed.

40. A model train of mass 0.5 kg is placed at one end of a straight 3-m electric track. Assume that a force \(F(x) = (3x - x^2) \) N acts on the train at distance \(x \) along the track. Use the Work-Energy Theorem (Exercise 39) to determine the velocity of the train when it reaches the end of the track.

41. With what initial velocity \(v_0 \) must we fire a rocket so it attains a maximum height \(r \) above the earth? \textit{Hint:} Use the results of Exercises 35 and 39. As the rocket reaches its maximum height, its KE decreases from \(\frac{1}{2}mv_0^2 \) to zero.
42. With what initial velocity must we fire a rocket so it attains a maximum height of \(r = 20 \) km above the surface of the earth?

CHAPTER REVIEW EXERCISES

1. Compute the area of the region in Figure 1(A) enclosed by \(y = 2 - x^2 \) and \(y = -2 \).

2. Compute the area of the region in Figure 1(B) enclosed by \(y = 2 - x^2 \) and \(y = x \).

![Figure 1](image1.png)

In Exercises 3–12, find the area of the region enclosed by the graphs of the functions.

3. \(y = x^3 - 2x^2 + x, \quad y = x^2 - x \)

4. \(y = x^2 + 2x, \quad y = x^2 - 1, \quad h(x) = x^2 + x - 2 \)

5. \(x = 4y, \quad x = 24 - 8y, \quad y = 0 \)

6. \(x = y^2 - 9, \quad x = 15 - 2y \)

7. \(y = 4 - x^2, \quad y = 3x, \quad y = 4 \)

8. \(\text{GU} \quad x = \frac{1}{2} y, \quad x = y\sqrt{1-y^2}, \quad 0 \leq y \leq 1 \)

9. \(y = \sin x, \quad y = \cos x, \quad 0 \leq x \leq \frac{5\pi}{4} \)

10. \(f(x) = \sin x, \quad g(x) = \sin 2x, \quad \frac{\pi}{3} \leq x \leq \pi \)

11. \(y = \sec^2 \left(\frac{\pi x}{4} \right), \quad y = \sec^2 \left(\frac{\pi x}{8} \right), \quad 0 \leq x \leq 1 \)

12. \(y = \frac{x}{\sqrt{x^2 + 1}}, \quad y = \frac{x}{\sqrt{x^2 + 4}}, \quad -1 \leq x \leq 1 \)

13. \(\text{GU} \quad \text{Use a graphing utility to locate the points of intersection of } y = x^2 \text{ and } y = \cos x, \text{ and find the area between the two curves (approximately).} \)

14. Figure 2 shows a solid whose horizontal cross section at height \(y \) is a circle of radius \((1 + y)^{-2}\) for \(0 \leq y \leq H \). Find the volume of the solid.

![Figure 2](image2.png)

15. The base of a solid is the unit circle \(x^2 + y^2 = 1 \), and its cross sections perpendicular to the \(x \)-axis are rectangles of height 4. Find its volume.

16. The base of a solid is the triangle bounded by the axes and the line \(2x + 3y = 12 \), and its cross sections perpendicular to the \(y \)-axis have area \(A(y) = (y + 2) \). Find its volume.

17. Find the total mass of a rod of length 1.2 m with linear density \(\rho(x) = (1 + 2x + \frac{2}{3}x^3) \) kg/m.

18. Find the flow rate (in the correct units) through a pipe of diameter 6 cm if the velocity of fluid particles at a distance \(r \) from the center of the pipe is \(v(r) = (3 - r) \) cm/s.

In Exercises 19–24, find the average value of the function over the interval.

19. \(f(x) = x^3 - 2x + 2, \quad [-1, 2] \)

20. \(f(x) = |x|, \quad [-4, 4] \)

21. \(f(x) = (x + 1)(x^2 + 2x + 1)^{4/3}, \quad [0, 4] \)

22. \(f(x) = |x^2 - 1|, \quad [0, 4] \)

23. \(f(x) = \sqrt{9 - x^2}, \quad [0, 3] \quad \text{Hint: Use geometry to evaluate the integral.} \)

24. \(f(x) = x[x], \quad [0, 3], \text{ where } [x] \text{ is the greatest integer function} \)

25. Find \(\int_2^5 g(t) \, dt \) if the average value of \(g \) on \([2, 5]\) is 9.

26. The average value of \(R \) over \([0, x] \) is equal to \(x \) for all \(x \). Use the FTC to determine \(R(x) \).

27. Use the Washer Method to find the volume obtained by rotating the region in Figure 3 about the \(x \)-axis.

![Figure 3](image3.png)

28. Use the Shell Method to find the volume obtained by rotating the region in Figure 3 about the \(x \)-axis.

In Exercises 29–40, use any method to find the volume of the solid obtained by rotating the region enclosed by the curves about the given axis.

29. \(y = x^2 + 2, \quad y = x + 4, \quad x \)-axis

30. \(y = x^2 + 6, \quad y = 8x - 1, \quad y \)-axis

31. \(x = y^2 - 3, \quad x = 2y, \quad \text{axis } y = 4 \)

32. \(y = 2x, \quad y = 0, \quad x = 8, \quad \text{axis } x = -3 \)

33. \(y = x^2 - 1, \quad y = 2x - 1, \quad \text{axis } x = -2 \)
In Exercises 41–44, find the volume obtained by rotating the region

41. The shaded region between the upper branch of the hyperbola and the \(x \)-axis for \(-c \leq x \leq c\), about the \(x \)-axis

42. The region between the upper branch of the hyperbola and the \(x \)-axis for \(0 \leq x \leq c\), about the \(y \)-axis

43. The region between the upper branch of the hyperbola and the line \(y = x \) for \(0 \leq x \leq c\), about the \(x \)-axis

44. The region between the upper branch of the hyperbola and \(y = 2\), about the \(y \)-axis

FIGURE 4

45. Let \(R \) be the intersection of the circles of radius 1 centered at \((1, 0)\) and \((0, 1)\). Express as an integral (but do not evaluate): \(a\) the area of \(R \) and \(b\) the volume of revolution of \(R \) about the \(x \)-axis.

46. Let \(R \) be the intersection of the circles of radius 1 centered at \((0, 0)\) and \((0, 1)\). Express an integral that gives the volume of revolution of \(R \) about the \(x \)-axis. (Do not evaluate the integral.)

47. Let \(a > 0 \). Show that the volume obtained when the region between \(y = a\sqrt{x - ax^2} \) and the \(x \)-axis is rotated about the \(x \)-axis is independent of the constant \(a \).

48. If 12 J of work are needed to stretch a spring 20 cm beyond equilibrium, how much work is required to compress it 6 cm beyond equilibrium?

49. A spring whose equilibrium length is 15 cm exerts a force of 50 N when it is stretched to 20 cm. Find the work required to stretch the spring from 22 cm to 24 cm.

50. If 18 ft-lb of work are needed to stretch a spring 1.5 ft beyond equilibrium, how far will the spring stretch if a 12-lb weight is attached to its end?

51. Let \(W \) be the work (against the Sun’s gravitational force) required to transport an 80-kg person from Earth to Mars when the two planets are aligned with the Sun at their minimal distance of \(55.7 \times 10^6\) km. Use Newton’s Universal Law of Gravity (see Exercises 35–37 in Section 6.5) to express \(W \) as an integral and evaluate it. The Sun has mass \(M_s \), and the distance from the Sun to Earth is \(149.6 \times 10^6\) km.

In Exercises 52 and 53, water is pumped into a spherical tank of radius 2 m from a source located 1 m below a hole at the bottom (Figure 5). The density of water is 1000 kg/m\(^3\).

52. Calculate the work required to fill the tank.

53. Calculate the work \(F(h) \) required to fill the tank to level \(h \) meters in the sphere.

54. A tank of mass 20 kg containing 100 kg of water (density 1000 kg/m\(^3\)) is raised vertically at a constant speed of 100 m/min for 1 min, during which time it leaks water at a rate of 40 kg/min. Calculate the total work performed in raising the container.
Carbon dating, which relies on the exponential decay of C\(^{14}\) relative to C\(^{12}\), allows for the determination of the age of these cave paintings.

This chapter is devoted to exponential functions and their applications. These functions are used to model a remarkably wide range of phenomena, such as radioactive decay, population growth, interest rates, atmospheric pressure, and the diffusion of molecules across a cell membrane. Calculus gives us insight into why exponential functions play an important role in so many different situations. The key, it turns out, is the relation between an exponential function and its derivative.

7.1 Derivative of \(f(x) = b^x\) and the Number \(e\)

An exponential function is a function of the form \(f(x) = b^x\), where \(b > 0\) and \(b \neq 1\). The number \(b\) is called the base. Some examples are \(f(x) = 2^x\), \(g(x) = (1.4)^x\), and \(h(x) = 10^x\). The case \(b = 1\) is excluded because \(f(x) = 1^x\) is a constant function. Calculators give good decimal approximations to values of exponential functions:

\[
2^4 = 16, \quad 2^{-3} = 0.125, \quad (1.4)^{0.8} \approx 1.309, \quad 10^{4.6} \approx 39,810.717
\]

Three properties of exponential functions should be singled out from the start (see Figure 1 for the case \(b = 2\)):

- **Exponential functions are positive**: \(b^x > 0\) for all \(x\).
- **The range of \(f(x) = b^x\)** is the set of all positive real numbers.
- **\(f(x) = b^x\)** is increasing if \(b > 1\) and decreasing if \(0 < b < 1\).

If \(b > 1\), the exponential function \(f(x) = b^x\) is not merely increasing but is, in a certain sense, rapidly increasing. Although the term “rapid increase” is perhaps subjective, the following precise statement is true: \(f(x) = b^x\) increases more rapidly than the power function \(g(x) = x^n\) for all \(n\) (we will prove this in Section 7.7). For example, Figure 2
shows that \(f(x) = 3^x \) eventually overtakes and increases faster than the power functions \(g(x) = x^3 \), \(g(x) = x^5 \), and \(g(x) = x^7 \). Table 1 compares \(f(x) = 3^x \) and \(g(x) = x^5 \).

We now review the Laws of Exponents. The most important law is

\[
b^x b^y = b^{x+y}
\]

In other words, under multiplication, the exponents add, provided that the bases are the same. This law does not apply to a product such as \(3^2 \cdot 5^4 \).

Laws of Exponents (\(b > 0 \))

<table>
<thead>
<tr>
<th>Rule</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponent zero</td>
<td>(b^0 = 1)</td>
</tr>
<tr>
<td>Products</td>
<td>(b^x b^y = b^{x+y})</td>
</tr>
<tr>
<td>Quotients</td>
<td>(\frac{b^x}{b^y} = b^{x-y})</td>
</tr>
<tr>
<td>Negative exponents</td>
<td>(b^{-x} = \frac{1}{b^x})</td>
</tr>
<tr>
<td>Power to a power</td>
<td>((b^x)^y = b^{xy})</td>
</tr>
<tr>
<td>Roots</td>
<td>(b^{1/n} = \sqrt[n]{b})</td>
</tr>
</tbody>
</table>

EXAMPLE 1 Rewrite as a whole number or fraction:

(a) \(16^{-1/2} \)
(b) \(27^{2/3} \)
(c) \(4^{16} \cdot 4^{-18} \)
(d) \(\frac{9^3}{3^7} \)

Solution

(a) \(16^{-1/2} = \frac{1}{16^{1/2}} = \frac{1}{\sqrt{16}} = \frac{1}{4} \)
(b) \(27^{2/3} = (27^{1/3})^2 = 3^2 = 9 \)

(c) \(4^{16} \cdot 4^{-18} = 4^{-2} = \frac{1}{4^2} = \frac{1}{16} \)
(d) \(\frac{9^3}{3^7} = \frac{(3^2)^3}{3^7} = \frac{3^6}{3^7} = 3^{-1} = \frac{1}{3} \)

In the next example, we use the fact that \(f(x) = b^x \) is one-to-one. In other words, if \(b^x = b^y \), then \(x = y \).

EXAMPLE 2 Solve for the unknown:

(a) \(2^{3x+1} = 2^5 \)
(b) \(b^3 = 5^6 \)
(c) \(7^{t+1} = \left(\frac{1}{7}\right)^{2t} \)

Solution

(a) If \(2^{3x+1} = 2^5 \), then \(3x + 1 = 5 \) and thus \(x = \frac{4}{3} \).

(b) Raise both sides of \(b^3 = 5^6 \) to the \(\frac{1}{3} \) power. By the “power to a power” rule,

\[
b = \left(b^3\right)^{1/3} = (5^6)^{1/3} = 5^{6/3} = 5^2 = 25
\]

(c) Since \(\frac{1}{7} = 7^{-1} \), the right-hand side of the equation is \(\left(\frac{1}{7}\right)^{2t} = (7^{-1})^{2t} = 7^{-2t} \). The equation becomes \(7^{t+1} = 7^{-2t} \). Therefore, \(t + 1 = -2t \), or \(t = -\frac{1}{3} \).

Derivative of \(f(x) = b^x \)

At this point, it is natural to ask: What is the derivative of \(f(x) = b^x \)? Our rules of differentiation are of no help because \(b^x \) is neither a product, quotient, nor composite of
functions with known derivatives. We must go back to the limit definition of the derivative. The difference quotient (for \(h \neq 0 \)) is

\[
\frac{f(x + h) - f(x)}{h} = \frac{b^{x+h} - b^x}{h} = \frac{b^x b^h - b^x}{h} = \frac{b^x(b^h - 1)}{h}
\]

Now take the limit as \(h \to 0 \). The factor \(b^x \) does not depend on \(h \), so it may be taken outside the limit:

\[
\frac{d}{dx} b^x = \lim_{h \to 0} \frac{b^{x+h} - b^x}{h} = \lim_{h \to 0} \frac{b^x(b^h - 1)}{h} = b^x \lim_{h \to 0} \left(\frac{b^h - 1}{h} \right)
\]

This last limit (which exists because \(f(x) = b^x \) is differentiable) does not depend on \(x \). We denote its value by \(m(b) \):

\[
m(b) = \lim_{h \to 0} \left(\frac{b^h - 1}{h} \right)
\]

What we have shown, then, is that the derivative of \(f(x) = b^x \) is proportional to \(b^x \):

\[
\frac{d}{dx} b^x = m(b) b^x
\]

What is the factor \(m(b) \)? We cannot determine its exact value at this point (in Section 7.3, we will learn that \(m(b) \) is equal to \(\ln b \), the natural logarithm of \(b \)). To proceed further, let’s investigate \(m(b) \) numerically.

EXAMPLE 3 Estimate \(m(b) \) numerically for \(b = 2, 2.5, 3, \) and \(10 \).

Solution We create a table of values of difference quotients to estimate \(m(b) \):

<table>
<thead>
<tr>
<th>(h)</th>
<th>(2^h - 1) (h)</th>
<th>((2.5)^h - 1) (h)</th>
<th>(3^h - 1) (h)</th>
<th>(10^h - 1) (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.69556</td>
<td>0.92050</td>
<td>1.10467</td>
<td>2.32930</td>
</tr>
<tr>
<td>0.001</td>
<td>0.69339</td>
<td>0.91671</td>
<td>1.09921</td>
<td>2.30524</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.69317</td>
<td>0.91633</td>
<td>1.09867</td>
<td>2.30285</td>
</tr>
<tr>
<td>0.00001</td>
<td>0.69315</td>
<td>0.916295</td>
<td>1.09861</td>
<td>2.30261</td>
</tr>
</tbody>
</table>

\(m(2) \approx 0.69 \) \(m(2.5) \approx 0.92 \) \(m(3) \approx 1.10 \) \(m(10) \approx 2.30 \)

These computations suggest that \(m(b) \) is an increasing function of \(h \). In fact, it can be shown that \(m(b) \) is both increasing and continuous as a function of \(b \) (we shall take these facts for granted). Then, since \(m(2.5) \approx 0.92 \) and \(m(3) \approx 1.10 \), there exists a unique number \(b \) between 2.5 and 3 such that \(m(b) = 1 \). This is the number \(e \), whose value is approximately 2.718.

Using infinite series (Exercise 93 in Section 11.7), we can show that \(e \) is irrational and we can compute its value to any desired accuracy.

Because \(e \) is defined by the property \(m(e) = 1 \), Eq. (1) tells us that \((e^x)' = e^x \). In other words, \(e^x \) is equal to its own derivative.

The Number \(e \) There is a unique positive real number \(e \) with the property:

\[
\frac{d}{dx} e^x = e^x
\]

The number \(e \) is irrational, with approximate value \(e \approx 2.718 \).
The tangent lines to $y = b^x$ at $x = 0$ grow steeper as b increases.

\[
\begin{align*}
\text{GRAPHICAL INSIGHT} & \quad \text{The graph of } f(x) = b^x \text{ passes through (0, 1) for all } b > 0 \text{ because } b^0 = 1. \text{ (Figure 3). The number } m(b) \text{ is simply the slope of the tangent line at } x = 0: \\
& \quad \frac{d}{dx} b^x \bigg|_{x=0} = m(b) \cdot b^0 = m(b) \\
\text{These tangent lines become steeper as } b \text{ increases and } b = e \text{ is the unique value for which the tangent line has slope 1. In Section 7.3, we will show that } m(b) = \ln b, \text{ the natural logarithm of } b.
\end{align*}
\]

\[
\begin{align*}
\text{CONCEPTUAL INSIGHT} & \quad \text{In some ways, the number } e \text{ is “complicated”. It has been computed to an accuracy of more than 100 billion digits, but it is irrational and it cannot be defined without using limits. To 20 places,} \\
& \quad e = 2.71828182845904523536 \ldots \\
\text{However, the elegant formula } & \quad \frac{d}{dx} e^x = e^x \text{ shows that } e \text{ is “simple” from the point of view of calculus and that } f(x) = e^x \text{ is simpler than the seemingly more natural exponential functions such as } g(x) = 2^x \text{ or } h(x) = 10^x.
\end{align*}
\]

Although written reference to the number π goes back more than 4000 years, mathematicians first became aware of the special role played by e in the seventeenth century. The notation e was introduced around 1730 by Leonhard Euler, who discovered many fundamental properties of this important number.

Example 4 Find the equation of the tangent line to the graph of $f(x) = 3e^x - 5x^2$ at $x = 2$.

Solution We compute both $f'(2)$ and $f(2)$:

\[
\begin{align*}
& f'(x) = \frac{d}{dx} (3e^x - 5x^2) = 3 \frac{d}{dx} e^x - 5 \frac{d}{dx} x^2 = 3e^x - 10x \\
& f'(2) = 3e^2 - 10(2) \approx 2.17 \\
& f(2) = 3e^2 - 5(2^2) \approx 2.17 \\
\end{align*}
\]

The equation of the tangent line is $y = f(2) + f'(2)(x - 2)$. Using these approximate values, we write the equation as (Figure 4)

\[
y = 2.17 + 2.17(x - 2) \quad \text{or} \quad y = 2.17(x - 1)
\]

Example 5 Calculate $f'(0)$, where $f(x) = e^x \cos x$.

Solution Use the Product Rule:

\[
f'(x) = e^x \cdot (\cos x)' + \cos x \cdot (e^x)' = -e^x \sin x + \cos x \cdot e^x = e^x (\cos x - \sin x)
\]

Then $f'(0) = e^0(1 - 0) = 1$.

To compute the derivative of a function of the form $e^{g(x)}$, write $e^{g(x)}$ as a composite $e^{g(x)} = f(g(x))$ where $f(u) = e^u$, and apply the Chain Rule:

\[
\frac{d}{dx} (e^{g(x)}) = f'(g(x))g'(x) = e^{g(x)} g'(x) \quad [\text{since } f'(x) = e^x]
\]

A special case is $(e^{kx+b})' = ke^{kx+b}$, where k and b are constants.

\[
\frac{d}{dx} (e^{kx+b}) = ke^{kx+b}, \quad \frac{d}{dx} (e^{kx+b}) = ke^{kx+b} \quad (k, b \text{ constants})
\]

Example 6 Differentiate:

\[f(x) = e^{9x-5} \quad \text{and} \quad f(x) = e^{\cos x}\]
Solution Apply Eq. (3):
\[
\text{(a)} \quad \frac{d}{dx} e^{9x-5} = 9e^{9x-5} \quad \text{and} \quad \text{(b)} \quad \frac{d}{dx} (e^{\cos x}) = -(\sin x)e^{\cos x}
\]

\[\text{Example 7} \quad \text{Graph Sketching Involving} \ e^x \]
Sketch the graph of \(f(x) = xe^x \) on the interval \([-4, 2]\).

Solution As usual, the first step is to solve for the critical points:
\[
f'(x) = \frac{d}{dx} xe^x = xe^x + e^x = (x + 1)e^x = 0
\]
Since \(e^x > 0 \) for all \(x \), the unique critical point is \(x = -1 \) and
\[
f'(x) = \begin{cases}
< 0 & \text{for} \ x < -1 \\
> 0 & \text{for} \ x > -1
\end{cases}
\]
Thus, \(f'(x) \) changes sign from \(-\) to \(+\) at \(x = -1 \) and \(f(-1) \) is a local minimum. For the second derivative, we have
\[
f''(x) = (x + 1) \cdot (e^x)' + e^x \cdot (x + 1)' = (x + 1)e^x + e^x = (x + 2)e^x
\]
\[
f''(x) = \begin{cases}
< 0 & \text{for} \ x < -2 \\
> 0 & \text{for} \ x > -2
\end{cases}
\]
Thus, \(x = -2 \) is a point of inflection, where the graph changes from concave down to concave up at \(x = -2 \). Figure 5 shows the graph with its local minimum and point of inflection.

\[\text{Integrals Involving} \ e^x \]
The formula \((e^x)' = e^x\) says that the function \(f(x) = e^x \) is its own derivative. But this means \(f(x) = e^x \) is also its own antiderivative. In other words,
\[
\int e^x \, dx = e^x + C
\]
More generally, for any constants \(b \) and \(k \) with \(k \neq 0 \),
\[
\int e^{kx+b} \, dx = \frac{1}{k} e^{kx+b} + C
\]
We verify this formula using substitution, or by noting that \(\frac{d}{dx} \left(\frac{1}{k} e^{kx+b} \right) = e^{kx+b} \).

\[\text{Example 8} \quad \text{Evaluate:} \]
\[
\text{(a)} \quad \int e^{7x-5} \, dx \quad \text{(b)} \quad \int xe^{2x^2} \, dx \quad \text{(c)} \quad \int \frac{e^t}{1 + 2e^t + e^{2t}} \, dt
\]

Solution
\[
\text{(a)} \quad \int e^{7x-5} \, dx = \frac{1}{7} e^{7x-5} + C.
\]
\[
\text{(b)} \quad \text{Use the substitution} \ u = 2x^2, \, du = 4x \, dx:\n\int xe^{2x^2} \, dx = \frac{1}{4} \int e^u \, du = \frac{1}{4} e^u + C = \frac{1}{4} e^{2x^2} + C
\]
\[
\text{(c)} \quad \text{We have} \ 1 + 2e^t + e^{2t} = (1 + e^t)^2. \ \text{The substitution} \ u = e^t, \, du = e^t \, dt \text{ gives} \n\int \frac{e^t}{1 + 2e^t + e^{2t}} \, dt = \int \frac{du}{(1 + u)^2} = -(1 + u)^{-1} + C = -(1 + e^t)^{-1} + C
\]
CONCEPTUAL INSIGHT What precisely do we mean by b^x? We have taken for granted that b^x is meaningful for all real numbers x, but we never specified how b^x is defined when x is irrational. If n is a whole number, then b^n is simply the product $b \cdot b \cdots b$ (n times), and for any rational number $x = m/n$,

$$b^x = b^m/n = (b^{1/n})^m = (\sqrt[n]{b})^m$$

When x is irrational, this definition does not apply and b^x cannot be defined directly in terms of roots and powers of b. However, it makes sense to view $b^{m/n}$ as an approximation to b^x when m/n is a rational number close to x. For example, $3\sqrt{2}$ should be approximately equal to $3^{1.4142} \approx 4.729$ because 1.4142 is a good rational approximation to $\sqrt{2}$. Formally, then, we may define b^x as a limit over rational numbers m/n approaching x:

$$b^x = \lim_{m/n \to x} b^{m/n}$$

It can be shown that this limit exists and that the function $f(x) = b^x$ thus defined is not only continuous but also differentiable.

7.1 SUMMARY

- $f(x) = b^x$ is the *exponential function* with base b (where $b > 0$ and $b \neq 1$).
- $f(x) = b^x$ is increasing if $b > 1$ and decreasing if $b < 1$.
- The derivative of $f(x) = b^x$ is proportional to b^x:
 $$\frac{d}{dx} b^x = m(b)b^x$$
 where $m(b) = \lim_{h \to 0} \frac{b^h - 1}{h}$.
- There is a unique number $e \approx 2.718$ with the property $m(e) = 1$, so that
 $$\frac{d}{dx} e^x = e^x$$
- By the Chain Rule:
 $$\frac{d}{dx} e^{f(x)} = f'(x)e^{f(x)}, \quad \frac{d}{dx} e^{kx+b} = ke^{kx+b} \quad (k, b \text{ constants})$$
- $\int e^x \, dx = e^x + C$.
- $\int e^{kx+b} \, dx = \frac{1}{k} e^{kx+b} + C \quad (k, b \text{ constants with } k \neq 0)$.

7.1 EXERCISES

Preliminary Questions

1. Which of the following equations is incorrect?
 (a) $3^2 \cdot 3^5 = 3^7$
 (b) $(\sqrt[3]{5})^{4/3} = 5^{2/3}$
 (c) $3^2 \cdot 2^3 = 1$
 (d) $(2^{-2})^{-2} = 16$

2. What are the domain and range of $f(x) = \ln x$? When is $\ln x$ negative?

3. To which of the following does the Power Rule apply?
 (a) $f(x) = x^2$
 (b) $f(x) = 2^x$
 (c) $f(x) = x^x$
 (d) $f(x) = e^x$
 (e) $f(x) = x^x$
 (f) $f(x) = x^{-4/5}$

4. For which values of b does $f(x) = b^x$ have a negative derivative?

5. For which values of b is the graph of $y = b^x$ concave up?

6. Which point lies on the graph of $y = b^x$ for all b?

7. Which of the following statements is not true?
 (a) $(e^x)' = e^x$
 (b) $\lim_{h \to 0} \frac{e^h - 1}{h} = 1$
 (c) The tangent line to $y = e^x$ at $x = 0$ has slope e.
 (d) The tangent line to $y = e^x$ at $x = 0$ has slope 1.
Exercises

In Exercises 19–40, find the derivative.

1. In Exercises 3–10, solve for the unknown variable.

2. Compute \((16^{-1/16})^4 \).

3. In Exercises 11–14, determine the limit.

4. In Exercises 15–18, find the equation of the tangent line at the point indicated.

5. In Exercises 19–40, find the derivative.

In Exercises 41–46, calculate the derivative indicated.

In Exercises 47–52, find the critical points and determine whether they are local minima, maxima, or neither.

In Exercises 53–58, find the critical points and points of inflection. Then sketch the graph.

60. Use Newton’s Method to find the two solutions of \(e^x = 5x \) to three decimal places (Figure 7).

61. Compute the linearization of \(f(x) = e^{-2x} \sin x \) at \(a = 0 \).

62. Compute the linearization of \(f(x) = x^6 - 3x \) at \(a = 2 \).

63. Find the linearization of \(f(x) = e^x \) at \(a = 0 \) and use it to estimate \(e^{-0.1} \).

64. Use the linear approximation to estimate \(f(1.03) - f(1) \) where \(y = x^{1/3}e^{-1} \).

65. A 2005 study by the Fisheries Research Services in Aberdeen Scotland showed that the average length of the species Clupea Harengus (Atlantic herring) as a function of age \(t \) (in years) can be modeled by \(L(t) = 32(1 - e^{-0.371}) \) cm for \(0 \leq t \leq 13 \).

(a) How fast is the average length changing at age \(t = 6 \) yrs?

(b) At what age is the average length changing at a rate of 5 cm/yr?

(c) Calculate \(L = \lim_{t \to \infty} L(t) \).
66. According to a 1999 study by Starkey and Scarnecchia, the average weight (kg) at age \(t \) (years) of channel catfish in the Lower Yellowstone River can be modeled by

\[
W(t) = (3.46293 - 3.32173e^{-0.034560})^{3.4026}
\]

Find the rate at which weight is changing at age \(t = 10 \).

67. The functions in Exercises 65 and 66 are examples of the **Von Bertalanffy growth function**

\[
M(t) = (a + (b - a)e^{kt})^{1/m}
\]

introduced in the 1930’s by Austrian-born biologist Karl Ludwig Von Bertalanffy. Calculate \(M'(0) \) in terms of the constants \(a, b, k, \) and \(m \).

68. Find an approximation to \(m(4) \) using the limit definition and estimate the slope of the tangent line to \(y = 4^x \) at \(x = 0 \) and \(x = 2 \).

In Exercises 69–86, evaluate the integral.

69. \(\int (e^x + 2) \, dx \)

70. \(\int e^{4x} \, dx \)

71. \(\int_{0}^{1} e^{-3x} \, dx \)

72. \(\int_{0}^{6} e^{-x^2/2} \, dx \)

73. \(\int_{0}^{3} e^{1-6t} \, dt \)

74. \(\int_{0}^{3} e^{4t-3} \, dt \)

75. \(\int (e^{4x} + 1) \, dx \)

76. \(\int (e^x + e^{-x}) \, dx \)

77. \(\int_{0}^{1} xe^{-x^2/2} \, dx \)

78. \(\int_{0}^{2} ye^{3y} \, dy \)

79. \(\int e^{t\sqrt{e^t+1}} dt \)

80. \(\int (e^x - 4x) \, dx \)

81. \(\int \frac{e^{2x} - e^{4x}}{e^x} \, dx \)

82. \(\int e^x \cos(e^x) \, dx \)

Further Insights and Challenges

93. Prove that \(f(x) = e^x \) is not a polynomial function. **Hint:** Differentiation lowers the degree of the polynomial by 1.

94. Recall the following property of integrals: If \(f(t) \geq g(t) \) for all \(t \geq 0 \), then for all \(x \geq 0 \),

\[
\int_{0}^{x} f(t) \, dt \geq \int_{0}^{x} g(t) \, dt
\]

The inequality \(e^t \geq 1 + t \) holds for \(t \geq 0 \) because \(e > 1 \). Use (4) to prove that \(e^x \geq 1 + x \) for \(x \geq 0 \).

Then prove, by successive integration, the following inequalities (for \(x \geq 0 \)):

\[
e^x \geq 1 + x + \frac{1}{2} x^2
\]

\[
e^x \geq 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3
\]

95. Generalize Exercise 94; that is, use induction (if you are familiar with this method of proof) to prove that for all \(n \geq 0 \),

\[
e^x \geq 1 + x + \frac{1}{2} x^2 + \frac{1}{6} x^3 + \cdots + \frac{1}{n!} x^n \quad (x \geq 0)
\]

96. Use Exercise 94 to show that \(\lim_{x \to \infty} \frac{e^x}{x^2} \geq \frac{x}{6} \) and conclude that \(\lim_{x \to \infty} \frac{e^x}{x^2} = \infty \). Then use Exercise 95 to prove more generally that \(\lim_{x \to \infty} \frac{e^x}{x^n} = \infty \) for all \(n \).

97. Calculate the first three derivatives of \(f(x) = xe^x \). Then guess the formula for \(f^{(n)}(x) \) (use induction to prove it if you are familiar with this method of proof).

98. Consider the equation \(e^x = \lambda x \), where \(\lambda \) is a constant.

(a) For which \(\lambda \) does it have a unique solution? For intuition, draw a graph of \(y = e^x \) and the line \(y = \lambda x \).

(b) For which \(\lambda \) does it have at least one solution?

99. Prove in two ways that the numbers \(m(a) \) satisfy

\[
m(ab) = m(a) + m(b)
\]

(a) First method: Use the limit definition of \(m_b \) and

\[
\frac{(ab)^h - 1}{h} = b^h \left(\frac{a^h - 1}{h} \right) + \frac{b^h - 1}{h}
\]

(b) Second method: Apply the Product Rule to \(a^x b^x = (ab)^x \).
7.2 Inverse Functions

In the next section, we will define logarithmic functions as inverses of exponential functions. But first, we review inverse functions and compute their derivatives.

The inverse of \(f \), denoted \(f^{-1} \), is the function that reverses the effect of \(f \) (Figure 1). For example, the inverse of \(f(x) = x^3 \) is the cube root function \(f^{-1}(x) = x^{1/3} \). Given a table of function values for \(f \), we obtain a table for \(f^{-1} \) by interchanging the \(x \) and \(y \) columns, assuming the resulting \(f^{-1} \) is a function:

<table>
<thead>
<tr>
<th>Function</th>
<th>Inverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(f(x) = x^3)</td>
</tr>
<tr>
<td>-2</td>
<td>-8</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
</tr>
</tbody>
</table>

If we apply both \(f \) and \(f^{-1} \) to a number \(x \) in either order, we get back \(x \). For instance,

\[
\begin{align*}
\text{Apply } f \text{ and then } f^{-1}: & \quad 2 \xrightarrow{(\text{Apply } x^3)} 8 \xrightarrow{(\text{Apply } x^{1/3})} 2 \\
\text{Apply } f^{-1} \text{ and then } f: & \quad 8 \xrightarrow{(\text{Apply } x^{1/3})} 2 \xrightarrow{(\text{Apply } x^3)} 8
\end{align*}
\]

This property is used in the formal definition of the inverse function.

Definition \(\text{Inverse} \) Let \(f \) have domain \(D \) and range \(R \). If there is a function \(g \) with domain \(R \) such that

\[g(f(x)) = x \quad \text{for } x \in D \quad \text{and} \quad f(g(x)) = x \quad \text{for } x \in R \]

then \(f \) is said to be \(\text{invertible} \). The function \(g \) is called the \(\text{inverse function} \) and is denoted \(f^{-1} \).

Example 1 Show that \(f(x) = 2x - 18 \) is invertible. What are the domain and range of \(f^{-1} \)?

Solution We show that \(f \) is invertible by computing the inverse function in two steps.

Step 1. Solve the equation \(y = f(x) \) for \(x \) in terms of \(y \).

\[
\begin{align*}
y &= 2x - 18 \\
y + 18 &= 2x \\
x &= \frac{1}{2}y + 9
\end{align*}
\]

This gives us the inverse as a function of the variable \(y \): \(f^{-1}(y) = \frac{1}{2}y + 9 \).

Step 2. Interchange variables.

We usually prefer to write the inverse as a function of \(x \), so we interchange the roles of \(x \) and \(y \) (Figure 2):

\[
f^{-1}(x) = \frac{1}{2}x + 9
\]

To check our calculation, let’s verify that \(f^{-1}(f(x)) = x \) and \(f(f^{-1}(x)) = x \):

\[
\begin{align*}
f^{-1}(f(x)) &= f^{-1}(2x - 18) = \frac{1}{2}(2x - 18) + 9 = (x - 9) + 9 = x \\
f(f^{-1}(x)) &= f\left(\frac{1}{2}x + 9\right) = 2\left(\frac{1}{2}x + 9\right) - 18 = (x + 18) - 18 = x
\end{align*}
\]

Because \(f^{-1} \) is a linear function, its domain and range are \(R \).
The inverse function, if it exists, is unique. However, some functions do not have an inverse. Consider \(f(x) = x^2 \). When we interchange the columns in a table of values (which should give us a table of values for \(f^{-1} \)), the resulting table does not define a function:

<table>
<thead>
<tr>
<th>Function</th>
<th>Inverse (?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(f(x) = x^2)</td>
</tr>
<tr>
<td>(-2)</td>
<td>4</td>
</tr>
<tr>
<td>(-1)</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

(Interchange columns) \(f^{-1}(1) \) has two values: 1 and -1.

The problem is that every positive number occurs twice as an output of \(f(x) = x^2 \). For example, 1 occurs twice as an output in the first table and therefore occurs twice as an input in the second table. So the second table gives us two possible values for \(f^{-1}(1) \), namely \(f^{-1}(1) = 1 \) and \(f^{-1}(1) = -1 \). Neither value satisfies the inverse property. For instance, if we set \(f^{-1}(1) = 1 \), then \(f^{-1}(f(-1)) = f^{-1}(1) = 1 \), but an inverse would have to satisfy \(f^{-1}(f(-1)) = -1 \).

So when does a function \(f \) have an inverse? The answer is: If \(f \) is one-to-one, which means that \(f \) takes on each value at most once (Figure 3). Here is the formal definition:

DEFINITION One-to-One Function A function \(f \) is one-to-one on a domain \(D \) if, for every value \(c \), the equation \(f(x) = c \) has at most one solution for \(x \in D \). Or, equivalently, if for all \(a, b \in D \),

\[
 f(a) \neq f(b) \quad \text{unless} \quad a = b
\]

When \(f \) is one-to-one on its domain \(D \), the inverse function \(f^{-1} \) exists and its domain is equal to the range \(R \) of \(f \) (Figure 4). Indeed, for every \(c \in R \), there is precisely one element \(a \in D \) such that \(f(a) = c \) and we may define \(f^{-1}(c) = a \). With this definition, \(f(f^{-1}(c)) = f(a) = c \) and \(f^{-1}(f(a)) = f^{-1}(c) = a \). This proves the following theorem.

THEOREM 1 Existence of Inverses The inverse function \(f^{-1} \) exists if and only if \(f \) is one-to-one on its domain \(D \). Furthermore,

- Domain of \(f \) = range of \(f^{-1} \).
- Range of \(f \) = domain of \(f^{-1} \).
Example 2 Show that \(f(x) = \frac{3x + 2}{5x - 1} \) is invertible. Determine the domain and range of \(f \) and \(f^{-1} \).

Solution The domain of \(f \) is \(D = \{ x : x \neq \frac{1}{5} \} \) (Figure 5). Assume that \(x \in D \), and let’s solve \(y = f(x) \) for \(x \) in terms of \(y \):

\[
\begin{align*}
y &= \frac{3x + 2}{5x - 1} \\
y(5x - 1) &= 3x + 2 \\
5xy - y &= 3x + 2 \\
5xy &= 3x + y + 2 \quad \text{(gather terms involving } x) \\
x(5y - 3) &= y + 2 \quad \text{(factor out } x \text{ in order to solve for } x) \\
x &= \frac{y + 2}{5y - 3} \quad \text{(divide by } 5y - 3) \tag{1}
\end{align*}
\]

The last step is valid if \(5y - 3 \neq 0 \)—that is, if \(y \neq \frac{3}{5} \). But note that \(y = \frac{3}{5} \) is not in the range of \(f \). For if it were, Eq. (1) would yield the false equation \(0 = \frac{1}{5} + 2 \). Now Eq. (2) shows that for all \(y \neq \frac{3}{5} \) there is a unique value \(x \) such that \(f(x) = y \). Therefore, \(f \) is one-to-one on its domain. By Theorem 1, \(f \) is invertible. The range of \(f \) is \(R = \{ x : x \neq \frac{3}{5} \} \) and

\[
\begin{align*}
f^{-1}(x) &= \frac{x + 2}{5x - 3} \tag{2}
\end{align*}
\]

The inverse function has domain \(R \) and range \(D \).

We can tell whether \(f \) is one-to-one from its graph. The horizontal line \(y = c \) intersects the graph of \(f \) at points \((a, f(a)) \), where \(f(a) = c \) (Figure 6). There is at most one such point if \(f(x) = c \) has at most one solution. This gives us the

Horizontal Line Test A function \(f \) is one-to-one if and only if every horizontal line intersects the graph of \(f \) in at most one point.

In Figure 7, we see that \(f(x) = x^3 \) passes the Horizontal Line Test and therefore is one-to-one, whereas \(f(x) = x^2 \) fails the test and is not one-to-one.

Example 3 Increasing Functions Are One-to-One Show that increasing functions are one-to-one. Then show that \(f(x) = x^5 + 4x + 3 \) is one-to-one.

Solution An increasing function satisfies \(f(a) < f(b) \) if \(a < b \). Therefore, \(f \) cannot take on any value more than once, and thus \(f \) is one-to-one. Note similarly that decreasing functions are one-to-one.
Now observe that
- If \(n \) is odd and \(c > 0 \), then \(cx^n \) is increasing.
- A sum of increasing functions is increasing.

Thus, \(x^5, 4x, \) and hence the sum \(x^5 + 4x \) are increasing. It follows that the function \(f(x) = x^5 + 4x + 3 \) is increasing and therefore one-to-one (Figure 8). However, determining an explicit formula for its inverse would be difficult.

We can make a function one-to-one by restricting its domain suitably.

Example 4 Restricting the Domain Find a domain on which \(f(x) = x^2 \) is one-to-one and determine its inverse on this domain.

Solution The function \(f(x) = x^2 \) is one-to-one on the domain \(D = \{ x : x \geq 0 \} \), for if \(a^2 = b^2 \) where \(a \) and \(b \) are both nonnegative, then \(a = b \) (Figure 9). The inverse of \(f \) on \(D \) is the positive square root \(f^{-1}(x) = \sqrt{x} \). Alternatively, we may restrict \(f \) to the domain \(\{ x : x \leq 0 \} \), on which the inverse function is \(f^{-1}(x) = -\sqrt{x} \).

Next we describe the graph of the inverse function. The *reflection* of a point \((a, b)\) through the line \(y = x \) is defined to be the point \((b, a)\) (Figure 10). Note that if the \(x \)- and \(y \)-axes are drawn to the same scale, then \((a, b)\) and \((b, a)\) are equidistant from the line \(y = x \) and the segment joining them is perpendicular to \(y = x \).

The graph of \(f^{-1} \) is the reflection of the graph of \(f \) through \(y = x \) (Figure 11). To check this, note that \((a, b)\) lies on the graph of \(f \) if \(f(a) = b \). But \(f(a) = b \) if and only if \(f^{-1}(b) = a \), and in this case, \((b, a)\) lies on the graph of \(f^{-1} \).

Example 5 Sketching the Graph of the Inverse Sketch the graph of the inverse of \(f(x) = \sqrt{4 - x} \).

Solution Let \(g(x) = f^{-1}(x) \). Observe that \(f \) has domain \(\{ x : x \leq 4 \} \) and range \(\{ x : x \geq 0 \} \). We do not need a formula for \(g(x) \) to draw its graph. We simply reflect the graph of \(f \) through the line \(y = x \) as in Figure 12. If desired, however, we can easily solve \(y = \sqrt{4 - x} \) to obtain \(x = 4 - y^2 \) and thus \(g(x) = 4 - x^2 \) with domain \(\{ x : x \geq 0 \} \).

Derivatives of Inverse Functions

Next, we derive a formula for the derivative of the inverse \(f^{-1} \). We will use this formula to differentiate logarithmic functions in Section 7.3.

Theorem 2 Derivative of the Inverse Assume that \(f \) is differentiable and one-to-one with inverse \(g(x) = f^{-1}(x) \). If \(b \) belongs to the domain of \(g \) and \(f'(g(b)) \neq 0 \), then \(g'(b) \) exists and

\[
g'(b) = \frac{1}{f'(g(b))}
\]
Proof The first claim, that \(g \) is differentiable if \(f'(g(x)) \neq 0 \), is verified in Appendix D (see Theorem 6). To prove Eq. (3), note that \(f(g(x)) = x \) by definition of the inverse. Differentiate both sides of this equation, and apply the Chain Rule:

\[
\frac{d}{dx} f(g(x)) = \frac{d}{dx} x \quad \Rightarrow \quad \frac{d}{dx} f(g(x)) g'(x) = 1 \quad \Rightarrow \quad g'(x) = \frac{1}{f'(g(x))}
\]

Set \(x = b \) to obtain Eq. (3).

GRAPHICAL INSIGHT The formula for the derivative of the inverse function has a clear graphical interpretation. Consider a line \(L \) of slope \(m \) and let \(L' \) be its reflection through \(y = x \) as in Figure 13(A). Then the slope of \(L' \) is \(1/m \). Indeed, if \((a, b)\) and \((c, d)\) are any two points on \(L \), then \((b, a)\) and \((d, c)\) lie on \(L' \) and

\[
\text{Slope of } L = \frac{d - b}{c - a} \quad \text{Slope of } L' = \frac{c - a}{d - b}
\]

Reciprocal slopes

Now recall that the graph of the inverse \(g(x) \) is obtained by reflecting the graph of \(f(x) \) through the line \(y = x \). As we see in Figure 13(B), the tangent line to \(y = g(x) \) at \(x = b \) is the reflection of the tangent line to \(y = f(x) \) at \(x = a \) [where \(b = f(a) \) and \(a = g(b) \)]. These tangent lines have reciprocal slopes, and thus \(g'(b) = 1/f'(a) = 1/f'(g(b)) \), as claimed in Theorem 2.

![Figure 13](image-url) Graphical illustration of the formula \(g'(b) = 1/f'(g(b)) \).

EXAMPLE 6 Using Equation (3) Calculate \(g'(x) \), where \(g \) is the inverse of the function \(f(x) = x^4 + 10 \) on the domain \(\{ x : x \geq 0 \} \).

Solution Solve \(y = x^4 + 10 \) for \(x \) to obtain \(x = (y - 10)^{1/4} \). Thus \(g(x) = (x - 10)^{1/4} \). Since \(f'(x) = 4x^3 \), we have \(f'(g(x)) = 4g(x)^3 \), and by Eq. (3),

\[
g'(x) = \frac{1}{f'(g(x))} = \frac{1}{4g(x)^3} = \frac{1}{4(x - 10)^{3/4}} = \frac{1}{4} (x - 10)^{-3/4}
\]

We obtain this same result by differentiating \(g(x) = (x - 10)^{1/4} \) directly.

EXAMPLE 7 Calculating \(g'(x) \) Without Solving for \(g(x) \) Calculate \(g'(1) \), where \(g \) is the inverse of \(f(x) = x + e^x \).

Solution In this case, we cannot solve for \(g(x) \) explicitly, but a formula for \(g(x) \) is not needed (Figure 14). All we need is the particular value \(g(1) \), which we can find by solving \(f(x) = 1 \). By inspection, \(x + e^x = 1 \) has solution \(x = 0 \). Therefore, \(f(0) = 1 \) and, by definition of the inverse, \(g(1) = 0 \). Since \(f'(x) = 1 + e^x \),

\[
g'(1) = \frac{1}{f'(g(1))} = \frac{1}{f'(0)} = \frac{1}{1 + e^0} = \frac{1}{2}
\]

![Figure 14](image-url) Graph of \(f(x) = x + e^x \) and its inverse \(g \).
7.2 SUMMARY

- A function f is one-to-one on a domain D if for every value c, the equation $f(x) = c$ has at most one solution for $x \in D$, or, equivalently, if for all $a, b \in D$, $f(a) \neq f(b)$ unless $a = b$.
- Let f have domain D and range R. The inverse f^{-1} (if it exists) is the unique function with domain R and range D satisfying $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.
- The inverse of f exists if and only if f is one-to-one on its domain.
- To find the inverse function, solve $y = f(x)$ for x in terms of y to obtain $x = g(y)$. The inverse is the function g.
- Horizontal Line Test: f is one-to-one if and only if every horizontal line intersects the graph of f in at most one point.
- The graph of f^{-1} is obtained by reflecting the graph of f through the line $y = x$.
- Derivative of the inverse: If f is differentiable and one-to-one with inverse g, then for x such that $f'(g(x)) \neq 0$,

$$g(x) = \frac{1}{f'(g(x))}$$

7.2 EXERCISES

Preliminary Questions

1. Which of the following satisfy $f^{-1}(x) = f(x)$?
 - (a) $f(x) = x$
 - (b) $f(x) = 1 - x$
 - (c) $f(x) = 1$
 - (d) $f(x) = \sqrt{x}$
 - (e) $f(x) = |x|$
 - (f) $f(x) = x^{-1}$

2. The graph of a function looks like the track of a roller coaster. Is the function one-to-one?
3. The function f maps teenagers in the United States to their last names. Explain why the inverse function f^{-1} does not exist.
4. The following fragment of a train schedule for the New Jersey Transit System defines a function f from towns to times. Is f one-to-one? What is $f^{-1}(6:27)$?

<table>
<thead>
<tr>
<th>Town</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trenton</td>
<td>6:27</td>
</tr>
<tr>
<td>Hamilton Township</td>
<td>6:27</td>
</tr>
<tr>
<td>Princeton Junction</td>
<td>6:34</td>
</tr>
<tr>
<td>New Brunswick</td>
<td>6:38</td>
</tr>
</tbody>
</table>

Exercises

1. Show that $f(x) = 7x - 4$ is invertible and find its inverse.
2. Is $f(x) = x^2 + 2$ one-to-one? If not, describe a domain on which it is one-to-one.
3. What is the largest interval containing zero on which $f(x) = \sin x$ is one-to-one?
4. Show that $f(x) = \frac{x - 2}{x + 3}$ is invertible and find its inverse.
 - (a) What is the domain of f? The range of f^{-1}?
 - (b) What is the domain of f^{-1}? The range of f?
5. Verify that $f(x) = x^3 + 3$ and $g(x) = (x - 3)^{1/3}$ are inverses by showing that $f(g(x)) = x$ and $g(f(x)) = x$.
6. Repeat Exercise 5 for $f(t) = \frac{t + 1}{t - 1}$ and $g(t) = \frac{t + 1}{t - 1}$.

7. The escape velocity from a planet of radius R is $v(R) = \sqrt{\frac{2GM}{R}}$, where G is the universal gravitational constant and M is the mass. Find the inverse of v expressing R in terms of v.

In Exercises 8–15, find a domain on which f is one-to-one and a formula for the inverse of f restricted to this domain. Sketch the graphs of f and f^{-1}.

8. $f(x) = 3x - 2$
9. $f(x) = 4 - x$
10. $f(x) = \frac{1}{x + 1}$
11. $f(x) = \frac{1}{7x - 3}$
12. $f(x) = \frac{1}{\sqrt{x^2 + 1}}$
13. $f(x) = \frac{1}{\sqrt{x^2}}$
14. $f(x) = e^x$
15. $f(x) = \sqrt{x^3 + 9}$
16. For each function shown in Figure 15, sketch the graph of the inverse (restrict the function’s domain if necessary).

![Graphs](image)

FIGURE 15

17. Which of the graphs in Figure 16 is the graph of a function satisfying \(f^{-1} = f \)?

![Graphs](image)

FIGURE 16

18. Let \(n \) be a nonzero integer. Find a domain on which \(f(x) = (1 - x^n)^{1/n} \) coincides with its inverse. Hint: The answer depends on whether \(n \) is even or odd.

19. Let \(f(x) = x^7 + x + 1 \).
 (a) Show that \(f^{-1} \) exists (but do not attempt to find it). Hint: Show that \(f \) is increasing.
 (b) What is the domain of \(f^{-1} \)?
 (c) Find \(f^{-1}(3) \).

20. Show that \(f(x) = (x^2 + 1)^{-1} \) is one-to-one on \((-\infty, 0]\), and find a formula for \(f^{-1} \) for this domain of \(f \).

21. Let \(f(x) = x^2 - 2x \). Determine a domain on which \(f^{-1} \) exists, and find a formula for \(f^{-1} \) for this domain of \(f \).

22. Show that the inverse of \(f(x) = e^{-x} \) exists (without finding it explicitly). What is the domain of \(f^{-1} \)?

23. Find the inverse \(g \) of \(f(x) = \sqrt{x^2 + 9} \) with domain \(x \geq 0 \) and calculate \(g'(x) \) in two ways: using Theorem 2 and by direct calculation.

24. Let \(g \) be the inverse of \(f(x) = x^3 + 1 \). Find a formula for \(g(x) \) and calculate \(g'(x) \) in two ways: using Theorem 2 and then by direct calculation.

In Exercises 25–30, use Theorem 2 to calculate \(g'(x) \), where \(g \) is the inverse of \(f \).

25. \(f(x) = 7x + 6 \)

26. \(f(x) = \sqrt{3 - x} \)

27. \(f(x) = x^{-5} \)

28. \(f(x) = 4x^3 - 1 \)

29. \(f(x) = \frac{x}{x + 1} \)

30. \(f(x) = 2 + x^{-1} \)

31. Let \(g \) be the inverse of \(f(x) = x^3 + 2x + 4 \). Calculate \(g(7) \) [without finding a formula for \(g(x) \)], and then calculate \(g'(7) \).

32. Find \(g'\left(-\frac{1}{2} \right) \), where \(g \) is the inverse of \(f(x) = \frac{x^3}{x^2 + 1} \).

In Exercises 33–38, calculate \(g(b) \) and \(g'(b) \), where \(g \) is the inverse of \(f \) (in the given domain, if indicated).

33. \(f(x) = x + \cos x, \quad b = 1 \)

34. \(f(x) = 4x^3 - 2x, \quad b = -2 \)

35. \(f(x) = \sqrt{x^2 + 6x} \) for \(x \geq 0, \quad b = 4 \)

36. \(f(x) = \sqrt{x^2 + 6x} \) for \(x \leq -6, \quad b = 4 \)

37. \(f(x) = \frac{1}{x + 1}, \quad b = \frac{1}{4} \)

38. \(f(x) = e^x, \quad b = e \)

39. Let \(f(x) = x^a \) and \(g(x) = x^{1/n} \). Compute \(g'(x) \) using Theorem 2 and check your answer using the Power Rule.

40. Show that \(f(x) = \frac{1}{1+x} \) and \(g(x) = \frac{1-x}{x} \) are inverses. Then compute \(g'(x) \) directly and verify that \(g'(x) = 1/f'(g(x)) \).

41. Use graphical reasoning to determine if the following statements are true or false. If false, modify the statement to make it correct.
 (a) If \(f \) is increasing, then \(f^{-1} \) is increasing.
 (b) If \(f \) is decreasing, then \(f^{-1} \) is decreasing.
 (c) If \(f \) is concave up, then \(f^{-1} \) is concave up.
 (d) If \(f \) is concave down, then \(f^{-1} \) is concave down.
 (e) Linear functions \(f(x) = ax + b \) (\(a \neq 0 \)) are always one-to-one.
 (f) Quadratic polynomials \(f(x) = ax^2 + bx + c \) (\(a \neq 0 \)) are always one-to-one.
 (g) \(f(x) = \sin x \) is not one-to-one.

42. Show that if \(f \) is odd and \(f^{-1} \) exists, then \(f^{-1} \) is odd. Show, on the other hand, that an even function does not have an inverse.

43. Let \(g \) be the inverse of a function \(f \) satisfying \(f'(x) = f(x) \). Show that \(g'(x) = x^{-1} \). We will apply this in the next section to show that the inverse of \(f(x) = e^x \) (the natural logarithm) is an antiderivative of \(x^{-1} \).
7.3 Logarithms and Their Derivatives

Logarithmic functions are inverses of exponential functions. More precisely, if \(b > 0 \) and \(b \neq 1 \), then the logarithm to the base \(b \), denoted \(\log_b x \), is the inverse of \(f(x) = b^x \). By definition, \(y = \log_b x \) if \(b^y = x \), so we have

\[
b^{\log_b x} = x \quad \text{and} \quad \log_b(b^x) = x
\]

In other words, \(\log_b x \) is the number to which \(b \) must be raised in order to get \(x \). For example,

\[
\log_2(8) = 3 \quad \text{because} \quad 2^3 = 8
\]
\[
\log_{10}(1) = 0 \quad \text{because} \quad 10^0 = 1
\]
\[
\log_3\left(\frac{1}{9}\right) = -2 \quad \text{because} \quad 3^{-2} = \frac{1}{3^2} = \frac{1}{9}
\]

The logarithm to the base \(e \), denoted \(\ln x \), plays a special role and is called the natural logarithm.

\[
\ln x = \log_e x
\]

We use a calculator to evaluate logarithms numerically. For example,

\[
\ln 17 \approx 2.83321 \quad \text{because} \quad e^{2.83321} \approx 17
\]

As in Figure 1, \(f(x) = \ln x \) and \(g(x) = e^x \) are inverse functions, so we have

\[
e^{\ln x} = x \quad \text{and} \quad \ln(e^x) = x
\]

Recall that the domain of \(f(x) = b^x \) is \(\mathbb{R} \) and its range is the set of positive real numbers \(\{x : x > 0\} \). Since the domain and range are reversed in the inverse function,

\begin{itemize}
 \item The domain of \(f(x) = \log_b x \) is \(\{x : x > 0\} \).
 \item The range of \(f(x) = \log_b x \) is the set of all real numbers \(\mathbb{R} \).
\end{itemize}

If \(b > 1 \), then \(\log_b x \) is positive for \(x > 1 \) and negative for \(0 < x < 1 \). Figure 1 illustrates these facts for the base \(b = e \). Keep in mind that the logarithm of a negative number does not exist. For example, \(\log_{10}(-2) \) does not exist because \(10^y = -2 \) has no solution.

For each law of exponents, there is a corresponding law for logarithms. The rule \(b^{x+y} = b^x b^y \) corresponds to the rule

\[
\log_b(xy) = \log_b x + \log_b y
\]

In words: The log of a product is the sum of the logs. To verify this rule, observe that

\[
b^{\log_b(xy)} = xy = b^{\log_b x} \cdot b^{\log_b y}
\]

\[
= b^{\log_b x + \log_b y}
\]

The exponents \(\log_b(xy) \) and \(\log_b x + \log_b y \) are equal as claimed because \(f(x) = b^x \) is one-to-one. The logarithm laws are collected in the following table.

In this text, the natural logarithm is denoted \(\ln x \). Other common notations are \(\log x \) and \(\text{Log} x \).
SECTION 7.3 Logarithms and Their Derivatives

Laws of Logarithms

<table>
<thead>
<tr>
<th>Law</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log of 1</td>
<td>(\log_b(1) = 0)</td>
</tr>
<tr>
<td>Log of (b)</td>
<td>(\log_b(b) = 1)</td>
</tr>
<tr>
<td>Products</td>
<td>(\log_b(xy) = \log_b x + \log_b y) (\log_3(2 \cdot 3) = \log_3 2 + \log_3 3)</td>
</tr>
<tr>
<td>Quotients</td>
<td>(\log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y) (\log_2 \left(\frac{3}{7} \right) = \log_2 3 - \log_2 7)</td>
</tr>
<tr>
<td>Reciprocals</td>
<td>(\log_b \left(\frac{1}{x} \right) = -\log_b x) (\log_2 \left(\frac{1}{7} \right) = -\log_2 7)</td>
</tr>
<tr>
<td>Powers (any (n))</td>
<td>(\log_b(x^n) = n \log_b x) (\log_{10}(8^2) = 2 \cdot \log_{10} 8)</td>
</tr>
</tbody>
</table>

We note also that all logarithmic functions are proportional. More precisely, the following change-of-base formula holds (see Exercise 119):

\[
\log_b x = \frac{\log_a x}{\log_a b}, \quad \log_b x = \frac{\ln x}{\ln b}
\]

EXAMPLE 1 Using the Logarithm Laws Evaluate:

(a) \(\log_6 9 + \log_6 4 \) \hspace{1cm} (b) \(\ln \left(\frac{1}{\sqrt{e}} \right) \) \hspace{1cm} (c) \(10 \log_b (b^3) - 4 \log_b (\sqrt{b}) \)

Solution

(a) \(\log_6 9 + \log_6 4 = \log_6 (9 \cdot 4) = \log_6 (36) = \log_6 (6^2) = 2 \)

(b) \(\ln \left(\frac{1}{\sqrt{e}} \right) = \ln (e^{-1/2}) = -\frac{1}{2} \ln(e) = -\frac{1}{2} \)

(c) \(10 \log_b (b^3) - 4 \log_b (\sqrt{b}) = 10(3) - 4 \log_b (b^{1/2}) = 30 - 4 \left(\frac{1}{2} \right) = 28 \)

EXAMPLE 2 Solving an Exponential Equation The bacteria population in a bottle at time \(t \) (in hours) has size \(P(t) = 1000e^{0.35t} \). After how many hours will there be 5000 bacteria?

Solution We must solve \(P(t) = 1000e^{0.35t} = 5000 \) for \(t \) (Figure 2):

\[
e^{0.35t} = \frac{5000}{1000} = 5
\]

\[
\ln(e^{0.35t}) = \ln 5 \quad \text{(take logarithm of both sides)}
\]

\[
0.35t = \ln 5 \approx 1.609 \quad \text{[because } \ln(e^a) = a]\)

\[
t \approx \frac{1.609}{0.35} \approx 4.6 \text{ hours}
\]

Calculus of Logarithms

In Section 7.1, we proved that for any base \(b > 0 \),

\[
\frac{d}{dx} b^x = m(b) b^x, \quad \text{ where } \quad m(b) = \lim_{h \to 0} \frac{b^h - 1}{h}
\]

but we were not able to identify the factor \(m(b) \) [other than to say that \(e \) is the unique number for which \(m(e) = 1 \)]. Now we can use implicit differentiation to prove that \(m(b) = \ln b \).

If \(y = b^x \), then our goal is to find \(\frac{dy}{dx} \). Taking the natural log of both sides yields

\[
\ln y = \ln b^x = x \ln b
\]
Then we implicitly differentiate each side of the equation with respect to x, treating x as itself and treating y as a function of x. This yields

$$\frac{1}{y} \frac{dy}{dx} = \ln b$$

Thus, since $y = b^x$, we have $\frac{dy}{dx} = y \ln b = b^x \ln b$. Therefore, we have the following theorem.

THEOREM 1 Derivative of $f(x) = b^x$

$$\frac{d}{dx} b^x = (\ln b)b^x$$ for $b > 0$

For example, $(10^x)' = (\ln 10)10^x$.

EXAMPLE 3 Differentiate: (a) $f(x) = 4^{3x}$ and (b) $f(x) = 5^{x^2}$.

Solution

(a) The function $f(x) = 4^{3x}$ is a composite of 4^u and $u = 3x$:

$$\frac{d}{dx} 4^{3x} = \left(\frac{d}{du} 4^u \right) \frac{du}{dx} = (\ln 4)4^u(3x)' = (\ln 4)4^{3x}(3) = (3 \ln 4)4^{3x}$$

(b) The function $f(x) = 5^{x^2}$ is a composite of 5^u and $u = x^2$:

$$\frac{d}{dx} 5^{x^2} = \left(\frac{d}{du} 5^u \right) \frac{du}{dx} = (\ln 5)5^u(x^2)' = (\ln 5)5^{x^2}(2x) = (2 \ln 5)5^{x^2}$$

The Derivative of the Natural Logarithm

Next, we’ll find the derivative of $f(x) = \ln x$. Letting $y = \ln x$ and assuming $x > 0$ so it is in the domain of $\ln x$, our goal is to find dy/dx. But then we have

$$e^y = e^{\ln x}$$

$$e^y = x$$

Implicitly differentiating, we obtain

$$e^y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{e^y} = \frac{1}{x}$$

THEOREM 2 Derivative of the Natural Logarithm

$$\frac{d}{dx} \ln x = \frac{1}{x}$$ for $x > 0$

EXAMPLE 4 Describe the graph of $f(x) = \ln x$. Is f increasing or decreasing?

Solution The derivative $f'(x) = x^{-1}$ is positive on the domain $\{x : x > 0\}$, so $f(x) = \ln x$ is increasing. However, $f'(x) = x^{-1}$ is decreasing, so the graph of f is concave down and grows flatter as $x \to \infty$ (Figure 3).
For an exponential and using the Chain Rule.

Taking the derivative of a product and quotient, into a relatively easy procedure.

Logarithmic differentiation makes what would be a painful and tedious derivative to take, involving multiple applications of the product and quotient rules, into a relatively easy procedure.

EXAMPLE 5 Differentiate: (a) \(y = x \ln x \) and (b) \(y = (\ln x)^2 \).

Solution

(a) Use the Product Rule:

\[
\frac{d}{dx} (x \ln x) = x \cdot (\ln x)' + (x)' \cdot \ln x = x \cdot \frac{1}{x} + \ln x = 1 + \ln x
\]

(b) Use the General Power Rule:

\[
\frac{d}{dx} (\ln x)^2 = 2 \ln x \cdot \frac{d}{dx} \ln x = \frac{2 \ln x}{x}
\]

We obtain a useful formula for the derivative of \(\ln(f(x)) \) by applying the Chain Rule with \(u = f(x) \):

\[
\frac{d}{dx} \ln(f(x)) = \frac{f'(x)}{f(x)}
\]

EXAMPLE 6 Differentiate: (a) \(y = \ln(x^3 + 1) \) and (b) \(y = \ln(\sqrt{\sin x}) \).

Solution

(a) \(\frac{d}{dx} \ln(x^3 + 1) = \frac{(x^3 + 1)'}{x^3 + 1} = \frac{3x^2}{x^3 + 1} \)

(b) The algebra is simpler if we write \(\sqrt{\sin x} = (\sin x)^{1/2} = \frac{1}{2} \ln(\sin x) \):

\[
\frac{d}{dx} \ln(\sqrt{\sin x}) = \frac{1}{2} \frac{d}{dx} \ln(\sin x) = \frac{1}{2} \frac{(\sin x)'}{\sin x} = \frac{1}{2} \frac{\cos x}{\sin x} = \frac{1}{2} \cot x
\]

EXAMPLE 7 Logarithm to Another Base

Calculate \(\frac{d}{dx} \log_{10} x \).

Solution

By the change-of-base formula (see margin), \(\log_{10} x = \frac{\ln x}{\ln 10} \). Therefore,

\[
\frac{d}{dx} \log_{10} x = \frac{d}{dx} \left(\frac{\ln x}{\ln 10} \right) = \frac{1}{\ln 10} \frac{d}{dx} \ln x = \frac{1}{(\ln 10)x}
\]

Logarithmic Differentiation

The next example illustrates logarithmic differentiation. This technique saves work when the function is a product or quotient with several factors.

EXAMPLE 8 Find the derivative of

\[
f(x) = \frac{(x + 1)^2(2x^2 - 3)}{\sqrt{x^2 + 1}}
\]

Solution

In logarithmic differentiation, we differentiate \(\ln(f(x)) \) rather than \(f(x) \) itself. First, we take the natural log of both sides of the equation:

\[
\ln f(x) = \ln \left(\frac{(x + 1)^2(2x^2 - 3)}{\sqrt{x^2 + 1}} \right)
\]
Then we expand the right-hand side using the logarithm rules:

\[\ln(f(x)) = \ln((x + 1)^2) + \ln(2x^2 - 3) - \ln(\sqrt{x^2 + 1}) \]

\[= 2 \ln(x + 1) + \ln(2x^2 - 3) - \frac{1}{2} \ln(x^2 + 1) \]

Next use Eq. (4):

\[\frac{f'(x)}{f(x)} = \frac{d}{dx} \ln(f(x)) = 2 \frac{d}{dx} \ln(x + 1) + \frac{d}{dx} \ln(2x^2 - 3) - \frac{1}{2} \frac{d}{dx} \ln(x^2 + 1) \]

\[\frac{f'(x)}{f(x)} = \frac{2}{x + 1} + \frac{4x}{2x^2 - 3} - \frac{1}{2} \frac{2x}{2x^2 + 1} \]

Finally, multiply through by \(f(x) \):

\[f'(x) = \left(\frac{2}{x + 1} + \frac{4x}{2x^2 - 3} - \frac{x}{x^2 + 1} \right) \left(\frac{(x + 1)^2(2x^2 - 3)}{\sqrt{x^2 + 1}} \right) \]

Logarithmic differentiation also allows us to take the derivative of functions of the form \(y = f(x)^{g(x)} \), where both the base and the exponent depend on \(x \).

EXAMPLE 9 Differentiate (for \(x > 0 \)):
(a) \(f(x) = x^x \) and (b) \(g(x) = x^{\sin x} \).

Solution The two problems are similar (Figure 4). We illustrate two different methods.

(a) Method 1: Use the identity \(x = e^{\ln x} \) to rewrite \(f(x) \) as an exponential:

\[f(x) = x^x = (e^{\ln x})^x = e^{x \ln x} \]

\[f'(x) = (x \ln x) e^{x \ln x} = (1 + \ln x) e^{x \ln x} = (1 + \ln x)x^x \]

(b) Method 2: Apply Eq. (4) to \(\ln(g(x)) \). Since \(\ln(g(x)) = \ln(x^{\sin x}) = (\sin x) \ln x \),

\[\frac{g'(x)}{g(x)} = \frac{d}{dx} \ln(g(x)) = \frac{d}{dx}((\sin x) \ln x) = \frac{\sin x}{x} + (\cos x) \ln x \]

\[g'(x) = \left(\frac{\sin x}{x} + (\cos x) \ln x \right) g(x) = \left(\frac{\sin x}{x} + (\cos x) \ln x \right) x^{\sin x} \]

The Logarithm as an Integral

In Chapter 5, we noted that the Power Rule for Integrals is valid for all exponents \(n \neq -1 \):

\[\int x^n \, dx = \frac{x^{n+1}}{n + 1} + C \quad (n \neq -1) \]

This formula is not valid (or meaningful) for \(n = -1 \), so the question remained: *What is the antiderivative of \(y = x^{-1} \)?* We can now give the answer: the natural logarithm. Indeed, the formula \((\ln x)' = x^{-1} \) tells us that \(\ln x \) is an antiderivative of \(y = x^{-1} \) for \(x > 0 \):

\[\int \frac{dx}{x} = \ln x + C \]

We would like to have an antiderivative of \(y = \frac{1}{x} \) on its full domain, namely on the domain \(\{ x : x \neq 0 \} \). To achieve this end, we extend \(F \) to an even function by setting \(F(x) = \ln |x| \) (Figure 5). Then \(F(x) = F(-x) \), and by the Chain Rule, \(F'(x) = -F'(-x) \). For \(x < 0 \), we obtain

\[\frac{d}{dx} \ln |x| = F'(x) = -F'(-x) = -\frac{1}{-x} = \frac{1}{x} \]

This proves that \(\frac{d}{dx} \ln |x| = \frac{1}{x} \) for all \(x \neq 0 \).
THEOREM 3 Antiderivative of \(y = \frac{1}{x} \) The function \(F(x) = \ln|x| \) is an antiderivative of \(y = \frac{1}{x} \) in the domain \(\{x : x \neq 0\} \), that is,
\[
\int \frac{dx}{x} = \ln|x| + C
\]

By the Fundamental Theorem of Calculus, the following formula is valid if both \(a \) and \(b \) are either both positive or both negative (Figure 6):
\[
\int_a^b \frac{dx}{x} = \ln|b| - \ln|a| = \ln \frac{b}{a}
\]

Setting \(a = 1 \) and \(b = x \), we obtain a formula for the natural logarithm as an integral:
\[
\ln x = \int_1^x \frac{dt}{t}
\]

EXAMPLE 10 The Logarithm as an Antiderivative Evaluate:
(a) \(\int_2^8 \frac{dx}{x} \) and (b) \(\int_{-4}^{-2} \frac{dx}{x} \)

Solution By Eq. (6),
\[
\int_2^8 \frac{dx}{x} = \ln \frac{8}{2} = \ln 4 \approx 1.39 \quad \text{and} \quad \int_{-4}^{-2} \frac{dx}{x} = \ln \left| \frac{-2}{-4} \right| = \ln \frac{1}{2} \approx -0.69
\]
The area represented by these integrals is shown in Figures 6(B) and (C).

EXAMPLE 11 Evaluate:
(a) \(\int_1^3 \frac{x}{x^2 + 1} \, dx \) (b) \(\int \tan x \, dx \)

Solution (a) Use the substitution \(u = x^2 + 1 \), \(\frac{1}{2}du = x \, dx \). In the \(u \)-variable, the limits of the integral become \(u(1) = 2 \) and \(u(3) = 10 \). The integral is equal to the area shown in Figure 7:
\[
\int_1^3 \frac{x}{x^2 + 1} \, dx = \frac{1}{2} \left[\ln |u| \right]_2^{10} = \frac{1}{2} \ln 10 - \frac{1}{2} \ln 2 \approx 0.805
\]
In Exercises 1–16, calculate without using a calculator.

7.3 **SUMMARY**

- For $b > 0$ with $b \neq 1$, the **logarithm function** $\log_b x$ is the inverse of b^x:
 \[
 x = b^y \quad \Leftrightarrow \quad y = \log_b x
 \]
- If $b > 1$, then $\log_b x$ is positive for $x > 1$ and negative for $0 < x < 1$, and
 \[
 \lim_{x \to 0^+} \ln x = -\infty, \quad \lim_{x \to \infty} \ln x = \infty
 \]
- The **natural logarithm** is the logarithm to the base e and is denoted $\ln x$.
- Important logarithm laws:
 1. $\log_b(xy) = \log_b x + \log_b y$
 2. $\log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y$
 3. $\log_b(x^n) = n \log_b x$
 4. $\log_b 1 = 0$ and $\log_b b = 1$
- Derivative formulas:
 \[
 (e^x)' = e^x, \quad \frac{d}{dx} \ln x = \frac{1}{x}, \quad (b^x)' = (\ln b) b^x, \quad \frac{d}{dx} \log_b x = \frac{1}{(\ln b) x}
 \]
- Integral formulas:
 \[
 \ln x = \int_1^x \frac{dt}{t} \quad (x > 0), \quad \int \frac{dx}{x} = \ln |x| + C
 \]

7.3 **EXERCISES**

Preliminary Questions

1. Compute $\log_{10}(b^4)$.
2. When is $\ln x$ negative?
3. What is $\ln(-3)$? Explain.
4. Explain the phrase “The logarithm converts multiplication into addition.”

Exercises

In Exercises 1–16, calculate without using a calculator.

1. $\log_3 27$
2. $\log_5 \frac{1}{25}$
3. $\ln 1$
4. $\log_5(5^3)$
5. $\log_2(2^{5/3})$
6. $\log_2(8^{5/3})$
7. $\log_{64} 4$
8. $\log_7(49^2)$
9. $\log_8 2 + \log_4 2$
10. $\log_{25} 30 + \log_{25} \frac{5}{6}$
11. $\log_4 48 - \log_4 12$
12. $\ln(\sqrt{e} \cdot e^{7/5})$
13. $\ln(e^3) + \ln(e^d)$
14. $\log_2 \frac{4}{3} + \log_2 24$
15. $\log_7(29)$
16. $8^3 \log_8(2)$

17. Write as the natural log of a single expression:
 \((a) \ 2 \ln 5 + 3 \ln 4 \)
 \((b) \ 5 \ln(x^{1/2}) + \ln(9x) \)

18. Solve for x: $\ln(x^2 + 1) - 3 \ln x = \ln(2)$.

In Exercises 19–24, solve for the unknown.

19. $7e^{5t} = 100$
20. $6e^{-4t} = 2$
21. $2x^2 - 2x = 8$
22. $e^{2x+1} = 9e^{1-t}$
23. $\ln(x^4) - \ln(x^2) = 2$
24. $\log_3 y + \log_3(y^2) = 14$

25. Show, by producing a counterexample, that $\ln(ab)$ is not equal to $(\ln a)(\ln b)$.
26. What is b if $(\log_b x)' = \frac{1}{3x}$
27. The population of a city (in millions) at time \(t \) (years) is
\[P(t) = 2.4e^{0.06t}, \]
where \(t = 0 \) is the year 2000. When will the population double from its size at \(t = 0 \)?

28. The Gutenberg–Richter Law states that the number \(N \) of earthquakes per year worldwide of Richter magnitude at least \(M \) satisfies an approximate relation \(\log_{10} N = a - M \) for some constant \(a \). Find \(a \), assuming that there is one earthquake of magnitude \(M \geq 8 \) per year. How many earthquakes of magnitude \(M \geq 5 \) occur per year?

In Exercises 29–48, find the derivative.

29. \(y = x \ln x \)
30. \(y = t \ln t - t \)
31. \(y = (\ln x)^2 \)
32. \(y = \ln(x^5) \)
33. \(y = \ln(9x^2 - 8) \)
34. \(y = \ln(t^5) \)
35. \(y = \ln(\sin t + 1) \)
36. \(y = x^2 \ln x \)
37. \(y = \frac{\ln x}{x} \)
38. \(y = e^{(\ln x)^2} \)
39. \(y = \ln(\ln x) \)
40. \(y = \ln(\cot x) \)
41. \(y = (\ln(\ln x))^3 \)
42. \(y = \ln(\ln(x^3)) \)
43. \(y = \ln((x + 1)(2x + 9)) \)
44. \(y = \ln\left(\frac{x + 1}{x^3 + 1}\right) \)
45. \(y = 11^x \)
46. \(y = 7^{4x - x^2} \)
47. \(y = \frac{2^x - 3^x}{x} \)
48. \(y = 16\sin x \)

In Exercises 49–52, compute the derivative.

49. \(f'(x) \), \(f(x) = \log_2 x \)
50. \(f'(3) \), \(f(x) = \log_5 x \)
51. \(\frac{d}{dt}\log_5(\sin t) \)
52. \(\frac{d}{dt}\log_{10}(t + 2^t) \)

In Exercises 53–64, find an equation of the tangent line at the point indicated.

53. \(f(x) = 6^x \), \(x = 2 \)
54. \(y = (\sqrt{2})^x \), \(x = 8 \)
55. \(s(t) = 3^{9t} \), \(t = 2 \)
56. \(y = \pi^{3x - 2} \), \(x = 1 \)
57. \(f(x) = 5^{x^2 - 2x} \), \(x = 1 \)
58. \(s(t) = \ln t \), \(t = 5 \)
59. \(s(t) = \ln(8 - 4t) \), \(t = 1 \)
60. \(f(x) = \ln(x^2) \), \(x = 4 \)
61. \(R(z) = \log_5(2z^2 + 7) \), \(z = 3 \)
62. \(y = \ln(\sin x) \), \(x = \frac{\pi}{4} \)
63. \(f(u) = \log_2 u \), \(u = \frac{1}{8} \)
64. \(y = \log_2(1 + 4x^{-1}) \), \(x = 4 \)

In Exercises 65–72, find the derivative using logarithmic differentiation as in Example 8.

65. \(y = (x + 5)(x + 9) \)
66. \(y = (3x + 5)(4x + 9) \)
67. \(y = (x - 1)(x - 12)(x + 7) \)
68. \(y = \frac{x(x + 1)^3}{(3x - 1)^2} \)
69. \(y = \frac{x^2 + 1}{\sqrt{x + 1}} \)
70. \(y = (2x + 1)(4x^2 + 3)\sqrt{x - 9} \)
71. \(y = \sqrt{\frac{x(x + 2)}{(2x + 1)(3x + 2)}} \)
72. \(y = (x^3 + 1)(x^4 + 2)(x^5 + 3)^2 \)

In Exercises 73–78, find the derivative using either method of Example 9.

73. \(f(x) = x^{3x} \)
74. \(f(x) = x^{\cos x} \)
75. \(f(x) = x^{e^x} \)
76. \(f(x) = x^{x^2} \)
77. \(f(x) = x^{3y} \)
78. \(f(x) = e^{x^y} \)

In Exercises 79–82, find the local extreme values in the domain \(\{x : x > 0\} \) and use the Second Derivative Test to determine whether these values are local minima or maxima.

79. \(g(x) = \ln x \)
80. \(g(x) = x \ln x \)
81. \(g(x) = \ln x \)
82. \(g(x) = x - \ln x \)

In Exercises 83 and 84, find the local extreme values and points of inflection, and sketch the graph of \(y = f(x) \) over the interval \([1, 4]\).

83. \(f(x) = \frac{10\ln x}{x^2} \)
84. \(f(x) = x^2 - 8\ln x \)

In Exercises 85–105, evaluate the indefinite integral, using substitution if necessary.

85. \(\int 7dx \)
86. \(\int dx \)
87. \(\int dx \)
88. \(\int dx \)
89. \(\int dt \)
90. \(\int dx \)
91. \(\int dx \)
92. \(\int dx \)
93. \(\int dx \)
94. \(\int dx \)
95. \(\int dx \)
96. \(\int dx \)
97. \(\int dx \)
98. \(\int dx \)
99. \(\int dx \)
100. \(\int dx \)
101. \(\int dx \)
102. \(\int dx \)
103. \(\int dx \)
104. \(\int dx \)
105. \(\int dx \)

In Exercises 106–111, evaluate the definite integral.

106. \(\int_2^1 \frac{x^2}{x} dx \)
107. \(\int_4^1 \frac{1}{x} dx \)
108. \(\int_0^1 \frac{1}{x} dx \)
109. \(\int_4^1 \frac{dt}{3t + 4} \)
110. \(\int_{-e}^e \frac{1}{t \ln t} dt \)
111. \(\int_{-e}^e \frac{1}{t \ln t} dt \)
112. **CRA** Find a good numerical approximation to the coordinates of the point on the graph of \(y = \ln x - x \) closest to the origin (Figure 8).

![Graph of \(y = \ln x - x \).](image)

113. Find the minimum value of \(f(x) = x^4 \) for \(x > 0 \).

114. Use the formula \((\ln f(x))' = f'(x)/f(x)\) to show that \(\ln x\) and \(\ln(2x)\) have the same derivative. Is there a simpler explanation of this result?

115. According to one simplified model, the purchasing power of a dollar in the year 2000 + \(t \) is equal to \(P(t) = 0.68(1.04)^{-t} \) (in 1983 dollars). Calculate the predicted rate of decline in purchasing power (in cents per year) in the year 2020.

116. The energy \(E \) (in joules) radiated as seismic waves by an earthquake of Richter magnitude \(M \) satisfies \(\log_{10} E = 4.8 + 1.5M \).

(a) Show that when \(M \) increases by 1, the energy increases by a factor of approximately 31.5.

(b) Calculate \(dE/dM \).

117. The Palermo Technical Impact Hazard Scale \(P \) is used to quantify the risk associated with the impact of an asteroid colliding with the earth:

\[
P = \log_{10} \left(\frac{P_i E^{0.8}}{0.03T} \right)
\]

where \(p_i \) is the probability of impact, \(T \) is the number of years until impact, and \(E \) is the energy of impact (in megatons of TNT). The risk is greater than a random event of similar magnitude if \(P > 0 \).

(a) Calculate \(dP/dT \), assuming that \(p_i = 2 \times 10^{-5} \) and \(E = 2 \) megatons.

(b) Use the derivative to estimate the change in \(P \) if \(T \) increases from 8 to 9 years.

Further Insights and Challenges

118. (a) Show that if \(f \) and \(g \) are differentiable, then

\[
\frac{d}{dx} \ln(f(x)g(x)) = \frac{f'(x)}{f(x)} + \frac{g'(x)}{g(x)}
\]

(b) Give a new proof of the Product Rule by observing that the left-hand side of Eq. (8) is equal to \(\frac{(f(x)g(x))'}{f(x)g(x)} \).

119. Prove the formula

\[
\log_b x = \frac{\log_a x}{\log_a b}
\]

for all positive numbers \(a, b \) with \(a \neq 1 \) and \(b \neq 1 \).

120. Prove the formula \(\log_a b \log_b a = 1 \) for all positive numbers \(a, b \) with \(a \neq 1 \) and \(b \neq 1 \).

Exercises 121–123 develop an elegant approach to the exponential and logarithm functions. Define a function \(G \) for \(x > 0 \):

\[
G(x) = \int_1^x \frac{1}{t} \, dt
\]

121. **Defining \(\ln x \) as an Integral** This exercise proceeds as if we didn’t know that \(G(x) = \ln x \) and shows directly that \(G \) has all the basic properties of the logarithm. Prove the following statements.

(a) \(\int_a^b \frac{1}{t} \, dt = \int_1^b \frac{1}{t} \, dt \) for all \(a, b > 0 \). *Hint:* Use the substitution \(u = f/a \).

(b) \(G(ab) = G(a) + G(b) \). *Hint:* Break up the integral from 1 to \(ab \) into two integrals and use (a).

(c) \(G(1) = 0 \) and \(G(a^{-1}) = -G(a) \) for \(a > 0 \).

(d) \(G(a^n) = nG(a) \) for all \(a > 0 \) and integers \(n \).

(e) \(G(a^{1/n}) = \frac{1}{n} G(a) \) for all \(a > 0 \) and integers \(n \neq 0 \).

(f) \(G(a^r) = rG(a) \) for all \(a > 0 \) and rational numbers \(r \).

(g) \(G \) is increasing. *Hint:* Use FTC II.

(h) There exists a number \(a \) such that \(G(a) > 1 \). *Hint:* Show that \(G(2) > 0 \) and take \(a = 2^m \) for \(m > 1/G(2) \).

(i) \(\lim_{x \to \infty} G(x) = \infty \) and \(\lim_{x \to 0+} G(x) = -\infty \).

(j) There exists a unique number \(E \) such that \(G(E) = 1 \).

(k) \(G(E^r) = r \) for every rational number \(r \).

122. **Defining \(e^x \)** Use Exercise 121 to prove the following statements.

(a) \(G \) has an inverse with domain \(\mathbb{R} \) and range \(\{ x : x > 0 \} \). Denote the inverse by \(F \).

(b) \(F(x + y) = F(x)F(y) \) for all \(x, y \). *Hint:* it suffices to show that \(G(F(x)F(y)) = G(F(x + y)) \).

(c) \(F(r) = E^r \) for all numbers. In particular, \(F(0) = 1 \).

(d) \(F'(x) = F(x) \). *Hint:* Use the formula for the derivative of an inverse function.

This shows that \(E = e \) and that \(F(x) \) is the function \(e^x \) as defined in the text.

123. **Defining \(b^x \)** Let \(b > 0 \) and let \(f(x) = F(xG(b)) \) with \(F \) as in Exercise 122. Use Exercise 121 (f) to prove that \(f(r) = b^r \) for every rational number \(r \). This gives us a way of defining \(b^x \) for irrational \(x \), namely \(b^x = f(x) \). With this definition, \(f(x) = b^x \) is a differentiable function of \(x \) (because \(F \) is differentiable).
Exponential growth cannot continue over long periods of time. A colony starting with one E. coli cell would grow to \(5 \times 10^{89}\) cells after 3 weeks—much more than the estimated number of atoms in the observable universe. In actual cell growth, the exponential phase is followed by a period in which growth slows and may decline.

\[P(t) = P_0 e^{kt} \]

If \(k > 0\), then \(P(t)\) grows exponentially and \(k\) is called the growth constant. Note that \(P_0\) is the initial size (the size at \(t = 0\)):

\[P(0) = P_0 e^{k \cdot 0} = P_0 \]

We can also write \(P(t) = P_0 b^t\) with \(b = e^k\), because \(b^t = (e^k)^t = e^{kt}\).

A quantity that decreases exponentially is said to have exponential decay. In this case, we write \(P(t) = P_0 e^{-kt}\) with \(k > 0\); \(k\) is then called the decay constant.

Population is a typical example of a quantity that grows exponentially, at least under suitable conditions. To understand why, consider a cell colony with initial population \(P_0 = 100\) and assume that each cell divides into two cells after 1 hour. Then population \(P(t)\) doubles with each passing hour:

\[P(0) = 100 \quad (\text{initial population}) \]
\[P(1) = 2(100) = 200 \quad (\text{population doubles}) \]
\[P(2) = 2(200) = 400 \quad (\text{population doubles again}) \]

After \(t\) hours, \(P(t) = (100)^2^t\).

Example 1 In the laboratory, the number of *Escherichia coli* bacteria (Figure 1) grows exponentially with growth constant of \(k = 0.41\) (hours)\(^{-1}\). Assume that 1000 bacteria are present at time \(t = 0\).

(a) Find the formula for the number of bacteria \(P(t)\) at time \(t\).

(b) How large is the population after 5 hours (h)?

(c) When will the population reach 10,000?

Solution The growth is exponential, so \(P(t) = P_0 e^{kt}\).

(a) The initial size is \(P_0 = 1000\) and \(k = 0.41\), so \(P(t) = 1000e^{0.41t}\) (\(t\) in hours).

(b) After 5 h, \(P(5) = 1000e^{0.41 \times 5} = 1000e^{2.05} \approx 7767.9\). Because the number of bacteria is a whole number, we round off the answer to 7768.

(c) The problem asks for the time \(t\) such that \(P(t) = 10,000\), so we solve

\[1000e^{0.41t} = 10,000 \quad \Rightarrow \quad e^{0.41t} = \frac{10,000}{1000} = 10 \]

Taking the logarithm of both sides, we obtain

\[0.41t = \ln 10 \quad \Rightarrow \quad t = \frac{\ln 10}{0.41} \approx 5.62 \text{ h} \]

Therefore, \(P(t)\) reaches 10,000 after approximately 5 h, 37 min (Figure 2).

The important role played by exponential functions is best understood in terms of the differential equation \(y' = ky\). The function \(y = P_0 e^{kt}\) satisfies this differential equation, as we can check directly:

\[y' = \frac{d}{dt} (P_0 e^{kt}) = k P_0 e^{kt} = ky \]

Theorem 1 goes further and asserts that the exponential functions are the only functions that satisfy this differential equation.
Theorem 1 If \(y \) is a differentiable function satisfying the differential equation

\[
y' = ky
\]
then \(y(t) = P_0 e^{kt} \), where \(P_0 \) is the initial value \(P_0 = y(0) \).

Proof Compute the derivative of \(ye^{-kt} \). If \(y' = ky \), then

\[
\frac{d}{dt}(ye^{-kt}) = y'e^{-kt} - ke^{-kt}y = (ky)e^{-kt} - ke^{-kt}y = 0
\]

Because the derivative is zero, \(y(t)e^{-kt} = P_0 \) for some constant \(P_0 \), and \(y(t) = P_0 e^{kt} \) as claimed. The initial value is \(y(0) = P_0e^0 = P_0 \).

Conceptual Insight Theorem 1 tells us that a process obeys an exponential law precisely when its rate of change is proportional to the amount present. This helps us understand why certain quantities grow or decay exponentially.

A population grows exponentially because each organism contributes to growth through reproduction, and thus the growth rate is proportional to the population size. However, this is true only under certain conditions. If the organisms interact—say, by competing for food or mates—then the growth rate may not be proportional to population size and we cannot expect exponential growth.

Similarly, experiments show that radioactive substances decay exponentially. This suggests that radioactive decay is a random process in which a fixed fraction of atoms, randomly chosen, decays per unit time (Figure 3). If exponential decay were not observed, we might suspect that the decay was influenced by some interaction between the atoms.

Example 2 Find all solutions of \(y' = 3y \). Which solution satisfies \(y(0) = 9 \)?

Solution The solutions to \(y' = 3y \) are the functions \(y(t) = Ce^{3t} \), where \(C \) is the initial value \(C = y(0) \). The particular solution satisfying \(y(0) = 9 \) is \(y(t) = 9e^{3t} \).

Example 3 Modeling Penicillin Pharmacologists have shown that penicillin leaves a person’s bloodstream at a rate proportional to the amount present.

(a) Express this statement as a differential equation.

(b) Find the decay constant if 50 mg of penicillin remain in the bloodstream 7 hours (h) after an initial injection of 450 mg.

(c) Under the hypothesis of (b), at what time were 200 mg of penicillin present?

Solution

(a) Let \(A(t) \) be the quantity of penicillin present in the bloodstream at time \(t \). Since the rate at which penicillin leaves the bloodstream is proportional to \(A(t) \),

\[
A'(t) = -kA(t)
\]

where \(k > 0 \) because \(A(t) \) is decreasing.

(b) Eq. (1) and the condition \(A(0) = 450 \) tell us that \(A(t) = 450e^{-kt} \). The additional condition \(A(7) = 50 \) enables us to solve for \(k \):

\[
450e^{-7k} = 50 \quad \Rightarrow \quad e^{-7k} = \frac{1}{9} \quad \Rightarrow \quad -7k = \ln \frac{1}{9}
\]

Thus, \(k = -\frac{1}{7} \ln \frac{1}{9} \approx 0.31 \).

(c) To find the time \(t \) at which 200 mg were present, we solve

\[
A(t) = 450e^{-0.31t} = 200 \quad \Rightarrow \quad e^{-0.31t} = \frac{4}{9}
\]

Therefore, \(t = -\frac{1}{0.31} \ln \left(\frac{4}{9}\right) \approx 2.62 \) h (Figure 4).
The constant k has units of time$^{-1}$, so the doubling time $T = (\ln 2)/k$ has units of time, as we should expect. A similar calculation shows that the tripling time is $(\ln 3)/k$, the quadrupling time is $(\ln 4)/k$, and, in general, the time to n-fold increase is $(\ln n)/k$.

Quantities that grow exponentially possess an important property: There is a doubling time T such that $P(t)$ doubles in size over every time interval of length T. To prove this, let $P(t) = P_0 e^{kt}$ and solve for T in the equation $P(t + T) = 2P(t)$:

\[
P_0 e^{k(t+T)} = 2P_0 e^{kt}
\]

\[
e^{kt} e^{kT} = 2e^{kt}
\]

\[
e^{kT} = 2
\]

We obtain $kT = \ln 2$ or $T = (\ln 2)/k$.

Doubling Time If $P(t) = P_0 e^{kt}$ with $k > 0$, then the doubling time of P is

\[
\text{Doubling time} = \frac{\ln 2}{k}
\]

EXAMPLE 4 Spread of the Sapphire Worm A computer virus nicknamed the Sapphire Worm spread throughout the Internet on January 25, 2003 (Figure 5). Studies suggest that during the first few minutes, the population of infected computer hosts increased exponentially with growth constant $k = 0.0815$ s$^{-1}$.

(a) What was the doubling time of the virus?

(b) If the virus began in four computers, how many hosts were infected after 2 minutes? After 3 minutes (min)?

Solution

(a) The doubling time is $(\ln 2)/0.0815 \approx 8.5$ s (Figure 6).

(b) If $P_0 = 4$, the number of infected hosts after t seconds is $P(t) = 4e^{0.0815t}$. After 2 min (120 s), the number of infected hosts is

\[
P(120) = 4e^{0.0815(120)} \approx 70,700
\]

After 3 min, the number would have been $P(180) = 4e^{0.0815(180)} \approx 9.4$ million. However, it is estimated that a total of around 75,000 hosts were infected, so the exponential phase of the virus could not have lasted much more than 2 min.

In the situation of exponential decay $P(t) = P_0 e^{-kt}$, the half-life is the time it takes for the quantity to decrease by a factor of $\frac{1}{2}$. The calculation similar to that of doubling time above shows that

\[
\text{Half-life} = \frac{\ln 2}{k}
\]

EXAMPLE 5 The isotope radon-222 decays exponentially with a half-life of 3.825 days. How long will it take for 80% of the isotope to decay?

Solution By the equation for half-life, k equals $\ln 2$ divided by half-life:

\[
k = \frac{\ln 2}{3.825} \approx 0.181
\]

Therefore, the quantity of radon-222 at time t is $R(t) = R_0 e^{-0.181t}$, where R_0 is the amount present at $t = 0$ (Figure 7). When 80% has decayed, 20% remains, so we solve for t in the equation $R_0 e^{-0.181t} = 0.2R_0$:

\[
e^{-0.181t} = 0.2
\]

\[
-0.181t = \ln(0.2) \Rightarrow t = \frac{\ln(0.2)}{-0.181} \approx 8.9 \text{ days}
\]

The quantity of radon-222 decreases by 80% after 8.9 days.
Carbon Dating

Carbon dating (Figure 8) relies on the fact that all living organisms contain carbon that enters the food chain through the carbon dioxide absorbed by plants from the atmosphere. Carbon in the atmosphere is made up of nonradioactive C\(^{12}\) and a minute amount of radioactive C\(^{14}\) that decays into nitrogen. The ratio of C\(^{14}\) to C\(^{12}\) is approximately \(R_{\text{atm}} = 10^{-12}\).

The carbon in a living organism has the same ratio \(R_{\text{atm}}\) because this carbon originates in the atmosphere, but when the organism dies, its carbon is no longer replenished. The C\(^{14}\) begins to decay exponentially while the C\(^{12}\) remains unchanged. Therefore, the ratio of C\(^{14}\) to C\(^{12}\) in the organism decreases exponentially. By measuring this ratio, we can determine when the death occurred. The decay constant for C\(^{14}\) is \(k = 0.000121\) year\(^{-1}\), so

\[
\text{Ratio of C}^{14}\text{ to C}^{12}\text{ after } t\text{ years} = R_{\text{atm}}e^{-0.000121t}
\]

EXAMPLE 6 Cave Paintings In 1940 a remarkable gallery of prehistoric animal paintings was discovered in the Lascaux cave in Dordogne, France (Figure 9). A charcoal sample from the cave walls had a C\(^{14}\)-to-C\(^{12}\) ratio equal to 15% of that found in the atmosphere. Approximately how old are the paintings?

Solution The C\(^{14}\)-to-C\(^{12}\) ratio in the charcoal is now equal to 0.15\(R_{\text{atm}}\), so

\[
R_{\text{atm}}e^{-0.000121t} = 0.15R_{\text{atm}}
\]

where \(t\) is the age of the paintings. We solve for \(t\):

\[
e^{-0.000121t} = 0.15
\]

\[-0.000121t = \ln(0.15) \Rightarrow t = \frac{-\ln(0.15)}{0.000121} \approx 15,700\]

The cave paintings are approximately 16,000 years old (Figure 10).

7.4 SUMMARY

- **Exponential growth** with growth constant \(k > 0\): \(P(t) = P_0e^{kt}\).
- **Exponential decay** with decay constant \(k > 0\): \(P(t) = P_0e^{-kt}\).
- The solutions of the differential equation \(y' = ky\) are the exponential functions \(y = Ce^{kt}\), where \(C\) is a constant.
- A quantity \(P(t)\) grows exponentially if it grows at a rate proportional to its size—that is, if \(P'(t) = kP(t)\).
Exponential Growth and Decay

7.4 Exercises

Preliminary Questions

1. Two quantities increase exponentially with growth constants \(k = 1.2 \) and \(k = 3.4 \), respectively. Which quantity doubles more rapidly?

2. A cell population grows exponentially beginning with one cell. Which takes longer: increasing from one to two cells or increasing from 15 million to 20 million cells?

3. Referring to his popular book *A Brief History of Time*, the renowned physicist Stephen Hawking said, “Someone told me that each equation I included in the book would halve its sales.” Find a differential equation satisfied by the function \(S(n) \), the number of copies sold if the book has \(n \) equations.

4. Carbon dating is based on the assumption that the ratio \(R \) of \(C^{14} \) to \(C^{12} \) in the atmosphere has been constant over the past 50,000 years. If \(R \) were actually smaller in the past than it is today, would the age estimates produced by carbon dating be too ancient or too recent?

Exercises

1. A certain population \(P \) of bacteria obeys the exponential growth law \(P(t) = 2000e^{1.3t} \) (in hours).
 (a) How many bacteria are present initially?
 (b) At what time will there be 10,000 bacteria?

2. A quantity \(P \) obeys the exponential growth law \(P(t) = e^{5t} \) (in years).
 (a) At what time \(t \) is \(P = 10? \)
 (b) What is the doubling time for \(P \)?

3. Write \(f(t) = 5(7)^t \) in the form \(f(t) = P_0e^{kt} \) for some \(P_0 \) and \(k \).

4. Write \(f(t) = 9e^{1.4t} \) in the form \(f(t) = P_0b^t \) for some \(P_0 \) and \(b \).

5. A certain RNA molecule replicates every 3 minutes. Find the differential equation for the number \(N(t) \) of molecules present at time \(t \) (in minutes). How many molecules will be present after one hour if there is one molecule at \(t = 0 \)?

6. A quantity \(P \) obeys the exponential growth law \(P(t) = Ce^{kt} \) (in years). Find the formula for \(P(t) \), assuming that the doubling time is 7 years and \(P(0) = 100 \).

7. Find all solutions to the differential equation \(y' = -5y \). Which solution satisfies the initial condition \(y(0) = 3.4 \)?

8. Find the solution to \(y' = \sqrt{2}y \) satisfying \(y(0) = 20 \).

9. Find the solution to \(y'' = 3y \) satisfying \(y(2) = 1000 \).

10. Find the function \(y = f(t) \) that satisfies the differential equation \(y' = -0.7y \) and the initial condition \(y(0) = 10 \).

11. The decay constant of cobalt-60 is 0.13 year\(^{-1} \). Find its half-life.

12. The half-life of radium-226 is 1622 years. Find its decay constant.

13. One of the world’s smallest flowering plants, *Wolffia globosa* (Figure 11), has a doubling time of approximately 30 hours. Find the growth constant \(k \) and determine the initial population if the population grew to 1000 after 48 hours.

14. A 10-kg quantity of a radioactive isotope decays to 3 kg after 17 years. Find the decay constant of the isotope.

15. The population of a city is \(P(t) = 2 \cdot e^{0.06t} \) (in millions), where \(t \) is measured in years. Calculate the time it takes for the population to double, to triple, and to increase seven-fold.

16. What is the differential equation satisfied by \(P(t) \), the number of infected computer hosts in Example 4? Over which time interval would \(P(t) \) increase one hundred-fold?

17. The decay constant for a certain drug is \(k = 0.35 \) day\(^{-1} \). Calculate the time it takes for the quantity present in the bloodstream to decrease by half, by one-third, and by one-tenth.

18. Light Intensity The intensity of light passing through an absorbing medium decreases exponentially with the distance traveled. Suppose the decay constant for a certain plastic block is \(k = 4 \) m\(^{-1} \). How thick must the block be to reduce the intensity by a factor of one-third?

19. Assuming that population growth is approximately exponential, which of the following two sets of data is most likely to represent the population (in millions) of a city over a 5-year period?

<table>
<thead>
<tr>
<th>Year</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set I</td>
<td>3.14</td>
<td>3.36</td>
<td>3.69</td>
<td>3.85</td>
<td>4.11</td>
</tr>
<tr>
<td>Set II</td>
<td>3.14</td>
<td>3.24</td>
<td>3.54</td>
<td>4.04</td>
<td>4.74</td>
</tr>
</tbody>
</table>

20. The atmospheric pressure \(P(h) \) (in kilopascals) at a height \(h \) meters above sea level satisfies a differential equation \(P' = -kP \) for some positive constant \(k \).
 (a) Barometric measurements show that \(P(0) = 101.3 \) and \(P(30, 900) = 1.013 \). What is the decay constant \(k \)?
 (b) Determine the atmospheric pressure at \(h = 500 \).
21. Degrees in Physics One study suggests that from 1955 to 1970, the number of bachelor’s degrees in physics awarded per year by U.S. universities grew exponentially, with growth constant \(k = 0.1 \).

(a) If exponential growth continues, how long will it take for the number of degrees awarded per year to increase 14-fold?

(b) If 2500 degrees were awarded in 1955, in which year were 10,000 degrees awarded?

22. The Beer–Lambert Law is used in spectroscopy to determine the molar absorptivity \(\alpha \) or the concentration \(c \) of a compound dissolved in a solution at low concentrations (Figure 12). The law states that the intensity \(I \) of light as it passes through the solution satisfies \(\ln(I/I_0) = \alpha cx \), where \(I_0 \) is the initial intensity and \(x \) is the distance traveled by the light. Show that \(I \) satisfies a differential equation \(dI/dx = -kI \) for some constant \(k \).

![Figure 12](image)

23. A sample of sheepskin parchment discovered by archaeologists had a \(^{14}C \)-to-\(^{12}C \) ratio equal to 40% of that found in the atmosphere. Approximately how old is the parchment?

24. Chauvet Caves In 1994, three French speleologists (geologists specializing in caves) discovered a cave in southern France containing prehistoric cave paintings. A \(^{14}C \) analysis carried out by archeologist Helene Valladas showed the paintings to be between 29,700 and 32,400 years old, much older than any previously known human art. Given that the \(^{14}C \)-to-\(^{12}C \) ratio of the atmosphere is \(R = 10^{-12} \), what range of \(^{14}C \)-to-\(^{12}C \) ratios did Valladas find in the charcoal specimens?

25. A paleontologist discovers remains of animals that appear to have died at the onset of the Holocene ice age, between 10,000 and 12,000 years ago. What range of \(^{14}C \)-to-\(^{12}C \) ratio would the scientist expect to find in the animal remains?

26. Inversion of Sugar When cane sugar is dissolved in water, it converts to invert sugar over a period of several hours. The percentage \(f(t) \) of unconverted cane sugar at time \(t \) (in hours) satisfies \(f'(t) = -0.2f(t) \). What percentage of cane sugar remains after 5 hours? After 10 hours?

27. Continuing with Exercise 26, suppose that 50 grams of sugar are dissolved in a container of water. After how many hours will 20 grams of invert sugar be present?

28. Two bacteria colonies are cultivated in a laboratory. The first colony has a doubling time of 2 hours and the second a doubling time of 3 hours. Initially, the first colony contains 1000 bacteria and the second colony 3000 bacteria. At what time \(t \) will the sizes of the colonies be equal?

29. Moore’s Law In 1965, Gordon Moore predicted that the number \(N \) of transistors on a microchip would increase exponentially.

(a) Does the table of data below confirm Moore’s prediction for the period from 1971 to 2000? If so, estimate the growth constant \(k \).

(b) Plot the data in the table.

(c) Let \(N(t) \) be the number of transistors \(t \) years after 1971. Find an approximate formula \(N(t) = Ce^{kt} \), where \(t \) is the number of years after 1971.

(d) Estimate the doubling time in Moore’s Law for the period from 1971 to 2000.

(e) How many transistors will a chip contain in 2015 if Moore’s Law continues to hold?

(f) Can Moore have expected his prediction to hold indefinitely?

<table>
<thead>
<tr>
<th>Processor</th>
<th>Year</th>
<th>No. Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>4004</td>
<td>1971</td>
<td>2250</td>
</tr>
<tr>
<td>8008</td>
<td>1972</td>
<td>2500</td>
</tr>
<tr>
<td>8080</td>
<td>1974</td>
<td>5000</td>
</tr>
<tr>
<td>8086</td>
<td>1978</td>
<td>29,000</td>
</tr>
<tr>
<td>286</td>
<td>1982</td>
<td>120,000</td>
</tr>
<tr>
<td>386 processor</td>
<td>1985</td>
<td>275,000</td>
</tr>
<tr>
<td>486 DX processor</td>
<td>1989</td>
<td>1,180,000</td>
</tr>
<tr>
<td>Pentium processor</td>
<td>1993</td>
<td>3,100,000</td>
</tr>
<tr>
<td>Pentium II processor</td>
<td>1997</td>
<td>7,500,000</td>
</tr>
<tr>
<td>Pentium III processor</td>
<td>1999</td>
<td>24,000,000</td>
</tr>
<tr>
<td>Pentium 4 processor</td>
<td>2000</td>
<td>42,000,000</td>
</tr>
<tr>
<td>Xeon processor</td>
<td>2008</td>
<td>1,900,000,000</td>
</tr>
</tbody>
</table>

30. Assume that in a certain country, the rate at which jobs are created is proportional to the number of people who already have jobs. If there are 15 million jobs at \(t = 0 \) and 15.1 million jobs 3 months later, how many jobs will there be after 2 years?

31. The only functions with a constant doubling time are the exponential functions \(y = Poekt \) with \(k > 0 \). Show that the doubling time of a linear function \(f(t) = at + b \) at time \(t_0 \) is \(t_0 + b/a \) (which increases with \(t_0 \)). Compute the doubling times of \(f(t) = 3t + 12 \) at \(t_0 = 10 \) and \(t_0 = 20 \).

32. Verify that the half-life of a quantity that decays exponentially with decay constant \(k \) is equal to \((\ln 2)/k \).

33. Drug Dosing Interval Let \(y(t) \) be the drug concentration (in mg/kg) in a patient’s body at time \(t \). The initial concentration is \(y(0) = L \). Additional doses that increase the concentration by an amount \(d \) are administered at regular time intervals of length \(T \). In between doses, \(y(t) \) decays exponentially—that is, \(y' = -ky \). Find the value of \(T \) (in terms of \(k \) and \(d \)) for which the concentration varies between \(L \) and \(L - d \) as in Figure 13.

![Figure 13](image)
Exercises 34 and 35: The Gompertz differential equation
\[\frac{dy}{dt} = ky \ln \left(\frac{y}{M} \right) \]
(where \(M \) and \(k \) are constants) was introduced in 1825 by the English mathematician Benjamin Gompertz and is still used today to model aging and mortality.

34. Show that \(y = Me^{at} \) satisfies Eq. (2) for any constant \(a \).
35. To model mortality in a population of 200 laboratory rats, a scientist assumes that the number \(P(t) \) of rats alive at time \(t \) (in months) satisfies Eq. (2) with \(M = 204 \) and \(k = 0.15 \text{ month}^{-1} \) (Figure 14). Find \(P(t) \) [note that \(P(0) = 200 \)] and determine the population after 20 months.

36. Isotopes for Dating Which of the following would be most suitable for dating extremely old rocks: carbon-14 (half-life 5570 years), lead-210 (half-life 22.26 years), or potassium-49 (half-life 1.3 billion years)? Explain why.

Further Insights and Challenges

37. Let \(P = P(t) \) be a quantity that obeys an exponential growth law with growth constant \(k \). Show that \(P \) increases \(m \)-fold after an interval of \((\ln m)/k \) years.

38. Average Time of Decay Physicists use the radioactive decay law \(R = R_0 e^{-kt} \) to compute the average or mean time \(M \) until an atom decays. Let \(F(t) = R/R_0 = e^{-kt} \) be the fraction of atoms that have survived to time \(t \) without decaying.

(a) Find the inverse function \(t(F) \).
(b) By definition of \(t(F) \), a fraction \(1/N \) of atoms decays in the time interval
\[\left[t \left(\frac{j}{N} \right), t \left(\frac{j+1}{N} \right) \right] \]
Use this to justify the approximation \(M \approx \frac{1}{N} \sum_{j=1}^{N} t \left(\frac{j}{N} \right) \). Then argue, by passing to the limit as \(N \to \infty \), that \(M = \int_{c}^{1} t(F) dF \). Strictly speaking, this is an improper integral because \(t(0) \) is infinite (it takes an infinite amount of time for all atoms to decay). Therefore, we define \(M \) as a limit
\[M = \lim_{c \to 0} \int_{c}^{1} t(F) dF \]
(c) Verify the formula \(\int \ln x \, dx = x \ln x - x \) by differentiation and use it to show that for \(c > 0 \),
\[M = \lim_{c \to 0} \left(\frac{1}{k} + \frac{1}{k}(c \ln c - c) \right) \]
(d) Verify numerically that \(\lim_{c \to 0} (c \ln c) = 0 \) (we will prove this using L’Hôpital’s Rule in Section 7.7). Use this to show that \(M = 1/k \). (e) What is the mean time to decay for radon (with a half-life of 3.825 days)?

7.5 Compound Interest and Present Value

Exponential functions are used extensively in financial calculations. Two basic applications are compound interest and present value.

When a sum of money \(P_0 \), called the principal, is deposited into an interest-bearing account, the amount or balance in the account at time \(t \) depends on two factors: the interest rate \(r \) and frequency with which interest is compounded. Interest paid out once a year at the end of the year is said to be compounded annually. The balance increases by the factor \((1 + r)\) after each year, leading to exponential growth:

\[
\text{Principal} + \text{Interest} = \text{Balance}
\]

- After 1 year \(P_0 \)
- After 2 years \(P_0(1 + r) \)
- After \(t \) years \(P_0(1 + r)^{t-1} \)

Suppose that interest is paid out quarterly (every 3 months). Then the interest earned after 3 months is \(\frac{1}{4} P_0 \) dollars and the balance increases by the factor \((1 + \frac{r}{4})\) after 1 year.
(four quarters), the balance increases to \(P_0 \left(1 + \frac{r}{4}\right)^4 \) and after \(t \) years,

\[
\text{Balance after } t \text{ years} = P_0 \left(1 + \frac{r}{4}\right)^{4t}
\]

For example, if \(P_0 = $100 \) and \(r = 0.09 \), then the balance after 1 year is

\[
100 \left(1 + \frac{0.09}{4}\right)^4 = 100(1.0225)^4 \approx 100(1.09308) \approx $109.31
\]

More generally,

\[\text{Compound Interest}\]

If \(P_0 \) dollars are deposited into an account earning interest at an annual rate \(r \), compounded \(M \) times yearly, then the value of the account after \(t \) years is

\[
P(t) = P_0 \left(1 + \frac{r}{M}\right)^{Mt}
\]

The factor \(\left(1 + \frac{r}{M}\right)^M \) is called the **yearly multiplier**.

Table 1 shows the effect of more frequent compounding. What happens in the limit as \(M \) tends to infinity? This question is answered by the next theorem (a proof is given at the end of this section).

Theorem 1 Limit Formula for \(e \) and \(e^x \)

\[
e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \quad \text{and} \quad e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \quad \text{for all } x
\]

Figure 1 illustrates the first limit graphically. To compute the limit of the yearly multiplier as \(M \to \infty \), we apply the second limit with \(x = r \) and \(n = M \):

\[
\lim_{M \to \infty} \left(1 + \frac{r}{M}\right)^M = e^r
\]

The multiplier after \(t \) years is \((e^r)^t = e^{rt}\). This leads to the following definition.

Continuously Compounded Interest If \(P_0 \) dollars are deposited into an account earning interest at an annual rate \(r \), compounded continuously, then the value of the account after \(t \) years is

\[
P(t) = P_0 e^{rt}
\]

Example 1 A principal of \(P_0 = ¥100,000 \) (Japanese yen) is deposited into an account paying 6% interest. Find the balance after 3 years if interest is compounded quarterly and if interest is compounded continuously.

Solution After 3 years, the balance is

- Quarterly compounding: \(100,000 \left(1 + \frac{0.06}{4}\right)^{4(3)} \approx ¥119,562\)
- Continuous compounding: \(100,000e^{(0.06)(3)} \approx ¥119,722\)
In the financial world, there are many different interest rates (federal funds rate, prime rate, LIBOR, etc.). We simplify the discussion by assuming that there is just one rate.

In Section 7.5, we have already defined the present value (PV) of a future payment as $P = P_0 e^{-rt}$, where P_0 is the present value of a future payment of P dollars at time t years in the future is $P e^{-rt}$.

What is the reasoning behind this definition? When you invest at the rate r for t years, your principal increases by the factor e^{rt}, so if you invest $P e^{-rt}$ dollars, your principal grows to $(P e^{-rt})e^{rt} = P$ dollars at time t. The present value $P e^{-rt}$ is the amount you would have to invest today in order to have P dollars at time t.

EXAMPLE 2 Is it better to receive $2000 today or $2200 in 2 years? Consider $r = 0.03$ and $r = 0.07$.

Solution We compare $2000 today with the PV of $2200 received in 2 years.

- If $r = 0.03$, the PV is $2200 e^{-(0.03)2} \approx 2071.88$. This is more than $2000, so a payment of $2200 in 2 years is preferable to a $2000 payment today.
- If $r = 0.07$, the PV is $2200 e^{-(0.07)2} \approx 1912.59$. This PV is less than $2000, so it is better to receive $2000 today if $r = 0.07$.

EXAMPLE 3 Deciding Whether to Invest Chief Operating Officer Ryan Martinez must decide whether to upgrade his company’s computer system. The upgrade costs $400,000 and will save $150,000 a year for each of the next 3 years. Is this a good investment if $r = 7\%$?

Solution Ryan must compare today’s cost of the upgrade with the PV of the money saved. For simplicity, assume that the annual savings of $150,000 is received as a lump sum at the end of each year.

If $r = 0.07$, the PV of the savings over 3 years is

$$150,000 e^{-(0.07)} + 150,000 e^{-(0.07)2} + 150,000 e^{-(0.07)3} \approx 391,850$$

The amount saved is less than the cost $400,000, so the upgrade is not worthwhile.

An income stream is a sequence of periodic payments that continue over an interval of T years. Consider an investment that produces income at a rate of 800 per year for 5 years. A total of 4000 is paid out over 5 years, but the PV of the income stream is less. For instance, if $r = 0.06$ and payments are made at the end of the year, then the PV is

$$800 e^{-0.06} + 800 e^{-0.06}2 + 800 e^{-0.06}3 + 800 e^{-0.06}4 + 800 e^{-0.06}5 \approx 3353.12$$

It is more convenient mathematically to assume that payments are made continuously at a rate of $R(t)$ dollars per year. We can then calculate PV as an integral. Divide the time interval $[0, T]$ into N subintervals of length $\Delta t = T/N$. If Δt is small, the amount paid out between time t and $t + \Delta t$ is approximately

$$\frac{R(t)}{R} \times \frac{\Delta t}{\text{Time interval}} = R(t) \Delta t$$

The PV of this payment is approximately $e^{-rt} R(t) \Delta t$. Setting $t_i = i \Delta t$, we obtain the approximation

$$\text{PV of income stream} \approx \sum_{i=1}^{N} e^{-rt_i} R(t_i) \Delta t$$

This is a Riemann sum whose value approaches $\int_{0}^{T} R(t)e^{-rt} dt$ as $\Delta t \to 0$.
CHAPTER 7 EXPONENTIAL FUNCTIONS

354

If the interest rate is \(r \), the present value of an income stream paying out \(R(t) \) dollars per year continuously for \(T \) years is

\[
PV = \int_0^T R(t)e^{-rt} \, dt
\]

EXAMPLE 4 An investment pays out 800,000 Mexican pesos per year, continuously for 5 years. Find the PV of the investment for \(r = 0.04 \) and \(r = 0.06 \).

Solution In this case, \(R(t) = 800,000 \). If \(r = 0.04 \), the PV of the income stream is equal (in pesos) to

\[
\int_0^5 800,000e^{-0.04t} \, dt = -800,000e^{-0.04t}\bigg|_0^5 \approx -16,374,615 - (-20,000,000) = 3,625,385
\]

If \(r = 0.06 \), the PV is equal (in pesos) to

\[
\int_0^5 800,000e^{-0.06t} \, dt = -800,000e^{-0.06t}\bigg|_0^5 \approx -9,877,576 - (-13,333,333) = 3,455,757
\]

Proof of Theorem 1 Apply the formula \(\ln b = \int_1^b t^{-1} \, dt \) with \(b = 1 + 1/n \):

\[
\ln \left(1 + \frac{1}{n} \right) = \int_1^{1+1/n} \frac{dt}{t}
\]

Figure 2 shows that the area represented by this integral lies between the areas of two rectangles of heights \(n/(n + 1) \) and 1, both of base \(1/n \). These rectangles have areas \(1/(n + 1) \) and \(1/n \), so

\[
\frac{1}{n + 1} \leq \ln \left(1 + \frac{1}{n} \right) \leq \frac{1}{n}
\]

Multiply through by \(n \), using the rule \(n \ln a = \ln a^n \):

\[
\frac{n}{n + 1} \leq \ln \left(\left(1 + \frac{1}{n} \right)^n \right) \leq 1
\]

Since \(\lim_{n \to \infty} \frac{n}{n + 1} = 1 \), the middle quantity must approach 1 by the Squeeze Theorem:

\[
\lim_{n \to \infty} \ln \left(\left(1 + \frac{1}{n} \right)^n \right) = 1
\]

Now we can apply \(e^x \) (because it is continuous) to obtain the desired result:

\[
e^1 = e^{\lim_{n \to \infty} \ln \left(\left(1 + \frac{1}{n} \right)^n \right)} = \lim_{n \to \infty} e^{\ln \left(\left(1 + \frac{1}{n} \right)^n \right)} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n
\]

See Exercise 27 for a proof of the more general formula \(e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \).
7.5 SUMMARY

- Interest rate \(r \), compounded \(M \) times per year:
 \[P(t) = P_0(1 + r/M)^{Mt} \]

- Interest rate \(r \), compounded continuously:
 \[P(t) = P_0e^{rt} \]

- The present value (PV) of \(P \) dollars (or other currency), to be paid \(t \) years in the future, is \(P e^{-rt} \).

- Present value of an income stream paying \(R(t) \) dollars per year continuously for \(T \) years:
 \[PV = \int_0^T R(t)e^{-rt} \, dt \]

7.5 EXERCISES

Preliminary Questions

1. Which is preferable: an interest rate of 12% compounded quarterly, or an interest rate of 11% compounded continuously?
2. Find the yearly multiplier if \(r = 9\% \) and interest is compounded (a) continuously and (b) quarterly.
3. The PV of \(N \) dollars received at time \(T \) is (choose the correct answer):
 (a) The value at time \(T \) of \(N \) dollars invested today
 (b) The amount you would have to invest today in order to receive \(N \) dollars at time \(T \)
4. In one year, you will be paid $1. Will the PV increase or decrease if the interest rate goes up?
5. Xavier expects to receive a check for $1000 one year from today. Explain using the concept of PV, whether he will be happy or sad to learn that the interest rate has just increased from 6% to 7%.

Exercises

1. Compute the balance after 10 years if $2000 is deposited in an account paying 9% interest and interest is compounded (a) quarterly, (b) monthly, and (c) continuously.
2. Suppose $500 is deposited into an account paying interest at a rate of 7%, continuously compounded. Find a formula for the value of the account at time \(t \). What is the value of the account after 3 years?
3. A bank pays interest at a rate of 5%. What is the yearly multiplier if interest is compounded (a) three times a year? (b) continuously?
4. How long will it take for $4000 to double in value if it is deposited in an account bearing 7% interest, continuously compounded?
5. How much must one invest today in order to receive $20,000 after 5 years if interest is compounded continuously at the rate \(r = 9\% \)?
6. An investment increases in value at a continuously compounded rate of 9%. How large must the initial investment be in order to build up a value of $50,000 over a 7-year period?
7. Compute the PV of $5000 received in 3 years if the interest rate is (a) 6% and (b) 11%. What is the PV in these two cases if the sum is instead received in 5 years?
8. Is it better to receive $1000 today or $1300 in 4 years? Consider \(r = 0.08 \) and \(r = 0.03 \).
9. Find the interest rate \(r \) if the PV of $8000 to be received in 1 year is $7300.
10. A company can earn additional profits of $500,000/year for 5 years by investing $2 million to upgrade its factory. Is the investment worth-while if the interest rate is 6%? (Assume the savings are received as a lump sum at the end of each year.)
11. A new computer system costing $25,000 will reduce labor costs by $7,000/year for 5 years.
 (a) Is it a good investment if \(r = 8\% \)?
 (b) How much money will the company actually save?
12. After winning $25 million in the state lottery, Jessica learns that she will receive five yearly payments of $5 million beginning immediately.
 (a) What is the PV of Jessica’s prize if \(r = 6\% \)?
 (b) How much more would the prize be worth if the entire amount were paid today?
13. Use Eq. (2) to compute the PV of an income stream paying out \(R(t) = 5000 \) yearly continuously for 10 years, assuming \(r = 0.05 \).
14. Find the PV of an investment that pays out continuously at a rate of $800/year for 5 years, assuming \(r = 0.08 \).
15. Find the PV of an income stream that pays out continuously at a rate \(R(t) = 5000 e^{0.15t} \) yearly for 7 years, assuming \(r = 0.05 \).
16. A commercial property generates income at the rate \(R(t) \). Suppose that \(R(0) = 70,000 \) /year and that \(R(t) \) increases at a continuously compounded rate of 5%. Find the PV of the income generated in the first 4 years if \(r = 6\% \).
17. Show that an investment that pays out \(R \) dollars per year continuously for \(T \) years has a PV of \(R(1 - e^{-rT})/r \).
18. Explain this statement: If \(T \) is very large, then the PV of the income stream described in Exercise 17 is approximately \(R/r \).
19. Suppose that \(r = 0.06 \). Use the result of Exercise 18 to estimate the payout rate \(R \) needed to produce an income stream whose PV is $20,000, assuming that the stream continues for a large number of years.
20. Verify by differentiation:

\[\int e^{-rt} \, dt = -\frac{e^{-rt}}{r^2} + C \]

Use Eq. (4) to compute the PV of an investment that pays out income continuously at a rate \(R(t) = (5000 + 1000r) \) dollars per year for 5 years, assuming \(r = 0.05 \).

21. Use Eq. (4) to compute the PV of an investment that pays out income continuously at a rate \(R(t) = (5000 + 1000r)e^{0.025t} \) dollars per year for 10 years, assuming \(r = 0.08 \).

22. **Banker’s Rule of 70** If you earn an interest rate of \(R \) percent, continuously compounded, your money doubles after approximately 70/R years. For example, at \(R = 5\% \), your money doubles after 70/5 or 14 years. Use the concept of doubling time to justify the Banker’s Rule. *Note:* Sometimes, the rule 72/R is used. It is less accurate but easier to apply because 72 is divisible by more numbers than 70.

In Exercises 23–26, calculate the limit.

23. \(\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{6n} \)

24. \(\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^{n} \)

25. \(\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^{2n} \)

26. \(\lim_{n \to \infty} \left(1 + \frac{1}{4n} \right)^{12n} \)

Further Insights and Challenges

27. Modify the proof of the relation \(e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \) given in the text to prove \(e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n \). *Hint:* Express \(\ln(1 + xn^{-1}) \) as an integral and estimate above and below by rectangles.

28. Prove that, for \(n > 0 \),

\[\left(1 + \frac{1}{n} \right)^n \leq e \leq \left(1 + \frac{1}{n} \right)^{n+1} \]

Hint: Take logarithms and use Eq. (3).

29. A bank pays interest at the rate \(r \), compounded \(M \) times yearly. The **effective interest rate** \(r_e \) is the rate at which interest, if compounded annually, would have to be paid to produce the same yearly return.

(a) Find \(r_e \) if \(r = 9\% \) compounded monthly.

(b) Show that \(r_e = (1 + r/M)^M - 1 \) and that \(r_e = e^r - 1 \) if interest is compounded continuously.

(c) Find \(r_e \) if \(r = 11\% \) compounded continuously.

(d) Find the rate \(r \) that, compounded weekly, would yield an effective rate of 20%.

7.6 Models Involving \(y' = k(y - b) \)

In Theorem 1 of Section 7.4, we saw a quantity grow or decay exponentially if its rate of change is proportional to the amount present. This characteristic property is expressed by the differential equation \(y' = ky \). We now study the closely related differential equation

\[\frac{dy}{dt} = k(y - b) \]

where \(k \) and \(b \) are constants. This differential equation describes a quantity \(y \) whose rate of change is proportional to the difference \(y - b \). We can use Separation of Variables to show that the general solution is

\[y(t) = b + Ce^{kt} \]

Alternatively, we may observe that \((y - b)' = y' \) since \(b \) is a constant, so Eq. (1) may be rewritten

\[\frac{d}{dt}(y - b) = k(y - b) \]

In other words, \(y - b \) satisfies the differential equation of an exponential function and thus \(y - b = Ce^{kt} \), or \(y = b + Ce^{kt} \), as claimed.

GRAPHICAL INSIGHT The behavior of the solution \(y(t) \) as \(t \to \infty \) depends on whether \(C \) and \(k \) are positive or negative:

- When \(k > 0 \), \(e^{kt} \) tends to \(\infty \) and, therefore, \(y(t) \) tends to \(\infty \) if \(C > 0 \) and \(y(t) \) tends to \(-\infty \) if \(C < 0 \).
- When \(k < 0 \), we usually rewrite the differential equation as \(y' = -k(y - b) \) with \(k > 0 \). In this case, \(y(t) = b + Ce^{-kt} \) and \(y(t) \) approaches the horizontal asymptote \(y = b \) since \(Ce^{-kt} \) tends to zero as \(t \to \infty \) (Figure 1). Note that \(y(t) \) approaches the asymptote from above or below, depending on whether \(C > 0 \) or \(C < 0 \).
Newton’s Law of Cooling implies that the object cools quickly when it is much hotter than its surroundings (when \(y - T_0 \) is large). The rate of cooling slows as \(y \) approaches \(T_0 \). When the object’s initial temperature is less than \(T_0 \), \(y' \) is positive and Newton’s Law models warming.

REMINDER The differential equation
\[
dy \over dt = k(y - b)
\]
has the general solution
\[
y = b + Ce^{kt}
\]

FIGURE 2 Temperature of metal bar as it cools when the ambient temperature is 10°C.

The effect of air resistance depends on the physical situation. A high-speed bullet is affected differently than a skydiver. Our model is fairly realistic for a large object such as a skydiver falling from high altitudes.

In this model of free-fall, \(k \) has units of mass per time, such as kilograms per second.

We now consider some applications of Eq. (1), beginning with Newton’s Law of Cooling. Let \(y(t) \) be the temperature of a hot object that is cooling off in an environment where the ambient temperature is \(T_0 \). Newton assumed that the rate of cooling is proportional to the temperature difference \(y - T_0 \). We express this hypothesis in a precise way by the differential equation
\[
y' = -k(y - T_0) \quad (T_0 = \text{ambient temperature})
\]

The constant \(k \), in units of \((\text{time})^{-1}\), is called the cooling constant and depends on the physical properties of the object.

EXAMPLE 1 Newton’s Law of Cooling A hot metal bar with cooling constant \(k = 2.1 \text{ min}^{-1} \) is submerged in a large tank of water held at temperature \(T_0 = 10\°\text{C} \). Let \(y(t) \) be the bar’s temperature at time \(t \) (in minutes).

(a) Find the differential equation satisfied by \(y(t) \) and find its general solution.
(b) What is the bar’s temperature after 1 min if its initial temperature was 180°C?
(c) What was the bar’s initial temperature if it cooled to 80°C in 30 seconds?

Solution

(a) Since \(k = 2.1 \text{ min}^{-1} \), \(y(t) \) (with \(t \) in minutes) satisfies
\[
y' = -2.1(y - 10)
\]

By Eq. (2), the general solution is \(y(t) = 10 + Ce^{-2.1t} \) for some constant \(C \).

(b) If the initial temperature was 180°C, then \(y(0) = 10 + C = 180 \). Thus, \(C = 170 \) and \(y(t) = 10 + 170e^{-2.1t} \) (Figure 2). After 1 min,
\[
y(1) = 10 + 170e^{-2.1(1)} \approx 30.8\°\text{C}
\]

(c) If the temperature after 30 s is 80°C, then \(y(0.5) = 80 \), and we have
\[
10 + Ce^{-2.1(0.5)} = 80 \quad \Rightarrow \quad Ce^{-1.05} = 70 \quad \Rightarrow \quad C \approx 70e^{1.05} \approx 200
\]

It follows that \(y(t) = 10 + 200e^{-2.1t} \) and the initial temperature was
\[
y(0) = 10 + 200e^{-2.1(0)} = 10 + 200 = 210\°\text{C}
\]

The differential equation \(y' = k(y - b) \) is also used to model free-fall when air resistance is taken into account. Assume that the force due to air resistance is proportional to the velocity \(v \) and acts opposite to the direction of the fall. We write this force as \(-kv\), where \(k > 0 \). We take the upward direction to be positive, so \(v < 0 \) for a falling object and \(-kv\) is an upward acting force.

The force due to gravity on a falling object of mass \(m \) is \(-mg\), where \(g \) is the acceleration due to gravity, so the total force is \(F = -mg - kv \). By Newton’s Law,
\[
F = ma = mv' \quad (a = v' \text{ is the acceleration})
\]

Thus, \(mv' = -mg - kv \), which can be written as
\[
v' = -\frac{k}{m}(v + \frac{mg}{k}) \quad \tag{3}
\]

This equation has the form \(v' = -k(v - b) \) with \(k \) replaced by \(k/m \) and \(b = -mg/k \). By Eq. (2), the general solution is
\[
v(t) = -\frac{mg}{k} + Ce^{-(k/m)t} \quad \tag{4}
\]

Since \(Ce^{-(k/m)t} \) tends to zero as \(t \to \infty \), \(v(t) \) tends to a limiting terminal velocity:
\[
\text{Terminal velocity} = \lim_{t\to\infty} v(t) = -\frac{mg}{k} \quad \tag{5}
\]

Without air resistance, the velocity would increase indefinitely until a sudden collision with the ground occurs.
Example 2
An 80-kg skydiver steps out of an airplane.

(a) What is her terminal velocity if \(k = 8 \text{ kg/s}\)?
(b) What is her velocity after 30 s?

Solution

(a) By Eq. (5), with \(k = 8 \text{ kg/s} \text{ and } g = 9.8 \text{ m/s}^2\), the terminal velocity is

\[
\frac{-mg}{k} = \frac{-80 \times 9.8}{8} = -98 \text{ m/s}
\]

(b) With \(t\) in seconds, we have, by Eq. (4),

\[
v(t) = -98 + \frac{8k g}{s} e^{-\frac{98}{8}t}
\]

We assume that the skydiver leaves the airplane with no initial vertical velocity, so \(v(0) = -98 + 0 = 0\), and \(C = 98\). Thus, we have \(v(t) = -98(1 - e^{-0.1t})\) (Figure 3).

The skydiver’s velocity after 30 s is

\[
v(30) = -98(1 - e^{-0.1(30)}) \approx -93.1 \text{ m/s}
\]

Example 3 Does an Annuity Pay Out Forever? An annuity earns interest at the rate \(r = 0.07\) (7% per year), and withdrawals are made continuously at a rate of \(N = 5000\) per year.

(a) When will the annuity run out of money if the initial deposit is \(P(0) = 5000\)?
(b) Show that the balance increases indefinitely if \(P(0) = 9000\).

Solution We have \(N/r = \frac{5000}{0.07} \approx 7143\), so \(P(t) = 7143 + Ce^{0.07t}\) by Eq. (7).

(a) If \(P(0) = 5000 = 7143 + Ce^{0}\), then \(C = -2143\) and

\[
P(t) = 7143 - 2143e^{0.07t}
\]

The account runs out of money when \(P(t) = 7143 - 2143e^{0.07t} = 0\), or

\[
e^{0.07t} = \frac{7143}{2143} \Rightarrow 0.07t = \ln \left(\frac{7143}{2143}\right) \approx 1.2
\]

The annuity money runs out at time \(t = \frac{1.2}{0.07} \approx 17\) years.
The balance in an annuity may increase indefinitely or decrease to zero (eventually becoming negative), depending on the size of initial deposit P_0, the interest rate, and the rate of withdrawal.

(b) If $P(0) = 9000 = 7143 + Ce^0$, then $C = 1857$ and

$$P(t) = 7143 + 1857e^{0.07t}$$

Since the coefficient $C = 1857$ is positive, the account never runs out of money. In fact, $P(t)$ increases indefinitely as $t \to \infty$. Figure 4 illustrates the two cases.

7.6 SUMMARY

- The general solution of $y' = k(y - b)$ is $y = b + Ce^{kt}$, where C is a constant.
- The following table describes the solutions to $y' = k(y - b)$ (see Figure 5):

<table>
<thead>
<tr>
<th>Equation $(k > 0)$</th>
<th>Solution</th>
<th>Behavior as $t \to \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y' = k(y - b)$</td>
<td>$y(t) = b + Ce^{kt}$</td>
<td>$\lim_{t \to \infty} y(t) = \begin{cases} \infty & \text{if } C > 0 \ -\infty & \text{if } C < 0 \end{cases}$</td>
</tr>
<tr>
<td>$y' = -k(y - b)$</td>
<td>$y(t) = b + Ce^{-kt}$</td>
<td>$\lim_{t \to \infty} y(t) = b$</td>
</tr>
</tbody>
</table>

- Three applications:
 - Newton’s Law of Cooling: $y' = -k(y - T_0)$, $y(t) =$ temperature of the object, $T_0 =$ ambient temperature, $k =$ cooling constant
 - Free-fall with air resistance: $v' = \frac{-k}{m} \left(v + \frac{mg}{k} \right)$, $v(t) =$ velocity, $m =$ mass, $k =$ air resistance constant, $g =$ acceleration due to gravity
 - Continuous annuity: $P' = r \left(P - \frac{N}{r} \right)$, $P(t) =$ balance in the annuity, $r =$ interest rate, $N =$ withdrawal rate

7.6 EXERCISES

Preliminary Questions

1. Write down a solution to $y' = 4(y - 5)$ that tends to $-\infty$ as $t \to \infty$.

2. Does $y' = -4(y - 5)$ have a solution that tends to ∞ as $t \to \infty$?

3. True or false? If $k > 0$, then all solutions of $y' = -k(y - b)$ approach the same limit as $t \to \infty$.

4. As an object cools, its rate of cooling slows. Explain how this follows from Newton’s Law of Cooling.

Exercises

1. Find the general solution of $y' = 2(y - 10)$. Then find the two solutions satisfying $y(0) = 25$ and $y(0) = 5$, and sketch their graphs.

2. Verify directly that $y = 12 + Ce^{-3t}$ satisfies $y' = -3(y - 12)$ for all C. Then find the two solutions satisfying $y(0) = 20$ and $y(0) = 0$, and sketch their graphs.
3. Solve $y' = 4y + 24$ subject to $y(0) = 5$.
4. Solve $y' + 6y = 12$ subject to $y(2) = 10$.

In Exercises 5–12, use Newton’s Law of Cooling.

5. A hot anvil with cooling constant $k = 0.02 \text{ s}^{-1}$ is submerged in a large pool of water whose temperature is $10^\circ C$. Let $y(t)$ be the anvil’s temperature t seconds later.

(a) What is the differential equation satisfied by $y(t)$?
(b) Find a formula for $y(t)$, assuming the object’s initial temperature is $100^\circ C$.
(c) How long does it take the object to cool down to $20^\circ C$?

6. Frank’s automobile engine runs at $100^\circ C$. On a day when the outside temperature is $21^\circ C$, he turns off the ignition and notes that 5 minutes later, the engine has cooled to $70^\circ C$.

(a) Determine the engine’s cooling constant k.
(b) What is the formula for $y(t)$?
(c) When will the engine cool to $40^\circ C$?

7. At 10:30 AM, detectives discover a dead body in a room and measure its temperature at $26^\circ C$. One hour later, the body’s temperature had dropped to $24.8^\circ C$. Determine the time of death (when the body temperature was a normal $37^\circ C$), assuming that the temperature in the room was held constant at $20^\circ C$.

8. A cup of coffee with cooling constant $k = 0.09 \text{ min}^{-1}$ is placed in a room at temperature $20^\circ C$.

(a) How fast is the coffee cooling (in degrees per minute) when its temperature is $T = 80^\circ C$?
(b) Use the Linear Approximation to estimate the change in temperature over the next 6 s when $T = 80^\circ C$.
(c) If the coffee is served at $90^\circ C$, how long will it take to reach an optimal drinking temperature of $65^\circ C$?

9. A cold metal bar at $-30^\circ C$ is submerged in a pool maintained at a temperature of $40^\circ C$. Half a minute later, the temperature of the bar is $20^\circ C$. How long will it take for the bar to attain a temperature of $30^\circ C$?

10. When a hot object is placed in a water bath whose temperature is $25^\circ C$, it cools from 100 to $50^\circ C$ in 150 s. In another bath, the same cooling occurs in 120 s. Find the temperature of the second bath.

11. Objects A and B are placed in a warm bath at temperature $T_0 = 40^\circ C$. Object A has initial temperature $-20^\circ C$ and cooling constant $k = 0.004 \text{ s}^{-1}$. Object B has initial temperature $0^\circ C$ and cooling constant $k = 0.002 \text{ s}^{-1}$. Plot the temperatures of A and B for $0 \leq t \leq 1000$. After how many seconds will the objects have the same temperature?

12. In Newton’s Law of Cooling, the constant $\tau = 1/k$ is called the “characteristic time.” Show that τ is the time required for the temperature difference $(y - T_0)$ to decrease by the factor $e^{-1} \approx 0.37$. For example, if $y(0) = 100^\circ C$ and $T_0 = 0^\circ C$, then the object cools to $100/e \approx 37^\circ C$ in time τ, to $100/e^2 \approx 13.5^\circ C$ in time 2τ, and so on.

In Exercises 13–16, use Eq. (3) as a model for free-fall with air resistance.

13. A 60-kg skydiver jumps out of an airplane. What is her terminal velocity, in meters per second, assuming that $k = 10 \text{ kg/s}$ for free-fall (no parachute)?

14. Find the terminal velocity of a skydiver of weight $w = 192$ pounds (lb) if $k = 1.2 \text{ lb-s/ft}$. How long does it take him to reach half of his terminal velocity if his initial velocity is zero? Mass and weight are related by $w = mg$, and Eq. (3) becomes $\dot{v} = -(kg/w)(v + w/k)$ with $g = 32 \text{ ft/s}^2$.

15. An 80-kg skydiver jumps out of an airplane (with zero initial velocity). Assume that $k = 12 \text{ kg/s}$ with a closed parachute and $k = 70 \text{ kg/s}$ with an open parachute. What is the skydiver’s velocity at $t = 25$ s if the parachute opens after 20 s of free-fall?

16. Does a heavier or a lighter skydiver reach terminal velocity more quickly?

In Exercises 17(a)–(f), use Formulas 6 and 7 that describe the balance paid by a continuous annuity.

17. (a) A continuous annuity with withdrawal rate $N = 5000/\text{year}$ and interest rate $r = 5\%$ is funded by an initial deposit of $P_0 = 75,000$. Find the minimum interest rate the annuity must earn to allow withdrawals at a rate of $8000/\text{year}$. What is the balance in the annuity after 10 years?

(b) Show that a continuous annuity with withdrawal rate $N = 5000/\text{year}$ and interest rate $r = 8\%$, funded by an initial deposit of $P_0 = 75,000$, never runs out of money.

(c) Find the minimum interest rate r that will allow an annuity to pay out $6000/\text{year}$ indefinitely if it earns interest at a rate of 5\%.

(d) Find the minimum initial deposit P_0 necessary to fund an annuity for 20 years if withdrawals are made at a rate of $10,000/\text{year}$ and interest is earned at a rate of 7\%.

(e) An initial deposit of $100,000$ euros is placed in an annuity with a French bank. What is the minimum interest rate the annuity must earn to allow withdrawals at a rate of 8000 euros/year to continue indefinitely?

(f) Show that a continuous annuity never runs out of money if the initial balance is greater than or equal to N/r, where N is the withdrawal rate and r the interest rate.

18. Sam borrows $10,000 from a bank at an interest rate of 9\% and pays back the loan continuously at a rate of N dollars per year. Let $P(t)$ denote the amount still owed at time t.

(a) Explain why $P(t)$ satisfies the differential equation
\[y' = 0.09y - N \]
(b) How long will it take Sam to pay back the loan if $N = 12000$?
(c) Will the loan ever be paid back if $N = 8000$?

19. April borrows $18,000 at an interest rate of 5\% to purchase a new automobile. At what rate (in dollars per year) must she pay back the loan, if the loan must be paid off in 5 years? Hint: Set up the differential equation as in Exercise 18.

20. Let $N(t)$ be the fraction of the population who have heard a given piece of news t hours after its initial release. According to one model, the rate $N'(t)$ at which the news spreads is equal to k times the fraction of the population that has not yet heard the news, for some constant $k > 0$.

(a) Determine the differential equation satisfied by $N(t)$.
(b) Find the solution of this differential equation with the initial condition $N(0) = 0$ in terms of k.
(c) Suppose that half of the population is aware of an earthquake 8 hours (h) after it occurs. Use the model to calculate k and estimate the percentage that will know about the earthquake 12 h after it occurs.

21. Current in a Circuit When the circuit in Figure 6 (which consists of a battery of V volts, a resistor of R ohms, and an inductor of L henries) is connected, the current $I(t)$ flowing in the circuit satisfies
\[
\frac{dI}{dt} + R I = V
\]
with the initial condition $I(0) = 0$.

(a) Find a formula for \(I(t) \) in terms of \(L, V, \) and \(R. \)
(b) Show that \(\lim_{t \to \infty} I(t) = V/R. \)
(c) Show that \(I(t) \) reaches approximately 63% of its maximum value at the “characteristic time” \(\tau = L/R. \)

Further Insights and Challenges

22. Show that the cooling constant of an object can be determined from two temperature readings \(y(t_1) \) and \(y(t_2) \) at times \(t_1 \neq t_2 \) by the formula
\[
k = \frac{1}{t_1 - t_2} \ln \left(\frac{y(t_2) - T_0}{y(t_1) - T_0} \right)
\]

23. Show that by Newton’s Law of Cooling, the time required to cool an object from temperature \(A \) to temperature \(B \) is
\[
t = \frac{1}{k} \ln \left(\frac{A - T_0}{B - T_0} \right)
\]
where \(T_0 \) is the ambient temperature.

24. **Air Resistance** A projectile of mass \(m = 1 \) travels straight up from ground level with initial velocity \(v_0. \) Suppose that the velocity \(v \) satisfies \(v' = -g - kv. \)
 (a) Find a formula for \(v(t). \)
 (b) Show that the projectile’s height \(h(t) \) is given by
\[
h(t) = C \left(1 - e^{-kt} \right) - \frac{g}{k} t
\]
where \(C = k^{-2}(g + kv_0). \)
(c) Show that the projectile reaches its maximum height at time \(t_{\text{max}} = k^{-1} \ln(1 + kv_0/g). \)
(d) In the absence of air resistance, the maximum height is reached at time \(t = v_0/g. \) In view of this, explain why we should expect that
\[
\lim_{k \to 0} \ln \left(1 + \frac{kv_0}{g} \right)^{1/k} = e^{v_0/g}
\]
(e) Verify Eq. (8). *Hint: Use Theorem 1 in Section 7.5 to show that* \[8\]

7.7 **L’Hôpital’s Rule**

L’Hôpital’s Rule is a valuable tool for computing certain limits that are otherwise difficult to evaluate, and also for determining “asymptotic behavior” (limits at infinity). We will use it for graph sketching in the next section.
Consider the limit of a quotient
\[
\lim_{x \to a} \frac{f(x)}{g(x)}
\]
Roughly speaking, L’Hôpital’s Rule states that when \(f(x)/g(x) \) has an indeterminate form of type \(0/0 \) or \(\infty/\infty \) at \(x = a \), then we can replace \(f(x)/g(x) \) by the quotient of the derivatives \(f'(x)/g'(x). \)

Theorem 1 L’Hôpital’s Rule Assume that \(f \) and \(g \) are differentiable on an open interval containing \(a \) and that
\[
f(a) = g(a) = 0
\]
Also assume that \(g'(x) \neq 0 \) (except possibly at \(a \)). Then
\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]
if the limit on the right exists or is infinite (\(\infty \) or \(-\infty \)). This conclusion also holds if \(f \) and \(g \) are differentiable for \(x \) near (but not equal to) \(a \) and
\[
\lim_{x \to a} f(x) = \pm\infty \quad \text{and} \quad \lim_{x \to a} g(x) = \pm\infty
\]
Furthermore, this rule is valid for one-sided limits.
CAUTION When using L’Hôpital’s Rule, be sure to take the derivative of the numerator and denominator separately:

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]

Do not differentiate the quotient function \(y = \frac{f(x)}{g(x)} \).

EXAMPLE 1 Use L’Hôpital’s Rule to evaluate \(\lim_{x \to 2} \frac{x^3 - 8}{x^4 + 2x - 20} \).

Solution Let \(f(x) = x^3 - 8 \) and \(g(x) = x^4 + 2x - 20 \). Both \(f \) and \(g \) are differentiable and \(f(x)/g(x) \) is indeterminate of type 0/0 at \(a = 2 \) because \(f(2) = g(2) = 0 \):

* Numerator: \(f(2) = 2^3 - 1 = 0 \)
* Denominator: \(g(2) = 2^4 + 2(2) - 20 = 0 \)

Furthermore, \(g'(x) = 4x^3 + 2 \) is nonzero near \(x = 2 \), so L’Hôpital’s Rule applies. We may replace the numerator and denominator by their derivatives to obtain

\[
\lim_{x \to 2} \frac{x^3 - 8}{x^4 + 2x - 20} = \lim_{x \to 2} \frac{(x^3 - 8)'}{(x^4 + 2x - 20)'} = \lim_{x \to 2} \frac{3x^2}{4x^3 + 2} = \frac{3(2^2)}{4(2^3) + 2} = \frac{12}{34} = \frac{6}{17}
\]

L’Hôpital’s Rule

EXAMPLE 2 Evaluate \(\lim_{x \to 2} \frac{4 - x^2}{\sin \pi x} \).

Solution The quotient is indeterminate of type 0/0 at \(x = 2 \):

* Numerator: \(4 - x^2 = 4 - 2^2 = 0 \)
* Denominator: \(\sin \pi x = \sin 2\pi = 0 \)

The other hypotheses [that \(f \) and \(g \) are differentiable and \(g'(x) \) ≠ 0 for \(x \) near \(a = 2 \)] are also satisfied, so we may apply L’Hôpital’s Rule:

\[
\lim_{x \to 2} \frac{4 - x^2}{\sin \pi x} = \lim_{x \to 2} \frac{(4 - x^2)'}{(\sin \pi x)'} = \lim_{x \to \pi/2} \frac{-2x}{\pi \cos \pi x} = \frac{-2(2)}{\pi \cos 2\pi} = \frac{-4}{\pi}
\]

L’Hôpital’s Rule

EXAMPLE 3 Evaluate \(\lim_{x \to \pi/2} \frac{\cos^2 x}{1 - \sin x} \).

Solution Again, the quotient is indeterminate of type 0/0 at \(x = \pi/2 \):

\[
\cos^2 \left(\frac{\pi}{2}\right) = 0, \quad 1 - \sin \frac{\pi}{2} = 1 - 1 = 0
\]

The other hypotheses are satisfied, so we may apply L’Hôpital’s Rule:

\[
\lim_{x \to \pi/2} \frac{\cos^2 x}{1 - \sin x} = \lim_{x \to \pi/2} \frac{(\cos^2 x)'}{(1 - \sin x)'} = \lim_{x \to \pi/2} \frac{-2 \cos x \sin x}{-\cos x} = \lim_{x \to \pi/2} \frac{2 \sin x}{-\cos x} = 2
\]

L’Hôpital’s Rule

Note that the quotient \(\frac{-2 \cos x \sin x}{-\cos x} \) is still indeterminate at \(x = \pi/2 \). We removed this indeterminacy by cancelling the factor \(-\cos x \).

EXAMPLE 4 The Form 0 · ∞ Evaluate \(\lim_{x \to 0^+} x \ln x \).

Solution This limit is one-sided because \(f(x) = x \ln x \) is not defined for \(x \leq 0 \). Furthermore, as \(x \to 0^+ \),

* \(x \) approaches 0.
* \(\ln x \) approaches \(-\infty \).

So \(f(x) \) presents an indeterminate form of type 0 · \(-\infty \). To apply L’Hôpital’s Rule, we rewrite our function as \(f(x) = (\ln x)/x^{-1} \) so that \(f(x) \) presents an indeterminate form of type \(-\infty/\infty \). Then L’Hôpital’s Rule applies:

\[
\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-1}} = \lim_{x \to 0^+} \frac{(\ln x)'}{(x^{-1})'} = \lim_{x \to 0^+} \left(\frac{x^{-1}}{-x^{-2}} \right) = \lim_{x \to 0^+} (-\ln x) = 0
\]

L’Hôpital’s Rule

simplified
EXAMPLE 5 Using L'Hôpital's Rule Twice Evaluate \(\lim_{x \to 0} \frac{e^x - x - 1}{\cos x - 1} \).

Solution For \(x = 0 \), we have
\[
e^x - x - 1 = e^0 - 0 - 1 = 0, \quad \cos x - 1 = \cos 0 - 1 = 0
\]
An application of L'Hôpital's Rule gives
\[
\lim_{x \to 0} \frac{e^x - x - 1}{\cos x - 1} = \lim_{x \to 0} \frac{(e^x - x - 1)'}{(\cos x - 1)'} = \lim_{x \to 0} \frac{e^x - 1}{-\sin x} = \lim_{x \to 0} \frac{1 - e^x}{-\sin x}
\]
This limit is again indeterminate of type 0/0, so we apply L'Hôpital's Rule a second time:
\[
\lim_{x \to 0} \frac{1 - e^x}{\sin x} = \lim_{x \to 0} \frac{-e^x}{\cos x} = \frac{-e^0}{\cos 0} = -1
\]

EXAMPLE 6 Assumptions Matter Can L'Hôpital's Rule be applied to \(\lim_{x \to 1} \frac{x^2 + 1}{2x + 1} \)?

Solution The answer is no. The function does not have an indeterminate form because
\[
\frac{x^2 + 1}{2x + 1} \bigg|_{x = 1} = \frac{1^2 + 1}{2 \cdot 1 + 1} = \frac{2}{3}
\]
However, the limit can be evaluated directly by substitution: \(\lim_{x \to 1} \frac{x^2 + 1}{2x + 1} = \frac{2}{3} \). An incorrect application of L'Hôpital's Rule gives the wrong answer:
\[
\lim_{x \to 1} \frac{(x^2 + 1)'}{(2x + 1)'} = \left. \lim_{x \to 1} \frac{2x}{2} = 1 \right(\text{not equal to original limit} \)
\]

EXAMPLE 7 The Form \(\infty - \infty \) Evaluate \(\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) \).

Solution Both \(1/\sin x \) and \(1/x \) become infinite at \(x = 0 \), so we have an indeterminate form of type \(\infty - \infty \). We must rewrite the function as
\[
\frac{1}{\sin x} - \frac{1}{x} = \frac{x - \sin x}{x \sin x}
\]
to obtain an indeterminate form of type \(0/0 \). L'Hôpital's Rule yields (see Figure 1)
\[
\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x} = \lim_{x \to 0} \frac{1 - \cos x}{\cos x + \sin x} \quad \text{L'Hôpital's Rule}
\]
\[
= \lim_{x \to 0} \frac{\sin x}{\cos x + 2 \cos x} = 0 \quad \text{L'Hôpital's Rule again}
\]

Limits of functions of the form \(f(x)^{g(x)} \) can lead to the indeterminate forms \(0^0 \), \(1^\infty \), or \(\infty^0 \). These are indeterminate as the limit can take on a variety of values, depending on the relative speed with which the base and exponent approach their limits. In such cases, we take the logarithm and then apply L'Hôpital's Rule.

EXAMPLE 8 The Form \(0^0 \) Evaluate \(\lim_{x \to 0^+} x^x \).

Solution First, set \(y = x^x \), so that \(\ln y = x \ln x \).

Then we take the limit of \(\ln y \):
\[
\lim_{x \to 0^+} \ln y = \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{x^{-1}} = 0 \quad \text{(by Example 4)}
\]
The function $f(x) = e^x$ is continuous, we can exponentiate to obtain the desired limit (see Figure 2):

$$
\lim_{x \to 0^+} e^{\ln(x^4)} = e^{\lim_{x \to 0^+} \ln(x^4)} = e^{\lim_{x \to 0^+} 4x} = e^0 = 1
$$

EXAMPLE 9 The Form 1^∞ Find $\lim_{x \to 0} (1 + 4x)^{1/2x}$.

Solution This has the indeterminate form 1^∞. Thus, we take $y = (1 + 4x)^{1/2x}$ and therefore $\ln y = \frac{\ln(1 + 4x)}{2x}$. Then

$$
\lim_{x \to 0} \ln y = \lim_{x \to 0} \frac{\ln(1 + 4x)}{2x} = \lim_{x \to 0} \frac{4x}{2x} = \frac{4}{2} = 2
$$

L'Hôpital’s Rule

So

$$
\lim_{x \to 0} (1 + 4x)^{1/2x} = \lim_{x \to 0} e^{\ln y} = e^{\lim_{x \to 0} \ln y} = e^2.
$$

Comparing Growth of Functions

Sometimes, we are interested in determining which of two functions, f and g, grows faster. For example, there are two standard computer algorithms for sorting data (alphabetizing, ordering according to rank, etc.): Quick Sort and Bubble Sort. The average time required to sort a list of size n has order of magnitude $n \ln n$ for Quick Sort and n^2 for Bubble Sort. Which algorithm is faster when the size n is large? Although n is a whole number, this problem amounts to comparing the growth of $f(x) = x \ln x$ and $g(x) = x^2$ as $x \to \infty$.

We say that $f(x)$ grows faster than $g(x)$ if

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty \quad \text{or, equivalently,} \quad \lim_{x \to \infty} \frac{g(x)}{f(x)} = 0
$$

To indicate that $f(x)$ grows faster than $g(x)$, we use the notation $f(x) \ll g(x)$. For example, $x^2 \ll x$ because

$$
\lim_{x \to \infty} \frac{x^2}{x} = \lim_{x \to \infty} x = \infty
$$

To compare the growth of functions, we need a version of L’Hôpital’s Rule that applies to limits at infinity.

THEOREM 2 L’Hôpital’s Rule for Limits at Infinity Assume that f and g are differentiable in an interval (b, ∞) and that $g'(x) \neq 0$ for $x > b$. If $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} g(x)$ exist and either both are zero or both are infinite, then

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}
$$

provided that the limit on the right exists. A similar result holds for limits as $x \to -\infty$.

EXAMPLE 10 The Form ∞/∞ Which of $f(x) = x^2$ and $g(x) = x \ln x$ grows faster as $x \to \infty$?

Solution Both $f(x)$ and $g(x)$ approach infinity as $x \to \infty$, so L’Hôpital’s Rule applies to the quotient:

$$
\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{x^2}{x \ln x} = \lim_{x \to \infty} \frac{x}{\ln x} = \lim_{x \to \infty} \frac{1}{\frac{1}{x}} = \lim_{x \to \infty} \frac{x}{x - 1} = \lim_{x \to \infty} \frac{x}{x - 1} = \frac{x}{x - 1} = \frac{x}{x - 1}
$$

L’Hôpital’s Rule

We conclude that $x \ln x \ll x^2$ (Figure 3).
Note that this example implies that Quick Sort is a much faster sorting algorithm than Bubble Sort for large \(n \).

Example 11 Jonathan is interested in comparing two computer algorithms whose average run times are approximately \((\ln n)^2\) and \(\sqrt{n}\). Which algorithm takes less time for large values of \(n \)?

Solution Replace \(n \) by the continuous variable \(x \) and apply L'Hôpital's Rule twice:

\[
\lim_{x \to \infty} \frac{\sqrt{x}}{\ln x^2} = \lim_{x \to \infty} \frac{\frac{1}{2}x^{-1/2}}{\frac{2}{x} \ln x} = \lim_{x \to \infty} \frac{x^{1/2}}{4 \ln x} = \lim_{x \to \infty} \frac{\frac{1}{2}x^{-1/2}}{4x^{-1}} = \lim_{x \to \infty} \frac{x^{1/2}}{8} = \infty
\]

This shows that \((\ln x)^2 \ll \sqrt{x}\). We conclude that the algorithm whose average time is proportional to \((\ln n)^2\) takes less time for large \(n \).

In Section 7.1, we asserted that exponential functions increase more rapidly than the power functions. We now prove this by showing that \(x^n \ll e^x\) for every exponent \(n \) (Figure 4).

Theorem 3 Growth of \(f(x) = e^x \)

\[x^n \ll e^x \quad \text{for every exponent } n \]

In other words, \(\lim_{x \to \infty} \frac{e^x}{x^n} = \infty \) for all \(n \).

Proof The theorem is true for \(n = 0 \) since \(\lim_{x \to \infty} e^x = \infty \). We use L'Hôpital’s Rule repeatedly to prove that \(e^x/x^n \) tends to \(\infty \) for \(n = 1, 2, 3, \ldots \). For example,

\[
\lim_{x \to \infty} \frac{e^x}{x} = \lim_{x \to \infty} \frac{e^x}{1} = \lim_{x \to \infty} e^x = \infty
\]

Then, having proved that \(e^x/x \to \infty \), we use L'Hôpital’s Rule again:

\[
\lim_{x \to \infty} \frac{e^x}{x^2} = \lim_{x \to \infty} \frac{e^x}{2x} = \frac{1}{2} \lim_{x \to \infty} \frac{e^x}{x} = \infty
\]

Proceeding in this way, we prove the result for all whole numbers \(n \). A more formal proof would use the principle of induction. Finally, if \(k \) is any exponent, choose any whole number \(n \) such that \(n > k \). Then \(e^x/x^n < e^x/x^k \) for \(x > 1 \), so \(e^x/x^k \) must also tend to infinity as \(x \to \infty \).

Proof of L'Hôpital’s Rule

We prove L'Hôpital’s Rule here only in the first case of Theorem 1—namely, in the case that \(f(a) = g(a) = 0 \). We also assume that \(f' \) and \(g' \) are continuous at \(x = a \) and that \(g'(a) \neq 0 \). Then \(g(x) \neq g(a) \) for \(x \) near but not equal to \(a \), and

\[
\frac{f(x)}{g(x)} = \frac{f(x) - f(a)}{g(x) - g(a)} = \frac{f(x) - f(a)}{x - a} \frac{x - a}{g(x) - g(a)} \frac{g(x) - g(a)}{x - a}
\]

By the Quotient Law for Limits and the definition of the derivative,

\[
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{f'(a)}{g'(a)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}
\]
7.7 SUMMARY

- **L'Hôpital’s Rule**: Assume that \(f \) and \(g \) are differentiable near \(a \) and that
 \[f(a) = g(a) = 0 \]
 Assume also that \(g'(x) \neq 0 \) (except possibly at \(a \)). Then
 \[\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \]
 provided that the limit on the right exists or is infinite (\(\infty \) or \(-\infty \)).
- **L'Hôpital’s Rule** applies to indeterminate forms \(0/0 \) and \(\pm\infty/\infty \). It often also applies to \(0 \cdot \infty \) and \(\infty - \infty \), once they are rewritten appropriately.
- **L'Hôpital’s Rule** also applies to limits as \(x \to \infty \) or \(x \to -\infty \).
- Limits involving the indeterminate forms \(0^0, 1^\infty, \) or \(\infty^0 \) can often be evaluated by first taking the logarithm and then applying L'Hôpital’s Rule.
- In comparing the growth rates of functions, we say that \(f(x) \) grows faster than \(g(x) \), and we write \(f \ll g \), if
 \[\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty \]

7.7 EXERCISES

Preliminary Questions

1. What is wrong with applying L'Hôpital’s Rule to \(\lim_{x \to 0} \frac{x^2 - 2x}{3x - 2} \)?
2. Does L'Hôpital’s Rule apply to \(\lim_{x \to a} f(x)g(x) \) if \(f(x) \) and \(g(x) \) both approach \(\infty \) as \(x \to a \)?

Exercises

In Exercises 1–10, use L'Hôpital’s Rule to evaluate the limit, or state that L'Hôpital’s Rule does not apply.

1. \(\lim_{x \to 3} \frac{2x^2 - 5x - 3}{x - 4} \)
2. \(\lim_{x \to -5} \frac{x^2 - 25}{5 - 4x - x^2} \)
3. \(\lim_{x \to 4} \frac{x^3 - 64}{x^2 + 16} \)
4. \(\lim_{x \to 1} \frac{x^4 + 2x + 1}{x^5 - 2x - 1} \)
5. \(\lim_{x \to 9} \frac{x^{1/2} + x - 6}{x^{3/2} - 27} \)
6. \(\lim_{x \to 1} \frac{\sqrt{x + 1} - 2}{x^3 - 7x - 6} \)
7. \(\lim_{x \to 0} \frac{\sin 4x}{x^2 + 3x + 1} \)
8. \(\lim_{x \to 0} \frac{\cos x - \sin x}{x - x} \)
9. \(\lim_{x \to 0} \frac{\cos 2x - 1}{\sin 5x} \)
10. \(\lim_{x \to 0} \frac{\cos x - \sin^2 x}{\sin x} \)

In Exercises 11–16, show that L'Hôpital’s Rule is applicable to the limit as \(x \to \pm\infty \) and evaluate.

11. \(\lim_{x \to \infty} \frac{9x + 4}{3 - 2x} \)
12. \(\lim_{x \to \infty} x \sin \frac{1}{x} \)
13. \(\lim_{x \to \infty} \ln x \)
14. \(\lim_{x \to \infty} \frac{x}{x^{1/3}} \)
15. \(\lim_{x \to \infty} \frac{\ln(x^4 + 1)}{x} \)
16. \(\lim_{x \to \infty} \frac{x^2}{\ln x} \)

In Exercises 17–50, evaluate the limit.

17. \(\lim_{x \to 1} \frac{\sqrt{8 + x - 3x^{1/3}}}{x^2 - 3x + 2} \)
18. \(\lim_{x \to 4} \frac{1}{\sqrt{x - 2} - x - 4} \)
19. \(\lim_{x \to -\infty} \frac{3x - 2}{1 - 5x} \)
20. \(\lim_{x \to \infty} \frac{x^{2/3} + 3x}{x^{5/3} - x} \)
21. \(\lim_{x \to -\infty} \frac{7x^2 + 4x}{9 - 3x^2} \)
22. \(\lim_{x \to \infty} \frac{3x^3 + 4x^2}{9x^3 - 7} \)
23. \(\lim_{x \to 1} \frac{(1 + 3x)^{1/2} - 2}{(1 + 7x)^{1/3} - 2} \)
24. \(\lim_{x \to 0} \frac{\tan 4x}{x^5/2} \)
25. \(\lim_{x \to 0} \frac{2x^2 - 4x}{x^2 - 1} \)
26. \(\lim_{x \to 0} \frac{\ln(x - \frac{1}{3})}{x} \)
27. \(\lim_{x \to \pi/2} \left(x - \frac{\pi}{2} \right) \tan x \)
28. \(\lim_{x \to 0} \frac{\sin x}{x} \)
29. \(\lim_{x \to 0} \frac{\cos(x + \frac{\pi}{2})}{\sin x} \)
30. \(\lim_{x \to 0} \frac{1 - \cos x}{x^2} \)
31. \(\lim_{x \to 0} \frac{\cos x}{\sin x} \)
32. \(\lim_{x \to 0} \frac{1}{x^2 - \cos^2 x} \)
33. \(\lim_{x \to 0} \frac{e^{x^2} - e^4}{x - 2} \)
34. \(\lim_{x \to 0} \frac{e^{x^2} - e^4}{x - 2} \)
35. \(\lim_{x \to -\infty} \frac{\pi x}{2} \ln x \)
36. \(\lim_{x \to 1} \frac{x}{(x - 1) \ln x} \)
37. \(\lim_{x \to 0} \frac{\sqrt{x} - e}{\ln x} \)
38. \(\lim_{x \to 1} \frac{x \ln x}{(x - 1) \ln x} \)
39. \(\lim_{x \to 0} \frac{e^x - 1}{\ln x} \)
40. \(\lim_{x \to 1} \frac{e^x - e}{\ln x} \)
41. \(\lim_{x \to 0} \frac{e^{2x} - 1 - x}{x^2} \)
42. \(\lim_{x \to \infty} \frac{e^{2x} - 1 - x}{x^2} \)
43. \(\lim_{t \to 0^+} (\sin t)(\ln t) \)
44. \(\lim_{x \to \infty} e^{-x}(x^3 - x^2 + 9) \)
45. \(\lim_{x \to 0^+} \frac{a^x - 1}{x} \) \((a > 0)\)
46. \(\lim_{x \to \infty} x^{1/2} \)
47. \(\lim_{x \to 1} (1 + \ln x)^{1/(x-1)} \)
48. \(\lim_{x \to 0^+} x^{\sin x} \)
49. \(\lim_{x \to 0} (\cos x)^{3/x^2} \)
50. \(\lim_{x \to \infty} \left(\frac{x}{x + 1} \right)^x \)

51. Evaluate \(\lim_{x \to \pi/2} \frac{\cos mx}{\cos nx} \), where \(m, n \neq 0 \) are integers.
52. Evaluate \(\lim_{x \to 1} \frac{x^m - 1}{x^n - 1} \) for any numbers \(m, n \neq 0 \).
53. Prove the following limit formula for \(e \):
\[e = \lim_{x \to 0} (1 + x)^{1/x} \]
Then find a value of \(x \) such that \(|(1 + x)^{1/x} - e| \leq 0.001 \).
54. Prove the following limit formula for \(e \):
\[e = \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x \]
55. Show that \(0^\infty \) is not an indeterminate form by showing that if \(f \) is a positive function and \(\lim_{x \to 0} f(x) = 0 \) and \(\lim_{x \to 0} g(x) = \infty \), then \(\lim_{x \to 0} (f(x))^{g(x)} = 0 \).
56. Can L'Hôpital's Rule be applied to \(\lim_{x \to 0} x^{\sin(1/x)} \)? Does a graphical or numerical investigation suggest that the limit exists?
57. Let \(f(x) = x^{1/x} \) for \(x > 0 \).
(a) Calculate \(\lim_{x \to 0^+} f(x) \) and \(\lim_{x \to \infty} f(x) \).
(b) Find the maximum value of \(f \) and determine the intervals on which \(f \) is increasing or decreasing.
58. (a) Use the results of Exercise 57 to prove that \(x^{1/\ln x} = e \) has a unique solution if \(0 < c \leq 1 \) or \(c = e^{1/e} \), two solutions if \(1 < c < e^{1/e} \), and no solutions if \(c > e^{1/e} \).
(b) Plot the graph of \(f(x) = x^{1/x} \) and verify that it confirms the conclusions of (a).
59. Determine whether \(f \ll g \) or \(g \ll f \) (or neither) for the functions \(f(x) = \log_{10} x \) and \(g(x) = \ln x \).
60. Show that \(\lim_{x \to 0} (\ln x)^3 \ll x^{1/3} \) and \((\ln x)^4 \ll x^{1/10} \).
61. Just as exponential functions are distinguished by their rapid rate of increase, the logarithm functions grow particularly slowly. Show that \(\ln x \ll x^a \) for all \(a > 0 \).

Further Insights and Challenges

72. Show that L'Hôpital's Rule applies to \(\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}} \) but that it does not help. Then evaluate the limit directly.

73. The Second Derivative Test for critical points fails if \(f''(c) = 0 \). This exercise develops a Higher Derivative Test based on the sign of the first nonzero derivative. Suppose that
\[f'(c) = f''(c) = \cdots = f^{(n-1)}(c) = 0, \; \text{but} \; f^{(n)}(c) \neq 0 \]
\[(a) \] Show, by applying L'Hôpital's Rule \(n \) times, that
\[\lim_{x
\lim_{x \to c} \frac{f(x) - f(c)}{(x - c)^n} = \frac{1}{n!} f^{(n)}(c) \]
\[\text{where } n! = n(n-1)(n-2)\cdots(2)(1) \]
\[(b) \] Use (a) to show that if \(n \) is even, then \(f(c) \) is a local minimum if \(f^{(n)}(c) > 0 \) and is a local maximum if \(f^{(n)}(c) < 0 \). Hint: If \(n \) is even,
Let then \((x - e)^n > 0\) for \(x \neq a\), so \(f(x) - f(c)\) must be positive for \(x\) near \(c\) if \(f^{(n)}(c) > 0\).

(c) Use (a) to show that if \(n\) is odd, then \(f(c)\) is neither a local minimum nor a local maximum.

74. When a spring with natural frequency \(\lambda/2\pi\) is driven with a sinusoidal force \(\sin(\omega t)\) with \(\omega \neq \lambda\), it oscillates according to

\[
y(t) = \frac{1}{\lambda^2 - \omega^2} (\lambda \sin(\omega t) - \omega \sin(\lambda t))
\]

Let \(y_0(t) = \lim_{\omega \to \lambda} y(t)\).

(a) Use L'Hôpital's Rule to determine \(y_0(t)\).

(b) Show that \(y_0(t)\) ceases to be periodic and that its amplitude \(|y_0(t)|\) tends to \(\infty\) as \(t \to \infty\) (the system is said to be in **resonance**; eventually, the spring is stretched beyond its structural tolerance).

(c) **CAS** Plot \(y\) for \(\lambda = 1\) and \(\omega = 0.8, 0.9, 0.99,\) and 0.999. Do the graphs confirm your conclusion in (b)?

75. We expended a lot of effort to evaluate \(\lim_{x \to 0} \sin x / x\) in Chapter 2. Show that we could have evaluated it easily using L'Hôpital's Rule. Then explain why this method would involve circular reasoning.

76. By a fact from algebra, if \(f, g\) are polynomials such that \(f(a) = g(a) = 0\), then there are polynomials \(f_1, g_1\) such that

\[
f(x) = (x - a)f_1(x), \quad g(x) = (x - a)g_1(x)
\]

Use this to verify L'Hôpital's Rule directly for \(\lim_{x \to a} f(x) / g(x)\).

77. Patience Required Use L'Hôpital's Rule to evaluate and check your answers numerically:

(a) \(\lim_{x \to 0^+} \left(\frac{\sin x}{x}\right)^{1/x^2}\)

(b) \(\lim_{x \to 0} \left(\frac{1}{\sin^2 x} - \frac{1}{x^2}\right)\)

78. In the following cases, check that \(x = c\) is a critical point and use Exercise 73 to determine whether \(f(c)\) is a local minimum or a local maximum.

(a) \(f(x) = x^5 - 6x^4 + 14x^3 - 16x^2 + 9x + 12\) \(c = 1\)

(b) \(f(x) = x^6 - x^3\) \(c = 0\)

7.8 Inverse Trigonometric Functions

In this section, we discuss the inverse trigonometric functions and their derivatives. We have seen that the inverse function \(f^{-1}\) exists if and only if \(f\) is one-to-one on its domain. Because the trigonometric functions are not one-to-one, we must restrict their domains to define their inverses.

First consider the sine function. Figure 1 shows that \(f(\theta) = \sin \theta\) is one-to-one on \([-\pi/2, \pi/2]\). With this interval as domain, the inverse is called the **arcsine function** and is denoted \(\theta = \sin^{-1} x\) or \(\theta = \arcsin x\). By definition,

\[
\theta = \sin^{-1} x \text{ is the unique angle in } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \text{ such that } \sin \theta = x
\]

The range of \(f(x) = \sin x\) is \([-1, 1]\), so \(f^{-1}(x) = \sin^{-1} x\) has domain \([-1, 1]\). A table of values for the arcsine (Table 1) is obtained by reversing the columns in a table of values for \(\sin x\).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(-1)</th>
<th>(-\frac{\sqrt{3}}{2})</th>
<th>(-\frac{\sqrt{2}}{2})</th>
<th>(-\frac{1}{2})</th>
<th>0</th>
<th>(\frac{1}{2})</th>
<th>(\frac{\sqrt{2}}{2})</th>
<th>(\frac{\sqrt{3}}{2})</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta)</td>
<td>(-\frac{\pi}{2})</td>
<td>(-\frac{\pi}{3})</td>
<td>(-\frac{\pi}{4})</td>
<td>(-\pi/6)</td>
<td>(0)</td>
<td>(\pi/6)</td>
<td>(\pi/4)</td>
<td>(\pi/3)</td>
<td>(\pi/2)</td>
</tr>
</tbody>
</table>

EXAMPLE 1 (a) Show that \(\sin^{-1} \left(\sin \left(\frac{\pi}{4}\right)\right) = \frac{\pi}{4}\).

(b) Explain why \(\sin^{-1} \left(\sin \left(\frac{5\pi}{4}\right)\right) \neq \frac{5\pi}{4}\).
Summary of inverse relation between the cosine and arccosine:

- \(\cos(\cos^{-1} x) = x \) for \(-1 \leq x \leq 1\)
- \(\cos^{-1}(\cos \theta) = \theta \) for \(0 \leq \theta \leq \pi\)

Solution

The equation \(\sin^{-1}(\sin \theta) = \theta \) is valid only if \(\theta \) lies in \([-\frac{\pi}{2}, \frac{\pi}{2}] \).

(a) Because \(\frac{\pi}{4} \) lies in the required interval, \(\sin^{-1}\left(\sin\left(\frac{\pi}{4}\right) \right) = \frac{\pi}{4} \).

(b) Let \(\theta = \sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right) \right) \). By definition, \(\theta \) is the angle in \([-\frac{\pi}{2}, \frac{\pi}{2}] \) such that \(\sin \theta = \sin\left(\frac{5\pi}{4}\right) \). By the identity \(\sin(\pi - \theta) = \sin \theta \) (Figure 2),

\[
\sin\left(\frac{5\pi}{4}\right) = \sin\left(\pi - \frac{5\pi}{4}\right) = \sin\left(-\frac{\pi}{4}\right)
\]

The angle \(-\frac{\pi}{4}\) lies in the required interval, so \(\theta = \sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right) \right) = -\frac{\pi}{4} \).

The cosine function is one-to-one on \([0, \pi]\) rather than \([-\frac{\pi}{2}, \frac{\pi}{2}] \) (Figure 3). With this domain, the inverse is called the **arccosine function** and is denoted \(\theta = \cos^{-1} x \) or \(\theta = \arccos x \). It has domain \([-1, 1]\). By definition,

\[\theta = \cos^{-1} x \text{ is the unique angle in } [0, \pi] \text{ such that } \cos \theta = x \]

To compute the derivatives of inverse trigonometric functions, we will need to simplify composite expressions such as \(\cos(\sin^{-1} x) \) and \(\tan(\sin^{-1} x) \). This can be done in two ways: by referring to the appropriate right triangle or by using trigonometric identities.

Example 2 Find an alternative form in terms of \(x \) for each of \(\cos(\sin^{-1} x) \) and \(\tan(\sin^{-1} x) \).

Solution

This problem asks for the values of \(\cos \theta \) and \(\tan \theta \) at the angle \(\theta = \sin^{-1} x \). Consider a right triangle with hypotenuse of length 1 and angle \(\theta \) such that \(\sin \theta = x \), as in Figure 4. By the Pythagorean Theorem, the adjacent side has length \(\sqrt{1 - x^2} \). Now we can read off the values from Figure 7:

\[
\cos(\sin^{-1} x) = \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \sqrt{1 - x^2}
\]

\[
\tan(\sin^{-1} x) = \tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{x}{\sqrt{1 - x^2}}
\]

Alternatively, we may argue using trigonometric identities. Because \(\sin \theta = x \),

\[
\cos(\sin^{-1} x) = \cos \theta = \sqrt{1 - \sin^2 \theta} = \sqrt{1 - x^2}
\]

We are justified in taking the positive square root in either approach because \(\theta = \sin^{-1} x \) lies in \([-\frac{\pi}{2}, \frac{\pi}{2}] \) and \(\cos \theta \) is positive in this interval.
We now address the remaining trigonometric functions. The function \(f(\theta) = \tan(\theta) \) is one-to-one on \((-\frac{\pi}{2}, \frac{\pi}{2})\), and \(f(\theta) = \cot(\theta) \) is one-to-one on \((0, \pi)\) (see Figure 10 in Section 1.4). We define their inverses by restricting them to these domains:

\[
\theta = \tan^{-1} x \text{ is the unique angle in } \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \text{ such that } \tan(\theta) = x
\]

\[
\theta = \cot^{-1} x \text{ is the unique angle in } (0, \pi) \text{ such that } \cot(\theta) = x
\]

The range of both \(f(\theta) = \tan(\theta) \) and \(f(\theta) = \cot(\theta) \) is the set of all real numbers \(\mathbb{R} \). Therefore, \(\theta = \tan^{-1} x \) and \(\theta = \cot^{-1} x \) have domain \(\mathbb{R} \) (Figure 5).

The function \(f(\theta) = \sec(\theta) \) is not defined at \(\theta = \frac{\pi}{2} \), but we see in Figure 6 that it is one-to-one on both \([-\frac{\pi}{2}, \frac{\pi}{2})\) and \((\frac{\pi}{2}, \pi]\). Similarly, \(f(\theta) = \csc(\theta) \) is not defined at \(\theta = 0 \), but it is one-to-one on \([-\frac{\pi}{2}, 0)\) and \((0, \frac{\pi}{2}]\). We define the inverse functions as follows:

\[
\theta = \sec^{-1} x \text{ is the unique angle in } [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \text{ such that } \sec(\theta) = x
\]

\[
\theta = \csc^{-1} x \text{ is the unique angle in } [-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}] \text{ such that } \csc(\theta) = x
\]

Figure 6 shows that the range of \(f(\theta) = \sec(\theta) \) is the set of real numbers \(x \) such that \(|x| \geq 1 \). The same is true of \(f(\theta) = \csc(\theta) \). It follows that both \(\theta = \sec^{-1} x \) and \(\theta = \csc^{-1} x \) have domain \(\{x : |x| \geq 1\} \).

We now apply implicit differentiation to determine the derivatives of the inverse trigonometric functions. An interesting feature of these functions is that their derivatives are not trigonometric. Rather, they involve quadratic expressions and their square roots. Keep in mind the restricted domains of these functions.

THEOREM 1 Derivatives of Arcsine and Arccosine

\[
\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1 - x^2}} \quad \quad \frac{d}{dx}(\cos^{-1} x) = -\frac{1}{\sqrt{1 - x^2}}
\]

Proof If \(y = \sin^{-1} x \), our goal is to find \(\frac{dy}{dx} \). By applying sine to both sides, we have

\[
\sin y = x
\]
Differentiating both sides of the equation, treating x as itself and y as a function of x, we obtain

\[\cos y \frac{dy}{dx} = 1 \]
\[\frac{dy}{dx} = \frac{1}{\cos y} \]

In order to determine an algebraic expression in x for $\cos y$, we construct a right triangle as in Figure 7 such that $\sin y = x$. We choose y to be its angle, and take its hypotenuse to be of length 1 and its opposite edge to have length x. Then, by the Pythagorean Theorem, its adjacent side must have length $\sqrt{1 - x^2}$. We can therefore read off the triangle that $\cos y = \frac{\sqrt{1 - x^2}}{1} = \sqrt{1 - x^2}$. Thus,

\[\frac{dy}{dx} = \frac{1}{\cos y} = \frac{1}{\sqrt{1 - x^2}} \]

The fact that the domain of the inverse sine function is from $-\pi/2$ to $\pi/2$, over which cosine is nonnegative, allows us to take the positive square root rather than the negative square root.

The computation of $\frac{d}{dx}(\cos^{-1} x)$ is similar (see Exercise 49 or the next example).

\[\text{EXAMPLE 3 Complementary Angles} \]

The derivatives of $\sin^{-1} x$ and $\cos^{-1} x$ are equal up to a minus sign. Explain this by proving that

\[\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \]

\[\text{Solution} \]

In Figure 8, we have $\theta = \sin^{-1} x$ and $\psi = \cos^{-1} x$. These angles are complementary, so $\theta + \psi = \frac{\pi}{2}$ as claimed. Therefore,

\[\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x \]

\[\frac{d}{dx} \sin^{-1} x = \frac{d}{dx} \left(\frac{\pi}{2} - \cos^{-1} x \right) = - \frac{d}{dx} \cos^{-1} x \]

\[\text{EXAMPLE 4 Calculate } f'(\frac{1}{2}), \text{ where } f(x) = \arcsin(x^2). \]

\[\text{Solution} \]

Recall that $\arcsin x$ is another notation for $\sin^{-1} x$. By the Chain Rule,

\[\frac{d}{dx} \arcsin(x^2) = \frac{d}{dx} (\sin^{-1}(x^2)) = \frac{1}{\sqrt{1 - (x^2)^2}} \frac{d}{dx} (x^2) = \frac{2x}{\sqrt{1 - x^4}} \]

\[f'\left(\frac{1}{2}\right) = \frac{2\left(\frac{1}{2}\right)}{\sqrt{1 - \left(\frac{1}{2}\right)^2}} = \frac{1}{\sqrt{\frac{15}{16}}} = \frac{4}{\sqrt{15}} \]

\[\text{THEOREM 2 Derivatives of Inverse Trigonometric Functions} \]

\[\frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad \frac{d}{dx} \cot^{-1} x = -\frac{1}{x^2 + 1} \]
\[\frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad \frac{d}{dx} \csc^{-1} x = -\frac{1}{|x|\sqrt{x^2 - 1}} \]
EXAMPLE 5 Calculate \(\left. \frac{d}{dx} (\csc^{-1}(e^x + 1)) \right|_{x=0} \).

Solution Apply the Chain Rule using the formula \(\frac{d}{du} \csc^{-1} u = -\frac{1}{|u|\sqrt{u^2 - 1}} \):

\[
\frac{d}{dx} \csc^{-1}(e^x + 1) = -\frac{1}{(e^x + 1)\sqrt{(e^x + 1)^2 - 1}} \frac{d}{dx}(e^x + 1) = -\frac{e^x}{(e^x + 1)\sqrt{e^{2x} + 2e^x}}
\]

We have replaced \(|e^x + 1| \) by \(e^x + 1 \) because this quantity is positive. Now we have

\[
\left. \frac{d}{dx} \csc^{-1}(e^x + 1) \right|_{x=0} = -\frac{e^0}{(e^0 + 1)\sqrt{e^0 + 2e^0}} = -\frac{1}{2\sqrt{3}}.
\]

The formulas for the derivatives of the inverse trigonometric functions yield the following integration formulas.

<table>
<thead>
<tr>
<th>Inverse Trigonometric Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1} x + C)</td>
</tr>
<tr>
<td>(\int \frac{dx}{x^2 + 1} = \tan^{-1} x + C)</td>
</tr>
<tr>
<td>(\int \frac{dx}{</td>
</tr>
</tbody>
</table>

In this list, we omit the integral formulas corresponding to the derivatives of \(y = \cos^{-1} x \), \(y = \cot^{-1} x \), and \(y = \csc^{-1} x \) because the integrals differ only by a minus sign from those already on the list. For example,

\[
\frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1-x^2}}, \quad \int \frac{dx}{\sqrt{1-x^2}} = -\cos^{-1} x + C
\]

EXAMPLE 6 Evaluate \(\int_{0}^{1} \frac{dx}{x^2 + 1} \).

Solution This integral is the area of the region in Figure 9. By Eq. (3),

\[
\int_{0}^{1} \frac{dx}{x^2 + 1} = \tan^{-1} x \bigg|_{0}^{1} = \tan^{-1} 1 - \tan^{-1} 0 = \frac{\pi}{4} - 0 = \frac{\pi}{4}.
\]

EXAMPLE 7 Using Substitution Evaluate \(\int_{1/\sqrt{2}}^{1} \frac{dx}{x\sqrt{4x^2 - 1}} \).

Solution Notice that \(\sqrt{4x^2 - 1} \) can be written as \(\sqrt{(2x)^2 - 1} \), so it makes sense to try the substitution \(u = 2x \), \(du = 2 \, dx \). Then

\[
u^2 = 4x^2 \quad \text{and} \quad \sqrt{4x^2 - 1} = \sqrt{u^2 - 1}
\]

The new limits of integration are \(u \left(\frac{1}{\sqrt{2}} \right) = 2 \left(\frac{1}{\sqrt{2}} \right) = \sqrt{2} \) and \(u(1) = 2 \). By Eq. (4),

\[
\int_{1/\sqrt{2}}^{1} \frac{dx}{x\sqrt{4x^2 - 1}} = \int_{\sqrt{2}}^{2} \frac{1}{2u\sqrt{u^2 - 1}} = \int_{\sqrt{2}}^{2} \frac{du}{u\sqrt{u^2 - 1}} = \sec^{-1} 2 - \sec^{-1} \sqrt{2} = \frac{\pi}{3} - \frac{\pi}{4} = \frac{\pi}{12}.
\]
EXAMPLE 8 Using Substitution Evaluate \(\int_0^{3/4} \frac{dx}{\sqrt{9 - 16x^2}} \).

Solution Let us first rewrite the integrand:

\[
\sqrt{9 - 16x^2} = \sqrt{9 \left(1 - \frac{16x^2}{9}\right)} = 3 \sqrt{1 - \left(\frac{4x}{3}\right)^2}
\]

Thus, it makes sense to use the substitution \(u = \frac{4}{3}x \). Then \(du = \frac{4}{3}dx \) and

\[
x = \frac{3}{4}u, \quad dx = \frac{3}{4}\, du, \quad \sqrt{9 - 16x^2} = 3\sqrt{1 - u^2}
\]

The new limits of integration are \(u(0) = 0 \) and \(u(\frac{3}{4}) = 1 \):

\[
\int_0^{3/4} \frac{dx}{\sqrt{9 - 16x^2}} = \int_0^1 \frac{\frac{3}{4}\, du}{3\sqrt{1 - u^2}} = \frac{1}{4} \sin^{-1} x \bigg|_0^1 = \frac{1}{4} (\sin^{-1} 1 - \sin^{-1} 0) = \frac{1}{4} \left(\frac{\pi}{2}\right) = \frac{\pi}{8}
\]

7.8 SUMMARY

- The arcsine and arccosine are defined for \(-1 \leq x \leq 1\):
 \[
 \theta = \sin^{-1} x \quad \text{is the unique angle in } [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ such that } \sin \theta = x
 \]
 \[
 \theta = \cos^{-1} x \quad \text{is the unique angle in } [0, \pi] \text{ such that } \cos \theta = x
 \]

- The tangent and cotangent are defined for all \(x \):
 \[
 \theta = \tan^{-1} x \quad \text{is the unique angle in } (-\frac{\pi}{2}, \frac{\pi}{2}) \text{ such that } \tan \theta = x
 \]
 \[
 \theta = \cot^{-1} x \quad \text{is the unique angle in } (0, \pi) \text{ such that } \cot \theta = x
 \]

- The secant and cosecant are defined for \(|x| \geq 1\):
 \[
 \theta = \sec^{-1} x \quad \text{is the unique angle in } [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi] \text{ such that } \sec \theta = x
 \]
 \[
 \theta = \csc^{-1} x \quad \text{is the unique angle in } [-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}] \text{ such that } \csc \theta = x
 \]

- Derivative formulas:
 \[
 \frac{d}{dx} \sin^{-1} x = \frac{1}{\sqrt{1 - x^2}}, \quad \frac{d}{dx} \cos^{-1} x = -\frac{1}{\sqrt{1 - x^2}}
 \]
 \[
 \frac{d}{dx} \tan^{-1} x = \frac{1}{x^2 + 1}, \quad \frac{d}{dx} \cot^{-1} x = -\frac{1}{x^2 + 1}
 \]
 \[
 \frac{d}{dx} \sec^{-1} x = \frac{1}{|x|\sqrt{x^2 - 1}}, \quad \frac{d}{dx} \csc^{-1} x = -\frac{1}{|x|\sqrt{x^2 - 1}}
 \]

- Integral formulas:
 \[
 \int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1} x + C
 \]
 \[
 \int \frac{dx}{x^2 + 1} = \tan^{-1} x + C
 \]
 \[
 \int \frac{dx}{|x|\sqrt{x^2 - 1}} = \sec^{-1} x + C
 \]
7.8 EXERCISES

Preliminary Questions
1. Which of the following quantities is undefined?
 (a) $\sin^{-1}\left(-\frac{1}{3}\right)$
 (b) $\cos^{-1}(2)$
 (c) $\csc^{-1}\left(\frac{1}{2}\right)$
 (d) $\csc^{-1}(2)$

2. Give an example of an angle θ such that $\cos^{-1}(\cos \theta) \neq \theta$. Does this contradict the definition of inverse function?

3. What is the geometric interpretation of the identity
 $$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$

What does this identity tell us about the derivatives of $\sin^{-1} x$ and $\cos^{-1} x$?

4. Find b such that $\int_{0}^{b} \frac{dx}{1 + x^2} = \frac{\pi}{3}$.

5. Which relation between x and u yields $\sqrt{16 + x^2} = 4\sqrt{1 + u^2}$?

Exercises
In Exercises 1–6, evaluate without using a calculator.

1. $\cos^{-1} 1$
2. $\sin^{-1} \frac{1}{2}$
3. $\cot^{-1} 1$
4. $\sec^{-1} \frac{2}{\sqrt{3}}$
5. $\tan^{-1} \sqrt{3}$
6. $\sin^{-1}(-1)$

In Exercises 7–16, compute without using a calculator.

7. $\sin^{-1}\left(\sin\frac{\pi}{3}\right)$
8. $\sin^{-1}\left(\sin\frac{4\pi}{3}\right)$
9. $\cos^{-1}\left(\cos\frac{3\pi}{2}\right)$
10. $\sin^{-1}\left(\sin\left(-\frac{5\pi}{6}\right)\right)$
11. $\tan^{-1}\left(\tan\frac{3\pi}{4}\right)$
12. $\tan^{-1}(\tan \pi)$
13. $\sec^{-1}(\sec 3\pi)$
14. $\sec^{-1}\left(\sec\frac{3\pi}{2}\right)$
15. $\csc^{-1}(\csc(-\pi))$
16. $\cot^{-1}\left(\cot\left(-\frac{\pi}{4}\right)\right)$

In Exercises 17–20, simplify by referring to the appropriate triangle or trigonometric identity.

17. $\tan(\cos^{-1} x)$
18. $\cos(\tan^{-1} x)$
19. $\cot(\sec^{-1} x)$
20. $\cot(\sin^{-1} x)$

In Exercises 21–28, refer to the appropriate triangle or trigonometric identity to compute the given value.

21. $\cos(\sin^{-1} \frac{2}{3})$
22. $\tan(\cos^{-1} \frac{2}{3})$
23. $\tan(\sin^{-1} 0.8)$
24. $\cos(\cot^{-1} 1)$
25. $\cot(\csc^{-1} 2)$
26. $\tan(\sec^{-1}(-2))$
27. $\cot(\tan^{-1} 20)$
28. $\sin(\csc^{-1} 20)$

In Exercises 29–32, compute the derivative at the point indicated without using a calculator.

29. $y = \sin^{-1} x$, $x = \frac{3}{5}$
30. $y = \tan^{-1} x$, $x = \frac{1}{2}$
31. $y = \sec^{-1} x$, $x = 4$
32. $y = \arccos(4x)$, $x = \frac{1}{5}$

In Exercises 33–48, find the derivative.

33. $y = \sin^{-1}(7x)$
34. $y = \arctan\left(\frac{x}{3}\right)$
35. $y = \cos^{-1}(x^2)$
36. $y = \sec^{-1}(t + 1)$
37. $y = x^{-1} \tan^{-1} x$
38. $y = e^{\cos^{-1} x}$
39. $y = \arcsin(e^x)$
40. $y = \csc^{-1}(x^{-1})$
41. $y = \sqrt{1-t^2} + \sin^{-1} t$
42. $y = \tan^{-1}\left(\frac{1+t}{1-t}\right)$
43. $y = (\tan^{-1} x)^3$
44. $y = \frac{\cos^{-1} x}{\sin^{-1} x}$
45. $y = x^{-1} \cos^{-1} t - \sec^{-1} t$
46. $y = \cos^{-1}(x + \sin^{-1} x)$
47. $y = \arccos(\ln x)$
48. $y = \ln(\arcsin x)$

49. Use Figure 10 to prove that $(\cos^{-1} x)' = -\frac{1}{\sqrt{1-x^2}}$

50. Show that $(\tan^{-1} x)' = \cos^2(\tan^{-1} x)$ and then use Figure 11 to prove that $(\tan^{-1} x)' = (x^2 + 1)^{-1}$.

51. Let $\theta = \sec^{-1} x$. Show that $\tan \theta = \sqrt{x^2 - 1}$ if $x \geq 1$ and that $\tan \theta = -\sqrt{x^2 - 1}$ if $x \leq -1$. Hint: $\tan \theta \geq 0$ on $(0, \frac{\pi}{2})$ and $\tan \theta \leq 0$ on $(\frac{\pi}{2}, \pi)$.

52. Use Exercise 51 to verify the formula
 $$(\sec^{-1} x)' = \frac{1}{|x|\sqrt{x^2 - 1}}$$
In Exercises 53–56, evaluate the definite integral.

53. \[\int_{\tan 1}^{\tan 8} \frac{dx}{x^2 + 1} \]
54. \[\int_{2}^{7} \frac{x \, dx}{x^2 + 1} \]
55. \[\int_{0}^{\frac{1}{2}} \frac{dx}{\sqrt{1 - x^2}} \]
56. \[\int_{-2}^{2} \frac{dx}{|x| \sqrt{x^2 - 1}} \]

57. Use the substitution \(u = x/3 \) to prove
\[\int 3 \tan^{-1} \frac{x}{3} + C \]

58. Use the substitution \(u = 2x \) to evaluate \[\int \frac{dx}{4x^2 + 1} \]

In Exercises 59–72, calculate the integral.

59. \[\int_{0}^{3} \frac{dx}{x^2 + 3} \]
60. \[\int_{0}^{4} \frac{dt}{4t^2 + 9} \]
61. \[\int \frac{dt}{\sqrt{1 - 16t^2}} \]
62. \[\int_{-1}^{3} \frac{dx}{\sqrt{4 - 25x^2}} \]
63. \[\int \frac{dt}{\sqrt{5 - 3t^2}} \]
64. \[\int_{1/4}^{1/2} \frac{dx}{x \sqrt{16x^2 - 1}} \]
65. \[\int \frac{dx}{x \sqrt{12x^2 - 3}} \]
66. \[\int \frac{dx}{x^4 + 1} \]
67. \[\int \frac{dx}{x \sqrt{x^4 - 1}} \]
68. \[\int_{0}^{1/2} \frac{(x + 1) \, dx}{\sqrt{1 - x^2}} \]
69. \[\int \frac{\ln(\cos^{-1} x) \, dx}{(\cos^{-1} x) \sqrt{1 - x^2}} \]
70. \[\int \frac{\tan^{-1} x \, dx}{1 + x^2} \]
71. \[\int \frac{dx}{\sqrt{x^3 - 1}} \]
72. \[\int \frac{dx}{\sqrt{x^2 + 1}} \]

In Exercises 73–110, evaluate the integral using the methods covered in the text so far.

73. \[\int ye^{y^2} \, dy \]
74. \[\int \frac{dx}{3x + 5} \]
75. \[\int \frac{x \, dx}{\sqrt{4x^2 + 9}} \]
76. \[\int (x - x^{-2})^2 \, dx \]
77. \[\int \sqrt{7 - x} \, dx \]
78. \[\int e^{9 - 12t} \, dt \]
79. \[\int \sec^2 \theta \tan \theta \, d\theta \]
80. \[\int \frac{\cos(\ln t) \, dt}{t} \]
81. \[\int \frac{t \, dt}{\sqrt{7 - t}} \]
82. \[\int 2^t e^{4t} \, dt \]
83. \[\int \frac{(3x + 2) \, dx}{x^2 + 4} \]
84. \[\int \tan(4x + 1) \, dx \]
85. \[\int \frac{dx}{\sqrt{1 - 16x^2}} \]
86. \[\int e^\sqrt{e^t + 1} \, dt \]
87. \[\int (e^{-x} - 4x) \, dx \]
88. \[\int (7 - e^{10x}) \, dx \]
89. \[\int \frac{e^{2x} - e^{4x}}{e^x} \, dx \]
90. \[\int \frac{dx}{x \sqrt{25x^2 - 1}} \]
91. \[\int \frac{(x + 5) \, dx}{\sqrt{4 - x^2}} \]
92. \[\int (t + 1) \sqrt{t + 1} \, dt \]
93. \[\int e^x \cos(e^x) \, dx \]
94. \[\int \frac{e^x}{\sqrt{x^2 + 1}} \, dx \]
95. \[\int \frac{dx}{\sqrt{9 - 16x^2}} \]
96. \[\int \frac{dx}{(4x - 1) \ln(8x - 2)} \]
97. \[\int e^x (e^{2x} + 1)^3 \, dx \]
98. \[\int \frac{dx}{x \ln x} \]
99. \[\int \frac{x^2 dx}{x^3 + 2} \]
100. \[\int \frac{dx}{(3x - 1) \sqrt{9 - 2x + 3x^2}} \]
101. \[\int \frac{dx}{\sqrt{2} \sin x + 3} \]
102. \[\int \frac{\cos x \, dx}{2 \sin x + 3} \]
103. \[\int \frac{dx}{\ln(\ln x) \, x \ln x} \]
104. \[\int \frac{e^x dx}{\cos x} \]
105. \[\int x 3^{2x} \, dx \]
106. \[\int \frac{dx}{\sqrt{1 - t^4}} \]
107. \[\int \cot x \ln(\sin x) \, dx \]
108. \[\int \frac{t \, dx}{\cos x \, 5\sin x} \]
109. \[\int \sqrt{1 - t^3} \, dt \]
110. \[\int \cos x 5^{-2} \sin x \, dx \]

111. Use Figure 12 to prove
\[\int_{0}^{x} \sqrt{1 - t^2} \, dt = \frac{1}{2} \sqrt{1 - x^2} + \frac{1}{2} \sin^{-1} x \]

\[\begin{align*}
\text{FIGURE 12} & \\
\end{align*} \]

112. Use the substitution \(u = \tan x \) to evaluate
\[\int \frac{dx}{1 + \sin^2 x} \]

\[\text{Hint: Show that} \]
\[\frac{dx}{1 + \sin^2 x} = \frac{du}{1 + 2u^2} \]

113. Prove:
\[\int \sin^{-1} t \, dt = \sqrt{1 - t^2} + t \sin^{-1} t \]
Further Insights and Challenges

114. A cylindrical tank of radius R and length L lying horizontally as in Figure 13 is filled with oil to height h.

(a) Show that the volume $V(h)$ of oil in the tank as a function of height h is

$$V(h) = L \left(R^2 \cos^{-1} \left(1 - \frac{h}{R} \right) - (R - h)\sqrt{2hR - h^2} \right)$$

(b) Show that $\frac{dV}{dh} = 2L\sqrt{h(2R - h)}$.

(c) Suppose that $R = 2$ m and $L = 12$ m, and that the tank is filled at a constant rate of 1.5 m3/min. How fast is the height h increasing when $h = 3$ m?

7.9 Hyperbolic Functions

The hyperbolic functions are certain special combinations of e^x and e^{-x} that play a role in engineering and physics (see Figure 1 for a real-life example). The hyperbolic sine and cosine, often called “cinch” and “cosh,” are defined as follows:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$

As the terminology suggests, there are similarities between the hyperbolic and trigonometric functions. Here are some examples:

- **Parity:** The trigonometric functions and their hyperbolic analogs have the same parity. Thus, $f(x) = \sin x$ and $f(x) = \sinh x$ are both odd, and $f(x) = \cos x$ and $f(x) = \cosh x$ are both even (Figure 2):

 $$\sin(-x) = -\sin x, \quad \cosh(-x) = \cosh x$$

- **Identities:** The basic trigonometric identity $\sin^2 x + \cos^2 x = 1$ has a hyperbolic analog:

 $$\cosh^2 x - \sinh^2 x = 1$$

The addition formulas satisfied by $\sin x$ and $\cos x$ also have hyperbolic analogs:

$$\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y$$

$$\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y$$

- **Hyperbola instead of the circle:** Because of the identity $\cosh^2 t - \sinh^2 t = 1$, the point $(\cosh t, \sinh t)$ lies on the hyperbola $x^2 - y^2 = 1$, just as $(\cos t, \sin t)$ lies on the unit circle $x^2 + y^2 = 1$ (Figure 3).
SECTION 7.9 Hyperbolic Functions

Hyperbolic Functions

\((\cosh t, \sinh t) \)

\[x^2 - y^2 = 1 \]

\[x^2 + y^2 = 1 \]

\[y = \sinh x \text{ is an odd function; } y = \cosh x \text{ is an even function.} \]

\[\text{Other hyperbolic functions:} \quad \text{The hyperbolic tangent, cotangent, secant, and cosecant functions (see Figures 4 and 5) are defined like their trigonometric counterparts:} \]

\[\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}, \quad \text{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}} \]

\[\coth x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}, \quad \text{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}} \]

\[\text{EXAMPLE 1 Verifying the Basic Identity} \quad \text{Verify Eq. (1): } \cosh^2 x - \sinh^2 x = 1. \]

\[\text{Solution} \quad \text{Because } \cosh x = \frac{1}{2}(e^x + e^{-x}) \text{ and } \sinh x = \frac{1}{2}(e^x - e^{-x}), \text{ we have} \]

\[\cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x} \]

We obtain Eq. (1) by multiplying these two equations together:

\[\cosh^2 x - \sinh^2 x = (\cosh x + \sinh x)(\cosh x - \sinh x) = e^x \cdot e^{-x} = 1 \]

Derivatives of Hyperbolic Functions

The formulas for the derivatives of the hyperbolic functions are similar to those for the corresponding trigonometric functions, differing at most by a sign.

Consider the hyperbolic sine and cosine:

\[\sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2} \]

Their derivatives are

\[\frac{d}{dx} \sinh x = \cosh x, \quad \frac{d}{dx} \cosh x = \sinh x \]
We can check this directly. For example,

\[
\frac{d}{dx} \left(\frac{e^x - e^{-x}}{2} \right) = \frac{e^x + e^{-x}}{2} = \cosh x
\]

Note the resemblance to the formulas \(\frac{d}{dx} \sin x = \cos x \), \(\frac{d}{dx} \cos x = -\sin x \). The derivatives of the other hyperbolic functions, which are computed in a similar fashion, also differ from their trigonometric counterparts by a sign at most.

Derivatives of Hyperbolic and Trigonometric Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tanh x)</td>
<td>(\text{sech}^2 x)</td>
</tr>
<tr>
<td>(\sec x)</td>
<td>(\tan x)</td>
</tr>
<tr>
<td>(\cot x)</td>
<td>(-\csc^2 x)</td>
</tr>
<tr>
<td>(\operatorname{csch} x)</td>
<td>(-\coth x)</td>
</tr>
</tbody>
</table>

Example 2
Verify \(\frac{d}{dx} \coth x = -\operatorname{csch}^2 x \).

Solution By the Quotient Rule and the identity \(\cosh^2 x - \sinh^2 x = 1 \),

\[
\frac{d}{dx} \coth x = \frac{\cosh x}{\sinh x} = \frac{(\cosh x)'(\sinh x) - (\cosh x)(\sinh x)'}{\sinh^2 x} = \frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x} = -\frac{1}{\sinh^2 x} = -\operatorname{csch}^2 x
\]

Example 3
Calculate: (a) \(\frac{d}{dx} \cosh(3x^2 + 1) \) and (b) \(\frac{d}{dx} \sinh x \tanh x \).

Solution
(a) By the Chain Rule, \(\frac{d}{dx} \cosh(3x^2 + 1) = 6x \sinh(3x^2 + 1) \).
(b) By the Product Rule,

\[
\frac{d}{dx} (\sinh x \tanh x) = \sinh x \operatorname{sech}^2 x + \tanh x \cosh x = \sinh x \tanh x + \sinh x
\]

The formulas for the derivatives of the hyperbolic functions are equivalent to the following integral formulas:

Integral Formulas

\[
\int \sinh x \, dx = \cosh x + C, \quad \int \cosh x \, dx = \sinh x + C
\]
\[
\int \operatorname{sech}^2 x \, dx = \tanh x + C, \quad \int \cosh^2 x \, dx = -\coth x + C
\]
\[
\int \operatorname{sech} x \tanh x \, dx = -\operatorname{sech} x + C, \quad \int \csc x \coth x \, dx = -\csc x + C
\]
EXAMPLE 4 Calculate \(\int x \cosh(x^2) \, dx \).

Solution The substitution \(u = x^2, \, du = 2x \, dx \) yields

\[
\int x \cosh(x^2) \, dx = \frac{1}{2} \int \cosh u \, du = \frac{1}{2} \sinh u
\]

\[
= \frac{1}{2} \sinh(x^2) + C
\]

Inverse Hyperbolic Functions

Each of the hyperbolic functions except \(f(x) = \cosh x \) and \(f(x) = \sech x \) is one-to-one on its domain and therefore has a well-defined inverse. The functions \(f(x) = \cosh^{-1} x \) and \(f(x) = \sech^{-1} x \) denote the corresponding inverses (Figure 6). In reading the following table, keep in mind that the domain of the inverse is equal to the range of the function.

Inverse Hyperbolic Functions and Their Derivatives

<table>
<thead>
<tr>
<th>Function</th>
<th>Domain</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = \sinh^{-1} x)</td>
<td>all (x)</td>
<td>(\frac{d}{dx} \sinh^{-1} x = \frac{1}{\sqrt{x^2 + 1}})</td>
</tr>
<tr>
<td>(y = \cosh^{-1} x)</td>
<td>(x \geq 1)</td>
<td>(\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}})</td>
</tr>
<tr>
<td>(y = \tanh^{-1} x)</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>(y = \coth^{-1} x)</td>
<td>(</td>
<td>x</td>
</tr>
<tr>
<td>(y = \sech^{-1} x)</td>
<td>(0 < x \leq 1)</td>
<td>(\frac{d}{dx} \sech^{-1} x = -\frac{1}{x \sqrt{1 - x^2}})</td>
</tr>
<tr>
<td>(y = \csch^{-1} x)</td>
<td>(x \neq 0)</td>
<td>(\frac{d}{dx} \csch^{-1} x = -\frac{1}{</td>
</tr>
</tbody>
</table>

Each derivative formula in this table can be written as an antiderivative formula. For instance,

\[
\int \frac{dx}{\sqrt{x^2 + 1}} = \sinh^{-1} x + C, \quad \int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C
\]

EXAMPLE 5 Verify the formula \(\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} \).

Solution Recall that if \(g \) is the inverse of \(f \), then \(g'(x) = 1/f'(g(x)) \). Applying this to \(f(x) = \tanh x \), and using the formula \((\tanh x)' = \sech^2 x \), we have

\[
\frac{d}{dx} \tanh^{-1} x = \frac{1}{\sech^2(\tanh^{-1} x)}
\]

Now let \(t = \tanh^{-1} x \). Then

\[
cosh^2 t - \sinh^2 t = 1 \quad \text{(basic identity)}
\]

\[
1 - \tanh^2 t = \sech^2 t \quad \text{(divide by \(\cosh^2 t \))}
\]

\[
1 - x^2 = \sech^2(\tanh^{-1} x) \quad \text{(because \(x = \tanh t \))}
\]
This gives the desired result:
\[
\frac{d}{dx} \tanh^{-1} x = \frac{1}{\text{sech}^2 (\tanh^{-1} x)} = \frac{1}{1 - x^2}
\]

Example 6 The functions \(y = \tanh^{-1} x \) and \(y = \coth^{-1} x \) appear to have the same derivative. Does this imply that they differ by a constant?

Solution According to the table above, \(y = \tanh^{-1} x \) and \(y = \coth^{-1} x \) both have derivative \(1/(1 - x^2) \). Although functions with the same derivative differ by a constant, this is the case only if they are defined on the same domain. The functions \(y = \tanh^{-1} x \) and \(y = \coth^{-1} x \) have disjoint domains and therefore do not differ by a constant (Figure 7).

Example 7 Evaluate:

(a) \(\int \frac{dx}{\sqrt{x^2 - 1}} \) and (b) \(\int_{0.2}^{0.6} \frac{x \, dx}{1 - x^4} \)

Solution We use the table of derivatives on page 379.

(a) The second formula in the table is the derivative formula \(\frac{d}{dx} \cosh^{-1} x = \frac{1}{\sqrt{x^2 - 1}} \).

This yields the antiderivative formula:

\[
\int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C
\]

(b) First use a substitution \(u = x^2, \; du = 2x \, dx \). The new limits of integration become \(u = (0.2)^2 = 0.04 \) and \(u = (0.6)^2 = 0.36 \), and we obtain

\[
\int_{0.2}^{0.6} \frac{x \, dx}{1 - x^4} = \int_{0.04}^{0.36} \frac{1}{2} \, du = \frac{1}{2} \int_{0.04}^{0.36} \frac{du}{1 - u^2}
\]

By the third and fourth formulas in the table, both \(\tanh^{-1} u \) and \(\coth^{-1} u \) are antiderivatives of \((1 - u^2)^{-1} \). We must use \(\tanh^{-1} u \) because the domain of \(\tanh^{-1} u \) is \((-1, 1)\) and the limits of integration \(u = 0.04 \) and \(u = 0.36 \) are contained within this interval (if the limits of integration were contained in \(|u| > 1 \), we would use \(\coth^{-1} u \)). We obtain

\[
\frac{1}{2} \int_{0.04}^{0.36} \frac{du}{1 - u^2} = \frac{1}{2} \left(\tanh^{-1}(0.36) - \tanh^{-1}(0.04) \right) = 0.1684
\]

Einstein’s Law of Velocity Addition

The hyperbolic tangent plays a role in the Special Theory of Relativity, developed by Albert Einstein in 1905. One consequence of this theory is that no object can travel faster than the speed of light \(c \approx 3 \times 10^8 \) m/s. Einstein realized that this contradicts a law stated by Galileo more than 250 years earlier, namely that *velocities add*. Imagine a train traveling at \(u = 50 \) m/s and a man walking down the aisle in the train at \(v = 2 \) m/s. According to Galileo, the man’s velocity relative to the ground is \(u + v = 52 \) m/s. This agrees with our everyday experience. But now imagine an (unrealistic) rocket traveling away from the earth at \(u = 2 \times 10^6 \) m/s and suppose that the rocket fires a missile with velocity \(v = 1.5 \times 10^8 \) m/s (relative to the rocket). If Galileo’s Law were correct, the velocity of the missile relative to the earth would be \(u + v = 3.5 \times 10^8 \) m/s, which exceeds Einstein’s maximum speed limit of \(c \approx 3 \times 10^8 \) m/s.

However, Einstein’s theory replaces Galileo’s Law with a new law stating that the inverse hyperbolic tangents of the velocities *add*. More precisely, if \(u \) is the rocket’s velocity relative to the earth and \(v \) is the missile’s velocity relative to the rocket, then the velocity of the missile relative to the earth (Figure 8) is \(w \), where

\[
\tanh^{-1} \left(\frac{w}{c} \right) = \tanh^{-1} \left(\frac{u}{c} \right) + \tanh^{-1} \left(\frac{v}{c} \right)
\]
Section 7.9 Hyperbolic Functions

Example 8 A rocket travels away from the earth at a velocity of 2×10^8 m/s. A missile is fired at a velocity of 1.5×10^8 m/s (relative to the rocket) away from the earth. Use Einstein’s Law to find the velocity w of the missile relative to the earth.

Solution According to Eq. (2),

$$\tanh^{-1}\left(\frac{w}{c}\right) = \tanh^{-1}\left(\frac{2 \times 10^8}{3 \times 10^8}\right) + \tanh^{-1}\left(\frac{1.5 \times 10^8}{3 \times 10^8}\right) \approx 0.805 + 0.549 \approx 1.354$$

Therefore, $\frac{w}{c} \approx \tanh(1.354) \approx 0.875$, and $w \approx 0.875c \approx 2.6 \times 10^8$ m/s. This value obeys the Einstein speed limit of 3×10^8 m/s.

Example 9 Low Velocities A plane traveling at 300 m/s fires a missile at a velocity of 200 m/s. Calculate the missile’s velocity w relative to the earth (in mph) using both Einstein’s Law and Galileo’s Law.

Solution According to Einstein’s law,

$$\tanh^{-1}\left(\frac{w}{c}\right) = \tanh^{-1}\left(\frac{300}{c}\right) + \tanh^{-1}\left(\frac{200}{c}\right)$$

$$w = c \cdot \tanh\left(\tanh^{-1}\left(\frac{300}{c}\right) + \tanh^{-1}\left(\frac{200}{c}\right)\right) \approx 499.9999999967$$

This is practically indistinguishable from the value $w = 300 + 200 = 500$ m/s, obtained using Galileo’s Law.

Excursion: A Leap of Imagination

The terms “hyperbolic sine” and “hyperbolic cosine” suggest a connection between the hyperbolic and trigonometric functions. This excursion explores the source of this connection, which leads us to complex numbers and a famous formula of Euler (Figure 9).

Recall that $y = e^t$ satisfies the differential equation $y' = y$. In fact, we know that every solution is of the form $y = Ce^t$ for some constant C. Observe that both $y = e^t$ and $y = e^{-t}$ satisfy the second-order differential equation

$$y'' = y$$

Indeed, $(e^t)'' = e^t$ and $(e^{-t})'' = (-e^{-t})' = e^{-t}$. Furthermore, every solution of Eq. (3) has the form $y = Ae^t + Be^{-t}$ for some constants A and B (see Exercise 44 in Section 8.4).
Now let’s see what happens when we change Eq. (3) by a minus sign:

\[y'' = -y \]

In this case, \(y = \sin t \) and \(y = \cos t \) are solutions because

\[
\begin{align*}
\sin t'' &= (\cos t)' = -\sin t, \\
\cos t'' &= (-\sin t)' = -\cos t
\end{align*}
\]

And as before, every solution of Eq. (4) has the form

\[y = A \cos t + B \sin t \]

This might seem to be the end of the story. However, we can also write down solutions of Eq. (4) using the exponential functions \(y = e^{it} \) and \(y = e^{-it} \). Here,

\[i = \sqrt{-1} \]

is an imaginary complex number satisfying \(i^2 = -1 \). Since \(i \) is not a real number, \(e^{it} \) is not defined without further explanation. But let’s assume that \(e^{it} \) can be defined and that the usual rules of calculus apply:

\[
\begin{align*}
(e^{it})' &= ie^{it} \\
(e^{it})'' &= (ie^{it})' = i^2 e^{it} = -e^{it}
\end{align*}
\]

This shows that \(y = e^{it} \) is a solution of \(y'' = -y \), so there must exist constants \(A \) and \(B \) such that

\[e^{it} = A \cos t + B \sin t \]

The constants are determined by initial conditions. First, set \(t = 0 \) in Eq. (5):

\[1 = e^{i0} = A \cos 0 + B \sin 0 = A \]

Then take the derivative of Eq. (5) and set \(t = 0 \):

\[
\begin{align*}
i e^{it} &= \frac{d}{dt} e^{it} = A \cos' t + B \sin' t = -A \sin t + B \cos t \\
i &= i e^{i0} = -A \sin 0 + B \cos 0 = B
\end{align*}
\]

Thus, \(A = 1 \) and \(B = i \), and Eq. (5) yields Euler’s Formula:

\[e^{it} = \cos t + i \sin t \]

Euler proved his formula using power series, which may be used to define \(e^{it} \) in a precise fashion. At \(t = \pi \), Euler’s Formula yields

\[e^{i\pi} = -1 \]

Here, we have a simple but surprising relation among the four important numbers \(e, i, \pi \), and \(-1\).
Euler’s Formula also reveals the source of the analogy between hyperbolic and trigonometric functions. Let us calculate the hyperbolic cosine at $x = it$:

$$\cosh(it) = \frac{e^{it} + e^{-it}}{2} = \frac{\cos t + i \sin t}{2} + \frac{\cos(-t) + i \sin(-t)}{2} = \cos t$$

A similar calculation shows that $\sinh(it) = i \sin t$. In other words, the hyperbolic and trigonometric functions are not merely analogous—once we introduce complex numbers, we see that they are very nearly the same functions.

7.9 SUMMARY

- The hyperbolic sine and cosine:
 $$\sinh x = \frac{e^x - e^{-x}}{2} \quad \text{(odd function)}, \quad \cosh x = \frac{e^x + e^{-x}}{2} \quad \text{(even function)}$$

 The remaining hyperbolic functions:
 $$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}, \quad \text{sech} x = \frac{1}{\cosh x}, \quad \text{csch} x = \frac{1}{\sinh x}$$

- Basic identity: $\cosh^2 x - \sinh^2 x = 1$.
- Derivative and integral formulas:
 \[
 \begin{align*}
 \frac{d}{dx} \sinh x &= \cosh x, & \int \sinh x \, dx &= \cosh x + C \\
 \frac{d}{dx} \cosh x &= \sinh x, & \int \cosh x \, dx &= \sinh x + C \\
 \frac{d}{dx} \tanh x &= \text{sech}^2 x, & \int \text{sech}^2 x \, dx &= \tanh x + C \\
 \frac{d}{dx} \coth x &= -\text{csch}^2 x, & \int \text{csch}^2 x \, dx &= -\coth x + C \\
 \frac{d}{dx} \text{sech} x &= -\text{sech} x \tanh x, & \int \text{sech} x \tanh x \, dx &= -\text{sech} x + C \\
 \frac{d}{dx} \text{csch} x &= -\text{csch} x \coth x, & \int \text{csch} x \coth x \, dx &= -\text{csch} x + C
 \end{align*}
 \]

- Inverse hyperbolic functions
 \[
 \begin{align*}
 \frac{d}{dx} \sinh^{-1} x &= \frac{1}{\sqrt{x^2 + 1}}, & \frac{d}{dx} \cosh^{-1} x &= \frac{1}{\sqrt{x^2 - 1}} \quad (x > 1) \\
 \frac{d}{dx} \tanh^{-1} x &= \frac{1}{1 - x^2} \quad (|x| < 1), & \frac{d}{dx} \coth^{-1} x &= \frac{1}{1 - x^2} \quad (|x| > 1) \\
 \frac{d}{dx} \text{sech}^{-1} x &= -\frac{1}{x \sqrt{1 - x^2}} \quad (0 < x < 1), & \frac{d}{dx} \text{csch}^{-1} x &= -\frac{1}{|x| \sqrt{x^2 + 1}} \quad (x \neq 0)
 \end{align*}
 \]

 Each derivative formula in this table can be rewritten as an integral formula. For instance,
 \[
 \int \frac{dx}{\sqrt{x^2 + 1}} = \sinh^{-1} x + C, \quad \int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C
 \]
31. and decreasing?

32. In Exercises 9–32, calculate the derivative.

33. Which hyperbolic functions take on only positive values?

34. Show that $y(t) = \sinh(x)$, a, the function

35. Which hyperbolic functions are increasing on their domains?

36. Show that $y(t) = \sinh(x)$, a, the function

37. $\frac{d}{dt} \sinh^{-1}(t) = \frac{1}{\sqrt{t^2 + 1}}$

38. For which values of x are $y = \sinh(x)$ and $y = \cosh(x)$ increasing and decreasing?

39. What are $y^{(100)}$ and $y^{(101)}$ for $y = \cosh x$?

40. Prove the addition formula for $\cosh x$.

41. Compute $\cosh \left(\frac{x}{2} \right)$ for $x = 2\ln(\tanh(x/2))$ satisfies the Poisson-Boltzmann equation $V''(x) = \sinh(V(x))$, which is used to describe electrostatic forces in certain molecules.

42. $\frac{d}{dx} \tanh^{-1} x = \frac{1}{\sqrt{1-x^2}}$

43. In Exercises 35–46, calculate the integral.

44. $\frac{d}{dx} \sech x = -\sech x \tanh x$

45. $\int \cosh(3x) \, dx$

46. $\int e^{-x} \sinh x \, dx$

47. $\frac{d}{dx} \tanh x = \sech^2 x$

48. $\frac{d}{dx} \sech x = -\sech x \tanh x$}

49. $\cosh(\sinh^{-1} x) = \sqrt{x^2 + 1}$

50. $\sinh(\cosh^{-1} x) = \sqrt{x^2 - 1}$ for $x \geq 1$

51. $\frac{d}{dt} \sinh^{-1} t = \frac{1}{\sqrt{t^2 + 1}}$

52. $\frac{d}{dt} \cosh^{-1} t = \frac{1}{\sqrt{t^2 - 1}}$ for $t > 1$

53. $\int_0^1 dx$}

54. $\int_0^1 dx$

55. $\int_{\sqrt{2}}^{\sqrt{3}} dx$

56. $\int_0^1 dx$}

57. $\int_0^{1/3} dx$

58. $\int_0^{1/4} dx$

59. $\int_2^{10} dx$

60. $\int_2^{10} dx$

61. Prove that $\sinh^{-1} t = \ln(t + \sqrt{t^2 + 1})$. Hint: Let $t = \sinh x$.

62. Prove that $\cosh^{-1} t = \ln(t + \sqrt{t^2 - 1})$ for $t > 1$.

63. What are $y^{(100)}$ and $y^{(101)}$ for $y = \cosh x$?
63. Prove that \(\tanh^{-1} t = \frac{1}{2} \ln \left(\frac{1 + t}{1 - t} \right) \) for \(|t| < 1 \).
64. Use the substitution \(u = \sinh x \) to prove
\[
\int \sech x \, dx = \tanh^{-1}(\sinh x) + C
\]
65. An (imaginary) train moves along a track at velocity \(v \). Bonica walks down the aisle of the train with velocity \(u \) in the direction of the train’s motion. Compute the velocity \(w \) of Bonica relative to the ground using the laws of both Galileo and Einstein in the following cases.
(a) \(v = 500 \text{ m/s} \) and \(u = 10 \text{ m/s} \). Is your calculator accurate enough to detect the difference between the two laws?
(b) \(v = 10^7 \text{ m/s} \) and \(u = 10^6 \text{ m/s} \).

Further Insights and Challenges

66. Show that the linearization of the function \(y = \tanh^{-1} x \) at \(x = 0 \) is \(\tanh^{-1} x \approx x \). Use this to explain the following assertion: Einstein’s Law of Velocity Addition [Eq. (2)] reduces to Galileo’s Law if the velocities are small relative to the speed of light.

67. (a) Use the addition formulas for \(\sinh x \) and \(\cosh x \) to prove
\[
\tanh(u + v) = \frac{\tanh u + \tanh v}{1 + \tanh u \tanh v}
\]
(b) Use (a) to show that Einstein’s Law of Velocity Addition [Eq. (2)] is equivalent to
\[
w = \frac{u + v}{1 + \frac{uv}{c^2}}
\]
68. Prove that \(\int_a^b \cosh x \sinh x \, dx = 0 \) for all \(a \).
69. (a) Show that \(y = \tanh t \) satisfies the differential equation \(\frac{dy}{dt} = 1 - y^2 \) with initial condition \(y(0) = 0 \).
(b) Show that for arbitrary constants \(A, B \), the function \(y = A \tanh(Bt) \) satisfies
\[
\frac{dy}{dt} = AB - \frac{B}{A} y^2, \quad y(0) = 0
\]
(c) Let \(v(t) \) be the velocity of a falling object of mass \(m \). For large velocities, air resistance is proportional to the square of velocity \(v(t)^2 \). If we choose coordinates so that \(v(t) > 0 \) for a falling object, then by Newton’s Law of Motion, there is a constant \(k > 0 \) such that
\[
\frac{dv}{dt} = g - \frac{k}{m} v^2
\]
Solve for \(v(t) \) by applying the result of (b) with \(A = \sqrt{gm/k} \) and \(B = \sqrt{gk/m} \).
(d) Calculate the terminal velocity \(\lim_{t \to \infty} v(t) \).
(e) Find \(k \) if \(m = 150 \text{ lb} \) and the terminal velocity is 100 mph.

In Exercises 70–72, a flexible chain of length \(L \) is suspended between two poles of equal height separated by a distance \(2M \) (Figure 10). By Newton’s laws, the chain describes a curve (called a catenary) with equation \(y = a \cosh(x/a) + C \). The constant \(C \) is arbitrary and \(a \) is the number such that \(L = 2a \sinh(M/a) \). The sag \(s \) is the vertical distance from the highest to the lowest point on the chain.

70. Suppose that \(L = 120 \) and \(M = 50 \). Experiment with your calculator to find an approximate value of \(a \) satisfying \(L = 2a \sinh(M/a) \) (for greater accuracy, use Newton’s method or a computer algebra system).

71. Let \(M \) be a fixed constant. Show that the sag is given by \(s = a \cosh(M/a) - a \).
(a) Calculate \(\frac{ds}{da} \).
(b) Calculate \(\frac{da}{dL} \) by implicit differentiation using the relation \(L = 2a \sinh(M/a) \).
(c) Use (a) and (b) and the Chain Rule to show that
\[
\frac{ds}{dL} = \frac{da}{dL} \left(\frac{\cosh(M/a) - (M/a) \sinh(M/a)}{2 \sinh(M/a) - (2M/a) \cosh(M/a)} \right)
\]

72. Assume that \(M = 50 \) and \(L = 160 \). In this case, a CAS can be used to show that \(a \approx 28.46 \).
(a) Use Eq. (6) and the Linear Approximation to estimate the increase in sag if \(L \) is increased from \(L = 160 \) to \(L = 161 \) and from \(L = 160 \) to \(L = 165 \).
(b) If you have a CAS, compute \(s(161) - s(160) \) and \(s(165) - s(160) \) directly and compare with your estimates in (a).

73. Prove that every function \(f \) is the sum of an even function \(f_+ \) and an odd function \(f_- \) [Hint: \(f_+(x) = \frac{1}{2}(f(x) + f(-x)) \)]. Express \(f(x) = 5e^x + 8e^{-x} \) in terms of \(\cosh x \) and \(\sinh x \).

74. Use the method of the previous problem to express \(f(x) = 7e^{-3x} + 4e^{3x} \) in terms of \(\sinh(3x) \) and \(\cosh(3x) \).

75. In the Excursion, we discussed the relations
\[
\cosh(it) = \cos t \quad \text{and} \quad \sinh(it) = i \sin t
\]
Use these relations to show that the identity \(\cos^2 t + \sin^2 t = 1 \) results from the identity \(\cosh^2 x - \sinh^2 x = 1 \) by setting \(x = it \).
CHAPTER REVIEW EXERCISES

1. Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state that no match exists.

(a) $2^a 3^b$
(b) $\frac{2^a}{3^b}$
(c) $(2^a)^b$
(d) $2^{a-b} 3^{b-a}$
(i) $2ab$
(ii) 6^{a+b}
(iii) $(\frac{2}{3})^{a-b}$

2. Match each quantity (a)–(d) with (i), (ii), or (iii) if possible, or state that no match exists.

(a) $\ln \left(\frac{a}{b} \right)$
(b) $\ln a - \ln b$
(c) $e^{\ln a} - \ln b$
(d) $(\ln a)(\ln b)$
(i) $\ln a + \ln b$
(ii) $\ln a - \ln b$
(iii) $\frac{a}{b}$

3. Which of the following is equal to $\frac{d}{dx} 2^x$?

(a) 2^x
(b) $(\ln 2) 2^x$
(c) $x 2^{x-1}$
(d) $\frac{1}{\ln 2} 2^x$

4. Find the inverse of $f(x) = \sqrt{x^3 - 8}$ and determine its domain and range.

5. Find the inverse of $f(x) = \frac{x - 2}{x - 1}$ and determine its domain and range.

6. Find a domain on which $h(t) = (t - 3)^2$ is one-to-one and determine the inverse on this domain.

7. Show that $g(x) = \frac{x}{x - 1}$ is equal to its inverse on the domain $\{x : x \neq -1\}$.

8. Describe the graphical interpretation of the relation $g'(x) = \frac{1}{f'(g(x))}$, where f and g are inverses of each other.

9. Suppose that g is the inverse of f. Match the functions (a)–(d) with their inverses (i)–(iv).

(a) $f(x) + 1$
(b) $f(x + 1)$
(c) $4f(x)$
(d) $f(4x)$
(i) $g(x)/4$
(ii) $g(x/4)$
(iii) $g(x - 1)$
(iv) $g(x) - 1$

10. Find $g'(8)$ where g is the inverse of a differentiable function f such that $f(-1) = 8$ and $f'(-1) = 12$.

11. Suppose that $f(g(x)) = e^{x^2}$, where $g(1) = 2$ and $g'(1) = 4$. Find $f'(2)$.

12. Show that if f is a function satisfying $f'(x) = f(x)^2$, then its inverse g satisfies $g'(x) = x^{-2}$.

In Exercises 13–42, find the derivative.

13. $f(x) = 9e^{-4x}$
14. $f(x) = \ln(4x^2 + 1)$
15. $f(x) = \frac{e^{-x}}{x}$
16. $f(x) = \ln(x + e^x)$
17. $G(x) = (\ln(x))^2$
18. $G(x) = \ln(x^2)$
19. $g(t) = e^{4t-12}$
20. $g(t) = t^2 e^{1/t}$

21. $f(\theta) = \ln(\sin \theta)$
22. $f(\theta) = \sin(\ln \theta)$
23. $f(x) = \ln(e^x - 4x)$
24. $h(z) = \sec(z + \ln z)$
25. $f(x) = e^{x+1}\ln x$
26. $f(x) = e^{\sin^2 x}$
27. $h(y) = 21^y$
28. $h(y) = \frac{1 + e^y}{1 - e^y}$

29. $f(x) = 7^{-2x}$
30. $g(x) = \tan^{-1}(\ln x)$
31. $G(s) = \cos^{-1}(x^{-1})$
32. $G(s) = \tan^{-1}(\sqrt{x})$
33. $f(x) = \ln(\csc^{-1}x)$
34. $f(x) = e^{\sec^{-1}x}$
35. $R(s) = s^{\ln x}$
36. $f(x) = (\cos^2 x)\cos x$
37. $G(t) = (\sin^2 t)\ell$
38. $h(t) = t^{(t)}$
39. $g(t) = \sinh(t^2)$
40. $h(y) = y \tanh(4y)$

41. $g(x) = \tan^{-1}(e^x)$
42. $g(t) = \sqrt{t^2 - 1} \sinh^{-1} t$

43. The tangent line to the graph of $y = f(x)$ at $x = 4$ has equation $y = -2x + 12$. Find the equation of the tangent line to $y = g(x)$ at $x = 4$, where g is the inverse of f.

In Exercises 44–46, let $f(x) = xe^{-x}$.

44. GU Plot f and use the zoom feature to find two solutions of $f(x) = 0.3$.

45. Show that f has an inverse on $[1, \infty)$. Let g be this inverse. Find the domain and range of g and compute $g'(2e^{-2})$.

46. Show that $f(x) = c$ has two solutions if $0 < c < e^{-1}$.

47. Find the local extrema of $f(x) = e^{2x} - 4e^x$.

48. Find the points of inflection of $f(x) = \ln(x^2 + 1)$ and determine whether the concavity changes from up to down or vice versa.

In Exercises 49–52, find the local extrema and points of inflection, and sketch the graph over the interval specified. Use L'Hôpital's Rule to determine the limits as $x \to 0+$ or $x \to \pm \infty$ if necessary.

49. $y = x \ln x, \quad x > 0$
50. $y = e^{x^2}/2$
51. $y = x(\ln x)^2, \quad x > 0$
52. $y = \tan^{-1} \left(\frac{x^2}{4} \right)$

In Exercises 53–58, use logarithmic differentiation to find the derivative.

53. $y = \frac{(x + 1)^3}{(4x - 2)^2}$
54. $y = \frac{(x + 1)(x + 2)^2}{(x + 3)(x + 4)}$
55. $y = e^{(x-1)^2} e^{(x-3)^2}$
56. $y = e^{\sin^{-1} x} / \ln x$
57. $y = \frac{e^{3x}(x - 2)^2}{(x + 1)^2}$
58. $y = x \sqrt{x}(\ln x)$
59. **Image Processing** The intensity of a pixel in a digital image is measured by a number \(u \) between 0 and 1. Often, images can be enhanced by rescaling intensities (Figure 1), where pixels of intensity \(u \) are displayed with intensity \(g(u) \) for a suitable function \(g(u) \). One common choice is the sigmoidal correction, defined for constants \(a, b \) by

\[
g(u) = f(u) - f(0) \quad \text{where} \quad f(u) = (1 + e^{b(\frac{u-a}{u})})^{-1}
\]

Figure 2 shows that \(g(u) \) reduces the intensity of low-intensity pixels (where \(g(u) < u \)) and increases the intensity of high-intensity pixels.

(a) Verify that \(f'(u) > 0 \) and use this to show that \(g(u) \) increases from 0 to 1 for \(0 \leq u \leq 1 \).

(b) Where does \(g \) have a point of inflection?

![Original and Sigmoidal correction](image)

FIGURE 1

FIGURE 2 Sigmoidal correction with \(a = 0.47, b = 12 \).

60. Let \(N(t) \) be the size of a tumor (in units of \(10^6 \) cells) at time \(t \) (in days). According to the Gompertz Model, \(dN/dt = N(a - b \ln N) \) where \(a, b \) are positive constants. Show that the maximum value of \(N \) is \(e^b \) and that the tumor increases most rapidly when \(N = e^b \).

In Exercises 61–66, use the given substitution to evaluate the integral.

61. \(\int \frac{(\ln x)^2}{x} dx \), \(u = \ln x \)

62. \(\int \frac{dx}{4x^2 + 9} \), \(u = \frac{2x}{3} \)

63. \(\int \frac{dx}{\sqrt{e^{2x} - 1}} \), \(u = e^{-x} \)

64. \(\int \frac{\cos^{-1} t dt}{\sqrt{1-t^2}} \), \(u = \cos^{-1} t \)

65. \(\int \frac{dt}{t(1 + (\ln t)^2)} \), \(u = \ln t \)

66. \(\int \frac{dt}{\cosh^2 t + \sinh^2 t} \), \(u = \tanh t \)

In Exercises 67–92, calculate the integral.

67. \(\int e^{0.2x} dx \)

68. \(\int x^2e^x dx \)

69. \(\int e^{-2x} \sin(e^{-2x}) dx \)

70. \(\int \cos(\ln x) \frac{dx}{x} \)

71. \(\int e^{x^3} dx \)

72. \(\int \frac{dx}{x \sqrt{\ln x}} \)

73. \(\int \frac{e^x \ln x dx}{x} \)

74. \(\int e^{x-x^e} dx \)

75. \(\int \frac{2/3 dx}{\sqrt{1-x^2}} \)

76. \(\int \frac{12 dx}{x \sqrt{x^2 - 1}} \)

77. \(\int \frac{\cosh(2t) dt}{0} \)

78. \(\int \frac{2 dt}{4t + 12} \)

79. \(\int \frac{3 x dx}{x^6 + 9} \)

80. \(\int \frac{3 dx}{x^2 + 9} \)

81. \(\int \frac{dx}{\sqrt{1-x^4}} \)

82. \(\int e^{10x} dx \)

83. \(\int \frac{e^{-x} dx}{(e^{-x} + 2)^3} \)

84. \(\int \sin^\theta \cos^\theta e^{\cos^\theta + 1} d\theta \)

85. \(\int \frac{\pi/6 \tan \theta d\theta}{0} \)

86. \(\int \frac{\pi/3 \cot \left(\frac{1}{2} \theta\right) d\theta}{\theta} \)

87. \(\int \frac{\sin^{-1} x dx}{\sqrt{1-x^2}} \)

88. \(\int \tanh x dx \)

89. \(\int \frac{\sin^3 x \cosh x dx}{0} \)

90. \(\int \frac{dx}{\frac{25}{x^2} - 1} \)

91. \(\int \frac{6 dx}{x \sqrt{x^2 + 12}} \)

92. \(\int \frac{dx}{2} \)

93. The isotope Thorium-234 has a half-life of 24.5 days.

(a) Find the differential equation satisfied by the amount \(y(t) \) of Thorium-234 in a sample at time \(t \).

(b) At \(t = 0 \), a sample contains 2 kg of Thorium-234. How much remains after 1 year?

94. **The Oldest Snack Food** In Bat Cave, New Mexico, archaeologists found ancient human remains, including cobs of popping corn, that had a \(C_{14} \) to \(C_{12} \) ratio equal to around 48% of that found in living matter. Estimate the age of the corn cobs.

95. The \(C_{14} \) to \(C_{12} \) ratio of a sample is proportional to the disintegration rate (number of beta particles emitted per minute) that is measured directly with a Geiger counter. The disintegration rate of carbon in a living organism is 15.3 beta particles/min per gram. Find the age of a sample that emits 9.5 beta particles/min per gram.

96. An investment pays out $5000 at the end of the year for 3 years. Compute the PV, assuming an interest rate of 8%.

97. In a first-order chemical reaction, the quantity \(y(t) \) of reactant at time \(t \) satisfies \(y' = -ky \), where \(k > 0 \). The dependence of \(k \) on temperature \(T \) (in kelvins) is given by the Arrhenius equation \(k = Ae^{-E_a/(RT)} \), where \(E_a \) is the activation energy (J-mol\(^{-1}\)), \(R = 8.314 \) J-mol\(^{-1}\)K\(^{-1}\), and \(A \) is a constant. Assume that \(A = 72 \times 10^{12} \) hour\(^{-1}\) and \(E_a = 1.1 \times 10^5 \). Calculate \(dk/dT \) for \(T = 500 \) and use the Linear Approximation to estimate the change in \(k \) if \(T \) is raised from 500 to 510 K.
98. Find the solutions to \(y' = 4(y - 12) \) satisfying \(y(0) = 20 \) and \(y(0) = 0 \), and sketch their graphs.

99. Find the solutions to \(y' = -2y + 8 \) satisfying \(y(0) = 3 \) and \(y(0) = 4 \), and sketch their graphs.

100. Show that \(y = \sin^{-1} x \) satisfies the differential equation \(y' = \sec y \) with initial condition \(y(0) = 0 \).

101. What is the limit \(\lim_{t \to \infty} y(t) \) if \(y(t) \) is a solution of:

(a) \(\frac{dy}{dt} = -4(y - 12) \)?

(b) \(\frac{dy}{dt} = 4(y - 12) \)?

(c) \(\frac{dy}{dt} = -4y - 12 \)?

102. Let \(A \) and \(B \) be constants. Prove that if \(A > 0 \), then all solutions of \(\frac{dy}{dt} + Ay = B \) approach the same limit as \(t \to \infty \).

103. An equipment upgrade costing $1 million will save a company $320,000 per year for 4 years. Is this a good investment if the interest rate is \(r = 5\% \)? What is the largest interest rate that would make the investment worthwhile? Assume that the savings are received as a lump sum at the end of each year.

104. Find the PV of an income stream paying out continuously at a rate of \(5000e^{-0.1t} \) dollars per year for 5 years, assuming an interest rate of \(r = 4\% \).

In Exercises 105–108, let \(P(t) \) denote the balance at time \(t \) (years) of an annuity that earns 5\% interest continuously compounded and pays out $2000/year continuously.

105. Find the differential equation satisfied by \(P(t) \).

106. Determine \(P(2) \) if \(P(0) = 5000 \).

107. When does the annuity run out of money if \(P(0) = 2000 \)?

108. What is the minimum initial balance that will allow the annuity to make payments indefinitely?

In Exercises 109–120, verify that L’Hôpital’s Rule applies and evaluate the limit.

109. \(\lim_{x \to 3} \frac{4x - 12}{x^2 - 5x + 6} \)

110. \(\lim_{x \to -2} \frac{x^3 + 2x^2 - x - 2}{x^3 + 2x^3 - 4x - 8} \)

111. \(\lim_{x \to 0^+} x^{1/2} \ln x \)

112. \(\lim_{t \to \infty} \frac{\ln(e^t + 1)}{t} \)

113. \(\lim_{\theta \to 0} \frac{2 \sin\theta - \sin 2\theta}{\sin\theta - \theta \cos\theta} \)

114. \(\lim_{x \to 0} \frac{\sqrt{x + \sqrt{x + 1}} - 2\sqrt{1 + x}}{x^2} \)

115. \(\lim_{t \to \infty} \frac{\ln(t + 2)}{\log_2 t} \)

116. \(\lim_{x \to 0} \left(\frac{e^x}{e^x - 1} - \frac{1}{x} \right) \)

117. \(\lim_{y \to 0} \frac{\sin^{-1} y - y}{y^2} \)

118. \(\lim_{x \to 1} \frac{\sqrt{1 - x^2}}{\cos^2 x} \)

119. \(\lim_{x \to 0} \frac{\sin(x^2)}{x - 1} \)

120. \(\lim_{x \to 0} \frac{\tan x - \sinh x}{\sin x - x} \)

121. Explain why L’Hôpital’s Rule gives no information about \(\lim_{x \to \infty} \frac{2x - \sin x}{3x + \cos 2x} \). Evaluate the limit by another method.

122. Let \(f \) be a differentiable function with inverse \(g \) such that \(f(0) = 0 \) and \(f'(0) \neq 0 \). Prove that \(\lim_{x \to 0} \frac{f(x)}{g(x)} = f'(0)^2 \)

123. Calculate the limit \(\lim_{n \to \infty} \left(1 + \frac{4}{n} \right)^n \)

124. Calculate the limit \(\lim_{n \to \infty} \left(1 + \frac{4}{n} \right)^{3n} \)

125. In this exercise, we prove that for all \(x > 0 \),

\[x - \frac{x^2}{2} \leq \ln(1 + x) \leq x \]

(a) Show that \(\ln(1 + x) = \int_0^x \frac{dt}{1 + t} \) for \(x > 0 \).

(b) Verify that \(1 - t \leq \frac{1}{1 + t} \leq 1 \) for all \(t > 0 \).

(c) Use (b) to prove Eq. (1).

(d) Verify Eq. (1) for \(x = 0.5, 0.1, \) and \(0.01 \).

126. Let

\[F(x) = x\sqrt{x^2 - 1} - 2 \int_1^x \sqrt{t^2 - 1} \, dt \]

Prove that \(F(x) \) and \(\cosh^{-1} x \) differ by a constant by showing that they have the same derivative. Then prove they are equal by evaluating both at \(x = 1 \).

In Exercises 127–130, let \(g(x) = \tan^{-1}(\sinh x) \) be the so-called gudermannian, which arises in cartography. In a map of the earth constructed by Mercator projection, points located \(y \) radial units from the equator correspond to points on the globe of latitude \(gd(y) \).

127. Prove that \(\frac{d}{dy} \tan^{-1}(\sinh y) = \text{sech} y \).

128. Let \(f(y) = 2\tan^{-1}(e^y) - \pi/2 \). Prove that \(gd(y) = f(y) \). Hint: Show that \(gd(y) = f'(y) \) and \(f(0) = gd(0) \).

129. Show that \(t(y) = \sinh^{-1}(\tan y) \) is the inverse of \(gd(y) \) for \(0 \leq y < \pi/2 \).

130. Verify that \(t(y) \) in Exercise 129 satisfies \(t'(y) = \sec y \) and find a value of \(a \) such that

\[t(y) = \int_a^y \frac{dt}{\cos t} \]

131. Use L’Hôpital’s Rule to prove that for all \(a > 0 \) and \(b > 0 \),

\[\lim_{n \to \infty} \left(\frac{a^{1/n} + b^{1/n}}{2} \right)^n = \sqrt{ab} \]
132. Let
\[F(x) = \int_{\frac{x}{2}}^{x} \frac{dt}{\ln t} \quad \text{and} \quad G(x) = \frac{x}{\ln x} \]
Verify that L'Hôpital’s Rule may be applied to the limit
\[L = \lim_{x \to \infty} \frac{F(x)}{G(x)} \]
and evaluate \(L \).

133. Let \(f(x) = e^{-Ax^2/2} \), where \(A > 0 \). Given any \(n \) numbers \(a_1, a_2, \ldots, a_n \), set
\[\Phi(x) = f(x - a_1) f(x - a_2) \cdots f(x - a_n) \]
(a) Assume \(n = 2 \) and prove that \(\Phi(x) \) attains its maximum value at the average \(x = \frac{1}{2} (a_1 + a_2) \). Hint: Show that \(d/dx \ln(f(x)) = -Ax \) and calculate \(\Phi'(x) \) using logarithmic differentiation.
(b) Show that for any \(n \), \(\Phi(x) \) attains its maximum value at \(x = \frac{1}{n} (a_1 + a_2 + \cdots + a_n) \). This fact is related to the role of \(f(x) \) (whose graph is a bell-shaped curve) in statistics.
In Section 5.6, we introduced substitution, one of the most important techniques of integration. In this chapter, we develop a second fundamental technique, Integration by Parts, as well as several techniques for treating particular classes of functions such as trigonometric and rational functions. However, there is no surefire method, and in fact, many important antiderivatives cannot be expressed in elementary terms. Therefore, we discuss numerical integration in the last section. Every definite integral can be approximated numerically to any desired degree of accuracy.

8.1 Integration by Parts

In this section, we derive a formula that often allows us to convert an integral that we cannot evaluate as is into an integral that we can evaluate. The Integration by Parts formula is derived from the Product Rule.

Let \(u \) and \(v \) be functions of \(x \):

\[
\frac{d}{dx}(uv) = u \frac{dv}{dx} + \frac{du}{dx} v
\]

According to this formula, \(uv \) is an antiderivative of the right-hand side, so

\[
uv = \int u \frac{dv}{dx} \, dx + \int \frac{du}{dx} v \, dx
\]

Moving the second integral on the right to the other side, we obtain

\[
\int u \frac{dv}{dx} \, dx = uv - \int \frac{du}{dx} v \, dx
\]

By letting \(du = \frac{du}{dx} \, dx \) and \(dv = \frac{dv}{dx} \, dx \), we find the following

Integration by Parts Formula

\[
\int u \, dv = uv - \int v \, du
\]

Because the Integration by Parts formula applies to a product, we should consider using it when the integrand is a product of two functions.

Example 1 Evaluate \(\int x \cos x \, dx \).

Solution The integrand is a product, so we try writing \(x \cos x \, dx = u \, dv \) with

\[
u = x \quad \quad d\nu = 1 \, dx
\]

\[
\frac{dv}{dx} = \cos x \quad \quad v = \sin x
\]

By the Integration by Parts formula,

\[
\int x \cos x \, dx = x \sin x - \int \sin x \, dx = x \sin x + \cos x + C
\]
Let’s check the answer by taking the derivative:
\[
\frac{d}{dx}(x \sin x + \cos x + C) = x \cos x + \sin x - \sin x = x \cos x
\]

The key step in Integration by Parts is deciding how to write the integral as a product \(u \, dv \). Keep in mind that Integration by Parts expresses \(\int u \, dv \) in terms of \(uv \) and \(\int v \, du \). This is only useful if \(v \, du \) is easier to integrate than \(u \, dv \). Here are two guidelines:

• Choose \(dv \) so that \(\int dv \) can be evaluated.
• Choose \(u \) so that \(\frac{du}{dx} \) is “simpler” than \(u \) itself.

Example 2 Good Versus Bad Choices of \(u \) and \(dv \)

Evaluate \(\int xe^x \, dx \).

Solution

Based on our guidelines, it makes sense to write \(\int u \, dv \) with \(u = x \) and \(dv = e^x \, dx \) with
\[
\frac{du}{dx} = 1 \quad \text{and} \quad \frac{dv}{dx} = e^x
\]

This is a good choice since \(\frac{du}{dx} = 1 \) is simpler than \(u \) and we can evaluate
\[
\int v \, du = \int e^x \, dx = e^x + C
\]

Integration by Parts gives us
\[
\int xe^x \, dx = uv - \int v \, du = xe^x - \int e^x \, dx = xe^x - e^x + C
\]

Let’s see what happens if we write \(xe^x \, dx = udv \) with \(u = e^x \) and \(dv = x \, dx \) with
\[
\frac{du}{dx} = e^x \quad \text{and} \quad \frac{dv}{dx} = x
\]

\[
\int e^x \frac{d}{dx} x \, dx = \frac{1}{2} x^2 e^x - \int \frac{1}{2} x^2 e^x \, dx
\]

This is a poor choice of \(u \) and \(dv \) because the integral on the right is more complicated than our original integral.

Example 3 Integrating by Parts More Than Once

Evaluate \(\int x^2 \cos x \, dx \).

Solution

Apply Integration by Parts a first time with \(u = x^2 \) and \(dv = \cos x \, dx \):
\[
\int x^2 \cos x \, dx = \frac{x^2 \sin x}{uv} - \int \frac{2x}{v} \, dx = x^2 \sin x - 2 \int x \sin x \, dx
\]

Now apply it again to the integral on the right, this time with \(u = x \) and \(dv = \sin x \, dx \):
\[
\int x \sin x \, dx = \frac{-x \cos x}{uv} - \int \frac{\cos x}{v} \, dx = -x \cos x + \sin x + C
\]

Using this result in Eq. (2), we obtain
\[
\int x^2 \cos x \, dx = x^2 \sin x - 2 \int x \sin x \, dx = x^2 \sin x - 2(-x \cos x + \sin x) + C
\]
\[
= x^2 \sin x + 2x \cos x - 2 \sin x + C
\]
Integration by Parts applies to definite integrals:

\[\int_a^b u \, dv = uv \bigg|_a^b - \int_a^b v \, du \]

EXAMPLE 4 Taking \(dv = dx \) Evaluate \(\int_1^3 \ln x \, dx \).

Solution The integrand is not a product, so at first glance, this integral does not look like a candidate for Integration by Parts. However, we can treat \(\ln x \, dx \) as a product of \(\ln x \) and \(dx \). Then

\[u = \ln x \quad dv = dx \]
\[du = \frac{1}{x} \, dx \quad v = x \]

\[\int_1^3 \ln x \, dx = x \ln x \bigg|_1^3 - \int_1^3 \frac{1}{x} \, dx = x \ln x \bigg|_1^3 - \int_1^3 \, dx \]
\[= 3 \ln 3 - x \ln 1 - 3 = 3 \ln 3 - 2 \]

EXAMPLE 5 Going in a Circle? Evaluate \(\int e^x \cos x \, dx \).

Solution There are two reasonable ways of writing \(e^x \cos x \, dx \) as \(u \, dv \). Let's try setting \(u = \cos x \). Then we have

\[u = \cos x \quad dv = e^x \, dx \]
\[du = -\sin x \, dx \quad v = e^x \]

Thus,

\[\int e^x \cos x \, dx = e^x \cos x - \int e^x (-\sin x) \, dx \]

Now use Integration by Parts on the integral on the right with \(u = \sin x \):

\[u = \sin x \quad dv = e^x \, dx \]
\[du = \cos x \, dx \quad v = e^x \]

\[\int e^x \sin x \, dx = e^x \sin x - \int e^x \cos x \, dx \]

Eq. (4) brings us back to our original integral of \(e^x \cos x \), so it looks as if we’re going in a circle. But we can substitute Eq. (4) in Eq. (3) and solve for the integral of \(e^x \cos x \):

\[\int e^x \cos x \, dx = e^x \cos x + \int e^x \sin x \, dx = e^x \cos x + \left(e^x \sin x - \int e^x \cos x \, dx\right) \]

Now we can add \(\int e^x \cos x \, dx \) to both sides. Note that we add a “+ C” to the right side since we no longer have an integral on that side of the equation that will generate the necessary arbitrary constant:

\[2 \int e^x \cos x \, dx = e^x \cos x + e^x \sin x + C \]

\[\int e^x \cos x \, dx = \frac{1}{2} e^x (\cos x + \sin x) + C \]
Integration by Parts can be used to derive reduction formulas for integrals that depend on a positive integer \(n \) such as \(\int x^n e^x \, dx \), \(\int \ln x \, dx \), or the following example.

Example 6 A Reduction Formula

Derive the reduction formula

\[
\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx
\]

Then evaluate \(\int \sin^3 x \, dx \).

Solution

Although we do not know how to integrate \(\sin^n x \), we do know how to integrate \(\sin x \). So we apply Integration by Parts as follows:

\[
u = \sin^{n-1} x \quad dv = \sin x \, dx
\]

\[
du = (n-1) \sin^{n-2} x \cos x \, dx \quad v = -\cos x
\]

Then we have

\[
\int \sin^n x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \cos^2 x \, dx
\]

Using the fact \(\cos^2 x = 1 - \sin^2 x \), we obtain

\[
\int \sin^n x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, dx - (n-1) \int \sin^n x \, dx
\]

Adding \((n-1) \int \sin^n x \, dx \) to both sides, we have

\[
\int \sin^n x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, dx
\]

Applying this formula in the case \(n = 3 \), we obtain

\[
\int \sin^3 x \, dx = -\frac{1}{3} \sin^2 x \cos x + \frac{2}{3} \int \sin x \, dx = -\frac{1}{3} \sin^2 x \cos x - \frac{2}{3} \cos x + C
\]

In Exercise 58, you will be asked to derive the following reduction formula.

\[
\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx
\]

8.1 **Summary**

- Integration by Parts formula: \(\int u \, dv = uv - \int v \, du \).
- The key step is deciding how to write the integrand as a product \(u \, dv \). Keep in mind that Integration by Parts is useful when \(v \, du \) is easier (or, at least, not more difficult) to integrate than \(u \, dv \). Here are some guidelines:
 - Choose \(u \) so that \(\frac{du}{dx} \) is simpler than \(u \) itself.
 - Choose \(dv \) so that \(v = \int dv \) can be evaluated.
 - Sometimes, \(dv = dx \) is a good choice.
 - Good choices for \(u \) include \(x^n \), \(\ln x \), and inverse trig functions.
8.1 EXERCISES

Preliminary Questions
1. Which derivative rule is used to derive the Integration by Parts formula?
2. For each of the following integrals, state whether substitution or Integration by Parts should be used:
 \[\int x \cos(x^2) \, dx, \quad \int x \cos x \, dx, \quad \int x^2 e^x \, dx, \quad \int x e^{x^2} \, dx \]

Exercises
In Exercises 1–6, evaluate the integral using the Integration by Parts formula with the given choice of \(u \) and \(dv \).
1. \(\int x \sin x \, dx; \quad u = x, \ dv = \sin x \, dx \)
2. \(\int x e^{2x} \, dx; \quad u = x, \ dv = e^{2x} \, dx \)
3. \(\int (2x + 9)e^x \, dx; \quad u = 2x + 9, \ dv = e^x \, dx \)
4. \(\int x \cos 4x \, dx; \quad u = x, \ dv = \cos 4x \, dx \)
5. \(\int x^3 \ln x \, dx; \quad u = \ln x, \ dv = x^3 \, dx \)
6. \(\int \tan^{-1} x \, dx; \quad u = \tan^{-1} x, \ dv = dx \)

In Exercises 7–34, evaluate using Integration by Parts.
7. \(\int (4x - 3)e^{-x} \, dx \)
8. \(\int (2x + 1)e^{x} \, dx \)
9. \(\int x e^{3x+2} \, dx \)
10. \(\int x^2 e^{x} \, dx \)
11. \(\int x \cos 2x \, dx \)
12. \(\int x \sin(3 - x) \, dx \)
13. \(\int x^2 \sin x \, dx \)
14. \(\int x^2 \cos 3x \, dx \)
15. \(\int e^{-x} \sin x \, dx \)
16. \(\int e^{x} \sin 2x \, dx \)
17. \(\int e^{-5x} \sin x \, dx \)
18. \(\int e^{3x} \cos 4x \, dx \)
19. \(\int x \ln x \, dx \)
20. \(\int \frac{\ln x}{x^2} \, dx \)
21. \(\int x^2 \ln x \, dx \)
22. \(\int x^{-5} \ln x \, dx \)
23. \(\int (\ln x)^2 \, dx \)
24. \(\int x(\ln x)^2 \, dx \)
25. \(\int \cos^{-1} x \, dx \)
26. \(\int \sin^{-1} x \, dx \)
27. \(\int \sec^{-1} x \, dx \)
28. \(\int x^5 \, dx \)
29. \(\int 3^x \cos x \, dx \)
30. \(\int x \sinh x \, dx \)
31. \(\int x^2 \cosh x \, dx \)
32. \(\int \cos x \cosh x \, dx \)
33. \(\int \tanh^{-1} 4x \, dx \)
34. \(\int \sinh^{-1} x \, dx \)

In Exercises 35–36, evaluate using substitution and then Integration by Parts.
35. \(\int e^{\sqrt{x}} \, dx \) \(\text{Hint: Let } u = x^{1/2}. \)
36. \(\int x^3 e^{2x} \, dx \)

In Exercises 37–46, evaluate using Integration by Parts, substitution, or both if necessary.
37. \(\int x \cos 4x \, dx \)
38. \(\int \frac{\ln(x)}{x} \, dx \)
39. \(\int \frac{x \, dx}{\sqrt{x + 1}} \)
40. \(\int x^2 \left(x^3 + 9 \right)^{15} \, dx \)
41. \(\int \cos x \ln(\sin x) \, dx \)
42. \(\int \sin \sqrt{x} \, dx \)
43. \(\int \sqrt{x} e^{\sqrt{x}} \, dx \)
44. \(\int \frac{\tan \sqrt{x} \, dx}{\sqrt{x}} \)
45. \(\int \frac{\ln(\ln x) \ln x \, dx}{x} \)
46. \(\int \sin(\ln x) \, dx \)

In Exercises 47–56, compute the definite integral.
47. \(\int_0^3 xe^{3x} \, dx \)
48. \(\int_0^{\pi/4} x \sin 2x \, dx \)
49. \(\int_1^2 x \ln x \, dx \)
50. \(\int_1^e \frac{x \ln x \, dx}{x^2} \)
51. \(\int_0^1 xe^{-x} \, dx \)
52. \(\int_0^1 \frac{x^3 \, dx}{\sqrt{9 + x^2}} \)
53. \(\int_0^1 x^3 \, dx \)
54. \(\int_0^1 x \cos(\pi x) \, dx \)
55. \(\int_0^\pi e^x \sin x \, dx \)
56. \(\int_0^1 \tan^{-1} x \, dx \)
57. Use Eq. (5) to find \(\int \sin^5 x \, dx. \)
58. Derive the reduction formula
\[\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx \]
that appears in Eq. (6).

59. Use the reduction formula from the problem above [Eq. (6)] to find \(\int \cos^3 x \, dx \).

60. Derive the reduction formula
\[\int x^n e^x \, dx = x^n e^x - n \int x^{n-1} e^x \, dx. \]

61. Use the reduction formula from Exercise 60 to find \(\int x^3 e^x \, dx \).

62. Use substitution and the reduction formula from Exercise 60 to evaluate \(\int x^3 e^{3x} \, dx \).

63. Find a reduction formula for \(\int x^n e^{-x} \, dx \) similar to the formula appearing in Exercise 60.

64. Evaluate \(\int x^n \ln x \, dx \) for \(n \neq -1 \). Which method should be used to evaluate \(\int x^{-1} \ln x \, dx \)?

65. Find the volume of the solid of revolution that results when the region under the graph of \(f(x) = \sqrt{x} \sin x \) for \(0 \leq x \leq \pi \) is revolved around the \(x \)-axis.

66. Find the volume of the solid of revolution that results when the region under the graph of \(f(x) = \ln x \) for \(1 \leq x \leq e \) is revolved around the \(x \)-axis.

In Exercises 67–74, indicate a good method for evaluating the integral (but do not evaluate). Your choices are algebraic manipulation, substitution (specify \(u \) and \(dv \)), and Integration by Parts (specify \(u \) and \(dv \)). If it appears that the techniques you have learned thus far are not sufficient, state this.

67. \(\int \sqrt{x} \ln x \, dx \)

68. \(\int \frac{x^2 - \sqrt{x}}{2x} \, dx \)

69. \(\int \frac{x^3 \, dx}{\sqrt[4]{4-x^4}} \)

70. \(\int \frac{dx}{\sqrt[4]{4-x^4}} \)

71. \(\int \frac{x + 2}{x^2 + 4x + 3} \, dx \)

72. \(\int \frac{dx}{(x + 2)(x^2 + 4x + 3)} \)

73. \(\int \sin(3x + 4) \, dx \)

74. \(\int \cos(9x^2) \, dx \)

75. Evaluate \(\int (\sin^{-1} x)^2 \, dx \). Hint: Use Integration by Parts first and then substitution.

76. Evaluate \(\int \frac{(\ln x)^2 \, dx}{x^2} \). Hint: Use substitution first and then Integration by Parts.

77. Evaluate \(\int x^7 \cos(x^4) \, dx \).

78. Find \(f(x) \), assuming that \(\int f(x)e^x \, dx = f(x)e^x - \int x^{-1}e^x \, dx \)

79. Find the volume of the solid obtained by revolving the region under \(y = e^x \) for \(0 \leq x \leq 2 \) about the \(y \)-axis.

80. Find the area enclosed by \(y = \ln x \) and \(y = (\ln x)^2 \).

81. Recall that the present value (PV) of an investment that pays out income continuously at a rate \(R(t) \) for 5 years is \(\int_0^T R(t)e^{-rt} \, dt \), where \(r \) is the interest rate. Find the PV if \(R(t) = 5000 + 100t \) dollars/year, \(r = 0.05 \), and \(T = 10 \) years.

82. Derive the reduction formula
\[\int \ln x^k \, dx = x(\ln x)^k - k \int (\ln x)^{k-1} \, dx \]

83. Use Eq. (7) to calculate \(\int \ln x^k \, dx \) for \(k = 2, 3 \).

84. Derive the reduction formulas
\[\int x^n \cos x \, dx = x^n \sin x - n \int x^{n-1} \sin x \, dx \]
\[\int x^n \sin x \, dx = -x^n \cos x + n \int x^{n-1} \cos x \, dx \]

85. Prove that \(\int x^b e^{-x} \, dx = b^x \left(\frac{x}{\ln b} - \frac{1}{\ln^2 b} \right) + C \).

86. Define \(P_n(x) \) by
\[\int x^n e^x \, dx = P_n(x) e^x + C \]
Use the reduction formula in Problem 60 to prove that \(P_n(x) = x^n - nP_{n-1}(x) \). Use this recursion relation to find \(P_n(x) \) for \(n = 1, 2, 3, 4 \). Note that \(P_0(x) = 1 \).

87. The Integration by Parts formula can be written
\[\int uv \, dx = uV - \int V \, du \]
where \(V(x) \) satisfies \(V'(x) = v(x) \).
(a) Show directly that the right-hand side of Eq. (8) does not change if \(V(x) \) is replaced by \(V(x) + C \), where \(C \) is a constant.

(b) Use \(u = \tan^{-1} x \) and \(v = x \) in Eq. (8) to calculate \(\int x \tan^{-1} x \, dx \), but carry out the calculation twice: first with \(V(x) = \frac{1}{2}x^2 \) and then with \(V(x) = \frac{1}{2}x^2 + \frac{1}{2} \). Which choice of \(V(x) \) results in a simpler calculation?

88. Prove in two ways that
\[\int_0^a f(x) \, dx = af(a) - \int_0^axf'(x) \, dx \]
First use Integration by Parts. Then assume \(f \) is increasing. Use the substitution \(u = f(x) \) to prove that \(\int_0^a xf'(x) \, dx \) is equal to the area of the shaded region in Figure 1 and derive Eq. (9) a second time.
89. Assume that \(f(0) = f(1) = 0 \) and that \(f''' \) exists. Prove
\[
\int_0^1 f'''(x)f(x) \, dx = -\int_0^1 f'(x)^2 \, dx
\]

Use this to prove that if \(f(0) = f(1) = 0 \) and \(f'''(x) = \lambda f(x) \) for some constant \(\lambda \), then \(\lambda < 0 \). Can you think of a function satisfying these conditions for some \(\lambda \)?

90. Set \(I(a, b) = \int_0^1 x^a(1-x)^b \, dx \), where \(a, b \) are whole numbers.

(a) Use substitution to show that \(I(a, b) = I(b, a) \).

(b) Show that \(I(a, 0) = I(0, a) = \frac{1}{a+1} \).

(c) Prove that for \(a \geq 1 \) and \(b \geq 0 \),
\[
I(a, b) = \frac{a}{b+1} I(a-1, b+1)
\]

(d) Use (b) and (c) to calculate \(I(1, 1) \) and \(I(3, 2) \).

(e) Show that \(I(a, b) = \frac{a!b!}{(a+b+1)!} \).

91. Let \(I_n = \int x^n \cos(x^2) \, dx \) and \(J_n = \int x^n \sin(x^2) \, dx \).

(a) Find a reduction formula that expresses \(I_n \) in terms of \(J_{n-2} \). Hint: Write \(x^n \cos(x^2) \) as \(x^{n-2}(x \cos(x^2)) \).

(b) Use the result of (a) to show that \(I_n \) can be evaluated explicitly if \(n \) is odd.

(c) Evaluate \(I_3 \).

SECTION 8.2 Trigonometric Integrals

Many trigonometric functions can be integrated by combining substitution and Integration by Parts with the appropriate trigonometric identities. In this section, we consider techniques for integrating various types of trigonometric functions. We begin with integrals of the form
\[
\int \sin^m x \cos^n x \, dx
\]
where \(m, n \) are whole numbers. The easier case is when at least one of \(m, n \) is odd.

Example 1 **Odd Power of \(\sin x \)** Evaluate \(\int \sin^3 x \, dx \).

Solution We did this integral in Example 6 of the last section. However, we will use a different method that is more broadly applicable. Because \(\sin^3 x \) is an odd power, we split off one power of \(\sin x \) and use the identity \(\sin^2 x = 1 - \cos^2 x \) to convert the rest of the integrand into an expression in \(\cos x \):
\[
\sin^3 x = (\sin^2 x)(\sin x) = (1 - \cos^2 x) \sin x
\]
We then use the substitution \(u = \cos x \), \(du = -\sin x \, dx \):
\[
\int \sin^3 x \, dx = \int (1 - \cos^2 x) \sin x \, dx = -\int (1 - u^2) \, du
\]
\[
= -\frac{u^3}{3} - u + C = -\frac{\cos^3 x}{3} + \cos x + C
\]

The strategy of the previous example works when \(\sin^m x \) appears with \(m \) odd, no matter what power of \(\cos x \) is present. Similarly, if \(n \) is odd, we write \(\cos^n x \) as a power of \((1 - \sin^2 x) \) times \(\cos x \).

Example 2 **Odd Power of \(\cos x \)** Evaluate \(\int \sin^4 x \cos^5 x \, dx \).

Solution We take advantage of the fact that \(\cos^5 x \) is an odd power to write
\[
\sin^4 x \cos^5 x = \sin^4 x \cos^4 x (\cos x) = \sin^4 x (1 - \sin^2 x)^2 (\cos x)
\]
\[
= (\sin^4 x - 2 \sin^6 x + \sin^8 x) \cos x
\]
This allows us to use the substitution \(u = \sin x, \ du = \cos x \ dx \):

\[
\int \sin^4 x \cos^5 x \ dx = \int (\sin^4 x - 2 \sin^6 x + \sin^8 x) \cos x \ dx
\]

\[
= \int (u^4 - 2u^6 + u^8) \ du
\]

\[
= \frac{u^5}{5} - \frac{2u^7}{7} + \frac{u^9}{9} + C = \frac{\sin^5 x}{5} - \frac{2\sin^7 x}{7} + \frac{\sin^9 x}{9} + C
\]

We will need a different strategy when neither \(\sin x \) nor \(\cos x \) appears with an odd power.

Example 3 Evaluate \(\int \sin^2 x \ dx \).

Solution We could apply the reduction formula Eq. (5) from the last section. However, instead, we apply a method that does not rely on knowing that formula. We utilize the trigonometric identity called the double angle formula \(\sin^2 x = \frac{1}{2}(1 - \cos 2x) \). Then

\[
\int \sin^2 x \ dx = \int \frac{1}{2}(1 - \cos 2x) \ dx = \frac{x - \sin 2x}{4} + C
\]

Using the trigonometric identities in the margin, we can also integrate \(\cos^2 x \), obtaining the following:

1. \[
\int \sin^2 x \ dx = \frac{x}{2} - \frac{\sin 2x}{4} + C = \frac{x}{2} - \frac{1}{2} \sin x \cos x + C
\]

2. \[
\int \cos^2 x \ dx = \frac{x}{2} + \frac{\sin 2x}{4} + C = \frac{x}{2} + \frac{1}{2} \sin x \cos x + C
\]

Example 4 Evaluate \(\int \sin^4 x \ dx \).

Solution Again, we could use the reduction formula that appears as Eq. (5) in the previous section, but rather than rely on that formula, we proceed as in the previous example. Using the double angle formula \(\sin^2 x = \frac{1}{2}(1 - \cos 2x) \), we obtain

\[
\int \sin^4 x \ dx = \int (\sin^2 x)^2 \ dx = \int \left(\frac{1}{2}(1 - \cos 2x) \right)^2 \ dx
\]

\[
= \frac{1}{4} \int (1 - 2 \cos 2x + \cos^2 2x) \ dx
\]

Applying the double angle formula to \(\cos^2 2x \), we get

\[
\int \sin^4 x \ dx = \frac{1}{4} \int (1 - 2 \cos 2x + \cos^2 2x) \ dx
\]

\[
= \frac{1}{4} \int \left(1 - 2 \cos 2x + \frac{1 + \cos 4x}{2} \right) \ dx
\]

\[
= \frac{1}{4} \int \left(\frac{3}{2} - 2 \cos 2x + \frac{\cos 4x}{2} \right) \ dx
\]

By simple \(u \)-substitutions, this yields

\[
\int \sin^4 x \ dx = \frac{1}{4} \left(\frac{3x}{2} - \sin 2x + \frac{\sin 4x}{8} \right) + C = \frac{3x}{8} - \frac{\sin 2x}{4} + \frac{\sin 4x}{32} + C
\]
Integrating $\sin^m x \cos^n x$

Case 1: m odd

Split off one power of $\sin x$, and use $\sin^2 x = 1 - \cos^2 x$ to express the remaining powers of $\sin x$ in terms of $\cos x$. Then substitute $u = \cos x$, $du = -\sin x \, dx$.

Case 2: n odd

Split off one power of $\cos x$, and use $\cos^2 x = 1 - \sin^2 x$ to express the remaining powers of $\cos x$ in terms of $\sin x$. Then substitute $u = \sin x$, $du = \cos x \, dx$.

Case 3: m, n both even

Either use the double angle formulas repeatedly (see Exercises 67–70), or convert the integrand into an expression entirely in terms of $\sin x$ or $\cos x$, and then apply the reduction formulas [Eqs. (5) or (6)] from the previous section.

As we have noted, trigonometric integrals can be expressed in many different ways because trigonometric functions satisfy a large number of identities. For example, we can determine the integral in the previous example by applying the reduction formula in Eq. (5) from the previous section twice to obtain

\[\int \sin^4 x \, dx = -\frac{1}{4} \sin^3 x \cos x - \frac{3}{8} \sin x \cos x + \frac{3}{8} x + C. \]

You can check that this agrees with the result in Example 4 (see Exercise 63).

More work is required to integrate $\sin^m x \cos^n x$ when both m and n are even.

EXAMPLE 5 Even Powers of $\sin x$ and $\cos x$

Evaluate $\int \sin^2 x \cos^4 x \, dx$.

Solution Here, $m = 2$ and $n = 4$. Since $m < n$, we replace $\sin^2 x$ by $1 - \cos^2 x$:

\[\int \sin^2 x \cos^4 x \, dx = \int (1 - \cos^2 x) \cos^4 x \, dx = \int \cos^4 x \, dx - \int \cos^6 x \, dx \]

The reduction formula for $n = 6$ gives

\[\int \cos^6 x \, dx = \frac{1}{6} \cos^5 x \sin x + \frac{5}{6} \int \cos^4 x \, dx \]

Using this result in the right-hand side of the first equation in this solution, we obtain

\[\int \sin^2 x \cos^4 x \, dx = \int \cos^4 x \, dx - \left(\frac{1}{6} \cos^5 x \sin x + \frac{5}{6} \int \cos^4 x \, dx \right) \]

\[= -\frac{1}{6} \cos^5 x \sin x + \frac{1}{6} \int \cos^4 x \, dx \]

Next, we evaluate $\int \cos^4 x \, dx$ using the reduction formulas for $n = 4$ and $n = 2$:

\[\int \cos^4 x \, dx = \frac{1}{4} \cos^3 x \sin x + \frac{3}{4} \int \cos^2 x \, dx \]

\[= \frac{1}{4} \cos^3 x \sin x + \frac{3}{4} \left(\frac{1}{2} \cos x \sin x + \frac{1}{2} x \right) + C \]

\[= \frac{1}{4} \cos^3 x \sin x + \frac{3}{8} \cos x \sin x + \frac{3}{8} x + C \]

 Altogether,

\[\int \sin^2 x \cos^4 x \, dx = -\frac{1}{6} \cos^5 x \sin x + \frac{1}{6} \left(\frac{1}{4} \cos^3 x \sin x + \frac{3}{8} \cos x \sin x + \frac{3}{8} x \right) + C \]

\[= -\frac{1}{6} \cos^5 x \sin x + \frac{1}{24} \cos^3 x \sin x + \frac{1}{16} \cos x \sin x + \frac{1}{16} x + C \]

We now consider integrals of the remaining trigonometric functions.

EXAMPLE 6 Integral of the Tangent and Secant

Derive the formulas

\[\int \tan x \, dx = \ln |\sec x| + C \quad \text{and} \quad \int \sec x \, dx = \ln |\sec x + \tan x| + C \]

Solution To integrate $\tan x$, use the substitution $u = \cos x$, $du = -\sin x \, dx$:

\[\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{du}{u} = -\ln |u| + C = -\ln |\cos x| + C \]

\[= \ln \left| \frac{1}{\cos x} \right| + C = \ln |\sec x| + C \]
The integral \(\int \sec x \, dx \) was first computed numerically in the 1590s by the English mathematician Edward Wright, decades before the invention of calculus. Although he did not invent the concept of an integral, Wright realized that the sums that approximate the integral hold the key to understanding the Mercator map projection, of great importance in sea navigation because it enabled sailors to reach their destinations along lines of fixed compass direction. The formula for the integral was first proved by James Gregory in 1668.

To integrate \(\sec x \), we employ a clever and highly non-obvious trick: Multiply the integrand by

\[
1 = \frac{\sec x + \tan x}{\sec x + \tan x}
\]

Then

\[
\int \sec x \, dx = \int \sec x \left(\frac{\sec x + \tan x}{\sec x + \tan x} \right) \, dx = \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx
\]

Noting that the numerator is the derivative of the denominator, we let the denominator be \(u \):

\[
\sec x + \tan x = u \quad \text{and} \quad du = (\sec x \tan x + \sec^2 x) \, dx
\]

Then our integral becomes

\[
\int \frac{du}{u} = \ln |u| + C = \ln |\sec x + \tan x| + C
\]

The table of integrals at the end of this section (page 402) contains a list of additional trigonometric integrals and reduction formulas.

Example 7 Using a Table of Integrals Evaluate \(\int_{0}^{\pi/4} \tan^3 x \, dx \).

Solution We use reduction formula (10) in the table with \(k = 3 \).

\[
\int_{0}^{\pi/4} \tan^3 x \, dx = \frac{\tan^2 x}{2} \left| \frac{\pi}{4} \right|_0 - \int_{0}^{\pi/4} \tan x \, dx = \left(\frac{1}{2} \tan^2 x - \ln |\sec x| \right) \bigg|_0^{\pi/4}
\]

\[
= \left(\frac{1}{2} \tan^2 \frac{\pi}{4} - \ln \left| \sec \frac{\pi}{4} \right| \right) - \left(\frac{1}{2} \tan^2 0 - \ln |\sec 0| \right)
\]

\[
= \left(\frac{1}{2}(1)^2 - \ln \sqrt{2} \right) - \left(\frac{1}{2}0^2 - \ln 1 \right) = \frac{1}{2} - \ln \sqrt{2}
\]

In the margin, we describe a method for integrating \(\tan^m x \sec^n x \).

Example 8 Evaluate \(\int \tan^3 x \sec^5 x \, dx \).

Solution We note that we have a copy of \(\sec x \tan x \) in the integrand, and the remaining powers of \(\tan x \) are even. So we separate out one copy of \(\sec x \tan x \) and convert the rest of the integrand into powers of \(\sec x \). Then since the derivative of \(\sec x \) is \(\sec x \tan x \), we are set up for a \(u \)-substitution.

The first step is to use the identity \(\tan^2 x = \sec^2 x - 1 \):

\[
\int \tan^3 x \sec^5 x \, dx = \int (\sec^2 x - 1)(\sec^4 x)(\sec x \tan x) \, dx
\]

\[
= \int (\sec^6 x - \sec^4 x) \sec x \tan x \, dx
\]

Letting \(u = \sec x \), so \(du = \sec x \tan x \, dx \), we have

\[
\int \tan^3 x \sec^5 x \, dx = \int \left(u^6 - u^4 \right) du = \frac{u^7}{7} - \frac{u^5}{5} + C
\]

\[
= \sec^7 x - \frac{\sec^5 x}{5} + C
\]

Note that the above method works whenever we integrate \(\int \tan^m x \sec^n x \, dx \), where \(m \) is odd and \(n > 0 \).
EXAMPLE 9 Evaluate \(\int \tan^2 x \sec^4 x \, dx \).

Solution In this case, we separate \(\sec^2 x \) and convert the rest of the integrand into powers of \(\tan x \), since the derivative of \(\tan x \) is \(\sec^2 x \). Using the fact \(\sec^2 x = \tan^2 x + 1 \) yields

\[
\int \tan^2 x \sec^4 x \, dx = \int (\tan^2 x)(\tan^2 x + 1)(\sec^2 x) \, dx = \int (\tan^4 x + \tan^2 x) \sec^2 x \, dx
\]

Setting \(u = \tan x \) and therefore \(du = \sec^2 x \, dx \), we have

\[
\int \tan^2 x \sec^4 x \, dx = \int (u^4 + u^2) \, du = \frac{u^5}{5} + \frac{u^3}{3} + C = \frac{\tan^5 x}{5} + \frac{\tan^3 x}{3} + C
\]

The above method works to integrate \(\int \tan^m x \sec^n x \, dx \) whenever \(n > 0 \) is even. The last case to deal with is when \(m \) is even and \(n \) is odd. Then we can convert the integrand to be entirely in terms of powers of \(\sec x \) and apply reduction formulas.

Formulas (17)–(19) in the table describe the integrals of the products \(\sin mx \sin nx \), \(\cos mx \cos nx \), and \(\sin mx \cos nx \). These integrals appear in the theory of Fourier Series, which is a fundamental technique used extensively in engineering and physics.

EXAMPLE 10 **Integral of \(\sin mx \cos nx \)** Evaluate \(\int_0^\pi \sin 4x \cos 3x \, dx \).

Solution Apply formula (18), with \(m = 4 \) and \(n = 3 \):

\[
\int_0^\pi \sin 4x \cos 3x \, dx = \left[\left(-\frac{\cos(4 - 3)x}{2(4 - 3)} - \frac{\cos(4 + 3)x}{2(4 + 3)} \right) \right]_0^\pi
\]

\[
= \left(-\frac{\cos x}{2} - \frac{\cos 7x}{14} \right) \bigg|_0^\pi
\]

\[
= \left(\frac{1}{2} + \frac{1}{14} \right) - \left(-\frac{1}{2} - \frac{1}{14} \right) = \frac{8}{7}
\]

8.2 SUMMARY

- To integrate an odd power of \(\sin x \) times \(\cos^n x \), write
 \[
 \int \sin^{2k+1} x \cos^n x \, dx = \int (1 - \cos^2 x)^k \cos^n x \sin x \, dx
 \]
 Then use the substitution \(u = \cos x \), \(du = -\sin x \, dx \).
- To integrate an odd power of \(\cos x \) times \(\sin^m x \), write
 \[
 \int \sin^m x \cos^{2k+1} x \, dx = \int (\sin^m x)(1 - \sin^2 x)^k \cos x \, dx
 \]
 Then use the substitution \(u = \sin x \), \(du = \cos x \, dx \).
- If both \(\sin x \) and \(\cos x \) occur to an even power, write
 \[
 \int \sin^m x \cos^n x \, dx = \int (1 - \cos^2 x)^{m/2} \cos^n x \, dx \quad \text{(if } m \leq n\text{)}
 \]
 \[
 \int \sin^m x \cos^n x \, dx = \int (\sin^m x)(1 - \sin^2 x)^{n/2} \, dx \quad \text{(if } m \geq n\text{)}
 \]
Expand the right-hand side to obtain a sum of powers of \(\cos x \) or powers of \(\sin x \). Then use the reduction formulas:

\[
\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx \\
\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx
\]

One can also apply the double angle trigonometric identities to obtain an integrand with smaller powers of sine and cosine in the variable \(2x \).

- The integral \(\int \tan^m x \sec^n x \, dx \) can be evaluated as in the marginal note on page 400.

TABLE OF TRIGONOMETRIC INTEGRALS

<table>
<thead>
<tr>
<th>Integral</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int \sin^2 x , dx = \frac{x}{2} - \frac{\sin 2x}{4} + C)</td>
<td>3</td>
</tr>
<tr>
<td>(\int \cos^2 x , dx = \frac{x}{2} + \frac{\sin 2x}{4} + C)</td>
<td>4</td>
</tr>
<tr>
<td>(\int \sin^n x , dx = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x , dx)</td>
<td>5</td>
</tr>
<tr>
<td>(\int \cos^n x , dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x , dx)</td>
<td>6</td>
</tr>
<tr>
<td>(\int \sin^m \cos^n x , dx = \frac{\sin^{m+1} x \cos^{n-1} x}{m+n} + \frac{n-1}{m+n} \int \sin^m x \cos^n x , dx)</td>
<td>7</td>
</tr>
<tr>
<td>(\int \sin^m \cos^n x , dx = -\frac{\sin^{m-1} x \cos^{n+1} x}{m+n} + \frac{m-1}{m+n} \int \sin^{m-2} x \cos^n x , dx)</td>
<td>8</td>
</tr>
<tr>
<td>(\int \tan x , dx = \ln</td>
<td>\sec x</td>
</tr>
<tr>
<td>(\int \tan^m x , dx = \frac{\tan^{m-1} x}{m-1} - \int \tan^{m-2} x , dx)</td>
<td>10</td>
</tr>
<tr>
<td>(\int \cot x , dx = -\ln</td>
<td>\csc x</td>
</tr>
<tr>
<td>(\int \cot^m x , dx = -\frac{\cot^{m-1} x}{m-1} - \int \cot^{m-2} x , dx)</td>
<td>12</td>
</tr>
<tr>
<td>(\int \sec x , dx = \ln</td>
<td>\sec x + \tan x</td>
</tr>
<tr>
<td>(\int \sec^m x , dx = \frac{\tan x \sec^{m-2} x}{m-1} + \frac{m-2}{m-1} \int \sec^{m-2} x , dx)</td>
<td>14</td>
</tr>
<tr>
<td>(\int \csc x , dx = \ln</td>
<td>\csc x - \cot x</td>
</tr>
<tr>
<td>(\int \csc^m x , dx = -\frac{\cot x \csc^{m-2} x}{m-1} + \frac{m-2}{m-1} \int \csc^{m-2} x , dx)</td>
<td>16</td>
</tr>
<tr>
<td>(\int \sin m x \sin n x , dx = \frac{\sin(m-n)x}{2(m-n)} - \frac{\sin(m+n)x}{2(m+n)} + C) ((m \neq \pm n))</td>
<td>17</td>
</tr>
<tr>
<td>(\int \sin m x \cos n x , dx = \frac{\cos(m-n)x}{2(m-n)} - \frac{\cos(m+n)x}{2(m+n)} + C) ((m \neq \pm n))</td>
<td>18</td>
</tr>
<tr>
<td>(\int \cos m x \cos n x , dx = \frac{\sin(m-n)x}{2(m-n)} + \frac{\sin(m+n)x}{2(m+n)} + C) ((m \neq \pm n))</td>
<td>19</td>
</tr>
</tbody>
</table>

Although we include this table of trigonometric integrals, it makes more sense to understand how to obtain a given integral than to simply rely on the table.
8.2 Exercises

Preliminary Questions

1. Describe the technique used to evaluate \(\int \sin^5 x \, dx \).
2. Describe a way of evaluating \(\int \sin^6 x \, dx \).
3. Are reduction formulas needed to evaluate \(\int \sin^7 x \cos^2 x \, dx \)? Why or why not?

Exercises

In Exercises 1–6, use the method for odd powers to evaluate the integral.

1. \(\int \cos^3 x \, dx \)
2. \(\int \sin^3 x \, dx \)
3. \(\int \sin^3 \theta \cos^2 \theta \, d\theta \)
4. \(\int \sin^5 x \cos x \, dx \)
5. \(\int \sin^3 t \cos^3 t \, dt \)
6. \(\int \sin^2 x \cos^2 x \, dx \)

7. Find the area of the shaded region in Figure 1.
8. Use the identity \(\sin^2 x = 1 - \cos^2 x \) to write \(\int \sin^2 x \cos^2 x \, dx \) as a sum of two integrals, and then evaluate using the reduction formula.

![Figure 1](https://via.placeholder.com/150)

In Exercises 9–12, evaluate the integral using methods employed in Examples 4 and 5.

9. \(\int \cos^4 y \, dy \)
10. \(\int \cos^2 \theta \sin^2 \theta \, d\theta \)
11. \(\int \sin^4 x \cos^2 x \, dx \)
12. \(\int \sin^2 x \cos^6 x \, dx \)

In Exercises 13 and 14, evaluate using Eq. (7).

13. \(\int \sin^3 x \cos^2 x \, dx \)
14. \(\int \sin^2 x \cos^4 x \, dx \)

In Exercises 15–18, evaluate the integral using the method described on page 400 and the reduction formulas on page 402 as necessary.

15. \(\int \tan^3 x \sec x \, dx \)
16. \(\int \tan^2 x \sec x \, dx \)
17. \(\int \tan^2 x \sec^4 x \, dx \)
18. \(\int \tan^8 x \sec^2 x \, dx \)

In Exercises 19–22, evaluate using methods similar to those that apply to integral \(\tan^m x \sec^n x \).

19. \(\int \cot^3 x \, dx \)
20. \(\int \sec^3 x \, dx \)
21. \(\int \cot^5 x \csc^2 x \, dx \)
22. \(\int \cot^4 x \csc x \, dx \)

In Exercises 23–48, evaluate the integral.

23. \(\int \cos^5 x \sin x \, dx \)
24. \(\int \cos^3 (2 - x) \sin (2 - x) \, dx \)
25. \(\int \cos^4 (3x + 2) \, dx \)
26. \(\int \cos^7 3x \, dx \)
27. \(\int \cos^3 (\pi \theta) \sin^4 (\pi \theta) \, d\theta \)
28. \(\int \cos^{408} y \sin^3 y \, dy \)
29. \(\int \sin^4 (3x) \, dx \)
30. \(\int \sin^2 x \cos^6 x \, dx \)
31. \(\int \frac{\cos^5 x}{\sin^3 x} \, dx \)
32. \(\int \frac{\sin^7 x}{\cos^4 x} \, dx \)
33. \(\int \csc^2 (3 - 2x) \, dx \)
34. \(\int \csc^3 x \, dx \)
35. \(\int \tan x \sec^2 x \, dx \)
36. \(\int \tan x \sec^3 x \, dx \)
37. \(\int \tan^5 x \sec^4 x \, dx \)
38. \(\int \tan^4 x \sec x \, dx \)
39. \(\int \tan^6 x \sec^4 x \, dx \)
40. \(\int \tan^2 x \sec^3 x \, dx \)
41. \(\int \cot^5 x \csc^3 x \, dx \)
42. \(\int \cot^2 x \csc^4 x \, dx \)
43. \(\int \sin 2x \cos 2x \, dx \)
44. \(\int \cos 4x \cos 6x \, dx \)
45. \(\int t \cos^3 (t^2) \, dt \)
46. \(\int \frac{\tan^3 (\ln t)}{t} \, dt \)
47. \(\int \cos^2 (\sin t) \cos t \, dt \)
48. \(\int e^t \tan^2 (e^t) \, dt \)

In Exercises 49–62, evaluate the definite integral.

49. \(\int_{0}^{2\pi} \sin^2 x \, dx \)
50. \(\int_{0}^{\pi/2} \cos^3 x \, dx \)
51. \(\int_{0}^{\pi/2} \sin^5 x \, dx \)
52. \(\int_{0}^{\pi/2} \sin^2 x \cos^3 x \, dx \)
53. \(\int_{0}^{\pi/4} \frac{dx}{\cos x} \)
54. \(\int_{0}^{\pi/4} \frac{dx}{\sin x} \)
55. \(\int_{0}^{\pi/3} \tan x \, dx \)
56. \(\int_{0}^{\pi/4} \tan^5 x \, dx \)
57. \(\int_{-\pi/4}^{\pi/4} \sec^4 x \, dx \)
58. \(\int_{-\pi/4}^{\pi/4} \cot^4 x \, dx \)
59. \(\int_{-\pi/4}^{\pi/4} \cot^4 x \csc^2 x \, dx \)
484 CHAPTER 8 TECHNIQUES OF INTEGRATION

59. \(\int_0^\pi \sin 3x \cos 4x \, dx \)

60. \(\int_0^\pi \sin x \sin 3x \, dx \)

61. \(\int_{\pi/6}^\pi \sin 2x \cos 4x \, dx \)

62. \(\int_{\pi/4}^{\pi/2} \sin 7x \cos 2x \, dx \)

63. Use the identities for \(\sin 2x \) and \(\cos 2x \) on page 398 to verify that the following formulas are equivalent:

\[
\int \sin^4 x \, dx = \frac{1}{32} (12x - 8 \sin 2x + \sin 4x) + C
\]

\[
\int \cos^4 x \, dx = \frac{1}{32} (12x - 8 \sin 2x - \sin 4x) + C
\]

64. Evaluate \(\int \sin^2 x \cos^3 x \, dx \) using the method described in the text and verify that your result is equivalent to the following result produced by a computer algebra system:

\[
\int \sin^2 x \cos^3 x \, dx = \frac{1}{30} (7 + 3 \cos 2x) \sin^3 x + C
\]

65. Find the volume of the solid obtained by revolving \(y = \sin x \) for \(0 \leq x \leq \pi \) about the \(x \)-axis.

66. Use Integration by Parts to prove Eqs. (1) and (2).

In Exercises 67–70, use the following alternative method for evaluating the integral \(J = \int \sin^m x \cos^n x \, dx \) when \(m \) and \(n \) are both even. Use the identities

\[
\sin^2 x = \frac{1}{2} (1 - \cos 2x), \quad \cos^2 x = \frac{1}{2} (1 + \cos 2x)
\]

to write \(J = \frac{1}{2} \int (1 - \cos 2x)^{m/2} (1 + \cos 2x)^{n/2} \, dx \), and expand the right-hand side as a sum of integrals involving smaller powers of sine and cosine in the variable \(2x \).

67. \(\int \sin^2 x \cos^2 x \, dx \)

68. \(\int \cos^4 x \, dx \)

69. \(\int \sin^4 x \cos^2 x \, dx \)

70. \(\int \sin^6 x \, dx \)

71. Prove the reduction formula

\[
\int \tan^k x \, dx = \frac{\tan^{k-1} x}{k-1} - \int \tan^{k-2} x \, dx
\]

Hint: \(\tan^2 x = (\sec^2 x - 1) \tan^{k-2} x \).

72. Use the substitution \(u = \csc x - \cot x \) to evaluate \(\int \csc x \, dx \) (see Example 6).

Further Insights and Challenges

78. Use the trigonometric identity

\[
\sin mx \cos nx = \frac{1}{2} (\sin(m - n)x + \sin(m + n)x)
\]

to prove Eq. (18) in the table of integrals on page 402.

79. Use Integration by Parts to prove that (for \(m \neq 1 \))

\[
\int \sec^m x \, dx = \frac{\tan x \sec^{m-2} x}{m-1} + \frac{m-2}{m-1} \int \sec^{m-2} x \, dx
\]

73. Let \(I_m = \int_0^{\pi/2} \sin^m x \, dx \).

(a) Show that \(I_0 = \frac{\pi}{2} \) and \(I_1 = 1 \).

(b) Prove that, for \(m \geq 2 \),

\[
I_m = \frac{m-1}{m} I_{m-2}
\]

(c) Use (a) and (b) to compute \(I_m \) for \(m = 2, 3, 4, 5 \).

74. Evaluate \(\int_0^\pi \sin^2 mx \, dx \) for \(m \) an arbitrary integer.

75. Evaluate \(\int \sin x \ln(\sin x) \, dx \). Hint: Use Integration by Parts as a first step.

76. Total Energy A 100-watt (W) light bulb has resistance \(R = 144 \) ohms (\(\Omega \)) when attached to household current, where the voltage varies as \(V = V_0 \sin(2\pi ft) \) (\(V_0 = 110 \) V, \(f = 60 \) Hz). The energy (in joules) expended by the bulb over a period of \(T \) seconds is

\[
U = \int_0^T P(t) \, dt
\]

where \(P = V^2 / R \) (J/s) is the power. Compute \(U \) if the bulb remains on for 5 h.

77. Let \(m, n \) be integers with \(m \neq \pm n \). Use Eqs. (17)–(19) to prove the so-called orthogonality relations that play a basic role in the theory of Fourier Series (Figure 2):

\[
\int_0^\pi \sin mx \sin nx \, dx = 0
\]

\[
\int_0^\pi \cos mx \cos nx \, dx = 0
\]

\[
\int_0^{2\pi} \sin mx \cos nx \, dx = 0
\]

78. Use the trigonometric identity

\[
\sin mx \cos nx = \frac{1}{2} (\sin(m - n)x + \sin(m + n)x)
\]

to prove Eq. (18) in the table of integrals on page 402.

79. Use Integration by Parts to prove that (for \(m \neq 1 \))

\[
\int \sec^m x \, dx = \frac{\tan x \sec^{m-2} x}{m-1} + \frac{m-2}{m-1} \int \sec^{m-2} x \, dx
\]

FIGURE 2 The integrals are zero by the orthogonality relations.

80. Set \(I_m = \int_0^{\pi/2} \sin^m x \, dx \). Use Exercise 73 to prove that

\[
I_{2m} = \frac{2m - 1}{2m - 2} \frac{2m - 3}{2m - 4} \cdots \frac{1}{2}
\]

\[
I_{2m+1} = \frac{2m}{2m + 1} \frac{2m - 2}{2m - 1} \cdots \frac{2}{3}
\]

Conclude that

\[
\frac{\pi}{2} = \frac{2 \cdot 2}{1 \cdot 3} \frac{4 \cdot 4}{3 \cdot 5} \cdots \frac{2m \cdot 2m}{(2m - 1)(2m + 1)} \frac{I_{2m}}{I_{2m+1}}
\]
81. This is a continuation of Exercise 80.
 (a) Prove that \(I_{2m+1} \leq I_{2m} \leq I_{2m-1} \). Hint:
 \[
 \sin^{2m+1} x \leq \sin^{2m} x \leq \sin^{2m-1} x \quad \text{for} \quad 0 \leq x \leq \frac{\pi}{2}
 \]
 (b) Show that \(\frac{I_{2m-1}}{I_{2m+1}} = 1 + \frac{1}{2m} \).
 (c) Show that \(1 \leq \frac{I_{2m}}{I_{2m+1}} \leq 1 + \frac{1}{2m} \).
 (d) Prove that \(\lim_{m \to \infty} \frac{I_{2m}}{I_{2m+1}} = 1 \).
 (e) Finally, deduce the infinite product for \(\frac{\pi}{2} \) discovered by English mathematician John Wallis (1616–1703):
 \[
 \frac{\pi}{2} = \lim_{m \to \infty} \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \cdots \frac{2m}{2m+1}
 \]

8.3 Trigonometric Substitution

Our next goal is to integrate functions involving one of the square root expressions:

\[
\sqrt{a^2 - x^2}, \quad \sqrt{x^2 + a^2}, \quad \sqrt{x^2 - a^2}
\]

More generally, we will see that we can also integrate functions involving \(\sqrt{ax^2 + bx + c} \). In each case, a substitution transforms the integral into a trigonometric integral. For example, if we let \(x = a \sin \theta \) in the first case, we can use the fact \(\sin^2 \theta + \cos^2 \theta = 1 \) to obtain

\[
\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2 \theta} = a \sqrt{1 - \sin^2 \theta} = a \cos \theta \quad \text{for} \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}
\]

The other root functions listed above can also be integrated by applying identities involving the other trigonometric functions.

EXAMPLE 1 Evaluate \(\int \frac{1}{\sqrt{1-x^2}} \, dx \).

Solution

Step 1. Substitute to eliminate the square root.

The integrand is defined for \(-1 < x < 1\), so we may set \(x = \sin \theta \), where \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\).

Because \(\cos \theta > 0 \) for such \(\theta \), we obtain the positive square root

\[
\sqrt{1-x^2} = \sqrt{1-\sin^2 \theta} = \sqrt{\cos^2 \theta} = \cos \theta
\]

Step 2. Evaluate the trigonometric integral.

Since \(x = \sin \theta \), we have \(dx = \cos \theta \, d\theta \), and

\[
\int \frac{1}{\sqrt{1-x^2}} \, dx = \int \frac{1}{\cos \theta} (\cos \theta \, d\theta) = d\theta.
\]

Thus,

\[
\int \frac{1}{\sqrt{1-x^2}} \, dx = \int d\theta = \theta + C
\]

Step 3. Convert back to the original variable.

Since \(x = \sin \theta \) for \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\), the inverse of \(\sin \) is defined, and \(\theta = \sin^{-1} x \). Therefore,

\[
\int \frac{1}{\sqrt{1-x^2}} \, dx = \sin^{-1} x + C
\]
EXAMPLE 2 Evaluate \(\int \sqrt{1-x^2} \, dx \).

Solution

Step 1. Substitute to eliminate the square root.

The integrand is defined for \(-1 \leq x \leq 1 \), so as in the previous example, we set \(x = \sin \theta \), where \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \). Because \(\cos \theta \geq 0 \) for such \(\theta \), we again obtain the positive square root

\[
\sqrt{1-x^2} = \sqrt{1-\sin^2 \theta} = \sqrt{\cos^2 \theta} = \cos \theta
\]

Step 2. Evaluate the trigonometric integral.

Since \(x = \sin \theta \), we have \(dx = \cos \theta \, d\theta \), and \(\sqrt{1-x^2} \, dx = \cos \theta (\cos \theta \, d\theta) \). Thus,

\[
\int \sqrt{1-x^2} \, dx = \int \cos^2 \theta \, d\theta = \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C
\]

Step 3. Convert back to the original variable.

It remains to express the answer in terms of \(x \) (see Figure 1):

\[
x = \sin \theta, \quad \theta = \sin^{-1} x, \quad \sqrt{1-x^2} = \cos \theta
\]

\[
\int \sqrt{1-x^2} \, dx = \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta + C = \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1-x^2} + C
\]

Integrals Involving \(\sqrt{a^2-x^2} \) If \(\sqrt{a^2-x^2} \) occurs in an integral where \(a > 0 \), try the substitution

\[
x = a \sin \theta, \quad dx = a \cos \theta \, d\theta, \quad \sqrt{a^2-x^2} = a \cos \theta
\]

The next example shows that trigonometric substitution can be used with integrands involving \((a^2-x^2)^{n/2} \), where \(n \) is any integer.

EXAMPLE 3 Integrals Involving \((a^2-x^2)^{3/2} \) Evaluate \(\int \frac{x^2}{(4-x^2)^{3/2}} \, dx \).

Solution

Step 1. Substitute to eliminate the square root.

In this case, \(a = 2 \) since \(\sqrt{4-x^2} = \sqrt{2^2-x^2} \). Therefore, we use

\[
x = 2 \sin \theta, \quad dx = 2 \cos \theta \, d\theta, \quad \sqrt{4-x^2} = 2 \cos \theta
\]

\[
\int \frac{x^2}{(4-x^2)^{3/2}} \, dx = \int \frac{4 \sin^2 \theta}{2^3 \cos^2 \theta} \, 2 \cos \theta \, d\theta = \int \frac{\sin^2 \theta}{\cos^2 \theta} \, d\theta = \int \tan^2 \theta \, d\theta
\]

Step 2. Evaluate the trigonometric integral.

Use the trigonometric identity \(\tan^2 x = \sec^2 x - 1 \):

\[
\int \tan^2 \theta \, d\theta = \int (\sec^2 \theta - 1) \, d\theta = \tan \theta - \theta + C
\]

Step 3. Convert back to the original variable.

We must write \(\tan \theta \) and \(\theta \) in terms of \(x \). By definition, \(x = 2 \sin \theta \), so

\[
\sin \theta = \frac{x}{2}, \quad \theta = \sin^{-1} \frac{x}{2}
\]

To express \(\tan \theta \) in terms of \(x \), we use the right triangle in Figure 2. The angle \(\theta \) satisfies \(\sin \theta = \frac{x}{2} \) and

\[
\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{x}{\sqrt{4-x^2}}
\]
Thus, we have
\[\int \frac{x^2}{(4-x^2)^{3/2}} \, dx = \tan \theta + C = \frac{x}{\sqrt{4-x^2}} - \sin^{-1} \frac{x}{2} + C \]

When the integrand involves \(\sqrt{x^2 + a^2} \), try the substitution \(x = a \tan \theta \). Then
\[x^2 + a^2 = a^2 \tan^2 \theta + a^2 = a^2(1 + \tan^2 \theta) = a^2 \sec^2 \theta \]
and thus \(\sqrt{x^2 + a^2} = a \sec \theta \).

Example 4 Evaluate \(\int \frac{1}{\sqrt{x^2 + 9}} \, dx \).

Solution We have the form \(\sqrt{x^2 + a^2} \) with \(a = 3 \).

Step 1. Substitute to eliminate the square root.
\[x = 3 \tan \theta, \quad dx = 3 \sec^2 \theta \, d\theta, \quad \sqrt{x^2 + 9} = 3 \sec \theta \]
\[\int \frac{1}{\sqrt{x^2 + 9}} \, dx = \int \frac{1}{3 \sec \theta} \cdot 3 \sec^2 \theta \, d\theta = \int \sec \theta \, d\theta \]

Step 2. Evaluate the trigonometric integral.
\[\int \frac{1}{\sqrt{x^2 + 9}} \, dx = \int \sec \theta \, d\theta = \ln |\sec \theta + \tan \theta| + C \]

Step 3. Convert back to the original variable.
Since \(x = 3 \tan \theta \), we use the right triangle in Figure 3.
\[\tan \theta = \frac{\text{opposite}}{\text{adjacent}} = \frac{x}{3}, \quad \sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{\sqrt{x^2 + 9}}{3} \]
\[\int \frac{1}{\sqrt{x^2 + 9}} \, dx = \ln \left| \frac{\sqrt{x^2 + 9}}{3} + \frac{x}{3} \right| + C \]

Notice that we can rewrite this answer as follows, absorbing the constant term into the arbitrary constant:
\[\ln \left| \frac{\sqrt{x^2 + 9}}{3} + \frac{x}{3} \right| + C = \ln |\sqrt{x^2 + 9} + x| - \ln 3 + C = \ln |\sqrt{x^2 + 9} + x| + C \]

Our last trigonometric substitution \(x = a \sec \theta \) transforms \(\sqrt{x^2 - a^2} \) into \(a \tan \theta \) because
\[x^2 - a^2 = a^2 \sec^2 \theta - a^2 = a^2(\sec^2 \theta - 1) = a^2 \tan^2 \theta \]

Integrals Involving \(\sqrt{x^2 - a^2} \) If \(\sqrt{x^2 - a^2} \) occurs in an integral where \(a > 0 \), try the substitution
\[x = a \sec \theta, \quad dx = a \sec \theta \tan \theta \, d\theta, \quad \sqrt{x^2 - a^2} = a \tan \theta \]
EXAMPLE 5 Evaluate \(\int \frac{dx}{x^2 \sqrt{4x^2 - 36}} \).

Solution First, factor out the 4 to obtain \(x^2 \sqrt{4x^2 - 36} = 2x^2 \sqrt{x^2 - 9} \). In this case, make the substitution

\[
x = 3 \sec \theta, \quad dx = 3 \sec \theta \tan \theta \, d\theta, \quad \sqrt{x^2 - 9} = 3 \tan \theta
\]

\[
\int \frac{dx}{x^2 \sqrt{4x^2 - 36}} = \frac{1}{2} \int \frac{3 \sec \theta \tan \theta \, d\theta}{(9 \sec^2 \theta)(3 \tan \theta)} = \frac{1}{18} \int \cos \theta \, d\theta = \frac{1}{18} \sin \theta + C
\]

Since \(x = 3 \sec \theta \), we use the right triangle in Figure 4:

\[
\sec \theta = \frac{\text{hypotenuse}}{\text{adjacent}} = \frac{x}{3}, \quad \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{\sqrt{x^2 - 9}}{x}
\]

Therefore,

\[
\int \frac{dx}{x^2 \sqrt{4x^2 - 36}} = \frac{1}{18} \sin \theta + C = \frac{\sqrt{x^2 - 9}}{18x} + C
\]

Square Roots of General Quadratic Functions

So far we have dealt with the expressions \(\sqrt{x^2 \pm a^2} \) and \(\sqrt{a^2 - x^2} \). By completing the square (Section 1.2), we can treat the more general form \(\sqrt{ax^2 + bx + c} \).

EXAMPLE 6 Completing the Square Evaluate \(\int \frac{dx}{(x^2 - 6x + 11)^2} \).

Solution

Step 1. Complete the square.

\[
x^2 - 6x + 11 = (x^2 - 6x + 9) + 2 = (x - 3)^2 + 2
\]

Step 2. Use substitution.

Let \(u = x - 3 \), \(du = dx \):

\[
\int \frac{dx}{(x^2 - 6x + 11)^2} = \int \frac{du}{(u^2 + 2)^2}
\]

Step 3. Trigonometric substitution.

Evaluate the \(u \)-integral using trigonometric substitution:

\[
u = 2 \tan \theta, \quad u^2 + 2 = 2 \sec^2 \theta, \quad du = \sqrt{2} \sec^2 \theta \, d\theta
\]

\[
\int \frac{du}{(u^2 + 2)^2} = \frac{1}{\sqrt{2}} \int \frac{\sec^2 \theta \, d\theta}{4 \sec^4 \theta} = \frac{1}{2\sqrt{2}} \int \cos^2 \theta \, d\theta
\]

\[
= \frac{1}{4\sqrt{2}} \left(\frac{\theta}{2} + \frac{\sin \theta \cos \theta}{2} \right) + C
\]

Since \(\theta = \tan^{-1} \frac{u}{\sqrt{2}} \), we use the right triangle in Figure 5 to obtain

\[
\sin \theta \cos \theta = \left(\frac{\text{opposite}}{\text{hypotenuse}} \right) \left(\frac{\text{adjacent}}{\text{hypotenuse}} \right) = \frac{u}{\sqrt{u^2 + 2}} \cdot \frac{\sqrt{2}}{\sqrt{u^2 + 2}} = \frac{\sqrt{2}u}{u^2 + 2}
\]

Thus, Eq. (4) becomes

\[
\int \frac{du}{(u^2 + 2)^2} = \frac{1}{4\sqrt{2}} \left(\tan^{-1} \frac{u}{\sqrt{2}} + \frac{\sqrt{2}u}{u^2 + 2} \right) + C
\]

\[
= \frac{1}{4\sqrt{2}} \tan^{-1} \frac{u}{\sqrt{2}} + \frac{u}{4(u^2 + 2)} + C
\]
Step 4. Convert to the original variable.

Since \(u = x - 3 \) and \(u^2 + 2 = x^2 - 6x + 11 \), Eq. (5) becomes

\[
\int \frac{du}{(u^2 + 2)^{\frac{3}{2}}} = \frac{1}{4\sqrt{2}} \tan^{-1} \left(\frac{x - 3}{\sqrt{2}} \right) + \frac{x - 3}{4(x^2 - 6x + 11)} + C
\]

This is our final answer by Eq. (3):

\[
\int \frac{dx}{(x^2 - 6x + 11)^{\frac{3}{2}}} = \frac{1}{4\sqrt{2}} \tan^{-1} \left(\frac{x - 3}{\sqrt{2}} \right) + \frac{x - 3}{4(x^2 - 6x + 11)} + C
\]

8.3 SUMMARY

- Trigonometric substitution:

<table>
<thead>
<tr>
<th>Square root form in integrand</th>
<th>Trigonometric substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{a^2 - x^2})</td>
<td>(x = a \sin \theta), (dx = a \cos \theta , d\theta), (\sqrt{a^2 - x^2} = a \cos \theta)</td>
</tr>
<tr>
<td>(\sqrt{x^2 + a^2})</td>
<td>(x = a \tan \theta), (dx = a \sec^2 \theta , d\theta), (\sqrt{x^2 + a^2} = a \sec \theta)</td>
</tr>
<tr>
<td>(\sqrt{x^2 - a^2})</td>
<td>(x = a \sec \theta), (dx = a \sec \theta \tan \theta , d\theta), (\sqrt{x^2 - a^2} = a \tan \theta)</td>
</tr>
</tbody>
</table>

Step 1. Substitute to eliminate the square root.

Step 2. Evaluate the trigonometric integral.

Step 3. Convert back to the original variable.

- The three trigonometric substitutions correspond to three right triangles (Figure 6) that we use to express the trigonometric functions of \(\theta \) in terms of \(x \).
- Integrands involving \(\sqrt{x^2 + bx + c} \) are treated by completing the square (see Example 6).

![FIGURE 6 Right triangles used in trigonometric substitution.](image)

8.3 EXERCISES

Preliminary Questions

1. State the trigonometric substitution appropriate to the given integral:
 (a) \(\int \sqrt{9 - x^2} \, dx \)
 (b) \(\int x^2 (x^2 - 16)^{3/2} \, dx \)
 (c) \(\int x^2 (x^2 + 10)^{3/2} \, dx \)
 (d) \(\int (x^2 - 5)^{-2} \, dx \)

2. Is trigonometric substitution needed to evaluate \(\int x \sqrt{9 - x^2} \, dx \)?

3. Express \(\sin 2\theta \) in terms of \(x = \sin \theta \).

4. Draw a triangle that would be used together with the substitution \(x = 3 \sec \theta \).

Exercises

In Exercises 1–4, evaluate the integral by following the steps given.

1. \(I = \int \frac{dx}{\sqrt{9 - x^2}} \)
 (a) Show that the substitution \(x = 3 \sin \theta \) transforms \(I \) into \(\int d\theta \), and evaluate \(I \) in terms of \(\theta \).
 (b) Evaluate \(I \) in terms of \(x \).

2. \(I = \int \frac{dx}{x^2 \sqrt{x^2 - 2}} \)
 (a) Show that the substitution \(x = \sqrt{2} \sec \theta \) transforms the integral \(I \) into \(\frac{1}{2} \int \cos \theta \, d\theta \), and evaluate \(I \) in terms of \(\theta \).
 (b) Use a right triangle to show that with the above substitution, \(\sin \theta = \sqrt{x^2 - 2}/x \).
 (c) Evaluate \(I \) in terms of \(x \).
3. \[I = \int \frac{dx}{\sqrt{4x^2 + 9}} \]

(a) Show that the substitution \(x = \frac{1}{2} \tan \theta \) transforms \(I \) into
\[\frac{1}{2} \int \sec \theta \, d\theta. \]
(b) Evaluate \(I \) in terms of \(\theta \) (refer to the table of integrals on page 402 in Section 8.2 if necessary).
(c) Express \(I \) in terms of \(x \).

4. \[I = \int \frac{dy}{(x^2 + 4)^2} \]

(a) Show that the substitution \(x = 2 \tan \theta \) transforms the integral \(I \) into
\[\int \cos^2 \theta \, d\theta. \]
(b) Use the formula \(\int \cos^2 \theta \, d\theta = \frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta \) to evaluate \(I \) in terms of \(\theta \).
(c) Show that \(\sin \theta = \frac{x}{\sqrt{x^2 + 4}} \) and \(\cos \theta = \frac{2}{\sqrt{x^2 + 4}} \).
(d) Express \(I \) in terms of \(x \).

In Exercises 5–10, use the indicated substitution to evaluate the integral.

5. \[\int \sqrt{16 - 5x^2} \, dx, \quad x = \frac{4}{\sqrt{5}} \sin \theta \]
6. \[\int_0^{1/2} \frac{x^2}{\sqrt{1 - x^2}} \, dx, \quad x = \sin \theta \]
7. \[\int \frac{dx}{x\sqrt{x^2 - 9}}, \quad x = 3 \sec \theta \]
8. \[\int_{1/2}^1 \frac{dx}{x\sqrt{x^2 - 9}}, \quad x = 2 \tan \theta \]
9. \[\int \frac{dx}{(x^2 - 4)^{3/2}}, \quad x = 2 \sec \theta \]
10. \[\int \frac{dx}{(4 + 9x^2)^{1/2}}, \quad x = \frac{2}{3} \tan \theta \]

11. Evaluate \(\int \frac{x \, dx}{\sqrt{x^2 - 4}} \) in two ways: using the direct substitution \(u = x^2 - 4 \) and by trigonometric substitution.

12. Is the substitution \(u = x^2 - 4 \) effective for evaluating the integral \(\int \frac{x^2 \, dx}{\sqrt{x^2 - 4}} \)? If not, evaluate using trigonometric substitution.

13. Evaluate using the substitution \(u = 1 - x^2 \) or trigonometric substitution.
(a) \[\int \frac{x}{\sqrt{1 - x^2}} \, dx \]
(b) \[\int x^2 \sqrt{1 - x^2} \, dx \]
(c) \[\int x^3 \frac{dx}{\sqrt{1 - x^2}} \]
(d) \[\int \frac{x^4}{\sqrt{1 - x^2}} \, dx \]

14. Evaluate:
(a) \[\int_0^1 \frac{dt}{(t^2 + 1)^{3/2}} \]
(b) \[\int_0^1 \frac{t \, dt}{(t^2 + 1)^{3/2}} \]

In Exercises 15–32, evaluate using trigonometric substitution. Refer to the table of trigonometric integrals as necessary.

15. \[\int \frac{x^2 \, dx}{\sqrt{9 - x^2}} \]
16. \[\int \frac{dt}{(16 - t^2)^{3/2}} \]
17. \[\int \frac{dx}{x \sqrt{x^2 + 16}} \]
18. \[\int \sqrt{12 + 4t^2} \, dt \]
19. \[\int \frac{dx}{\sqrt{x^2 - 9}} \]
20. \[\int \frac{dt}{t^2 \sqrt{t^2 - 25}} \]
21. \[\int \frac{dy}{\sqrt{x^2 - y^2}} \]
22. \[\int x^3 \sqrt{9 - x^2} \, dx \]
23. \[\int \frac{dx}{\sqrt{25x^2 + 2}} \]
24. \[\int \frac{dt}{(9t^2 + 4)^3} \]
25. \[\int \frac{dz}{z\sqrt{z^2 - 4}} \]
26. \[\int \frac{dx}{\sqrt{y^2 - 9}} \]
27. \[\int \frac{x^2 \, dx}{(6x^2 - 49)^{1/2}} \]
28. \[\int \frac{dx}{(x^2 - 4)^2} \]
29. \[\int \frac{dt}{(t^2 + 9)^2} \]
30. \[\int 0 \] (a) Let \(I = \int \frac{dx}{\sqrt{x^2 - 4x + 8}}. \)
(b) Complete the square to show that \(x^2 - 4x + 8 = (x - 2)^2 + 4. \)
(c) Use the substitution \(u = x - 2 \) to show that \(I = \int \frac{du}{\sqrt{u^2 + 2}} \).

35. Let \(I = \int \frac{dx}{\sqrt{x^2 - 4x + 8}}. \)
(a) Complete the square to show that \(x^2 - 4x + 8 = (x - 2)^2 + 4. \)
(b) Use the substitution \(u = x - 2 \) to show that \(I = \int \frac{du}{\sqrt{u^2 + 2}} \).
(c) Evaluate the \(u \)-integral.

36. Evaluate \(\int \frac{dx}{\sqrt{12x - x^2}} \). First complete the square to write \(12x - x^2 = 36 - (x - 6)^2 \).

In Exercises 37–42, evaluate the integral by completing the square and using trigonometric substitution.

37. \[\int \frac{dx}{\sqrt{x^2 + 4x + 13}} \]
38. \[\int \frac{dx}{\sqrt{2 + x - x^2}} \]
39. \[\int \frac{dx}{\sqrt{x^2 + 6x^2}} \]
40. \[\int \frac{dx}{\sqrt{x^2 - 4x + 7}} \]
41. \[\int \left(\frac{dx}{(x^2 - 4x + 3} \right) \]
42. \[\int \frac{dx}{(x^2 + 6x + 6)^2} \]

In Exercises 43–46, evaluate using Integration by Parts as a first step.

43. \[\int \sec^{-1} x \, dx \]
44. \[\int \sin^{-1} \frac{x}{x^2} \, dx \]
45. \[\int \ln(x^2 + 1) \, dx \]
46. \[\int x^2 \ln(x^2 + 1) \, dx \]

47. Find the average height of a point on the semicircle \(y = \sqrt{1 - x^2} \) for \(-1 \leq x \leq 1\).
48. Find the volume of the solid obtained by revolving the graph of \(y = x\sqrt{1 - x^2} \) over \([0, 1]\) about the \(y \)-axis.
49. Find the volume of the solid obtained by revolving the region between the graph of \(y^2 - x^2 = 1 \) and the line \(y = 2 \) about the line \(y = 2 \).

50. Find the volume of revolution for the region in Exercise 49, but revolve around \(y = 3 \).

51. Compute \(\int \frac{dx}{x^2 - 1} \) in two ways and verify that the answers agree: first via trigonometric substitution and then using the identity

\[
\frac{1}{x^2 - 1} = \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right)
\]

52. **CAS** You want to divide an 18-in. pizza equally among three friends using vertical slices at \(\pm x \) as in Figure 7. Find an equation satisfied by \(x \) and find the approximate value of \(x \) using a computer algebra system.

FIGURE 7 Dividing a pizza into three equal parts.

Further Insights and Challenges

54. Let \(J_n = \int \frac{dx}{(x^2 + 1)^n} \). Use Integration by Parts to prove

\[
J_{n+1} = (1 - \frac{1}{2n}) J_n + \frac{1}{2n} \frac{x}{(x^2 + 1)^n}
\]

Then use this recursion relation to calculate \(J_2 \) and \(J_3 \).

55. Prove the formula

\[
\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \sin^{-1} x + \frac{1}{2} x \sqrt{1 - x^2} + C
\]

using geometry by interpreting the integral as the area of part of the unit circle.

8.4 Integrals Involving Hyperbolic and Inverse Hyperbolic Functions

In Section 7.9, we noted the similarities between hyperbolic and trigonometric functions. We also saw in Section 7.9 that the formulas for their derivatives resemble each other, differing in at most a sign. Recall the following integral formulas.

Hyperbolic Integral Formulas

\[
\begin{align*}
\int \sinh x \, dx &= \cosh x + C, \\
\int \cosh x \, dx &= \sinh x + C \\
\int \sech^2 x \, dx &= \tanh x + C, \\
\int \csch^2 x \, dx &= -\coth x + C \\
\int \sec x \tanh x \, dx &= -\sec x + C, \\
\int \csc x \cot x \, dx &= -\csc x + C
\end{align*}
\]

Example 1 Calculate \(\int x \cosh(x^2) \, dx \).

Solution The substitution \(u = x^2, \, du = 2x \, dx \) yields

\[
\int x \cosh(x^2) \, dx = \frac{1}{2} \int \cosh u \, du = \frac{1}{2} \sinh u + C = \frac{1}{2} \sinh(x^2) + C
\]
Hyperbolic Identities:
\[\cosh^2 x - \sinh^2 x = 1 \]
\[\cosh^2 x = 1 + \sinh^2 x \]
\[\cosh^2 x = \frac{1}{2}(\cosh 2x + 1) \]
\[\sinh^2 x = \frac{1}{2}(\cosh 2x - 1) \]
\[\sinh 2x = 2 \sinh x \cosh x \]
\[\cosh 2x = \cosh^2 x + \sinh^2 x \]

The techniques for computing trigonometric integrals discussed in Section 8.2 apply with little change to hyperbolic integrals. In place of trigonometric identities, we use the corresponding hyperbolic identities (see margin).

EXAMPLE 2 Powers of \(\sinh x \) and \(\cosh x \) Calculate: (a) \[\int \sinh^4 x \cosh^5 x \, dx \]
and (b) \[\int \cosh^3 x \, dx \].

Solution

(a) Since \(\cosh x \) appears to an odd power, use \(\cosh^2 x = 1 + \sinh^2 x \) to write
\[\cosh^5 x = \cosh^4 x \cdot \cosh x = (\sinh^2 x + 1)^2 \cosh x \]

Then use the substitution \(u = \sinh x, \, du = \cosh x \, dx \):

\[
\int \sinh^4 x \cosh^5 x \, dx = \int \frac{\sinh^4 x (\sinh^2 x + 1)^2 \cosh x \, dx}{u^4 (u^2 + 1)^2} = \int \frac{u^4 (u^2 + 1)^2 \, du}{u^4 (u^2 + 1)^2} = \int (u^8 + 2u^6 + u^4) \, du = \frac{u^9}{9} + \frac{2u^7}{7} + \frac{u^5}{5} + C = \frac{\sinh^9 x}{9} + \frac{2 \sinh^7 x}{7} + \frac{\sinh^5 x}{5} + C
\]

(b) Use the identity \(\cosh^2 x = \frac{1}{2}(\cosh 2x + 1) \):

\[
\int \cosh^3 x \, dx = \frac{1}{2} \int (\cosh 2x + 1) \, dx = \frac{1}{2} \left(\frac{\sinh 2x}{2} + x \right) + C = \frac{1}{4} \sinh 2x + \frac{1}{2} x + C
\]

Hyperbolic substitution may be used as an alternative to trigonometric substitution to integrate functions involving the following square root expressions:

<table>
<thead>
<tr>
<th>Square root form</th>
<th>Hyperbolic substitution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{x^2 + a^2})</td>
<td>(x = a \sinh u, , dx = a \cosh u)</td>
</tr>
<tr>
<td>(\sqrt{x^2 - a^2})</td>
<td>(x = a \cosh u, , dx = a \sinh u)</td>
</tr>
</tbody>
</table>

EXAMPLE 3 Hyperbolic Substitution Calculate \(\int \sqrt{x^2 + 16} \, dx \).

Solution

Step 1. Substitute to eliminate the square root.
Use the hyperbolic substitution \(x = 4 \sinh u, \, dx = 4 \cosh u \, du \). Then
\[x^2 + 16 = 16(\sinh^2 u + 1) = (4 \cosh u)^2 \]

Furthermore, \(4 \cosh u > 0 \), so \(\sqrt{x^2 + 16} = 4 \cosh u \), and thus,
\[\int \sqrt{x^2 + 16} \, dx = \int (4 \cosh u) \, 4 \cosh u \, du = 16 \int \cosh^2 u \, du \]
Step 2. Evaluate the hyperbolic integral.
We evaluated the integral of \(\cosh^2 u \) in Example 2(b):

\[
\int \sqrt{x^2 + 16} \, dx = 16 \int \cosh^2 u \, du = 16 \left(\frac{1}{4} \sinh 2u + \frac{1}{2} u + C \right) = 4 \sinh 2u + 8u + C
\]

Step 3. Convert back to the original variable.
To write the answer in terms of the original variable \(x \), we note that

\[
\sinh u = \frac{x}{4}, \quad u = \sinh^{-1} \frac{x}{4}
\]

Use the identities recalled in the margin to write

\[
4 \sinh 2u = 4(2 \sinh u \cosh u) = 8 \sinh u \sqrt{\sinh^2 u + 1}
\]

Then Eq. (1) becomes

\[
\int \sqrt{x^2 + 16} \, dx = 4 \sinh 2u + 8u + C = \frac{1}{2} x \sqrt{x^2 + 16} + 8 \sinh^{-1} \frac{x}{4} + C
\]

In a similar manner, we could derive each of the following integral formulas. Alternatively, we can realize them from the corresponding derivative formulas for the inverse hyperbolic functions recorded in Section 7.9. Each formula is valid on the domain where the integrand and inverse hyperbolic function are defined.

THEOREM 1 Integrals Involving Inverse Hyperbolic Functions

\[
\int \frac{dx}{\sqrt{x^2 + 1}} = \sinh^{-1} x + C
\]

\[
\int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C \quad \text{(for } x > 1)\]

\[
\int \frac{dx}{1 - x^2} = \tanh^{-1} x + C \quad \text{(for } |x| < 1)\]

\[
\int \frac{dx}{1 - x^2} = \coth^{-1} x + C \quad \text{(for } |x| > 1)\]

\[
\int \frac{dx}{x \sqrt{1 - x^2}} = - \text{sech}^{-1} x + C \quad \text{(for } 0 < x < 1)\]

\[
\int \frac{dx}{|x| \sqrt{1 + x^2}} = - \text{csch}^{-1} x + C \quad \text{(for } x \neq 0)\]

EXAMPLE 4 Evaluate: (a) \(\int_2^4 \frac{dx}{\sqrt{x^2 - 1}} \) and (b) \(\int_{0.2}^{0.6} \frac{x \, dx}{1 - x^4} \).

Solution

(a) By Theorem 1,

\[
\int_2^4 \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} 4 \bigg|_2 = \cosh^{-1} 4 - \cosh^{-1} 2 \approx 0.75
\]
(b) First use the substitution \(u = x^2, \, du = 2x \, dx \). The new limits of integration become \(u = (0.2)^2 = 0.04 \) and \(u = (0.6)^2 = 0.36 \), so
\[
\int_{0.2}^{0.6} \frac{x \, dx}{1 - x^4} = \int_{0.04}^{0.36} \frac{1}{2} \frac{du}{1 - u^2} = \frac{1}{2} \int_{0.04}^{0.36} \frac{du}{1 - u^2}
\]
By Theorem 1, both \(\tanh^{-1} u \) and \(\coth^{-1} u \) are antiderivatives of \(f(u) = (1 - u^2)^{-1} \). We use \(\tanh^{-1} u \) because the interval of integration \([0.04, 0.36]\) is contained in the domain \((-1, 1)\) of \(f(u) = \tanh^{-1} u \). If the limits of integration were contained in \((1, \infty)\) or \((-\infty, -1)\), we would use \(\coth^{-1} u \). The result is
\[
\frac{1}{2} \int_{0.04}^{0.36} \frac{du}{1 - u^2} = \frac{1}{2} (\tanh^{-1}(0.36) - \tanh^{-1}(0.04)) \approx 0.1684
\]

8.4 SUMMARY

- Integrals of hyperbolic functions:
 \[
 \int \sinh x \, dx = \cosh x + C, \quad \int \cosh x \, dx = \sinh x + C
 \]
 \[
 \int \sech^2 x \, dx = \tanh x + C, \quad \int \csch^2 x \, dx = -\coth x + C
 \]
 \[
 \int \sech x \tanh x \, dx = -\sech x + C, \quad \int \csch x \coth x \, dx = -\csch x + C
 \]
- Integrals involving inverse hyperbolic functions:
 \[
 \int \frac{dx}{\sqrt{x^2 + 1}} = \sinh^{-1} x + C
 \]
 \[
 \int \frac{dx}{\sqrt{x^2 - 1}} = \cosh^{-1} x + C \quad \text{(for } x > 1\text{)}
 \]
 \[
 \int \frac{dx}{1 - x^2} = \tanh^{-1} x + C \quad \text{(for } |x| < 1\text{)}
 \]
 \[
 \int \frac{dx}{1 - x^2} = \coth^{-1} x + C \quad \text{(for } |x| > 1\text{)}
 \]
 \[
 \int \frac{dx}{\sqrt{1 - x^2}} = -\sech^{-1} x + C \quad \text{(for } 0 < x < 1\text{)}
 \]
 \[
 \int \frac{dx}{|x|\sqrt{1 + x^2}} = -\csch^{-1} x + C \quad \text{(for } x \neq 0\text{)}
 \]

8.4 EXERCISES

Preliminary Questions

1. Which hyperbolic substitution can be used to evaluate the following integrals?
 - (a) \(\int \frac{dx}{\sqrt{x^2 + 1}} \)
 - (b) \(\int \frac{dx}{\sqrt{x^2 + 9}} \)
 - (c) \(\int \frac{dx}{\sqrt{9x^2 + 1}} \)

2. Which two of the hyperbolic integration formulas differ from their trigonometric counterparts by a minus sign?

3. Which antiderivative of \(y = (1 - x^2)^{-1} \) should we use to evaluate the integral \(\int_{3}^{5} (1 - x^2)^{-1} \, dx \)?
Exercises
In Exercises 1–16, calculate the integral.

1. \(\int \cosh(3x) \, dx \)
2. \(\int \sinh(x + 1) \, dx \)
3. \(\int x \sinh(x^2 + 1) \, dx \)
4. \(\int \sinh^2 x \cosh x \, dx \)
5. \(\int \sech^2(1 - 2x) \, dx \)
6. \(\int \tanh(3x) \sech(3x) \, dx \)
7. \(\int \tanh x \sech^2 x \, dx \)
8. \(\int \cosh x \frac{3}{5 \sinh x + 4} \, dx \)
9. \(\int \tanh x \, dx \)
10. \(\int x \csch(x^2) \coth(x^2) \, dx \)
11. \(\int \cosh x \tanh x \, dx \)
12. \(\int \cosh x \sinh^2 x \, dx \)
13. \(\int \sinh^2(4x - 9) \, dx \)
14. \(\int \sinh^3 x \cosh^6 x \, dx \)
15. \(\int \sinh^2 x \cosh x \, dx \)
16. \(\int \tanh^3 x \, dx \)

In Exercises 17–30, calculate the integral in terms of the inverse hyperbolic functions.

17. \(\int \frac{dx}{\sqrt{x^2 - 1}} \)
18. \(\int \frac{dx}{\sqrt{9x^2 - 4}} \)
19. \(\int \frac{dx}{\sqrt{16 + 25x^2}} \)
20. \(\int \frac{dx}{\sqrt{1 + 3x^2}} \)
21. \(\int \frac{dx}{\sqrt{x^2 - 1}} \)
22. \(\int \frac{x^2 \, dx}{\sqrt{x^2 + 1}} \)
23. \(\int_{-1/2}^{1/2} \frac{dx}{1 - x^2} \)
24. \(\int_{4}^{5} \frac{dx}{1 - x^2} \)
25. \(\int_{0}^{1} \frac{dx}{\sqrt{x^2 + 1}} \)
26. \(\int_{0}^{10} \frac{dx}{4x^2 - 1} \)

Further Insights and Challenges
41. Show that if \(u = \tanh(x/2) \), then
\[
\cosh x = \frac{1 + u^2}{1 - u^2}, \quad \sinh x = \frac{2u}{1 - u^2}, \quad dx = \frac{2du}{1 - u^2}
\]
Hint: For the first relation, use the identities
\[
\sinh^2 \left(\frac{x}{2} \right) = \frac{1}{2} \cosh x - 1, \quad \cosh^2 \left(\frac{x}{2} \right) = \frac{1}{2} \cosh x + 1
\]
In Exercises 42 and 43, evaluate using the substitution of Exercise 41.

42. \(\int \sech x \, dx \)
43. \(\int \frac{dx}{1 + \cosh x} \)

44. Suppose that \(y = f(x) \) satisfies \(y'' = g(y) \). Prove:
(a) \(f(x)^2 - (f'(x))^2 \) is constant.
(b) If \(f(0) = f'(0) = 0 \), then \(f \) is the zero function.
(c) \(f(x) = f(0) \cosh x + f'(0) \sinh x \).
Hint: Refer to Theorem 1 in Section 7.4.

Exercises 45–48 refer to the function \(gd(y) = \tan^{-1}(\sinh y) \), called the Gudermannian. In a map of the earth constructed by Mercator projection, points located \(y \) radial units from the equator correspond to points on the globe of latitude \(gd(y) \).

45. Prove that \(\frac{d}{dy} gd(y) = \text{sech} y \).
46. Let \(f(y) = 2 \tan^{-1}(e^y) - \pi/2 \). Prove that \(gd(y) = f(y) \). Hint: Show that \(gd'(y) = f'(y) \) and \(f(0) = 0 \).
47. Let \(t(y) = \sinh^{-1}(\tan y) \). Show that \(t(y) \) is the inverse of \(gd(y) \) for \(0 \leq y < \pi/2 \).
48. Verify that \(t(y) \) in Exercise 47 satisfies \(t'(y) = \sec y \), and find a value of \(a \) such that
\[
t(y) = \int_{a}^{y} \frac{dt}{\cos t}
\]
8.5 The Method of Partial Fractions

The Method of Partial Fractions is used to integrate rational functions:

\[f(x) = \frac{P(x)}{Q(x)} \]

where \(P \) and \(Q \) are polynomials. The idea is to write \(f \) as a sum of simpler rational functions that can be integrated directly. For example, in the simplest case we use the identity

\[\frac{1}{x^2 - 1} = \frac{1}{2} \frac{1}{x-1} - \frac{1}{2} \frac{1}{x+1} \]

to evaluate the integral

\[\int \frac{dx}{x^2 - 1} = \frac{1}{2} \int \frac{dx}{x-1} - \frac{1}{2} \int \frac{dx}{x+1} = \frac{1}{2} \ln |x-1| - \frac{1}{2} \ln |x+1| \]

A rational function \(P/Q \) is called proper if the degree of \(P \) [denoted \(\deg(P) \)] is less than the degree of \(Q \). For example,

- \(x^2 - 3x + 7 \) is proper
- \(x^4 - 16 \)
- \(2x^2 + 7 \)
- \(x - 5 \)

Each distinct linear factor \((x - a)\) in the denominator contributes a term

\[\frac{A}{x - a} \]

to the partial fraction decomposition.

A second method for determining \(A \) and \(B \), once we have the equation

\[1 = \frac{A(x - 5) + B(x - 2)}{(x - 5)(x - 2)} \]

is to rewrite it as

\[1 = (A + B)x + (-5A - 2B) \]. Since there is no \(x \) on the left side of the equation, it must be that \(A + B = 0 \), and we solve for \(A \) and \(B \) as

\[A = -\frac{1}{5} \quad \text{and} \quad B = \frac{1}{5}. \]

We first multiply by \((x - 5)(x - 2)\) to clear denominators and solve for \(A \) and \(B \) as

\[1 = A(x - 5) + B(x - 2) \]

If we set \(x = 2 \), we find that

\[1 = A(2 - 5) + B(2 - 2) = -3A \quad \Rightarrow \quad A = -\frac{1}{3} \]

This is zero.
Similarly, to calculate B, set $x = 5$ in Eq. (1):

$$1 = A(5 - 5) + B(5 - 2) = 3B \quad \Rightarrow \quad B = \frac{1}{3}$$

The resulting partial fraction decomposition is

$$\frac{1}{(x - 2)(x - 5)} = -\frac{1}{3} \frac{1}{x - 2} + \frac{1}{3} \frac{1}{x - 5}$$

The integration can now be carried out:

$$\int \frac{dx}{(x - 2)(x - 5)} = -\frac{1}{3} \int \frac{dx}{x - 2} + \frac{1}{3} \int \frac{dx}{x - 5}
\quad = -\frac{1}{3} \ln |x - 2| + \frac{1}{3} \ln |x - 5| + C$$

EXAMPLE 2 Evaluate $\int \frac{x^2 + 2}{(x - 1)(2x - 8)(x + 2)} \, dx$.

Solution

Step 1. Find the partial fraction decomposition.

The decomposition has the form

$$\frac{x^2 + 2}{(x - 1)(2x - 8)(x + 2)} = \frac{A}{x - 1} + \frac{B}{2x - 8} + \frac{C}{x + 2}$$

As before, multiply by $(x - 1)(2x - 8)(x + 2)$ to clear denominators:

$$x^2 + 2 = A(2x - 8)(x + 2) + B(x - 1)(x + 2) + C(x - 1)(2x - 8) \quad (3)$$

Since A goes with the factor $(x - 1)$, we set $x = 1$ in Eq. (3) to compute A: $1^2 + 2 = A(2 - 8)(1 + 2) + B(1 - 1)(1 + 2) + C(1 - 1)(2 - 8)$

$$3 = -18A \quad \Rightarrow \quad A = -\frac{1}{6}$$

Similarly, 4 is the root of $2x - 8$, so we compute B by setting $x = 4$ in Eq. (3):

$$4^2 + 2 = A(8 - 8)(4 + 2) + B(4 - 1)(4 + 2) + C(4 - 1)(8 - 8)$$

$$18 = 18B \quad \Rightarrow \quad B = 1$$

Finally, C is determined by setting $x = -2$ in Eq. (3):

$$(-2)^2 + 2 = A(-4 - 8)(-2 + 2) + B(-2 - 1)(-2 + 2) + C(-2 - 1)(-4 - 8)$$

$$6 = 36C \quad \Rightarrow \quad C = \frac{1}{6}$$

The result is

$$\frac{x^2 + 2}{(x - 1)(2x - 8)(x + 2)} = -\frac{1}{6} \frac{1}{x - 1} + \frac{1}{3} \frac{1}{2x - 8} + \frac{1}{6} \frac{1}{x + 2}$$
Step 2. Carry out the integration.

\[\int \frac{x^2 + 2}{(x - 1)(2x - 8)(x + 2)} \, dx = -\frac{1}{6} \int \frac{dx}{x - 1} + \int \frac{dx}{2x - 8} + \frac{1}{6} \int \frac{dx}{x + 2} \]

\[= -\frac{1}{6} \ln |x - 1| + \frac{1}{2} \ln |2x - 8| + \frac{1}{6} \ln |x + 2| + C \]

Now suppose that the denominator has repeated linear factors:

\[\frac{P(x)}{Q(x)} = \frac{P(x)}{(x - a_1)^{M_1}(x - a_2)^{M_2} \cdots (x - a_n)^{M_n}} \]

Each factor \((x - a_i)^{M_i}\) contributes the following sum of terms to the partial fraction decomposition:

\[\frac{B_1}{(x - a_i)} + \frac{B_2}{(x - a_i)^2} + \cdots + \frac{B_{M_i}}{(x - a_i)^{M_i}} \]

EXAMPLE 3 Repeated Linear Factors Evaluate \(\int \frac{3x - 9}{(x - 1)(x + 2)^2} \, dx \).

Solution We are looking for a partial fraction decomposition of the form

\[\frac{3x - 9}{(x - 1)(x + 2)^2} = \frac{A}{x - 1} + \frac{B}{x + 2} + \frac{C}{(x + 2)^2} \]

Let’s clear denominators to obtain

\[3x - 9 = A(x + 2)^2 + B(x - 1)(x + 2) + C(x - 1) \]

We compute \(A\) and \(C\) by substituting in Eq. (4) in the usual way:

- Set \(x = 1\): This gives \(-6 = 9A\), or \(A = -\frac{2}{3}\).
- Set \(x = -2\): This gives \(-15 = -3C\), or \(C = 5\).

With these constants, Eq. (4) becomes

\[3x - 9 = -\frac{2}{3}(x + 2)^2 + B(x - 1)(x + 2) + 5(x - 1) \]

We cannot determine \(B\) in the same way as \(A\) and \(C\). Here are two ways to proceed.

- **First method (substitution):** There is no use substituting \(x = 1\) or \(x = -2\) in Eq. (5) because the term involving \(B\) drops out. But we are free to plug in any other value of \(x\). Let’s try \(x = 2\) in Eq. (5):

 \[3(2) - 9 = -\frac{2}{3}(2 + 2)^2 + B(2 - 1)(2 + 2) + 5(2 - 1) \]

 \[-3 = -\frac{32}{3} + 4B + 5 \]

 \[B = \frac{1}{4} \left(-8 + \frac{32}{3} \right) = \frac{2}{3} \]

- **Second method (undetermined coefficients):** Expand the terms in Eq. (5):

 \[3x - 9 = -\frac{2}{3}(x^2 + 4x + 4) + B(x^2 + x - 2) + 5(x - 1) \]

 \[3x - 9 = \left(-\frac{2}{3} + B \right) x^2 + \left(-\frac{8}{3} + B + 5 \right) x + \left(-\frac{8}{3} - 2B - 5 \right) \]

The coefficients of the powers of \(x\) on each side of the equation must be equal. Since \(x^2\) does not occur on the left-hand side, \(0 = -\frac{2}{3} + B\), or \(B = \frac{2}{3}\).
Either way, we have shown that

\[
\frac{3x - 9}{(x - 1)(x + 2)^2} = -\frac{2}{x - 1} + \frac{2}{x + 2} + \frac{5}{(x + 2)^2}
\]

\[
\int \frac{3x - 9}{(x - 1)(x + 2)^2} \, dx = \frac{-2}{3} \int \frac{dx}{x - 1} + \frac{2}{3} \int \frac{dx}{x + 2} + 5 \int \frac{dx}{(x + 2)^2}
\]

\[
= \frac{-2}{3} \ln |x - 1| + \frac{2}{3} \ln |x + 2| - \frac{5}{x + 2} + C
\]

If \(P / Q \) is not proper—that is, if \(\deg(P) \geq \deg(Q) \)—we use long division to write

\[
\frac{P(x)}{Q(x)} = g(x) + \frac{R(x)}{Q(x)}
\]

where \(g \) is a polynomial and \(R / Q \) is proper. We may then integrate \(P(x)/Q(x) \) using the partial fraction decomposition of \(R(x)/Q(x) \).

Example 4 Long Division Necessary

Evaluate \(\int \frac{x^3 + 1}{x^2 - 4} \, dx \).

Solution Using long division, we write

\[
\frac{x^3 + 1}{x^2 - 4} = x + \frac{4x + 1}{(x - 2)(x + 2)}
\]

It is not difficult to show that the second term has a partial fraction decomposition:

\[
\frac{4x + 1}{(x - 2)(x + 2)} = \frac{9}{x - 2} + \frac{7}{x + 2}
\]

Therefore,

\[
\int \frac{x^3 + 1}{x^2 - 4} \, dx = \int x \, dx + \frac{9}{4} \int \frac{dx}{x - 2} + \frac{7}{4} \int \frac{dx}{x + 2}
\]

\[
= \frac{1}{2}x^2 + \frac{9}{4} \ln |x - 2| + \frac{7}{4} \ln |x + 2| + C
\]

Quadratic Factors

A quadratic polynomial \(ax^2 + bx + c \) is called **irreducible** if it cannot be written as a product of two linear factors (without using complex numbers). A power of an irreducible quadratic factor \((ax^2 + bx + c)^M \) contributes a sum of the following type to a partial fraction decomposition:

\[
\frac{A_1 x + B_1}{ax^2 + bx + c} + \frac{A_2 x + B_2}{(ax^2 + bx + c)^2} + \cdots + \frac{A_M x + B_M}{(ax^2 + bx + c)^M}
\]

For example,

\[
\frac{4 - 12x}{(x + 1)(x^2 + x + 4)^2} = \frac{1}{x + 1} - \frac{x}{x^2 + x + 4} - \frac{4x + 12}{(x^2 + x + 4)^2}
\]

You may need to use trigonometric substitution to integrate these terms. In particular, the following result may be useful (see Exercise 33 in Section 8.3):

\[
\int \frac{dx}{x^2 + a} = \frac{1}{\sqrt{a}} \tan^{-1} \left(\frac{x}{\sqrt{a}} \right) + C \quad \text{(for } a > 0)\]
Example 5 Irreducible Versus Reducible Quadratic Factors

Evaluate:

(a) \(\int \frac{18}{(x+3)(x^2+9)} \, dx \)

(b) \(\int \frac{18}{(x+3)(x^2-9)} \, dx \)

Solution

(a) The quadratic factor \(x^2 + 9 \) is irreducible, so the partial fraction decomposition has the form

\[
\frac{18}{(x+3)(x^2+9)} = \frac{A}{x+3} + \frac{Bx+C}{x^2+9}
\]

Clear the denominators to obtain

\[18 = A(x^2 + 9) + (Bx + C)(x + 3)\]

To find \(A \), set \(x = -3 \):

\[18 = A((-3)^2 + 9) + 0 \quad \Rightarrow \quad A = 1\]

Then substitute \(A = 1 \) in Eq. (7) to obtain

\[18 = (x^2 + 9) + (Bx + C)(x + 3) = (B + 1)x^2 + (C + 3B)x + (9 + 3C)\]

Equating coefficients, we get \(B + 1 = 0 \) and \(9 + 3C = 18 \). Hence,

\[B = -1, \quad C = 3\]

In the second equality, we use

\[
\int \frac{x \, dx}{x^2 + 9} = \frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln(x^2 + 9) + C
\]

and Eq. (6):

\[
\int \frac{dx}{x^2 + 9} = \frac{1}{3} \tan^{-1} \frac{x}{3} + C
\]

(b) The polynomial \(x^2 - 9 \) is not irreducible because \(x^2 - 9 = (x - 3)(x + 3) \). Therefore, the partial fraction decomposition has the form

\[
\frac{18}{(x+3)(x^2-9)} = \frac{18}{(x+3)(x-3)} = \frac{A}{x-3} + \frac{B}{x+3} + \frac{C}{(x+3)^2}
\]

Clear the denominators:

\[18 = A(x+3)^2 + B(x+3)(x-3) + C(x-3)\]

For \(x = 3 \), this yields \(18 = (6^2)A \), and for \(x = -3 \), this yields \(18 = -6C \). Therefore,

\[A = \frac{1}{2}, \quad C = -3\]

To solve for \(B \), we can plug in any value of \(x \) other than \(\pm 3 \). The choice \(x = 2 \) yields \(18 = \frac{1}{2}(25) - 5B + 3 \), or \(B = -\frac{1}{2} \), and

\[
\int \frac{18}{(x+3)(x^2-9)} \, dx = \frac{1}{2} \int \frac{dx}{x-3} - \frac{1}{2} \int \frac{dx}{x+3} - 3 \int \frac{dx}{(x+3)^2}
\]

\[= \frac{1}{2} \ln |x-3| - \frac{1}{2} \ln |x+3| + 3(x+3)^{-1} + C\]
EXAMPLE 6 Repeated Quadratic Factor Evaluate \(\int \frac{4-x}{x(x^2+2)^2} \, dx \).

Solution The partial fraction decomposition has the form

\[
\frac{4-x}{x(x^2+2)^2} = \frac{A}{x} + \frac{Bx+C}{x^2+2} + \frac{Dx+E}{(x^2+2)^2}
\]

Clear the denominators by multiplying through by \(x(x^2+2)^2 \):

\[
4-x = A(x^2+2)^2 + (Bx+C)(x(x^2+2)) + (Dx+E)x
\]

We compute \(A \) directly by setting \(x = 0 \). Then Eq. (8) reduces to \(4 = 4A \), or \(A = 1 \). We find the remaining coefficients by the method of undetermined coefficients. Set \(A = 1 \) in Eq. (8) and expand:

\[
4 - x = (x^4 + 4x^2 + 4) + (Bx^4 + 2Bx^2 + Cx^3 + 2Cx) + (Dx^2 + Ex)
\]

\[
= (1 + B)x^4 + Cx^3 + (4 + 2B + D)x^2 + (2C + E)x + 4
\]

Now equate the coefficients on the two sides of the equation:

- \(1 + B = 0 \) (Coefficient of \(x^4 \))
- \(C = 0 \) (Coefficient of \(x^3 \))
- \(4 + 2B + D = 0 \) (Coefficient of \(x^2 \))
- \(2C + E = -1 \) (Coefficient of \(x \))
- \(2C + 4 = 4 \) (Constant term)

These equations yield \(B = -1, C = 0, D = -2, \) and \(E = -1 \). Thus,

\[
\int \frac{(4-x) \, dx}{x(x^2+2)^2} = \int \frac{dx}{x} - \int \frac{x \, dx}{x^2+2} - \int \frac{(2x+1) \, dx}{(x^2+2)^2}
\]

\[
= \ln |x| - \frac{1}{2} \ln(x^2+2) - \int \frac{2x+1 \, dx}{(x^2+2)^2}
\]

The middle integral was evaluated using the substitution \(u = x^2 + 2, \, du = 2x \, dx \). The third integral breaks up as a sum:

\[
\int \frac{(2x+1) \, dx}{(x^2+2)^2} = \int \frac{2x \, dx}{(x^2+2)^2} + \int \frac{dx}{(x^2+2)^2}
\]

To evaluate the integral in Eq. (9), we use the trigonometric substitution

\[
x = \sqrt{2} \tan \theta, \quad dx = \sqrt{2} \sec^2 \theta \, d\theta, \quad x^2 + 2 = 2 \tan^2 \theta + 2 = 2 \sec^2 \theta
\]

Referring to Figure 1, we obtain

\[
\int \frac{dx}{(x^2+2)^2} = \int \frac{\sqrt{2} \sec^2 \theta \, d\theta}{(2 \tan^2 \theta + 2)^2} = \int \frac{\sqrt{2} \sec^2 \theta \, d\theta}{4 \sec^4 \theta}
\]

\[
= \frac{\sqrt{2}}{4} \int \cos^2 \theta \, d\theta = \frac{\sqrt{2}}{4} \left(\frac{1}{2} \theta + \frac{1}{2} \sin \theta \cos \theta \right) + C
\]

\[
= \frac{\sqrt{2}}{8} \tan^{-1} \frac{x}{\sqrt{2}} + \frac{\sqrt{2}}{8} \frac{x}{\sqrt{x^2+2} \sqrt{x^2+2}} + C
\]

\[
= \frac{1}{4\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} + \frac{1}{4} \frac{x}{x^2+2} + C
\]
CHAPTER 8
TECHNIQUES OF INTEGRATION

Collecting all the terms, we have

\[\int \frac{4-x}{x(x^2+2)^2} \, dx = \ln |x| - \frac{1}{2} \ln(x^2 + 2) + \frac{1}{x^2 + 2} - \frac{1}{4\sqrt{2}} \tan^{-1} \frac{x}{\sqrt{2}} + C \]

CONCEPTUAL INSIGHT
The examples in this section illustrate a general fact: The integral of a rational function can be expressed as a sum of rational functions, arctangents of linear or quadratic polynomials, and logarithms of linear or quadratic polynomials. Other types of functions, such as exponential and trigonometric functions, do not appear.

Using a Computer Algebra System

Finding partial fraction decompositions often requires laborious computation. Fortunately, most computer algebra systems have a command that produces partial fraction decompositions (with names such as “Apart,” “parfrac,” or simply “partial fractions”). For example in Mathematica, the command

\[
\text{Apart}[\frac{x^2-2}{(x+2)(x^2+4)^3}]
\]

produces the partial fraction decomposition

\[
\frac{x^2-2}{(x+2)(x^2+4)^3} = \frac{1}{256(2+x)^3} + \frac{3(x-2)}{4(4+x^2)^3} + \frac{2-x}{32(4+x^2)^2} + \frac{2-x}{256(4+x^2)}
\]

However, a computer algebra system cannot produce a partial fraction decomposition in cases where \(Q(x) \) cannot be factored explicitly.

8.5 SUMMARY

Method of Partial Fractions: Assume first that \(P/Q \) is a proper rational function [i.e., \(\deg(P) < \deg(Q) \)] and that \(Q(x) \) can be factored explicitly as a product of linear and irreducible quadratic terms.

- If \(Q(x) = (x-a_1)(x-a_2)\cdots(x-a_n) \), where the roots \(a_j \) are distinct, then

 \[
 \frac{P(x)}{(x-a_1)(x-a_2)\cdots(x-a_n)} = \frac{A_1}{x-a_1} + \frac{A_2}{x-a_2} + \cdots + \frac{A_n}{x-a_n}
 \]

 To calculate the constants, clear denominators and substitute, in turn, the values \(x = a_1, a_2, \ldots, a_n \).

- If \(Q(x) \) is equal to a product of powers of linear factors \((x-a)^M \) and irreducible quadratic factors \((x^2+b)^N \) with \(b > 0 \), then the partial fraction decomposition of \(P(x)/Q(x) \) is a sum of terms of the following type:

 \[
 (x-a)^M \text{ contributes } \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \cdots + \frac{A_M}{(x-a)^M}
 \]

 \[
 (x^2+b)^N \text{ contributes } \frac{A_1x+B_1}{x^2+b} + \frac{A_2x+B_2}{(x^2+b)^2} + \cdots + \frac{A_Nx+B_N}{(x^2+b)^N}
 \]

 Substitution and trigonometric substitution may be needed to integrate the terms corresponding to \((x^2+b)^N \) (see Example 6).

- If \(P/Q \) is improper, use long division (see Example 4).
8.5 EXERCISES

Preliminary Questions
1. Suppose that \(f(x) \, dx = \ln x + \sqrt{x + 1} + C \). Can \(f \) be a rational function? Explain.

2. Which of the following are proper rational functions?
 (a) \(\frac{x}{x - 3} \)
 (b) \(\frac{4}{9 - x} \)
 (c) \(\frac{x^2 + 12}{(x + 2)(x + 1)(x - 3)} \)
 (d) \(\frac{4x^3 - 7x}{(x - 3)(2x + 5)(9 - x)} \)

3. Which of the following quadratic polynomials are irreducible? To check, complete the square if necessary.
 (a) \(x^2 + 5 \)
 (b) \(x^2 - 5 \)

Exercises
1. Match the rational functions (a)–(d) with the corresponding partial fraction decompositions (i)–(iv).
 (a) \(x^2 + 4x + 12 \frac{(x + 2)(x^2 + 4)}{x + 2} \)
 (b) \(\frac{2x^2 + 8x + 24}{(x + 2)^2(x^2 + 4)} \)
 (c) \(x^2 - 4x + 8 \frac{(x - 1)^2(x - 2)^2}{(x - 1)^2} \)
 (d) \(\frac{x^4 - 4x + 8}{(x + 2)(x^2 + 4)} \)

2. Determine the constants \(A, B \):
 \(\frac{2x - 3}{(x - 3)(x - 4)} = \frac{A}{x - 3} + \frac{B}{x - 4} \)

3. Clear the denominators in the following partial fraction decomposition and determine the constant \(B \) (substitute a value of \(x \) or use the method of undetermined coefficients).
 \(\frac{3x^2 + 11x + 12}{(x + 1)(x + 3)^2} = \frac{1}{x + 1} - \frac{B}{x + 3} - \frac{3}{(x + 3)^2} \)

4. Find the constants in the partial fraction decomposition
 \(\frac{2x + 4}{(x - 2)(x^2 + 4)} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 4} \)

In Exercises 5–8, evaluate using long division first to write \(f(x) \) as the sum of a polynomial and a proper rational function.
5. \(\int \frac{x \, dx}{3x - 4} \)
6. \(\int \frac{(x^2 + 2) \, dx}{x + 3} \)
7. \(\int \frac{(x^3 + 2x^2 + 1) \, dx}{x + 2} \)
8. \(\int \frac{(x^3 + 1) \, dx}{x^2 + 1} \)

In Exercises 9–46, evaluate the integral.
9. \(\int \frac{dx}{(x - 2)(x - 4)} \)
10. \(\int \frac{(x + 3) \, dx}{x + 4} \)
11. \(\int \frac{dx}{x(2x + 1)} \)
12. \(\int \frac{(2x - 1) \, dx}{x^2 - 5x + 6} \)
13. \(\int \frac{x^2 \, dx}{x^2 + 9} \)
14. \(\int \frac{dx}{(x - 2)(x - 3)(x + 2)} \)
15. \(\int \frac{(x^2 + 3x - 44) \, dx}{(x + 3)(x + 5)(3x - 2)} \)
16. \(\int \frac{3 \, dx}{(x + 1)(x^2 + x)} \)
17. \(\int \frac{(x^2 + 11x) \, dx}{(x - 1)(x + 1)^2} \)
18. \(\int \frac{(4x^2 - 21x) \, dx}{(x - 3)(2x + 3)} \)
19. \(\int \frac{dx}{(x - 1)^2(x - 2)^2} \)
20. \(\int \frac{8 \, dx}{x(x + 2)^3} \)
21. \(\int \frac{dx}{2x^2 - 5} \)
22. \(\int \frac{dx}{x^3 + 3x^2 + 4} \)
23. \(\int \frac{dx}{x^3} \)
24. \(\int \frac{dx}{x^3(4x - 1)} \)
25. \(\int \frac{dx}{x(x + 2)^3} \)
26. \(\int \frac{4x^2 - 20 \, dx}{(2x + 5)(x^2 + 1)} \)
27. \(\int \frac{dx}{3x + 6 \frac{(x - 1)(x - 3)}{x(x - 1)^3}} \)
28. \(\int \frac{(x^2 - 2) \, dx}{x - 4} \)
29. \(\int \frac{(3x^2 + 4x + 5) \, dx}{(x - 1)(x^2 + 1)} \)
30. \(\int \frac{x^2 \, dx}{x^2} \)
31. \(\int \frac{dx}{x^2(x^2 + 1)} \)
32. \(\int \frac{dx}{(x + 2)^2 + 25} \)
33. \(\int \frac{6x^2 + 7x - 6 \, dx}{(x^2 - 4)(x + 2)} \)
34. \(\int \frac{10 \, dx}{(x - 1)^2(x^2 + 9)} \)
35. \(\int \frac{dx}{x(2x + 1)^2} \)
36. \(\int \frac{dx}{x^2(2x + 25)} \)
37. \(\int \frac{dx}{x^2 + 2x - 3} \)
38. \(\int \frac{100x \, dx}{(x + 1)(x^2 + 1)^2} \)
39. \(\int \frac{9 \, dx}{(x - 3)(x^2 + 1)2} \)
40. \(\int \frac{25 \, dx}{x(x^2 + 2x + 5)^2} \)
41. \(\int \frac{dx}{x(x^2 + 2x + 5)^2} \)
42. \(\int 100x \, dx \)
43. \(\int \frac{dx}{(x^2 + 2x + 6)} \)
44. \(\int \frac{(x^2 + 3) \, dx}{(x^2 + 2x + 3)^2} \)
In Exercises 47–50, evaluate by using first substitution and then partial fractions if necessary.

47. \(\int \frac{x}{x^4 + 1} \, dx \)

48. \(\int \frac{x}{(x + 2)^4} \, dx \)

49. \(\int \frac{e^x}{e^{2x} - e^x} \, dx \)

50. \(\int \sec^2 \theta \, d\theta \)

51. Evaluate \(\int \frac{\sqrt{x} \, dx}{x - 1} \). Hint: Use the substitution \(u = \sqrt{x} \) (sometimes called a rationalizing substitution).

52. Evaluate \(\int \frac{dx}{x^{1/2} - x^{1/3}} \). Hint: Use the substitution \(u = x^{1/6} \).

53. Evaluate \(\int \frac{dx}{x^{5/4} - 4x^{3/4}} \).

54. Evaluate \(\int \frac{dx}{x^{4/3} + x - 2x^{2/3}} \).

55. Evaluate \(\int \frac{dx}{x^2 - 1} \) in two ways: using partial fractions and using trigonometric substitution. Verify that the two answers agree.

Further Insights and Challenges

59. Prove the general formula

\[
\int \frac{dx}{(x - a)(x - b)} = \frac{1}{a - b} \ln \left| \frac{x - a}{x - b} \right| + C
\]

where \(a, b \) are constants such that \(a \neq b \).

60. The method of partial fractions shows that

\[
\int \frac{dx}{x^2 - 1} = \frac{1}{2} \ln |x - 1| - \frac{1}{2} \ln |x + 1| + C
\]

The computer algebra system Mathematica evaluates this integral as \(-\tanh^{-1} x\), where \(\tanh^{-1} x \) is the inverse hyperbolic tangent function. Can you reconcile the two answers?

61. Suppose that \(Q(x) = (x - a_1)(x - b) \), where \(a \neq b \), and let \(P/Q \) be a proper rational function so that

\[
P(x) = A \frac{x - a}{x - b} + B
\]

(a) Show that \(A = \frac{P(a)}{Q'(a)} \) and \(B = \frac{P(b)}{Q'(b)} \).

(b) Use this result to find the partial fraction decomposition for \(P(x) = 3x^2 - 2x - 1 \) and \(Q(x) = x^2 - 2x - 12 \).

62. Suppose that \(Q(x) = (x - a_1)(x - a_2) \cdots (x - a_n) \), where the roots \(a_j \) are all distinct. Let \(P/Q \) be a proper rational function so that

\[
\frac{P(x)}{Q(x)} = \frac{A_1}{x - a_1} + \frac{A_2}{x - a_2} + \cdots + \frac{A_n}{x - a_n}
\]

(a) Show that \(A_j = \frac{P(a_j)}{Q'(a_j)} \) for \(j = 1, \ldots, n \).

(b) Use this result to find the partial fraction decomposition for \(P(x) = 2x^2 - 1 \), \(Q(x) = x^3 - 4x^2 + x + 6 = (x + 1)(x - 2)(x - 3) \).

8.6 Strategies for Integration

In Chapter 5, and in the preceding sections of this chapter, we have seen a variety of techniques for evaluating various integrals. However, in the real world, when confronted with a given integral, it will not appear in a particular section devoted to a particular technique of integration. Hence, it is important to be able to recognize which technique of integration is likely to apply. This section is devoted to that topic. In addition to considering how to recognize what technique to apply, we also discuss how tables of integrals and how computer algebra systems can be utilized to find an integral.

Often, an integral that comes from a particular application of calculus is a definite integral, with limits of integration. In the worst-case scenario, when none of the techniques of integration yield the answer, numerical approximation can be used to find a numerical estimate of the value, which can be made accurate enough for the particular application. Section 8.9 will discuss those techniques.

In general, there are no hard and fast rules for evaluating a given integral. But there are various heuristics that help us to determine which techniques are likely to apply.

Given an integral \(\int \int f(x) \, dx \), here are steps that one might apply to try to compute it:
1. Do any algebraic simplification possible. Cancel terms in fractions when possible. For instance:

(a) \[\int \frac{x^3 - 1}{x - 1} \, dx = \int \frac{(x - 1)(x^2 + x + 1)}{x - 1} \, dx = \int (x^2 + x + 1) \, dx = \frac{x^3}{3} + \frac{x^2}{2} + x + C \]

(b) \[\int \frac{x - x^3}{\sqrt{x}} \, dx = \int \left(x^{1/2} - x^{5/2} \right) \, dx, \text{ which can be easily integrated.} \]

(c) \[\int \frac{1}{\sin^2 x} \, dx = \int \csc^2 x \, dx, \text{ which we have seen to be equal to } -\cot x + C. \]

(d) \[\int e^x \sinh x \, dx. \text{ It is tempting to try to apply Integration by Parts to this integral, but it turns out not to work. Instead, we replace } \sinh x \text{ with its expression in terms of exponential functions to obtain} \]

\[\int e^x \sinh x \, dx = \int e^x \left(\frac{e^x - e^{-x}}{2} \right) \, dx = \frac{1}{2} \int \left(e^{2x} - 1 \right) \, dx = \frac{e^{2x}}{4} - \frac{x}{2} + C \]

2. Look for a potential substitution.

Any time we recognize that our integral is of the form \(\int f(g(x))g'(x) \, dx \), we can use substitution. The key to successfully substituting is that if we want to replace \(g(x) \) by \(u \), we need a \(g'(x) \) to exist that we can pair with \(dx \) to obtain the necessary \(du \).

So, for example, \(\int x^2 \sin(x^3) \, dx \) is set up for substitution since if we let \(u = x^3 \), then \(du = 3x^2 \, dx \), and we have the requisite \(x^2 \) to make this work. The constant 3 that we also need is not a problem. We can always multiply by 1/3 to compensate for the 3 we need.

In the case of \(\int e^{\sin x} \cos x \, dx \), we can use \(u = \sin x \) and \(du = \cos x \, dx \). In the case of \(\int e^x \sqrt{e^x + 1} \, dx \), we can let \(u = e^x + 1 \) and then \(du = e^x \, dx \), which we have.

Sometimes, a less obvious substitution does the trick.

Example 1 Find \(\int x^3 \sqrt{1 + x^2} \, dx \).

Solution Our first inclination is to try the substitution \(u = 1 + x^2 \) since that quantity is inside the square root. But then \(du = 2x \, dx \), and we have an extra factor of \(x^2 \) left over. Instead of turning to another method of integration, though, we can note that since \(u = 1 + x^2, x^2 = u - 1 \). Thus, we have

\[\int x^3 \sqrt{1 + x^2} \, dx = \int x^2 \sqrt{1 + x^2} \, x \, dx = \int (u - 1) \sqrt{u} \, \frac{du}{2} \]

\[= \frac{1}{2} \int \left(u^{3/2} - u^{1/2} \right) \, du = \frac{u^{5/2}}{5} - \frac{u^{3/2}}{3} + C \]

\[= \frac{(1 + x^2)^{5/2}}{5} - \frac{(1 + x^2)^{3/2}}{3} + C \]

This integral could also be evaluated using Integration by Parts, but that would be more work.

Example 2 Evaluate \(\int \frac{dx}{\sqrt{x} + 1} \).

Solution Our first inclination is to try the substitution \(u = \sqrt{x} \). However, then \(du = \frac{dx}{2\sqrt{x}} \), and we cannot perform the substitution. Instead, let’s try the substitution \(u = \sqrt{x} + 1 \).
Before we find \(du \), we first solve for \(x \) to obtain \(x = (u - 1)^2 \). Then \(dx = 2(u - 1) \, du \). Substituting, we obtain

\[
\int \frac{dx}{\sqrt{x} + 1} = \int \frac{2(u - 1) \, du}{\sqrt{u}} = 2 \int u^{1/2} - u^{-1/2} \, du
\]

\[
= 2 \left(\frac{2}{3} u^{3/2} - 2u^{1/2} \right) + C = \frac{4}{3} (\sqrt{x} + 1)^{3/2} - 4(\sqrt{x} + 1)^{1/2} + C
\]

3. Consider Integration by Parts. As we have seen, if there is a product in the integrand, we can split the integral into two pieces \(u \) and \(dv \) and then apply Integration by Parts to obtain

\[
\int u \, dv = uv - \int v \, du
\]

For example, look at \(\int xe^x \, dx \). In this case, it is obvious that Integration by Parts applies. If the \(x \) were not present, we could easily integrate \(e^x \). So choosing \(u = x \) and \(dv = e^x \, dx \) will yield \(\int xe^x \, dx = xe^x - \int e^x \, dx \). The remaining integral is now one we can compute.

In particular, we are looking for integrands that are products such that differentiating one term in the product and integrating the other yields an integral that is easier to evaluate. Here are some cases to look for:

(a) \(\int x^n f(x) \, dx \). Assuming \(f(x) \) can be repeatedly integrated, we may use repeated applications of Integration by Parts, always choosing \(u \) equal to the remaining power of \(x \), until we eliminate the powers of \(x \), leaving something we can integrate. Candidates for \(f(x) \) include \(\sin x \), \(\cos x \), \(e^x \), \(a^x \), \(\tan x \), \(\sec x \), and \(\csc x \), among others. Note that the same technique applies when we replace \(x^n \) in the integrand with a more complicated polynomial. Repeated application of Integration by Parts can be used to eliminate the polynomial.

(b) \(\int e^x \sin x \, dx \) Two applications of Integration by Parts, choosing \(u = e^x \) both times, yields

\[
\int e^x \sin x \, dx = -e^x \cos x + e^x \sin x = \int e^x \sin x \, dx
\]

Instead of obtaining a simpler integral on the right, we obtained the exact same integral we started with on the left. Adding it to both sides, we get

\[
2 \int e^x \sin x \, dx = -e^x \cos x + e^x \sin x + C
\]

\[
\int e^x \sin x \, dx = \frac{1}{2} (-e^x \cos x + e^x \sin x) + C
\]

(c) Although we usually apply it to a product, Integration by Parts also sometimes works on single functions such as \(\int \ln x \, dx \), \(\int \tan^{-1} x \, dx \), and \(\int \sin^{-1} x \, dx \). Here, we pick \(u \) to be the function in the integrand and set \(dv = dx \).

4. Consider the form of the integral. Does it fall into one of the categories for which we have a technique?

(a) Is it a trigonometric integral? If it is of the form \(\int \sin^n x \cos^m x \, dx \), then if \(n \) is odd, use the identity \(\sin^2 x = 1 - \cos^2 x \) to remove all but one copy of \(\sin x \). Then use the substitution \(u = \cos x \) and \(du = -\sin x \, dx \). If \(m \) is odd, use the identity \(\cos^2 x = 1 - \sin^2 x \) to remove all but one copy of \(\cos x \). Then use the substitution \(u = \sin x \) so \(du = \cos x \, dx \). If \(m \) and \(n \) are both even, then use trigonometric identities to decrease the powers of the trigonometric functions. If it is of the form \(\int \tan^n x \sec^m x \, dx \), trigonometric identities can be similarly applied.
(b) Does the integrand contain $\sqrt{a^2 - x^2}$, $\sqrt{x^2 - a^2}$, or $\sqrt{x^2 + a^2}$?

If so, then try a trigonometric substitution. Use the fact that if $x = a \sin \theta$, then $\sqrt{a^2 - x^2} = a \cos \theta$. If $x = a \sec \theta$, then $\sqrt{x^2 - a^2} = a \tan \theta$. And if $x = a \tan \theta$, then $\sqrt{x^2 + a^2} = a \sec \theta$. Note that a similar technique works for other half-integer powers besides just the square root.

Example 3 Evaluate $\int (x^2 + 16)^{3/2} \, dx$.

Solution Let $x = 4 \tan \theta$. Then $(x^2 + 16)^{3/2} = (16 \tan^2 \theta + 16)^{3/2} = 64 \sec^3 \theta$ and $dx = 4 \sec^2 \theta \, d\theta$. Hence, we have

$$\int (x^2 + 16)^{3/2} \, dx = \int 64 \sec^3 \theta (4 \sec^2 \theta) \, d\theta = 256 \int \sec^5 \theta \, d\theta$$

Now, we can use reduction formula (15) from Section 8.2 to obtain

$$256 \int \sec^5 \theta \, d\theta = 256 \left(\frac{\tan \theta \sec^3 \theta}{4} + \frac{3}{4} \int \sec^3 \theta \, d\theta \right)$$

$$= 256 \left(\frac{\tan \theta \sec^3 \theta}{4} + \frac{3}{4} \left(\int \sec \theta \, d\theta + \frac{1}{2} \int \sec^3 \theta \, d\theta \right) \right)$$

$$= 256 \left(\frac{\tan \theta \sec^3 \theta}{4} + \frac{3}{4} \left(\frac{\tan \theta \sec \theta}{2} + \frac{1}{2} \ln |\sec \theta + \tan \theta| \right) \right) + C$$

$$= 64 \tan \theta \sec^3 \theta + 96 \tan \theta \sec \theta + 96 \ln |\sec \theta + \tan \theta| + C$$

Since $x = 4 \tan \theta$, we know $\tan \theta = \frac{x}{4}$, and by the triangle in Figure 1, $\sec \theta = \frac{\sqrt{x^2 + 16}}{4}$. Thus, we have

$$\int (x^2 + 16)^{3/2} \, dx$$

$$= 64 \frac{x}{4} (x^2 + 16)^{3/2} + 96 \frac{x}{4} (x^2 + 16)^{1/2} + 96 \ln \left| (x^2 + 16)^{1/2} + \frac{x}{4} \right| + C$$

$$= 16 x (x^2 + 16)^{3/2} + 24 x (x^2 + 16)^{1/2} + 96 \ln \left| (x^2 + 16)^{1/2} + \frac{x}{4} \right| + C$$

If the integral contains an expression of the form $\sqrt{ax^2 + bx + c}$, we can complete the square inside the square root in order to obtain one of the cases discussed above.

(c) Is it a rational function $\frac{P}{Q}$ for polynomials P and Q? If so, we can often apply the method of partial fractions. First, if P has a degree that is at least as large as the degree of Q, we divide $P(x)$ by $Q(x)$ to obtain a polynomial (which is easily integrated) together with a remainder term $\frac{R(x)}{Q(x)}$, to which the method of partial fractions can be applied.

Example 4 Find $\int \frac{x^2 + 2x + 10}{x^2 + x - 6} \, dx$.

Solution Noting that both the numerator and the denominator have degree 2, we divide to obtain

$$\frac{x^2 + 2x + 10}{x^2 + x - 6} = 1 + \frac{x + 16}{x^2 + x - 6}$$

Then we can write

$$\frac{x + 16}{x^2 + x - 6} = \frac{x + 16}{(x + 3)(x - 2)} = \frac{A}{x + 3} + \frac{B}{x - 2}$$
Clearing the denominator, this yields
\[x + 16 = A(x - 2) + B(x + 3) \]
When \(x = 2 \), this equation becomes
\[18 = 5B \Rightarrow B = \frac{18}{5} \]
When \(x = -3 \), this equation becomes
\[13 = -5A \Rightarrow A = -\frac{13}{5} \]
Thus,
\[\int \frac{x^2 + 2x + 10}{x^2 + x - 6} \, dx = \int 1 + \frac{-13}{5(x + 3)} + \frac{18}{5(x - 2)} \, dx \]
\[= x - \frac{13}{5} \ln |x + 3| + \frac{18}{5} \ln |x - 2| + C \]

Using an Integral Table
The final three pages of this book contain a list of forms of many common integrals. Given a particular integral that we may want to evaluate, if we can get it into the form of one of the integrals in the table, then we can apply the given formula to evaluate the integral. Let’s consider a few examples.

EXAMPLE 5 Evaluate \(\int \frac{\sqrt{9-4x^2}}{x} \, dx \).

Solution Looking down the list of integrals given at the end of the book, the formula with the integral that most resembles this one is #69:
\[\int \frac{\sqrt{a^2 - u^2}}{u} \, du = \sqrt{a^2 - u^2} - a \ln \left| \frac{a + \sqrt{a^2 - u^2}}{u} \right| + C \]
However, to get our integral into that form, we will need to manipulate it a bit. We begin with the substitution \(u = 2x \). Then \(du = 2dx \) and \(x = \frac{u}{2} \), so we have
\[\int \frac{\sqrt{9-4x^2}}{x} \, dx = \int \frac{\sqrt{9-u^2}}{u/2} \, du = \int \frac{\sqrt{9-u^2}}{u} \, du \]
This is in the correct form, with \(a = 3 \); hence, we find
\[\int \frac{\sqrt{9-4x^2}}{x} \, dx = \int \frac{\sqrt{9-u^2}}{u} \, du = \sqrt{9-u^2} - 3 \ln \left| 3 + \frac{\sqrt{9-u^2}}{u} \right| + C \]
\[= \sqrt{9-4x^2} - 3 \ln \left| \frac{3 + \sqrt{9-4x^2}}{2x} \right| + C \]
Notice that this integral could also be evaluated by applying a trigonometric substitution followed by a second substitution.

EXAMPLE 6 Evaluate \(\int x \sin^2 x \cos x \, dx \).

Solution This integral does not appear in the table of integrals at the back of the book, but if the \(x \) were not in the integral, we could compute it relatively easily. So let’s try applying Integration by Parts with \(u = x \) and \(dv = \sin^2 x \cos x \, dx \).
Then \(du = dx \) and \(v = \frac{\sin^3 x}{3} \). Thus, we have

\[
\int x \sin^2 x \cos x \, dx = x \frac{\sin^3 x}{3} - \int \frac{\sin^3 x}{3} \, dx
\]

This last integral matches the integral in the integral table appearing in this formula:

\[
\#38. \quad \int \sin^3 u \, du = -\frac{1}{3} (2 + \sin^2 u) \cos u + C
\]

Note that we could also find \(\int \sin^3 u \, du \) by replacing \(\sin^2 u \) by \(1 - \cos^2 x \), and integrating the result using \(u \)-substitution.

Hence, we have

\[
\int x \sin^2 x \cos x \, dx = \frac{1}{3} x \sin^3 x + \frac{1}{9} (2 + \sin^2 x) \cos x + C
\]

EXAMPLE 7 Evaluate \(\int x \sqrt{x^2 - 4x - 5} \, dx \).

Solution None of the integrals in the back of the book are going to match this. However, if we complete the square on the quantity inside the square root, we can make the integral look more similar to the integrals in the table:

\(x^2 - 4x - 5 = (x - 2)^2 - 9 \)

Then we can do a \(u \) substitution with \(u = x - 2 \). Thus, \(du = dx \) and \(x = u + 2 \):

\[
\int x \sqrt{x^2 - 4x - 5} \, dx = \int x \sqrt{(x - 2)^2 - 9} \, dx = \int (u + 2) \sqrt{u^2 - 9} \, du
\]

\[
= \int u \sqrt{u^2 - 9} \, du + 2 \int \sqrt{u^2 - 9} \, du
\]

The first of these integrals can be computed using the substitution \(w = u^2 - 9 \), and \(dw = 2u \, du \), so we have

\[
\int u \sqrt{u^2 - 9} \, du = \int \sqrt{w} \, \frac{dw}{2} = \frac{1}{3} w^{3/2} + C = \frac{1}{3} (u^2 - 9)^{3/2} + C
\]

The second integral appears in this formula from the back of the book:

\[
\#76. \quad \int \sqrt{u^2 - a^2} \, du = \frac{u}{2} \sqrt{u^2 - a^2} - \frac{a^2}{2} \ln |u + \sqrt{u^2 - a^2}| + C
\]

with \(a = 3 \). Hence, we obtain

\[
\int x \sqrt{x^2 - 4x - 5} \, dx
\]

\[
= \int u \sqrt{u^2 - 9} \, du + 2 \int \sqrt{u^2 - 9} \, du
\]

\[
= \frac{1}{3} (u^2 - 9)^{3/2} + u \sqrt{u^2 - 9} - 9 \ln |u + \sqrt{u^2 - 9}| + C
\]

\[
= \frac{1}{3} ((x - 2)^2 - 9)^{3/2} + (x - 2) \sqrt{(x - 2)^2 - 9} - 9 \ln |x - 2 + \sqrt{(x - 2)^2 - 9}| + C
\]

\[
= \frac{1}{3} (x^2 - 4x + 5)^{3/2} + (x - 2) \sqrt{x^2 - 4x + 5 - 9} \ln |x - 2 + \sqrt{x^2 - 4x + 5}| + C
\]
Using a Computer Algebra System

In order to find these last integrals using the tables at the back of the book, we needed to do some algebra and/or apply some integration techniques to get them to match the pattern for one of the formulas at the back of the book. Computers are particularly adept at attempting various rearrangements and integration techniques and then matching the resulting integrals. For this reason, computer algebra systems such as Mathematica, Maple, Sage, and WolframAlpha are very good at evaluating integrals. However, keep in mind that the output that they generate may not be the form that is the most convenient to use.

For example, if we want to find \(\int x(x-3)^{15} \, dx \), we do a substitution for \(u = x-3 \) (and therefore \(x = u + 3 \)) and find

\[
\int x(x-3)^{15} \, dx = \int (u+3)u^{15} \, du = \int u^{16} + 3u^{15} \, du = \frac{1}{17}u^{17} + \frac{3}{16}u^{16} + C
\]

On the other hand, the computer algebra system generates the following answer:

\[
\int x(x-3)^{15} \, dx = \frac{x^{17}}{17} - \frac{45x^{16}}{16} + 63x^{15} - \frac{1755x^{14}}{2} + 8505x^{13} - \frac{243,243x^{12}}{4} + 331,695x^{11} - \frac{2,814,669x^{10}}{2} + 4,691,115x^9 - \frac{98,513,415x^8}{8} + 25,332,021x^7 - \frac{80,601,885x^6}{2} + 48361,131x^5 - \frac{167,403,915x^4}{4} + 23,914,845x^3 - \frac{14,348,907x^2}{2} + C
\]

As you can see, the answer that we obtained by substitution may be more useful in most situations.

8.6 SUMMARY

Strategy for integration:

- Do any algebraic simplification possible.
- Consider possible substitutions, \(u = g(x) \), keeping in mind that we will need the presence of \(g'(x) \) since \(du = g'(x) \, dx \).
- Consider Integration by Parts, choosing \(u \) to be a function that can be differentiated, \(dv \) to be something that can be integrated, and such that \(\int v \, dv \) is an easier integral than the original. Keep in mind that Integration by Parts can even work when the integrand is not an obvious product.
- Consider if the integral is a trigonometric integral of the form \(\int \sin^n x \cos^m x \, dx \) or \(\int \tan^n x \sec^m x \, dx \). Then trigonometric identities can be applied.
- Does the integral contain \(\sqrt{a^2 - x^2} \), \(\sqrt{x^2 - a^2} \) or \(\sqrt{x^2 + a^2} \)? If so, then try a trigonometric substitution.
- Is the integrand a rational function \(\frac{P}{Q} \) for polynomials \(P \) and \(Q \)? If so, we can often apply the method of partial fractions.
- Determine whether the integral, after suitable manipulation, appears in the integral table at the back of the book.
- Consider using a computer algebra system to determine the integral.
- If the integral is a definite integral, and none of the above methods work, use a computer algebra system to approximate the integral numerically.
8.6 Exercises

Preliminary Questions
For each of the following, state what method applies and how one applies it, but do not evaluate the integral:

1. \(\int x \sin x \, dx \)
2. \(\int \sqrt{1 + x^2} \, dx \)
3. \(\int \frac{1 + x^2}{1 - x^2} \, dx \)
4. \(\int \cos^2 x \sin x \, dx \)
5. \(\int x \ln x \, dx \)
6. \(\int \sqrt{1 - x^2} \, dx \)
7. \(\int \sin^3 x \cos^2 x \, dx \)

For each of the following, find the formula in the integral table at the back of the book that can be applied to find the integral:

8. \(\int 3x^2 \, dx \)
9. \(\int \frac{25 + 16x^2}{x^2} \, dx \)
10. \(\int \sec^3(4x) \, dx \)
11. \(\int \frac{x^2}{\sqrt{x^2 + 2x + 5}} \, dx \)

Exercises
In Exercises 1–10, indicate a good method for evaluating the integral (but do not evaluate). Your choices are: substitution (specify u and du), Integration by Parts (specify u and dv), a trigonometric method, or trigonometric substitution (specify). If it appears that these techniques are not sufficient, state this.

1. \(\int \frac{x \, dx}{\sqrt{12 - 6x - x^2}} \)
2. \(\int \frac{4x^2 - 1}{x} \, dx \)
3. \(\int \sin^3 x \cos^3 x \, dx \)
4. \(\int x \sec^2 x \, dx \)
5. \(\int \frac{dx}{\sqrt{9 - x^2}} \)
6. \(\int \frac{1 - x^3}{\sqrt{1 + x}} \, dx \)
7. \(\int \frac{dx}{(x + 1)(x + 2)^3} \)
8. \(\int \frac{dx}{x + 12} \)
9. \(\int \frac{dx}{\sqrt{x^2 + 1}} \)
10. \(\int \frac{x^2}{\sqrt{x^2 + 1}} \, dx \)
11. \(\int \frac{dx}{x + 12} \)
12. \(\int \frac{dx}{x(x - 1)^2} \)
13. \(\int \frac{dx}{x^2\sqrt{4 - x^2}} \)
14. \(\int x \csc x \cot x \, dx \)
15. \(\int \frac{dx}{(x^2 + 9)^2} \)
16. \(\int \frac{dx}{\theta \sec^{-1} \theta} \)
17. \(\int \tan^5 x \sec x \, dx \)
18. \(\int \frac{dx}{(x^2 - 1)^{3/2}} \)
19. \(\int \ln(x^4 - 1) \, dx \)
20. \(\int \frac{dx}{(x^2 - 1)^{3/2}} \)
21. \(\int \frac{x^2 \, dx}{(x^2 - 1)^{3/2}} \)
22. \(\int \frac{dx}{\sqrt{8x + 5}} \)
23. \(\int \frac{(x + 1) \, dx}{(x^2 + 4x + 8)^2} \)
24. \(\int \frac{dx}{x^3 + 1} \)
25. \(\int \frac{1/2 \, dx}{x^{1/2} + 1} \)
26. \(\int \frac{dx}{\sqrt{16 + x^2}} \)
27. \(\int \frac{dt}{3 + e^{-t}} \)
28. \(\int \frac{dt}{(1 + 4t^2)^{3/2}} \)
29. \(\int \frac{dx}{x^2 + 9} \)
30. \(\int \frac{dy}{y \tan y} \)
31. \(\int \frac{dx}{x^2 + 2x + 5} \)
32. \(\int \frac{x^4 + 1}{x^2 + 1} \, dx \)
33. \(\int \frac{dx}{\sqrt{x^4 + x^7}} \)
34. \(\int \frac{dx}{x^2 + 6x} \)
35. \(\int \frac{dx}{1 + e^x} \)
36. \(\int \frac{dx}{x^3 - 1} \)
37. \(\int \frac{dx}{x \sqrt{x - 1}} \)
38. \(\int \frac{dx}{\sqrt{x + 1}} \)
39. \(\int (\sin x + \cos 2x)^2 \, dx \)
40. \(\int x \sqrt{x^2 + 1} \, dx \)
41. \(\int \sin^2 x \tan x \, dx \)
42. \(\int x \ln(x + 12) \, dx \)
43. \(\int \sin^2 x \, dx \)
44. \(\int \cos^7 x \, dx \)
45. \(\int \sin^5 x \cos^2 x \, dx \)
46. \(\int \frac{dx}{x^2 + 2x + 5} \)
47. \(\int \cos^7 x \, dx \)
48. \(\int \sqrt[4]{x} \, dx \)
49. \(\int \sec^3 \theta \, d\theta \)
50. \(\int x^{11} \, dx \)
51. \(\int \frac{x^5}{x^4 - 1} \, dx \)
52. \(\int \tan x \sec^{5/4} x \, dx \)
53. \(\int (3 \sec x - \cos x)^2 \, dx \)
54. \(\int x^3 \ln x \, dx \)
55. \(\int x^3 \ln^2 x \, dx \)
56. \(\int e^x \, dx \)
57. \(\int \frac{dx}{\sqrt{x^2 - 36}} \)

In Exercises 11–57, evaluate the integral using the appropriate method or combination of methods covered thus far in the text. You may use the integral tables at the end of the book, but do not use a computer algebra system.

58. Attempt to use a computer algebra system to find \(\int (\ln x + 1)\sqrt{(x \ln x)^2 + 1} \, dx \). (This will most likely fail.) Now, compute it yourself.
8.7 Improper Integrals

The integrals we have studied so far represent signed areas of bounded regions. However, areas of unbounded regions (Figure 1) also arise in applications and are represented by improper integrals.

There are two ways an integral can be improper: (1) The interval of integration may be infinite, or (2) the integrand may tend to infinity. We deal first with improper integrals over infinite intervals. One or both endpoints may be infinite:

\[\int_{-\infty}^{a} f(x) \, dx, \quad \int_{a}^{\infty} f(x) \, dx, \quad \int_{-\infty}^{\infty} f(x) \, dx \]

How can an unbounded region have finite area? To answer this question, we must specify what we mean by the area of an unbounded region. Consider the area [Figure 2(A)] under the graph of \(f(x) = e^{-x/2} \) over the finite interval \([0, R]\):

\[\int_{0}^{R} e^{-x/2} \, dx = \left. -2e^{-x/2} \right|_{0}^{R} = -2e^{-R} + 2e^{0} = 1 - e^{-R} \]

As \(R \to \infty \), this area approaches a finite value [Figure 2(B)]:

\[\int_{0}^{\infty} e^{-x/2} \, dx = \lim_{R \to \infty} \int_{0}^{R} e^{-x/2} \, dx = \lim_{R \to \infty} \left(1 - e^{-R} \right) = 1 \]

It seems reasonable to take this limit as the definition of the area under the graph over the infinite interval \([0, \infty)\). Thus, the unbounded region in Figure 2(C) has area 1.

DEFINITION Improper Integral Fix a number \(a \) and assume that \(f \) is integrable over \([a, b]\) for all \(b > a \). The improper integral of \(f \) over \([a, \infty)\) is defined as the following limit (if it exists):

\[\int_{a}^{\infty} f(x) \, dx = \lim_{R \to \infty} \int_{a}^{R} f(x) \, dx \]

We say that the improper integral converges if the limit exists (and is finite) and that it diverges if the limit does not exist.

Similarly, we define

\[\int_{-\infty}^{a} f(x) \, dx = \lim_{R \to \infty} \int_{R}^{a} f(x) \, dx \]

EXAMPLE 1 Show that \(\int_{2}^{\infty} \frac{dx}{x^3} \) converges and compute its value.

Solution

\[\int_{2}^{\infty} \frac{dx}{x^3} = \lim_{R \to \infty} \int_{2}^{R} \frac{dx}{x^3} = \lim_{R \to \infty} \left. \frac{-1}{2x^2} \right|_{2}^{R} = \lim_{R \to \infty} \left(-\frac{1}{2R^2} + \frac{1}{2} \right) = \frac{1}{8} \]

We conclude that the unbounded shaded region in Figure 3 has area \(\frac{1}{8} \).
EXAMPLE 2 Determine whether \(\int_{-\infty}^{-1} \frac{1}{x} \, dx \) converges.

Solution Since the lower limit of the integral is \(-\infty\), we take \(R < -1 \). Then we compute the limit as \(R \to -\infty \):

\[
\int_{-\infty}^{-1} \frac{1}{x} \, dx = \lim_{R \to -\infty} \int_{R}^{-1} \frac{1}{x} \, dx = \lim_{R \to -\infty} \ln |x| \bigg|_{R}^{-1} = \lim_{R \to -\infty} \ln |x| \bigg|_{R}^{-1} = - \ln |R| = -\infty
\]

The limit is infinite, so the improper integral diverges. We conclude that the area of the unbounded region in Figure 4 is infinite.

A doubly infinite improper integral is defined as a sum (provided that both integrals on the right converge):

\[
\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{0} f(x) \, dx + \int_{0}^{\infty} f(x) \, dx
\]

We could have used some number other than 0 as a choice of where to split the integral, if it were more convenient to do so.

EXAMPLE 3 Determine if \(\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx \) converges and, if so, compute its value.

Solution

\[
\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx + \int_{0}^{\infty} \frac{1}{1+x^2} \, dx
\]

assuming both of these integrals converge. For the second of these:

\[
\int_{0}^{\infty} \frac{1}{1+x^2} \, dx = \lim_{R \to \infty} \int_{0}^{R} \frac{1}{1+x^2} \, dx = \lim_{R \to \infty} \tan^{-1} x \bigg|_{0}^{R} = \lim_{R \to \infty} \tan^{-1} R - 0 = \frac{\pi}{2}
\]

Similarly,

\[
\int_{-\infty}^{0} \frac{1}{1+x^2} \, dx = \lim_{R \to -\infty} \int_{R}^{0} \frac{1}{1+x^2} \, dx = \lim_{R \to -\infty} \tan^{-1} x \bigg|_{R}^{0} = \lim_{R \to -\infty} 0 - \tan^{-1} R = \frac{\pi}{2}
\]

Thus, since both integrals converge,

\[
\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx + \int_{0}^{\infty} \frac{1}{1+x^2} \, dx = \frac{\pi}{2} + \frac{\pi}{2} = \pi
\]

CONCEPTUAL INSIGHT If you compare the unbounded shaded regions in Figures 3 and 4, you may wonder why one has finite area and the other has infinite area. Convergence of an improper integral depends on how rapidly \(f(x) \) tends to zero as \(x \to \infty \) (or \(x \to -\infty \)). Our calculations show that \(x^{-2} \) tends to zero quickly enough for convergence, whereas \(x^{-1} \) does not.

An improper integral of a power function \(f(x) = x^{-p} \) is called a \(p \)-integral. Note that \(f(x) = x^{-p} \) decreases more rapidly as \(p \) gets larger. Interestingly, our next theorem shows that the exponent \(p = -1 \) is the dividing line between convergence and divergence.
p-integrals are particularly important because they are often used to determine the convergence or divergence of more complicated improper integrals by means of the Comparison Test (see Example 10).

Theorem 1 The p-Integral over (a, ∞) For $a > 0$,

$$\int_a^\infty \frac{dx}{x^p} = \begin{cases} \frac{a^{1-p}}{p-1} & \text{if } p > 1 \\ \text{diverges} & \text{if } p \leq 1 \end{cases}$$

Proof Denote the p-integral by J. Then

$$J = \lim_{R \to \infty} \int_a^R x^{-p} \, dx = \lim_{R \to \infty} \frac{x^{1-p}}{1-p} \bigg|_a^R = \lim_{R \to \infty} \left(\frac{R^{1-p} - a^{1-p}}{1-p} \right)$$

If $p > 1$, then $1-p < 0$ and R^{1-p} tends to zero as $R \to \infty$. In this case, $J = \frac{a^{1-p}}{p-1}$. If $p < 1$, then $1-p > 0$ and R^{1-p} tends to infinity. In this case, J diverges. If $p = 1$, then J diverges because

$$\lim_{R \to \infty} \int_a^R x^{-1} \, dx = \lim_{R \to \infty} (\ln R - \ln a) = \infty.$$

Sometimes it is necessary to use L'Hôpital's Rule to determine the limits that arise in improper integrals.

Example 4 Using L'Hôpital's Rule Calculate $\int_0^\infty xe^{-x} \, dx$.

Solution First, use Integration by Parts with $u = x$ and $dv = e^{-x} \, dx$:

$$\int xe^{-x} \, dx = -xe^{-x} + \int e^{-x} \, dx = -xe^{-x} - e^{-x} = -(x+1)e^{-x} + C$$

$$\int_0^R xe^{-x} \, dx = -(x+1)e^{-x}\bigg|_0^R = -(R+1)e^{-R} + 1 = 1 - \frac{R+1}{e^R}$$

Then compute the improper integral as a limit using L'Hôpital's Rule:

$$\int_0^\infty xe^{-x} \, dx = 1 - \lim_{R \to \infty} \frac{R+1}{e^R} = 1 - \lim_{R \to \infty} \frac{1}{e^{R/e}} = 1 - 0 = 1.$$

L'Hôpital's Rule

Improper integrals arise in applications when it makes sense to treat certain large quantities as if they were infinite. For example, an object launched with escape velocity never falls back to the earth but, rather, travels “infinitely far” into space.

Example 5 Escape Velocity The earth exerts a gravitational force of magnitude $F(r) = GM_e m/r^2$ on an object of mass m at distance r from the center of the earth.

(a) Find the work required to move the object infinitely far from the earth.

(b) Calculate the escape velocity v_{esc} on the earth’s surface.

Solution This amounts to computing a p-integral with $p = 2$. Recall that work is the integral of force as a function of distance (Section 6.5).

(a) The work required to move an object from the earth’s surface ($r = r_e$) to a distance R from the center is

$$\int_{r_e}^R \frac{GM_e m}{r^2} \, dr = \left. -\frac{GM_e m}{r} \right|_{r_e}^R = GM_e m \left(\frac{1}{r_e} - \frac{1}{R} \right)$$

The work moving the object “infinitely far away” is the improper integral

$$GM_e m \int_{r_e}^\infty \frac{dr}{r^2} = \lim_{R \to \infty} GM_e m \left(\frac{1}{r_e} - \frac{1}{R} \right) = \frac{GM_e m}{r_e}$$

In physics, we speak of moving an object “infinitely far away.” In practice, this means “very far away,” but it is more convenient to work with an improper integral.

Reminder The mass of the earth is $M_e \approx 5.98 \cdot 10^{24}$ kg

The radius of the earth is $r_e \approx 6.37 \cdot 10^6$ m

The universal gravitational constant is $G \approx 6.67 \cdot 10^{-11}$ N·m2/kg2

A newton is 1 kg·m/s2 and a joule is 1 N·m.
(b) By the principle of Conservation of Energy, an object launched with velocity \(v_0\) will escape the earth’s gravitational field if its kinetic energy \(\frac{1}{2}mv_0^2\) is at least as large as the work required to move the object to infinity—that is, if

\[
\frac{1}{2}mv_0^2 \geq \frac{GM_m}{r_e} \Rightarrow v_0 \geq \left(\frac{2GM_m}{r_e}\right)^{1/2}
\]

Using the values recalled in the marginal note, we find that \(v_0 \geq 11,200\) m/s. The minimal velocity is the escape velocity \(v_{\text{esc}} = 11,200\) m/s.

EXAMPLE 6 Perpetual Annuity An investment pays a dividend continuously at a rate of $6000/year. Compute the present value of the income stream if the interest rate is 4% and the dividends continue forever.

Solution Recall from Section 7.5 that the present value \((PV)\) after \(T\) years at interest rate \(r = 0.04\) is

\[
\int_0^T 6000e^{-0.04t} dt \approx \$147,253
\]

The improper integral \((\$150,000)\) gives a useful and convenient approximation to this value.

Although an infinite number of dollars are paid out during the infinite time interval, their total present value is finite.

Unbounded Functions

An integral over a finite interval \([a, b]\) is improper if the integrand is unbounded. In this case, the region in question is unbounded in the vertical direction. For example, \(\int_0^9 \frac{dx}{\sqrt{x}}\) is improper because the integrand \(f(x) = x^{-1/2}\) tends to \(\infty\) as \(x \to 0^+\) (Figure 5). Improper integrals of this type are defined as one-sided limits.

DEFINITION Unbounded Integrands If \(f\) is continuous on \([a, b]\) and \(\lim_{x \to b^-} f(x) = \pm \infty\), we define

\[
\int_a^b f(x) \, dx = \lim_{R \to b^-} \int_a^R f(x) \, dx
\]

Similarly, if \(f\) is continuous on \((a, b]\) and \(\lim_{x \to a^+} f(x) = \pm \infty\),

\[
\int_a^b f(x) \, dx = \lim_{R \to a^+} \int_R^b f(x) \, dx
\]

In both cases, we say that the improper integral converges if the limit exists and that it diverges otherwise.

Note that if there is a single point \(c\) in the interval \([a, b]\) such that \(\lim_{x \to c^-} f(x) = \pm \infty\), or \(\lim_{x \to c^+} f(x) = \pm \infty\), and if \(\int_a^c f(x) \, dx\) and \(\int_c^b f(x) \, dx\) both converge, then we define

\[
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.
\]
EXAMPLE 7 Calculate: (a) \(\int_0^9 \frac{dx}{\sqrt{x}} \) and (b) \(\int_0^{1/2} \frac{dx}{x^3} \).

Solution Both integrals are improper because the integrands have infinite discontinuities at \(x = 0 \). The first integral converges:

\[
\int_0^9 \frac{dx}{\sqrt{x}} = \lim_{R \to 0^+} \int_R^9 x^{-1/2} \, dx = \lim_{R \to 0^+} 2x^{1/2} \bigg|_R^9 = \lim_{R \to 0^+} (6 - 2R^{1/2}) = 6
\]

The second integral diverges:

\[
\int_0^{1/2} \frac{dx}{x^3} = \lim_{R \to 0^+} \int_R^{1/2} \frac{dx}{x^3} = \lim_{R \to 0^+} \left(\ln \frac{1}{2} - \ln R \right) = \ln \frac{1}{2} - \lim_{R \to 0^+} \ln R = \infty
\]

EXAMPLE 8 Calculate \(\int_0^2 \frac{dx}{(x-1)^{3/2}} \).

Solution This integral is improper with an infinite discontinuity at \(x = 1 \) (Figure 6). Therefore, we write

\[
\int_0^2 \frac{dx}{(x-1)^{3/2}} = \int_0^1 \frac{dx}{(x-1)^{3/2}} + \int_1^2 \frac{dx}{(x-1)^{3/2}}
\]

We consider each integral individually:

\[
\int_0^1 \frac{dx}{(x-1)^{3/2}} = \lim_{R \to 1^-} \int_0^R \frac{dx}{(x-1)^{3/2}} = \lim_{R \to 1^-} \frac{-2}{3} \left(1 - \frac{1}{2} R^{1/2}\right) \bigg|_0^R = \lim_{R \to 1^-} \frac{-2}{3} \left(1 - \frac{1}{2} R^{1/2}\right) = 3
\]

\[
\int_1^2 \frac{dx}{(x-1)^{3/2}} = \lim_{R \to 1^+} \int_R^2 \frac{dx}{(x-1)^{3/2}} = \lim_{R \to 1^+} \frac{-2}{3} \left(R^{1/2} - 1\right) \bigg|_1^2 = \lim_{R \to 1^+} \frac{-2}{3} \left(R^{1/2} - 1\right) = 3
\]

Therefore, we obtain

\[
\int_0^2 \frac{dx}{(x-1)^{3/2}} = \int_0^1 \frac{dx}{(x-1)^{3/2}} + \int_1^2 \frac{dx}{(x-1)^{3/2}} = 3 + 3 = 6
\]

The proof of the next theorem is similar to the proof of Theorem 1 (see Exercise 52).

Theorem 2 The \(p \)-Integral over \([0, a]\) For \(a > 0 \),

\[
\int_0^a \frac{dx}{x^p} = \begin{cases}
\frac{a^{1-p}}{1-p} & \text{if } p < 1 \\
\text{diverges} & \text{if } p \geq 1
\end{cases}
\]
GRAPHICAL INSIGHT The p-integrals $\int_{0}^{\infty} x^{-p} \, dx$ and $\int_{0}^{\infty} x^{-p} \, dx$ have opposite behavior for $p \neq 1$. The first converges only for $p > 1$, and the second converges only for $p < 1$ (both diverge for $p = 1$). This is reflected in the graphs of $y = x^{-p}$ and $y = x^{-q}$, which switch places at $x = 1$ (Figure 7). We see that a large value of p helps $\int_{0}^{\infty} x^{-p} \, dx$ to converge but causes $\int_{0}^{1} x^{-p} \, dx$ to diverge.

In Section 9.1, we will compute the length of a curve as an integral. It turns out that the improper integral in our next example represents the length of one-quarter of a unit circle. Thus, we can expect its value to be $\frac{\pi}{2}$.

EXAMPLE 9 Evaluate $\int_{0}^{1} \frac{dx}{\sqrt{1 - x^2}}$.

Solution This integral is improper with an infinite discontinuity at $x = 1$ (Figure 8). Using the formula $\int \frac{dx}{\sqrt{1 - x^2}} = \sin^{-1} x + C$, we find

$$
\int_{0}^{1} \frac{dx}{\sqrt{1 - x^2}} = \lim_{R \to 1} \int_{0}^{R} \frac{dx}{\sqrt{1 - x^2}} = \lim_{R \to 1} (\sin^{-1} R - \sin^{-1} 0) = \sin^{-1} 1 = \frac{\pi}{2}
$$

Comparing Integrals

Sometimes we are interested in determining whether an improper integral converges, even if we cannot find its exact value. For instance, the integral

$$
\int_{1}^{\infty} \frac{e^{-x}}{x} \, dx
$$

cannot be evaluated explicitly. However, if $x \geq 1$, then

$$
0 \leq \frac{1}{x} \leq 1 \quad \Rightarrow \quad 0 \leq \frac{e^{-x}}{x} \leq e^{-x}
$$

In other words, the graph of $y = e^{-x}/x$ lies underneath the graph of $y = e^{-x}$ for $x \geq 1$ (Figure 9). Therefore,

$$
0 \leq \int_{1}^{\infty} \frac{e^{-x}}{x} \, dx \leq \int_{1}^{\infty} \frac{e^{-x}}{x} \, dx = e^{-1}
$$

Since the larger integral converges, we can expect that the smaller integral also converges (and that its value is some positive number less than e^{-1}). This type of conclusion is stated in the next theorem. A proof is provided in a supplement on the text’s Companion Web Site.

THEOREM 3 Comparison Test for Improper Integrals

Assume that $f(x) \geq g(x) \geq 0$ for $x \geq a$:

- If $\int_{a}^{\infty} f(x) \, dx$ converges, then $\int_{a}^{\infty} g(x) \, dx$ also converges.
- If $\int_{a}^{\infty} g(x) \, dx$ diverges, then $\int_{a}^{\infty} f(x) \, dx$ also diverges.

The Comparison Test is also valid for improper integrals with infinite discontinuities at the endpoints.
EXAMPLE 10 Show that \[\int_1^\infty \frac{dx}{\sqrt{x^3 + 1}} \] converges.

Solution We cannot evaluate this integral, but we can use the Comparison Test. To show convergence, we must compare the integrand \((x^3 + 1)^{-1/2}\) with a larger function whose integral we can compute.

It makes sense to compare with \(x^{-3/2}\) because \(\sqrt{x^3} \leq \sqrt{x^3 + 1}\). Therefore,

\[
\frac{1}{\sqrt{x^3 + 1}} \leq \frac{1}{\sqrt{x^3}} = x^{-3/2}
\]

The integral of the larger function converges, so the integral of the smaller function also converges:

\[
\int_1^\infty \frac{dx}{x^{3/2}} \quad \Rightarrow \quad \int_1^\infty \frac{dx}{\sqrt{x^3 + 1}} \quad \text{converges}
\]

EXAMPLE 11 Choosing the Right Comparison Does \[\int_1^\infty \frac{dx}{\sqrt{x + e^{3x}}} \] converge?

Solution Since \(\sqrt{x} \geq 0\), we have \(\sqrt{x} + e^{3x} \geq e^{3x}\) and therefore

\[
\frac{1}{\sqrt{x} + e^{3x}} \leq \frac{1}{e^{3x}}
\]

Furthermore,

\[
\int_1^\infty \frac{dx}{e^{3x}} = \lim_{R \to \infty} R - \frac{1}{3} e^{-3x} \bigg|_1^R = \lim_{R \to \infty} \frac{1}{3} \left(e^{-3} - e^{-3R} \right) = \frac{1}{3} e^{-3} \quad \text{(converges)}
\]

Our integral converges by the Comparison Test:

\[
\int_1^\infty \frac{dx}{e^{3x}} \quad \Rightarrow \quad \int_1^\infty \frac{dx}{\sqrt{x + e^{3x}}} \quad \text{also converges}
\]

Had we not been thinking, we might have tried to use the inequality

\[
\frac{1}{\sqrt{x} + e^{3x}} \leq \frac{1}{\sqrt{x}}
\]

However, \(\int_1^\infty \frac{dx}{\sqrt{x}}\) diverges \((p\text{-integral with } p < 1)\), and this says nothing about our smaller integral (Figure 10).

EXAMPLE 12 Endpoint Discontinuity Does \[J = \int_0^{0.5} \frac{dx}{x^8 + x^2} \] converge?

Solution This integrand has a discontinuity at \(x = 0\), since \(\lim_{x \to 0^+} \frac{1}{x^8 + x^2} = +\infty\). We might try the comparison

\[
x^8 + x^2 > x^2 \quad \Rightarrow \quad \frac{1}{x^8 + x^2} < \frac{1}{x^2}
\]
However, the p-integral \(\int_0^{0.5} \frac{dx}{x^2} \) diverges, so this says nothing about our integral \(J \), which is smaller. But notice that if \(0 < x < 0.5 \), then \(x^8 < x^2 \), and therefore
\[
x^8 + x^2 < 2x^2 \quad \Rightarrow \quad \frac{1}{x^8 + x^2} > \frac{1}{2x^2}
\]
Since \(\int_0^{0.5} \frac{dx}{2x^2} \) diverges, the larger integral \(J \) also diverges.

8.7 SUMMARY

- An improper integral is defined as the limit of ordinary definite integrals:

\[
\int_a^\infty f(x) \, dx = \lim_{R \to \infty} \int_a^R f(x) \, dx
\]

The improper integral converges if this limit exists, and it diverges otherwise.

- If \(f \) is continuous on \([a, b)\) and \(\lim_{x \to b^-} f(x) = \pm \infty \), then

\[
\int_a^b f(x) \, dx = \lim_{R \to b^-} \int_a^R f(x) \, dx
\]

- If \(f \) is continuous on \([a, b]\) and \(\lim_{x \to c^-} f(x) = \pm \infty \) or \(\lim_{x \to c^+} f(x) = \pm \infty \), where \(a < c < b \) and if \(\int_a^c f(x) \, dx \) and \(\int_c^b f(x) \, dx \) converge, then

\[
\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx
\]

- An improper integral of \(x^{-p} \) is called a \(p \)-integral. For \(a > 0 \),

| \(p > 1 \) | \(\int_a^\infty \frac{dx}{x^p} \) converges and \(\int_0^a \frac{dx}{x^p} \) diverges \\
| \(p < 1 \) | \(\int_a^\infty \frac{dx}{x^p} \) diverges and \(\int_0^a \frac{dx}{x^p} \) converges \\
| \(p = 1 \) | \(\int_a^\infty \frac{dx}{x} \) and \(\int_0^a \frac{dx}{x} \) both diverge

- The Comparison Test: Assume that \(f(x) \geq g(x) \geq 0 \) for \(x \geq a \). Then

\[
\text{If } \int_a^\infty f(x) \, dx \text{ converges, then } \int_a^\infty g(x) \, dx \text{ converges.}
\]

\[
\text{If } \int_a^\infty g(x) \, dx \text{ diverges, then } \int_a^\infty f(x) \, dx \text{ diverges.}
\]
8.7 EXERCISES

Preliminary Questions

1. State whether each of the following integrals converges or diverges:
 (a) \(\int_{1}^{\infty} x^{-3} \, dx \)
 (b) \(\int_{0}^{1} x^{-3} \, dx \)
 (c) \(\int_{1}^{\infty} x^{-2/3} \, dx \)
 (d) \(\int_{0}^{1} x^{-2/3} \, dx \)

2. Is \(\int_{0}^{\pi/2} \cot x \, dx \) an improper integral? Explain.

Exercises

1. Which of the following integrals is improper? Explain your answer, but do not evaluate the integral.
 (a) \(\int_{0}^{2} \frac{dx}{x^{1/3}} \)
 (b) \(\int_{1}^{\infty} \frac{dx}{x^{0.2}} \)
 (c) \(\int_{-1}^{\infty} e^{-x} \, dx \)
 (d) \(\int_{0}^{1} e^{-x} \, dx \)
 (e) \(\int_{0}^{\pi} \sec x \, dx \)
 (f) \(\int_{0}^{\infty} \sin x \, dx \)
 (g) \(\int_{0}^{1} \sin x \, dx \)
 (h) \(\int_{0}^{1} \frac{dx}{\sqrt{3-x^{2}}} \)
 (i) \(\int_{1}^{\infty} \ln x \, dx \)
 (j) \(\int_{0}^{3} \ln x \, dx \)

2. Let \(f(x) = x^{-4/3} \).
 (a) Evaluate \(\int_{1}^{R} f(x) \, dx \).
 (b) Evaluate \(\int_{1}^{\infty} f(x) \, dx \) by computing the limit
 \[\lim_{R \to \infty} \int_{1}^{R} f(x) \, dx \]

3. Prove that \(\int_{1}^{\infty} x^{-2/3} \, dx \) diverges by showing that
 \[\lim_{R \to \infty} \int_{1}^{R} x^{-2/3} \, dx = \infty \]

4. Determine whether \(\int_{0}^{3} \frac{dx}{(3-x)^{1/2}} \) converges by computing
 \[\lim_{R \to 3-} \int_{0}^{R} \frac{dx}{(3-x)^{1/2}} \]

In Exercises 5–40, determine whether the improper integral converges and, if so, evaluate it.

5. \(\int_{1}^{\infty} \frac{dx}{x^{19/20}} \)
6. \(\int_{1}^{\infty} \frac{dx}{x^{20/19}} \)
7. \(\int_{-\infty}^{4} e^{-0.0001t} \, dt \)
8. \(\int_{20}^{\infty} \frac{dt}{T} \)
9. \(\int_{0}^{5} \frac{dx}{x^{80/19}} \)
10. \(\int_{0}^{5} \frac{dx}{x^{19/20}} \)
11. \(\int_{0}^{4} \frac{dx}{\sqrt{4-x}} \)
12. \(\int_{5}^{6} \frac{dx}{x^{(x-5)^{3/2}}} \)
13. \(\int_{-2}^{\infty} \frac{dx}{x^{3}} \)
14. \(\int_{2}^{\infty} \frac{dx}{x^{3} (x+4)^{3/2}} \)
15. \(\int_{0}^{\infty} e^{x} \, dx \)
16. \(\int_{1}^{\infty} e^{-x} \, dx \)
17. \(\int_{0}^{1} \frac{dx}{x^{0.2}} \)
18. \(\int_{2}^{\infty} \frac{dx}{x^{1/3}} \)
19. \(\int_{0}^{4} e^{-3x} \, dx \)
20. \(\int_{0}^{\infty} e^{3x} \, dx \)
21. \(\int_{-\infty}^{0} e^{3x} \, dx \)
22. \(\int_{1}^{2} \frac{dx}{(x-1)^{2}} \)
23. \(\int_{1}^{3} \frac{dx}{\sqrt{3-x}} \)
24. \(\int_{0}^{4} \frac{dx}{x(x+2)^{1/3}} \)
25. \(\int_{0}^{\infty} \frac{dx}{1+x} \)
26. \(\int_{0}^{\infty} xe^{-x^{2}} \, dx \)
27. \(\int_{0}^{\infty} \frac{x \, dx}{(1+x^{2})^{2}} \)
28. \(\int_{3}^{6} \frac{x \, dx}{\sqrt{x-3}} \)
29. \(\int_{0}^{\infty} e^{-x} \cos x \, dx \)
30. \(\int_{0}^{\infty} xe^{-2x} \, dx \)
31. \(\int_{0}^{3} \frac{dx}{\sqrt{9-x^{2}}} \)
32. \(\int_{0}^{1} e^{\sqrt{x}} \, dx \)
33. \(\int_{1}^{\infty} \frac{e^{\sqrt{x}} \, dx}{\sqrt{x}} \)
34. \(\int_{0}^{\pi} \sec \theta \, d\theta \)
35. \(\int_{0}^{\infty} \sin x \, dx \)
36. \(\int_{0}^{\pi/2} \tan x \, dx \)
37. \(\int_0^1 \ln x \, dx \)
38. \(\int_1^2 \frac{dx}{x \ln x} \)
39. \(\int_0^1 \ln x \, dx \)
40. \(\int_1^\infty \ln x \, dx \)
41. Let \(I = \int_4^\infty \frac{dx}{(x - 2)(x - 3)} \)
 (a) Show that for \(R > 4 \),
 \[\int_4^R \frac{dx}{(x - 2)(x - 3)} = \ln \left| \frac{R - 3}{R - 2} \right| - \ln \frac{1}{2} \]
 (b) Then show that \(I = \ln 2 \).
42. Evaluate the integral \(I = \int_1^\infty \frac{dx}{x(2x + 5)} \).
43. Evaluate \(I = \int_0^1 \frac{dx}{x(2x + 5)} \) or state that it diverges.
44. Evaluate \(I = \int_2^\infty \frac{dx}{(x + 3)(x + 1)^2} \) or state that it diverges.

In Exercises 45–48, determine whether the doubly infinite improper integral converges and, if so, evaluate it. Use definition (2).

45. \(\int_\infty^{-\infty} \frac{xdx}{1 + x^2} \)
46. \(\int_\infty^{-\infty} e^{-|x|} \, dx \)
47. \(\int_\infty^{-\infty} xe^{-x^2} \, dx \)
48. \(\int_\infty^{-\infty} \frac{dx}{(x^2 + 1)^{3/2}} \)
49. Determine whether \(J = \int_{-1}^1 \frac{dx}{x^{4/3}} \) converges and, if so, to what.
50. Consider the integral \(\int_\infty^{-\infty} x \, dx \).
 (a) Show that it diverges.
 (b) Show that \(\lim_{R \to \infty} \int_{-R}^R x \, dx \) converges, thereby demonstrating that the definition of \(\int_\infty^{-\infty} f(x) \, dx \) needs to be adhered to carefully.

51. For which values of \(a \) does \(\int_0^\infty e^{ax} \, dx \) converge?
52. Show that \(\int_0^1 \frac{dx}{x^p} \) converges if \(p < 1 \) and diverges if \(p \geq 1 \).
53. Sketch the region under the graph of \(f(x) = \frac{1}{1 + x^2} \) for \(-\infty < x < \infty \), and show that its area is \(\pi \).
54. Show that \(\int_1^\infty \frac{dx}{\sqrt{x^2 + 1}} \) converges.
55. Show that \(\int_1^\infty \frac{dx}{x^3 + 4} \) converges by comparing with \(\int_1^\infty \frac{dx}{x^3} \).
56. Show that \(\int_2^\infty \frac{dx}{x^3 - 4} \) converges by comparing with \(\int_2^\infty \frac{dx}{2x^3} \).

57. Show that \(0 \leq e^{-x^2} \leq e^{-x} \) for \(x \geq 1 \) (Figure 11). Use the Comparison Test to show that \(\int_0^\infty e^{-x^2} \, dx \) converges. \textit{Hint:} It suffices (why?) to make the comparison for \(x \geq 1 \) because
 \[\int_0^\infty e^{-x^2} \, dx = \int_1^\infty e^{-x^2} \, dx + \int_1^\infty e^{-x^2} \, dx \]

58. Prove that \(\int_\infty^{-|x|} e^{-x^2} \, dx \) converges by comparing with \(\int_\infty^{-|x|} e^{-x} \, dx \) (Figure 11).
59. Show that \(\int_1^\infty \frac{1 - \sin x}{x^2} \, dx \) converges.
60. Let \(a > 0 \). Recall that \(\lim_{x \to \infty} \frac{x^a}{\ln x} = \infty \) (by Exercise 62 in Section 7.7).
 (a) Show that \(x^a > 2 \ln x \) for all \(x \) sufficiently large.
 (b) Show that \(e^{-x^2} < x^{-2} \) for all \(x \) sufficiently large.
 (c) Show that \(\int_1^\infty e^{-x^2} \, dx \) converges.

In Exercises 61–75, use the Comparison Test to determine whether or not the integral converges.

61. \(\int_1^\infty \frac{1}{\sqrt{x^3 + 2}} \, dx \)
62. \(\int_1^\infty \frac{dx}{(x^3 + 2x + 4)^{1/2}} \)
63. \(\int_3^\infty \frac{dx}{\sqrt{x} - 1} \)
64. \(\int_0^5 \frac{dx}{x^{1/3} + x^3} \)
65. \(\int_1^\infty e^{-x(x^{-1})} \, dx \)
66. \(\int_0^1 \frac{|\sin x|}{\sqrt{x}} \, dx \)
67. \(\int_0^1 \frac{e^x}{x^2} \, dx \)
68. \(\int_1^\infty \frac{1}{x^4 + e^x} \, dx \)
69. \(\int_0^1 \frac{1}{x^8 + \sqrt{x}} \, dx \)
70. \(\int_1^\infty \frac{\ln x}{\sinh x} \, dx \)
71. \(\int_1^\infty \frac{dx}{x^{2} \ln x} \)
72. \(\int_1^\infty \frac{dx}{x^{1/3} + x^3} \)
73. \(\int_0^1 \frac{dx}{(8x^2 + x^4)^{1/3}} \)
74. \(\int_1^\infty \frac{dx}{(x + x^2)^{1/3}} \)
75. \(\int_0^1 \frac{dx}{xe^x + x^2} \)

\textit{Hint for Exercise 74:} Show that for \(x \geq 1 \),
 \[\frac{1}{(x + x^2)^{1/3}} \geq \frac{1}{2^{1/3}x^{2/3}} \]
Hint for Exercise 75: Show that for $0 \leq x \leq 1$,
\[
\frac{1}{x e^x + x^2} \geq \frac{1}{(e + 1)x}
\]

76. Use the Comparison Test to determine for what values of p this integral converges:
\[
\int_0^\infty \frac{1}{x^p \ln x} \, dx.
\]

77. Define $J = \int_0^\infty \frac{dx}{x^{1/2}(x + 1)}$ as the sum of the two improper integrals
\[
\int_0^1 \frac{dx}{x^{1/2}(x + 1)} + \int_1^\infty \frac{dx}{x^{1/2}(x + 1)}
\]
Use the Comparison Test to show that J converges.

78. Determine whether $J = \int_0^\infty \frac{dx}{x^{3/2}(x + 1)}$ (defined as in Exercise 77) converges.

79. An investment pays a dividend of $250/year continuously forever. If the interest rate is 7%, what is the present value of the entire income stream generated by the investment?

80. An investment is expected to earn profits at a rate of $10000e^{0.01t}$ dollars per year forever. Find the present value of the income stream if the interest rate is 4%.

81. Compute the present value of an investment that generates income at a rate of $5000e^{-0.005t}$ dollars per year forever, assuming an interest rate of 6%.

82. Find the volume of the solid obtained by rotating the region below the graph of $y = e^{-x}$ about the x-axis for $0 \leq x < \infty$.

83. When a capacitor of capacitance C is charged by a source of voltage V, the power expended at time t is
\[
P(t) = \frac{V^2}{R} (e^{−t/RC} − e^{−2t/RC})
\]
where R is the resistance in the circuit. The total energy stored in the capacitor is
\[
W = \int_0^\infty P(t) \, dt
\]
Show that $W = \frac{1}{2}CV^2$.

84. The solid S obtained by rotating the region below the graph of $y = x^{-1}$ about the x-axis for $1 \leq x < \infty$ is called Gabriel’s Horn (Figure 12).

(a) Use the Disk Method (Section 6.3) to compute the volume of S. Note that the volume is finite even though S is an infinite region.

(b) It can be shown that the surface area of S is
\[
A = 2\pi \int_1^\infty x^{-1} \sqrt{1 + x^{-2}} \, dx
\]
Show that A is infinite. If S were a container, you could fill its interior with a finite amount of paint, but you could not paint its surface with a finite amount of paint.

85. Compute the volume of the solid obtained by rotating the region below the graph of $y = e^{-x/2}$ about the x-axis for $−\infty < x < \infty$.

86. For which integers p does $\int_0^{1/2} \frac{dx}{x (\ln x)^p}$ converge?

87. Conservation of Energy can be used to show that when a mass m oscillates at the end of a spring with spring constant k, the period of oscillation is
\[
T = 4\sqrt{\frac{m}{E/k}} \int_0^{\sqrt{2E/k}} \frac{dx}{\sqrt{2E - kx^2}}
\]
where E is the total energy of the mass. Show that this is an improper integral with value $T = 2\pi \sqrt{m/k}$.

In Exercises 88–91, the Laplace transform of a function f is the function $\mathcal{L}f(s)$ of the variable s defined by the improper integral (if it converges):
\[
\mathcal{L}f(s) = \int_0^\infty f(x) e^{-sx} \, dx
\]
Laplace transforms are widely used in physics and engineering.

88. Show that if $f(x) = C$, where C is a constant, then $\mathcal{L}f(s) = C/s$ for $s > 0$.

89. Show that if $f(x) = \sin \alpha x$, then $\mathcal{L}f(s) = \frac{\alpha}{s^2 + \alpha^2}$.

90. Compute $\mathcal{L}f(s)$, where $f(x) = e^{\alpha x}$ and $x > \alpha$.

91. Compute $\mathcal{L}f(s)$, where $f(x) = \cos \alpha x$ and $x > 0$.

92. When a radioactive substance decays, the fraction of atoms present at time t is $f(t) = e^{-kt}$, where $k > 0$ is the decay constant. It can be shown that the average life of an atom (until it decays) is $A = \int_0^\infty f'(t) \, dt$. Use Integration by Parts to show that $A = \int_0^\infty f(t) \, dt$ and compute A. What is the average decay time of radon-222, whose half-life is 3.825 days?

93. Let $J_n = \int_0^\infty x^n e^{-\alpha x} \, dx$, where $n \geq 1$ is an integer and $\alpha > 0$. Prove that
\[
J_n = \frac{n}{\alpha} J_{n-1}
\]
and $J_0 = 1/\alpha$. Use this to compute J_n. Show that $J_n = n!/\alpha^{n+1}$.

94. Let $a > 0$ and $n > 1$. Define $f(x) = \frac{x^n}{e^{ax} - 1}$ for $x \neq 0$ and $f(0) = 0$.

(a) Use L’Hôpital’s Rule to show that f is continuous at $x = 0$.

(b) Show that $\int_0^\infty f(x) \, dx$ converges. Hint: Show that $f(x) \leq 2x^n e^{-ax}$ if x is large enough. Then use the Comparison Test and Exercise 93.
95. According to Planck’s Radiation Law, the amount of electromagnetic energy with frequency between \(\nu \) and \(\nu + \Delta \nu \) that is radiated by a so-called black body at temperature \(T \) is proportional to \(F(\nu) \Delta \nu \), where
\[
F(\nu) = \left(\frac{8 \pi h}{\nu^3} \right) \frac{\nu^3}{e^{\nu/kT} - 1}
\]
where \(c, h, k \) are physical constants. Use Exercise 94 to show that the total radiated energy
\[
E = \int_0^\infty F(\nu) \, d\nu
\]
is finite. To derive his law, Planck introduced the quantum hypothesis in 1900, which marked the birth of quantum mechanics.

Further Insights and Challenges

96. Let \(I = \int_0^1 x^p \ln x \, dx \).

(a) Show that \(I \) diverges for \(p = -1 \).

(b) Show that if \(p \neq -1 \), then
\[
\int x^p \ln x \, dx = \frac{x^{p+1}}{p+1} \left(\ln x - \frac{1}{p+1} \right) + C
\]
\(97. \)

(c) Use L’Hôpital’s Rule to show that \(I \) converges if \(p > -1 \) and diverges if \(p < -1 \).

98. Show that \(\int_1^\infty \sin \frac{x}{x^2} \, dx \) is absolutely convergent.

99. Show that \(\int_1^\infty e^{-x^2} \cos x \, dx \) is absolutely convergent.

100. Let \(f(x) = \sin x/x \) and \(I = \int_0^\infty f(x) \, dx \). We define \(f(0) = 1 \). Then \(f \) is continuous and \(I \) is not improper at \(x = 0 \).

(a) Show that
\[
\int_1^R \sin \frac{x}{x} \, dx = -\cos x \bigg|_1^R - \int_1^R \cos x \, dx
\]

(b) Show that \(\int_1^\infty (\cos x/x^2) \, dx \) converges. Conclude that the limit as \(R \to \infty \) of the integral in (a) exists and is finite.

101. The gamma function, which plays an important role in advanced applications, is defined for \(n \geq 1 \) by
\[
\Gamma(n) = \int_0^\infty t^{n-1}e^{-t} \, dt
\]

(a) Show that the integral defining \(\Gamma(n) \) converges for \(n \geq 1 \) (it actually converges for all \(n > 0 \)). \(\text{Hint:} \) Show that \(t^{n-1}e^{-t} \) is sufficiently large.

(b) Show that \(\Gamma(n+1) = n! \Gamma(n) \) using Integration by Parts.

(c) Show that \(\Gamma(n+1) = n! \) if \(n \geq 1 \) is an integer. \(\text{Hint:} \) Use (b) repeatedly. Thus, \(\Gamma(n) \) provides a way of defining \(n \)-factorial when \(n \) is not an integer.

102. Use the results of Exercise 101 to show that the Laplace transform (see Exercises 88–91 above) of \(x^n \) is
\[
\frac{n!}{s^{n+1}}.
\]

8.8 Probability and Integration

What is the probability that a customer will arrive at a fast-food restaurant in the next 45 seconds? Or, of scoring above 90% on a standardized test? Probabilities such as these are given by a number between 0 and 1, where 0 means there is no probability the event will occur and 1 means that the event is sure to happen. These probabilities are best described as areas under the graph of a function \(y = p(x) \) called a probability density function (Figure 1). The methods of integration developed in this chapter are used extensively in the study of such functions.

In probability theory, the quantity \(X \) that we are trying to predict (time to arrival, exam score, etc.) is called a random variable. The probability that \(X \) lies in a given range \([a, b]\) is denoted
\[
P(a \leq X \leq b)
\]

[Figure 1] Probability density function for scores on an exam. The shaded region has area 0.15, so there is a 15% chance that a randomly chosen exam has a score above 90.
We write \(P(X \leq b) \) for the probability that \(X \) is at most \(b \), and \(P(X \geq b) \) for the probability that \(X \) is at least \(b \).

For example, the probability that a customer arriving within the next 30 to 45 seconds (s) is denoted \(P(30 \leq X \leq 45) \).

We say that \(p \) is a probability density function for \(X \) if it is a continuous function such that

\[
P(a \leq X \leq b) = \int_a^b p(x) \, dx
\]

The probability density function \(p \) must also satisfy two conditions. First, it must satisfy \(p(x) \geq 0 \) for all \(x \), because a probability cannot be negative. Second,

\[
\int_{-\infty}^{\infty} p(x) \, dx = 1
\]

The integral represents \(P(-\infty < X < \infty) \). It must equal 1 because it is certain (the probability is 1) that the value of \(X \) lies between \(-\infty \) and \(\infty \). This also ensures that \(P(a \leq X \leq b) \) is a number in the interval \([0, 1]\), even when we allow \(a = -\infty \) and/or \(b = \infty \).

EXAMPLE 1 Find a constant \(C \) for which \(p(x) = \frac{C}{x^2 + 1} \) is a probability density function. Then compute \(P(1 \leq X \leq 4) \).

Solution We must choose \(C \) so that Eq. (1) is satisfied. The improper integral is a sum of two integrals (see Example 3 of Section 8.7).

\[
\int_{-\infty}^{\infty} p(x) \, dx = C \int_{-\infty}^{0} \frac{dx}{x^2 + 1} + C \int_{0}^{\infty} \frac{dx}{x^2 + 1} = C \left[\frac{\pi}{2} \right] + C \left[\frac{\pi}{2} \right] = C \pi
\]

Therefore, Eq. (1) is satisfied if \(C \pi = 1 \) or \(C = \pi^{-1} \). We have

\[
P(1 < X < 4) = \int_1^4 p(x) \, dx = \int_1^4 \frac{\pi^{-1} \, dx}{x^2 + 1} = \pi^{-1} (\tan^{-1} 4 - \tan^{-1} 1) \approx 0.17
\]

Therefore, \(X \) lies between 1 and 4 with probability 0.17, or a 17% chance (Figure 2).

CONCEPTUAL INSIGHT If \(X \) is a random variable with probability density function \(p \), then the probability of \(X \) taking on any specific value \(a \) is zero because \(\int_a^a p(x) \, dx = 0 \).

So what is the meaning of \(p(a) \)? We must think of it this way: The probability that \(X \) lies in a small interval \([a, a + \Delta x]\) is approximately \(p(a) \Delta x \):

\[
P(a \leq X < a + \Delta x) = \int_a^{a+\Delta x} p(x) \, dx \approx p(a) \Delta x
\]

A probability density is similar to a linear mass density \(\rho(x) \). The mass of a small segment \([a, a + \Delta x]\) is approximately \(\rho(a) \Delta x \), but the mass of any particular point \(x = a \) is zero.

The mean or average value of a random variable is the quantity

\[
\mu = \mu(X) = \int_{-\infty}^{\infty} x p(x) \, dx
\]

if this integral converges.

The symbol \(\mu \) is a lowercase Greek letter mu. If \(p(x) \) is defined on \([0, \infty)\) instead of \((-\infty, \infty)\), or on some other interval, then \(\mu \) is computed by integrating over that interval. Similarly, in Eq. (1) we integrate over the interval on which \(p(x) \) is defined.
In the next example, we consider the **exponential probability density** with parameter $r > 0$, defined on $[0, \infty)$ by

$$p(t) = \frac{1}{r} e^{-t/r}$$

This density function is often used to model “waiting times” between events that occur randomly. Exercise 10 asks you to verify that $p(t)$ satisfies Eq. (1).

Example 2 Mean of an Exponential Density
Let $r > 0$. Calculate the mean of the exponential probability density $p(t) = \frac{1}{r} e^{-t/r}$ on $[0, \infty)$.

Solution The mean is the integral of $tp(t)$ over $[0, \infty)$. Using Integration by Parts with $u = t/r$ and $dv = e^{-t/r} dt$, we have $du = dt/r$, $v = -re^{-t/r}$, and

$$\int t p(t) dt = \int \left(\frac{t}{r} e^{-t/r} \right) dt = -t e^{-t/r} + \int e^{-t/r} dt = -r e^{-t/r}$$

Thus (since $re^{-R/r}$ and $Re^{-R/r}$ both tend to zero as $R \to \infty$ in the last step),

$$\mu = \int_0^\infty t p(t) dt = \int_0^\infty t \left(\frac{1}{r} e^{-t/r} \right) dt = \lim_{R \to \infty} \left. -(r + t) e^{-t/r} \right|_0^R = \lim_{R \to \infty} \left(r - (r + R) e^{-R/r} \right) = r$$

Example 3 Waiting Time
The waiting time T between customer arrivals in a drive-through fast-food restaurant is a random variable with exponential probability density. If the average waiting time is 60 seconds (s), what is the probability that a customer will arrive within 30 to 45 s after another customer?

Solution If the average waiting time is 60 s, then $r = 60$ and $p(t) = \frac{1}{60} e^{-t/60}$ because the mean of $\frac{1}{r} e^{-t/r}$ is r by the previous example. Therefore, the probability of waiting between 30 and 45 s for the next customer is

$$P(30 \leq T \leq 45) = \int_{30}^{45} \frac{1}{60} e^{-t/60} dt = -e^{-t/60} \bigg|_{30}^{45} = -e^{-3/4} + e^{-1/2} \approx 0.134$$

This probability is the area of the shaded region in Figure 3.

The **normal density functions**, whose graphs are the familiar bell-shaped curves, appear in a surprisingly wide range of applications. The **standard normal** density is defined by

$$p(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

We can prove that $p(x)$ satisfies Eq. (1) using multivariable calculus.

More generally, we define the normal density function with mean μ and standard deviation σ:

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}$$
CHAPTER 8 TECHNIQUES OF INTEGRATION

The standard deviation \(\sigma \) measures the spread; for larger values of \(\sigma \), the graph is more spread out about the mean \(\mu \) (Figure 4). The standard normal density in Eq. (3) has mean \(\mu = 0 \) and \(\sigma = 1 \). A random variable with a normal density function is said to have a normal or Gaussian distribution. Examples of data that fall in a normal distribution include sale prices for houses in Denver, heights of female children of age 11 in Chicago, and blood pressure readings for adults in Akron, Ohio. The normal distribution is ubiquitous in everyday life.

\[
\begin{align*}
\mu = 0, \sigma = 0.5 \\
\mu = 0, \sigma = 1 \\
\mu = 0, \sigma = 2 \\
\mu = 3, \sigma = 0.75
\end{align*}
\]

\[y = e^{-x^2/2}\]

\[y = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}\]

\[F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^2/2} du\]

\[F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^2/2} du\]

\[P(X \leq b) = F\left(\frac{b - \mu}{\sigma}\right)\]

\[P(a \leq X \leq b) = F\left(\frac{b - \mu}{\sigma}\right) - F\left(\frac{a - \mu}{\sigma}\right)\]

\[\text{FIGURE 4} \quad \text{Normal density functions.} \]

\[\text{FIGURE 5} \quad \text{Time that people leave for work.} \]

\[\text{EXAMPLE 4} \quad \text{In Figure 5, we see data from the 2012 American Community Survey on the time of day that workers in the United States leave for work. Note the bell-shaped curve generated by the data.} \]

One difficulty with normal density functions is that they do not have elementary antiderivatives. As a result, we cannot evaluate the probabilities

\[P(a \leq X \leq b) = \frac{1}{\sigma \sqrt{2\pi}} \int_{a}^{b} e^{-(x-\mu)^2/(2\sigma^2)} \, dx\]

explicitly. However, the next theorem shows that these probabilities can all be expressed in terms of a single function called the standard normal cumulative distribution function:

\[F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-u^2/2} du\]

Observe that \(F(z) \) is equal to the area under the graph over \((-\infty, z]\) in Figure 6. Numerical values of \(F(z) \) are widely available on scientific calculators, on computer algebra systems, and online (search “standard cumulative normal distribution”).

THEOREM 1 If \(X \) has a normal distribution with mean \(\mu \) and standard deviation \(\sigma \), then for all \(a \leq b \),

\[P(X \leq b) = F\left(\frac{b - \mu}{\sigma}\right)\]

\[P(a \leq X \leq b) = F\left(\frac{b - \mu}{\sigma}\right) - F\left(\frac{a - \mu}{\sigma}\right)\]

Proof We use two changes of variables, first \(u = x - \mu \) and then \(t = u/\sigma \):

\[
P(X \leq b) = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{b} e^{-(x-\mu)^2/(2\sigma^2)} \, dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{-\infty}^{b-\mu} e^{-u^2/(2\sigma^2)} \, du
\]

\[= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{(b-\mu)/\sigma}{}} e^{-t^2/2} \, dt = F\left(\frac{b - \mu}{\sigma}\right)\]
This proves Eq. (4). Eq. (5) follows because \(P(a \leq X \leq b) \) is the area under the graph between \(a \) and \(b \), and this is equal to the area to the left of \(b \) minus the area to the left of \(a \) (Figure 7).

EXAMPLE 5 Assume that the scores \(X \) on a standardized test are normally distributed with mean \(\mu = 500 \) and standard deviation \(\sigma = 100 \). Find the probability that a test chosen at random has score

(a) at most 600.
(b) between 450 and 650.

Solution We use a computer algebra system to evaluate \(F(z) \) numerically.

(a) Apply Eq. (4) with \(\mu = 500 \) and \(\sigma = 100 \):

\[
P(x \leq 600) = F \left(\frac{600 - 500}{100} \right) = F(1) \approx 0.84
\]

Thus, a randomly chosen score is 600 or less with a probability of 0.84, or 84%.

(b) Applying Eq. (5), we find that a randomly chosen score lies between 450 and 650 with a probability of 62.5%:

\[
P(450 \leq x \leq 650) = F(1.5) - F(-0.5) \approx 0.933 - 0.308 = 0.625
\]

CONCEPTUAL INSIGHT Why have we defined the mean of a continuous random variable \(X \) as the integral \(\mu = \int_{-\infty}^{\infty} xp(x) \, dx \)? Suppose first we are given \(N \) numbers \(a_1, a_2, \ldots, a_N \), and for each value \(x \), let \(N(x) \) be the number of times \(x \) occurs among the \(a_j \). Then a randomly chosen \(a_j \) has value \(x \) with probability \(p(x) = N(x)/N \). For example, given the numbers 4, 4, 5, 5, 5, 8, we have \(N = 6 \) and \(N(5) = 3 \). The probability of choosing a 5 is \(p(5) = N(5)/N = \frac{3}{6} = \frac{1}{2} \). Now observe that we can write the mean (average value) of the \(a_j \) in terms of the probabilities \(p(x) \):

\[
\frac{a_1 + a_2 + \cdots + a_N}{N} = \frac{1}{N} \sum_{x} N(x)x = \sum_{x} x p(x)
\]

For example,

\[
\frac{4 + 4 + 5 + 5 + 5 + 8}{6} = \frac{1}{6} \left(2 \cdot 4 + 3 \cdot 5 + 1 \cdot 8\right) = 4p(4) + 5p(5) + 8p(8)
\]

In defining the mean of a continuous random variable \(X \), we replace the sum \(\sum_{x} x p(x) \) with the integral \(\mu = \int_{-\infty}^{\infty} xp(x) \, dx \). This makes sense because the integral is the limit of sums \(\sum_{x} x_i p(x_i) \Delta x \), and as we have seen, \(p(x_i) \Delta x \) is the approximate probability that \(X \) lies in \([x_i, x_i + \Delta x]\).

8.8 SUMMARY

- If \(X \) is a continuous random variable with probability density function \(p \), then

\[
P(a \leq X \leq b) = \int_{a}^{b} p(x) \, dx
\]

- Probability densities satisfy two conditions: \(p(x) \geq 0 \) and \(\int_{-\infty}^{\infty} p(x) \, dx = 1 \).
• Mean (or average) value of X:

$$\mu = \int_{-\infty}^{\infty} xp(x) \, dx$$

• Exponential density function of mean r:

$$p(x) = \frac{1}{r} e^{-x/r}$$

• Normal density of mean μ and standard deviation σ:

$$p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}$$

• Standard cumulative normal distribution function:

$$F(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-t^2/2} \, dt$$

• If X has a normal distribution of mean μ and standard deviation σ, then

$$P(X \leq b) = F\left(\frac{b - \mu}{\sigma}\right)$$

$$P(a \leq X \leq b) = F\left(\frac{b - \mu}{\sigma}\right) - F\left(\frac{a - \mu}{\sigma}\right)$$

8.8 Exercises

Preliminary Questions

1. The function $p(x) = \cos x$ satisfies $\int_{-\pi/2}^{\pi} p(x) \, dx = 1$. Is p a probability density function on $[-\pi/2, \pi]$?

2. Estimate $P(2 \leq X \leq 2.1)$ assuming that the probability density function of X satisfies $p(2) = 0.2$.

3. Which exponential probability density has mean $\mu = \frac{1}{4}$?

Exercises

In Exercises 1–6, find a constant C such that p is a probability density function on the given interval, and compute the probability indicated.

1. $p(x) = \frac{C}{(x + 1)^3}$ on $[0, \infty)$; $P(0 \leq X \leq 1)$

2. $p(x) = Cx(4 - x)$ on $[0, 4]$; $P(3 \leq X \leq 4)$

3. $p(x) = \frac{C}{\sqrt{1 - x^2}}$ on $(-1, 1)$; $P\left(-\frac{1}{2} \leq X \leq \frac{1}{2}\right)$

4. $p(x) = \frac{C e^{-x}}{1 + e^{-2x}}$ on $(-\infty, \infty)$; $P(X \leq -4)$

5. $p(x) = C \sqrt{1 - x^2}$ on $(-1, 1)$; $P\left(-\frac{1}{2} \leq X \leq \frac{1}{2}\right)$

6. $p(x) = C e^{-x} e^{-x}$ on $(-\infty, \infty)$; $P(-4 \leq X \leq 4)$

This function, called the **Gumbel density**, is used to model extreme events such as floods and earthquakes.

7. Verify that $p(x) = 3x^{-4}$ is a probability density function on $[1, \infty)$ and calculate its mean value.

8. Show that the density function $p(x) = \frac{2}{\pi(x^2 + 1)}$ on $[0, \infty)$ has infinite mean.

9. Verify that $p(t) = \frac{1}{50} e^{-t/50}$ satisfies the condition

$$\int_{0}^{\infty} p(t) \, dt = 1$$

10. Verify that for all $r > 0$, the exponential density function $p(t) = \frac{1}{r} e^{-t/r}$ satisfies the condition

$$\int_{0}^{\infty} p(t) \, dt = 1$$

11. The life X (in hours) of a battery in constant use is a random variable with exponential density. What is the probability that the battery will last more than 12 hours (h) if the average life is 8 h?

12. The time between incoming phone calls at a call center is a random variable with exponential density. There is a 50% probability of waiting 20 seconds or more between calls. What is the average time between calls?

13. The distance r between the electron and the nucleus in a hydrogen atom (in its lowest energy state) is a random variable with probability density $p(r) = \frac{3}{2} r e^{-3r/2 a_0^2}$ for $r \geq 0$, where a_0 is the Bohr radius (Figure 8). Calculate the probability P that the electron is within one Bohr radius of the nucleus. The value of a_0 is approximately 5.29×10^{-11} m, but this value is not needed to compute P.

14. Show that the distance \(r \) between the electron and the nucleus in Exercise 13 has mean \(\mu = 3a_0/2 \).

In Exercises 15–21, \(F(z) \) denotes the cumulative normal distribution function. Refer to a calculator, computer algebra system, or online resource to obtain values of \(F(z) \).

15. Express the area of region \(A \) in Figure 9 in terms of \(F(z) \) and compute its value.

![Figure 8](image)

FIGURE 8 Probability density function \(p(r) = 4a_0^{-3}r^2e^{-2r/a_0} \).

16. Show that the area of region \(B \) in Figure 9 is equal to \(1 - F(1.5) \) and compute its value. Verify numerically that this area is also equal to \(F(-1.5) \) and explain why graphically.

17. Assume \(X \) has a standard normal distribution \((\mu = 0, \sigma = 1) \). Find:

(a) \(P(X \leq 1.2) \)

(b) \(P(X \geq -0.4) \)

18. Evaluate numerically:

\[
\frac{1}{\sqrt{2\pi}} \int_{14.5}^{\infty} e^{-(z-10)^2/18} dz.
\]

19. Use a graph to show that \(F(z) = 1 - F(-z) \) for all \(z \). Then show that if \(p(x) \) is a normal density function with mean \(\mu \) and standard deviation \(\sigma \), then for all \(r \geq 0 \),

\[
P(\mu - r \sigma \leq X \leq \mu + r \sigma) = 2F(r) - 1
\]

20. The average September rainfall in Erie, Pennsylvania, is a random variable with mean \(\mu = 102 \) mm. Assume that the amount of rainfall is normally distributed with standard deviation \(\sigma = 48 \).

(a) Express \(P(128 \leq X \leq 150) \) in terms of \(F(z) \) and compute its value numerically.

(b) Let \(P \) be the probability that September rainfall will be at least 120 mm. Express \(P \) as an integral of an appropriate density function and compute its value numerically.

21. A bottling company produces bottles of fruit juice that are filled, on average, with 32 ounces (oz) of juice. Due to random fluctuations in the machinery, the actual volume of juice is normally distributed with a standard deviation of 0.4 ounce. Let \(P \) be the probability of a bottle having less than 31 ounces. Express \(P \) as an integral of an appropriate density function and compute its value numerically.

22. According to Maxwell’s Distribution Law, in a gas of molecular mass \(m \), the speed \(v \) of a molecule in a gas at temperature \(T \) (kelvins) is a random variable with density

\[
p(v) = \frac{4\pi}{\sqrt{2\pi kT}} \left(\frac{m}{2\pi kT} \right)^{3/2} v^2 e^{-mv^2/(2kT)} \quad (v \geq 0)
\]

where \(k \) is Boltzmann’s constant. Show that the average molecular speed is equal to \((8kT/\pi m)^{1/2}\). The average speed of oxygen molecules at room temperature is around 450 m/s.

23. Define the median of a probability distribution to be that value \(a \) such that \(\int_{-\infty}^{a} p(x) \, dx = \frac{1}{2} \). Show that if a probability function is symmetric about the line \(x = m \), then \(m \) is both the mean and the median.

24. Define the quartiles of a probability function to be those values \(a_1, a_2 \) such that \(P(-\infty < x \leq a_1) = P(a_1 < x \leq a_2) = P(a_2 < x \leq \infty) = \frac{1}{4} \). Find the quartile values for the probability function \(p(x) = \frac{1}{1+x^2} \).

In Exercises 25–28, calculate \(\mu \) and \(\sigma \), where \(\sigma \) is the standard deviation, defined by

\[
\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 \, p(x) \, dx
\]

The smaller the value of \(\sigma \), the more tightly clustered are the values of the random variable \(X \) about the mean \(\mu \). (The limits of integration need not be \(\pm \infty \) if \(p \) is defined over a smaller domain.)

25. \(p(x) = \frac{5}{2x^{3/2}} \) on \([1, \infty)\)

26. \(p(x) = \frac{1}{\pi \sqrt{1 - x^2}} \) on \((-1, 1)\)

27. \(p(x) = \frac{1}{3} e^{-x/3} \) on \([0, \infty)\)

28. \(p(x) = \frac{1}{r} e^{-x/r} \) on \([0, \infty)\), where \(r > 0 \)

Further Insights and Challenges

29. The time to decay of an atom in a radioactive substance is a random variable \(X \). The law of radioactive decay states that if \(N \) atoms are present at time \(t = 0 \), then \(N f(t) \) atoms will be present at time \(t \), where \(f(t) = e^{-kt} \) \((k > 0 \text{ is the decay constant})\). Explain the following statements:

(a) The fraction of atoms that decay in a small time interval \([t, t + \Delta t] \) is approximately \(-f'(t)\Delta t\).

(b) The probability density function of \(X \) is \(y = -f'(t) \).

(c) The average time to decay is \(1/k \).

30. The half-life of radon-222 is 3.825 days. Use Exercise 29 to compute:

(a) the average time to decay of a radon-222 atom.

(b) the probability that a given atom will decay in the next 24 hours.
8.9 Numerical Integration

Numerical integration is the process of approximating a definite integral using well-chosen sums of function values. It is needed when we cannot find an antiderivative explicitly, as in the case of the Gaussian function \(f(x) = e^{-x^2/2} \) (Figure 1).

In Section 5.1, we saw that we can approximate a definite integral by splitting the interval of integration \([a, b]\) into \(N\) subintervals, each of size \(\Delta x\). Then we take the value of the function at each left-hand endpoint, multiply that by the width of the interval \(\Delta x\), and sum over the intervals. This approximation is known as the left-endpoint approximation. Similarly, we saw a right-hand approximation. The third method that we introduced in that section, which we reconsider here, uses the midpoints of the intervals, and usually gives a better approximation.

The Midpoint Rule

To approximate the definite integral \(\int_a^b f(x) \, dx \), we fix a whole number \(N\) and divide \([a, b]\) into \(N\) subintervals of length \(\Delta x = (b - a)/N\). The endpoints of the subintervals (Figure 4) are

\[
x_0 = a, \quad x_1 = a + \Delta x, \quad x_2 = a + 2\Delta x, \quad \ldots, \quad x_N = b
\]

We shall denote the values of \(f(x)\) at these endpoints by \(y_j\):

\[
y_j = f(x_j) = f(a + j\Delta x)
\]

In particular, \(y_0 = f(a)\) and \(y_N = f(b)\).

The midpoint approximation \(M_N\), is the sum of the areas of the rectangles of height \(f(c_j)\) and base \(\Delta x\), where \(c_j\) is the midpoint of the interval \([x_{j-1}, x_j]\) [Figure 2(A)].

Midpoint Rule The \(N\)th midpoint approximation to \(\int_a^b f(x) \, dx\) is

\[
M_N = \Delta x \left(f(c_1) + f(c_2) + \cdots + f(c_N) \right)
\]

where \(\Delta x = \frac{b - a}{N}\) and \(c_j = a + \left(j - \frac{1}{2} \right) \Delta x\) is the midpoint of \([x_{j-1}, x_j]\).

GRAPHICAL INSIGHT \(M_N\) has a second interpretation as the sum of the areas of tangential trapezoids—that is, trapezoids whose top edges are tangent to the graph of \(f\) at the midpoints \(c_j\) [Figure 2(B)]. The trapezoids have the same area as the rectangles because the top edge of the trapezoid passes through the midpoint of the top edge of the rectangle, as shown in Figure 3.
The Trapezoid Rule

The Trapezoidal Rule T_N approximates $\int_a^b f(x) \, dx$ by the area of the trapezoids obtained by joining the points $(x_0, y_0), (x_1, y_1), \ldots, (x_N, y_N)$ with line segments, as in Figure 4. The area of the jth trapezoid is $\frac{1}{2}\Delta x(y_{j-1} + y_j)$, and therefore,

$$T_N = \frac{1}{2}\Delta x(y_0 + y_1) + \frac{1}{2}\Delta x(y_1 + y_2) + \cdots + \frac{1}{2}\Delta x(y_{N-1} + y_N)$$

Note that each value y_j occurs twice except for y_0 and y_N, so we obtain

$$T_N = \frac{1}{2}\Delta x(y_0 + 2y_1 + 2y_2 + \cdots + 2y_{N-1} + y_N)$$

Trapezoidal Rule The Nth trapezoidal approximation to $\int_a^b f(x) \, dx$ is

$$T_N = \frac{1}{2}\Delta x(y_0 + 2y_1 + \cdots + 2y_{N-1} + y_N)$$

where $\Delta x = \frac{b - a}{N}$ and $y_j = f(x_j)$.

CONCEPTUAL INSIGHT We see in Figure 5 that the area of the jth trapezoid is equal to the average of the areas of the endpoint rectangles with heights y_{j-1} and y_j. It follows that T_N is equal to the average of the right- and left-endpoint approximations R_N and L_N introduced in Section 5.1:

$$T_N = \frac{1}{2}(R_N + L_N)$$

In general, this average is a better approximation than either R_N alone or L_N alone.

EXAMPLE 1 CAS Calculate T_8 for the integral $\int_1^3 \sin(x^2) \, dx$. Then use a computer algebra system to calculate T_N for $N = 50$, 100, 500, 1000, and $10,000$.

Solution Divide $[1, 3]$ into $N = 8$ subintervals of length $\Delta x = \frac{3 - 1}{8} = \frac{1}{4}$. Then sum the function values at the endpoints (Figure 6) with the appropriate coefficients:

$$T_8 = \frac{1}{2} \left(\frac{1}{4} \right) \left[\sin(1^2) + 2\sin(1.25^2) + 2\sin(1.5^2) + 2\sin(1.75^2) + 2\sin(2^2) + 2\sin(2.25^2) + 2\sin(2.5^2) + 2\sin(2.75^2) + \sin(3^2) \right]$$

$$\approx 0.4281$$

In general, $\Delta x = (3 - 1)/N = 2/N$ and $x_j = 1 + 2j/N$. In summation notation,

$$T_N = \frac{1}{2} \left(\frac{2}{N} \right) \left[\sin(1^2) + 2 \sum_{j=1}^{N-1} \sin \left(\left(1 + \frac{2j}{N} \right)^2 \right) + \sin(3^2) \right]$$

Sum of terms with coefficient 2
We evaluate the inner sum on a CAS, using a command such as
\[\text{Sum}[\sin((1 + j/N)^2), \{j, 1, N - 1\}] \]
The results in Table 1 suggest that \(\int_1^3 \sin(x^2)\,dx \) is approximately 0.4633.

Error Bounds

In applications, it is important to know the accuracy of a numerical approximation. We define the error in \(M_N \) and \(T_N \) by

\[
\text{Error}(M_N) = \left| \int_a^b f(x)\,dx - M_N \right|, \quad \text{Error}(T_N) = \left| \int_a^b f(x)\,dx - T_N \right|
\]

According to the next theorem, the magnitudes of these errors are related to the size of the second derivative \(f''(x) \). A proof of Theorem 1 is provided in a supplement on the text’s Companion Web Site.

THEOREM 1 Error Bound for \(M_N \) and \(T_N \)

Assume \(f'' \) exists and is continuous. Let \(K_2 \) be a number such that \(|f''(x)| \leq K_2 \) for all \(x \) in \([a, b]\). Then

\[
\text{Error}(M_N) \leq \frac{K_2(b-a)^3}{24N^2}, \quad \text{Error}(T_N) \leq \frac{K_2(b-a)^3}{12N^2}
\]

GRAPHICAL INSIGHT

Note that the error bound for \(M_N \) is one-half of the error bound for \(T_N \), suggesting that \(M_N \) is generally more accurate than \(T_N \). Why do both error bounds depend on \(f''(x) \)? The second derivative measures concavity, so if \(|f''(x)| \) is large, then the graph of \(f \) bends a lot and trapezoids do a poor job of approximating the region under the graph. Thus the errors in both \(T_N \) and \(M_N \) (which uses tangential trapezoids) are likely to be large (Figure 7).

EXAMPLE 2 Checking the Error Bound

Calculate \(M_6 \) and \(T_6 \) for \(\int_1^4 \sqrt{x}\,dx \).

(a) Calculate the error bounds.

(b) Calculate the integral exactly and verify that the error bounds are satisfied.

Solution Divide \([1, 4]\) into six subintervals of width \(\Delta x = \frac{4-1}{6} = \frac{1}{2} \). Using the endpoints and midpoints shown in Figure 8, we obtain

\[
M_6 = \frac{1}{2} \left(\sqrt{1.25} + \sqrt{1.75} + \sqrt{2.25} + \sqrt{2.75} + \sqrt{3.25} + \sqrt{3.75} \right) \approx 4.669245
\]

\[
T_6 = \frac{1}{2} \left(\frac{1}{2} \right) \left(\sqrt{1} + 2\sqrt{1.5} + 2\sqrt{2} + 2\sqrt{2.5} + 2\sqrt{3} + 2\sqrt{3.5} + \sqrt{4} \right) \approx 4.661488
\]
FIGURE 9 Graph of $y = |f''(x)| = \frac{1}{3}x^{-3/2}$ for $f(x) = \sqrt{x}$.

In Example 2, the error in T_b is approximately twice as large as the error in M_b. In practice, this is often the case.

A quick way to find a value for K_2 is to plot f'' using a graphing utility and find a bound for $|f''(x)|$ visually, as we do in Example 3.

(a) Let $f(x) = \sqrt{x}$. We must find a number K_2 such that $|f''(x)| \leq K_2$ for $1 \leq x \leq 4$. We have $f''(x) = -\frac{1}{x^{3/2}}$. The absolute value $|f''(x)| = \frac{1}{x^{3/2}}$ is decreasing on $[1, 4]$, so its maximum occurs at $x = 1$ (Figure 9). Thus, we may take $K_2 = |f''(1)| = \frac{1}{4}$. By Theorem 1,

$$\text{Error}(M_b) \leq \frac{K_2(b - a)^3}{24N^2} = \frac{\frac{1}{4}(4 - 1)^3}{24(6)^2} = \frac{1}{128} \approx 0.0078$$

$$\text{Error}(T_b) \leq \frac{K_2(b - a)^3}{12N^2} = \frac{\frac{1}{4}(4 - 1)^3}{12(6)^2} = \frac{1}{64} \approx 0.0156$$

(b) The exact value is $\int_1^4 \sqrt{x} \, dx = \frac{2}{3}x^{3/2}|_1^4 = \frac{14}{3}$, so the actual errors are

$$\text{Error}(M_b) \approx \left|\frac{14}{3} - 4.669245\right| = 0.00258 \quad \text{(less than error bound 0.0078)}$$

$$\text{Error}(T_b) \approx \left|\frac{14}{3} - 4.661488\right| = 0.00518 \quad \text{(less than error bound 0.0156)}$$

The actual errors are less than the error bound, so Theorem 1 is verified.

The error bound can be used to determine values of N that provide a given accuracy.

EXAMPLE 3 Obtaining the Desired Accuracy Find N such that T_N approximates $\int_0^3 e^{-x^2} \, dx$ with an error of at most 10^{-4}.

Solution Let $f(x) = e^{-x^2}$. To apply the error bound, we must find a number K_2 such that $|f''(x)| \leq K_2$ for all $x \in [0, 3]$. We have $f'(x) = -2xe^{-x^2}$ and

$$f''(x) = (4x^2 - 2)e^{-x^2}$$

A graphing utility was used to plot f'' (Figure 10). The graph shows that the maximum value of $|f''(x)|$ on $[0, 3]$ is $|f''(0)| = |1 - 2| = 2$, so we take $K_2 = 2$ in the error bound:

$$\text{Error}(T_N) \leq \frac{K_2(b - a)^3}{12N^2} = \frac{2(3 - 0)^3}{12N^2} = \frac{9}{2N^2}$$

The error is at most 10^{-4} if

$$\frac{9}{2N^2} \leq 10^{-4} \quad \Rightarrow \quad N^2 \geq \frac{9 \times 10^4}{2} \quad \Rightarrow \quad N \geq \frac{300}{\sqrt{2}} \approx 212.1$$

We conclude that T_{213} has an error of at most 10^{-4}. We can confirm this using a computer algebra system. A CAS shows that $T_{213} \approx 0.8862$, whereas the value of the integral to nine places is 0.886207348. Thus, the error is less than 10^{-6}.

Simpson’s Rule

As we have seen, the Midpoint Rule uses trapezoids that are tangent to the curve to approximate the area under the curve. The Trapezoid Rule uses trapezoids with vertices on the curve to approximate the area. In both cases, the top edge of each trapezoid is a
straight line segment. One must wonder whether we could do better using some other curve at the top of each region. In Simpson’s Rule, we replace the line segments with parabolas, allowing us to obtain an approximation that is usually substantially more accurate.

To begin, we again subdivide \([a, b]\) into \(N\) subintervals, each of length \(\Delta x = \frac{b-a}{N}\). However, we require \(N\) to be even. Then we pair up the resulting intervals, \([x_0, x_1]\) with \([x_1, x_2]\), \([x_2, x_3]\) with \([x_3, x_4]\), and so on. For each pair of intervals, we find a parabola that passes through the three points on the curve above the endpoints of the two intervals, as in Figure 11. Then we take the sum of the areas that are under the parabolas and over the corresponding intervals to approximate the area under the curve.

In order to determine the resulting formula, we begin with the case of a pair of intervals \([-\Delta x, 0]\) and \([0, \Delta x]\) centered around the origin. We assume that the corresponding three points on the curve are \(P_0(-\Delta x, y_0)\), \(P_1(0, y_1)\), and \(P_2(\Delta x, y_2)\). See Figure 12.

The general equation for a parabola is \(y = Cx^2 + Dx + E\) for constants \(C\), \(D\), and \(E\). The area that is under the parabola and above the two intervals \([-\Delta x, 0]\) and \([0, \Delta x]\) is obtained by integrating:

\[
\text{Area} = \int_{-\Delta x}^{\Delta x} (Cx^2 + Dx + E) \, dx = \left. \frac{C}{3} x^3 + \frac{D}{2} x^2 + Ex \right|_{-\Delta x}^{\Delta x} \\
= 2 \left(\frac{C(\Delta x)^3}{3} + E \Delta x \right) = \frac{\Delta x}{3} (2C(\Delta x)^2 + 6E)
\]

Because the parabola must pass through the three points \(P_0\), \(P_1\), and \(P_2\), we know the coordinates of each must satisfy the equation of the parabola. Hence, we obtain the three equations:

\[
y_0 = C(\Delta x)^2 - D \Delta x + E \\
y_1 = E \\
y_2 = C(\Delta x)^2 + D \Delta x + E
\]

Adding the first and third equation yields

\[
y_0 + y_2 = 2C(\Delta x)^2 + 2E
\]

Adding four copies of the second equation gives the expression that appears in the area of the integral:

\[
y_0 + 4y_1 + y_2 = 2C(\Delta x)^2 + 6E
\]

Thus, the area under the parabola is given by \(\frac{\Delta x}{3}(y_0 + 4y_1 + y_2)\).

This area only depends on the \(y\)-coordinates of the three points, so we obtain a similar expression if we site the parabola over any of the subsequent pairs of adjacent subintervals. Therefore, we can approximate the area under the curve by

\[
\frac{\Delta x}{3}(y_0 + 4y_1 + y_2) + \frac{\Delta x}{3}(y_2 + 4y_3 + y_4) + \cdots + \frac{\Delta x}{3}(y_{N-2} + 4y_{N-1} + y_N)
\]
Simplifying, we obtain the following:

Simpson’s Rule For \(N \) even, the \(N \)th approximation to \(\int_a^b f(x) \, dx \) by Simpson’s Rule is

\[
S_N = \frac{1}{3} \Delta x \left[y_0 + 4y_1 + 2y_2 + \cdots + 4y_{N-3} + 2y_{N-2} + 4y_{N-1} + y_N \right]
\]

where \(\Delta x = \frac{b - a}{N} \) and \(y_j = f(x_j) \).

Although we derived this rule in the case \(f(x) \geq 0 \) in order to make it easier to picture as an area, Simpson’s Rule holds even when we are integrating a continuous function that is sometimes negative.

CONCEPTUAL INSIGHT Comparing Simpson’s Rule to the Midpoint Rule and the Trapezoid Rule, we see that Simpson’s Rule is a linear combination of the other two rules. That is to say, Simpson’s Rule is given by

\[
S_N = \frac{2}{3} M_N + \frac{1}{3} T_N.
\]

When a function is always concave up or always concave down, the value of the actual integral is sandwiched between \(M_N \) and \(T_N \). So a linear combination of the two should do better in this and many other cases. That \(M_N \) is more heavily weighted in the linear combination is advantageous, as we have seen its error bound is half that of \(T_N \).

Example 4 Use Simpson’s Rule with \(N = 8 \) to approximate \(\int_2^4 \sqrt{1 + x^3} \, dx \).

Solution We have \(\Delta x = \frac{4-2}{8} = \frac{1}{4} \). Figure 13 shows the endpoints and coefficients needed to compute \(S_8 \) using Eq. (1):

\[
\frac{1}{3} \left(\frac{1}{4} \right) \left[\sqrt{1 + 2^3} + 4\sqrt{1 + 2.25^3} + 2\sqrt{1 + 2.5^3} + 4\sqrt{1 + 2.75^3} + 2\sqrt{1 + 3^3} \\
+ 4\sqrt{1 + 3.25^3} + 2\sqrt{1 + 3.5^3} + 4\sqrt{1 + 3.75^3} + \sqrt{1 + 4^3} \right]
\]

\[
\approx \frac{1}{12} \left[3 + 4(3.52003) + 2(4.07738) + 4(4.66871) + 2(5.2915) \\+ 4(5.94375) + 2(6.62382) + 4(7.33037) + 8.06226 \right] \approx 10.74159
\]

Example 5 Estimating Integrals from Numerical Data The velocity (in kilometers per hour) of a Piper Cub aircraft traveling due west is recorded every minute during the first 10 minutes after takeoff. Use Simpson’s Rule to estimate the distance traveled.

<table>
<thead>
<tr>
<th>(t) (min)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v(t)) (km/h)</td>
<td>0</td>
<td>80</td>
<td>100</td>
<td>128</td>
<td>144</td>
<td>160</td>
<td>152</td>
<td>136</td>
<td>128</td>
<td>120</td>
<td>136</td>
</tr>
</tbody>
</table>

Solution The distance traveled is the integral of velocity. We convert from minutes to hours because velocity is given in kilometers per hour, and thus we apply Simpson’s Rule, where the number of intervals is \(N = 10 \) and each interval has length \(\Delta t = \frac{1}{60} \) h:

\[
S_{10} = \left(\frac{1}{3} \right) \left(\frac{1}{60} \right) \left[0 + 4(80) + 2(100) + 4(128) + 2(144) + 4(160) \\
+ 2(152) + 4(136) + 2(128) + 4(120) + 136 \right] \approx 21.2 \text{ km}
\]

The distance traveled is approximately 21.2 km (Figure 14).
We now state (without proof) the error bound for Simpson’s Rule. Set
\[
\text{Error}(S_N) = \left| \int_a^b f(x) - S_N(f) \, dx \right|
\]
The error involves the fourth derivative, which we assume exists and is continuous.

THEOREM 2 Error Bound for \(S_N\) Let \(K_4\) be a number such that \(|f^{(4)}(x)| \leq K_4\) for all \(x \in [a, b]\). Then
\[
\text{Error}(S_N) \leq \frac{K_4(b-a)^5}{180N^4}
\]

EXAMPLE 6 Calculate \(S_8\) for \(\int_1^3 \frac{1}{x} \, dx\).

(a) Find a bound for the error in \(S_8\).

(b) Find \(N\) such that \(S_N\) has an error of at most \(10^{-6}\).

Solution The width is \(\Delta x = \frac{3-1}{8} = \frac{1}{4}\) and the endpoints in the partition of \([1, 3]\) are 1, 1.25, 1.5, ..., 2.75, 3. Using Eq. (1) with \(f(x) = x^{-1}\), we obtain
\[
S_8 = \frac{1}{3} \left(\frac{1}{4} \right) \left(1 + \frac{4}{1.25} + \frac{2}{1.5} + \frac{4}{1.75} + \frac{2}{2} + \frac{4}{2.25} + \frac{2}{2.5} + \frac{4}{2.75} + \frac{1}{3} \right)
\approx 1.09873
\]

(a) The fourth derivative \(f^{(4)}(x) = 24x^{-5}\) is decreasing, so the max of \(|f^{(4)}(x)|\) on \([1, 3]\) is \(|f^{(4)}(1)| = 24\). Therefore, we use the error bound with \(K_4 = 24\):
\[
\text{Error}(S_8) \leq \frac{K_4(b-a)^5}{180N^4} = \frac{24(3-1)^5}{180N^4} = \frac{64}{15N^4}
\]

(b) The error will be at most \(10^{-6}\) if \(N\) satisfies
\[
\text{Error}(S_N) = \frac{64}{15N^4} \leq 10^{-6}
\]

In other words,
\[
N^4 \geq \frac{64}{15} \quad \text{or} \quad N \geq \left(\frac{64}{15} \right)^{1/4} \approx 45.45
\]

Thus, we may take \(N = 46\) (see the marginal comment).

8.9 SUMMARY

* We consider three numerical approximations to \(\int_a^b f(x) \, dx\): the Midpoint Rule \(M_N\), the Trapezoidal Rule \(T_N\), and Simpson’s Rule \(S_N\) (for \(N\) even).

\[
M_N = \Delta x \left(f(c_1) + f(c_2) + \cdots + f(c_N) \right) \quad \left(c_j = a + \left(j - \frac{1}{2} \right) \Delta x \right)
\]

\[
T_N = \frac{1}{2} \Delta x \left(y_0 + 2y_1 + 2y_2 + \cdots + 2y_{N-1} + y_N \right)
\]

\[
S_N = \frac{1}{3} \Delta x \left[y_0 + 4y_1 + 2y_2 + \cdots + 4y_{N-3} + 2y_{N-2} + 4y_{N-1} + y_N \right]
\]

where \(\Delta x = (b-a)/N\) and \(y_j = f(a + j \Delta x)\).
8.9 Numerical Integration

- M_N has two geometric interpretations; it may be interpreted either as the sum of the areas of the midpoints rectangles or as the sum of the areas of the tangential trapezoids.
- T_N is equal to the sum of the areas of the trapezoids obtained by connecting the points $(x_0, y_0), (x_1, y_1), \ldots, (x_N, y_N)$ with line segments.
- S_N is equal to $\frac{1}{2} T_N + \frac{1}{2} M_N$.
- Error bounds:
 \[
 \text{Error}(M_N) \leq \frac{K_2(b-a)^3}{24N^2}, \quad \text{Error}(T_N) \leq \frac{K_2(b-a)^3}{12N^2}, \quad \text{Error}(S_N) \leq \frac{K_4(b-a)^5}{180N^4}
 \]
 where K_2 is any number such that $|f''(x)| \leq K_2$ for all $x \in [a, b]$ and K_4 is any number such that $|f^{(4)}(x)| \leq K_4$ for all $x \in [a, b]$.

8.9 Exercises

Preliminary Questions

1. What are T_1 and T_2 for a function on $[0, 2]$ such that $f(0) = 3$, $f(1) = 4$, and $f(2) = 3$?
2. For which graph in Figure 15 will T_N overestimate the integral? What about M_N?
3. How large is the error when the Trapezoidal Rule is applied to a linear function? Explain graphically.
4. What is the maximum possible error if T_4 is used to approximate $\int_0^3 f(x) \, dx$ where $|f''(x)| \leq 2$ for all x.
5. What are the two graphical interpretations of the Midpoint Rule?

Exercises

In Exercises 1–12, calculate M_N and T_N for the value of N indicated.

1. $\int_0^2 x^2 \, dx$, $N = 4$
2. $\int_0^4 x \, dx$, $N = 4$
3. $\int_1^4 x^3 \, dx$, $N = 6$
4. $\int_1^2 x^4 + 1 \, dx$, $N = 5$
5. $\int_1^4 \, dx$, $N = 6$
6. $\int_{-2}^2 \frac{1}{x} \, dx$, $N = 5$
7. $\int_0^{\pi/2} \sqrt{\sin x} \, dx$, $N = 6$
8. $\int_0^{\pi/4} \sec x \, dx$, $N = 6$
9. $\int_1^3 \ln x \, dx$, $N = 5$
10. $\int_0^3 \frac{dx}{\ln x}$, $N = 5$
11. $\int_0^1 e^{-x^2} \, dx$, $N = 5$
12. $\int_0^1 e^{x^2} \, dx$, $N = 6$
13. $\int_0^4 \sqrt{x} \, dx$, $N = 4$
14. $\int_0^5 (9 - x^2) \, dx$, $N = 4$
15. $\int_0^3 \frac{dx}{x^2 + 1}$, $N = 6$
16. $\int_0^1 \cos(x^2) \, dx$, $N = 6$
17. $\int_0^1 e^{-x^2} \, dx$, $N = 4$
18. $\int_0^2 e^{-3x} \, dx$, $N = 6$
19. $\int_1^4 \ln x \, dx$, $N = 8$
20. $\int_2^4 \sqrt{x^4 + 1} \, dx$, $N = 8$
21. $\int_0^{\pi/4} \tan \theta \, d\theta$, $N = 10$
22. $\int_0^2 (x^2 + 1)^{-1/3} \, dx$, $N = 10$

In Exercises 23–26, calculate the approximation to the volume of the solid obtained by rotating the graph around the given axis.

23. $y = \cos x; \quad [0, \frac{\pi}{2}]; \quad x$-axis; M_8
24. $y = \cos x; \quad [0, \frac{\pi}{2}]; \quad y$-axis; S_8
25. $y = e^{-x^2}; \quad [0, 1]; \quad x$-axis; T_8
26. $y = e^{-x^2}; \quad [0, 1]; \quad y$-axis; S_8

27. An airplane’s velocity is recorded at 5-minute (min) intervals during a 1-hour (h) period with the following results, in miles per hour:

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Velocity (mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5</td>
<td>550</td>
</tr>
<tr>
<td>2</td>
<td>575</td>
</tr>
<tr>
<td>2.5</td>
<td>600</td>
</tr>
<tr>
<td>3</td>
<td>580</td>
</tr>
<tr>
<td>3.5</td>
<td>610</td>
</tr>
<tr>
<td>4</td>
<td>640</td>
</tr>
<tr>
<td>4.5</td>
<td>625</td>
</tr>
<tr>
<td>5</td>
<td>595</td>
</tr>
<tr>
<td>5.5</td>
<td>590</td>
</tr>
<tr>
<td>6</td>
<td>620</td>
</tr>
<tr>
<td>6.5</td>
<td>640</td>
</tr>
<tr>
<td>7</td>
<td>640</td>
</tr>
<tr>
<td>7.5</td>
<td>630</td>
</tr>
</tbody>
</table>

Use Simpson’s Rule to estimate the distance traveled during the hour.

28. Use Simpson’s Rule to determine the average temperature in a museum over a 3-h period if the temperatures (in degrees Celsius), recorded at 15-min intervals, are

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.3</td>
</tr>
<tr>
<td>0.5</td>
<td>21.5</td>
</tr>
<tr>
<td>1</td>
<td>21.8</td>
</tr>
<tr>
<td>1.5</td>
<td>21.6</td>
</tr>
<tr>
<td>2</td>
<td>21.2</td>
</tr>
<tr>
<td>2.5</td>
<td>20.8</td>
</tr>
<tr>
<td>3</td>
<td>20.6</td>
</tr>
<tr>
<td>3.5</td>
<td>20.9</td>
</tr>
<tr>
<td>4</td>
<td>21.2</td>
</tr>
<tr>
<td>4.5</td>
<td>21.1</td>
</tr>
<tr>
<td>5</td>
<td>21.3</td>
</tr>
<tr>
<td>5.5</td>
<td>21.2</td>
</tr>
</tbody>
</table>
29. **Tsunami Arrival Times** Scientists estimate the arrival times of tsunamis (seismic ocean waves) based on the point of origin \(P \) and ocean depths. The speed \(s \) of a tsunami in miles per hour is approximately \(s = \sqrt{15d} \), where \(d \) is the ocean depth in feet.

(a) Let \(f(x) \) be the ocean depth \(x \) miles from \(P \) (in the direction of the coast). Argue using Riemann sums that the time \(T \) required for the tsunami to travel \(M \) miles toward the coast is

\[
T = \int_0^M \frac{dx}{\sqrt{15f(x)}}
\]

(b) Use Simpson’s Rule to estimate \(T \) if \(M = 1000 \) and the ocean depths (in feet), measured at 100-mile intervals starting from \(P \), are

\[
13,000, \ 11,500, \ 10,500, \ 9000, \ 8500, \ 7000, \ 6000, \ 4400, \ 3800, \ 3200, \ 2000
\]

30. Use \(S_8 \) to estimate \(\int_0^{\pi/2} \frac{\sin x}{x} \, dx \), taking the value of \(\frac{\sin x}{x} \) at \(x = 0 \) to be 1.

31. Calculate \(T_6 \) for the integral \(I = \int_1^2 x^3 \, dx \).

(a) Is \(T_6 \) too large or too small? Explain graphically.

(b) Show that \(K_2 = |f''(2)| \) may be used in the error bound and find a bound for the error.

(c) Evaluate \(I \) and check that the actual error is less than the bound computed in (b).

32. Calculate \(M_4 \) for the integral \(I = \int_0^1 x \sin(x^2) \, dx \).

(a) **CAS** Use a plot of \(f'' \) to show that \(K_2 = 3.2 \) may be used in the error bound and find a bound for the error.

(b) **CAS** Evaluate \(I \) numerically and check that the actual error is less than the bound computed in (a).

In Exercises 33–36, state whether \(T_N \) or \(M_N \) underestimates or overestimates the integral and find a bound for the error (but do not calculate \(T_N \) or \(M_N \)).

33. \(\int_1^4 \frac{1}{x} \, dx \), \(T_{10} \)

34. \(\int_0^2 e^{-x/4} \, dx \), \(T_{20} \)

35. \(\int_1^4 \ln x \, dx \), \(M_{10} \)

36. \(\int_0^{\pi/4} \cos x \, dx \), \(M_{20} \)

CAS In Exercises 37–40, use the error bound to find a value of \(N \) for which \(\text{Error}(T_N) \leq 10^{-6} \). If you have a computer algebra system, calculate the corresponding approximation and confirm that the error satisfies the required bound.

37. \(\int_0^1 x^4 \, dx \)

38. \(\int_0^3 (5x^4 - x^5) \, dx \)

39. \(\int_2^5 \frac{1}{x} \, dx \)

40. \(\int_0^3 e^{-x} \, dx \)

41. Compute the error bound for the approximations \(T_{10} \) and \(M_{10} \) to \(\int_0^3 (x^3 + 1)^{-1/2} \, dx \), using Figure 16 to determine a value of \(K_2 \). Then find a value of \(N \) such that the error in \(M_N \) is at most \(10^{-6} \).

42. (a) Compute \(S_8 \) for the integral \(I = \int_0^1 e^{-2x} \, dx \).

(b) Show that \(K_4 = 16 \) may be used in the error bound and compute the error bound.

(c) Evaluate \(I \) and check that the actual error is less than the bound for the error computed in (b).

43. Calculate \(S_8 \) for \(\int_0^5 \ln x \, dx \) and calculate the error bound. Then find a value of \(N \) such that \(S_N \) has an error of at most \(10^{-6} \).

44. Find a bound for the error in the approximation \(S_{10} \) to \(\int_0^3 e^{-x^2} \, dx \) (use Figure 17 to determine a value of \(K_4 \)). Then find a value of \(N \) such that \(S_N \) has an error of at most \(10^{-6} \).

45. **CAS** Use a computer algebra system to compute and graph \(f^{(4)} \) for \(f(x) = \sqrt{1 + x^4} \), and find a bound for the error in the approximation \(S_{40} \) to \(\int_0^5 f(x) \, dx \).

46. **CAS** Use a computer algebra system to compute and graph \(f^{(4)} \) for \(f(x) = \tan x - \sec x \), and find a bound for the error in the approximation \(S_{40} \) to \(\int_0^{\pi/4} f(x) \, dx \).

In Exercises 47–50, use the error bound to find a value of \(N \) for which \(\text{Error}(S_N) \leq 10^{-9} \).

47. \(\int_1^6 x^{4/3} \, dx \)

48. \(\int_0^4 x^4 \, dx \)

49. \(\int_0^1 e^x \, dx \)

50. \(\int_0^4 \sin(\ln x) \, dx \)

51. **CAS** Show that \(\int_0^1 \frac{dx}{1 + x^2} = \frac{\pi}{4} \) [use Eq. (3) in Section 7.8].

(a) Use a computer algebra system to graph the function \(f^{(4)} \) for \(f(x) = (1 + x^2)^{-1} \) and find its maximum on \([0, 1] \).

(b) Find a value of \(N \) such that \(S_N \) approximates the integral with an error of at most \(10^{-6} \). Calculate the corresponding approximation and confirm that you have computed \(\frac{\pi}{4} \) to at least four places.
52. Let \(J = \int_0^\infty e^{-x^2} \, dx \) and \(J_N = \int_0^N e^{-x^2} \, dx \). Although \(e^{-x^2} \) has no elementary antiderivative, it is known that \(J = \sqrt{\pi}/2 \). Let \(T_N \) be the \(N \)th trapezoidal approximation to \(J \). Calculate \(T_4 \) and show that \(T_4 \) approximates \(J \) to three decimal places.

53. Let \(f(x) = \sin(x^2) \) and \(I = \int_0^1 f(x) \, dx \).

(a) Check that \(f''(x) = 2 \cos(x^2) - 4x^2 \sin(x^2) \). Then show that \(|f''(x)| \leq 6 \) for \(x \in [0, 1] \). Hint: Note that \(|2 \cos(x^2)|, |4x^2 \sin(x^2)| \) are at most 2 and 4 for \(x \in [0, 1] \).

(b) Show that Error(\(M_N \)) is at most \(\frac{1}{4N^2} \).

(c) Find an \(N \) such that \(|I - M_N| \leq 10^{-3} \).

54. CAS The error bound for \(M_N \) is proportional to \(1/N^2 \), so the error bound decreases by \(\frac{1}{4} \) if \(N \) is increased to \(2N \). Compute the actual error in \(M_N \) for \(\int_0^\pi \sin x \, dx \) for \(N = 4, 8, 16, 32, \) and 64. Does the actual error seem to decrease by \(\frac{1}{4} \) as \(N \) is doubled?

Further Insights and Challenges

59. Show that if \(f(x) = rx + s \) is a linear function \((r, s \) constants\), then \(T_N = \int_a^b f(x) \, dx \) for all \(N \) and all endpoints \(a, b \).

60. Show that if \(f(x) = px^2 + qx + r \) is a quadratic polynomial, then \(S_2 = \int_a^b f(x) \, dx \). In other words, show that

\[
\int_a^b f(x) \, dx = \frac{b-a}{6} (y_0 + 4y_1 + y_2)
\]

where \(y_0 = f(a), \ y_1 = f\left(\frac{a+b}{2}\right) \), and \(y_2 = f(b) \). Hint: Show this first for \(f(x) = 1, \ x, x^2 \) and use linearity.

61. For \(N \) even, divide \([a, b]\) into \(N \) subintervals of width \(\Delta x = \frac{b-a}{N} \). Set \(x_j = a + j \Delta x, \ y_j = f(x_j), \) and

\[
S_j^N = \frac{b-a}{3N} (y_2j + 4y_{2j+1} + y_{2j+2})
\]

(a) Show that \(S_N \) is the sum of the approximations on the intervals \([x_{2j}, x_{2j+2}])\)—that is, \(S_N = S_0^1 + S_1^2 + \cdots + S_{N-2}^{N-1} \).

(b) By Exercise 60, \(S_z^2 = \int_a^b f(x) \, dx \) if \(f \) is a quadratic polynomial. Use (a) to show that \(S_N \) is exact for all \(N \) if \(f \) is a quadratic polynomial.

62. Show that \(S_2 \) also gives the exact value for \(\int_a^b x^3 \, dx \) and conclude, as in Exercise 61, that \(S_N \) is exact for all cubic polynomials. Show by counterexample that \(S_2 \) is not exact for integrals of \(x^4 \).

63. Use the error bound for \(S_N \) to obtain another proof that Simpson’s Rule is exact for all cubic polynomials.

64. Sometimes Simpson’s Rule Performs Poorly Calculate \(M_{10} \) and \(S_{10} \) for the integral \(\int_0^1 \sqrt{1-x^2} \, dx \), whose value we know to be \(\frac{\pi}{4} \) (one-quarter of the area of the unit circle).

(a) We usually expect \(S_N \) to be more accurate than \(M_N \). Which of \(M_{10} \) and \(S_{10} \) is more accurate in this case?

(b) How do you explain the result of part (a)? Hint: The error bounds are not valid because \(|f''(x)| \) and \(|f^{(4)}(x)| \) tend to \(\infty \) as \(x \to 1 \), but \(|f^{(4)}(x)| \) goes to infinity more quickly.

CHAPTER REVIEW EXERCISES

1. Match the integrals (a)–(e) with their antiderivatives (i)–(v) on the basis of the general form (do not evaluate the integrals).

(a) \(\int \frac{x \, dx}{x^2 - 4} \) \hspace{1cm} (b) \(\int \frac{2x + 9 \, dx}{x^2 + 4} \)

(c) \(\int \sin^3 x \cos^2 x \, dx \) \hspace{1cm} (d) \(\int \frac{dx}{\sqrt{4x^2 - 1}} \)

(e) \(\int \frac{6 \, dx}{\sqrt{2x^2 - 1}} \)

(i) \(\sec^{-1} 4x + C \)

(ii) \(\log |x| - \log |x - 4| - \frac{4}{x - 4} + C \)

(iii) \(\frac{1}{30} (3 \cos^5 x - 3 \cos^3 x \sin^2 x - 7 \cos^3 x) + C \)

(iv) \(\frac{9}{2} \tan^{-1} \frac{x}{2} + \ln(x^2 + 4) + C \)

(v) \(\sqrt{4x^2 - 1} + C \)

2. Evaluate \(\int \frac{x \, dx}{x^2 + 2} \) in two ways: using substitution and using the Method of Partial Fractions.

In Exercises 3–12, evaluate using the suggested method.

3. \(\int \cos^3 \theta \sin^8 \theta \, d\theta \) \[\text{[write } \cos^3 \theta \text{ as } \cos \theta (1 - \sin^2 \theta) \]}

4. \(\int xe^{-12x} \, dx \) (Integration by Parts)
5. \[\int \sec^3 \theta \tan^4 \theta \, d\theta \] (trigonometric identity, reduction formula)

6. \[\int \frac{4x + 4}{(x - 5)(x + 3)} \, dx \] (partial fractions)

7. \[\int \frac{dx}{x(x^2 - 1)^{3/2}} \] (trigonometric substitution)

8. \[\int (1 + x^2)^{-3/2} \, dx \] (trigonometric substitution)

9. \[\int \frac{dx}{x^{3/2} + x^{1/2}} \] (substitution)

10. \[\int \frac{dx}{x + x^{-1}} \] (rewrite integrand)

11. \[\int x^{-2} \tan^{-1} x \, dx \] (Integration by Parts)

12. \[\int \frac{dx}{x^2 + 4x - 5} \] (complete the square, substitution, partial fractions)

In Exercises 13–64, evaluate using the appropriate method or combination of methods.

13. \[\int_0^1 x^2 e^{4x} \, dx \]

14. \[\int \frac{x^2}{\sqrt{9 - x^2}} \, dx \]

15. \[\int \cos^9 \theta \sin^3 \theta \, d\theta \]

16. \[\int \sec^2 \theta \tan^4 \theta \, d\theta \]

17. \[\int \frac{(6x + 4) \, dx}{x^2 - 1} \]

18. \[\int \frac{dt}{t^2 - 1} \]

19. \[\int \frac{d\theta}{\cos^4 \theta} \]

20. \[\int \frac{\sin 2\theta \sin^2 \theta \, d\theta}{2} \]

21. \[\int_0^1 \ln(4 - 2x) \, dx \]

22. \[\int (\ln(x + 1))^2 \, dx \]

23. \[\int \sin^5 \theta \, d\theta \]

24. \[\int \cos^6(9x - 2) \, dx \]

25. \[\int_0^{\pi/4} \sin 3x \cos 5x \, dx \]

26. \[\int \sin 2x \sec^2 x \, dx \]

27. \[\int \sqrt{\tan x} \sec^2 x \, dx \]

28. \[\int (\sec x + \tan x)^2 \, dx \]

29. \[\int \sin^5 \theta \cos^3 \theta \, d\theta \]

30. \[\int \cos^3 x \csc x \, dx \]

31. \[\int \cot^2 x \csc^2 x \, dx \]

32. \[\int_{\pi/2}^\pi \cot^2 \theta \, d\theta \]

33. \[\int_{\pi/4}^{\pi/2} \cot^2 x \csc^3 x \, dx \]

34. \[\int_4^6 \frac{dt}{t^3 (t + 4)} \]

35. \[\int \frac{dt}{(t - 3)(t + 4)} \]

36. \[\int \sqrt{x^2 + 9} \, dx \]

37. \[\int \frac{dx}{x \sqrt{x^2 - 4}} \]

38. \[\int_8^{27} \frac{dx}{x + x^{2/3}} \]

39. \[\int \frac{dx}{x^{3/2} + ax^{1/2}} \]

40. \[\int \frac{dx}{(x - b)^3 + 4} \]

41. \[\int \frac{(x^2 - x) \, dx}{(x + 2)^3} \]

42. \[\int \frac{(7x^2 + x) \, dx}{(x - 2)(2x + 1)(x + 1)} \]

43. \[\int \frac{16x \, dx}{(x - 2)^2(x^2 + 4)} \]

44. \[\int \frac{dx}{(x^2 + 25)^2} \]

45. \[\int \frac{dx}{x^2 + 8x + 25} \]

46. \[\int \frac{dx}{x^2 + 8x + 4} \]

47. \[\int \frac{(x^2 - x) \, dx}{(x + 2)^3} \]

48. \[\int_0^1 \frac{t^2 \sqrt{1 - t^2} \, dt}{1 + t^2} \]

49. \[\int \frac{dx}{x^4 \sqrt{x^2 + 4}} \]

50. \[\int \frac{dx}{(x^2 + 5)^{3/2}} \]

51. \[\int (x + 1)e^{4-3x} \, dx \]

52. \[\int x^{-2} \tan^{-1} x \, dx \]

53. \[\int x^3 \cos(x^2) \, dx \]

54. \[\int x^2 \ln(x^2) \, dx \]

55. \[\int x \tan^{-1} x \, dx \]

56. \[\int \tan^{-1} t \, dt \]

57. \[\int \ln(x^2 + 9) \, dx \]

58. \[\int (\sin x)(\cosh x) \, dx \]

59. \[\int_{-1}^{1} \cos 2t \, dt \]

60. \[\int \sinh^3 x \cosh x \, dx \]

61. \[\int \cosh^2(1 - 4t) \, dt \]

62. \[\int \frac{0.3 \, dx}{1 - x^2} \]

63. \[\int \frac{3\sqrt{3/2} \, dx}{\sqrt{9 - x^2}} \]

64. \[\int \frac{\sqrt{3/2} + 1 \, dx}{\sqrt{9 - x^2}} \]

65. Use the substitution \(u = \tanh t \) to evaluate \[\int \frac{dt}{\cosh^2 t + \sinh^2 t} \]

66. Find the volume obtained by rotating the region enclosed by \(y = \ln x \) and \(y = (\ln x)^2 \) about the y-axis.

67. Let \(I_n = \int x^n dx \)

(a) Prove that \(I_n = \frac{x^{n+1}}{n+1} - I_{n-2} \).

(b) Use (a) to calculate \(I_n \) for \(0 \leq n \leq 5 \).

(c) Show that, in general,

\[I_{2n+1} = \frac{x^{2n}}{2n} - \frac{x^{2n-2}}{2n - 2} \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot
+ (-1)^{n-1} \frac{x^2}{2} + (-1)^n \frac{1}{2} \ln(x^2 + 1) + C \]

\[I_{2n} = \frac{x^{2n-1}}{2n - 1} - \frac{x^{2n-3}}{2n - 3} \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot \quad \cdot
+ (-1)^{n-1} x + (-1)^n \tan^{-1} x + C \]
68. Let \(J_n = \int x^n e^{-x^2/2} \, dx \).
(a) Show that \(J_1 = -e^{-x^2/2} \).
(b) Prove that \(J_n = -x^{n-1} e^{-x^2/2} + (n-1) J_{n-2} \).
(c) Use (a) and (b) to compute \(J_3 \) and \(J_5 \).

69. Compute \(p(X \leq 1) \), where \(X \) is a continuous random variable with probability density \(p(x) = \frac{1}{\pi(x^2 + 1)} \).

70. Show that \(p(x) = \frac{1}{2} e^{-x^2/2} + \frac{1}{5} e^{-x^3/3} \) is a probability density over the domain \([0, \infty)\) and find its mean.

71. Find a constant \(C \) such that \(p(x) = Cx^3 e^{-x^2} \) is a probability density over the domain \([0, \infty)\) and compute \(P(0 \leq X \leq 1) \).

72. The interval between patient arrivals in an emergency room is a random variable with exponential density function \(p(t) = 0.125 e^{-0.125t} \) (\(t \) in minutes). What is the average time between patient arrivals? What is the probability of two patients arriving within 3 min of each other?

73. Calculate the following probabilities, assuming that \(X \) is normally distributed with mean \(\mu = 40 \) and \(\sigma = 5 \).
(a) \(P(X \geq 45) \)
(b) \(P(0 \leq X \leq 40) \)

74. According to kinetic theory, the molecules of ordinary matter are in constant random motion. The energy \(E \) of a molecule is a random variable with density function \(p(E) = \frac{1}{kT} e^{-E/(kT)} \), where \(T \) is the temperature (in kelvins) and \(k \) is Boltzmann’s constant. Compute the mean kinetic energy \(\bar{E} \) in terms of \(k \) and \(T \).

In Exercises 75–84, determine whether the improper integral converges and, if so, evaluate it.

75. \(\int_0^\infty \frac{dx}{(x+2)^2} \)
76. \(\int_4^\infty \frac{dx}{x^{2/3}} \)
77. \(\int_0^4 \frac{dx}{x^{2/3}} \)
78. \(\int_0^\infty \frac{dx}{x^{1/3}} \)
79. \(\int_{-\infty}^0 \frac{dx}{x^2 + 1} \)
80. \(\int_{-\infty}^\infty e^{4x} \, dx \)
81. \(\int_0^{\pi/2} \cot \theta \, d\theta \)
82. \(\int_1^\infty \frac{dx}{(x + 2)(x + 3)} \)
83. \(\int_0^\infty (5 + x)^{-1/3} \, dx \)
84. \(\int_2^5 (5 - x)^{-1/3} \, dx \)

In Exercises 85–90, use the Comparison Test to determine whether the improper integral converges or diverges.

85. \(\int_8^\infty \frac{dx}{x^2 - 4} \)
86. \(\int_8^\infty (\sin^2 x)e^{-x} \, dx \)
87. \(\int_3^\infty \frac{dx}{x^4 + \cos^2 x} \)
88. \(\int_1^\infty \frac{dx}{x^{1/3} + x^{2/3}} \)

89. \(\int_0^1 \frac{dx}{x^{1/3} + x^{2/3}} \)
90. \(\int_0^\infty e^{-x^3} \, dx \)

91. Calculate the volume of the infinite solid obtained by rotating the region under \(y = (x^2 + 1)^{-2} \) for \(0 \leq x < \infty \) about the \(y \)-axis.

92. Let \(R \) be the region under the graph of \(y = (x + 1)^{-1} \) for \(0 \leq x < \infty \). Which of the following quantities is finite?
(a) The area of \(R \)
(b) The volume of the solid obtained by rotating \(R \) about the \(y \)-axis
(c) The volume of the solid obtained by rotating \(R \) about the \(x \)-axis

93. Show that \(\int_0^\infty x^n e^{-x^2} \, dx \) converges for all \(n > 0 \). \text{Hint:} First observe that \(x^n e^{-x^2} < x^n e^{-x} \) for \(x > 1 \). Then show that \(x^n e^{-x} < x^{-2} \) for \(x \) sufficiently large.

94. Compute the Laplace transform \(Lf(s) \) of the function \(f(x) = x \) for \(s > 0 \). See Exercises 88–91 in Section 8.7 for the definition of \(Lf(s) \).

95. Compute the Laplace transform \(Lf(s) \) of the function \(f(x) = x^2 e^{3x} \) for \(s > a \).

96. Estimate \(\int_0^5 f(x) \, dx \) by computing \(T_2 \), \(T_3 \), \(T_6 \), and \(S_6 \) for a function \(f \) taking on the values in the following table:

<table>
<thead>
<tr>
<th>(f(x))</th>
<th>(\frac{1}{2})</th>
<th>2.5</th>
<th>3</th>
<th>3.5</th>
<th>4</th>
<th>4.5</th>
<th>5</th>
</tr>
</thead>
</table>

97. State whether the approximation \(M_N \) or \(T_N \) is larger or smaller than the integral.
(a) \(\int_0^\pi \sin x \, dx \)
(b) \(\int_0^{2\pi} \sin x \, dx \)
(c) \(\int_1^8 \frac{dx}{x^2} \)
(d) \(\int_2^5 \ln x \, dx \)

98. The rainfall rate (in inches per hour) was measured hourly during a 10-h thunderstorm with the following results:

<table>
<thead>
<tr>
<th>Hour</th>
<th>0.41</th>
<th>0.49</th>
<th>0.32</th>
<th>0.3</th>
<th>0.23</th>
<th>0.09</th>
<th>0.08</th>
<th>0.05</th>
<th>0.11</th>
<th>0.12</th>
</tr>
</thead>
</table>

Use Simpson’s Rule to estimate the total rainfall during the 10-h period.

In Exercises 99–104, compute the given approximation to the integral.

99. \(\int_0^1 e^{-x^2} \, dx \), \(M_5 \)
100. \(\int_2^4 \sqrt{6x^3 + 1} \, dx \), \(T_3 \)
101. \(\int_{\pi/4}^{3\pi/4} \sqrt{\sin \theta} \, d\theta \), \(M_4 \)
102. \(\int_1^4 \frac{dx}{x^3 + 1} \), \(T_6 \)
103. \(\int_0^1 e^{-x^2} \, dx \), \(S_4 \)
104. \(\int_5^9 \cos(x^2) \, dx \), \(S_8 \)
105. The following table gives the area $A(h)$ of a horizontal cross section of a pond at depth h. Use the Trapezoidal Rule to estimate the volume V of the pond (Figure 1).

<table>
<thead>
<tr>
<th>h (ft)</th>
<th>$A(h)$ (acres)</th>
<th>h (ft)</th>
<th>$A(h)$ (acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.8</td>
<td>10</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>2.4</td>
<td>12</td>
<td>0.6</td>
</tr>
<tr>
<td>4</td>
<td>1.8</td>
<td>14</td>
<td>0.2</td>
</tr>
<tr>
<td>6</td>
<td>1.5</td>
<td>16</td>
<td>0.1</td>
</tr>
<tr>
<td>8</td>
<td>1.2</td>
<td>18</td>
<td>0</td>
</tr>
</tbody>
</table>

Area of horizontal cross section is $A(h)$

106. Suppose that the second derivative of the function A in Exercise 105 satisfies $|A''(h)| \leq 1.5$. Use the error bound to find the maximum possible error in your estimate of the volume V of the pond.

107. Find a bound for the error $|M_{16} - \int_{1}^{3} x^3 \, dx|$.

108. Let $f(x) = \sin(x^3)$. Find a bound for the error $|T_{24} - \int_{0}^{\pi/2} f(x) \, dx|$.

Hint: Find a bound K_2 for $|f''(x)|$ by plotting f'' with a graphing utility.

109. Find a value of N such that $|M_{N} - \int_{0}^{\pi/4} \tan x \, dx| \leq 10^{-4}$.
Engineers utilize integrals when designing dams in order to ensure that the dam walls can withstand the force imparted by the water. (Earl Roberge/Science Source)

9 FURTHER APPLICATIONS OF THE INTEGRAL AND TAYLOR POLYNOMIALS

The first three sections of this chapter develop some additional uses of integration, including two important physical applications. The last section introduces Taylor polynomials, the higher order generalizations of the linear approximation. Taylor polynomials illustrate beautifully the power of calculus to yield valuable insight into functions.

9.1 Arc Length and Surface Area

We have seen that integrals are used to compute “total amounts” (such as distance traveled, total mass, total cost, etc.). Another such quantity is the length of a curve (also called arc length). We derive a formula for arc length using our standard procedure: approximation followed by passage to a limit. In this case, we approximate the curve by a polygonal path made up of straight line segments connecting points on the curve. It is easy to find the length of a collection of straight line segments. Then we can take the limit of the sum of their lengths as the number of line segments grows.

To make this precise, consider the graph of \(y = f(x) \) over an interval \([a, b]\). Choose a partition \(P \) of \([a, b]\) into \(N \) subintervals with endpoints

\[
P : a = x_0 < x_1 < \cdots < x_N = b
\]

and let \(P_i = (x_i, f(x_i)) \) be the point on the graph above \(x_i \). Now join these points by line segments \(L_i = P_{i-1}P_i \). The resulting curve \(L \) is called a polygonal approximation (Figure 1). The length of \(L \), which we denote \(|L|\), is the sum of the lengths \(|L_i|\) of the segments:

\[
|L| = |L_1| + |L_2| + \cdots + |L_N| = \sum_{i=1}^{N} |L_i|
\]

As may be expected, the polygonal approximations \(L \) approximate the curve more and more closely as the length of the longest subinterval, which we defined as the norm of the partition \(||P|| \) in Section 5.2, decreases (Figure 2). Based on this idea, we define the arc length \(s \) of the graph to be the limit of the lengths \(|L|\) as the norm \(||P|| \) of the partition tends to zero:

\[
\text{Arc length } s = \lim_{||P|| \to 0} \sum_{i=1}^{N} |L_i|
\]
To compute the arc length s, we express the limit of the polygonal approximations as an integral. Figure 3 shows that the segment L_i is the hypotenuse of a right triangle of base $\Delta x_i = x_i - x_{i-1}$ and height $|f(x_i) - f(x_{i-1})|$. By the Pythagorean Theorem,

$$|L_i| = \sqrt{\Delta x_i^2 + (f(x_i) - f(x_{i-1}))^2}$$

We shall assume that f' exists and is continuous. Then, by the Mean Value Theorem, there is a value c_i in $[x_{i-1}, x_i]$ such that

$$f(x_i) - f(x_{i-1}) = f'(c_i)(x_i - x_{i-1}) = f'(c_i)\Delta x_i$$

and therefore,

$$|L_i| = \sqrt{(\Delta x_i)^2 + (f'(c_i)\Delta x_i)^2} = \sqrt{(\Delta x_i)^2(1 + [f'(c_i)]^2)} = \sqrt{1 + [f'(c_i)]^2}\Delta x_i$$

We find that the length $|L|$ is a Riemann sum for $\sqrt{1 + [f'(x)]^2}$:

$$|L| = |L_1| + |L_2| + \cdots + |L_N| = \sum_{i=1}^{N} \sqrt{1 + [f'(c_i)]^2}\Delta x_i$$

This function is continuous, and hence integrable, so the Riemann sums approach

$$\int_a^b \sqrt{1 + [f'(x)]^2} \, dx$$

as the norm (maximum of the widths Δx_i) of the partition tends to zero.

Theorem 1 **Formula for Arc Length** Assume that f' exists and is continuous on the interval $[a, b]$. Then the arc length s of $y = f(x)$ over $[a, b]$ is equal to

$$s = \int_a^b \sqrt{1 + [f'(x)]^2} \, dx$$

Example 1 Find the arc length s of the graph of $f(x) = \frac{1}{12}x^3 + x^{-1}$ over the interval $[1, 3]$ (Figure 4).

Solution First, let’s calculate $1 + f'(x)^2$. Since $f'(x) = \frac{1}{4}x^2 - x^{-2}$,

$$1 + f'(x)^2 = 1 + \left(\frac{1}{4}x^2 - x^{-2}\right)^2 = 1 + \left(\frac{1}{16}x^4 - \frac{1}{2} + x^{-4}\right)$$

$$= \frac{1}{16}x^4 + \frac{1}{2} + x^{-4} = \left(\frac{1}{4}x^2 + x^{-2}\right)^2$$

Fortunately, $1 + f'(x)^2$ is a square, so we can easily compute the arc length:

$$s = \int_1^3 \sqrt{1 + f'(x)^2} \, dx = \int_1^3 \left(\frac{1}{4}x^2 + x^{-2}\right) \, dx = \left[\frac{1}{12}x^3 - x^{-1} \right]_1^3$$

$$= (\frac{9}{4} - \frac{1}{3}) - (\frac{1}{12} - 1) = \frac{17}{6}$$
EXAMPLE 2 Arc Length as a Function of the Upper Limit Find the arc length \(s(a) \) of \(y = \cosh x \) over \([0, a]\) (Figure 5). Then find the arc length over \([0, 2]\).

Solution Recall that \(y'(x) = \sinh x \). By Eq. (2) in the margin,

\[
1 + (y')^2 = 1 + \sinh^2 x = \cosh^2 x
\]

Because \(\cosh x > 0 \), we have \(\sqrt{1 + (y')^2} = \cosh x \) and

\[
s(a) = \int_0^a \sqrt{1 + (y')^2} \, dx = \int_0^a \cosh x \, dx = \sinh x \bigg|_0^a = \sinh a
\]

The arc length over \([0, 2]\) is \(s(2) = \sinh 2 \approx 3.63 \).

In Examples 1 and 2, the quantity \(1 + f'(x)^2 \) turned out to be a perfect square, and we were able to compute \(s \) exactly. Usually, \(\sqrt{1 + f'(x)^2} \) does not have an elementary antiderivative and there is no explicit formula for the arc length. However, we can always approximate arc length using numerical integration.

EXAMPLE 3 No Exact Formula for Arc Length Approximate the length \(s \) of \(y = \sin x \) over \([0, \pi]\) using Simpson’s Rule \(S_N \) with \(N = 6 \).

Solution We have \(y'(x) = \cos x \) and \(\sqrt{1 + (y')^2} = \sqrt{1 + \cos^2 x} \). The arc length is

\[
s = \int_0^\pi \sqrt{1 + \cos^2 x} \, dx
\]

This integral cannot be evaluated explicitly, so we approximate it by applying Simpson’s Rule (Section 8.9) to the integrand \(g(x) = \sqrt{1 + \cos^2 x} \). Divide \([0, \pi]\) into \(N = 6 \) subintervals of width \(\Delta x = \pi/6 \). Then

\[
S_6 = \frac{\Delta x}{3} \left(g(0) + 4g \left(\frac{\pi}{6} \right) + 2g \left(\frac{2\pi}{6} \right) + 4g \left(\frac{3\pi}{6} \right) + 2g \left(\frac{4\pi}{6} \right) + 4g \left(\frac{5\pi}{6} \right) + g(\pi) \right)
\]

\[
\approx \frac{\pi}{18} \left(1.4142 + 5.2915 + 2.2361 + 4 + 2.2361 + 5.2915 + 1.4142 \right) \approx 3.82
\]

Thus, \(s \approx 3.82 \) (Figure 6). A computer algebra system yields the more accurate approximation \(s \approx 3.820198 \).

The surface area \(S \) of a surface of revolution (Figure 7) can be computed by an integral that is similar to the arc length integral. Suppose that \(f(x) \geq 0 \), so the graph lies above the \(x \)-axis. We can approximate the surface by rotating a polygonal approximation to \(y = f(x) \) about the \(x \)-axis. The result is a surface built out of truncated cones (Figure 8).
To determine the surface area of a truncated cone, we first consider a circular cone of radius \(r \) and slant length \(l \), as in Figure 9. Cutting it open along the green line, we can then flatten it out in the plane, obtaining the fraction of the circle of radius \(l \) shown. Since this sector is a fraction of the entire circle determined by the fraction of the entire circumference to which it corresponds, namely \(\frac{2\pi r}{2\pi l} \), and since the entire circle has an area of \(\pi l^2 \), the surface area of the cone must be \(\frac{2\pi r}{2\pi l} \pi l^2 = \pi rl \).

To find the surface area of a truncated cone, we consider Figure 10. The surface area is obtained by subtracting the area of the top cone from the area of the entire bigger cone, yielding

\[
A = \pi r_2^2 l_1 + \pi l_1 (r_2 - r_1)
\]

By similar triangles,

\[
\frac{l_1}{r_1} = \frac{l + l_1}{r_2}
\]

This yields \(l_1 r_2 = r_1 (l + l_1) \) and therefore \(l_1 (r_2 - r_1) = r_1 l \). So the surface area of the truncated cone is given by

\[
A = \pi r_2 l + \pi l_1 (r_2 - r_1) = \pi r_2 l + \pi r_1 l = \pi (r_1 + r_2) l
\]

In words, the surface area of a truncated cone is equal to \(\pi \) times the sum of the two radii times the length of the slanted side.

Using the notation from the derivation of the arc length formula above, we therefore find that the surface area of the truncated cone corresponding to the subinterval \([x_{i-1}, x_i]\) is

\[
\pi \left(\frac{f(x_{i-1}) + f(x_i)}{2} \right) \cdot \sqrt{1 + f'(c_i)^2} \Delta x_i
\]

The surface area \(S \) is equal to the limit of the sums of the surface areas of the truncated cones as \(N \to \infty \). We can show that the limit is not affected if we replace \(x_{i-1} \) and \(x_i \) by \(c_i \). Therefore,

\[
S = 2\pi \lim_{N \to \infty} \sum_{i=1}^{N} f(c_i) \sqrt{1 + f'(c_i)^2} \Delta x_i
\]

This is a limit of Riemann sums that converges to the integral in Eq. (3) below.

Area of a Surface of Revolution
Assume that \(f(x) \geq 0 \) and that \(f' \) exists and is continuous on the interval \([a, b]\). The surface area \(S \) of the surface obtained by rotating the graph of \(f \) about the \(x \)-axis for \(a \leq x \leq b \) is equal to

\[
S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'(x)^2} \, dx
\]
EXAMPLE 4 Calculate the surface area of a sphere of radius R.

Solution The graph of $f(x) = \sqrt{R^2 - x^2}$ is a semicircle of radius R (Figure 11). We obtain a sphere by rotating it about the x-axis. We have

$$f'(x) = -\frac{x}{\sqrt{R^2 - x^2}}, \quad 1 + f'(x)^2 = 1 + \frac{x^2}{R^2 - x^2} = \frac{R^2}{R^2 - x^2}$$

The surface area integral gives us the usual formula for the surface area of a sphere:

$$S = 2\pi \int_{-R}^{R} f(x)\sqrt{1 + f'(x)^2} \, dx = 2\pi \int_{-R}^{R} \frac{R}{\sqrt{R^2 - x^2}} \, dx$$

$$= 2\pi R \int_{-R}^{R} dx = 2\pi R(2R) = 4\pi R^2$$

EXAMPLE 5 Find the surface area of the surface, called a paraboloid, that is obtained by rotating the graph of $f(x) = \sqrt{x}$ about the x-axis for $0 \leq x \leq 1$.

Solution The graph of $f(x) = \sqrt{x}$ is the top half of a parabola opening along the x-axis, which becomes a paraboloid when rotated about the x-axis (Figure 12). Then $f'(x) = \frac{1}{2\sqrt{x}}$, and hence we obtain

$$S = 2\pi \int_{0}^{1} f(x)\sqrt{1 + f'(x)^2} \, dx = 2\pi \int_{0}^{1} \sqrt{x} \sqrt{1 + \left(\frac{1}{2\sqrt{x}}\right)^2} \, dx$$

$$= 2\pi \int_{0}^{1} \frac{\sqrt{x}}{2\sqrt{x}} \sqrt{4x + 1} \, dx$$

$$= \pi \int_{0}^{1} \sqrt{4x + 1} \, dx$$

$$= \frac{\pi}{6} (4x + 1)^{3/2} \bigg|_{0}^{1} = \frac{\pi}{6} (5^{3/2} - 1) \approx 5.3304$$

EXAMPLE 6 Find the surface area S of the surface obtained by rotating the graph of $y = x^{1/2} - \frac{1}{3}x^{3/2}$ about the x-axis for $1 \leq x \leq 3$.

Solution Let $f(x) = x^{1/2} - \frac{1}{3}x^{3/2}$. Then $f'(x) = \frac{1}{2}(x^{-1/2} - x^{1/2})$ and

$$1 + f'(x)^2 = 1 + \left(\frac{x^{-1/2} - x^{1/2}}{2}\right)^2 = 1 + \frac{x^{-1} - 2 + x}{4}$$

$$= \frac{x^{-1} + 2 + x}{4} = \left(\frac{x^{1/2} + x^{-1/2}}{2}\right)^2$$

The surface area (Figure 13) is equal to

$$S = 2\pi \int_{1}^{3} f(x)\sqrt{1 + f'(x)^2} \, dx = 2\pi \int_{1}^{3} x^{1/2} - \frac{1}{3}x^{3/2} \left(\frac{x^{1/2} + x^{-1/2}}{2}\right) \, dx$$

$$= \pi \int_{1}^{3} \left(1 + \frac{2}{3}x - \frac{1}{3}x^2\right) \, dx = \pi \left(x + \frac{1}{3}x^2 - \frac{1}{9}x^3\right) \bigg|_{1}^{3} = \frac{16\pi}{9}$$

Note that we can also find the area of a surface of revolution obtained by revolving a curve around the y-axis. We just reverse the roles of x and y. However, we do need to have the curve in the form $x = f(y)$ for the resulting formula to apply.

9.1 SUMMARY

- The arc length of $y = f(x)$ over the interval $[a, b]$ is

$$s = \int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx$$
9.1 EXERCISES

Preliminary Questions

1. Which integral represents the length of the curve \(y = \cos x \) between 0 and \(\frac{\pi}{2} \)?

\[
\int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos^{2} x} \, dx, \quad \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \sin^{2} x} \, dx
\]

2. By rotating the line \(y = r \) about the \(x \)-axis, for \(x \) in the interval \([0, h]\), and applying the surface area formula, obtain the well-known fact that the surface area of a cylinder of radius \(r \) and length \(h \) is given by \(2\pi rh \).

Exercises

1. Express the arc length of the curve \(y = x^4 \) between \(x = 2 \) and \(x = 6 \) as an integral (but do not evaluate).

2. Express the arc length of the curve \(y = \tan x \) for \(0 \leq x \leq \frac{\pi}{4} \) as an integral (but do not evaluate).

3. Find the arc length of \(y = \frac{1}{12} x^3 + x^{-1} \) for \(1 \leq x \leq 2 \). Hint: Show that \(1 + (y')^2 = \left(\frac{1}{4} x^2 + x^{-2} \right)^2 \).

4. Find the arc length of \(y = \left(\frac{x}{2} \right)^4 + \frac{1}{2x^2} \) over \([1, 4] \). Hint: Show that \(1 + (y')^2 \) is a perfect square.

In Exercises 5–10, calculate the arc length over the given interval.

5. \(y = 3x + 1 \), \([0, 3] \)
6. \(y = 9 - 3x \), \([1, 3] \)
7. \(y = x^{3/2} \), \([1, 2] \)
8. \(y = \frac{1}{4} x^{3/2} - x^{1/2} \), \([2, 8] \)
9. \(y = \frac{1}{4} x^2 - \frac{1}{2} \ln x \), \([1, 2e] \)
10. \(y = \ln(\cos x) \), \([0, \frac{\pi}{4}] \)

In Exercises 11–16, approximate the arc length of the curve over the interval using the Trapezoidal Rule \(T_N \), the Midpoint Rule \(M_N \), or Simpson’s Rule \(S_N \) as indicated.

11. \(y = \frac{1}{4} x^4 \), \([1, 2] \), \(T_5 \)
12. \(y = \sin x \), \([0, \frac{\pi}{4}] \), \(M_8 \)
13. \(y = x^{-1} \), \([1, 2] \), \(S_8 \)
14. \(y = e^{-x^2} \), \([0, 2] \), \(S_8 \)
15. \(y = \ln x \), \([1, 3] \), \(M_6 \)
16. \(y = \cos x \), \([0, 2] \), \(T_8 \)
17. Calculate the length of the astroid \(x^{2/3} + y^{2/3} = 1 \) (Figure 14).

18. Show that the arc length of the astroid \(x^{2/3} + y^{2/3} = a^{2/3} \) (for \(a > 0 \)) is proportional to \(a \).

19. Let \(a, r > 0 \). Show that the arc length of the curve \(x^r + y^r = a^r \) for \(0 \leq x \leq a \) is proportional to \(a \).

20. Find the arc length of the curve shown in Figure 15.

21. Find the value of \(a \) such that the arc length of the catenary \(y = \cosh x \) for \(-a \leq x \leq a \) equals 10.

22. Calculate the arc length of the graph of \(f(x) = mx + r \) over \([a, b] \) in two ways: using the Pythagorean theorem (Figure 16) and using the arc length integral.
23. Show that the circumference of the unit circle is equal to

\[2 \int_{-1}^{1} \frac{dx}{\sqrt{1 - x^2}} \] (an improper integral)

Evaluate, thus verifying that the circumference is 2π.

24. Generalize the result of Exercise 23 to show that the circumference of the circle of radius r is 2πr.

25. Calculate the arc length of \(y = x^2 \) over \([0, a]\). Hint: Use trigonometric substitution. Evaluate for \(a = 1 \).

26. Express the arc length of \(g(x) = \sqrt{x} \) over \([0, 1]\) as a definite integral. Then use the substitution \(u = \sqrt{x} \) to show that this arc length is equal to the arc length of \(y = x^{1/4} \) over \([0, 1]\) (but do not evaluate the integrals). Explain this result graphically.

27. Find the arc length of \(y = e^x \) over \([0, a]\). Hint: Try the substitution \(u = \sqrt{1 + e^{2x}} \) followed by partial fractions.

28. Show that the arc length of \(y = \ln(f(x)) \) for \(a \leq x \leq b \) is

\[\int_{a}^{b} \sqrt{\frac{f(x)^2 + f'(x)^2}{f(x)}} \, dx \]

29. Use Eq. (4) to compute the arc length of \(y = \ln(x) \) for \(x \leq \sqrt[4]{e} \).

30. Use Eq. (4) to compute the arc length of \(y = \ln\left(\frac{e^x + 1}{e^x - 1}\right) \) over \([1, 3]\).

31. Show that if \(0 \leq f'(x) \leq 1 \) for all \(x \), then the arc length of \(y = f(x) \) over \([a, b]\) is at most \(\sqrt{2}(b - a) \). Show that for \(f(x) = x \), the arc length equals \(\sqrt{2}(b - a) \).

32. Use the Comparison Theorem (Section 5.2) to prove that the arc length of \(y = x^{1/3} \) over \([1, 2]\) is not less than \(\frac{4}{3} \).

33. Approximate the arc length of one-quarter of the unit circle (which we know is \(\frac{\pi}{2} \)) by computing the length of the polygonal approximation with \(N = 4 \) segments (Figure 17).

34. A merchant intends to produce specialty carpets in the shape of the region in Figure 18, bounded by the axes and graph of \(y = 1 - x^n \) (units in yards). Assume that material costs $50/yard² and that it costs 50L dollars to cut the carpet, where \(L \) is the length of the curved side of the carpet. The carpet can be sold for 150A dollars, where \(A \) is the carpet’s area. Using numerical integration with a computer algebra system, find the whole number \(n \) for which the merchant’s profits are maximal.

35. In Exercises 35–42, compute the surface area of revolution about the \(x \)-axis over the interval.

36. \(y = x^4 + 3 \), \([0, 1] \)

37. \(y = x^3 \), \([0, 2] \)

38. \(y = x^2 \), \([0, 4] \)

39. \(y = (4 - x^{2/3})^{3/2} \), \([0, 8] \)

40. \(y = e^{-x} \), \([0, 1] \)

41. \(y = \frac{1}{3}x^2 - \frac{1}{3}\ln x \), \([1, e] \)

42. \(y = \sin x \), \([0, \pi] \)

43. \(y = x^{-1} \), \([1, 3] \)

44. \(y = x^4 \), \([0, 1] \)

45. \(y = e^{-x^2/2} \), \([0, 2] \)

46. \(y = \tan x \), \([0, \frac{\pi}{3}] \)

47. Find the area of the surface obtained by rotating \(y = \cos x \) over \([-\ln 2, \ln 2] \) around the \(x \)-axis.

48. Show that the surface area of a spherical cap of height \(h \) and radius \(R \) (Figure 19) has surface area \(2\pi R h \).

49. Find the surface area of the torus obtained by rotating the circle \(x^2 + (y - b)^2 = r^2 \) about the \(x \)-axis (Figure 20).
50. By rotating the line \(y = mx \) about the \(x \)-axis for \(0 \leq a \leq x \leq b \), we obtain a truncated cone. In this section, we used geometry to show that the surface area of such a truncated cone is \(\pi (r_1 + r_2)l \) where \(r_1 \) and \(r_2 \) are the radii of the boundary circles of the cone and \(l \) is the slant length of the cone.

(a) Show that the slant height of the cone is given by \(l = \sqrt{1 + m^2}(b - a) \) and that the surface area then becomes \(\pi (r_1 + r_2)l = \pi m \sqrt{1 + m^2}(b^2 - a^2) \).

(b) Apply Equation 3 to the surface of revolution to obtain the same result for the surface area.

Further Insights and Challenges

51. Find the surface area of the ellipsoid obtained by rotating the ellipse \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \) about the \(x \)-axis.

52. Show that if the arc length of \(y = f(x) \) over \([0, a]\) is proportional to \(a \), then \(y = f(x) \) must be a linear function.

53. CAS Let \(L \) be the arc length of the upper half of the ellipse with equation
\[
y = \frac{b}{a} \sqrt{a^2 - x^2}
\]
(Figure 21) and let \(\eta = \sqrt{1 - (b^2/a^2)} \). Use substitution to show that
\[
L = a \int_{-\pi/2}^{\pi/2} \sqrt{1 - \eta^2 \sin^2 \theta} \, d\theta
\]

Use a computer algebra system to approximate \(L \) for \(a = 2, b = 1 \).

54. Prove that the portion of a sphere of radius \(R \) seen by an observer located at a distance \(d \) above the North Pole has area \(A = 2\pi R d^2/(d + R) \). Hint: According to Exercise 48, the cap has surface area \(2\pi Rh \). Show that \(h = dR/(d + R) \) by applying the Pythagorean Theorem to the three right triangles in Figure 22.

9.2 Fluid Pressure and Force

Fluid force is the force on an object submerged in a fluid. Divers feel this force as they descend below the water surface (Figure 1). Our calculation of fluid force is based on two laws that determine the pressure exerted by a fluid:

- Fluid pressure \(p \) is proportional to depth.
- Fluid pressure does not act in a specific direction. Rather, a fluid exerts pressure on each side of an object in the perpendicular direction (Figure 2).

This second fact, known as Pascal’s principle, points to an important difference between fluid pressure and the pressure exerted by one solid object on another.

Fluid Pressure The pressure \(p \) at depth \(h \) in a fluid of mass density \(\rho \) is

\[
p = \rho gh
\]

The pressure acts at each point on an object in the direction perpendicular to the object’s surface at that point.
Pressure. By definition, is force per unit area.
- The SI unit of pressure is the pascal (Pa) (1 Pa = 1 N/m² = 1 kg/ms²).
- Mass density (mass per unit volume) is denoted \(\rho \) (Greek rho).
- The factor \(\rho g \) is the density by weight, where \(g = 9.8 \text{ m/s}^2 \) is the acceleration due to gravity.

Our first example does not require integration because the pressure \(p \) is constant. In this case, the total force acting on a surface of area \(A \) is

\[
\text{Force} = \text{pressure} \times \text{area} = pA
\]

EXAMPLE 1 Calculate the fluid force on the top and bottom of a box of dimensions \(2 \times 2 \times 5 \text{ m} \), submerged in a pool of water with its top \(3 \text{ m} \) below the water surface (Figure 2). The density of water is \(\rho = 10^3 \text{ kg/m}^3 \).

Solution The top of the box is located at depth \(h = 3 \text{ m} \), so by Eq. (1) with \(g = 9.8 \text{ m/s}^2 \),

\[
\text{Pressure on top } p = \rho gh = 10^3(9.8)(3) = 29,400 \text{ Pa}
\]

The top has area \(A = 4 \text{ m}^2 \) and the pressure is constant, so

\[
\text{Downward force on top } = pA = 29,400 \times 4 = 117,600 \text{ N}
\]

The bottom of the box is at depth \(h = 8 \text{ m} \), so the total force on the bottom is

\[
\text{Upward force on bottom } = pA = \rho gh = 10^3(9.8)(8) \times 4 = 313,600 \text{ N}
\]

In the next example, the pressure varies with depth, and it is necessary to calculate the force as an integral.

EXAMPLE 2 **Calculating Force Using Integration** Calculate the fluid force \(F \) on the side of the box in Example 1.

Solution Since the pressure varies with depth, we divide the side of the box into \(N \) thin horizontal strips (Figure 3). Let \(F_j \) be the force on the \(j \)th strip. The total force \(F \) is equal to the sum of the forces on the strips:

\[
F = F_1 + F_2 + \cdots + F_N
\]

Step 1. Approximate the force on a strip.

We’ll use the variable \(y \) to denote depth, where \(y = 0 \) at the water level and \(y \) is positive in the downward direction. Thus, a larger value of \(y \) denotes greater depth. Each strip is a rectangle of height \(\Delta y = 5/N \) and length 2, so the area of a strip is \(2\Delta y \). The bottom edge of the \(j \)th strip has depth \(y_j = 3 + j \Delta y \).

If \(\Delta y \) is small, the pressure on the \(j \)th strip is nearly constant with value \(\rho g y_j \) (because all points on the strip lie at nearly the same depth \(y_j \)), so we can approximate the force on the \(j \)th strip:

\[
F_j \approx \rho g y_j \times \frac{(2\Delta y)}{\text{Area}} = (\rho g)2y_j \Delta y
\]

Step 2. Approximate total force as a Riemann sum.

\[
F = F_1 + F_2 + \cdots + F_N \approx \rho g \sum_{j=1}^{N} 2y_j \Delta y
\]

The sum on the right is a Riemann sum that converges to the integral \(\rho g \int_3^8 2y \, dy \).

The interval of integration is \([3, 8]\) because the box extends from \(y = 3 \) to \(y = 8 \) (the Riemann sum has been set up with \(y_0 = 3 \) and \(y_N = 8 \)).
Step 3. Evaluate total force as an integral.
As \(\Delta y \) tends to zero, the Riemann sum approaches the integral, and we obtain
\[
F = \rho g \int_3^8 2y \, dy = (\rho g)y^2 \bigg|_3^8 = (10^3)(9.8)(8^2 - 3^2) = 539,000 \text{ N}
\]

Now we’ll add another complication: allowing the widths of the horizontal strips to vary with depth (Figure 4). Denote the width at depth \(y \) by \(f(y) \):
\[
f(y) = \text{width of the side at depth } y
\]
As before, assume that the object extends from \(y = a \) to \(y = b \). Divide the flat side of the object into \(N \) horizontal strips of thickness \(\Delta y = (b - a)/N \). If \(\Delta y \) is small, the \(j \)th strip is nearly rectangular of area \(f(y) \Delta y \). Since the strip lies at depth \(y_j = a + j \Delta y \), the force \(F_j \) on the \(j \)th strip can be approximated:
\[
F_j \approx \rho g y_j \times f(y_j) \Delta y = (\rho g) y_j f(y_j) \Delta y
\]
The force \(F \) is approximated by a Riemann sum that converges to an integral:
\[
F = F_1 + \cdots + F_N \approx \rho g \sum_{j=1}^{N} y_j f(y_j) \Delta y \quad \Rightarrow \quad F = \rho g \int_a^b y f(y) \, dy
\]

Theorem 1 Fluid Force on a Flat Surface Submerged Vertically

The fluid force \(F \) on a flat side of an object submerged vertically in a fluid is
\[
F = \rho g \int_a^b y f(y) \, dy \tag{2}
\]
where \(f(y) \) is the horizontal width of the side at depth \(y \), and the object extends from depth \(y = a \) to depth \(y = b \).

Example 3 Calculate the fluid force \(F \) on one side of an equilateral triangular plate of side 2 m submerged vertically in a tank of oil of mass density \(\rho = 900 \text{ kg/m}^3 \) (Figure 5).

Solution To use Eq. (2), we need to find the horizontal width \(f(y) \) of the plate at depth \(y \). An equilateral triangle of side \(s = 2 \) has height \(\sqrt{3} s/2 = \sqrt{3} \). By similar triangles, \(y / f(y) = \sqrt{3} / 2 \) and thus \(f(y) = 2y / \sqrt{3} \). By Eq. (2),
\[
F = \rho g \int_0^\sqrt{3} y f(y) \, dy = (900)(9.8) \int_0^\sqrt{3} \frac{2}{\sqrt{3}} y^2 \, dy = \left(\frac{17,640}{\sqrt{3}} \right) \frac{y^3}{3} \bigg|_0^\sqrt{3} = 17,640 \text{ N}
\]

The next example shows how to modify the force calculation when the side of the submerged object is inclined at an angle.

Example 4 Force on an Inclined Surface

The side of a dam is inclined at an angle of 45°. The dam has height 700 ft and width 1500 ft as in Figure 6. Calculate the force \(F \) on the dam if the reservoir is filled to the top of the dam. Water has weight density \(w = 62.4 \text{ lb/ft}^3 \).
Solution The vertical height of the dam is 700 ft, so we divide the vertical axis from 0 to 700 into \(N \) subintervals of length \(\Delta y = 700/N \). This divides the face of the dam into \(N \) strips as in Figure 6. By trigonometry, each strip has a width equal to \(\Delta y/\sin(45^\circ) = \sqrt{2}\Delta y \). Therefore,

\[
\text{Area of each strip} = \text{length} \times \text{width} = 1500(\sqrt{2}\Delta y)
\]

As usual, we approximate the force \(F_j \) on the \(j \)th strip. The term \(\rho g \) is equal to weight per unit volume, so we use \(w = 62.4 \text{ lb/ft}^3 \) in place of \(\rho g \):

\[
F_j \approx \text{Pressure } \times \text{Area of strip} = \frac{\rho g}{\Delta y} \times 1500\sqrt{2}\Delta y = wy_j \times 1500\sqrt{2}\Delta y \text{ lb}
\]

\[
F = \sum_{j=1}^{N} F_j \approx \sum_{j=1}^{N} wy_j (1500\sqrt{2}\Delta y) = 1500\sqrt{2} w \sum_{j=1}^{N} y_j \Delta y
\]

This is a Riemann sum for the integral \(1500\sqrt{2} w \int_0^{700} y \, dy \). Therefore,

\[
F = 1500\sqrt{2} w \int_0^{700} y \, dy = 1500\sqrt{2}(62.4)\frac{700^2}{2} \approx 3.24 \times 10^{10} \text{ lb}
\]

9.2 SUMMARY

- If pressure is constant, then force = pressure \times area.
- The fluid pressure at depth \(h \) is equal to \(\rho gh \), where \(\rho \) is the fluid density (mass per unit volume) and \(g = 9.8 \text{ m/s}^2 \) is the acceleration due to gravity. Fluid pressure acts on a surface in the direction perpendicular to the surface. Water has mass density \(1000 \text{ kg/m}^3 \).
- If an object is submerged vertically in a fluid and extends from depth \(y = a \) to \(y = b \), then the total fluid force on a side of the object is

\[
F = \rho g \int_a^b y f(y) \, dy
\]

where \(f(y) \) is the horizontal width of the side at depth \(y \).
- If fluid density is given as weight per unit volume, we use \(w \) in place of \(\rho g \). Water has weight density \(62.4 \text{ lb/ft}^3 \).
9.2 Exercises

Preliminary Questions

1. How is pressure defined?
2. Fluid pressure is proportional to depth. What is the factor of proportionality?
3. When fluid force acts on the side of a submerged object, in which direction does it act?
4. Why is fluid pressure on a surface calculated using thin horizontal strips rather than thin vertical strips?
5. If a thin plate is submerged horizontally, then the fluid force on one side of the plate is equal to pressure times area. Is this true if the plate is submerged vertically?

Exercises

1. A box of height 6 m and square base of side 3 m is submerged in a pool of water. The top of the box is 2 m below the surface of the water.
 (a) Calculate the fluid force on the top and bottom of the box.
 (b) Write a Riemann sum that approximates the fluid force on a side of the box by dividing the side into \(N \) horizontal strips of thickness \(\Delta y = 6/N \).
 (c) To which integral does the Riemann sum converge?
 (d) Compute the fluid force on a side of the box.
2. A square plate that is 2 meters by 2 meters is submerged in water so that its top edge is level with the surface of the water. Calculate the fluid force on one side of it.
3. If a rectangular plate that is 1 meter by 2 meters is dipped into a pool of water so that initially its top edge of length 1 is even with the surface of the water, and then it is lowered so that its top edge is at a depth of 1 m, calculate the increase in fluid force on one side of it.
4. A plate in the shape of an isosceles triangle with base 1 m and height 2 m is submerged vertically in a tank of water so that its vertex touches the surface of the water (Figure 7).
 (a) Show that the width of the triangle at depth \(y \) is \(f(y) = \frac{1}{2}y \).
 (b) Consider a thin strip of thickness \(\Delta y \) at depth \(y \). Explain why the fluid force on a side of this strip is approximately equal to \(\rho g \frac{1}{2} y^2 \Delta y \).
 (c) Write an approximation for the total fluid force \(F \) on a side of the plate as a Riemann sum and indicate the integral to which it converges.
 (d) Calculate \(F \).
5. Repeat Exercise 4, but assume that the top of the triangle is located 3 m below the surface of the water.
6. The plate \(R \) in Figure 8, bounded by the parabola \(y = x^2 \) and \(y = 1 \), is submerged vertically in water (distance in meters).
 (a) Show that the width of \(R \) at height \(y \) is \(f(y) = 2\sqrt{y} \) and the fluid force on a side of a horizontal strip of thickness \(\Delta y \) at height \(y \) is approximately \(\rho g 2y^{1/2}(1 - y) \Delta y \).
7. Let \(F \) be the fluid force on a side of a semicircular plate of radius \(r \) meters, submerged vertically in water so that its diameter is level with the water’s surface (Figure 9).
 (a) Show that the width of the plate at depth \(y \) is \(2\sqrt{r^2 - y^2} \).
 (b) Calculate \(F \) as a function of \(r \) using Eq. (2).
8. Calculate the force on one side of a circular plate with radius 2 m, submerged vertically in a tank of water so that the top of the circle is tangent to the water surface.
9. A semicircular plate of radius \(r \) meters, oriented as in Figure 9, is submerged in water so that its diameter is located at a depth of \(m \) meters. Calculate the fluid force on one side of the plate in terms of \(m \) and \(r \).
10. A plate extending from depth \(y = 2 \) m to \(y = 5 \) m is submerged in a fluid of density \(\rho = 850 \text{ kg/m}^3 \). The horizontal width of the plate at depth \(y \) is \(f(y) = 2(1 + y^2)^{-1} \). Calculate the fluid force on one side of the plate.
11. Figure 10 shows the wall of a dam on a water reservoir. Use the Trapezoidal Rule and the width and depth measurements in the figure to estimate the fluid force on the wall.

12. Calculate the fluid force on a side of the plate in Figure 11(A), submerged in water.

13. Calculate the fluid force on a side of the plate in Figure 11(B), submerged in a fluid of mass density $\rho = 800 \text{ kg/m}^3$.

14. Find the fluid force on the side of the plate in Figure 12, submerged in a fluid of density $\rho = 1200 \text{ kg/m}^3$. The top of the plate is level with the fluid surface. The edges of the plate are the curves $y = x^{1/3}$ and $y = -x^{1/3}$.

15. Let R be the plate in the shape of the region under $y = \sin x$ for $0 \leq x \leq \frac{\pi}{2}$ in Figure 13(A). If R is rotated counterclockwise by 90° and then submerged in a fluid of density 1100 kg/m3 with its top edge level with the surface of the fluid as in (B), find the fluid force on a side of R.

16. In the notation of Exercise 15, calculate the fluid force on a side of the plate R if it is oriented as in Figure 13(A). You may need to use Integration by Parts and trigonometric substitution.

17. Calculate the fluid force on one side of a plate in the shape of region A shown Figure 14. The water surface is at $y = 1$, and the fluid has density $\rho = 900 \text{ kg/m}^3$.

18. Calculate the fluid force on one side of the “infinite” plate B in Figure 14, assuming the fluid has density $\rho = 900 \text{ kg/m}^3$.

19. Figure 15(A) shows a ramp inclined at 30° leading into a swimming pool. Calculate the fluid force on the ramp.

20. Calculate the fluid force on one side of the plate (an isosceles triangle) shown in Figure 15(B).

21. The massive Three Gorges Dam on China’s Yangtze River has height 185 m (Figure 16). Calculate the force on the dam, assuming that the dam is a trapezoid of base 2000 m and upper edge 3000 m, inclined at an angle of 55° to the horizontal (Figure 17).

22. A square plate of side 3 m is submerged in water at an incline of 30° with the horizontal. Calculate the fluid force on one side of the plate if the top edge of the plate lies at a depth of 6 m.
23. The trough in Figure 18 is filled with corn syrup, whose weight density is 90 lb/ft3. Calculate the force on the front side of the trough.

24. Calculate the fluid pressure on one of the slanted sides of the trough in Figure 18 when it is filled with corn syrup as in Exercise 23.

Further Insights and Challenges

25. The end of the trough in Figure 19 is an equilateral triangle of side 3. Assume that the trough is filled with water to height H. Calculate the fluid force on each side of the trough as a function of H and the length l of the trough.

26. A rectangular plate of side ℓ is submerged vertically in a fluid of density w, with its top edge at depth h. Show that if the depth is increased by an amount Δh, then the force on a side of the plate increases by $wA\Delta h$, where A is the area of the plate.

27. Prove that the force on the side of a rectangular plate of area A submerged vertically in a fluid is equal to p_0A, where p_0 is the fluid pressure at the center point of the rectangle.

28. If the density of a fluid varies with depth, then the pressure at depth y is $p(y)$ (which need not equal wy as in the case of constant density). Use Riemann sums to argue that the total force F on the flat side of a submerged object submerged vertically is

$$F = \int_a^b f(y)p(y)\,dy,$$

where $f(y)$ is the width of the side at depth y.

9.3 Center of Mass

Every object has a balance point called the center of mass (Figure 1). When a rigid object such as a hammer is tossed in the air, it may rotate in a complicated fashion, but its center of mass follows the same simple parabolic trajectory as a stone tossed in the air. In this section we use integration to compute the center of mass of a thin plate (also called a lamina) of constant mass density δ.

Consider a seesaw with a linebacker for the Green Bay Packers on one end and a ballerina from the New York City Ballet on the other end, as in Figure 2. Clearly, the balance point \bar{x} must be closer to the linebacker than the ballerina.

As Archimedes realized over 2000 years ago, the mass of each object times its distance to the balance point must be equal. In this case, $m_1d_1 = m_2d_2$. If we use the coordinates given on the number line, this becomes

$$m_1(\bar{x} - x_1) = m_2(x_2 - \bar{x})$$
We solve this for \bar{x}:

\[
\begin{align*}
\text{moment with respect to the } x\text{-axis:} & \quad m_1 \bar{x} - m_1 x_1 = m_2 x_2 - m_2 \bar{x} \\
\text{moment with respect to the } y\text{-axis:} & \quad m_1 \bar{x} + m_2 \bar{x} = m_1 x_1 + m_2 x_2 \\
\text{total moment:} & \quad (m_1 + m_2) \bar{x} = m_1 x_1 + m_2 x_2 \\
\bar{x} & = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}
\end{align*}
\]

In other words, the balance point, called the **center of mass (COM)**, occurs at the coordinate given by taking the sum of the product of each mass times its distance (which is x) from the y-axis, and then dividing this sum by the total mass. These quantities $m_1 x_1$ and $m_2 x_2$ are called **moments**. In this case, the center of mass occurs on the x-axis and the distances are measured to the y-axis.

More generally, the moment of a single particle of mass m with respect to a line L is the product of the particle’s mass m and its directed distance (positive or negative) to the line:

\[
\text{Moment with respect to line } L = m \times \text{directed distance to } L
\]

The particular moments with respect to the x- and y-axes are denoted M_x and M_y. For a particle located at the point (x, y) (Figure 3),

\[
\begin{align*}
M_x & = m y \quad \text{(mass times directed distance to } x\text{-axis)} \\
M_y & = m x \quad \text{(mass times directed distance to } y\text{-axis)}
\end{align*}
\]

Moments are additive: the moment of a system of n particles with coordinates (x_j, y_j) and mass m_j (Figure 4) is the sum

\[
\begin{align*}
M_x & = m_1 y_1 + m_2 y_2 + \cdots + m_n y_n \\
M_y & = m_1 x_1 + m_2 x_2 + \cdots + m_n x_n
\end{align*}
\]

The COM is the point $P = (\bar{x}, \bar{y})$ with coordinates

\[
\begin{align*}
\bar{x} & = \frac{M_y}{M} \\
\bar{y} & = \frac{M_x}{M}
\end{align*}
\]

where $M = m_1 + m_2 + \cdots + m_n$ is the total mass of the system.

Example 1 Find the COM of the system of three particles in Figure 5, having masses 2, 4, and 8 at locations $(0, 2)$, $(3, 1)$, and $(6, 4)$.

Solution The total mass is $M = 2 + 4 + 8 = 14$ and the moments are

\[
\begin{align*}
M_x & = m_1 y_1 + m_2 y_2 + m_3 y_3 = 2 \cdot 2 + 4 \cdot 1 + 8 \cdot 4 = 40 \\
M_y & = m_1 x_1 + m_2 x_2 + m_3 x_3 = 2 \cdot 0 + 4 \cdot 3 + 8 \cdot 6 = 60
\end{align*}
\]

Therefore, $\bar{x} = \frac{40}{14} = \frac{30}{7}$ and $\bar{y} = \frac{60}{14} = \frac{30}{7}$. The COM is $\left(\frac{30}{7}, \frac{30}{7}\right)$.

CAUTION The notation is potentially confusing: M_x is defined in terms of the distance to the x-axis (given by y-coordinates), and M_y is defined in terms of the distance to the y-axis (given by x-coordinates).
In this section, we restrict our attention to thin plates of constant mass density (also called “uniform density”). COM computations when mass density is not constant require multiple integration and are covered in Section 16.5.

Laminas (Thin Plates)

Now consider a lamina (thin plate) of constant mass density \(\delta \) occupying the region under the graph of \(f \) over an interval \([a, b]\), where \(f \) is continuous and \(f(x) \geq 0 \) (Figure 6). In our calculations, we will use the principle of additivity of moments mentioned above for point masses:

If a region is decomposed into smaller, nonoverlapping regions, then the moment of the region is the sum of the moments of the smaller regions.

To compute the moment with respect to the \(y \)-axis, \(M_y \), we begin, as usual, by dividing \([a, b]\) into \(N \) subintervals of width \(\Delta x = (b - a)/N \) and endpoints \(x_j = a + j \Delta x \). This divides the lamina into \(N \) vertical strips (Figure 7). If \(\Delta x \) is small, the \(j \)th strip is nearly rectangular of area \(f(x_j) \Delta x \) and mass \(\delta f(x_j) \Delta x \). Since all points in the strip lie at approximately the same distance \(x_j \) from the \(y \)-axis, the moment \(M_{y,j} \) of the \(j \)th strip is approximately

\[
M_{y,j} \approx (\text{mass}) \times (\text{directed distance to } y\text{-axis}) = (\delta f(x_j) \Delta x) x_j
\]

By additivity of moments,

\[
M_y = \sum_{j=1}^{N} M_{y,j} \approx \delta \sum_{j=1}^{N} x_j f(x_j) \Delta x
\]

This is a Riemann sum whose value approaches \(\delta \int_{a}^{b} xf(x) \, dx \) as \(N \to \infty \), and thus,

\[
M_y = \delta \int_{a}^{b} xf(x) \, dx
\]

More generally, if the lamina occupies the region between the graphs of two functions \(f_1 \) and \(f_2 \) over \([a, b]\), where \(f_1(x) \geq f_2(x) \), then

\[
M_y = \delta \int_{a}^{b} x(\text{length of vertical cut}) \, dx = \delta \int_{a}^{b} x(f_1(x) - f_2(x)) \, dx
\]

Think of the lamina as made up of vertical strips of length \(f_1(x) - f_2(x) \) at distance \(x \) from the \(y \)-axis (Figure 8).

We can compute the \(x \)-moment by dividing the lamina into horizontal strips, but this requires us to describe the lamina as a region between two curves \(x = g_1(y) \) and
The total mass of the lamina is $M = \delta A$, where A is the area of the lamina:

$$M = \delta A = \int_a^b (f_1(x) - f_2(x)) \, dx \quad \text{or} \quad M = \delta \int_c^d (g_1(y) - g_2(y)) \, dy$$

The center-of-mass coordinates are the moments divided by the total mass:

$$\bar{x} = \frac{M_y}{M}, \quad \bar{y} = \frac{M_x}{M}$$

The lamina will balance at the point (\bar{x}, \bar{y}) as in Figure 10.

Example 2 Find the moments and COM of the lamina of uniform density δ occupying the region underneath the graph of $f(x) = x^2$ and above the x-axis for $0 \leq x \leq 2$.

Solution First, compute M_y using Eq. (1):

$$M_y = \delta \int_0^2 x f(x) \, dx = \delta \int_0^2 x^3 \, dx = \delta \left[\frac{x^4}{4} \right]_0^2 = 4\delta$$

Then compute M_x using Eq. (2), describing the lamina as the region between $x = \sqrt{y}$ and $x = 2$ over the interval $[0, 4]$ along the y-axis (Figure 11). By Eq. (2),

$$M_x = \delta \int_0^4 y (g_1(y) - g_2(y)) \, dy = \delta \int_0^4 y (2 - \sqrt{y}) \, dy = \delta \left[y^2 - \frac{2}{3} y^{5/2} \right]_0^4 = \delta \left(16 - \frac{32}{5} \right) = \frac{16}{5}\delta$$

The plate has area $A = \int_0^2 x^2 \, dx = \frac{8}{3}$ and total mass $M = \frac{8}{3}\delta$. Therefore,

$$\bar{x} = \frac{M_y}{M} = \frac{4\delta}{\frac{8}{3}\delta} = \frac{3}{2}, \quad \bar{y} = \frac{M_x}{M} = \frac{\frac{16}{5}\delta}{\frac{8}{3}\delta} = \frac{6}{5}$$

See Figure 12.

Conceptual Insight The COM of a lamina of constant mass density δ is also called the centroid. The centroid depends on the shape of the lamina, but not on its mass density because the factor δ cancels in the ratios M_y/M and M_x/M. In particular, in calculating the centroid, we can take $\delta = 1$. When mass density is not constant, the COM depends on both shape and mass density. In this case, the COM is computed using multiple integration (Section 16.5).

A drawback of Eq. (2) for M_x is that it requires integration along the y-axis, which may cause difficulties if the lamina is defined in terms of functions of x. Fortunately, there is a second formula for M_x as an integral along the x-axis. As before, divide the region into
Because the shaded strip is nearly rectangular, its COM has an approximate height of \(\frac{1}{2} f(x_j) \).

![Figure 13](image)

FIGURE 13 Because the shaded strip is nearly rectangular, its COM has an approximate height of \(\frac{1}{2} f(x_j) \).

Using Integration by Parts, we get

\[
M_x = \frac{1}{2} \int_{-3}^{3} f(x)^2 \, dx = \frac{1}{2} \int_{-3}^{3} e^{2x} \, dx = \frac{1}{4} e^{2x} \bigg|_1^3 = \frac{e^6 - e^2}{4}
\]

The total mass is

\[
M = \int_{-1}^{3} e^x \, dx = (e^3 - e)
\]

The centroid has coordinates

\[
\bar{x} = \frac{M_y}{M} = \frac{2e^3}{e^3 - e} \approx 2.313, \quad \bar{y} = \frac{M_x}{M} = \frac{e^6 - e^2}{4(e^3 - e)} \approx 5.701
\]

THEOREM 1 Symmetry Principle
If a lamina is symmetric with respect to a line, then its centroid lies on that line.

EXAMPLE 4 Using Symmetry
Find the centroid of a circular half-disk of radius 3.

Solution Symmetry cuts our work in half. The half-disk is symmetric with respect to the y-axis, so the centroid lies on the y-axis, and hence \(\bar{x} = 0 \). It remains to calculate \(M_x \) and \(\bar{y} \). The boundary of the half-disk is the graph of \(f(x) = \sqrt{9 - x^2} \) (Figure 16). By Eq. (3) with \(\delta = 1 \),

\[
M_x = \frac{1}{2} \int_{-3}^{3} f(x)^2 \, dx = \frac{1}{2} \int_{-3}^{3} (9 - x^2) \, dx = \frac{1}{2} \left(9x - \frac{1}{3} x^3 \right) \bigg|_{-3}^{3} = 9 - (-9) = 18
\]

The half-disk has area (and mass) equal to \(A = \frac{1}{2} \pi (3^2) = 9 \pi / 2 \), so

\[
\bar{y} = \frac{M_x}{M} = \frac{18}{9 \pi / 2} = \frac{4 \pi}{9} \approx 1.27
\]

EXAMPLE 3 Find the centroid of the shaded region in Figure 14.

Solution The centroid does not depend on \(\delta \), so we may set \(\delta = 1 \) and apply Eqs. (1) and (3) with \(f(x) = e^x \):

\[
M_x = \frac{1}{2} \int_{1}^{3} f(x)^2 \, dx = \frac{1}{2} \int_{1}^{3} e^{2x} \, dx = \frac{1}{4} e^{2x} \bigg|_1^3 = \frac{e^6 - e^2}{4}
\]

The region \(\text{between} \) the graphs of functions \(f_1 \) and \(f_2 \) where \(f_1(x) \geq f_2(x) \geq 0 \) is the difference of the moments corresponding to \(f_1(x) \) and \(f_2(x) \), by the principle of additivity of moments, so we obtain the alternative formulas

\[
M_x = \frac{1}{2} \int_{a}^{b} f(x)^2 \, dx \quad \text{or} \quad M_x = \frac{1}{2} \int_{a}^{b} (f_1(x)^2 - f_2(x)^2) \, dx
\]

EXAMPLE 4 Using Symmetry
Find the centroid of a circular half-disk of radius 3.

Solution Symmetry cuts our work in half. The half-disk is symmetric with respect to the y-axis, so the centroid lies on the y-axis, and hence \(\bar{x} = 0 \). It remains to calculate \(M_x \) and \(\bar{y} \). The boundary of the half-disk is the graph of \(f(x) = \sqrt{9 - x^2} \) (Figure 16). By Eq. (3) with \(\delta = 1 \),

\[
M_x = \frac{1}{2} \int_{-3}^{3} f(x)^2 \, dx = \frac{1}{2} \int_{-3}^{3} (9 - x^2) \, dx = \frac{1}{2} \left(9x - \frac{1}{3} x^3 \right) \bigg|_{-3}^{3} = 9 - (-9) = 18
\]

The half-disk has area (and mass) equal to \(A = \frac{1}{2} \pi (3^2) = 9 \pi / 2 \), so

\[
\bar{y} = \frac{M_x}{M} = \frac{18}{9 \pi / 2} = \frac{4 \pi}{9} \approx 1.27
\]
Example 5 Using Additivity and Symmetry Find the centroid of the region \(R \) in Figure 17.

Solution We set \(\delta = 1 \) because we are computing a centroid. The region \(R \) is symmetric with respect to the \(y \)-axis, so we know in advance that \(\bar{x} = 0 \). To find \(\bar{y} \), we compute the moment \(M_x \).

Step 1. Use additivity of moments.

Let \(M_x^{\text{triangle}} \) and \(M_x^{\text{circle}} \) be the \(x \)-moments of the triangle and the circle. Then

\[
M_x = M_x^{\text{triangle}} + M_x^{\text{circle}}
\]

Step 2. Moment of the circle.

To save work, we use the fact that the centroid of the circle is located at the center \((0, 5)\) by symmetry. Thus, \(\bar{y}^{\text{circle}} = 5 \) and we can solve for the moment:

\[
\bar{y}^{\text{circle}} = \frac{M_x^{\text{circle}}}{M_x} = \frac{M_x^{\text{circle}}}{4\pi} = 5 \quad \Rightarrow \quad M_x^{\text{circle}} = 20\pi
\]

Here, the mass of the circle is its area \(M^{\text{circle}} = \pi(2^2) = 4\pi \) (since \(\delta = 1 \)).

Step 3. Moment of a triangle.

Let’s compute \(M_x^{\text{triangle}} \) for an arbitrary triangle of height \(h \) and base \(b \) (Figure 18). Let \(\ell(y) \) be the width of the triangle at height \(y \). By similar triangles,

\[
\frac{\ell(y)}{h - y} = \frac{b}{h}
\]

By Eq. (2),

\[
M_x^{\text{triangle}} = \int_0^h y\ell(y) \, dy = \int_0^h y \left(b - \frac{b}{h} y \right) \, dy = \left(\frac{by^2}{2} - \frac{by^3}{3h} \right) \bigg|_0^h = \frac{bh^2}{6}
\]

In our case, \(b = 4 \), \(h = 3 \), and \(M_x^{\text{triangle}} = \frac{4 \cdot 3^2}{6} = 6 \).

Step 4. Computation of \(\bar{y} \).

\[
M_x = M_x^{\text{triangle}} + M_x^{\text{circle}} = 6 + 20\pi
\]

The triangle has mass \(\frac{1}{2} \cdot 4 \cdot 3 = 6 \), and the circle has mass \(4\pi \), so \(R \) has mass \(M = 6 + 4\pi \) and

\[
\bar{y} = \frac{M_x}{M} = \frac{6 + 20\pi}{6 + 4\pi} \approx 3.71
\]

We end this section with the Theorem of Pappus, attributed to Pappus of Alexandria, a mathematician of the fourth century BCE.

Theorem 2 Theorem of Pappus Let \(R \) be a region in the plane of area \(A \) that we rotate about an axis that is disjoint from \(R \). Then the volume of the resulting solid is the product of \(A \) with the distance traveled by the centroid of \(R \).

Proof Since we assume a uniform density of 1, the area \(A \) of the region is equal to the mass \(M \). We will only prove the theorem in the special case that we have a region bounded by \(y = f_1(x) \) and \(y = f_2(x) \) for \(a \leq x \leq b \) and \(f_1(x) \geq f_2(x) \geq 0 \) and we are rotating about the \(x \)-axis. In this case, we know that the volume is given by

\[
V = \pi \int_a^b (f_1(x)^2 - f_2(x)^2) \, dx = 2\pi \left(\frac{1}{2} \int_a^b (f_1(x)^2 - f_2(x)^2) \, dx \right)
\]

\[
= 2\pi M_x = A \cdot 2\pi \frac{M_x}{A} = A \cdot 2\pi \bar{x}
\]
EXAMPLE 6 Find the formula for the volume of the solid torus obtained by rotating the disk of radius \(a\) centered at \((b, 0)\) about the \(y\)-axis, where \(a < b\), as in Figure 19.

Solution The centroid of the disk occurs at its center. So, \((\bar{x}, \bar{y}) = (b, 0)\). The Theorem of Pappus then says that

\[
V = A \cdot 2\pi \bar{x} = \pi a^2 2\pi b = 2\pi^2 a^2 b \quad \square
\]

9.3 SUMMARY

- The moments of a system of particles of mass \(m_j\) located at \((x_j, y_j)\) are

\[
M_x = m_1 y_1 + \cdots + m_n y_n, \quad M_y = m_1 x_1 + \cdots + m_n x_n
\]

The center of mass (COM) has coordinates

\[
\bar{x} = \frac{M_y}{M} \quad \text{and} \quad \bar{y} = \frac{M_x}{M}
\]

where \(M = m_1 + \cdots + m_n\).

- Lamina (thin plate) of constant mass density \(\delta\) [region under the graph of \(f\) where \(f(x) \geq 0\), or between the graphs of \(f_1\) and \(f_2\) where \(f_1(x) \geq f_2(x)\)];

\[
M_y = \delta \int_a^b x f(x) \, dx \quad \text{or} \quad M_y = \delta \int_a^b x (f_1(x) - f_2(x)) \, dx
\]

- There are two ways to compute the \(x\)-moment \(M_x\). If the lamina occupies the region between the graph of \(x = g(y)\) and the \(y\)-axis where \(g(y) \geq 0\), or between the graphs of \(x = g_1(y)\) and \(x = g_2(y)\) where \(g_1(y) \geq g_2(y)\), then

\[
M_x = \delta \int_c^d y g(y) \, dy \quad \text{or} \quad M_x = \delta \int_c^d y (g_1(y) - g_2(y)) \, dy
\]

- Alternative (often more convenient) formula for \(M_x\):

\[
M_x = \frac{1}{2} \delta \int_a^b (f(x))^2 \, dx \quad \text{or} \quad M_x = \frac{1}{2} \delta \int_a^b (f_1(x))^2 - (f_2(x))^2 \, dx
\]

- The total mass of the lamina is \(M = \delta \int_a^b (f_1(x) - f_2(x)) \, dx\). The coordinates of the center of mass (also called the centroid) are

\[
\bar{x} = \frac{M_y}{M}, \quad \bar{y} = \frac{M_x}{M}
\]
SECTION 9.3 Center of Mass 483

- Additivity: If a region is decomposed into smaller nonoverlapping regions, then the moment of the region is the sum of the moments of the smaller regions.
- Symmetry Principle: If a lamina of constant mass density is symmetric with respect to a given line, then the center of mass (centroid) lies on that line.
- The Theorem of Pappus: If a lamina is rotated about a disjoint axis, then the volume of the resulting solid of revolution is the area of the lamina times the distance traveled by the centroid.

9.3 EXERCISES

Preliminary Questions

1. What are the x- and y-moments of a lamina whose center of mass is located at the origin?

2. A thin plate has mass 3. What is the x-moment of the plate if its center of mass has coordinates (2, 7)?

3. The center of mass of a lamina of total mass 5 has coordinates (2, 1). What are the lamina’s x- and y-moments?

Exercises

1. Four particles are located at points (1, 1), (1, 2), (4, 0), (3, 1), (a) Find the moments M_x and M_y and the center of mass of the system, assuming that the particles have equal mass m.
 (b) Find the center of mass of the system, assuming the particles have masses 3, 2, 5, and 7, respectively.

2. Find the center of mass for the system of particles of masses 4, 2, 5, 1 located at (1, 2), (−3, 2), (2, −1), (4, 0).

3. Point masses of equal size are placed at the vertices of the triangle with coordinates (a, 0), (b, 0), and (0, c). Show that the center of mass of the system of masses has coordinates \(\left(\frac{1}{2}(a + b), \frac{1}{2}c \right) \).

4. Point masses of mass m_1, m_2, and m_3 are placed at the points (−1, 0), (3, 0), and (0, 4).
 (a) Suppose that $m_1 = 6$. Find m_2 such that the center of mass lies on the y-axis.
 (b) Suppose that $m_1 = 6$ and $m_2 = 4$. Find the value of m_3 such that \(\gamma = 2 \).

5. Sketch the lamina S of constant density $\rho = 3$ g/cm2 occupying the region beneath the graph of \(y = x^2 \) for $0 \leq x \leq 3$.
 (a) Use Eqs. (1) and (2) to compute M_x and M_y.
 (b) Find the area and the center of mass of S.

6. Use Eqs. (1) and (3) to find the moments and center of mass of the lamina S of constant density $\rho = 2$ g/cm2 occupying the region between \(y = x^2 \) and \(y = 9x \) over [0, 3]. Sketch S, indicating the location of the center of mass.

7. Find the moments and center of mass of the lamina of uniform density ρ occupying the region underneath \(y = x^3 \) for $0 \leq x \leq 2$.

8. Calculate M_x (assuming $\rho = 1$) for the region underneath the graph of \(y = 1 - x^2 \) for $0 \leq x \leq 1$ in two ways, first using Eq. (2) and then using Eq. (3).

9. Let T be the triangular lamina in Figure 21.
 (a) Show that the horizontal cut at height y has length $4 - \frac{2}{3}y$ and use Eq. (2) to compute M_y (with $\rho = 1$).
 (b) Use the Symmetry Principle to show that $M_y = 0$ and find the center of mass.

4. Explain how the Symmetry Principle is used to conclude that the centroid of a rectangle is the center of the rectangle.

5. Give an example of a plate such that its center of mass does not occur at any point on the plate.

6. Draw a plate such that its center of mass occurs on its boundary. (You do not need to verify this fact. It should just be believable from the drawing.)

In Exercises 10–17, find the centroid of the region lying underneath the graph of the function over the given interval.

10. $f(x) = 6 - 2x$, \([0, 3] \)

11. $f(x) = \sqrt{x}$, \([1, 4] \)

12. $f(x) = x^3$, \([0, 1] \)

13. $f(x) = 9 - x^2$, \([0, 3] \)

14. $f(x) = (1 + x^2)^{-1/2}$, \([0, 3] \)

15. $f(x) = e^{-x}$, \([0, 4] \)

16. $f(x) = \ln x$, \([1, 2] \)

17. $f(x) = \sin x$, \([0, \pi] \)

18. Calculate the moments and center of mass of the lamina occupying the region between the curves \(y = x \) and \(y = x^2 \) for $0 \leq x \leq 1$.

19. Sketch the region between \(y = x + 4 \) and \(y = 2 - x \) for $0 \leq x \leq 2$. Using symmetry, explain why the centroid of the region lies on the line $y = 3$. Verify this by computing the moments and the centroid.

In Exercises 20–25, find the centroid of the region lying between the graphs of the functions over the given interval.

20. $y = x$, $y = \sqrt{x}$, \([0, 1] \)

21. $y = x^2$, $y = \sqrt{x}$, \([0, 1] \)

22. $y = x^{-1}$, $y = 2 - x$, \([1, 2] \)

23. $y = e^x$, $y = 1$, \([0, 1] \)

24. $y = \ln x$, $y = x - 1$, \([1, 3] \)

25. $y = \sin x$, $y = \cos x$, \([0, \pi/4] \)

26. Sketch the region enclosed by $y = x + 1$ and $y = (x - 1)^2$ and find its centroid.

27. Sketch the region enclosed by $y = 0$, $y = (x + 1)^3$, and $y = (1 - x)^3$, and find its centroid.
In Exercises 28–32, find the centroid of the region.

28. Top half of the ellipse \(\left(\frac{x}{2} \right)^2 + \left(\frac{y}{4} \right)^2 = 1 \)

29. Top half of the ellipse \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \) for arbitrary \(a, b > 0 \)

30. Semicircle of radius \(r \) with center at the origin

31. Quarter of the unit circle lying in the first quadrant

32. Region between \(y = x(a - x) \) and the \(x \)-axis for \(a > 0 \)

33. Find the centroid of the shaded region of the semicircle of radius \(r \) (Figure 22). What is the centroid when \(r = 1 \) and \(h = \frac{1}{2} \)? Hint: Use geometry rather than integration to show that the area of the region is \(r^2 \sin^{-1}\left(\sqrt{1 - h^2/r^2} \right) - h\sqrt{r^2 - h^2} \).

34. Sketch the region between \(y = x^m \) and \(y = x^n \) for \(0 \leq x \leq 1 \), where \(m > n \geq 0 \), and find the COM of the region. Find a pair \((n, m) \) such that the COM lies outside the region.

35. Find the formula for the volume of a right circular cone of height \(H \) and radius \(R \) using the Theorem of Pappus as applied to the triangle bounded by the \(x \)-axis, the \(y \)-axis, and the line \(y = \frac{H}{R}x + H \), rotated about the \(y \)-axis.

36. Use the Theorem of Pappus to find the centroid of the half-disk bounded by \(y = \sqrt{R^2 - x^2} \) and the \(x \)-axis.

In Exercises 37–39, use the additivity of moments to find the COM of the region.

37. Isosceles triangle of height 2 on top of a rectangle of base 4 and height 3 (Figure 23)

38. An ice cream cone consisting of a semicircle on top of an equilateral triangle of side 6 (Figure 24)

39. Three-quarters of the unit circle (remove the part in the fourth quadrant)

40. Let \(S \) be the lamina of mass density \(\rho = 1 \) obtained by removing a circle of radius \(r \) from the circle of radius \(2r \) shown in Figure 25. Let \(M_y^S \) and \(M_x^S \) denote the moments of \(S \). Similarly, let \(M_y^{big} \) and \(M_x^{small} \) be the \(y \)-moments of the larger and smaller circles.

 (a) Use the Symmetry Principle to show that \(M_y^S = 0 \).

 (b) Show that \(M_y^S = M_y^{big} - M_y^{small} \) using the additivity of moments.

 (c) Find \(M_y^{big} \) and \(M_y^{small} \) using the fact that the COM of a circle is its center. Then compute \(M_y^S \) using (b).

 (d) Determine the COM of \(S \).

41. Find the COM of the laminas in Figure 26 obtained by removing squares of side 2 from a square of side 8.

Further Insights and Challenges

42. A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Show that the centroid of a triangle lies on each of its medians, at a distance two-thirds down from the vertex. Then use this fact to prove that the three medians intersect at a single point. \(\text{Hint:} \) Simplify the calculation by assuming that one vertex lies at the origin and another on the \(x \)-axis.

43. Let \(P \) be the COM of a system of two weights with masses \(m_1 \) and \(m_2 \) separated by a distance \(d \). Prove Archimedes’s Law of the (weightless) Lever: \(P \) is the point on a line between the two weights such that \(m_1L_1 = m_2L_2 \), where \(L_j \) is the distance from mass \(f \) to \(P \).

44. Find the COM of a system of two weights of masses \(m_1 \) and \(m_2 \) connected by a lever of length \(d \) whose mass density \(\rho \) is uniform. \(\text{Hint:} \) The moment of the system is the sum of the moments of the weights and the lever.

45. \(\text{Symmetry Principle} \) Let \(R \) be the region under the graph of \(y = f(x) \) over the interval \([-a, a]\), where \(f(x) \geq 0 \). Assume that \(R \) is symmetric with respect to the \(y \)-axis.

 (a) Explain why \(y = f(x) \) is even—that is, why \(f(x) = f(-x) \).

 (b) Show that \(y = xf(x) \) is an odd function.
(e) Use (b) to prove that \(M_y = 0 \).

(d) Prove that the COM of \(R \) lies on the \(y \)-axis (a similar argument applies to symmetry with respect to the \(x \)-axis).

46. Prove directly that Eqs. (2) and (3) are equivalent in the following situation. Let \(f \) be a positive decreasing function on \([0, b]\) such that \(f(b) = 0 \). Set \(d = f(0) \) and \(g(y) = f^{-1}(y) \). Show that

\[
\frac{1}{2} \int_0^b f(x)^2 \, dx = \int_0^d yg(y) \, dy
\]

Hint: First apply the substitution \(y = f(x) \) to the integral on the left and observe that \(dx = g'(y) \, dy \). Then apply Integration by Parts.

47. Let \(R \) be a lamina of uniform density submerged in a fluid of density \(w \) (Figure 27). Prove the following law: The fluid force on one side of \(R \) is equal to the area of \(R \) times the fluid pressure on the centroid.

Hint: Let \(g(y) \) be the horizontal width of \(R \) at depth \(y \). Express both the fluid pressure [Eq. (2) in Section 9.2] and \(y \)-coordinate of the centroid in terms of \(g(y) \).

9.4 Taylor Polynomials

Many functions are difficult to work with. For instance, \(\sin(x^2) \) cannot be integrated using elementary functions. Nor can \(e^{-x^2} \). In fact, even simple functions like \(\sin x, \cos x, e^x \) and \(\ln x \) can only be evaluated exactly at relatively few values of \(x \) and otherwise they must be numerically approximated. On the other hand, polynomials such as \(f(x) = 3x^4 - 7x^3 + 2x - 4 \) can be easily differentiated and integrated. They can be evaluated at any value of \(x \) using just multiplication and addition. In this section, we introduce a method for approximating a function \(f \) by a polynomial, that behaves similarly to the way \(f \) behaves.

We have done this before. In Section 4.1, we used the linearization \(L(x) = f(a) + f'(a)(x-a) \) to approximate \(f(x) \) near a point \(x = a \):

\[
f(x) \approx f(a) + f'(a)(x-a)
\]

We refer to \(L(x) \) as a “first-order” approximation to \(f(x) \) at \(x = a \) because \(f(x) \) and \(L(x) \) have the same value and the same first derivative at \(x = a \) (Figure 1):

\[
L(a) = f(a) \quad \text{and} \quad L'(a) = f'(a)
\]

A first-order approximation is useful only in a small interval around \(x = a \). In this section, we learn how to achieve greater accuracy over larger intervals using higher order approximations (Figure 2). These higher order approximations will simply be polynomials with higher powers. Ultimately, we will see that the errors in utilizing these higher-order approximations are determined by integrals.

FIGURE 1 The linear approximation \(L(x) \) is a first-order approximation to \(f \).

FIGURE 2 A second-order approximation is more accurate over a larger interval.

In what follows, assume that \(f \) is defined on an open interval \(I \) and that all higher derivatives \(f^{(k)} \) exist on \(I \). Let \(a \in I \). We say that two functions \(f \) and \(g \) **agree to order** \(n \) at \(x = a \) if their derivatives up to order \(n \) at \(x = a \) are equal:

\[
f(a) = g(a), \quad f'(a) = g'(a), \quad f''(a) = g''(a), \quad \ldots, \quad f^{(n)}(a) = g^{(n)}(a)
\]

We also say that \(g \) “approximates \(f \) to order \(n \)” at \(x = a \).
Define the nth **Taylor polynomial** T_n of f centered at $x = a$ as follows:

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

The first few Taylor polynomials are

- $T_0(x) = f(a)$
- $T_1(x) = f(a) + f'(a)(x - a)$
- $T_2(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2$
- $T_3(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2 + \frac{1}{6}f'''(a)(x - a)^3$

Note that T_1 is the linearization of f at a. Note also that T_n is obtained from T_{n-1} by adding on a term of degree n:

$$T_n(x) = T_{n-1}(x) + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

The next theorem justifies our definition of T_n.

Theorem 1 The polynomial T_n centered at a agrees with f to order n at $x = a$, and it is the only polynomial of degree at most n with this property.

The verification of Theorem 1 is left to the exercises (Exercises 70–71), but we’ll illustrate the idea by checking that T_2 agrees with f to order $n = 2$:

- $T_2(x) = f(a) + f'(a)(x - a) + \frac{1}{2}f''(a)(x - a)^2$,
- $T_2(a) = f(a)$

This shows that the value and the derivatives of order up to $n = 2$ at $x = a$ are equal.

Before proceeding to the examples, we write T_n in summation notation:

$$T_n(x) = \sum_{j=0}^{n} \frac{f^{(j)}(a)}{j!}(x - a)^j$$

By convention, we regard f as the zeroth derivative, and thus $f^{(0)}$ is f itself. When $a = 0$, T_n is also called the nth **Maclaurin polynomial**.

Example 1 Maclaurin Polynomials for $f(x) = e^x$ Plot the third and fourth Maclaurin polynomials for $f(x) = e^x$. Compare with the linear approximation.

Solution All higher derivatives coincide with f itself: $f^{(k)}(x) = e^x$. Therefore,

- $f(0) = f'(0) = f''(0) = f'''(0) = f^{(4)}(0) = e^0 = 1$
The third Maclaurin polynomial (the case \(a = 0 \)) is

\[
T_3(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + \frac{1}{3!}f'''(0)x^3 = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3
\]

We obtain \(T_4(x) \) by adding the term of degree 4 to \(T_3(x) \):

\[
T_4(x) = T_3(x) + \frac{1}{4!}f^{(4)}(0)x^4 = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \frac{1}{24}x^4
\]

Figure 3 shows that \(T_3 \) and \(T_4 \) approximate \(f(x) = e^x \) much more closely than the linear approximation \(T_1 \) on an interval around \(a = 0 \). Higher-degree Maclaurin polynomials would provide even better approximations on larger intervals.

\[\square\]

Example 2 Computing Taylor Polynomials

Compute the Taylor polynomial \(T_4 \) centered at \(a = 3 \) for \(f(x) = \sqrt{x + 1} \).

Solution First evaluate the derivatives up to degree 4 at \(a = 3 \):

\[
\begin{align*}
f(x) &= (x + 1)^{1/2}, & f(3) &= 2 \\
f'(x) &= \frac{1}{2}(x + 1)^{-1/2}, & f'(3) &= \frac{1}{4} \\
f''(x) &= -\frac{1}{4}(x + 1)^{-3/2}, & f''(3) &= -\frac{1}{32} \\
f'''(x) &= \frac{3}{8}(x + 1)^{-5/2}, & f'''(3) &= \frac{3}{256} \\
f^{(4)}(x) &= -\frac{15}{16}(x + 1)^{-7/2}, & f^{(4)}(3) &= -\frac{15}{2048}
\end{align*}
\]

Then compute the coefficients \(\frac{f^{(j)}(3)}{j!} \):

\[
\begin{align*}
\text{Constant term} &= f(3) = 2 \\
\text{Coefficient of } (x - 3)^1 &= f'(3) = \frac{1}{4} \\
\text{Coefficient of } (x - 3)^2 &= \frac{f''(3)}{2!} = -\frac{1}{32} \cdot \frac{1}{2!} = -\frac{1}{64} \\
\text{Coefficient of } (x - 3)^3 &= \frac{f'''(3)}{3!} = \frac{3}{256} \cdot \frac{1}{3!} = \frac{1}{512} \\
\text{Coefficient of } (x - 3)^4 &= \frac{f^{(4)}(3)}{4!} = -\frac{15}{2048} \cdot \frac{1}{4!} = -\frac{5}{16384}
\end{align*}
\]

The Taylor polynomial \(T_4 \) centered at \(a = 3 \) is (see Figure 4):

\[
T_4(x) = 2 + \frac{1}{4} (x - 3) - \frac{1}{64} (x - 3)^2 + \frac{1}{512} (x - 3)^3 - \frac{5}{16384} (x - 3)^4
\]

\[\square\]

Example 3 Finding a General Formula for \(T_n \)

Find the Taylor polynomials \(T_n \) of \(f(x) = \ln x \) centered at \(a = 1 \).

Solution For \(f(x) = \ln x \), the constant term of \(T_n \) at \(a = 1 \) is zero because \(f(1) = \ln 1 = 0 \). Next, we compute the derivatives:

\[
\begin{align*}
f'(x) &= x^{-1}, & f''(x) &= -x^{-2}, & f'''(x) &= 2x^{-3}, & f^{(4)}(x) &= -3 \cdot 2x^{-4}
\end{align*}
\]
Similarly, \(f^{(5)}(x) = 4 \cdot 3 \cdot 2x^{-5} \). The general pattern is that \(f^{(k)}(x) \) is a multiple of \(x^{-k} \), with a coefficient \(\pm(k - 1)! \) that alternates in sign:

\[
f^{(k)}(x) = (-1)^{k-1}(k-1)!x^{-k}
\]

The coefficient of \((x - 1)^k \) in \(T_n \) is

\[
\frac{f^{(k)}(1)}{k!} = \frac{(-1)^{k-1}(k-1)!}{k!} = \frac{(-1)^{k-1}}{k} \quad \text{(for } k \geq 1\text{)}
\]

Thus, the coefficients for \(k \geq 1 \) form a sequence \(1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots \), and

\[
T_n(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3 - \cdots + (-1)^{n-1}\frac{1}{n}(x - 1)^n
\]

EXAMPLE 4 Cosine Find the Maclaurin polynomials of \(f(x) = \cos x \).

Solution The derivatives form a repeating pattern of period 4:

\[
f(x) = \cos x, \quad f'(x) = -\sin x, \quad f''(x) = -\cos x, \quad f'''(x) = \sin x,
\]

\[
f^{(4)}(x) = \cos x, \quad f^{(5)}(x) = -\sin x, \quad \ldots
\]

In general, \(f^{(j+4)}(x) = f^{(j)}(x) \). The derivatives at \(x = 0 \) also form a pattern:

<table>
<thead>
<tr>
<th>(f^{(0)})</th>
<th>(f^{(1)})</th>
<th>(f^{(2)})</th>
<th>(f^{(3)})</th>
<th>(f^{(4)})</th>
<th>(f^{(5)})</th>
<th>(f^{(6)})</th>
<th>(f^{(7)})</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Therefore, the coefficients of the odd powers \(x^{2k+1} \) are zero, and the coefficients of the even powers \(x^{2k} \) alternate in sign with value \((-1)^{k}/(2k)! \):

\[
T_0(x) = T_1(x) = 1, \quad T_2(x) = T_3(x) = 1 - \frac{1}{2!}x^2
\]

\[
T_4(x) = T_5(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!}
\]

\[
T_{2n}(x) = T_{2n+1}(x) = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots + (-1)^n\frac{1}{(2n)!}x^{2n}
\]

Figure 5 shows that as \(n \) increases, \(T_n \) approximates \(f(x) = \cos x \) well over larger and larger intervals, but outside this interval, the approximation fails.

EXAMPLE 5 How Far Is the Horizon? Valerie is at the beach, looking out over the ocean (Figure 6). How far can she see? Use Maclaurin polynomials to estimate the distance \(d \), assuming that Valerie’s eye level is \(h = 1.7 \) meters \((\text{m}) \) above ground. What if she looks out from a window where her eye level is \(20 \) m?
Solution Let R be the radius of the earth. Figure 7 shows that Valerie can see a distance $d = R\theta$, the length of the circular arc AH in Figure 7. We have

$$\cos \theta = \frac{R}{R + h}$$

Our key observation is that θ is close to zero (both θ and h are much smaller than shown in the figure), so we lose very little accuracy if we replace $\cos \theta$ by its second Maclaurin polynomial $T_2(\theta) = 1 - \frac{1}{2} \theta^2$, as computed in Example 4:

$$1 - \frac{1}{2} \theta^2 \approx \frac{R}{R + h} \Rightarrow \theta^2 \approx 2 - \frac{2R}{R + h} \Rightarrow \theta \approx \sqrt{\frac{2h}{R + h}}$$

Furthermore, h is very small relative to R, so we may replace $R + h$ by R to obtain

$$d = R\theta \approx R \sqrt{\frac{2h}{R}} = \sqrt{2Rh}$$

The earth’s radius is approximately $R \approx 6.37 \times 10^6$ m, so

$$d = \sqrt{2R h} \approx \sqrt{2(6.37 \times 10^6) h} \approx 3569\sqrt{h} \text{ m}$$

In particular, we see that d is proportional to \sqrt{h}.

If Valerie’s eye level is $h = 1.7$ m, then $d \approx 3569\sqrt{1.7} \approx 4653$ m, or roughly 4.7 km. If $h = 20$ m, then $d \approx 3569\sqrt{20} \approx 15.96$ m, or nearly 16 km.

The Error Bound

To use Taylor polynomials effectively, we need a way to estimate the size of the error. This is provided by the next theorem, which shows that the size of this error depends on the size of the $(n + 1)$st derivative.

Theorem 2 Error Bound Assume that $f^{(n+1)}$ exists and is continuous. Let K be a number such that $|f^{(n+1)}(u)| \leq K$ for all u between a and x. Then

$$|f(x) - T_n(x)| \leq K \frac{|x - a|^{n+1}}{(n + 1)!}$$

where T_n is the nth Taylor polynomial centered at $x = a$.

Example 6 Using the Error Bound Apply the error bound to

$$|\ln 1.2 - T_3(1.2)|$$

where T_3 is the third Taylor polynomial for $f(x) = \ln x$ at $a = 1$. Check your result with a calculator.
Solution

Step 1. Find a value of K.

To use the error bound with $n = 3$, we must find a value of K such that $|f^{(4)}(a)| \leq K$ for all a between $a = 1$ and $x = 1.2$. As we computed in Example 3, $f^{(4)}(x) = -6x^{-4}$. The absolute value $|f^{(4)}(x)|$ is decreasing for $x > 0$, so its maximum value on $[1, 1.2]$ is $|f^{(4)}(1)| = 6$. Therefore, we may take $K = 6$.

Step 2. Apply the error bound.

$$|\ln 1.2 - T_3(1.2)| \leq K \frac{|x - a|^{n+1}}{(n+1)!} = 6 \frac{|1.2 - 1|^{4}}{4!} \approx 0.0004$$

Step 3. Check the result.

Recall from Example 3 that

$$T_3(x) = (x - 1) - \frac{1}{2}(x - 1)^2 + \frac{1}{3}(x - 1)^3$$

The following values from a calculator confirm that the error is at most 0.0004:

$$|\ln 1.2 - T_3(1.2)| \approx |0.182667 - 0.182322| \approx 0.00035 < 0.0004$$

Observe in Figure 8 that $y = \ln x$ and $y = T_3(x)$ are indistinguishable near $x = 1.2$.

Example 7 Approximating with a Given Accuracy Let T_n be the nth Maclaurin polynomial for $f(x) = \cos x$. Find a value of n such that

$$|\cos 0.2 - T_n(0.2)| < 10^{-5}$$

Solution

Step 1. Find a value of K.

Since $|f^{(n)}(x)|$ is $|\cos x|$ or $|\sin x|$, depending on whether n is even or odd, we have $|f^{(n)}(u)| \leq 1$ for all u. Thus, we may apply the error bound with $K = 1$.

Step 2. Find a value of n.

The error bound gives us

$$|\cos 0.2 - T_n(0.2)| \leq K \frac{|0.2 - 0|^{n+1}}{(n+1)!} = \frac{|0.2|^{n+1}}{(n+1)!}$$

To make the error less than 10^{-5}, we must choose n so that

$$\frac{|0.2|^{n+1}}{(n+1)!} < 10^{-5}$$

It's not possible to solve this inequality for n, but we can find a suitable n by checking several values:

| n | $\frac{|0.2|^{n+1}}{(n+1)!}$ | 2 | 3 | 4 |
|-----|-----------------|---|---|---|
| | 0.23 \approx 0.0013 | 0.24 $\approx 6.67 \times 10^{-5}$ | 0.25 $\approx 2.67 \times 10^{-6}$ | 10^{-5} |

We see that the error is less than 10^{-5} for $n = 4$.

The rest of this section is devoted to a proof of the error bound (Theorem 2). Define the nth remainder:

$$R_n(x) = f(x) - T_n(x)$$

The error in $T_n(x)$ is the absolute value $|R_n(x)|$. As a first step in proving the error bound, we show that $R_n(x)$ can be represented as an integral.

Taylor’s Theorem Assume that $f^{(n+1)}$ exists and is continuous. Then

$$R_n(x) = \frac{1}{n!} \int_a^x (x - u)^n f^{(n+1)}(u) \, du$$
Proof Set

\[I_n(x) = \frac{1}{n!} \int_a^x (x-u)^n f^{(n+1)}(u) \, du \]

Our goal is to show that \(R_n(x) = I_n(x) \). For \(n = 0 \), \(R_0(x) = f(x) - f(a) \) and the desired result is just a restatement of the Fundamental Theorem of Calculus:

\[I_0(x) = \int_a^x f'(u) \, du = f(x) - f(a) = R_0(x) \]

To prove the formula for \(n > 0 \), we apply Integration by Parts to \(I_n(x) \) with

\[h(u) = \frac{1}{n!} (x-u)^n, \quad g(u) = f^{(n)}(u) \]

Then \(g'(u) = f^{(n+1)}(u) \), and so

\[
\begin{align*}
I_n(x) &= \int_a^x h(u) g'(u) \, du = h(u)g(u) \bigg|_a^x - \int_a^x h'(u)g(u) \, du \\
&= \frac{1}{n!} (x-u)^n f^{(n)}(u) \bigg|_a^x - \frac{1}{n!} \int_a^x (-n)(x-u)^{n-1} f^{(n)}(u) \, du \\
&= -\frac{1}{n!} (x-a)^n f^{(n)}(a) + I_{n-1}(x)
\end{align*}
\]

This can be rewritten as

\[I_{n-1}(x) = \frac{f^{(n)}(a)}{n!} (x-a)^n + I_n(x) \]

Now apply this relation \(n \) times, noting that \(I_0(x) = f(x) - f(a) \):

\[
\begin{align*}
f(x) &= f(a) + I_0(x) \\
&= f(a) + \frac{f'(a)}{1!} (x-a) + I_1(x) \\
&= f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + I_2(x) \\
&\quad \vdots \\
&= f(a) + \frac{f'(a)}{1!} (x-a) + \cdots + \frac{f^{(n)}(a)}{n!} (x-a)^n + I_n(x)
\end{align*}
\]

This shows that \(f(x) = T_n(x) + I_n(x) \) and hence \(I_n(x) = R_n(x) \), as desired.

Proof Now we can prove Theorem 2. Assume first that \(x \geq a \). Then

\[
|f(x) - T_n(x)| = |R_n(x)| = \left| \frac{1}{n!} \int_a^x (x-u)^n f^{(n+1)}(u) \, du \right|
\]

\[
\leq \frac{1}{n!} \int_a^x (x-u)^n f^{(n+1)}(u) \, du
\]

\[
\leq K \frac{1}{n!} \int_a^x |x-u|^n \, du
\]

\[
= K \frac{(x-a)^{n+1}}{n+1} \left. \right|_{u=a}^{x} = K \frac{|x-a|^{n+1}}{(n+1)!}
\]

Note that the absolute value is not needed in Eq. (4) because \(x-u \geq 0 \) for \(a \leq u \leq x \). If \(x \leq a \), we must interchange the upper and lower limits of the integral in Eqs. (3) and (4).
9.4 SUMMARY

- The nth Taylor polynomial centered at $x = a$ for the function f is

$$T_n(x) = f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n$$

When $a = 0$, T_n is also called the nth Maclaurin polynomial.

- If $f^{(n+1)}$ exists and is continuous, then we have the error bound

$$|T_n(x) - f(x)| \leq K \frac{|x-a|^{n+1}}{(n+1)!}$$

where K is a number such that $|f^{(n+1)}(u)| \leq K$ for all u between a and x.

- For reference, we include a table of standard Maclaurin and Taylor polynomials.

<table>
<thead>
<tr>
<th>$f(x)$</th>
<th>a</th>
<th>Maclaurin or Taylor Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>e^x</td>
<td>0</td>
<td>$T_n(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \frac{x^n}{n!}$</td>
</tr>
<tr>
<td>$\sin x$</td>
<td>0</td>
<td>$T_{2n+1}(x) = T_{2n+2}(x) = x - \frac{x^3}{3!} + \cdots + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$</td>
</tr>
<tr>
<td>$\cos x$</td>
<td>0</td>
<td>$T_{2n}(x) = T_{2n+1}(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + (-1)^n \frac{x^{2n}}{(2n)!}$</td>
</tr>
<tr>
<td>$\ln x$</td>
<td>1</td>
<td>$T_n(x) = (x-1) - \frac{1}{2}(x-1)^2 + \cdots + \frac{(-1)^{n-1}}{n}(x-1)^n$</td>
</tr>
<tr>
<td>$\frac{1}{1-x}$</td>
<td>0</td>
<td>$T_n(x) = 1 + x + x^2 + \cdots + x^n$</td>
</tr>
</tbody>
</table>

9.4 EXERCISES

Preliminary Questions

1. What is T_3 centered at $a = 3$ for a function f such that $f(3) = 9$, $f'(3) = 8$, $f''(3) = 4$, and $f'''(3) = 12$?

2. The dashed graphs in Figure 9 are Taylor polynomials for a function f. Which of the two is a Maclaurin polynomial?

![Figure 9](image)

(A) (B)

3. For which value of x does the Maclaurin polynomial T_n satisfy $T_n(x) = f(x)$, no matter what f is?

4. Let T_n be the Maclaurin polynomial of a function f satisfying $|f^{(4)}(x)| \leq 1$ for all x. Which of the following statements follow from the error bound?

 (a) $|T_3(2) - f(2)| \leq \frac{2}{3}$
 (b) $|T_3(2) - f(2)| \leq \frac{2}{3}$
 (c) $|T_3(2) - f(2)| \leq \frac{1}{3}$

Exercises

In Exercises 1–14, calculate the Taylor polynomials T_2 and T_3 centered at $x = a$ for the given function and value of a.

1. $f(x) = \sin x$, $a = 0$
2. $f(x) = \sin x$, $a = \frac{\pi}{2}$
3. $f(x) = \frac{1}{1+x}$, $a = 2$
4. $f(x) = \frac{1}{1+x^2}$, $a = -1$
5. $f(x) = x^4 - 2x$, $a = 3$
6. $f(x) = \frac{x^2 + 1}{x + 1}$, $a = -2$
7. $f(x) = \tan x$, $a = 0$
8. $f(x) = \tan x$, $a = \frac{\pi}{4}$
9. $f(x) = e^{-x} + e^{2x}$, $a = 0$
10. $f(x) = e^{2x}$, $a = \ln 2$
11. $f(x) = x^2 e^{-x}$, $a = 1$
12. $f(x) = \cosh 2x$, $a = 0$
13. $f(x) = \ln x$, $a = 1$
14. $f(x) = \ln(x+1)$, $a = 0$
15. Show that the nth Maclaurin polynomial for $f(x) = e^x$ is
 $$T_n(x) = 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}.$$

16. Show that the nth Taylor polynomial for $f(x) = \frac{1}{x + 1}$ at $a = 1$ is
 $$T_n(x) = \frac{1}{2} \left(\frac{x - 1}{4} + \frac{(x - 1)^2}{8} + \cdots + \frac{(-1)^n(x - 1)^n}{2n + 1} \right).$$

17. Show that the Maclaurin polynomials for $f(x) = \sin x$ are
 $$T_{2n+1}(x) = T_{2n+2}(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots + \frac{(-1)^n x^{2n+1}}{(2n+1)!}.$$

18. Show that the Maclaurin polynomials for $f(x) = \ln(1 + x)$ are
 $$T_n(x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots + (-1)^{n-1} \frac{x^n}{n}.$$

In Exercises 19–24, find T_n centered at a for all n.

19. $f(x) = \frac{1}{1+x}, \quad a = 0$
20. $f(x) = \frac{1}{x - 1}, \quad a = 4$
21. $f(x) = e^x, \quad a = 1$
22. $f(x) = x^{-2}, \quad a = 2$
23. $f(x) = \cos x, \quad a = \frac{\pi}{4}$
24. $f(x) = \sin x, \quad a = 0$

In Exercises 25–28, find T_2 and use a calculator to compute the error $|f(x) - T_2(x)|$ for the given values of a and x.

25. $y = e^x, \quad a = 0, \quad x = -0.5$
26. $y = \cos x, \quad a = 0, \quad x = \frac{\pi}{12}$
27. $y = x^{-2/3}, \quad a = 1, \quad x = 1.2$
28. $y = e^{\sin x}, \quad a = \frac{\pi}{2}, \quad x = 1.5$

29. Compute T_3 for $f(x) = \sqrt{x}$ centered at $a = 1$. Then use a plot of the error $|f(x) - T_3(x)|$ to find a value $c > 1$ such that the error on the interval $[1, c]$ is at most 0.25.

30. Plot $f(x) = 1/(1 + x)$ together with the Taylor polynomials T_n at $a = 1$ for $1 \leq n \leq 4$ on the interval $[-2, 8]$ (be sure to limit the upper plot range).

(a) Over which interval does T_4 appear to approximate f closely?
(b) What happens for $x < -1$?
(c) Use your computer algebra system to produce and plot T_{30} together with f on $[-2, 8]$. Over which interval does T_{30} appear to give a close approximation?

31. Let T_3 be the Maclaurin polynomial of $f(x) = e^x$. Use the error bound to find the maximum possible value of $|f(1.1) - T_3(1.1)|$. Show that we can take $K = e^{1.1}$.

32. Let T_2 be the Taylor polynomial of $f(x) = \sqrt{x}$ at $a = 4$. Apply the error bound to find the maximum possible value of the error $|f(3.9) - T_2(3.9)|$.

In Exercises 33–36, compute the Taylor polynomial indicated and use the error bound to find the maximum possible size of the error. Verify your result with a calculator.

33. $f(x) = \cos x, \quad a = 0; \quad |\cos 0.25 - T_3(0.25)|$
34. $f(x) = x^{1/2}, \quad a = 1; \quad |f(1.2) - T_4(1.2)|$
35. $f(x) = x^{-1/2}, \quad a = 4; \quad |f(4.3) - T_3(4.3)|$
36. $f(x) = \sqrt{1 + x}, \quad a = 8; \quad |\sqrt{0.02} - T_3(0.02)|$

37. Calculate the Maclaurin polynomial T_3 for $f(x) = \tan^{-1} x$. Compute $T_3(\frac{1}{2})$ and use the error bound to find a bound for the error $|\tan^{-1} \frac{1}{2} - T_3(\frac{1}{2})|$. Refer to the graph in Figure 10 to find an acceptable value of K. Verify your result by computing $|\tan^{-1} \frac{1}{2} - T_3(\frac{1}{2})|$ using a calculator.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure10.png}
\caption{Graph of $f(x) = \frac{24x(x^2 - 1)}{(x^2 + 1)^3}$, where $f(x) = \tan^{-1} x$.}
\end{figure}

38. Let $f(x) = \ln(x^2 - x + 1)$. The third Taylor polynomial at $a = 1$ is
 $$T_3(x) = 2(x - 1) + \frac{1}{2} (x - 1)^2 - \frac{1}{3} (x - 1)^3.$$

Find the maximum possible value of $|f(1.1) - T_3(1.1)|$, using the graph in Figure 11 to find an acceptable value of K. Verify your result by computing $|f(1.1) - T_3(1.1)|$ using a calculator.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure11.png}
\caption{Graph of $f(x) = \ln(x^3 - x + 1)$.}
\end{figure}

39. Let T_2 be the Taylor polynomial at $a = 0.5$ for $f(x) = \cos(x^2)$. Use the error bound to find the maximum possible value of $|f(0.6) - T_2(0.6)|$. Plot $f^{(3)}$ to find an acceptable value of K.

40. Calculate the Maclaurin polynomial T_2 for $f(x) = \sinh x$ and use the error bound to find the maximum possible value of $|f(\frac{1}{2}) - T_2(\frac{1}{2})|$. Plot $f^{(n)}$ to find an acceptable value of K.

In Exercises 41–44, use the error bound to find a value of n for which the given inequality is satisfied. Then verify your result using a calculator.

41. $|\cos 0.1 - T_n(0.1)| \leq 10^{-7}, \quad a = 0$
42. $|\ln 1.3 - T_n(1.3)| \leq 10^{-4}, \quad a = 1$
43. $|\sqrt{1.3} - T_n(1.3)| \leq 10^{-6}, \quad a = 1$
44. $|e^{-0.1} - T_n(-0.1)| \leq 10^{-6}, \quad a = 0$
45. Let \(f(x) = e^{-x} \) and \(T_3(x) = 1 - x + \frac{x^2}{2} - \frac{x^3}{6} \). Use the error bound to show that for all \(x \geq 0 \),
\[
|f(x) - T_3(x)| \leq \frac{x^4}{24}
\]
If you have a GUI, illustrate this inequality by plotting \(y = f(x) - T_3(x) \) and \(y = x^4/24 \) together over [0, 1].

46. Use the error bound with \(n = 4 \) to show that
\[
|\sin x - \left(x - \frac{x^3}{6}\right)| \leq \frac{|x|^5}{120} \quad \text{(for all \(x \))}
\]

47. Let \(P_n \) be the Taylor polynomial for \(f(x) = \ln x \) at \(a = 1 \), and let \(c > 1 \). Show that
\[
|\ln c - P_n(c)| \leq \frac{|c - 1|^n+1}{n+1}
\]
Then find a value of \(n \) such that \(|\ln 1.5 - P_n(1.5)| \leq 10^{-2} \).

48. Let \(n \geq 1 \). Show that if \(|x|\) is small, then
\[
(x + 1)^{1/n} \approx 1 + \frac{x}{n} + \frac{1 - n}{2n^2} x^2
\]
Use this approximation with \(n = 6 \) to estimate \(1.5^{1/6} \).

49. Verify that the third Maclaurin polynomial for \(f(x) = e^x \sin x \) is equal to the product of the third Maclaurin polynomials of \(f(x) = e^x \) and \(f(x) = \sin x \) (after discarding terms of degree greater than 3 in the product).

50. Find the fourth Maclaurin polynomial for \(f(x) = \sin x \cos x \) by multiplying the fourth Maclaurin polynomials for \(f(x) = \sin x \) and \(f(x) = \cos x \).

51. Find the Maclaurin polynomials \(T_n \) for \(f(x) = \cos(x^2) \). You may use the fact that \(T_n(x) \) is equal to the sum of the terms up to degree \(n \) obtained by substituting \(x^2 \) for \(x \) in the \(n \)th Maclaurin polynomial of \(\cos x \).

52. Find the Maclaurin polynomials of \(1/(1 + x^2) \) by substituting \(-x^2\) for \(x \) in the Maclaurin polynomials of \(1/(1 - x) \).

53. Let \(f(x) = 3x^3 + 2x^2 - x - 4 \). Calculate \(T_j \) for \(j = 1, 2, 3, 4, 5 \) at both \(a = 0 \) and \(a = 1 \). Show that \(T_5(x) = f(x) \) in both cases.

54. Let \(T_n \) be the \(n \)th Taylor polynomial at \(x = a \) for a polynomial \(f \) of degree \(n \). Based on the result of Exercise 53, guess the value of \(|f(x) - T_n(x)| \). Prove that your guess is correct using the error bound.

55. Let \(s(t) \) be the distance of a truck to an intersection. At time \(t = 0 \), the truck is 60 m from the intersection, travels away from it with a velocity of 24 m/s, and begins to slow down with an acceleration of \(a = -3 \) m/s\(^2\). Determine the second Maclaurin polynomial of \(s \), and use it to estimate the truck’s distance from the intersection after 4 s.

56. A bank owns a portfolio of bonds whose value \(P(r) \) depends on the interest rate \(r \) (measured in percent; e.g., \(r = 5 \) means a 5% interest rate). The bank’s quantitative analyst determines that
\[
P(5) = 100,000, \quad \left. \frac{dP}{dr} \right|_{r=5} = -40,000, \quad \left. \frac{d^2P}{dr^2} \right|_{r=5} = 50,000
\]
In finance, this second derivative is called bond convexity. Find the second Taylor polynomial of \(P(r) \) centered at \(r = 5 \) and use it to estimate the value of the portfolio if the interest rate moves to \(r = 5.5\% \).

57. A narrow, negatively charged ring of radius \(R \) exerts a force on a positively charged particle \(P \) located at distance \(x \) above the center of the ring of magnitude
\[
F(x) = -\frac{kx}{(x^2 + R^2)^{3/2}}
\]
where \(k > 0 \) is a constant (Figure 12).
(a) Compute the third-degree Maclaurin polynomial for \(F \).
(b) Show that \(F \approx -(k/R^3)x \) to second order. This shows that when \(x \) is small, \(F(x) \) behaves like a restoring force similar to the force exerted by a spring.
(c) Show that \(F(x) \approx -k/x^2 \) when \(x \) is large by showing that
\[
\lim_{x \to \infty} \frac{F(x)}{-k/x^2} = 1
\]
Thus, \(F(x) \) behaves like an inverse square law, and the charged ring looks like a point charge from far away.

58. A light wave of wavelength \(\lambda \) travels from \(A \) to \(B \) by passing through an aperture (circular region) located in a plane that is perpendicular to \(\overrightarrow{AB} \) (see Figure 13 for the notation). Let \(f(r) = d' + h' \); that is, \(f(r) \) is the distance \(AC + CB \) as a function of \(r \).
(a) Show that \(f(r) = \sqrt{d^2 + r^2} + \sqrt{h^2 + r^2} \), and use the Maclaurin polynomial of order 2 to show that
\[
f(r) \approx d + h + \frac{1}{2} \left(\frac{1}{d} + \frac{1}{h} \right) r^2
\]
(b) The Fresnel zones, used to determine the optical disturbance at \(B \), are the concentric bands bounded by the circles of radius \(R_n \) such that \(f(R_n) = d + h + n\lambda/2 \). Show that \(R_n \approx \sqrt{n\lambda L} \), where \(L = (d^{-1} + h^{-1})^{-1} \).
(c) Estimate the radii \(R_n \) and \(R_{100} \) for blue light (\(\lambda = 475 \times 10^{-7} \) cm) if \(d = h = 100 \) cm.
59. Referring to Figure 14, let a be the length of the chord AC of angle \(\theta \) of the unit circle. Derive the following approximation for the excess of the arc over the chord:

\[
\theta - a \approx \frac{\theta^3}{24}
\]

Hint: Show that \(\theta - a = \theta - 2 \sin(\theta/2) \) and use the third Maclaurin polynomial as an approximation.

![Figure 14](image)

Further Insights and Challenges

61. Show that the nth Maclaurin polynomial of \(f(x) = \arcsin x \) for \(n \) odd is

\[
T_n(x) = x + \frac{1}{3} x^3 + \frac{1 - 3}{2 \cdot 4} x^5 + \cdots + \frac{1 - 3 \cdot 5 \cdots (n - 2)}{2 \cdot 4 \cdot 6 \cdots (n - 1)} x^n
\]

62. Let \(x \geq 0 \) and assume that \(f^{(n+1)}(t) \geq 0 \) for \(0 \leq t \leq x \). Use Taylor’s Theorem to show that the nth Maclaurin polynomial \(T_n \) satisfies

\[
|T_n(x) - f(x)| \leq \frac{1}{n!} f^{(n+1)}(z) x^n
\]

63. Use Exercise 62 to show that for \(x \geq 0 \) and all \(n \),

\[
e^x \geq 1 + x + \frac{x^2}{2!} + \cdots + \frac{x^n}{n!}
\]

Sketch the graphs of \(y = e^x \), \(y = T_1(x) \), and \(y = T_2(x) \) on the same coordinate axes. Does this inequality remain true for \(x < 0 \)?

64. This exercise is intended to reinforce the proof of Taylor’s Theorem.

(a) Show that \(f(x) = T_0(x) + \int_a^x f'(u) du \).

(b) Use Integration by Parts to prove the formula

\[
\int_a^x f'(u) f^{(2)}(u) du = -f'(a)(x-a) + \int_a^x f'(u) du
\]

(c) Prove the case \(n = 2 \) of Taylor’s Theorem:

\[
f(x) = T_1(x) + \int_a^x (x-u)f^{(2)}(u) du
\]

In Exercises 65–69, we estimate integrals using Taylor polynomials. Exercise 66 is used to estimate the error.

65. Find the fourth Maclaurin polynomial \(T_4 \) for \(f(x) = e^{-x^2} \), and calculate \(I = \int_0^{1/2} T_4(x) dx \) as an estimate for \(\int_0^{1/2} e^{-x^2} dx \). A CAS yields the value \(I \approx 0.461281 \). How large is the error in your approximation? **Hint:** \(T_4 \) is obtained by substituting \(-x^2\) in the second Maclaurin polynomial for \(e^x \).

66. **Approximating Integrals** Let \(L > 0 \). Show that if two functions \(f \) and \(g \) satisfy \(|f(x) - g(x)| < L \) for all \(x \in [a, b] \), then

\[
\left| \int_a^b f(x) dx - \int_a^b g(x) dx \right| < L(b-a)
\]

67. Let \(T_4 \) be the fourth Maclaurin polynomial for \(f(x) = \cos x \).

(a) Show that

\[
|\cos x - T_4(x)| \leq \frac{1}{6!} x^6 \quad \text{for all} \quad x \in \left[0, \frac{1}{2} \right]
\]

Hint: \(T_4(x) = T_5(x) \).

(b) Evaluate \(\int_0^{1/2} T_4(x) dx \) as an approximation to \(\int_0^{1/2} \cos x dx \). Use Exercise 66 to find a bound for the size of the error.

68. Let \(Q(x) = 1 - x^2/6 \). Use the error bound for \(f(x) = \sin x \) to show that

\[
\left| \sin x - Q(x) \right| \leq \frac{|x|^4}{5!}
\]

Then calculate \(\int_0^1 Q(x) dx \) as an approximation to \(\int_0^1 \sin x/x dx \) and find a bound for the error.

69. (a) Compute the sixth Maclaurin polynomial \(T_6 \) for \(f(x) = \sin(x^2) \) by substituting \(x^2 \) in \(P(x) = x - x^3/6 \), the third Maclaurin polynomial for \(f(x) = \sin x \).

(b) Show that \(|\sin(x^2) - T_6(x)| \leq \frac{|x|^{10}}{5!} \).

Hint: Substitute \(x^2 \) for \(x \) in the error bound for \(|\sin x - P(x)| \), noting that \(P \) is also the fourth Maclaurin polynomial for \(f(x) = \sin x \).

(c) Use \(T_6 \) to approximate \(\int_0^{1/2} \sin(x^2) dx \) and find a bound for the error.

70. Prove by induction that for all \(k \),

\[
\frac{d}{dx^j} \left(\frac{(x-a)^k}{k!} \right)^j = \frac{k(k-1)\cdots(k-j+1)(x-a)^{k-j}}{k!}
\]

\[
\left. \frac{d}{dx^j} \left(\frac{(x-a)^k}{k!} \right) \right|_{x=a} = \begin{cases} 1 & \text{for } k = j \\ 0 & \text{for } k \neq j \end{cases}
\]

Use this to prove that \(T_n \) agrees with \(f \) at \(x = a \) to order \(n \).
71. Let \(a \) be any number and let

\[
P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0
\]

be a polynomial of degree \(n \) or less.
(a) Show that if \(P^{(j)}(a) = 0 \) for \(j = 0, 1, \ldots, n \), then \(P(x) = 0 \), that is, \(a_j = 0 \) for all \(j \). Hint: Use induction, noting that if the statement is true for degree \(n - 1 \), then \(P'(x) = 0 \).
(b) Prove that \(T_n \) is the only polynomial of degree \(n \) or less that agrees with \(f \) at \(x = a \) to order \(n \). Hint: If \(Q \) is another such polynomial, apply (a) to \(P(x) = T_n(x) - Q(x) \).

CHAPTER REVIEW EXERCISES

In Exercises 1–4, calculate the arc length over the given interval.

1. \(y = \frac{x^5}{10} + \frac{x^{-3}}{6}, \quad [1, 2] \)
2. \(y = e^{x/2} + e^{-x/2}, \quad [0, 2] \)
3. \(y = 4x - 2, \quad [-2, 2] \)
4. \(y = x^{2/3}, \quad [1, 8] \)

5. Show that the arc length of \(y = 2\sqrt{x} \) over \([0, a] \) is equal to \(a^{3/2} \ln(\sqrt{a} + 1) + 2\sqrt{a} \). Hint: Apply the substitution \(x = \tan^2 \theta \) to the arc length integral.

6. **CAS** Compute the trapezoidal approximation \(T_3 \) to the arc length \(s \) of \(y = \tan x \) over \([0, \frac{\pi}{4}] \).

In Exercises 7–10, calculate the surface area of the solid obtained by rotating the curve over the given interval about the \(x \)-axis.

7. \(y = x + 1, \quad [0, 4] \)
8. \(y = \frac{2}{3} x^{5/4} - \frac{2}{5} x^{5/4}, \quad [0, 1] \)
9. \(y = \frac{2}{3} x^{3/2} - \frac{1}{2} x^{1/2}, \quad [1, 2] \)
10. \(y = \frac{1}{2} x^2, \quad [0, 2] \)

11. Compute the total surface area of the coin obtained by rotating the region in Figure 1 about the \(x \)-axis. The top and bottom parts of the region are semicircles with a radius of 1 mm.

12. Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically, with its upper vertex at the surface of the water.

13. Calculate the fluid force on the side of a right triangle of height 3 m and base 2 m submerged in water vertically, with its upper vertex located at a depth of 4 m.

14. A plate in the shape of the shaded region in Figure 2 is submerged in water. Calculate the fluid force on a side of the plate if the water surface is \(y = 1 \).

15. Figure 3 shows an object whose face is an equilateral triangle with 5-m sides. The object is 2 m thick and is submerged in water with its vertex 3 m below the water surface. Calculate the fluid force on both a triangular face and a slanted rectangular edge of the object.

16. The end of a horizontal oil tank is an ellipse (Figure 4) with equation \((x/4)^2 + (y/3)^2 = 1\) (length in meters). Assume that the tank is filled with oil of density 900 kg/m³.
(a) Calculate the total force \(F \) on the end of the tank when the tank is full.
(b) Would you expect the total force on the lower half of the tank to be greater than, less than, or equal to \(\frac{1}{2} F \)? Explain. Then compute the force on the lower half exactly and confirm (or refute) your expectation.

17. Calculate the moments and COM of the lamina occupying the region under \(y = x(4 - x) \) for \(0 \leq x \leq 4 \), assuming a density of \(\rho = 1200 \) kg/m³.

18. Sketch the region between \(y = 4(x + 1)^{-1} \) and \(y = 1 \) for \(0 \leq x \leq 3 \), and find its centroid.
19. Find the centroid of the region between the semicircle \(y = \sqrt{1 - x^2} \) and the top half of the ellipse \(y = \frac{1}{2}\sqrt{1 - x^2} \) (Figure 2).

20. Find the centroid of the shaded region in Figure 5 bounded on the left by \(x = 2y^2 - 2 \) and on the right by a semicircle of radius 1. Hint: Use symmetry and additivity of moments.

![Semicircle of radius 1](image)

21. Use the Theorem of Pappus to find the volume of the solid of revolution obtained by rotating the region in the first quadrant bounded by \(y = x^2 \) and \(y = \sqrt{x} \) about the \(y \)-axis.

22. Use the Theorem of Pappus to find a formula for the volume of the solid obtained by rotating the triangle with vertices \((1, 0), (3, 0), \) and \((2, 2)\) about the \(y \)-axis.

In Exercises 23–28, find the Taylor polynomial at \(a \) for the given function.

23. \(f(x) = x^3, \ T_3, \ a = 1 \)
24. \(f(x) = 3(x + 2)^3 - 5(x + 2), \ T_3, \ a = -2 \)
25. \(f(x) = x \ln(x), \ T_3, \ a = 1 \)
26. \(f(x) = (3x + 2)^{1/3}, \ T_3, \ a = 2 \)
27. \(f(x) = xe^{-x}, \ T_3, \ a = 0 \)
28. \(f(x) = \ln(\cos(x)), \ T_3, \ a = 0 \)
29. Find the \(n \)th Maclaurin polynomial for \(f(x) = e^{3x} \).

30. Use the fifth Maclaurin polynomial of \(f(x) = e^x \) to approximate \(e^{1.5} \). Use a calculator to determine the error.

31. Use the third Taylor polynomial of \(f(x) = \tan^{-1}x \) at \(a = 1 \) to approximate \(f(1.1) \). Use a calculator to determine the error.

32. Let \(T_n \) be the Taylor polynomial for \(f(x) = \sqrt{x} \) at \(a = 16 \). Use the error bound to find the maximum possible size of \(|f(17) - T_n(17)| \).

33. Find \(n \) such that \(|e - T_n(1)| < 10^{-8} \), where \(T_n \) is the \(n \)th Maclaurin polynomial for \(f(x) = e^x \).

34. Let \(T_n \) be the Taylor polynomial for \(f(x) = x \ln x \) at \(a = 1 \) computed in Exercise 25. Use the error bound to find a bound for \(|f(1.2) - T_n(1.2)| \).

35. Verify that \(T_n(x) = 1 + x + x^2 + \cdots + x^n \) is the \(n \)th Maclaurin polynomial of \(f(x) = 1/(1 - x) \). Show using substitution that the \(n \)th Maclaurin polynomial for \(f(x) = 1/(1 - x/4) \) is

\[
T_n(x) = 1 + \frac{1}{4}x + \frac{1}{4^2}x^2 + \cdots + \frac{1}{4^n}x^n
\]

What is the \(n \)th Maclaurin polynomial for \(g(x) = \frac{1}{1 + x} ?\)

36. Let \(f(x) = \frac{5}{4 + 3x - x^2} \) and let \(a_k \) be the coefficient of \(x^k \) in the Maclaurin polynomial \(T_n \) for \(k \leq n \).

(a) Show that \(f(x) = \left(\frac{1/4}{1 - x/4} + \frac{1}{1 + x}\right) \).

(b) Use Exercise 35 to show that \(a_k = \frac{1}{4^{k+1}} + (-1)^k \).

(c) Compute \(T_3 \).

37. Let \(T_n \) be the \(n \)th Maclaurin polynomial for the function \(f(x) = \sin x + \sinh x \).

(a) Show that \(T_5(x) = T_6(x) = T_7(x) = T_8(x) \).

(b) Show that \(|f^n(x)| \leq 1 + \cosh x \) for all \(n \). Hint: Note that \(|\sinh x| \leq \cosh x \) for all \(x \).

(c) Show that \(|T_n(x) - f(x)| \leq 2.6 \cdot 10^{-n} \) for \(-1 \leq x \leq 1 \).
In X-ray computerized tomography, differential equations are used to fill in missing data and provide detailed images. (M. Kulp/Science Source)

10 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Will this airplane fly?...How can we create an image of the interior of the human body using very weak X-rays?...What is a design of a bicycle frame that combines low weight with rigidity?...How much would the mean temperature of the earth increase if the amount of carbon dioxide in the atmosphere increased by 20 percent?

Differential equations are among the most powerful tools we have for analyzing the world mathematically. They are used to formulate the fundamental laws of nature (from Newton’s laws to Maxwell’s equations and the laws of quantum mechanics) and to model the most diverse physical phenomena. The quotation above lists just a few of the myriad applications. This chapter provides an introduction to some elementary techniques and applications of this important subject.

10.1 Solving Differential Equations

A differential equation is an equation that involves an unknown function \(y = y(x) \) and its first or higher derivatives. A **solution** is a function \(y = f(x) \) satisfying the given equation. As we have seen in previous chapters, solutions usually depend on one or more arbitrary constants (denoted \(A, B, C \), and \(K \) in the following examples):

<table>
<thead>
<tr>
<th>Differential equation</th>
<th>General solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y' = -2y)</td>
<td>(y = Ke^{-2x})</td>
</tr>
<tr>
<td>(\frac{dy}{dt} = t)</td>
<td>(y = \frac{1}{2}t^2 + C)</td>
</tr>
<tr>
<td>(y'' + y = 0)</td>
<td>(y = A \sin x + B \cos x)</td>
</tr>
</tbody>
</table>

Notice that for any of these equations, we can easily check that the given function is a solution. For example, if \(y = Ke^{-2x} \), then \(y' = -2Ke^{-2x} = -2y \) as we wanted to show. An expression such as \(y = Ke^{-2x} \) is called a **general solution**. For each value of \(K \), we obtain a **particular solution**. The graphs of the solutions as \(K \) varies form a family of curves in the \(xy \)-plane (Figure 1).

The first step in any study of differential equations is to classify the equations according to various properties. The most important attributes of a differential equation are its order and whether or not it is linear.

The **order** of a differential equation is the order of the highest derivative appearing in the equation. The general solution of an equation of order \(n \) usually involves \(n \) arbitrary constants. For example,

\[y'' + y = 0 \]

has order 2 and its general solution has two arbitrary constants \(A \) and \(B \) as listed above.
A differential equation is called **linear** if it can be written in the form
\[a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x) \]
The coefficients \(a_j(x) \) and \(b(x) \) can be arbitrary functions of \(x \), but a linear equation cannot have terms such as \(y^3 \), \(yy' \), or \(\sin y \).

Differential equation	**Order**	**Linear or nonlinear**
\(x^2y' + e^xy = 4 \) | First-order | Linear
\(x(y')^2 = y + x \) | First-order | Nonlinear [because \((y')^2 \) appears]
\(y'' = (\sin x)y' \) | Second-order | Linear
\(y''' = x(\sin y) \) | Third-order | Nonlinear [because \(\sin y \) appears]

In this chapter, we restrict our attention to first-order equations.

Separation of Variables

We are familiar with the simplest type of differential equation, namely \(y' = f(x) \). A solution is simply an antiderivative of \(f \), so we can write the general solution as
\[y = \int f(x) \, dx \]

A more general class of first-order differential equations that can be solved directly by integration are the **separable equations**, which have the form
\[\frac{dy}{dx} = f(x)g(y) \]

For example,
- \(\frac{dy}{dx} = y \sin x \) is separable.
- \(\frac{dy}{dx} = x + y \) is not separable because \(x + y \) is not a product \(f(x)g(y) \).

Separable equations are solved using the method of **Separation of Variables**: Move the terms involving \(y \) and \(dy \) to the left and those involving \(x \) and \(dx \) to the right. Then integrate both sides:
\[\int \frac{dy}{g(y)} = \int f(x) \, dx \]

If these integrals can be evaluated, we can try to solve for \(y \) as a function of \(x \). One can check that the solution we have found is, in fact, a solution to the original differential equation. Therefore, the symbolic manipulation that we applied does generate a valid solution.

EXAMPLE 1 Show that \(y \frac{dy}{dx} - x = 0 \) is separable but not linear. Then find the general solution and plot the family of solutions.

Solution This differential equation is nonlinear because it contains the term \(yy' \). To show that it is separable, rewrite the equation:
\[y \frac{dy}{dx} - x = 0 \quad \Rightarrow \quad \frac{dy}{y} = \frac{x}{y} \quad \text{(separable equation)} \]
Now use Separation of Variables:

\[y \, dy = x \, dx \quad \text{(separate the variables)} \]

\[\int y \, dy = \int x \, dx \quad \text{(integrate)} \]

\[\frac{1}{2} y^2 = \frac{1}{2} x^2 + C \]

\[y = \pm \sqrt{x^2 + 2C} \quad \text{(solve for } y) \]

Since \(C \) is arbitrary, we may replace \(2C \) by \(K \) to obtain (Figure 2)

\[y = \pm \sqrt{x^2 + K} \]

Each choice of sign and value of \(K \) yields a solution.

FIGURE 2 Solutions \(y = \sqrt{x^2 + K} \) to \(y \frac{dy}{dx} - x = 0 \).

It is a good idea to verify that solutions you have found satisfy the differential equation. In our case, for the positive square root (the negative square root is similar), we have

\[\frac{dy}{dx} = \frac{d}{dx} \sqrt{x^2 + K} = \frac{x}{\sqrt{x^2 + K}} \]

\[y \frac{dy}{dx} = \sqrt{x^2 + K} \left(\frac{x}{\sqrt{x^2 + K}} \right) = x \quad \Rightarrow \quad y \frac{dy}{dx} - x = 0 \]

This verifies that \(y = \sqrt{x^2 + K} \) is a solution.

Although it is useful to find general solutions, in applications we are usually interested in the solution that describes a particular physical situation. The general solution to a first-order equation generally depends on one arbitrary constant, so we can pick out a particular solution \(y(x) \) by specifying the value \(y(x_0) \) for some fixed \(x_0 \) (Figure 3). This specification is called an initial condition. A differential equation together with an initial condition is called an initial value problem.

EXAMPLE 2 Initial Value Problem

Solve the Initial Value Problem

\[y' = -ty, \quad y(0) = 3 \]

Solution Use Separation of Variables to find the general solution (assuming for now that \(y \neq 0 \)):

\[\frac{dy}{dt} = -ty \quad \Rightarrow \quad \frac{dy}{y} = -t \, dt \]

\[\int \frac{dy}{y} = - \int t \, dt \]

\[\ln |y| = -\frac{1}{2} t^2 + C \]

\[|y| = e^{-t^2/2 + C} = e^C \ e^{-t^2/2} \]

Most differential equations arising in applications have an existence and uniqueness property: There exists one and only one solution satisfying a given initial condition. General existence and uniqueness theorems are discussed in textbooks on differential equations.

FIGURE 3 The initial condition \(y(0) = 3 \) determines one curve in the family of solutions to \(y' = -ty \).
Thus, \(y = \pm e^C e^{-t^2/2} \). Since \(C \) is arbitrary, \(e^C \) represents an arbitrary positive number, and \(\pm e^C \) is an arbitrary nonzero number. We replace \(\pm e^C \) by \(K \) and write the general solution as

\[
y = Ke^{-t^2/2}
\]

Now use the initial condition \(y(0) = Ke^{-0^2/2} = 3 \). Thus, \(K = 3 \) and \(y = 3e^{-t^2/2} \) is the solution to the Initial Value Problem (Figure 3).

In the context of differential equations, the term "modeling" means finding a differential equation that describes a given physical situation. As an example, consider water leaking through a hole at the bottom of a tank (Figure 4). The problem is to find the water level \(y(t) \) at time \(t \). We solve it by showing that \(y(t) \) satisfies a differential equation.

The key observation is that the water lost during the interval from \(t \) to \(t + \Delta t \) can be computed in two ways. Let

\[
v(y) = \text{velocity of the water flowing through the hole when the tank is filled to height } y
\]

\[
B = \text{area of the hole}
\]

\[
A(y) = \text{area of horizontal cross section of the tank at height } y
\]

First, observe that the water exiting through the hole during a time interval \(\Delta t \) forms a cylinder of base \(B \) and height \(v(y)\Delta t \) [because the water travels a distance \(v(y)\Delta t \) — see Figure 4]. The volume of this cylinder is approximately \(Bv(y)\Delta t \) [approximately but not exactly, because \(v(y) \) may not be constant]. Thus,

\[
\text{Volume of water lost between } t \text{ and } t + \Delta t \approx Bv(y)\Delta t
\]

Second, we note that if the water level drops by an amount \(\Delta y \) during the interval \(\Delta t \), then the volume of water lost is approximately \(A(y)\Delta y \) (Figure 4). Therefore,

\[
\text{Volume of water lost between } t \text{ and } t + \Delta t \approx A(y)\Delta y
\]

This is also an approximation because the cross-sectional area may not be constant. Comparing the two results, we obtain \(A(y)\Delta y \approx Bv(y)\Delta t \), or

\[
\frac{\Delta y}{\Delta t} \approx \frac{Bv(y)}{A(y)}
\]

Now take the limit as \(\Delta t \to 0 \) to obtain the differential equation

\[
\frac{dy}{dt} = \frac{Bv(y)}{A(y)}
\]

To use Eq. (4), we need to know the velocity of the water leaving the hole. This is given by Torricelli’s Law, which was discovered in a slightly different form by the Italian scientist Evangelista Torricelli in 1643. It states that the velocity of water leaving a hole in a tank is equal to the velocity a drop of water would attain if it fell freely from the water level \(y \) to the hole (as in the marginal note):

\[
v(y) = -\sqrt{2gy} = -\sqrt{2(9.8)y} \approx -4.43\sqrt{y} \text{ m/s}
\]

Here, we used the fact \(g = 9.8 \text{ m/s}^2 \). Notice that the velocity is independent of the shape of the tank.
EXAMPLE 3 Application of Torricelli’s Law

A cylindrical tank of height 4 m and radius 1 m is filled with water. Water drains through a square hole of side 2 cm in the bottom. Determine the water level \(y(t) \) at time \(t \) (seconds). How long does it take for the tank to go from full to empty?

Solution

We use units of centimeters.

Step 1. Write down and solve the differential equation.

The horizontal cross section of the cylinder is a circle of radius \(r = 100 \text{ cm} \) and area \(A(y) = \pi r^2 = 10,000\pi \text{ cm}^2 \) (Figure 5). The hole is a square of side 2 cm and area \(B = 4\text{ cm}^2 \). Since we are using centimeters, we take \(g = 980 \text{ cm/s}^2 \) in Eq. (5), which gives us

\[
\frac{dy}{dt} = \frac{Bv(y)}{A(y)} = -\frac{4(44.3\sqrt{y})}{10,000\pi} \approx -0.0056\sqrt{y}
\]

Solve using Separation of Variables:

\[
\int \frac{dy}{\sqrt{y}} = -0.0056 \int dt
\]

\[
2y^{1/2} = -0.0056t + C
\]

\[
y = \left(-0.0028t + \frac{1}{2}C\right)^2
\]

Since \(C \) is arbitrary, we may replace \(\frac{1}{2}C \) by \(K \) and write

\[
y(t) = (K - 0.0028t)^2
\]

Step 2. Use the initial condition.

The tank is full at \(t = 0 \), so we have the initial condition \(y(0) = 400 \text{ cm} \). Thus,

\[
y(0) = K^2 = 400 \quad \Rightarrow \quad K = \pm 20
\]

Which sign is correct? You might think that both sign choices are possible, but notice that the water level \(y \) is a decreasing function of \(t \), and the function \(y = (K - 0.0028t)^2 \) decreases to 0 only if \(K \) is positive. Alternatively, we can see directly from Eq. (7) that \(K > 0 \), because \(2y^{1/2} \) is nonnegative. Thus,

\[
y(t) = (20 - 0.0028t)^2
\]

To determine the time \(t_e \) that it takes to empty the tank, we solve

\[
y(t_e) = (20 - 0.0028t_e)^2 = 0 \quad \Rightarrow \quad t_e \approx 7142 \text{ s}
\]

So, the tank is empty after 7142 s, or nearly 2 hours (Figure 6).

CONCEPTUAL INSIGHT

The previous example highlights the need to analyze solutions to differential equations rather than relying on algebra alone. The algebra suggested two possible values for \(K \), but further analysis showed that \(K = -20 \) does not yield a solution for \(t \geq 0 \). Note also that the function

\[
y(t) = (20 - 0.0028t)^2
\]

is a solution only for \(t \leq t_e \)—that is, until the tank is empty. This function cannot satisfy Eq. (6) for \(t > t_e \) because its derivative is positive for \(t > t_e \) (Figure 6), but solutions of Eq. (6) have nonpositive derivatives.
10.1 SUMMARY

- A differential equation has order \(n \) if \(y^{(n)} \) is the highest order derivative appearing in the equation.
- A differential equation is linear if it can be written as

\[
a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \cdots + a_1(x)y' + a_0(x)y = b(x)
\]

- Separable first-order equation: \(\frac{dy}{dx} = f(x)g(y) \)
- Separation of Variables: (for a separable equation): Move all terms involving \(y \) to the left and all terms involving \(x \) to the right and integrate

\[
\frac{dy}{g(y)} = f(x)\,dx \\
\int \frac{dy}{g(y)} = \int f(x)\,dx
\]

- Differential equation for water leaking through a hole of area \(B \) in a tank of cross-sectional areas \(A(y) \):

\[
\frac{dy}{dt} = \frac{Bv(y)}{A(y)}
\]

Torricelli’s Law: \(v(y) = -\sqrt{2gy} \), where \(g = 9.8 \) m/s².

10.1 EXERCISES

Preliminary Questions

1. Determine the order of the following differential equations:
 (a) \(x^5 y' = 1 \)
 (b) \((y')^3 + x = 1 \)
 (c) \(y'' + x^4 y' = 2 \)
 (d) \(\sin(y'') + x = y \)
 (e) \(y'' + 3y' = \frac{y}{x} \)
 (f) \(yy' + x + y = 0 \)

2. Is \(y'' = \sin x \) a linear differential equation?

Exercises

1. Which of the following differential equations are first-order?
 (a) \(y' = x^2 \)
 (b) \(y'' = y^2 \)
 (c) \((y')^3 + yy' = \sin x \)
 (d) \(x^2 y' - e^y = \sin y \)
 (e) \(y'' + 3y' = \frac{y}{x} \)
 (f) \(yy' + x + y = 0 \)

2. Which of the equations in Exercise 1 are linear?

 In Exercises 3–8, verify that the given function is a solution of the differential equation.

3. Which of the equations in Exercise 1 are linear?

4. Give an example of a nonlinear differential equation of the form \(y' = f(y) \).

5. Can a nonlinear differential equation be separable? If so, give an example.

6. Give an example of a linear, nonseparable differential equation.

7. Which of the following differential equations are separable? Write those that are separable in the form \(y' = f(x)g(y) \) (but do not solve).
 (a) \(xy' - 9y^2 = 0 \)
 (b) \(\sqrt{4 - x^2} y' = e^{3y} \sin x \)
 (c) \(y' = x^2 + y^2 \)
 (d) \(y' = 9 - y^2 \)

10. The following differential equations appear similar but have very different solutions:

\[
\frac{dy}{dx} = x, \quad \frac{dy}{dx} = y
\]

Solve both subject to the initial condition \(y(1) = 2 \).

11. The following differential equations appear similar but have very different solutions:

\[
\frac{dy}{dx} = x^2, \quad \frac{dy}{dx} = y^2
\]

Solve both subject to the initial condition \(y(0) = 1 \).

12. Consider the differential equation \(y^3 y' - 9x^2 = 0 \).
 (a) Write it as \(3y^2 \,dy = 9x^2 \,dx \).
 (b) Integrate both sides to obtain \(\frac{1}{3} y^3 = 3x^3 + C \).
 (c) Verify that \(y = (12x^3 + C)^{1/3} \) is the general solution.
 (d) Find the particular solution satisfying \(y(1) = 2 \).
13. Verify that \(x^2y' + e^{-\gamma} = 0 \) is separable.
 (a) Write it as \(e^\gamma \, dy = -x^{-2} \, dx \).
 (b) Integrate both sides to obtain \(e^\gamma = x^{-1} + C \).
 (c) Verify that \(y = \ln(x^{-1} + C) \) is the general solution.
 (d) Find the particular solution satisfying \(y(2) = 4 \).

In Exercises 14–30, use Separation of Variables to find the general solution.

14. \(y' + 4xy^2 = 0 \)
15. \(y' + x^2y = 0 \)
16. \(y' - e^{x+y} = 0 \)
17. \(\frac{dy}{dt} - 20y^4e^{-y} = 0 \)
18. \(t^3y' + 4y^2 = 0 \)
19. \(2y' + 5y = 4 \)
20. \(\frac{dy}{dt} = 8\sqrt{t} \)
21. \(\sqrt{1 - x^2} \, y' = xy \)
22. \(y' = y^2(1 - x^2) \)
23. \(yy' = x \)
24. \((\ln y)y' - ty = 0 \)
25. \(\frac{dx}{dt} = (t + 1)(x^2 + 1) \)
26. \((1 + x^2)y' = x^3y \)
27. \(y' = x \, \sec y \)
28. \(\frac{dy}{d\theta} = \tan y \)
29. \(\frac{dy}{dt} = y \, \tan t \)
30. \(\frac{dx}{dt} = t \, \tan x \)

In Exercises 31–44, solve the Initial Value Problem.

31. \(y' + 2y = 0 \), \(y(\ln 5) = 3 \)
32. \(y' - 3y + 12 = 0 \), \(y(2) = 1 \)
33. \(yy' = xe^{y^2} \), \(y(0) = -2 \)
34. \(\frac{dy}{dx} = x^{-3} \), \(y(1) = 0 \)
35. \(y' = (x - 1)(y - 2) \), \(y(2) = 4 \)
36. \(y' = (x - 1)(y - 2) \), \(y(2) = 2 \)
37. \(y' = x(y^2 + 1) \), \(y(0) = 0 \)
38. \((1 - t) \frac{dy}{dt} - y = 0 \), \(y(2) = -4 \)
39. \(\frac{dy}{dt} = ye^{-t} \), \(y(0) = 1 \)
40. \(\frac{dy}{dt} = te^{-y} \), \(y(1) = 0 \)
41. \(\frac{ds}{dt} - t = 1 + y + ty' \), \(y(1) = 0 \)
42. \(\sqrt{1 - x^2} \, y' = y^2 + 1 \), \(y(0) = 0 \)
43. \(y' = \tan y \), \(y(\ln 2) = \frac{\pi}{2} \)
44. \(y' = y^2 \sin x \), \(y(\pi) = 2 \)
45. Find all values of \(a \) such that \(y = x^a \) is a solution of \(y'' - 12x^{-2}y = 0 \).
46. Find all values of \(a \) such that \(y = e^{ax} \) is a solution of \(y'' + 4y' - 12y = 0 \).

In Exercises 47 and 48, let \(y(t) \) be a solution of (cos \(y + 1 \)) \(\frac{dy}{dt} = 2t \) such that \(y(2) = 0 \).

47. Show that \(\sin y + y = t^2 + C \). We cannot solve for \(y \) as a function of \(t \), but assuming that \(y(2) = 0 \), find the values of \(t \) at which \(y(t) = \pi \).
48. Assuming that \(y(6) = \pi/3 \), find an equation of the tangent line to the graph of \(y(t) \) at \((6, \pi/3) \).

In Exercises 49–54, use Eq. (4) and Torricelli’s Law [Eq. (5)].

49. Water leaks through a hole of area \(B = 0.002 \, \text{m}^2 \) at the bottom of a cylindrical tank that is filled with water and has height 3 m and a base of area 10 \text{m}^2. How long does it take (a) half of the water to leak out and (b) for the tank to empty?
 (a) Show that the tank’s cross-sectional area at height \(y \) is \(A(y) = \frac{\pi}{10} y^2 \).
 (b) Find and solve the differential equation satisfied by \(y(t) \)
 (c) How long does it take for the tank to empty?

![FIGURE 7](image)

51. The tank in Figure 7(B) is a cylinder of radius 4 m and height 15 m. Assume that the tank is half-filled with water and that water leaks through a hole in the bottom of area \(B = 0.001 \, \text{m}^2 \). Determine the water level \(y(t) \) and the time \(t_e \) when the tank is empty.
52. A tank has the shape of the parabola \(y = x^2 \), revolved around the \(y \)-axis. Water leaks from a hole of area \(B = 0.0005 \, \text{m}^2 \) at the bottom of the tank. Let \(y(t) \) be the water level at time \(t \). How long does it take for the tank to empty if it is initially filled to height \(y_0 = 1 \, \text{m} \)?
53. A tank has the shape of the parabola \(y = ax^2 \) (where \(a \) is a constant) revolved around the \(y \)-axis. Water drains from a hole of area \(B \, \text{m}^2 \) at the bottom of the tank.
 (a) Show that the water level at time \(t \) is
 \[y(t) = \left(\frac{3/2}{\sqrt{y_0}} - \frac{3aB\sqrt{2\pi}}{2\pi} \left(\frac{2\pi V^3}{a} \right)^{1/3} \right)^{2/3} \]
 where \(y_0 \) is the water level at time \(t = 0 \).
 (b) Show that if the total volume of water in the tank has volume \(V \) at time \(t = 0 \), then \(y_0 = \sqrt{2\pi V/\pi} \). Hint: Compute the volume of the tank as a volume of rotation.
 (c) Show that the tank is empty at time
 \[t_e = \left(\frac{2}{3B\sqrt{g}} \right)^{1/4} \left(\frac{2\pi V^3}{a} \right)^{1/4} \]

We see that for fixed initial water volume \(V \), the time \(t_e \) is proportional to \(a^{-1/4} \). A large value of \(a \) corresponds to a tall thin tank. Such a tank drains more quickly than a short wide tank of the same initial volume.
A cylindrical tank filled with water has height h and a base of area A. Water leaks through a hole in the bottom of area B.

(a) Show that the time required for the tank to empty is proportional to $A\sqrt{h}/B$.

(b) Show that the emptying time is proportional to $Vh^{-1/2}$, where V is the volume of the tank.

(c) Two tanks have the same volume and a hole of the same size, but they have different heights and bases. Which tank empties first: the taller or the shorter tank?

55. Figure 8 shows a circuit consisting of a resistor of R ohms, a capacitor of C farads, and a battery of voltage V. When the circuit is completed, the amount of charge $q(t)$ (in coulombs) on the plates of the capacitor varies according to the differential equation (t in seconds)

$$R \frac{dq}{dt} + \frac{1}{C} q = V$$

where R, C, and V are constants.

(a) Solve for $q(t)$, assuming that $q(0) = 0$.

(b) Sketch the graph of q.

(c) Show that $\lim_{t \to \infty} q(t) = CV$.

(d) Show that the capacitor charges to approximately 63% of its final value CV after a time period of length $\tau = RC$ (τ is called the time constant of the capacitor).

56. Assume in the circuit of Figure 8 that $R = 200$ ohms, $C = 0.02$ farad, and $V = 12$ volts. How many seconds does it take for the charge on the capacitor plates to reach half of its limiting value?

57. According to one hypothesis, the growth rate dV/dt of a cell’s volume V is proportional to its surface area A. Since V has cubic units such as cm3 and A has square units such as cm2, we may assume roughly that $A \propto V^{3/2}$, and hence $dV/dt = kV^{3/2}$ for some constant k. If this hypothesis is correct, which dependence of volume on time would we expect to see (again, roughly speaking) in the laboratory?

(a) Linear (b) Quadratic (c) Cubic

58. We might also guess that the volume V of a melting snowball decreases at a rate proportional to its surface area. Argue as in Exercise 57 to find a differential equation satisfied by V. Suppose the snowball has volume 1000 cm3 and that it loses half of its volume after 5 minutes. According to this model, when will the snowball disappear?

59. In general, $(fg)'$ is not equal to $f'g'$, but let $f(x) = e^{3x}$ and find a function g such that $(fg)' = f'g'$. Do the same for $f(x) = x$.

60. A boy standing at point B on a dock holds a rope of length ℓ attached to a boat at point A [Figure 9(A)]. As the boy walks along the dock, holding the rope taut, the boat moves along a curve called a tractrix (from the Latin tractus, meaning "pulled"). The segment from a point P on the curve to the x-axis along the tangent line has constant length ℓ. Let $y = f(x)$ be the equation of the tractrix.

(a) Show that $y^2 + (y'/\ell)^2 = \ell^2$ and conclude $y' = -\frac{y}{\sqrt{\ell^2 - y^2}}$. Why must we choose the negative square root?

(b) Prove that the tractrix is the graph of

$$x = \ell \ln \left(\frac{\ell + \sqrt{\ell^2 - y^2}}{y} \right) - \sqrt{\ell^2 - y^2}$$

61. Show that the differential equations $y' = 3y/x$ and $y' = -x/3y$ define orthogonal families of curves; that is, the graphs of solutions to the first equation intersect the graphs of the solutions to the second equation in right angles (Figure 10). Find these curves explicitly.

62. Find the family of curves satisfying $y' = x/y$ and sketch several members of the family. Then find the differential equation for the orthogonal family (see Exercise 61), find its general solution, and add some members of this orthogonal family to your plot.

63. A 50-kg model rocket lifts off by expelling fuel downward at a rate of $k = 4.75$ kg/s for 10 s. The fuel leaves the end of the rocket with an exhaust velocity of $b = -100$ m/s. Let $m(t)$ be the mass of the rocket at time t. From the law of conservation of momentum, we find the following differential equation for the rocket’s velocity $v(t)$ (in meters per second):

$$m(t)v'(t) = -9.8m(t) + b \frac{dm}{dt}$$

(a) Show that $m(t) = 50 - 4.75t$ kg.

(b) Solve for $v(t)$ and compute the rocket’s velocity at rocket burnout (after 10 s).

64. Let $v(t)$ be the velocity of an object of mass m in free-fall near the earth’s surface. If we assume that air resistance is proportional to v^2, then v satisfies the differential equation $m \frac{dv}{dt} = -g + kv^2$ for some constant $k > 0$.

(a) Set $\alpha = (g/k)^{1/2}$ and rewrite the differential equation as

$$\frac{dv}{dt} = -k \frac{v}{m}(\alpha^2 - v^2)$$

Then solve using Separation of Variables with initial condition $v(0) = 0$.

(b) Show that the terminal velocity $\lim_{t \to \infty} v(t)$ is equal to $-\alpha$.

65. If a bucket of water spins about a vertical axis with constant angular velocity \(\omega\) (in radians per second), the water climbs up the side of the bucket until it reaches an equilibrium position (Figure 11). Two forces act on a particle located at a distance \(x\) from the vertical axis: the gravitational force \(-mg\) acting downward and the force of the bucket on the particle (transmitted indirectly through the liquid) in the direction perpendicular to the surface of the water. These two forces must combine to supply a centripetal force \(m\omega^2x\), and this occurs if the diagonal of the rectangle in Figure 11 is normal to the water’s surface (i.e., perpendicular to the tangent line). Prove that if \(y = f(x)\) is the equation of the curve obtained by taking a vertical cross section through the axis, then \(-1/y' = -g/(\omega^2 x)\). Show that \(y = f(x)\) is a parabola.

Further Insights and Challenges

66. In Section 6.2, we computed the volume \(V\) of a solid as the integral of cross-sectional area. Explain this formula in terms of differential equations. Let \(V(y)\) be the volume of the solid up to height \(y\), and let \(A(y)\) be the cross-sectional area at height \(y\) as in Figure 12.

(a) Explain the following approximation for small \(\Delta y\):

\[
V(y + \Delta y) - V(y) \approx A(y) \Delta y
\]

(b) Use Eq. (8) to justify the differential equation \(dV/dy = A(y)\). Then derive the formula

\[
V = \int_a^b A(y) \, dy
\]

67. A basic theorem states that a linear differential equation of order \(n\) has a general solution that depends on \(n\) arbitrary constants. The following examples show that, in general, the theorem does not hold for nonlinear differential equations.

(a) Show that \((y')^2 + y^2 = 0\) is a first-order equation with only one solution \(y = 0\).

(b) Show that \((y')^2 + y^2 + 1 = 0\) is a first-order equation with no solutions.

68. Show that \(y = C e^{rf}\) is a solution of \(y'' + ay' + by = 0\) if and only if \(r\) is a root of \(P(r) = r^2 + ar + b\). Then verify directly that \(y = C_1 e^{3x} + C_2 e^{-x}\) is a solution of \(y'' - 2y' - 3y = 0\) for any constants \(C_1, C_2\).

69. A spherical tank of radius \(R\) is half-filled with water. Suppose that water leaks through a hole in the bottom of area \(B\). Let \(y(t)\) be the water level at time \(t\) (seconds).

(a) Show that \(\frac{dy}{dt} = \frac{\sqrt{2g} B}{\pi (2Ry - y^2)}\).

(b) Show that for some constant \(C\),

\[
\frac{2\pi}{15B\sqrt{g}} (10Ry^{3/2} - 3y^{5/2}) = C - t
\]

(c) Use the initial condition \(y(0) = R\) to compute \(C\), and show that \(C = t_e\), the time at which the tank is empty.

(d) Show that \(t_e\) is proportional to \(R^{5/2}\) and inversely proportional to \(B\).

10.2 Graphical and Numerical Methods

In the previous section, we focused on finding solutions to differential equations. However, most differential equations cannot be solved explicitly. Fortunately, there are techniques for analyzing the solutions that do not rely on explicit formulas. In this section, we discuss the method of slope fields, which provides us with a good visual understanding of first-order equations. We also discuss Euler’s Method for finding numerical approximations to solutions.

We use \(t\) as the independent variable. A first-order differential equation can then be written in the form

\[
\frac{dy}{dt} = F(t, y)
\]

where \(F(t, y)\) is a function of \(t\) and \(y\). In other words, the slope of the tangent line to the graph of \(y = y(t)\) at a point \((t, y)\) is given by \(F(t, y)\).
It is useful to think of Eq. (1) as a set of instructions that “tells a solution” which direction to go in. Thus, a solution passing through a point \((t, y)\) is “instructed” to continue in the direction of slope \(F(t, y)\). To visualize this set of instructions, we draw a **slope field**, which is an array of small segments of slope \(F(t, y)\) at points \((t, y)\) lying on a rectangular grid in the plane.

To illustrate, let’s return to the differential equation:

\[
\frac{dy}{dt} = -ty
\]

In this case, \(F(t, y) = -ty\). According to Example 2 of Section 10.1, the general solution is \(y = Ke^{-t^2/2}\). Figure 1(A) shows segments of slope \(-ty\) at points \((t, y)\) along the graph of a particular solution \(y(t)\). This particular solution passes through \((-1, 3)\), and according to the differential equation, \(y'(-1) = -ty = -(-1)3 = 3\). Thus, the segment located at the point \((-1, 3)\) has slope 3. Using the table of values at the left, we can determine the slopes at the various points on the curve. The graph of the solution is tangent to each segment [Figure 1(B)].

Ignoring the fact that we already know the general solution, we will use the slope field to see how we expect solutions to appear. To sketch the slope field for \(\frac{dy}{dt} = -ty\), we make a table of values of \(\frac{dy}{dt}\) for certain values of \(y\) and \(t\). Then we can draw small segments of slope \(-ty\) at some array of points \((t, y)\) in the plane, as in Figure 2(A). The slope field allows us to visualize all of the solutions at a glance. Starting at any point, we can sketch a solution by drawing a curve that runs tangent to the slope segments at each point [Figure 2(B)]. The graph of a solution is also called an **integral curve**.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>0.5</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>(\frac{dy}{dt})</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>-3</td>
<td>-1</td>
</tr>
</tbody>
</table>

FIGURE 1 The solution of \(\frac{dy}{dt} = -ty\) satisfying \(y(-1) = 3\).

FIGURE 2 Slope field for \(F(t, y) = -ty\).
EXAMPLE 1 Using Isoclines

Draw the slope field for \(\frac{dy}{dt} = y - t \)

and sketch the integral curves satisfying the initial conditions

- (a) \(y(0) = 1 \)
- (b) \(y(1) = -2 \)

Solution

A good way to sketch the slope field of \(\frac{dy}{dt} = F(t, y) \) is to choose several values of \(c \) and identify the curve \(F(t, y) = c \), called the isocline of slope \(c \). The isocline is the curve consisting of all points where the slope field has slope \(c \).

In our case, \(F(t, y) = y - t \), so the isocline of fixed slope \(c \) has equation \(y - t = c \), or \(y = t + c \), which is a line. Consider the following values:

- \(c = 0 \): This isocline is \(y - t = 0 \), or \(y = t \). We draw segments of slope \(c = 0 \) at points along the line \(y = t \), as in Figure 3(A).
- \(c = 1 \): This isocline is \(y - t = 1 \), or \(y = t + 1 \). We draw segments of slope 1 at points along \(y = t + 1 \), as in Figure 3(B).
- \(c = 2 \): This isocline is \(y - t = 2 \), or \(y = t + 2 \). We draw segments of slope 2 at points along \(y = t + 2 \), as in Figure 3(C).
- \(c = -1 \): This isocline is \(y - t = -1 \), or \(y = t - 1 \) [Figure 3(C)].

A more detailed slope field is shown in Figure 3(D). To sketch the solution satisfying \(y(0) = 1 \), begin at the point \((t_0, y_0) = (0, 1)\) and draw the integral curve that follows the directions indicated by the slope field. Similarly, the graph of the solution satisfying \(y(1) = -2 \) is the integral curve obtained by starting at \((t_0, y_0) = (1, -2)\) and moving along the slope field. Figure 3(E) shows several other solutions (integral curves).
CHAPTER 10 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Graphical Insight Slope fields often let us see the asymptotic behavior of solutions (as \(t \to \infty \)) at a glance. Figure 3(E) suggests that the asymptotic behavior depends on the initial value (the \(y \)-intercept): If \(y(0) > 1 \), then \(y(t) \) tends to \(\infty \), and if \(y(0) < 1 \), then \(y(t) \) tends to \(-\infty \). We can check this using the general solution \(y(t) = 1 + t + Ce^t \), where \(y(0) = 1 + C \). If \(y(0) > 1 \), then \(C > 0 \) and \(y(t) \) tends to \(\infty \), but if \(y(0) < 1 \), then \(C < 0 \) and \(y(t) \) tends to \(-\infty \). The solution \(y = 1 + t \) with initial condition \(y(0) = 1 \) is the straight line shown in Figure 3(D).

Example 2 Newton’s Law of Cooling Revisited The temperature \(y(t) \) (in degrees Celsius) of an object placed in a refrigerator satisfies \(\frac{dy}{dt} = -0.5(y - 4) \) (\(t \) in minutes). Draw the slope field and describe the behavior of the solutions.

Solution The function \(F(t, y) = -0.5(y - 4) \) depends only on \(y \), so slopes of the segments in the slope field do not vary in the \(t \)-direction. The slope \(F(t, y) \) is positive for \(y < 4 \) and negative for \(y > 4 \). More precisely, the slope at height \(y \) is \(-0.5(y - 4) = -0.5y + 2\), so the segments grow steeper with positive slope as \(y \to -\infty \), and they grow steeper with negative slope as \(y \to \infty \) (Figure 4).

The slope field shows that if the initial temperature satisfies \(y_0 > 4 \), then \(y(t) \) decreases to \(y = 4 \) as \(t \to \infty \). In other words, the object cools down to 4°C when placed in the refrigerator. If \(y_0 < 4 \), then \(y(t) \) increases to \(y = 4 \) as \(t \to \infty \). The object warms up when placed in the refrigerator. If \(y_0 = 4 \), then \(y \) remains at 4°C for all time \(t \).

Conceptual Insight Most first-order equations arising in applications have a uniqueness property: There is precisely one solution \(y(t) \) satisfying a given initial condition \(y(t_0) = y_0 \). Graphically, this means that precisely one integral curve (solution) passes through the point \((t_0, y_0)\). Thus, when uniqueness holds, distinct integral curves never cross or overlap. Figure 5 shows the slope field of \(\frac{dy}{dt} = -\sqrt{y} \), where uniqueness fails. We can prove that once an integral curve touches the \(t \)-axis, it either remains on the \(t \)-axis or continues along the \(t \)-axis for a period of time before moving below the \(t \)-axis. Therefore, infinitely many integral curves pass through each point on the \(t \)-axis. However, the slope field does not show this clearly. This highlights again the need to analyze solutions rather than rely on visual impressions alone.

Euler’s Method

Euler’s Method produces numerical approximations to the solution of a first-order Initial Value Problem:

\[
\frac{dy}{dt} = F(t, y), \quad y(t_0) = y_0
\]

We begin by choosing a small number \(h \), called the time step, and consider the sequence of times starting at the initial value \(t_0 \) and spaced at intervals of size \(h \):

\[t_0, \quad t_1 = t_0 + h, \quad t_2 = t_0 + 2h, \quad t_3 = t_0 + 3h, \quad \ldots \]

In general, \(t_k = t_0 + kh \) for \(k = 0, 1, 2, \ldots \). Euler’s Method consists of computing a sequence of values \(y_1, y_2, y_3, \ldots, y_n \) successively using the formula

\[y_k = y_{k-1} + h F(t_{k-1}, y_{k-1}) \]
Starting with the initial value \(y_0 = y(t_0) \), we compute \(y_1 = y_0 + hF(t_0, y_0) \), etc. The value \(y_k \) is the Euler approximation to \(y(t_k) \). We connect the points \(P_k = (t_k, y_k) \) by segments to obtain an approximation to the graph of \(y(t) \) (Figure 6).

GRAPHICAL INSIGHT The values \(y_k \) are defined so that the segment joining \(P_{k-1} \) to \(P_k \) has slope

\[
\frac{y_k - y_{k-1}}{t_k - t_{k-1}} = \frac{(y_{k-1} + hF(t_{k-1}, y_{k-1})) - y_{k-1}}{h} = F(t_{k-1}, y_{k-1})
\]

Thus, in Euler’s method, we move from \(P_{k-1} \) to \(P_k \) by traveling in the direction specified by the slope field at \(P_{k-1} \) for a time interval of length \(h \) (Figure 6).

EXAMPLE 3 Use Euler’s Method with time step \(h = 0.2 \) and \(n = 4 \) steps to approximate the solution of \(\frac{dy}{dt} = y - t^2 \), \(y(0) = 3 \).

Solution Our initial value at \(t_0 = 0 \) is \(y_0 = 3 \). Since \(h = 0.2 \), the time values are \(t_1 = 0.2 \), \(t_2 = 0.4 \), \(t_3 = 0.6 \), and \(t_4 = 0.8 \). We use Eq. (3) with \(F(t, y) = y - t^2 \) to calculate

\[
\begin{align*}
y_1 &= y_0 + hF(t_0, y_0) = 3 + 0.2(3 - 0^2) = 3.6 \\
y_2 &= y_1 + hF(t_1, y_1) = 3.6 + 0.2(3.6 - (0.2)^2) \approx 4.3 \\
y_3 &= y_2 + hF(t_2, y_2) = 4.3 + 0.2(4.3 - (0.4)^2) \approx 5.14 \\
y_4 &= y_3 + hF(t_3, y_3) = 5.14 + 0.2(5.14 - (0.6)^2) \approx 6.1
\end{align*}
\]

Figure 7(A) shows the exact solution \(y(t) = 2 + 2t + t^2 + e^t \) together with a plot of the points \((t_k, y_k)\) for \(k = 0, 1, 2, 3, 4 \) connected by line segments.

CONCEPTUAL INSIGHT Figure 7(B) shows that the time step \(h = 0.1 \) gives a better approximation than \(h = 0.2 \). In general, the smaller the time step, the better the approximation. In fact, if we start at a point \((a, y(a))\) and use Euler’s Method to approximate \((b, y(b))\) using \(N \) steps with \(h = (b - a)/N \), then the error is roughly proportional to \(1/N \) [provided that \(F(t, y) \) is a well-behaved function]. This is similar to the error size in the \(N \)th left- and right-endpoint approximations to an integral. What this means, however, is that Euler’s Method is quite inefficient; to cut the error in half, it is necessary to double the number of steps, and to achieve \(n \)-digit accuracy requires roughly \(10^n \) steps. Fortunately, there are several methods that improve on Euler’s Method in much the same way as the Midpoint Rule and Simpson’s Rule improve on the endpoint approximations (see Exercises 24–29).
EXAMPLE 4 CAS Let \(\frac{dy}{dt} = \sin t \cos y \), \(y(0) = 0 \).

(a) Use Euler’s Method with time step \(h = 0.1 \) to approximate \(y(0.5) \).

(b) Use a computer algebra system to implement Euler’s Method with time steps \(h = 0.01, 0.001 \), and 0.0001 to approximate \(y(0.5) \).

Solution

(a) When \(h = 0.1 \), \(y_k \) is an approximation to \(y(0 + k(0.1)) = y(0.1k) \), so \(y_5 \) is an approximation to \(y(0.5) \). It is convenient to organize calculations in the following table. Note that the value \(y_{k+1} \) computed in the last column of each line is used in the next line to continue the process.

<table>
<thead>
<tr>
<th>(t_k)</th>
<th>(y_k)</th>
<th>(F(t_k, y_k) = \sin t_k \cos y_k)</th>
<th>(y_{k+1} = y_k + hF(t_k, y_k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_0 = 0)</td>
<td>(y_0 = 0)</td>
<td>((\sin 0) \cos 0 \approx 0)</td>
<td>(y_1 = 0 + 0.1(0) = 0)</td>
</tr>
<tr>
<td>(t_1 = 0.1)</td>
<td>(y_1 \approx 0.1)</td>
<td>((\sin 0.1) \cos 0 \approx 0.1)</td>
<td>(y_2 \approx 0 + 0.1(0.1) = 0.1)</td>
</tr>
<tr>
<td>(t_2 = 0.2)</td>
<td>(y_2 \approx 0.01)</td>
<td>((\sin 0.2) \cos(0.01) \approx 0.2)</td>
<td>(y_3 \approx 0.01 + 0.1(0.2) = 0.03)</td>
</tr>
<tr>
<td>(t_3 = 0.3)</td>
<td>(y_3 \approx 0.03)</td>
<td>((\sin 0.3) \cos(0.03) \approx 0.3)</td>
<td>(y_4 \approx 0.03 + 0.1(0.3) = 0.06)</td>
</tr>
<tr>
<td>(t_4 = 0.4)</td>
<td>(y_4 \approx 0.06)</td>
<td>((\sin 0.4) \cos(0.06) \approx 0.4)</td>
<td>(y_5 \approx 0.06 + 0.1(0.4) = 0.10)</td>
</tr>
</tbody>
</table>

Thus, Euler’s Method yields the approximation \(y(0.5) \approx y_5 \approx 0.1 \).

(b) When the number of steps is large, the calculations are too lengthy to do by hand, but they are easily carried out using a CAS. Note that for \(h = 0.01 \), the \(k \)th value \(y_k \) is an approximation to \(y(0 + k(0.01)) = y(0.01k) \), and \(y_{50} \) gives an approximation to \(y(0.5) \). Similarly, when \(h = 0.001 \), \(y_{500} \) is an approximation to \(y(0.5) \), and when \(h = 0.0001 \), \(y_{5000} \) is an approximation to \(y(0.5) \). Here are the results obtained using a CAS:

<table>
<thead>
<tr>
<th>Time step (h)</th>
<th>(y_{50})</th>
<th>(y_{500})</th>
<th>(y_{5000})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.01)</td>
<td>(0.1197)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.001)</td>
<td>(0.1219)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.0001)</td>
<td>(0.1221)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The values appear to converge and we may assume that \(y(0.5) \approx 0.12 \). However, we see here that Euler’s Method converges quite slowly.

10.2 SUMMARY

- The slope field for a first-order differential equation \(\frac{dy}{dt} = F(t, y) \) is obtained by drawing small segments of slope \(F(t, y) \) at points \((t, y)\) lying on a rectangular grid in the plane.
- The graph of a solution (also called an integral curve) of the differential equation satisfying \(y(t_0) = y_0 \) is a curve through \((t_0, y_0)\) that runs tangent to the segments of the slope field at each point.
- Euler’s Method: To approximate a solution to \(\frac{dy}{dt} = F(t, y) \) with initial condition \(y(t_0) = y_0 \), fix a time step \(h \) and set \(t_k = t_0 + kh \). Define \(y_1, y_2, \ldots \) successively by the formula

\[
y_k = y_{k-1} + hF(t_{k-1}, y_{k-1})
\]

The values \(y_0, y_1, y_2, \ldots \) are approximations to the values \(y(t_0), y(t_1), y(t_2), \ldots \).
10.2 EXERCISES

Preliminary Questions

1. What is the slope of the segment in the slope field for \(\frac{dy}{dt} = ty + 1 \) at the point (2, 3)?

2. What is the equation of the isocline of slope \(c = 1 \) for \(\frac{dy}{dt} = y^2 - t \)?

3. For which of the following differential equations are the slopes at points on a vertical line \(t = C \) all equal?

(a) \(\frac{dy}{dt} = \ln y \)
(b) \(\frac{dy}{dt} = \ln t \)

4. Let \(y(t) \) be the solution to \(\frac{dy}{dt} = F(t, y) \) with \(y(1) = 3 \). How many iterations of Euler’s Method are required to approximate \(y(3) \) if the time step is \(h = 0.1 \)?

5. Consider the differential equation \(\frac{dy}{dt} = t - y \).

(a) Sketch the slope field of the differential equation \(\frac{dy}{dt} = t - y \) in the range \(-1 \leq t \leq 3, -1 \leq y \leq 3 \). As an aid, observe that the isocline of slope \(c \) is the line \(t - y = c \), so the segments have slope \(c \) at points on the line \(y = t - c \).

(b) Show that \(y = t - 1 + Ce^{-t} \) is a solution for all \(C \). Since \(\lim_{t \to \infty} e^{-t} = 0 \), these solutions approach the particular solution \(y = t - 1 \) as \(t \to \infty \). Explain how this behavior is reflected in your slope field.

6. Show that the isoclines of \(\frac{dy}{dt} = 1/y \) are horizontal lines. Sketch the slope field for \(-2 \leq t \leq 2, -2 \leq y \leq 2 \) and plot the solutions with initial conditions \(y(0) = 0 \) and \(y(0) = 1 \).

Exercises

1. Figure 8 shows the slope field for \(\frac{dy}{dt} = \sin y \sin t \).

Sketch the graphs of the solutions with initial conditions \(y(0) = 1 \) and \(y(0) = -1 \). Show that \(y(t) = 0 \) is a solution and add its graph to the plot.

![Figure 8 Slope field for \(\frac{dy}{dt} = \sin y \sin t \).](image)

2. Figure 9 shows the slope field for \(\frac{dy}{dt} = y^2 - t^2 \).

Sketch the integral curve passing through the point \((0, -1)\), the curve through \((0, 0)\), and the curve through \((0, 2)\). Is \(y(t) = 0 \) a solution?

![Figure 9 Slope field for \(\frac{dy}{dt} = y^2 - t^2 \).](image)

3. Show that \(f(t) = \frac{1}{2}(t - \frac{1}{2}) \) is a solution to \(\frac{dy}{dt} = t - 2y \). Sketch the four solutions with \(y(0) = \pm 0.5, \pm 1 \) on the slope field in Figure 10. The slope field suggests that every solution approaches \(f(t) \) as \(t \to \infty \). Confirm this by showing that

\[
y = f(t) + Ce^{-2t}
\]

is the general solution.

![Figure 10 Slope field for \(\frac{dy}{dt} = t - 2y \).](image)

4. One of the slope fields in Figures 11(A) and (B) is the slope field for \(\frac{dy}{dt} = t^2 \). The other is for \(\frac{dy}{dt} = y^2 \). Identify which is which. In each case, sketch the solutions with initial conditions \(y(0) = 1, y(0) = 0 \), and \(y(0) = -1 \).

![Figure 11](image)
7. Sketch the slope field for $\frac{dy}{dt} = y + t$ for $-2 \leq t \leq 2$, $-2 \leq y \leq 2$.

8. Sketch the slope field for $\frac{dy}{dt} = t - y$ for $-2 \leq t \leq 2$, $-2 \leq y \leq 2$.

9. Show that the isoclines of $\frac{dy}{dt} = t$ are vertical lines. Sketch the slope field for $-2 \leq t \leq 2$, $-2 \leq y \leq 2$ and plot the integral curves passing through $(0, -1)$ and $(0, 1)$.

10. Sketch the slope field of $\frac{dy}{dt} = ty$ for $-2 \leq t \leq 2$, $-2 \leq y \leq 2$. Based on the sketch, determine $\lim_{t \to \infty} y(t)$, where $y(t)$ is a solution with $y(0) > 0$. What is $\lim_{t \to \infty} y(t)$ if $y(0) < 0$?

11. Match each differential equation with its slope field in Figures 12(A)–(F).

 (i) $\frac{dy}{dt} = -1$
 (ii) $\frac{dy}{dt} = \frac{y}{t}$
 (iii) $\frac{dy}{dt} = t^2 y$
 (iv) $\frac{dy}{dt} = ty^2$
 (v) $\frac{dy}{dt} = t^2 + y^2$
 (vi) $\frac{dy}{dt} = t$

 ![Slope Fields](image-url)

 (A) (B) (C) (D) (E) (F)

 Figure 12

12. Sketch the solution of $\frac{dy}{dt} = ty^2$ satisfying $y(0) = 1$ in the appropriate slope field of Figure 12(A)–(F). Then show, using Separation of Variables, that if $y(t)$ is a solution such that $y(0) > 0$, then $y(t)$ tends to infinity as $t \to \sqrt{2/y(0)}$.

13. (a) Sketch the slope field of $\frac{dy}{dt} = t/y$ in the region $-2 \leq t \leq 2$, $-2 \leq y \leq 2$.

 (b) Check that $y = \pm\sqrt{t^2 + C}$ is the general solution.

 (c) Sketch the solutions on the slope field with initial conditions $y(0) = 1$ and $y(0) = -1$.

14. Sketch the slope field of $\frac{dy}{dt} = t^2 - y$ in the region $-3 \leq t \leq 3$, $-3 \leq y \leq 3$ and sketch the solutions satisfying $y(1) = 0$, $y(1) = 1$, and $y(1) = -1$.

15. Let $F(t, y) = t^2 - y$ and let $y(t)$ be the solution of $\frac{dy}{dt} = F(t, y)$ satisfying $y(2) = 3$. Let $h = 0.1$ be the time step in Euler’s Method, and set $y_0 = y(2) = 3$.

 (a) Calculate $y_1 = y_0 + hF(2, 3).
 (b) Calculate $y_2 = y_1 + hF(2.1, y_1).$
 (c) Calculate $y_3 = y_2 + hF(2.2, y_2)$ and continue computing y_4, y_5, and y_6.

 (d) Find approximations to $y(2.2)$ and $y(2.5)$.

16. Let $y(t)$ be the solution to $\frac{dy}{dt} = te^{-y}$ satisfying $y(0) = 0$.

 (a) Use Euler’s Method with time step $h = 0.1$ to approximate $y(0.1), y(0.2), \ldots, y(0.5)$.

 (b) Use Separation of Variables to find $y(t)$ exactly.

 (c) Compute the errors in the approximations to $y(0.1)$ and $y(0.5)$.

In Exercises 17–22, use Euler’s Method to approximate the given value of $y(t)$ with the time step h indicated.

17. $y(0.5); \quad \frac{dy}{dt} = y + t, \quad y(0) = 1, \quad h = 0.1$

18. $y(0.7); \quad \frac{dy}{dt} = 2y, \quad y(0) = 3, \quad h = 0.1$

19. $y(3.3); \quad \frac{dy}{dt} = t^2 - y, \quad y(3) = 1, \quad h = 0.05$

20. $y(3); \quad \frac{dy}{dt} = \sqrt{t + y}, \quad y(2.7) = 5, \quad h = 0.05$

21. $y(2); \quad \frac{dy}{dt} = t \sin y, \quad y(1) = 2, \quad h = 0.2$

22. $y(5.2); \quad \frac{dy}{dt} = t - \sec y, \quad y(4) = -2, \quad h = 0.2$

Further Insights and Challenges

23. If f is continuous on $[a, b]$, then the solution to $\frac{dy}{dt} = f(t)$ with initial condition $y(a) = 0$ is $y(t) = \int_a^t f(u) \, du$. Show that Euler’s Method with time step $h = (b - a)/N$ for N steps yields the Nth left-endpoint approximation to $y(b) = \int_a^b f(u) \, du$.

Exercises 24–29: Euler’s Midpoint Method is a variation on Euler’s Method that is significantly more accurate in general. For time step h and initial value $y_0 = y(t_0)$, the values y_k are defined successively by

$$y_k = y_{k-1} + h m_{k-1}$$

where $m_{k-1} = F(t_{k-1} + \frac{h}{2}, y_{k-1} + \frac{h}{2} F(t_{k-1}, y_{k-1}))$.

24. Apply both Euler’s Method and the Euler Midpoint Method with $h = 0.1$ to estimate $y(1.5)$, where $y(t)$ satisfies $\frac{dy}{dt} = y$ with $y(0) = 1$. Find $y(t)$ exactly and compute the errors in these two approximations.

25. $y(0.5); \quad \frac{dy}{dt} = y + t, \quad y(0) = 1, \quad h = 0.1$

26. $y(2); \quad \frac{dy}{dt} = t^2 - y, \quad y(1) = 3, \quad h = 0.2$

27. $y(0.25); \quad \frac{dy}{dt} = \cos(y + t), \quad y(0) = 1, \quad h = 0.05$

28. $y(2.3); \quad \frac{dy}{dt} = y + t^2, \quad y(2) = 1, \quad h = 0.05$

29. Assume that f is continuous on $[a, b]$. Show that Euler’s Midpoint Method applied to $\frac{dy}{dt} = f(t)$ with initial condition $y(a) = 0$ and time step $h = (b - a)/N$ for N steps yields the Nth midpoint approximation to

$$y(b) = \int_a^b f(u) \, du$$

10.3 The Logistic Equation

The simplest model of population growth is $\frac{dy}{dt} = ky$, according to which populations grow exponentially. This may be true over short periods of time, but it is clear that no population can increase without limit due to finite resources (such as food and space). Therefore, population biologists use a variety of other differential equations that take into account environmental limitations to growth such as food scarcity and competition between species. One widely used model is based on the logistic differential equation:

$$\frac{dy}{dt} = ky \left(1 - \frac{y}{A}\right)$$

Here, $k > 0$ is the growth constant, and $A > 0$ is a constant called the carrying capacity. Figure 1 shows a typical S-shaped solution of Eq. (1).

CONCEPTUAL INSIGHT The logistic equation $\frac{dy}{dt} = ky(1 - y/A)$ differs from the exponential differential equation $\frac{dy}{dt} = ky$ only by the additional factor (1 – y/A). As long as y is small relative to A, this factor is close to 1 and can be ignored, yielding $\frac{dy}{dt} \approx ky$. Thus, $y(t)$ grows nearly exponentially when the population is small (Figure 1). As $y(t)$ approaches A, the factor (1 – y/A) tends to zero. This causes $\frac{dy}{dt}$ to decrease and prevents $y(t)$ from exceeding the carrying capacity A.

The slope field in Figure 2 shows clearly that there are three families of solutions, depending on the initial value $y_0 = y(0)$.

- If $y_0 > A$, then $y(t)$ is decreasing and approaches A as $t \to \infty$.
- If $0 < y_0 < A$, then $y(t)$ is increasing and approaches A as $t \to \infty$.
- If $y_0 < 0$, then $y(t)$ is decreasing and $\lim_{t \to t_0} y(t) = -\infty$ for some time t_0.

Equation (1) also has two constant solutions: $y = 0$ and $y = A$. They correspond to the roots of $ky(1 - y/A) = 0$, and they satisfy Eq. (1) because $\frac{dy}{dt} = 0$ when y is a constant. Constant solutions are called equilibrium or steady-state solutions. The equilibrium solution $y = A$ is a stable equilibrium because every solution with initial value y_0 close to A approaches the equilibrium $y = A$ as $t \to \infty$. By contrast, $y = 0$ is an unstable equilibrium because every nonequilibrium solution with initial value y_0 near $y = 0$ either increases to A or decreases to $-\infty$. These nonequilibrium solutions deviate away from the unstable equilibrium solution as time moves forward.
CHAPTER 10
INTRODUCTION TO DIFFERENTIAL EQUATIONS

02468
−2
0
2
4
6
8

\text{Initial value } y_0 > A:
\begin{align*}
The \text{solutions decrease to } A \\
\text{Stable equilibrium } y = A \\
\text{These solutions increase to } A \\
\text{Unstable equilibrium } y = 0 \\
\text{These solutions decrease to } -\infty \text{ as } t \to t_b
\end{align*}

\text{Initial value } A > y_0 > 0:
\begin{align*}
\text{These solutions decrease to } A
\end{align*}

\text{Initial value } y_0 < 0:
\begin{align*}
\text{These solutions increase to } A
\end{align*}

\begin{align*}
&\text{dy} \\
&\text{dt}
\end{align*}

\begin{align*}
&\text{dy} \\
&\text{dt}
\end{align*}

In Eq. (2), we use the partial fraction decomposition

\begin{align*}
\frac{1}{y(1-y/A)} = \frac{1}{y} - \frac{1}{y-A}
\end{align*}

\begin{align*}
\int \left(\frac{1}{y} - \frac{1}{y-A}\right) dy = \int k dt
\end{align*}

\begin{align*}
\ln |y| - \ln |y-A| = kt + C
\end{align*}

\begin{align*}
\frac{y}{y-A} = e^{kt+C} \Rightarrow \\
\frac{y}{y-A} = \pm e^C e^{kt}
\end{align*}

Since \(\pm e^C \) takes on arbitrary nonzero values, we replace \(\pm e^C \) with \(B \) (nonzero):

\begin{align*}
\frac{y}{y-A} = Be^{kt}
\end{align*}

For \(t = 0 \), this gives a useful relation between \(B \) and the initial value \(y_0 = y(0) \):

\begin{align*}
\frac{y_0}{y_0-A} = B
\end{align*}

To solve for \(y \), multiply each side of Eq. (3) by \((y - A) \):

\begin{align*}
y = (y - A)Be^{kt}
\end{align*}

\begin{align*}
y(1 - Be^{kt}) = -ABe^{kt}
\end{align*}

\begin{align*}
y = \frac{ABe^{kt}}{Be^{kt} - 1}
\end{align*}

As \(B \neq 0 \), we may divide by \(Be^{kt} \) to obtain the general nonequilibrium solution:

\begin{align*}
\frac{dy}{dt} = ky \left(1 - \frac{y}{A}\right), \quad y = \frac{A}{1 - e^{-kt}/B}
\end{align*}

Although we will use the solution we just derived in the next two examples, it is generally easier to rederive the solution in a particular case by Separation of Variables than it is to memorize the solution.
SECTION 10.3 The Logistic Equation 517

EXAMPLE 1 Solve \(\frac{dy}{dt} = 0.3y(4 - y) \) with initial condition \(y(0) = 1 \).

Solution To apply Eq. (5), we must rewrite the equation in the form

\[\frac{dy}{dt} = 1.2y \left(1 - \frac{y}{4} \right) \]

Thus, \(k = 1.2 \) and \(A = 4 \), and the general solution is

\[y = \frac{4}{1 - e^{-1.2t}/B} \]

There are two ways to find \(B \). One way is to solve \(y(0) = 1 \) for \(B \) directly. An easier way is to use Eq. (4):

\[B = \frac{y_0}{y_0 - A} = \frac{1}{1 - 4} = -\frac{1}{3} \]

We find that the particular solution is

\[y = \frac{4}{1 + 3e^{-1.2t}} \] (Figure 3).

EXAMPLE 2 Deer Population A deer population (Figure 4) grows logistically with growth constant \(k = 0.4 \) year\(^{-1} \) in a forest with a carrying capacity of 1000 deer.

(a) Find the deer population \(P(t) \) if the initial population is \(P_0 = 100 \).

(b) How long does it take for the deer population to reach 500?

Solution The time unit is the year because the unit of \(k \) is year\(^{-1} \).

(a) Since \(k = 0.4 \) and \(A = 1000 \), \(P(t) \) satisfies the differential equation

\[\frac{dP}{dt} = 0.4P \left(1 - \frac{P}{1000} \right) \]

The general solution is given by Eq. (5):

\[P(t) = \frac{1000}{1 - e^{-0.4t}/B} \]

Using Eq. (4) to compute \(B \), we find (Figure 5)

\[B = \frac{P_0}{P_0 - A} = \frac{100}{100 - 1000} = -\frac{1}{9} \quad \Rightarrow \quad P(t) = \frac{1000}{1 + 9e^{-0.4t}} \]

(b) To find the time \(t \) when \(P(t) = 500 \), we could solve the equation

\[P(t) = \frac{1000}{1 + 9e^{-0.4t}} = 500 \]

But it is easier to use Eq. (3):

\[\frac{P}{P - A} = Be^{kt} \]

\[\frac{P}{P - 1000} = -\frac{1}{9}e^{0.4t} \]

Set \(P = 500 \) and solve for \(t \):

\[-\frac{1}{9}e^{0.4t} = \frac{500}{500 - 1000} = -1 \quad \Rightarrow \quad e^{0.4t} = 9 \quad \Rightarrow \quad 0.4t = \ln 9 \]

This gives \(t = (\ln 9)/0.4 \approx 5.5 \) years.
10.3 SUMMARY

- The logistic equation and its general nonequilibrium solution $(k > 0$ and $A > 0)$:
 \[
 \frac{dy}{dt} = ky \left(1 - \frac{y}{A}\right), \quad y = \frac{A}{1 - e^{-kt}/B},
 \]
 or equivalently,
 \[
 \frac{y}{y - A} = Be^{kt}
 \]

- Two equilibrium (constant) solutions:
 - $y = 0$ is an unstable equilibrium.
 - $y = A$ is a stable equilibrium.

- If the initial value $y_0 = y(0)$ satisfies $y_0 > 0$, then $y(t)$ approaches the stable equilibrium $y = A$; that is, $\lim_{t \to \infty} y(t) = A$.

10.3 EXERCISES

Preliminary Questions

1. Which of the following differential equations is a logistic differential equation?
 - (a) $\frac{dy}{dt} = 2y(1 - y^2)$
 - (b) $\frac{dy}{dt} = 2y \left(1 - \frac{y}{3}\right)$
 - (c) $\frac{dy}{dt} = 2y \left(1 - \frac{t}{4}\right)$
 - (d) $\frac{dy}{dt} = 2y(1 - 3y)$

2. Is the logistic equation a linear differential equation?

3. Is the logistic equation separable?

Exercises

1. Find the general solution of the logistic equation
 \[
 \frac{dy}{dt} = 3y \left(1 - \frac{y}{5}\right)
 \]
 Then find the particular solution satisfying $y(0) = 2$.

2. Find the solution of $\frac{dy}{dt} = 2y(3 - y), y(0) = 10$.

3. Let $y(t)$ be a solution of $\frac{dy}{dt} = 0.5y(1 - 0.5y)$ such that $y(0) = 5$. Determine $\lim_{t \to \infty} y(t)$ without finding $y(t)$ explicitly.

4. Let $y(t)$ be a solution of $\frac{dy}{dt} = 5y(1 - y/5)$. State whether y is increasing, decreasing, or constant in the following cases:
 - (a) $y(0) = 2$
 - (b) $y(0) = 5$
 - (c) $y(0) = 8$

5. A population of squirrels lives in a forest with a carrying capacity of 2000. Assume logistic growth with growth constant $k = 0.6 \text{ yr}^{-1}$. (a) Find a formula for the squirrel population $P(t)$, assuming an initial population of 300 squirrels. (b) How long will it take for the squirrel population to double?

6. The population $P(t)$ of mosquito larvae growing in a tree hole increases according to the logistic equation with growth constant $k = 0.3 \text{ day}^{-1}$ and carrying capacity $A = 500$. (a) Find a formula for the larvae population $P(t)$, assuming an initial population of $P_0 = 50$ larvae. (b) After how many days will the larvae population reach 200?

7. Sunset Lake is stocked with 2000 rainbow trout, and after 1 year the population has grown to 4500. Assuming logistic growth with a carrying capacity of 20,000, find the growth constant k (specify the units) and determine when the population will increase to 10,000.

8. Spread of a Rumor A rumor spreads through a small town. Let $y(t)$ be the fraction of the population that has heard the rumor at time t and assume that the rate at which the rumor spreads is proportional to the product of the fraction y of the population that has heard the rumor and the fraction $1 - y$ that has not yet heard the rumor.
 (a) Write down the differential equation satisfied by y in terms of a proportionality factor k.
 (b) Find k (in units of day$^{-1}$), assuming that 10% of the population knows the rumor at $t = 0$ and 40% knows it at $t = 2$ days.
 (c) Using the assumptions of part (b), determine when 75% of the population will know the rumor.

9. A rumor spreads through a school with 1000 students. At 8 AM, 80 students have heard the rumor, and by noon, half the school has heard it. Using the logistic model of Exercise 8, determine when 90% of the students will have heard the rumor.

10. GU A simpler model for the spread of a rumor assumes that the rate at which the rumor spreads is proportional (with factor k) to the fraction of the population that has not yet heard the rumor.
 (a) Compute the solutions to this model and the model of Exercise 8 with the values $k = 0.9$ and $y_0 = 0.1$.
 (b) Graph the two solutions on the same axis.
 (c) Which model seems more realistic? Why?

11. Let $k = 1$ and $A = 1$ in the logistic equation.
 (a) Find the solutions satisfying $y_1(0) = 10$ and $y_2(0) = -1$.
 (b) Find the time t when $y_1(t) = 5$.
 (c) When does $y_2(t)$ become infinite?
12. A tissue culture grows until it has a maximum area of \(M \) square centimeters. The area \(A(t) \) of the culture at time \(t \) may be modeled by the differential equation
\[
\frac{dA}{dt} = k\sqrt{A} \left(1 - \frac{A}{M}\right)
\]
where \(k \) is a growth constant.
(a) Show that if we set \(A = u^2 \), then
\[
\frac{du}{dt} = \frac{1}{2}k \left(1 - \frac{u^2}{M}\right)
\]
Then find the general solution using Separation of Variables.
(b) Show that if \(0 < y < A/2 \), then
\[
\frac{dy}{dt} = ky \left(1 - \frac{y}{A}\right)
\]
where \(k > 0 \) and \(A > 0 \).

13. Further Insights and Challenges
In the model of Exercise 12, let \(A(t) \) be the area at time \(t \) (hours) of a growing tissue culture with initial size \(A(0) = 1 \) cm\(^2\), assuming that the maximum area is \(M = 16 \) cm\(^2\) and the growth constant is \(k = 0.1 \).
(a) Find a formula for \(A(t) \). Note: The initial condition is satisfied for two values of the constant \(C \). Choose the value of \(C \) for which \(A(t) \) is increasing.
(b) Determine the area of the culture at \(t = 10 \) hours.
(c) Graph the solution using a graphing utility.

14. Show that if a tissue culture grows according to Eq. (7), then the growth rate reaches a maximum when \(A = M/3 \).

15. In 1751 Benjamin Franklin predicted that the U.S. population \(P(t) \) would increase with growth constant \(k = 0.028 \) year\(^{-1}\). According to the census, the U.S. population was 5 million in 1800 and 76 million in 1900. Assuming logistic growth with \(k = 0.028 \), find the predicted carrying capacity for the U.S. population. Hint: Use Eqs. (3) and (4) to show that
\[
\frac{P(t)}{P(t) - A} = \frac{P_0}{P_0 - A} e^{kt}
\]

16. Reverse Logistic Equation Consider the following logistic equation (with \(k, B > 0 \)):
\[
\frac{dP}{dt} = -kP \left(1 - \frac{P}{B}\right)
\]
(a) Sketch the slope field of this equation.
(b) The general solution is \(P(t) = B/(1 - e^{kt}/C) \), where \(C \) is a nonzero constant. Show that \(P(0) > B \) if \(C > 1 \) and \(0 < P(0) < B \) if \(C < 0 \).
(c) Show that Eq. (8) models an "extinction–explosion" population. That is, \(P(t) \) tends to zero if the initial population satisfies \(0 < P(0) < B \), and it tends to \(\infty \) after a finite amount of time if \(P(0) > B \).
(d) Show that \(P = 0 \) is a stable equilibrium and \(P = B \) an unstable equilibrium.

10.4 First-Order Linear Equations
This section introduces the method of "integrating factors" for solving first-order linear equations. Although we already have a method (Separation of Variables) for solving separable equations, this new method applies to all linear equations, whether separable or not (Figure 1).

A first-order linear equation is one that can be put in the following form:
\[
y' + P(x)y = Q(x)
\]
Note that in this section, x is used as an independent variable (but t is used in Example 3 below). To solve Eq. (1), we shall multiply through by a function $\alpha(x)$, called an integrating factor, that turns the left-hand side into the derivative of $\alpha(x)y$:

$$\alpha(x)(y' + P(x)y) = (\alpha(x)y)'$$

Suppose we can find $\alpha(x)$ satisfying Eq. (2) that is nonzero. Then Eq. (1) yields

$$\alpha(x)(y' + P(x)y) = \alpha(x)Q(x)$$

$$(\alpha(x)y)' = \alpha(x)Q(x)$$

We can solve this equation by integration:

$$\alpha(x)y = \int \alpha(x)Q(x) \, dx \quad \text{or} \quad y = \frac{1}{\alpha(x)} \left(\int \alpha(x)Q(x) \, dx \right)$$

To find $\alpha(x)$, expand Eq. (2), using the Product Rule on the right-hand side:

$$\alpha(x)y' + \alpha(x)P(x)y = \alpha(x)y' + \alpha'(x)y \quad \Rightarrow \quad \alpha(x)P(x)y = \alpha'(x)y$$

Dividing by y, we obtain

$$\frac{da}{dx} = \alpha(x)P(x)$$

We solve this equation using Separation of Variables:

$$\frac{da}{\alpha} = P(x) \, dx \quad \Rightarrow \quad \int \frac{da}{\alpha} = \int P(x) \, dx$$

Therefore, $\ln |\alpha(x)| = \int P(x) \, dx$, and by exponentiation, $\alpha(x) = \pm e^{\int P(x) \, dx}$. Since we need just one solution of Eq. (3), we choose the positive sign in the expression for $\alpha(x)$.

THEOREM 1 The general solution of $y' + P(x)y = Q(x)$ is

$$y = \frac{1}{\alpha(x)} \left(\int \alpha(x)Q(x) \, dx \right)$$

where $\alpha(x)$ is an integrating factor:

$$\alpha(x) = e^{\int P(x) \, dx}$$

Rather than memorizing this theorem, one need only remember that the integrating factor is $\alpha(x) = e^{\int P(x) \, dx}$. Multiplying both sides of the differential equation $y' + P(x)y = Q(x)$ by $\alpha(x)$, so that the left side becomes the derivative of a product, and then integrating and solving for y yields the solution.

EXAMPLE 1 Solve $xy' - 3y = x^2$, $y(1) = 2$.

Solution First divide by x to put the equation in the form $y' + P(x)y = Q(x)$:

$$y' - \frac{3}{x}y = x$$

Thus, $P(x) = -3x^{-1}$ and $Q(x) = x$.

Step 1. Find an integrating factor.

In our case, $P(x) = -3x^{-1}$, and by Eq. (5),

$$\alpha(x) = e^{\int P(x) \, dx} = e^{\int (-3/x) \, dx} = e^{-3 \ln x} = e^{\ln(x^{-3})} = x^{-3}$$
Step 2. Multiply the equation by the integrating factor.

\[x^{-3}(y' - \frac{3}{x}y) = x^{-3}(x) \]

\[(x^{-3}y)' = x^{-2} \]

Step 3. Integrate on both sides.

\[x^{-3}y = -x^{-1} + C \]

Step 4. Solve for \(y \).

\[y = x^3(-x^{-1} + C) \]

\[= -x^2 + Cx^3 \]

Step 5. Solve the Initial Value Problem.

Now solve for \(C \) using the initial condition \(y(1) = 2 \):

\[y(1) = -1^2 + C \cdot 1^3 = 2 \quad \text{or} \quad C = 3 \]

Therefore, the solution of the Initial Value Problem is \(y = -x^2 + 3x^3 \).

Finally, let’s check that \(y = -x^2 + 3x^3 \) satisfies our equation \(xy' - 3y = x^2 \):

\[xy' - 3y = x(-2x + 9x^2) - 3(-x^2 + 3x^3) \]

\[= (-2x^2 + 9x^3) + (3x^2 - 9x^3) = x^2 \]

EXAMPLE 2 Solve the Initial Value Problem: \(y' + (1 - x^{-1})y = x^2 \), \(y(1) = 2 \).

Solution This equation has the form \(y' + P(x)y = Q(x) \) with \(P(x) = (1 - x^{-1}) \). By Eq. (5), an integrating factor is

\[\alpha(x) = e^{\int (1 - x^{-1}) \, dx} = e^{\frac{-x}{\ln x}} = e^x e^{\ln x^{-1}} = x^{-1}e^x \]

By either multiplying by the integration factor and then integrating both sides of the resulting equation or by applying Eq. (4) with \(Q(x) = x^2 \), we obtain the general solution:

\[y = \alpha(x)^{-1} \left(\int \alpha(x)Q(x) \, dx \right) = x e^{-x} \left(\int (x^{-1}e^x)x^2 \, dx \right) \]

Integration by Parts shows that \(\int xe^x \, dx = (x - 1)e^x + C \), so we obtain

\[y = xe^{-x}((x - 1)e^x + C) = x(x - 1) + Cxe^{-x} \]

The initial condition \(y(1) = 2 \) gives

\[y(1) = 1(1 - 1) + Ce^{-1} = Ce^{-1} = 2 \quad \Rightarrow \quad C = 2e \]

The desired particular solution is

\[y = x(x - 1) + 2e^{1-x} \]

CONCEPTUAL INSIGHT We have expressed the general solution of a first-order linear differential equation in terms of the integrals in Eqs. (4) and (5). Keep in mind, however, that it is not always possible to evaluate these integrals explicitly. For example, the general solution of \(y' + xy = 1 \) is

\[y = e^{-x^2/2} \left(\int e^{x^2/2} \, dx + C \right) \]

The integral \(\int e^{x^2/2} \, dx \) cannot be evaluated in elementary terms. However, we can approximate the integral numerically and plot the solutions by computer (Figure 2).
In the next example, we use a differential equation to model a “mixing problem,” which has applications in biology, chemistry, and medicine.

Example 3 A Mixing Problem A tank contains 600 liters (L) of water with a sucrose concentration of 0.2 kg/L. We begin adding water with a sucrose concentration of 0.1 kg/L at a rate of \(R_{in} = 40 \text{ L/min} \) (Figure 3). The water mixes instantaneously and exits the bottom of the tank at a rate of \(R_{out} = 20 \text{ L/min} \). Let \(y(t) \) be the quantity of sucrose in the tank at time \(t \) (in minutes). Set up a differential equation for \(y(t) \) and solve for \(y(t) \).

Solution

Step 1. Set up the differential equation.

The derivative \(dy/dt \) is the difference of two rates of change, namely the rate at which sucrose enters the tank and the rate at which it leaves:

\[
\frac{dy}{dt} = \text{sucrose rate in} - \text{sucrose rate out}
\]

The rate at which sucrose enters the tank is

\[
\text{Sucrose rate in} = (0.1 \text{ kg/L})(40 \text{ L/min}) = 4 \text{ kg/min}
\]

Concentration times water rate in

Next, we compute the sucrose concentration in the tank at time \(t \). Water flows in at 40 L/min and out at 20 L/min, so there is a net inflow of 20 L/min. The tank has 600 L at time \(t = 0 \), so it has 600 + 20\(t \) liters at time \(t \), and

\[
\text{Concentration at time } t = \frac{\text{kilograms of sucrose in tank}}{\text{liters of water in tank}} = \frac{y(t)}{600 + 20t} \text{ kg/L}
\]

The rate at which sucrose leaves the tank is the product of the concentration and the rate at which water flows out:

\[
\text{Sucrose rate out} = \left(\frac{y}{600 + 20t} \right) \left(20 \frac{\text{L}}{\text{min}} \right) = \frac{20y}{600 + 20t} = \frac{y}{t + 30} \text{ kg/min}
\]

Concentration times water rate out

Now Eq. (6) gives us the differential equation

\[
\frac{dy}{dt} = 4 - \frac{y}{t + 30}
\]

Step 2. Find the general solution.

We write Eq. (7) in standard form:

\[
\frac{dy}{dt} + \frac{1}{t + 30} y = \frac{4}{Q(t)}
\]

An integrating factor is

\[
\alpha(t) = e^\int P(t) \, dt = e^\int dt/(t + 30) = e^{\ln(t + 30)} = t + 30
\]
The general solution is
\[y(t) = \alpha(t)^{-1} \left(\int \alpha(t) Q(t) \, dt + C \right) \]
\[= \frac{1}{t + 30} \left(\int (t + 30)(4) \, dt + C \right) \]
\[= \frac{1}{t + 30} \left((t + 30)^2 + C \right) = 2t + 60 + \frac{C}{t + 30} \]

Step 3. Solve the Initial Value Problem.

At \(t = 0 \), the tank contains 600 L of water with a sucrose concentration of 0.2 kg/L. Thus, the total sucrose at \(t = 0 \) is \(y(0) = (600)(0.2) = 120 \) kg, and
\[y(0) = 2t + 60 + \frac{C}{t + 30} = 60 + \frac{C}{30} = 120 \Rightarrow C = 1800 \]

We obtain the following formula (\(t \) in minutes), which is valid until the tank overflows:
\[y(t) = 2t + 60 + \frac{1800}{t + 30} \text{ kg sucrose} \]

10.4 SUMMARY

- A first-order linear differential equation can always be written in the form
 \[y' + P(x)y = Q(x) \]
- The general solution is
 \[y = \alpha(x)^{-1} \left(\int \alpha(x) Q(x) \, dx + C \right) \]
 where \(\alpha(x) \) is an integrating factor: \(\alpha(x) = e^{\int P(x) \, dx} \).

10.4 EXERCISES

Preliminary Questions

1. Which of the following are first-order linear equations?
 (a) \(y' + x^2y = 1 \)
 (b) \(y' + xy^2 = 1 \)
 (c) \(x^2y' + y = e^x \)
 (d) \(x^2y' + y = e^y \)

2. If \(\alpha(x) \) is an integrating factor for \(y' + A(x)y = B(x) \), then \(\alpha'(x) \) is equal to (choose the correct answer):
 (a) \(B(x) \)
 (b) \(\alpha(x)A(x) \)
 (c) \(\alpha(x)A'(x) \)
 (d) \(\alpha(x)B(x) \)

3. For what function \(P \) is the integrating factor \(\alpha(x) \) equal to \(x \)?

4. For what function \(P \) is the integrating factor \(\alpha(x) \) equal to \(e^x \)?

Exercises

1. Consider \(y' + x^{-1}y = x^3 \).
 (a) Verify that \(\alpha(x) = x \) is an integrating factor.
 (b) Show that when multiplied by \(\alpha(x) \), the differential equation can be written \((xy)' = x^4 \).
 (c) Conclude that \(xy \) is an antiderivative of \(x^4 \) and use this information to find the general solution.
 (d) Find the particular solution satisfying \(y(1) = 0 \).

2. Consider \(\frac{dy}{dt} + 2y = e^{-3t} \).
 (a) Verify that \(\alpha(t) = e^{2t} \) is an integrating factor.
 (b) Use Eq. (4) to find the general solution.
 (c) Find the particular solution with initial condition \(y(0) = 1 \).

3. Let \(\alpha(x) = e^x \). Verify the identity
 \[(\alpha(x)y)' = \alpha(x)(y' + 2xy) \]
 and explain how it is used to find the general solution of
 \[y' + 2xy = x \]
4. Find the solution of \(y' - y = e^{2x}, \ y(0) = 1. \)

In Exercises 5–18, find the general solution of the first-order linear differential equation.

5. \(xy' + y = x \)
6. \(xy' - y = x^2 - x \)
7. \(3xy' - y = x^{-1} \)
8. \(y' + xy = x \)
9. \(y' + 3x^{-1}y = x + x^{-1} \)
10. \(y' + x^{-1}y = \cos(x^2) \)
11. \(xy' = -x \)
12. \(xy' = x^{-2} - \frac{3y}{x} \)
13. \(y' + y = e^x \)
14. \(y' + (\sec x)y = \cos x \)
15. \(y' + (\tan x)y = \cos x \)
16. \(e^{2x}y' = 1 - e^xy \)
17. \(y' - (\ln x)y = x^x \)
18. \(y' + y = \cos x \)

In Exercises 19–26, solve the Initial Value Problem.

19. \(y' + 3y = e^{2x}, \ \ y(0) = -1 \)
20. \(xy' + y = e^x, \ \ y(1) = 3 \)
21. \(y' + \frac{1}{x + 1}y = x^{-2}, \ \ y(1) = 2 \)
22. \(y' + y = \sin x, \ \ y(0) = 1 \)
23. \((\sin x)y' = (\cos x)y + 1, \ \ y\left(\frac{\pi}{4}\right) = 0 \)
24. \(y' + (\sec t)y = \sec t, \ \ y\left(\frac{\pi}{4}\right) = 1 \)
25. \(y' + (\tan x)y = 1, \ \ y(0) = 3 \)
26. \(y' + \frac{x}{1 + x^2}y = \frac{1}{(1 + x^2)^{3/2}}, \ \ y(1) = 0 \)

27. Find the general solution of \(y' + ny = e^{mx} \) for all \(m, n. \) Note: The case \(m = -n \) must be treated separately.

28. Find the general solution of \(y' + ny = \cos x \) for all \(n. \)

In Exercises 29–32, a 1000-liter (L) tank contains 500 L of water with a salt concentration of 10 g/L. Water with a salt concentration of 50 g/L flows into the tank at a rate of \(R_{in} = 80 \) L/min (min). The fluid mixes instantaneously and is pumped out at a specified rate \(R_{out}. \) Let \(y(t) \) denote the quantity of salt in the tank at time \(t. \)

29. Assume that \(R_{out} = 40 \) L/min.
 (a) Set up and solve the differential equation for \(y(t). \)
 (b) What is the salt concentration when the tank overflows?

30. Find the salt concentration when the tank overflows, assuming that \(R_{out} = 60 \) L/min.

31. Find the limiting salt concentration as \(t \to \infty, \) assuming that \(R_{out} = 80 \) L/min.

32. Assuming that \(R_{out} = 120 \) L/min, find \(y(t). \) Then calculate the tank volume and the salt concentration at \(t = 10 \) min.

33. Water flows into a tank at the variable rate of \(R_{in} = 20/(1 + t) \) gal/min and out at the constant rate \(R_{out} = 5 \) gal/min. Let \(V(t) \) be the volume of water in the tank at time \(t. \)
 (a) Set up a differential equation for \(V(t) \) and solve it with the initial condition \(V(0) = 100. \)
 (b) Find the maximum value of \(V. \)
 (c) \(\text{CAS} \) Plot \(V(t) \) and estimate the time \(t \) when the tank is empty.

34. A stream feeds into a lake at a rate of 1000 m³/day. The stream is polluted with a toxin whose concentration is 5 g/m³. Assume that the lake has volume \(10^6 \) m³ and that water flows out of the lake at the same rate of 1000 m³/day.
 (a) Set up a differential equation for the concentration \(c(t) \) of toxin in the lake and solve for \(c(t), \) assuming that \(c(0) = 0. \) \(\text{Hint:} \) Find the differential equation for the quantity of toxin \(y(t), \) and observe that \(c(t) = y(t)/10^6. \)
 (b) What is the limiting concentration for large \(t? \)

In Exercises 35–38, consider a series circuit (Figure 4) consisting of a resistor of \(R \) ohms, an inductor of \(L \) henries, and a variable voltage source of \(V(t) \) volts (time \(t \) in seconds). The current through the circuit \(I(t) \) (in amperes) satisfies the differential equation

\[
\frac{dI}{dt} + \frac{R}{L} I = \frac{1}{L} V(t)
\]

35. Solve Eq. (9) with initial condition \(I(0) = 0, \) assuming that \(R = 100 \) ohms \((\Omega), \ L = 5 \) henries \((H), \) and \(V(t) = e^{-t} \) volts.
 (a) Solve Eq. (9) with initial condition \(I(0) = 0. \)
 (b) Calculate \(t_m \) and \(I(t_m), \) where \(t_m \) is the time at which \(I(t) \) has a maximum value.
 (c) \(\text{GU} \) Use a computer algebra system to sketch the graph of the solution for \(0 \leq t \leq 3. \)

36. Assume that \(R = 110 \) ohms, \(L = 10 \) henries, and \(V(t) = e^{-t} \) volts.
 (a) Solve for \(I(t). \)
 (b) Show that \(\lim_{t \to \infty} I(t) = V/R \) and that \(I(t) \) reaches approximately 63% of its limiting value after \(L/R \) seconds.
 (c) How long does it take for \(I(t) \) to reach 90% of its limiting value if \(R = 500 \) ohms, \(L = 4 \) henries, and \(V = 20 \) volts?

37. Solve for \(I(t), \) assuming that \(R = 500 \) ohms, \(L = 4 \) henries, and \(V = 20 \cos(80t) \) volts?

39. \(\text{CAS} \) Tank 1 in Figure 5 is filled with \(V_1 \) liters of water containing blue dye at an initial concentration of \(c_0 \) g/L. Water flows into the tank at a rate of \(R \) L/min, is mixed instantaneously with the dye solution, and flows out through the bottom at the same rate \(R. \) Let \(c_1(t) \) be the dye concentration in the tank at time \(t. \)
 (a) Explain why \(c_1 \) satisfies the differential equation \(\frac{dc_1}{dt} = -\frac{R}{V_1} c_1. \)
 (b) Solve for \(c_1(t) \) with \(V_1 = 300 \) L, \(R = 50, \) and \(c_0 = 10 \) g/L.
Continuing with the previous exercise, let Tank 2 be another tank filled with \(V_2 \) gallons of water. Assume that the dye solution from Tank 1 empties into Tank 2 as in Figure 5, mixes instantaneously, and leaves Tank 2 at the same rate \(R \). Let \(c_2(t) \) be the dye concentration in Tank 2 at time \(t \).

(a) Explain why \(c_2 \) satisfies the differential equation

\[
\frac{dc_2}{dt} = \frac{R}{V_2} (c_1 - c_2)
\]

(b) Use the solution to Exercise 39 to solve for \(c_2(t) \) if \(V_1 = 300 \), \(V_2 = 200 \), \(R = 50 \), and \(c_0 = 10 \).

(c) Find the maximum concentration in Tank 2.

(d) \([\text{GU}]\) Plot the solution.

41. Let \(a \), \(b \), \(r \) be constants. Show that

\[
y = Ce^{-kt} + a + bk \left(\frac{k \sin rt - r \cos rt}{k^2 + r^2} \right)
\]

is a general solution of

\[
\frac{dy}{dt} = -k \left(y - a - b \sin rt \right)
\]

42. Assume that the outside temperature varies as

\[
T(t) = 15 + 5 \sin(\pi t/12)
\]

where \(t = 0 \) is 12 noon. A house is heated to 25°C at \(t = 0 \) and after that, its temperature \(y(t) \) varies according to Newton’s Law of Cooling (Figure 6):

\[
\frac{dy}{dt} = -0.1 \left(y(t) - T(t) \right)
\]

Use Exercise 41 to solve for \(y(t) \).

45. Transient Currents Suppose the circuit described by Eq. (9) is driven by a sinusoidal voltage source \(V(t) = V \sin \omega t \) (where \(V \) and \(\omega \) are constant).

(a) Show that

\[
I(t) = \frac{V}{R^2 + L^2 \omega^2} (R \sin \omega t - L \omega \cos \omega t) + Ce^{-(R/L)t}
\]

(b) Let \(Z = \sqrt{R^2 + L^2 \omega^2} \). Choose \(\theta \) so that \(Z \cos \theta = R \) and \(Z \sin \theta = L \omega \). Use the addition formula for the sine function to show that

\[
I(t) = \frac{V}{Z} \sin(\omega t - \theta) + Ce^{-(R/L)t}
\]

This shows that the current in the circuit varies sinusoidally apart from a DC term (called the \textit{transient current} in electronics) that decreases exponentially.

Chapter Review Exercises

1. Which of the following differential equations are linear? Determine the order of each equation.

(a) \(y' = y^5 - 3x^4 y \)

(b) \(y' = x^5 - 3x^4 y \)

(c) \(y'' - 3x \sqrt{y} \)

(d) \(\sin x \cdot y'' = y - 1 \)

2. Find a value of \(c \) such that \(y = x - 2 + e^{cx} \) is a solution of \(2y' + y = x \).

In Exercises 3–6, solve using Separation of Variables.

3. \(\frac{dy}{dt} = t^2 y^{-3} \)

4. \(xyy' = 1 - x^2 \)
5. \(\frac{dy}{dx} - y = 1 \)

6. \(y' = \frac{xy^2}{x^2 + 1} \)

In Exercises 7–10, solve the Initial Value Problem using Separation of Variables.

7. \(y' = \cos^2x, \quad y(0) = \frac{\pi}{4} \)

8. \(y' = \cos^2y, \quad y(0) = \frac{\pi}{4} \)

9. \(y' = xy^2, \quad y(1) = 2 \)

10. \(xy = 1, \quad y(3) = 2 \)

11. Figure 1 shows the slope field for \(\frac{dy}{dt} = \sin y + ty \). Sketch the graphs of the solutions with the initial conditions \(y(0) = 1, y(0) = 0 \), and \(y(0) = -1 \).

\[\text{FIGURE 1} \]

12. Sketch the slope field for \(\frac{dy}{dt} = t^2y \) for \(-2 \leq t \leq 2, -2 \leq y \leq 2 \).

13. Sketch the slope field for \(\frac{dy}{dt} = y \sin t \) for \(-2\pi \leq t \leq 2\pi, -2 \leq y \leq 2 \).

14. Which of the equations (i)–(iii) corresponds to the slope field in Figure 2?

 (i) \(\frac{dy}{dt} = 1 - y^2 \)
 (ii) \(\frac{dy}{dt} = 1 + y^2 \)
 (iii) \(\frac{dy}{dt} = y^2 \)

\[\text{FIGURE 2} \]

15. Let \(y(t) \) be the solution to the differential equation with the slope field as shown in Figure 2, satisfying \(y(0) = 0 \). Sketch the graph of \(y(t) \). Then use your answer to Exercise 14 to solve for \(y(t) \).

16. Let \(y(t) \) be the solution of \(\frac{dy}{dt} = y^2 + t \) satisfying \(y(2) = 1 \).

 Carry out Euler’s Method with time step \(h = 0.05 \) for \(n = 6 \) steps.

17. Let \(y(t) \) be the solution of \((x^3 + 1)\frac{dy}{dx} = y \) satisfying \(y(0) = 1 \).

 Compute approximations to \(y(0.1), y(0.2), \) and \(y(0.3) \) using Euler’s Method with time step \(h = 0.1 \).

In Exercises 18–21, solve using the method of integrating factors.

18. \(\frac{dy}{dt} = y + t^2, \quad y(0) = 4 \)

19. \(\frac{dy}{dx} = \frac{y}{x} + x, \quad y(1) = 3 \)

20. \(\frac{dy}{dt} = y - 3t, \quad y(-1) = 2 \)

21. \(y' + 2y = 1 + e^{-x}, \quad y(0) = -4 \)

In Exercises 22–29, solve using the appropriate method.

22. \(x^2y' = x^2 + 1, \quad y(1) = 10 \)

23. \(y' + (\tan x)y = \cos^2x, \quad y(\pi) = 2 \)

24. \(xy' = 2y + x - 1, \quad y\left(\frac{1}{2}\right) = 9 \)

25. \((y - 1)y' = t, \quad y(1) = -3 \)

26. \((\sqrt{x} + 1)y' = yte^x, \quad y(0) = 1 \)

27. \(\frac{dw}{dx} = \frac{1 + w^2}{x}, \quad w(1) = 1 \)

28. \(y' + \frac{3y - 1}{t} = x + 2 \)

29. \(y' + \frac{y}{x} = \sin x \)

30. Find the solutions to \(y' = 4(y - 12) \) satisfying \(y(0) = 20 \) and \(y(0) = 0 \), and sketch their graphs.

31. Find the solutions to \(y' = -2y + 8 \) satisfying \(y(0) = 3 \) and \(y(0) = 4 \), and sketch their graphs.

32. Show that \(y = \sin^{-1}x \) satisfies the differential equation \(y' = \sec y \) with initial condition \(y(0) = 0 \).

33. Find the solution \(y = f(x) \) of \(y' = \sqrt{y^2 - 1} \) satisfying the initial condition \(y(0) = 1 \).

34. State whether the differential equation can be solved using Separation of Variables, the method of integrating factors, both, or neither.

 (a) \(y' = y + x^2 \)
 (b) \(xy' = y + 1 \)
 (c) \(y' = y^2 + x^2 \)
 (d) \(xy' = y^2 \)

35. Let \(A \) and \(B \) be constants. Prove that if \(A > 0 \), then all solutions of \(\frac{dy}{dt} + Ay = B \) approach the same limit as \(t \to \infty \).

36. At time \(t = 0 \), a tank of height 5 m in the shape of an inverted pyramid whose cross section at the top is a square of side 2 m is filled with water. Water flows through a hole at the bottom of area 0.002 m². Use Torricelli’s Law to determine the time required for the tank to empty.

37. The trough in Figure 3 (dimensions in centimeters) is filled with water. At time \(t = 0 \) (in seconds), water begins leaking through a hole at the bottom of area 4 cm². Let \(y(t) \) be the water height at time \(t \). Find a differential equation for \(y(t) \) and solve it to determine when the water level decreases to 60 cm.

\[\text{FIGURE 3} \]

38. Find the solution of the logistic equation \(\frac{dy}{dt} = 0.4y(4 - y) \) satisfying \(y(0) = 8 \).

39. Let \(y(t) \) be the solution of \(\frac{dy}{dt} = 0.3y(2 - y) \) with \(y(0) = 1 \). Determine \(\lim_{t \to \infty} y(t) \) without solving for \(y \) explicitly.
40. Suppose that \(y' = ky(1 - y/8) \) has a solution satisfying \(y(0) = 12 \) and \(y(10) = 24 \). Find \(k \).

41. A lake has a carrying capacity of 1000 fish. Assume that the fish population grows logistically with growth constant \(k = 0.2 \) day\(^{-1}\). How many days will it take for the population to reach 900 fish if the initial population is 20 fish?

42. A rabbit population on an island increases exponentially with growth rate \(k = 0.12 \) months\(^{-1}\). When the population reaches 300 rabbits (say, at time \(t = 0 \)), wolves begin eating the rabbits at a rate of \(r \) rabbits per month.
(a) Find a differential equation satisfied by the rabbit population \(P(t) \).
(b) How large can \(r \) be without the rabbit population becoming extinct?

43. Show that \(y = \sin(\tan^{-1} x + C) \) is the general solution of \(y' = \sqrt{1 - y^2}/(1 + x^2) \). Then use the addition formula for the sine function to show that the general solution may be written \(y = \frac{(\cos C)x + \sin C}{\sqrt{1 + x^2}} \).

44. A tank is filled with 300 liters (L) of contaminated water containing 3 kg of toxin. Pure water is pumped in at a rate of 40 L/min, mixes instantaneously, and is then pumped out at the same rate. Let \(y(t) \) be the quantity of toxin present in the tank at time \(t \).
(a) Find a differential equation satisfied by \(y(t) \).
(b) Solve for \(y(t) \).
(c) Find the time at which there is 0.01 kg of toxin present.

45. At \(t = 0 \), a tank of volume 300 L is filled with 100 L of water containing salt at a concentration of 8 g/L. Fresh water flows in at a rate of 40 L/min, mixes instantaneously, and exits at the same rate. Let \(c_1(t) \) be the salt concentration at time \(t \).
(a) Find a differential equation satisfied by \(c_1(t) \). Hint: Find the differential equation for the quantity of salt \(y(t) \), and observe that \(c_1(t) = y(t)/100 \).
(b) Find the salt concentration \(c_1(t) \) in the tank as a function of time.

46. The outflow of the tank in Exercise 45 is directed into a second tank containing \(V \) liters of fresh water where it mixes instantaneously and exits at the same rate of 40 L/min. Determine the salt concentration \(c_2(t) \) in the second tank as a function of time in the following two cases:
(a) \(V = 200 \)
(b) \(V = 300 \)
In each case, determine the maximum concentration.
Infinite series allow us to make sense of a process that iterates infinitely, as occurs with fractals, generating pictures such as this one. (Gregory Sams/Science Source)

11 INFINITE SERIES

The theory of infinite series is a third branch of calculus, in addition to differential and integral calculus. Infinite series yield a new perspective on functions and on many interesting numbers. Two examples are the infinite series for the exponential function

\[e^x = 1 + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \]

and the Gregory–Leibniz series (see Exercise 63 in Section 11.2)

\[\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots \]

The first shows that \(e^x \) can be expressed as an “infinite polynomial,” and the second reveals that \(\pi \) is related to the reciprocals of the odd integers in an unexpected way. To make sense of infinite series, we need to define precisely what it means to add up infinitely many terms. Limits play a key role here, just as they do in differential and integral calculus.

11.1 Sequences

Sequences of numbers appear in diverse situations. If you divide a cake in half, and then divide the remaining half in half, and continue dividing in half indefinitely (Figure 1), then the fraction of cake remaining at each step forms the sequence

\[1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \]

This is the sequence of values of the function \(f(n) = \frac{1}{2^n} \) for \(n = 0, 1, 2, \ldots \).

DEFINITION Sequence A sequence \(\{a_n\} \) is an ordered collection of numbers defined by a function \(f \) on a set of sequential integers. The values \(a_n = f(n) \) are called the terms of the sequence, and \(n \) is called the index. Informally, we think of a sequence \(\{a_n\} \) as a list of terms:

\[a_1, a_2, a_3, a_4, \ldots \]

The sequence does not have to start at \(n = 1 \). It can start at \(n = 0, n = 2, \) or any other integer.

<table>
<thead>
<tr>
<th>General term</th>
<th>Domain</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_n = 1 - \frac{1}{n})</td>
<td>(n \geq 1)</td>
<td>(0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots)</td>
</tr>
<tr>
<td>(a_n = (-1)^n n)</td>
<td>(n \geq 0)</td>
<td>(0, -1, 2, -3, 4, \ldots)</td>
</tr>
<tr>
<td>(b_n = \frac{364.5n^2}{n^4 - 4})</td>
<td>(n \geq 3)</td>
<td>(656.1, 486, 433.9, 410.1, 396.9, \ldots)</td>
</tr>
</tbody>
</table>

Not all sequences are generated by a formula. For instance, here is a sequence:

\[3, 1, 4, 1, 5, 9, 2, 6, \ldots \]

This sequence is simply the digits of \(\pi \), and there is no formula for the \(n \)th digit of \(\pi \). When \(a_n \) is given by a formula, we refer to \(a_n \) as the general term.

The sequence in the next example is defined recursively. For such a sequence, the first one or more terms may be given, and then the \(n \)th term is computed in terms of the preceding terms using some formula.
1. On the other hand, we can show that the sequence $a_n = \cos n$ in Figure 5 has no limit. (See Section 4.7.) As n tends to infinity, a_n approaches $\sqrt{2}$.

EXAMPLE 1 The Fibonacci Sequence We define the sequence by taking $F_1 = 1$, $F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for all integers $n > 2$. In other words, each subsequent term is obtained by adding together the two preceding terms. From this, every term can easily be determined. Calculating out terms, we find the sequence to be

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \ldots$$

This particular sequence appears in a surprisingly wide variety of situations, particularly in nature. For instance, the number of spiral arms in a sunflower almost always turns out to be a number from the Fibonacci sequence, as in Figure 2.

FIGURE 2 The number of spiral arms in a sunflower when counted at different angles are Fibonacci numbers. In the first case, we get 34, and in the second, we get 21. (Eiji Ueda/Shutterstock)

If we take the limit of the $n + 1$st term divided by the nth term, we obtain $\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618$, which is known as the Golden Mean. According to the ancient Greeks, this quantity gives the ideal ratio of the sides of a rectangle. The face of the Parthenon was designed to reflect this ratio.

EXAMPLE 2 Recursive Sequence Compute a_2, a_3, a_4 for the sequence defined recursively by

$$a_1 = 1, \quad a_n = \frac{1}{2} \left(a_{n-1} + \frac{2}{a_{n-1}} \right)$$

Solution

$$a_2 = \frac{1}{2} \left(a_1 + \frac{2}{a_1} \right) = \frac{1}{2} \left(1 + \frac{2}{1} \right) = \frac{3}{2} = 1.5$$

$$a_3 = \frac{1}{2} \left(a_2 + \frac{2}{a_2} \right) = \frac{1}{2} \left(\frac{3}{2} + \frac{2}{3/2} \right) = \frac{17}{12} \approx 1.4167$$

$$a_4 = \frac{1}{2} \left(a_3 + \frac{2}{a_3} \right) = \frac{1}{2} \left(\frac{17}{12} + \frac{2}{17/12} \right) = \frac{577}{408} \approx 1.414216$$

Our main goal is to study convergence of sequences. A sequence $\{a_n\}$ converges to a limit L if $|a_n - L|$ becomes arbitrary small when n is sufficiently large. Here is the formal definition.

DEFINITION Limit of a Sequence We say that $\{a_n\}$ converges to a limit L, and we write

$$\lim_{n \to \infty} a_n = L \quad \text{or} \quad a_n \to L$$

if, for every $\epsilon > 0$, there is a number M such that $|a_n - L| < \epsilon$ for all $n > M$.

- If no limit exists, we say that $\{a_n\}$ diverges.
- If the terms increase without bound, we say that $\{a_n\}$ diverges to infinity.

If $\{a_n\}$ converges, then its limit L is unique. A good way to visualize the limit is to plot the points $(1, a_1)$, $(2, a_2)$, $(3, a_3)$, \ldots, as in Figure 3. The sequence converges to L if, for every $\epsilon > 0$, the plotted points eventually remain within an ϵ-band around the horizontal line $y = L$. Figure 4 shows the plot of a sequence converging to $L = 1$. On the other hand, we can show that the sequence $a_n = \cos n$ in Figure 5 has no limit.
SECTION 11.1 Sequences 531

Figure 3 Plot of a sequence with limit L. For any ϵ, the dots eventually remain within an ϵ-band around L.

Figure 4 The sequence $a_n = \frac{n + 4}{n + 1}$.

Figure 5 The sequence $a_n = \cos n$ has no limit.

Example 3 Proving Convergence Let $a_n = \frac{n + 4}{n + 1}$. Prove formally $\lim_{n \to \infty} a_n = 1$.

Solution The definition requires us to find, for every $\epsilon > 0$, a number M such that

$$|a_n - 1| < \epsilon \quad \text{for all } n > M$$

We have

$$|a_n - 1| = \left| \frac{n + 4}{n + 1} - 1 \right| = \frac{3}{n + 1}$$

Therefore, $|a_n - 1| < \epsilon$ if

$$\frac{3}{n + 1} < \epsilon \quad \text{or} \quad n > \frac{3}{\epsilon} - 1$$

In other words, Eq. (1) is valid with $M = \frac{3}{\epsilon} - 1$. This proves that $\lim_{n \to \infty} a_n = 1$.

Note the following two facts about sequences:

- The limit does not change if we change or drop finitely many terms of the sequence.
- If C is a constant and $a_n = C$ for all n greater than some fixed value N, then $\lim_{n \to \infty} a_n = C$.

Many of the sequences we consider are defined by functions; that is, $a_n = f(n)$ for some function f. For example,

$$a_n = \frac{n - 1}{n} \quad \text{is defined by} \quad f(x) = \frac{x - 1}{x}$$

We will often use the fact that if $f(x)$ approaches a limit L as $x \to \infty$, then the sequence $a_n = f(n)$ approaches the same limit L (Figure 6). Indeed, for all $\epsilon > 0$, we can find a positive real number M so that $|f(x) - L| < \epsilon$ for all $x > M$. It follows automatically that $|f(n) - L| < \epsilon$ for all integers $n > M$.

Theorem 1 Sequence Defined by a Function If $\lim_{x \to \infty} f(x)$ exists, then the sequence $a_n = f(n)$ converges to the same limit:

$$\lim_{n \to \infty} a_n = \lim_{x \to \infty} f(x)$$

Example 4 Find the limit of the sequence

$$\frac{2^2 - 2}{2^2}, \quad \frac{3^2 - 2}{3^2}, \quad \frac{4^2 - 2}{4^2}, \quad \frac{5^2 - 2}{5^2}, \quad \cdots$$

Solution This is the sequence with general term

$$a_n = \frac{n^2 - 2}{n^2} = 1 - \frac{2}{n}$$

Therefore, we apply Theorem 1 with $f(x) = 1 - \frac{2}{x}$:

$$\lim_{n \to \infty} a_n = \lim_{x \to \infty} \left(1 - \frac{2}{x} \right) = 1 - \lim_{x \to \infty} \frac{2}{x} = 1 - 0 = 1$$
EXAMPLE 5 Calculate \(\lim_{n \to \infty} \frac{n + \ln n}{n^2} \).

Solution Apply Theorem 1, using L'Hôpital's Rule in the second step:

\[
\lim_{n \to \infty} \frac{n + \ln n}{n^2} = \lim_{x \to \infty} \frac{x + \ln x}{x^2} = \lim_{x \to \infty} \frac{1 + (1/x)}{2x} = 0.
\]

The limit of the Balmer wavelengths \(b_n \) in the next example plays a role in physics and chemistry because it determines the ionization energy of the hydrogen atom. Table 1 suggests that \(b_n \) approaches 364.5 nanometers (nm). Figure 7 gives the graph, and in Figure 8, the wavelengths are shown “crowding in” toward their limiting value.

Table 1

<table>
<thead>
<tr>
<th>(n)</th>
<th>(b_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>656.1</td>
</tr>
<tr>
<td>4</td>
<td>486</td>
</tr>
<tr>
<td>5</td>
<td>433.9</td>
</tr>
<tr>
<td>6</td>
<td>410.1</td>
</tr>
<tr>
<td>7</td>
<td>396.9</td>
</tr>
<tr>
<td>10</td>
<td>379.7</td>
</tr>
<tr>
<td>20</td>
<td>368.2</td>
</tr>
<tr>
<td>40</td>
<td>365.4</td>
</tr>
<tr>
<td>60</td>
<td>364.9</td>
</tr>
<tr>
<td>80</td>
<td>364.7</td>
</tr>
<tr>
<td>100</td>
<td>364.6</td>
</tr>
</tbody>
</table>

Figure 7 The sequence and the function approach the same limit.

EXAMPLE 6 Balmer Wavelengths

Calculate the limit of the Balmer wavelengths \(b_n = \frac{364.5n^2}{n^2 - 4} \) in nanometers, where \(n \geq 3 \).

Solution Apply Theorem 1 with \(f(x) = \frac{364.5x^2}{x^2 - 4} \):

\[
\lim_{n \to \infty} b_n = \lim_{x \to \infty} \frac{364.5x^2}{x^2 - 4} = \lim_{x \to \infty} \frac{364.5x^2 (1/x^2)}{(x^2 - 4)/x^2} = \lim_{x \to \infty} \frac{364.5}{1 - 4/x^2} = 364.5 \text{ nm}
\]

A geometric sequence is a sequence \(a_n = cr^n \), where \(c \) and \(r \) are nonzero constants. Each term is \(r \) times the previous term; that is, \(a_n/a_{n-1} = r \). The number \(r \) is called the common ratio. For instance, if \(r = 3 \) and \(c = 2 \), we obtain the sequence (starting at \(n = 0 \))

\[2, 2 \cdot 3, 2 \cdot 3^2, 2 \cdot 3^3, 2 \cdot 3^4, 2 \cdot 3^5, \ldots\]

In the next example, we determine when a geometric series converges. Recall that \(\{a_n\} \) diverges to \(\infty \) if the terms \(a_n \) increase beyond all bounds (Figure 9); that is,

\[\lim_{n \to \infty} a_n = \infty \quad \text{if, for every number } N, \ a_n > N \text{ for all sufficiently large } n\]

We define \(\lim_{n \to \infty} a_n = -\infty \) similarly.

EXAMPLE 7 Geometric Sequences with \(r \geq 0 \)

Prove that for \(r \geq 0 \) and \(c > 0 \),

\[\lim_{n \to \infty} cr^n = \begin{cases} 0 & \text{if } 0 \leq r < 1 \\ c & \text{if } r = 1 \\ \infty & \text{if } r > 1 \end{cases}\]

Solution Set \(f(r) = cr^r \). If \(0 \leq r < 1 \), then (Figure 10)

\[\lim_{n \to \infty} cr^n = \lim_{x \to \infty} f(x) = c \lim_{x \to \infty} r^x = 0\]

If \(r > 1 \), then both \(f(x) \) and the sequence \(\{cr^n\} \) diverge to \(\infty \) (because \(c > 0 \)) (Figure 9). If \(r = 1 \), then \(cr^n = c \) for all \(n \), and the limit is \(c \).
This last example will prove extremely useful when we consider geometric series in Section 11.2.

The limit laws we have used for functions also apply to sequences and are proved in a similar fashion.

THEOREM 2 Limit Laws for Sequences Assume that \(\{a_n\} \) and \(\{b_n\} \) are convergent sequences with

\[
\lim_{n \to \infty} a_n = L, \quad \lim_{n \to \infty} b_n = M
\]

Then:

(i) \[\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = L \pm M \]

(ii) \[\lim_{n \to \infty} a_n b_n = \left(\lim_{n \to \infty} a_n \right) \left(\lim_{n \to \infty} b_n \right) = LM \]

(iii) \[\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n} = \frac{L}{M} \quad \text{if } M \neq 0 \]

(iv) \[\lim_{n \to \infty} c a_n = c \lim_{n \to \infty} a_n = cL \quad \text{for any constant } c \]

THEOREM 3 Squeeze Theorem for Sequences Let \(\{a_n\}, \{b_n\}, \{c_n\} \) be sequences such that for some number \(M \),

\[b_n \leq a_n \leq c_n \quad \text{for } n > M \quad \text{and} \quad \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = L \]

Then \(\lim_{n \to \infty} a_n = L \).

EXAMPLE 8 Show that if \(\lim_{n \to \infty} |a_n| = 0 \), then \(\lim_{n \to \infty} a_n = 0 \).

Solution We have

\[-|a_n| \leq a_n \leq |a_n| \]

By hypothesis, \(\lim_{n \to \infty} |a_n| = 0 \), and thus also \(\lim_{n \to \infty} -|a_n| = \lim_{n \to \infty} |a_n| = 0 \). Therefore, we can apply the Squeeze Theorem to conclude that \(\lim_{n \to \infty} a_n = 0 \).

EXAMPLE 9 Geometric Sequences with \(r < 0 \) Prove that for \(c \neq 0 \),

\[\lim_{n \to \infty} cr^n = \begin{cases} 0 & \text{if } -1 < r < 0 \\ \text{diverges} & \text{if } r \leq -1 \end{cases}
\]

Solution If \(-1 < r < 0\), then \(0 < |r| < 1\) and \(\lim_{n \to \infty} |cr^n| = 0 \) by Example 7. Thus, \(\lim_{n \to \infty} cr^n = 0 \) by Example 8. If \(r = -1 \), then the sequence \(cr^n = (-1)^n c \) alternates in sign and does not approach a limit. The sequence also diverges if \(r < -1 \) because \(cr^n \) alternates in sign and \(|cr^n| \) grows arbitrarily large.

As another application of the Squeeze Theorem, consider the sequence

\[a_n = \frac{s^n}{n!} \]

Both the numerator and the denominator grow without bound, so it is not clear in advance whether \(\{a_n\} \) converges. Figure 11 and Table 2 suggest that \(a_n \) increases initially and then tends to zero. In the next example, we verify that \(a_n = R^n/n! \) converges to zero for all \(R \). This fact is used in the discussion of Taylor series in Section 11.7.
EXAMPLE 10 Prove that \(\lim_{n \to \infty} \frac{R^n}{n!} = 0 \) for all \(R \).

Solution Assume first that \(R > 0 \) and let \(M \) be the nonnegative integer such that
\[
M \leq R < M + 1
\]
For \(n > M \), we write \(\frac{R^n}{n!} \) as a product of \(n \) factors:
\[
\frac{R^n}{n!} = \left(\frac{R}{1} \cdot \frac{R}{2} \cdots \frac{R}{M} \right) \left(\frac{R}{M+1} \cdot \frac{R}{M+2} \cdots \frac{R}{n} \right) \leq C \left(\frac{R}{n} \right)
\]
The first \(M \) factors are greater than or equal to 1 and the last \(n - M \) factors are less than 1. If we lump together the first \(M \) factors and call the product \(C \), and drop all the remaining factors except the last factor \(\frac{R}{n} \), we see that
\[
0 \leq \frac{R^n}{n!} \leq \frac{CR}{n}
\]
The first \(M \) factors are greater than or equal to 1 and the last \(n - M \) factors are less than 1. If we lump together the first \(M \) factors and call the product \(C \), and drop all the remaining factors except the last factor \(\frac{R}{n} \), we see that
\[
0 \leq \frac{R^n}{n!} \leq \frac{CR}{n}
\]
Since \(CR/n \to 0 \), the Squeeze Theorem gives us \(\lim_{n \to \infty} \frac{R^n}{n!} = 0 \) as claimed. If \(R < 0 \), the limit is also zero by Example 8 because \(|\frac{R^n}{n!}| \) tends to zero.

EXAMPLE 11 Apply Theorem 4 to the sequence \(a_n = \frac{3n}{n+1} \) and to the functions
(a) \(f(x) = e^x \) and \(g(x) = x^2 \).

Solution Observe first that
\[
L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3n}{n+1} = \lim_{n \to \infty} \frac{3}{1+\frac{1}{n}} = 3
\]
(a) With \(f(x) = e^x \), we have \(f(a_n) = e^{a_n} = e^{\frac{3n}{n+1}} \). According to Theorem 4,
\[
\lim_{n \to \infty} f(a_n) = f \left(\lim_{n \to \infty} a_n \right) = e^{\lim_{n \to \infty} \frac{3n}{n+1}} = e^3
\]
(b) With \(g(x) = x^2 \), we have \(g(a_n) = a_n^2 \). According to Theorem 4,
\[
\lim_{n \to \infty} g(a_n) = g \left(\lim_{n \to \infty} a_n \right) = \left(\lim_{n \to \infty} \frac{3n}{n+1} \right)^2 = 3^2 = 9
\]

Of great importance for understanding convergence are the concepts of a bounded sequence and a monotonic sequence.

Definition **Bounded Sequences** A sequence \(\{a_n\} \) is:

- **Bounded from above** if there is a number \(M \) such that \(a_n \leq M \) for all \(n \). The number \(M \) is called an upper bound.
- **Bounded from below** if there is a number \(m \) such that \(a_n \geq m \) for all \(n \). The number \(m \) is called a lower bound.

The sequence \(\{a_n\} \) is called **bounded** if it is bounded from above and below. A sequence that is not bounded is called an **unbounded sequence**.
Thus, for instance, the sequence given by $a_n = 3 - \frac{1}{n}$ is clearly bounded above by 3. It is also bounded below by 0, since all the terms are positive. Hence, this sequence is bounded.

Upper and lower bounds are not unique. If M is an upper bound, then any larger number is also an upper bound, and if m is a lower bound, then any smaller number is also a lower bound (Figure 12).

As we might expect, a convergent sequence $\{a_n\}$ is necessarily bounded because the terms a_n get closer and closer to the limit. This fact is recorded in the next theorem.

THEOREM 5 Convergent Sequences Are Bounded If $\{a_n\}$ converges, then $\{a_n\}$ is bounded.

Proof Let $L = \lim_{n \to \infty} a_n$. Then there exists $N > 0$ such that $|a_n - L| < 1$ for $n > N$. In other words,

$$L - 1 < a_n < L + 1 \quad \text{for } n > N$$

If M is any number larger than $L + 1$ and also larger than the numbers a_1, a_2, \ldots, a_N, then $a_n < M$ for all n. Thus, M is an upper bound. Similarly, any number m smaller than $L - 1$ and also smaller than the numbers a_1, a_2, \ldots, a_N is a lower bound.

There are two ways that a sequence $\{a_n\}$ can diverge. One way is by being unbounded. For example, the unbounded sequence $a_n = n$ diverges:

$$1, 2, 3, 4, 5, 6, \ldots$$

However, a sequence can diverge even if it is bounded. This is the case with $a_n = (-1)^n + 1$, whose terms a_n bounce back and forth but never settle down to approach a limit:

$$1, -1, 1, -1, 1, -1, \ldots$$

There is no surefire method for determining whether a sequence $\{a_n\}$ converges, unless the sequence happens to be both bounded and **monotonic**. By definition, $\{a_n\}$ is monotonic if it is either increasing or decreasing:

- $\{a_n\}$ is increasing if $a_n < a_{n+1}$ for all n.
- $\{a_n\}$ is decreasing if $a_n > a_{n+1}$ for all n.

Intuitively, if $\{a_n\}$ is increasing and bounded above by M, then the terms must bunch up near some limiting value L that is not greater than M (Figure 13). See Appendix B for a proof of the next theorem.

THEOREM 6 Bounded Monotonic Sequences Converge

- If $\{a_n\}$ is increasing and $a_n \leq M$, then $\{a_n\}$ converges and $\lim_{n \to \infty} a_n \leq M$.
- If $\{a_n\}$ is decreasing and $a_n \geq m$, then $\{a_n\}$ converges and $\lim_{n \to \infty} a_n \geq m$.

EXAMPLE 12 Verify that $a_n = \sqrt{n + 1} - \sqrt{n}$ is decreasing and bounded below. Does $\lim_{n \to \infty} a_n$ exist?

Solution The function $f(x) = \sqrt{x + 1} - \sqrt{x}$ is decreasing because its derivative is negative:

$$f'(x) = \frac{1}{2\sqrt{x + 1}} - \frac{1}{2\sqrt{x}} < 0 \quad \text{for } x > 0$$

It follows that $a_n = f(n)$ is decreasing (see Table 3). Furthermore, $a_n > 0$ for all n, so the sequence has lower bound $m = 0$. Theorem 6 guarantees that $L = \lim_{n \to \infty} a_n$ exists and $L \geq 0$. In fact, we can show that $L = 0$ by noting that $f(x)$ can be rewritten as $f(x) = \frac{1}{\sqrt{x + 1} + \sqrt{x}}$. Hence, $\lim_{x \to \infty} f(x) = 0$. □
Example 13
Show that the following sequence is bounded and increasing:

\[a_1 = \sqrt{2}, \quad a_2 = \sqrt{2\sqrt{2}}, \quad a_3 = \sqrt{2\sqrt{2\sqrt{2}}}, \ldots \]

Then prove that \(L = \lim_{n \to \infty} a_n \) exists and compute its value.

Solution

Step 1. Show that \(\{a_n\} \) is bounded above.

We claim that \(M = 2 \) is an upper bound. We certainly have \(a_1 < 2 \) because \(a_1 = \sqrt{2} \approx 1.414 \). On the other hand,

\[
\text{if } \quad a_n < 2, \quad \text{then } \quad a_{n+1} < 2
\]

is true because \(a_{n+1} = \sqrt{2a_n} < \sqrt{2 \cdot 2} = 2 \). Now, since \(a_1 < 2 \), we can apply (3) to conclude that \(a_2 < 2 \). Similarly, \(a_2 < 2 \) implies \(a_3 < 2 \), etc. for all \(n \). (Formally speaking, this is a proof by induction.)

Step 2. Show that \(\{a_n\} \) is increasing.

Since \(a_n \) is positive and \(a_n < 2 \), we have

\[
a_{n+1} = \sqrt{2a_n} > \sqrt{a_n \cdot a_n} = a_n
\]

This shows that \(\{a_n\} \) is increasing. Since the sequence is bounded above and increasing, we conclude that the limit \(L \) exists.

Now that we know the limit \(L \) exists, we can find its value as follows. The idea is that \(L \) “contains a copy” of itself under the square root sign:

\[
L = \sqrt{2 \sqrt{2 \sqrt{2 \cdots}}} = \sqrt{2} \sqrt{2 \sqrt{2 \cdots}} = \sqrt{2L}
\]

Thus, \(L^2 = 2L \), which implies that \(L = 2 \) or \(L = 0 \). We eliminate \(L = 0 \) because the terms \(a_n \) are positive and increasing (as shown below), so we must have \(L = 2 \) (see Table 4).

This argument is phrased more formally by noting that the sequence is defined recursively by

\[
\text{if } \quad a_n < 2, \quad \text{then } \quad a_{n+1} = \sqrt{2a_n}
\]

If \(a_n \) converges to \(L \), then the sequence \(b_n = a_{n+1} \) also converges to \(L \) (because it is the same sequence, with terms shifted one to the left). Then, applying Theorem 4 to \(f(x) = \sqrt{x} \), we have

\[
L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{2a_n} = \sqrt{2 \lim_{n \to \infty} a_n} = \sqrt{2L}
\]

Hence, \(L = 2 \).

11.1 Summary

- A sequence \(\{a_n\} \) converges to a limit \(L \) if, for every \(\epsilon > 0 \), there is a number \(M \) such that

\[
|a_n - L| < \epsilon \quad \text{for all } n > M
\]

We write \(\lim_{n \to \infty} a_n = L \) or \(a_n \to L \).

- If no limit exists, we say that \(\{a_n\} \) diverges.
- In particular, if the terms increase without bound, we say that \(\{a_n\} \) diverges to infinity.
- If \(a_n = f(n) \) and \(\lim_{n \to \infty} f(x) = L \), then \(\lim_{n \to \infty} a_n = L \).
- A geometric sequence is a sequence \(a_n = cr^n \), where \(c \) and \(r \) are nonzero. It converges to 0 for \(-1 < r < 1\), converges to \(c \) for \(r = 1 \), and diverges otherwise.
- The Basic Limit Laws and the Squeeze Theorem apply to sequences.

• If \(f \) is continuous and \(\lim_{n \to \infty} a_n = L \), then \(\lim_{n \to \infty} f(a_n) = f(L) \).

• A sequence \(\{a_n\} \) is

 \begin{itemize}
 \item bounded above by \(M \) if \(a_n \leq M \) for all \(n \).
 \item bounded below by \(m \) if \(a_n \geq m \) for all \(n \).
 \end{itemize}

If \(\{a_n\} \) is bounded above and below, \(\{a_n\} \) is called bounded.

• A sequence \(\{a_n\} \) is monotonic if it is increasing \((a_n < a_{n+1})\) or decreasing \((a_n > a_{n+1})\).

• Bounded monotonic sequences converge (Theorem 6).

11.1 EXERCISES

Preliminary Questions

1. What is \(a_4 \) for the sequence \(a_n = n^2 - n \)?

2. Which of the following sequences converge to zero?

 \begin{itemize}
 \item[(a)] \(\frac{n^2}{n^2 + 1} \)
 \item[(b)] \(2^n \)
 \item[(c)] \(\left(\frac{1}{2} \right)^n \)
 \end{itemize}

3. Let \(a_n \) be the \(n \)th decimal approximation to \(\sqrt{2} \). That is, \(a_1 = 1 \), \(a_2 = 1.4 \), \(a_3 = 1.41 \), etc. What is \(\lim_{n \to \infty} a_n \)?

4. Which of the following sequences is defined recursively?

 \begin{itemize}
 \item[(a)] \(a_n = \sqrt{4 + n} \)
 \item[(b)] \(b_n = \sqrt{4 + b_{n-1}} \)
 \end{itemize}

5. Theorem 5 says that every convergent sequence is bounded. Determine if the following statements are true or false, and if false, give a counterexample:

 \begin{itemize}
 \item[(a)] If \(\{a_n\} \) is bounded, then it converges.
 \item[(b)] If \(\{a_n\} \) is not bounded, then it diverges.
 \item[(c)] If \(\{a_n\} \) diverges, then it is not bounded.
 \end{itemize}

Exercises

1. Match each sequence with its general term:

 \begin{itemize}
 \item[(a)] \(a_1, a_2, a_3, a_4, \ldots \)
 \item[(b)] General term
 \begin{itemize}
 \item[(i)] \(\cos \pi n \)
 \item[(ii)] \(\frac{n!}{2^n} \)
 \item[(iii)] \((-1)^n \)
 \item[(iv)] \(\frac{n}{n + 1} \)
 \end{itemize}
 \end{itemize}

2. Let \(a_n = \frac{1}{2n - 1} \) for \(n = 1, 2, 3, \ldots \). Write out the first three terms of the following sequences.

 \begin{itemize}
 \item[(a)] \(b_n = a_{n+1} \)
 \item[(b)] \(c_n = a_{n+3} \)
 \item[(c)] \(d_n = a_n^2 \)
 \item[(d)] \(e_n = 2a_n - a_{n+1} \)
 \end{itemize}

3. \(\frac{3^n}{n!} \)

4. \(b_n = \frac{(2n - 1)!}{n!} \)

5. \(a_1 = 2 \), \(a_{n+1} = 2a_n^2 - 3 \)

6. \(b_1 = 1 \), \(b_n = b_{n+1} + \frac{1}{b_{n-1}} \)

7. \(b_n = 5 + \cos \pi n \)

8. \(e_n = (-1)^{2n+1} \)

9. \(a_n = \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \)

10. \(a_n = \frac{n + (n + 1) + (n + 2) + \cdots + (2n)}{n} \)

11. \(b_1 = 2 \), \(b_2 = 3 \), \(b_n = 2b_{n-1} - b_{n-2} \)

12. \(e_n = n\text{-place decimal approximation to } e \)

13. Find a formula for the \(n \)th term of each sequence.

 \begin{itemize}
 \item[(a)] \(n - \frac{1}{8} - \frac{1}{27} \cdots \)
 \item[(b)] \(\frac{2}{5} + \frac{3}{7} + \frac{4}{8} \cdots \)
 \end{itemize}

14. Suppose that \(\lim_{n \to \infty} a_n = 4 \) and \(\lim_{n \to \infty} b_n = 7 \). Determine:

 \begin{itemize}
 \item[(a)] \(\lim_{n \to \infty} (a_n + b_n) \)
 \item[(b)] \(\lim_{n \to \infty} a_n^3 \)
 \item[(c)] \(\lim_{n \to \infty} \cos(\pi b_n) \)
 \item[(d)] \(\lim_{n \to \infty} (a_n^2 - 2a_nb_n) \)
 \end{itemize}

In Exercises 15–26, use Theorem 1 to determine the limit of the sequence or state that the sequence diverges.

15. \(a_n = 12 \)

16. \(a_n = 20 - \frac{4}{n^2} \)

17. \(b_n = \frac{5n - 1}{12n + 9} \)

18. \(a_n = \frac{4 + n - 3n^2}{4n^2 + 1} \)

19. \(c_n = -2^{-n} \)

20. \(z_n = \left(\frac{1}{3} \right)^n \)

21. \(c_n = 9^n \)

22. \(z_n = 10^{-1/n} \)

23. \(a_n = \frac{n}{\sqrt{n^2 + 1}} \)

24. \(a_n = \frac{n}{\sqrt{n^3 + 1}} \)

25. \(a_n = \ln \left(\frac{12n + 2}{-9 + 4n} \right) \)

26. \(r_n = \ln n - \ln(n^2 + 1) \)

In Exercises 27–30, use Theorem 4 to determine the limit of the sequence.

27. \(a_n = \sqrt{4 + \frac{1}{n}} \)

28. \(a_n = e^{4n/(3n+9)} \)

29. \(a_n = \cos^{-1} \left(\frac{n^3}{2n^3 + 1} \right) \)

30. \(a_n = \tan^{-1} (e^{-n}) \)

31. Let \(a_n = \frac{n}{n + 1} \). Find a number \(M \) such that:

 \begin{itemize}
 \item[(a)] \(|a_n - 1| \leq 0.001 \) for \(n \geq M \).
 \item[(b)] \(|a_n - 1| \leq 0.00001 \) for \(n \geq M \).
 \end{itemize}

Then use the limit definition to prove that \(\lim_{n \to \infty} a_n = 1 \).
32. Let \(b_n = \left(\frac{1}{2} \right)^n \).
(a) Find a value of \(M \) such that \(|b_n| \leq 10^{-5} \) for \(n \geq M \).
(b) Use the limit definition to prove that \(\lim_{n \to \infty} b_n = 0 \).

33. Use the limit definition to prove that \(\lim_{n \to \infty} n^{-2} = 0 \).

34. Use the limit definition to prove that \(\lim_{n \to \infty} \frac{n}{n + n^{-1}} = 1 \).

In Exercises 63–66, use the appropriate limit laws and theorems to determine the limit of the sequence or show that it diverges.

35. \(a_n = 10 + \left(\frac{1}{9} \right)^n \)
36. \(a_n = \sqrt{n} + 3 - \sqrt{n} \)
37. \(a_n = 1.01^n \)
38. \(b_n = e^{1-n^2} \)
39. \(a_n = 2^{1/n} \)
40. \(b_n = n^{1/n} \)
41. \(c_n = \frac{g^n}{n!} \)
42. \(c_n = \frac{g^{2n}}{n!} \)
43. \(a_n = \frac{3n^2 + n + 2}{2n^2 - 3} \)
44. \(a_n = \frac{\sqrt{n}}{\sqrt{n} + 4} \)
45. \(a_n = \frac{\cos n}{n} \)
46. \(a_n = \frac{(-1)^n}{\sqrt{n}} \)
47. \(d_n = \ln(5^n - \ln n!) \)
48. \(d_n = \ln(n^2 + 4) - \ln(n^2 - 1) \)
49. \(a_n = \left(2 + \frac{4}{n^2} \right)^{1/3} \)
50. \(b_n = \tan^{-1} \left(1 - \frac{2}{n} \right) \)
51. \(c_n = \ln \left(\frac{2n + 1}{3n + 4} \right) \)
52. \(c_n = \frac{n}{n + n^{1/n}} \)
53. \(y_n = \frac{e^n}{2n} \)
54. \(a_n = \frac{n}{2n} \)
55. \(y_n = \frac{e^n + (-3)^n}{5^n} \)
56. \(b_n = \frac{(-1)^n n^3 + 2 - n}{3n^3 + 4 - n} \)
57. \(a_n = n \sin \frac{n}{n} \)
58. \(b_n = n !^{1/n} \)
59. \(b_n = \frac{3 - 4n}{2 + 7 \cdot 4^n} \)
60. \(a_n = \frac{3 - 4n}{2 + 7 \cdot 3^n} \)
61. \(a_n = \left(1 + \frac{1}{n} \right)^n \)
62. \(a_n = \left(1 + \frac{1}{n^2} \right)^n \)

In Exercises 63–66, find the limit of the sequence using L’Hôpital’s Rule.

63. \(a_n = \left\{ \frac{(\ln n)^2}{n} \right\} \)
64. \(b_n = \sqrt{n} \ln \left(1 + \frac{1}{n} \right) \)
65. \(c_n = n \left(\sqrt{n^2 + 1} - n \right) \)
66. \(d_n = n^2 \left(\sqrt{n^3 + 1} - n \right) \)

In Exercises 67–70, use the Squeeze Theorem to evaluate \(\lim_{n \to \infty} a_n \) by verifying the given inequality.

67. \(a_n = \frac{1}{\sqrt{n^2 + n^3}}, \quad \frac{1}{\sqrt{2n^4}} \leq a_n \leq \frac{1}{\sqrt{2n^2}} \)
68. \(c_n = \frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \cdots + \frac{1}{\sqrt{n^2 + n}}, \quad \frac{n}{\sqrt{n^2 + n}} \leq c_n \leq \frac{n}{\sqrt{n^2 + 1}} \)
69. \(a_n = (2^n + 3^n)^{1/n}, \quad 3 \leq a_n \leq (2 \cdot 3^n)^{1/n} = 2^{1/n} \cdot 3 \)
70. \(a_n = (n + 10^n)^{1/n}, \quad 10 \leq a_n \leq (2 \cdot 10^n)^{1/n} \)

71. Which of the following statements is equivalent to the assertion \(\lim_{n \to \infty} a_n = L \)? Explain.
(a) For every \(\varepsilon > 0 \), the interval \((L - \varepsilon, L + \varepsilon) \) contains at least one element of the sequence \(\{a_n\} \).
(b) For every \(\varepsilon > 0 \), the interval \((L - \varepsilon, L + \varepsilon) \) contains all but at most finitely many elements of the sequence \(\{a_n\} \).

72. Show that \(a_n = \frac{1}{2n + 1} \) is decreasing.
73. Show that \(a_n = \frac{3n^2}{n^2 + 2} \) is increasing. Find an upper bound.
74. Show that \(a_n = \sqrt{n + 1} - n \) is decreasing.
75. Give an example of a divergent sequence \(\{a_n\} \) such that \(\lim_{n \to \infty} |a_n| \) converges.
76. Give an example of divergent sequences \(\{a_n\} \) and \(\{b_n\} \) such that \(\{a_n + b_n\} \) converges.
77. Using the limit definition, prove that if \(\{a_n\} \) converges and \(\{b_n\} \) diverges, then \(\{a_n + b_n\} \) diverges.
78. Use the limit definition to prove that if \(\{a_n\} \) is a convergent sequence of integers with limit \(L \), then there exists a number \(M \) such that \(a_n = L \) for all \(n \geq M \).
79. Theorem 1 states that if \(\lim_{x \to \infty} f(x) = L \), then the sequence \(a_n = f(n) \) converges and \(\lim_{n \to \infty} a_n = L \). Show that the converse is false. In other words, find a function \(f \) such that \(a_n = f(n) \) converges but \(\lim_{x \to \infty} f(x) \) does not exist.
80. Use the limit definition to prove that the limit does not change if a finite number of terms are added or removed from a convergent sequence.
81. Let \(b_n = a_{n+1} \). Use the limit definition to prove that if \(\{a_n\} \) converges, then \(\{b_n\} \) also converges and \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \).
82. Let \(\{a_n\} \) be a sequence such that \(\lim_{n \to \infty} |a_n| \) exists and is nonzero. Show that \(\lim_{n \to \infty} a_n \) exists if and only if it converges to an integer \(M \) such that the sign of \(a_n \) does not change for \(n > M \).
83. Proceed as in Example 13 to show that the sequence \(\sqrt{3}, \sqrt{3\sqrt{3}}, \sqrt{3\sqrt{3\sqrt{3}}}, \ldots \) is increasing and bounded above by \(M = 3 \). Then prove that the limit exists and find its value.
84. Let \(\{a_n\} \) be the sequence defined recursively by
\[a_0 = 0, \quad a_{n+1} = \sqrt{2 + a_n} \]
Thus, \(a_1 = \sqrt{2}, \quad a_2 = \sqrt{2 + \sqrt{2}}, \quad a_3 = \sqrt{2 + \sqrt{2 + \sqrt{2}}}, \ldots \).
(a) Show that if \(a_n < 2 \), then \(a_{n+1} < 2 \). Conclude by induction that \(a_n < 2 \) for all \(n \).
(b) Show that if \(a_n < 2 \), then \(a_n \leq a_{n+1} \). Conclude by induction that \(\{a_n\} \) is increasing.
(c) Use (a) and (b) to conclude that \(L = \lim_{n \to \infty} a_n \) exists. Then compute \(L \) by showing that \(L = \sqrt{2 + L} \).
Further Insights and Challenges

85. Show that \(\lim_{n \to \infty} \frac{\sqrt{n!}}{n} = \infty \). Hint: Verify that \(n! \geq (n/2)^n \) by observing that half of the factors of \(n! \) are greater than or equal to \(n/2 \).

86. Let \(b_n = \frac{n+1}{n} \).

(a) Show that \(\ln b_n = 1 + \frac{1}{n} \sum_{k=1}^{n} \ln \frac{k}{n} \).

(b) Show that \(\ln b_n \) converges to \(\int_{0}^{1} \ln x \, dx \), and conclude that \(b_n \to e^{-1} \).

87. Given positive numbers \(a_1 \leq b_1 \), define two sequences recursively by

\[a_{n+1} = \sqrt{a_n b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2} \]

(a) Show that \(a_n \leq b_n \) for all \(n \) (Figure 14).

(b) Show that \(\{a_n\} \) is increasing and \(\{b_n\} \) is decreasing.

(c) Show that \(b_{n+1} - a_{n+1} = \frac{b_n - a_n}{2} \).

(d) Prove that both \(\{a_n\} \) and \(\{b_n\} \) converge and have the same limit. This limit, denoted \(\text{AGM}(a_1, b_1) \), is called the arithmetic-geometric mean of \(a_1 \) and \(b_1 \).

(e) Estimate \(\text{AGM}(1, \sqrt{2}) \) to three decimal places.

88. Let \(c_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n} \).

(a) Calculate \(c_1, c_2, c_3, c_4 \).

(b) Use a comparison of rectangles with the area under \(y = x^{-1} \) over the interval \([n, 2n] \) to prove that

\[\int_{n}^{2n} \frac{dx}{x} + \frac{1}{2n} \leq c_n \leq \int_{n}^{2n} \frac{dx}{x} + \frac{1}{n} \]

(c) Use the Squeeze Theorem to determine \(\lim_{n \to \infty} c_n \).

89. Let \(a_n = H_n - \ln n \), where \(H_n \) is the \(n \)th harmonic number:

\[H_n = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} \]

(a) Show that \(a_n \geq 0 \) for \(n \geq 1 \). Hint: Show that \(H_n \geq \int_{1}^{n+1} \frac{dx}{x} \).

(b) Show that \(\{a_n\} \) is decreasing by interpreting \(a_n - a_{n+1} \) as an area.

(c) Prove that \(\lim_{n \to \infty} a_n \) exists.

This limit, denoted \(\gamma \), is known as Euler’s Constant. It appears in many areas of mathematics, including analysis and number theory, and has been calculated to more than 100 million decimal places, but it is still not known whether \(\gamma \) is an irrational number. The first 10 digits are \(\gamma \approx 0.5772156649 \).

11.2 Summing an Infinite Series

Many quantities that arise in applications cannot be computed exactly. We cannot write down an exact decimal expression for the number \(\pi \) or for values of the sine function such as \(\sin 1 \). However, sometimes these quantities can be represented as infinite sums. For example, using Taylor series (Section 11.7), we can show that

\[\sin 1 = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \frac{1}{9!} - \frac{1}{11!} + \cdots \]

Infinite sums of this type are called infinite series. We think of them as having been obtained by adding up all of the terms in an infinite sequence.

But what precisely does Eq. (1) mean? It is impossible to add up infinitely many numbers, but what we can do is compute the partial sums \(S_N \), defined as the finite sum of the terms up to and including the \(N \)th term. Here are the first five partial sums of the infinite series for \(\sin 1 \):

\[
\begin{align*}
S_1 &= 1 \\
S_2 &= 1 - \frac{1}{3!} = 1 - \frac{1}{6} \approx 0.833 \\
S_3 &= 1 - \frac{1}{3!} + \frac{1}{5!} = 1 - \frac{1}{6} + \frac{1}{120} \approx 0.841667 \\
S_4 &= 1 - \frac{1}{6} + \frac{1}{120} + \frac{1}{5040} \approx 0.841468 \\
S_5 &= 1 - \frac{1}{6} + \frac{1}{120} + \frac{1}{5040} + \frac{1}{362,880} \approx 0.8414709846
\end{align*}
\]
Compare these values with the value obtained from a calculator:

\[
\sin 1 \approx 0.8414709848079 \quad \text{(calculator value)}
\]

We see that \(S_5\) differs from \(\sin 1\) by less than \(10^{-9}\). This suggests that the partial sums converge to \(\sin 1\), and in fact, we will prove that

\[
\sin 1 = \lim_{N \to \infty} S_N
\]

(see Example 2 in Section 11.7). So although we cannot add up infinitely many numbers, it makes sense to define the sum of an infinite series as a limit of partial sums.

In general, an infinite series is an expression of the form

\[
\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \cdots
\]

where \(\{a_n\}\) is any sequence. For example,

\[
\begin{array}{ccc}
\text{Sequence} & \text{General term} & \text{Infinite series} \\
1 \cdot 1 \cdot 1 \cdot \cdots & a_n = \frac{1}{3^n} & \sum_{n=1}^{\infty} \frac{1}{3^n} = \frac{1}{3^1} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots \\
1 \cdot 3 \cdot 9 \cdot 27 \cdots & a_n = \frac{1}{n^3} & \sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{1}{1^3} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots \\
\end{array}
\]

The \(N\)th partial sum \(S_N\) is the finite sum of the terms up to and including \(a_N\):

\[
S_N = \sum_{n=1}^{N} a_n = a_1 + a_2 + a_3 + \cdots + a_N
\]

If the series begins at \(k\), then \(S_N = a_k + a_{k+1} + \cdots + a_N\).

\[\textbf{DEFINITION \ Convergence of an Infinite Series}\]

An infinite series \(\sum_{n=k}^{\infty} a_n\) converges to the sum \(S\) if the sequence of its partial sums \(\{S_N\}\) converge to \(S\):

\[
\lim_{N \to \infty} S_N = S
\]

In this case, we write \(S = \sum_{n=k}^{\infty} a_n\).

• If the limit does not exist, we say that the infinite series diverges.
• If the limit is infinite, we say that the infinite series diverges to infinity.

We can investigate series numerically by computing several partial sums \(S_N\). If the sequence of partial sums shows a trend of convergence to some number \(S\), then we have evidence (but not proof) that the series converges to \(S\). The next example treats a telescoping series, where the partial sums are particularly easy to evaluate.

\[\textbf{EXAMPLE 1 \ Telescoping Series} \quad \text{Investigate numerically:}\]

\[
S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \frac{1}{4(5)} + \cdots
\]

Then compute the sum \(S\) using the identity:

\[
\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}
\]
We shall develop techniques that do not rely on formulas for the partial sum. Therefore, we shall develop techniques that do not rely on formulas for S_N. In most cases (apart from telescoping series and the geometric series introduced below), there is no simple formula like Eq. (2) for the partial sum S_N. Therefore, we shall develop techniques that do not rely on formulas for S_N.

\[
\text{TABLE 1} \quad \begin{array}{|c|c|}
\hline
N & S_N \\
\hline
10 & 0.90909 \\
50 & 0.98039 \\
100 & 0.990099 \\
200 & 0.995025 \\
300 & 0.996678 \\
\hline
\end{array}
\]

In most cases (apart from telescoping series and the geometric series introduced below), there is no simple formula like Eq. (2) for the partial sum S_N. Therefore, we shall develop techniques that do not rely on formulas for S_N.

\[S_1 = \frac{1}{1(2)} = \frac{1}{2} - \frac{1}{2}\]
\[S_2 = \frac{1}{1(2)} + \frac{1}{2(3)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) = 1 - \frac{1}{3}\]
\[S_3 = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) = 1 - \frac{1}{4}\]

In general,
\[S_N = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \cdots + \left(\frac{1}{N-1} - \frac{1}{N}\right) + \left(\frac{1}{N} - \frac{1}{N+1}\right) = 1 - \frac{1}{N+1}\]

The sum S is the limit of the sequence of partial sums:
\[S = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \left(1 - \frac{1}{N+1}\right) = 1\]

It is important to keep in mind the difference between a sequence $\{a_n\}$ and an infinite series $\sum_{n=1}^{\infty} a_n$.

Example 2 Sequences Versus Series Discuss the difference between $\{a_n\}$ and $\sum_{n=1}^{\infty} a_n$, where $a_n = \frac{1}{n(n+1)}$.

Solution The sequence is the list of numbers $\frac{1}{1(2)}, \frac{1}{2(3)}, \frac{1}{3(4)}, \ldots$. This sequence converges to zero:
\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n(n+1)} = 0\]

The infinite series is the sum of the numbers a_n, defined formally as the limit of the sequence of partial sums. This sum is not zero. In fact, the sum is equal to 1 by Example 1:
\[\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \cdots = 1\]

The next theorem shows that infinite series may be added or subtracted like ordinary sums, provided that the series converge.

Theorem 1 Linearity of Infinite Series If $\sum a_n$ and $\sum b_n$ converge, then $\sum (a_n \pm b_n)$ and $\sum c a_n$ also converge (c any constant), and
\[\sum (a_n \pm b_n) = \sum (a_n + b_n) = \sum (a_n - b_n)\]
\[\sum c a_n = c \sum a_n \quad (c \text{ any constant})\]
Proof These rules follow from the corresponding linearity rules for limits. For example,
\[\sum_{n=1}^{\infty} (a_n + b_n) = \lim_{N \to \infty} \sum_{n=1}^{N} (a_n + b_n) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_n + \sum_{n=1}^{N} b_n \right) \]
\[= \lim_{N \to \infty} \sum_{n=1}^{N} a_n + \lim_{N \to \infty} \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n \]

A main goal in this chapter is to develop techniques for determining whether a series converges or diverges. It is easy to give examples of series that diverge:

- \(\sum_{n=1}^{\infty} 1 \) diverges to infinity (the partial sums increase without bound):
 \[S_1 = 1, \quad S_2 = 1 + 1 = 2, \quad S_3 = 1 + 1 + 1 = 3, \quad S_4 = 1 + 1 + 1 + 1 = 4, \quad \ldots \]

- \(\sum_{n=1}^{\infty} (-1)^{n-1} \) diverges (the partial sums jump between 1 and 0):
 \[S_1 = 1, \quad S_2 = 1 - 1 = 0, \quad S_3 = 1 - 1 + 1 = 1, \quad S_4 = 1 - 1 + 1 - 1 = 0, \quad \ldots \]

Next, we study geometric series, which converge or diverge depending on the common ratio \(r \).

A geometric series with common ratio \(r \neq 0 \) is a series defined by a geometric sequence \(cr^n \), where \(c \neq 0 \). If the series begins at \(n = 0 \), then
\[S = \sum_{n=0}^{\infty} cr^n = c + cr + cr^2 + cr^3 + \cdots \]
For \(r = \frac{1}{2} \) and \(c = 1 \), we can visualize the geometric series starting at \(n = 1 \) (Figure 1):
\[S = \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots = 1 \]

Adding up the terms corresponds to moving stepwise from 0 to 1, where each step is a move to the right by half of the remaining distance. Thus, \(S = 1 \).

There is a simple device for computing the partial sums of a geometric series:
\[S_N = c + cr + cr^2 + cr^3 + \cdots + cr^N \]
\[rS_N = \quad cr + cr^2 + cr^3 + \cdots + cr^N + cr^{N+1} \]
\[S_N - rS_N = c - cr^{N+1} \]
\[S_N(1 - r) = c(1 - r^{N+1}) \]
If \(r \neq 1 \), we may divide by \((1 - r) \) to obtain
\[S_N = c + cr + cr^2 + cr^3 + \cdots + cr^N = \frac{c(1 - r^{N+1})}{1 - r} \]
This formula enables us to sum the geometric series.
Geometric series are important because they:
- arise often in applications,
- can be evaluated explicitly,
- are used to study other, nongeometric series (by comparison).

THEOREM 2 Sum of a Geometric Series Let \(c \neq 0 \). If \(|r| < 1\), then

\[
\sum_{n=0}^{\infty} cr^n = c + cr + cr^2 + cr^3 + \cdots = \frac{c}{1-r}
\]

If \(|r| \geq 1\), then the geometric series diverges.

Proof If \(r = 1 \), then the series certainly diverges because the partial sums \(S_N = Nc \) grow arbitrarily large. If \(r \neq 1 \), then Eq. (3) yields

\[
S = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \frac{c(1-r^{N+1})}{1-r} = \frac{c}{1-r} - \frac{c}{1-r} \lim_{N \to \infty} r^{N+1}
\]

If \(|r| < 1\), then \(\lim_{N \to \infty} r^{N+1} = 0 \) and we obtain Eq. (4). If \(|r| \geq 1\) and \(r \neq 1 \), then \(\lim_{N \to \infty} r^{N+1} \) does not exist and the geometric series diverges. Finally, if the series starts with \(cr^M \) rather than \(cr^0 \), then

\[
S = cr^M + cr^{M+1} + cr^{M+2} + cr^{M+3} + \cdots = r^M \sum_{n=0}^{\infty} cr^n = \frac{cr^M}{1-r}
\]

EXAMPLE 3 Evaluate \(\sum_{n=0}^{\infty} 5^{-n} \).

Solution This is a geometric series with \(r = 5^{-1} \). By Eq. (4),

\[
\sum_{n=0}^{\infty} 5^{-n} = 1 + \frac{1}{5} + \frac{1}{5^2} + \frac{1}{5^3} + \cdots = \frac{1}{1-5^{-1}} = \frac{5}{4}
\]

EXAMPLE 4 Evaluate \(\sum_{n=3}^{\infty} \left(-\frac{3}{4}\right)^n \).

Solution This is a geometric series with \(r = -\frac{3}{4} \) and \(c = 7 \), starting at \(n = 3 \). By Eq. (5),

\[
\sum_{n=3}^{\infty} \left(-\frac{3}{4}\right)^n = \frac{7\left(-\frac{3}{4}\right)^3}{1 - \left(-\frac{3}{4}\right)} = \frac{27}{16}
\]

EXAMPLE 5 Find a fraction that has repeated decimal expansion \(0.212121 \ldots \).

Solution We can write this decimal as the series \(\frac{21}{10^2} + \frac{21}{10^4} + \frac{21}{10^6} + \cdots \). This is a geometric series with \(a = \frac{21}{10^2} \) and \(r = \frac{1}{10^2} \). Thus, it converges to

\[
a \frac{1}{1-r} = \frac{\frac{21}{10^2}}{1 - \frac{1}{10^2}} = \frac{21}{99} = \frac{7}{33}
\]

EXAMPLE 6 Evaluate \(S = \sum_{n=0}^{\infty} \frac{2 + 3^n}{5^n} \).

Solution Write \(S \) as a sum of two geometric series. This is valid by Theorem 1 because both geometric series converge:

Both geometric series converge

\[
\sum_{n=0}^{\infty} \frac{2 + 3^n}{5^n} = \sum_{n=0}^{\infty} \frac{2}{5^n} + \sum_{n=0}^{\infty} \frac{3^n}{5^n} = 2 \sum_{n=0}^{\infty} \frac{1}{5^n} + \sum_{n=0}^{\infty} \left(\frac{3}{5}\right)^n = 2 \cdot \frac{1}{1 - \frac{1}{5}} + \frac{1}{1 - \frac{3}{5}} = 5
\]
CHAPTER 11 INFINITE SERIES

CONCEPTUAL INSIGHT Sometimes, the following incorrect argument is given for summing a geometric series:

\[S = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \]

\[2S = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots = 1 + S \]

Thus, \(2S = 1 + S \), or \(S = 1 \). The answer is correct, so why is the argument wrong? It is wrong because we do not know in advance that the series converges. Observe what happens when this argument is applied to a divergent series:

\[S = 1 + 2 + 4 + 8 + 16 + \cdots \]

\[2S = 2 + 4 + 8 + 16 + \cdots = S - 1 \]

This would yield \(2S = S - 1 \), or \(S = -1 \), which is absurd because \(S \) diverges. We avoid such erroneous conclusions by carefully defining the sum of an infinite series as the limit of its sequence of partial sums.

The infinite series \(\sum_{k=1}^{\infty} 1 \) diverges because the \(N \)th partial sum \(S_N = N \) diverges to infinity. It is less clear whether the following series converges or diverges:

\[\sum_{n=1}^{\infty} (-1)^n + \frac{n}{n + 1} = \frac{1}{2} + \frac{2}{3} + \frac{3}{4} + \frac{4}{5} + \frac{5}{6} + \cdots \]

We now introduce a useful test that allows us to conclude that this series diverges. The idea is that if the terms are not shrinking to 0 in size, then the series will not converge. This is typically the first test one applies when attempting to determine whether a series diverges.

THEOREM 3 nth Term Divergence Test If \(\lim_{n \to \infty} a_n \neq 0 \), then the series \(\sum_{n=1}^{\infty} a_n \) diverges.

Proof First, note that \(a_n = S_n - S_{n-1} \) because

\[S_n = (a_1 + a_2 + \cdots + a_{n-1}) + a_n = S_{n-1} + a_n \]

If \(\sum_{n=1}^{\infty} a_n \) converges with sum \(S \), then

\[\lim_{n \to \infty} \frac{1}{n} = 0, \text{ the series } \sum_{n=1}^{\infty} \frac{1}{n} \text{ diverges.} \]

Therefore, if \(a_n \) does not converge to zero, \(\sum_{n=1}^{\infty} a_n \) cannot converge.

EXAMPLE 7 Prove the divergence of \(S = \sum_{n=1}^{\infty} \frac{n}{4n + 1} \).

Solution We have

\[\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n}{4n + 1} = \lim_{n \to \infty} \frac{1}{4 + 1/n} = \frac{1}{4} \]

The \(n \)th term \(a_n \) does not converge to zero, so the series diverges by the \(n \)th Term Divergence Test (Theorem 3).
EXAMPLE 8 Determine the convergence or divergence of
\[S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n + 1} = \frac{1}{2} - \frac{2}{3} + \frac{3}{4} - \frac{4}{5} + \cdots \]

Solution The general term \(a_n = (-1)^{n-1} \frac{n}{n + 1} \) does not approach a limit. Indeed, \(\frac{n}{n + 1} \) tends to 1, so the odd terms \(a_{2n+1} \) tend to 1, and the even terms \(a_{2n} \) tend to \(-1\). Because \(\lim_{n \to \infty} a_n \) does not exist, the series \(S \) diverges by the \(n \)th Term Divergence Test.

The \(n \)th Term Divergence Test tells only part of the story. If \(a_n \) does not tend to zero, then \(\sum a_n \) certainly diverges. But what if \(a_n \) does tend to zero? In this case, the series may converge or it may diverge. In other words, \(\lim_{n \to \infty} a_n = 0 \) is a necessary condition of convergence, but it is not sufficient. As we show in the next example, it is possible for a series to diverge even though its terms tend to zero.

EXAMPLE 9 Sequence Tends to Zero, Yet the Series Diverges

Prove the divergence of
\[\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots \]

Solution The general term \(1/\sqrt{n} \) tends to zero. However, because each term in the partial sum \(S_N \) is greater than or equal to \(1/\sqrt{N} \), we have
\[
S_N = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \cdots + \frac{1}{\sqrt{N}} \geq \frac{1}{\sqrt{N}} + \frac{1}{\sqrt{N}} + \cdots + \frac{1}{\sqrt{N}} = N \left(\frac{1}{\sqrt{N}} \right) = \sqrt{N}
\]
This shows that \(S_N \geq \sqrt{N} \). But \(\sqrt{N} \) increases without bound (Figure 2). Therefore, \(S_N \) also increases without bound. This proves that the series diverges.

11.2 SUMMARY

- An infinite series is an expression
\[\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + a_4 + \cdots \]
We call \(a_n \) the general term of the series. An infinite series can begin at \(n = k \) for any integer \(k \).
- The \(N \)th partial sum is the finite sum of the terms up to and including the \(N \)th term:
\[S_N = \sum_{n=1}^{N} a_n = a_1 + a_2 + a_3 + \cdots + a_N \]
- By definition, the sum of an infinite series is the limit \(S = \lim_{N \to \infty} S_N \). If the limit exists, we say that the infinite series is convergent or converges to the sum \(S \). If the limit does not exist, we say that the infinite series diverges.
- If the sequence of partial sums \(\{S_N\} \) increase without bound, we say that \(S \) diverges to infinity.
- \(n \)th Term Divergence Test: If \(\lim_{n \to \infty} a_n \neq 0 \), then \(\sum_{n=1}^{\infty} a_n \) diverges. However, a series may diverge even if its general term \(\{a_n\} \) tends to zero.
Partial sum of a geometric series:
\[c + cr + cr^2 + \cdots + cr^N = \frac{c(1 - r^{N+1})}{1 - r} \]

- Geometric series: If \(|r| < 1\), then
\[
\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \cdots = \frac{1}{1 - r}
\]
\[
\sum_{n=M}^{\infty} cr^n = cr^M + cr^{M+1} + cr^{M+2} + \cdots = \frac{cr^M}{1 - r}
\]

The geometric series diverges if \(|r| \geq 1\).

Archimedes (287 BCE–212 BCE), who discovered the law of the lever, said, “Give me a place to stand on, and I can move the Earth” (quoted by Pappus of Alexandria c. 340 CE).

FIGURE 3 Archimedes showed that the area \(S \) of the parabolic segment is \(\frac{1}{2}T \), where \(T \) is the area of \(\triangle ABC \).

HISTORICAL PERSPECTIVE

Geometric series were used as early as the third century BCE by Archimedes in a brilliant argument for determining the area \(S \) of a “parabolic segment” (shaded region in Figure 3). Given two points \(A \) and \(C \) on a parabola, there is a point \(B \) between \(A \) and \(C \) where the tangent line is parallel to \(AC \) (apparently, Archimedes was aware of the Mean Value Theorem more than 2000 years before the invention of calculus). Let \(T \) be the area of triangle \(\triangle ABC \). Archimedes proved that if \(D \) is chosen in a similar fashion relative to \(AB \) and \(E \) is chosen relative to \(BC \), then
\[
\frac{1}{4}T = \text{Area}(\triangle ADB) + \text{Area}(\triangle BEC)
\]

This construction of triangles can be continued. The next step would be to construct the four triangles on the segments \(AD, DB, BE, EC \), of total area \(\frac{1}{2} T \). Then construct eight triangles of total area \(\frac{1}{4} T \), etc. In this way, we obtain infinitely many triangles that completely fill up the parabolic segment. By the formula for the sum of a geometric series, we get
\[
S = T + \frac{1}{4}T + \frac{1}{16}T + \cdots = T \sum_{n=0}^{\infty} \frac{1}{4^n} = \frac{4}{3}T
\]

For this and many other achievements, Archimedes is ranked together with Newton and Gauss as one of the greatest scientists of all time.

The modern study of infinite series began in the seventeenth century with Newton, Leibniz, and their contemporaries. The divergence of \(\sum_{n=1}^{\infty} \frac{1}{n} \) (called the harmonic series) was known to the medieval scholar Nicole d’Oresme (1323–1382), but his proof was lost for centuries, and the result was rediscovered on more than one occasion. It was also known that the sum of the reciprocal squares \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, and in the 1640s, the Italian Pietro Mengoli put forward the challenge of finding its sum. Despite the efforts of the best mathematicians of the day, including Leibniz and the Bernoulli brothers Jakob and Johann, the problem resisted solution for nearly a century. In 1735 the great master Leonhard Euler (at the time, 28 years old) astonished his contemporaries by proving that
\[
\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{6}
\]

This formula, surprising in itself, plays a role in a variety of mathematical fields. A theorem from number theory states that two whole numbers, chosen randomly, have no common factor with probability \(6/\pi^2 \approx 0.6 \) (the reciprocal of Euler’s result). On the other hand, Euler’s result and its generalizations appear in the field of statistical mechanics.

11.2 EXERCISES

Preliminary Questions

1. What role do partial sums play in defining the sum of an infinite series?

2. What is the sum of the following infinite series?
\[
\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \cdots
\]

3. What happens if you apply the formula for the sum of a geometric series to the following series? Is the formula valid?
\[
1 + 3 + 3^2 + 3^3 + 3^4 + \cdots
\]

4. A student asserts that \(\sum_{n=1}^{\infty} \frac{1}{n^2} = 0 \) because \(\frac{1}{n^2} \) tends to zero. Is this valid reasoning?
Exercises

1. Find a formula for the general term \(a_n\) (not the partial sum) of the infinite series.
 (a) \(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots\)
 (b) \(\frac{1}{4} + \frac{5}{8} + \frac{25}{32} + \frac{125}{64} + \cdots\)
 (c) \(\frac{2}{1} - \frac{2^2}{2 \cdot 1} + \frac{3^3}{3 \cdot 2 \cdot 1} - \frac{4^4}{4 \cdot 3 \cdot 2 \cdot 1} + \cdots\)
 (d) \(\frac{2}{1^2 + 1} + \frac{3}{2^2 + 1} + \frac{2}{3^2 + 1} + \frac{1}{4^2 + 1} + \cdots\)

2. Write in summation notation:
 (a) \(\frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots\)
 (b) \(\frac{1}{9} + \frac{1}{16} + \frac{1}{25} + \frac{1}{36} + \cdots\)
 (c) \(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\)
 (d) \(\frac{125}{9} + \frac{625}{16} + \frac{3125}{25} + \frac{15,625}{36} + \cdots\)

In Exercises 3–6, compute the partial sums \(S_2\), \(S_4\), and \(S_6\).

3. \(\sum_{k=1}^{\infty} (-1)^k + 1\)

4. \(\sum_{k=1}^{\infty} \frac{1}{2^k} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots\)

5. \(\sum_{j=1}^{\infty} \frac{1}{j^2} - \frac{1}{j^3} + \frac{1}{j^4} + \cdots\)

6. The series \(S = 1 + \left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \cdots\) converges to \(\frac{2}{3}\). Calculate \(S_n\) for \(N = 1, 2, \ldots\) up to find an \(S_N\) that approximates \(\frac{2}{3}\) within an error of less than 0.001.

7. The series \(S = \frac{1}{1} + \frac{1}{2} + \frac{1}{2!} + \frac{1}{3!} + \cdots\) converges to \(e^{-1}\) (recall that \(0! = 1\)). Compute \(S_N\) for \(N = 1, 2, \ldots\) up to find an \(S_N\) that approximates \(e^{-1}\) within an error of less than 0.001.

8. The series \(S = \frac{1}{0!} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots\) is known to converge to \(e^{-1}\) (recall that \(0! = 1\)). Compute \(S_N\) for \(N = 1, 2, \ldots\) up to find an \(S_N\) that approximates \(e^{-1}\) within an error of less than 0.001.

9. \(\text{CAS}\)

 \[\pi - 3 = \frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{1}{8} + \frac{1}{9} - \cdots\]

10. \(\text{CAS}\)

 \[\pi = \frac{\sqrt{80}}{20} = \frac{1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots}{20}\]

11. Calculate \(S_3\), \(S_4\), and \(S_5\) and then find the sum of the telescoping series

 \[S = \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2}\right)\]

12. Write \(\sum_{n=3}^{\infty} \frac{1}{n(n-1)}\) as a telescoping series and find its sum.

13. Find an \(N\) such that \(S_N > 25\) for the series \(\sum_{n=1}^{\infty} \frac{1}{n}\).

14. Use partial fractions to rewrite \(\sum_{n=1}^{\infty} \frac{1}{n(n+3)}\) as a telescoping series and find its sum.

15. Find the sum of \(\frac{1}{1} + \frac{1}{3} + \frac{1}{5} + \cdots\).

16. Find a formula for the partial sum \(S_N\) of \(\sum_{n=1}^{\infty} (-1)^{n-1}\) and show that the series diverges.

 In Exercises 17–22, the nth Term Divergence Test (Theorem 3) to prove that the following series diverge.

17. \(\sum_{n=1}^{\infty} \frac{n}{10n + 12}\)

18. \(\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + 1}}\)

19. \(\sum_{n=1}^{\infty} \frac{1}{n - \frac{1}{2} + \frac{3}{3} - \frac{3}{4}} + \cdots\)

20. \(\sum_{n=1}^{\infty} (-1)^n n^2\)

21. \(\cos \frac{1}{2} + \cos \frac{1}{3} + \cos \frac{1}{4} + \cdots\)

22. \(\sum_{n=0}^{\infty} \frac{4n^2 + 1 - n}{n(\sqrt{n} + 1)}\)

 In Exercises 23–36, use the formula for the sum of a geometric series to find the sum or state that the series diverges.

23. \(\sum_{n=1}^{\infty} \frac{1}{8} + \frac{1}{8} + \cdots\)

24. \(\sum_{n=1}^{\infty} \left(\frac{3}{11}\right)^n\)

25. \(\sum_{n=1}^{\infty} \left(\frac{4}{9}\right)^n\)

26. \(\sum_{n=1}^{\infty} \left(\frac{1}{6}\right)^n\)

27. \(\sum_{n=1}^{\infty} \left(\frac{1}{11}\right)^n\)

28. \(\sum_{n=1}^{\infty} \left(\frac{1}{17}\right)^n\)

29. \(\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n\)

30. \(\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n\)

31. \(\sum_{n=1}^{\infty} \frac{8 + 2^n}{5^n}\)

32. \(\sum_{n=1}^{\infty} \frac{3(-2)^n - 5^n}{8^n}\)

33. \(\sum_{n=1}^{\infty} \frac{5 - \frac{5}{4} + \frac{5}{4} - \frac{5}{4} + \cdots}{8^n}\)

34. \(\sum_{n=1}^{\infty} \frac{23^n}{7^n} + \frac{24^n}{7^n} + \frac{25^n}{7^n} + \frac{26^n}{7^n} + \cdots\)
35. \(\frac{7}{3} + \frac{49}{64} + \frac{343}{512} + \frac{2401}{1024} + \cdots \)

36. \(\frac{25}{9} + \frac{5}{3} + 1 + \frac{3}{5} + \frac{9}{25} + \frac{27}{125} + \cdots \)

In Exercises 37–40, determine a reduced fraction that has this repeating decimal.

37. \(0.222 \ldots \)

38. \(0.454545 \ldots \)

39. \(0.313131 \ldots \)

40. \(0.217217217 \ldots \)

41. Determine which reduced fractions have a repeating decimal of the form \(0.aaa \ldots \), where \(a \) is a one-digit number from 0 to 9.

42. Determine which denominators are realized for reduced fractions that have a repeating decimal of the form \(0.abcdabcd \ldots \), where each of \(a \), \(b \), \(c \), \(d \) is a one-digit number.

43. Which of the following are not geometric series?

(a) \(\sum_{n=0}^{\infty} 7^n \)

(b) \(\sum_{n=0}^{\infty} \frac{1}{n^2} \)

(c) \(\sum_{n=0}^{\infty} \pi^{-n} \)

(d) \(\sum_{n=0}^{\infty} \sqrt{2} \)

44. Use the method of Example 9 to show that \(\sum_{k=1}^{\infty} \frac{1}{k^{3/2}} \) diverges.

45. Prove that if \(\sum_{n=1}^{\infty} a_n \) converges and \(\sum_{n=1}^{\infty} b_n \) diverges, then \(\sum_{n=1}^{\infty} (a_n + b_n) \) diverges. Hint: If not, derive a contradiction by writing \(\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n + b_n) - \sum_{n=1}^{\infty} a_n \).

46. Prove the divergence of \(\sum_{n=0}^{\infty} \frac{9^n + 2^n}{5^n} \).

47. Give a counterexample to show that each of the following statements is false.

(a) If the general term \(a_n \) tends to zero, then \(\sum_{n=1}^{\infty} a_n = 0 \).

(b) The \(N \)th partial sum of the infinite series defined by \([a_n] \) is \(a_N \).

(c) If \(a_n \) tends to zero, then \(\sum_{n=1}^{\infty} a_n \) converges.

(d) If \(a_n \) tends to \(L \), then \(\sum_{n=1}^{\infty} a_n = L \).

48. Suppose that \(S = \sum_{n=1}^{\infty} a_n \) is an infinite series with partial sum \(S_N = 5 - \frac{2}{N^2} \).

(a) What are the values of \(\sum_{n=1}^{10} a_n \) and \(\sum_{n=5}^{16} a_n \)?

(b) What is the value of \(a_3 \)?

(c) Find a general formula for \(a_n \).

(d) Find the sum \(\sum_{n=1}^{\infty} a_n \).

49. Compute the total area of the (infinitely many) triangles in Figure 4.

50. The winner of a lottery receives \(m \) dollars at the end of each year for \(N \) years. The present value (PV) of this prize in today’s dollars is \(PV = \sum_{i=1}^{N} m (1 + r)^{-i} \), where \(r \) is the interest rate. Calculate PV if \(m = 50,000 \), \(r = 0.06 \) (corresponding to 6%), and \(N = 20 \). What is PV if \(N = \infty \)?

51. If a patient takes a dose of \(D \) units of a particular drug, the amount of the dosage that remains in the patient’s bloodstream after \(t \) days is \(De^{-kt} \), where \(k \) is a positive constant depending on the particular drug.

(a) Show that if the patient takes a dose \(D \) every day for an extended period, the amount of drug in the bloodstream approaches \(R = \frac{De^{-kt}}{1 - e^{-kt}} \).

(b) Show that if the patient takes a dose \(D \) once every \(t \) days for an extended period, the amount of drug in the bloodstream approaches \(R = \frac{De^{-kt}}{1 - e^{-kt}} \).

(c) Suppose that a dosage of more than \(S \) units is considered dangerous. What is the minimal time between doses that is safe? (Hint: \(D + R \leq S \).

52. In economics, the multiplier effect refers to the fact that when there is an injection of money to consumers, the consumers spend a certain percentage of it. That amount recirculates through the economy and adds additional income, which comes back to the consumers and of which they spend the same percentage. This process repeats indefinitely, circulating additional money through the economy. Suppose that in order to stimulate the economy, the government institutes a tax cut of $10 billion. If taxpayers are known to save 10% of any additional money, and adds additional income, which comes back to the consumers and of which they spend the same percentage. This process repeats indefinitely, circulating additional money through the economy.

53. Find the total length of the infinite zigzag path in Figure 5 (each zag occurs at an angle of \(\frac{\pi}{4} \)).

54. Evaluate \(\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} \). Hint: Find constants \(A \), \(B \), and \(C \) such that

\[
\frac{1}{n(n+1)(n+2)} = \frac{A}{n} + \frac{B}{n+1} + \frac{C}{n+2}
\]
55. Show that if \(a \) is a positive integer, then
\[
\sum_{n=1}^{\infty} \frac{1}{n(n + a)} = \frac{1}{a} \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{a} \right)
\]

56. A ball dropped from a height of 10 ft begins to bounce vertically. Each time it strikes the ground, it returns to two-thirds of its previous height. What is the total vertical distance traveled by the ball if it bounces infinitely many times?

57. A ball is dropped from a height of 6 ft and begins to bounce vertically. Each time it strikes the ground, it returns to three-quarters of its previous height. What is the total vertical distance traveled by the ball if it bounces infinitely many times?

58. A unit square is cut into nine equal regions as in Figure 6(A). The central subsquare is painted red. Each of the unpainted squares is then cut into nine equal subsquares and the central square of each is painted red as in Figure 6(B). This procedure is repeated for each of the resulting unpainted squares. After continuing this process an infinite number of times, what fraction of the total area of the original square is painted?

59. Let \(\{b_n\} \) be a sequence and let \(a_n = b_n - b_{n-1} \). Show that \(\sum_{n=1}^{\infty} a_n \) converges if and only if \(\lim_{n \to \infty} b_n \) exists.

60. Assumptions Matter Show, by giving counterexamples, that the assertions of Theorem 1 are not valid if the series \(\sum_{n=0}^{\infty} a_n \) and \(\sum_{n=0}^{\infty} b_n \) are not convergent.

Further Insights and Challenges

Exercises 61–63 use the formula
\[
1 + r + r^2 + \cdots + r^{N-1} = \frac{1 - r^N}{1 - r}
\]

61. Professor George Andrews of Pennsylvania State University observed that we can use Eq. (7) to calculate the derivative of \(f(x) = x^N \) (for \(N \geq 0 \)). Assume that \(a \neq 0 \) and let \(x = ra \). Show that
\[
f'(a) = \lim_{x \to a} \frac{x^N - a^N}{x - a} = a^{N-1} \lim_{r \to 1} \frac{r^N - 1}{r - 1}
\]
and evaluate the limit.

62. Pierre de Fermat used geometric series to compute the area under the graph of \(f(x) = x^N \) over \([0, 1]\). For \(0 < r < 1 \), let \(F(r) \) be the sum of the areas of the infinitely many right-endpoint rectangles with endpoints \(Ar^n \), as in Figure 7. As \(r \) tends to 1, the rectangles become narrower and \(F(r) \) tends to the area under the graph.

(a) Show that \(F(r) = A^{N+1} \left(\frac{1 - r}{1 - r^{N+1}} \right) \).

(b) Use Eq. (7) to evaluate \(\int_0^A x^N \, dx = \lim_{r \to 1} F(r) \).

63. Verify the Gregory–Leibniz formula as follows.

(a) Set \(r = -x^2 \) in Eq. (7) and rearrange to show that
\[
1 + x^2 = 1 - x^2 + x^4 - \cdots + (-1)^{N-1} x^{2N-2} + \frac{(-1)^N x^{2N}}{1 + x^2}
\]

(b) Show, by integrating over \([0, 1]\), that
\[
\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots + \frac{(-1)^{N-1}}{2N - 1} + (-1)^N \int_0^1 \frac{x^{2N}}{1 + x^2} \, dx
\]

(c) Use the Comparison Theorem for integrals to prove that
\[
0 \leq \int_0^1 \frac{x^{2N}}{1 + x^2} \, dx \leq \frac{1}{2N + 1}
\]

Hint: Observe that the integrand is \(\leq x^{2N} \).

(d) Prove that
\[
\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots
\]

Hint: Use (b) and (c) to show that the partial sums \(S_N \) satisfy \(|S_N - \frac{\pi}{4}| \leq \frac{1}{2N + 1} \), and thereby conclude that \(\lim_{N \to \infty} S_N = \frac{\pi}{4} \).

64. Cantor’s Disappearing Table (following Larry Knop of Hamilton College) Take a table of length \(L \) (Figure 8). At Stage 1, remove the section of length \(L/4 \) centered at the midpoint. Two sections remain, each with length less than \(L/2 \). At Stage 2, remove sections of length \(L/4^2 \) from each of these two sections (this stage removes \(L/8 \) of the table). Now four sections remain, each of length less than \(L/4 \). At Stage 3, remove the four central sections of length \(L/4^3 \), etc.

(a) Show that at the \(N \)th stage, each remaining section has length less than \(L/2^N \) and that the total amount of table removed is
\[
L \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots + \frac{1}{2^N + 1} \right)
\]

(b) Show that in the limit as \(N \to \infty \), precisely one-half of the table remains.

This result is intriguing, because there are no nonzero intervals of table left (at each stage, the remaining sections have a length less than \(L/2^N \)). So, the table has “disappeared.” However, we can place any object longer than \(L/4 \) on the table. The object will not fall through because it will not fit through any of the removed sections.
65. The Koch snowflake (described in 1904 by Swedish mathematician Helge von Koch) is an infinitely jagged “fractal” curve obtained as a limit of polygonal curves (it is continuous but has no tangent line at any point). Begin with an equilateral triangle (Stage 0) and produce Stage 1 by replacing each edge with four edges of one-third the length, arranged as in Figure 9. Continue the process: At the nth stage, replace each edge with four edges of one-third the length from the (n − 1)st stage.

(a) Show that the perimeter \(P_n \) of the polygon at the nth stage satisfies \(P_n = \frac{4}{3} P_{n-1} \). Prove that \(\lim_{n \to \infty} P_n = \infty \). The snowflake has infinite length.

(b) Let \(A_0 \) be the area of the original equilateral triangle. Show that \((3)^{n-1} \) new triangles are added at the nth stage, each with area \(A_0 / 9^n \) (for \(n \geq 1 \)). Show that the total area of the Koch snowflake is \(\frac{8}{5} A_0 \).

11.3 Convergence of Series with Positive Terms

The next three sections develop techniques for determining whether an infinite series converges or diverges. This is easier than finding the sum of an infinite series, which is possible only in special cases.

In this section, we consider positive series \(\sum_{n=1}^\infty a_n \), where \(a_n > 0 \) for all \(n \). We can visualize the terms of a positive series as rectangles of width 1 and height \(a_n \) (Figure 1). The partial sum

\[
S_N = a_1 + a_2 + \cdots + a_N
\]

is equal to the area of the first \(N \) rectangles.

The key feature of positive series is that their partial sums form an increasing sequence:

\[
S_N < S_{N+1}
\]

for all \(N \). This is because \(S_{N+1} \) is obtained from \(S_N \) by adding a positive number:

\[
S_{N+1} = (a_1 + a_2 + \cdots + a_N) + a_{N+1} = S_N + a_{N+1}
\]

Recall that an increasing sequence converges if it is bounded above. Otherwise, it diverges (Theorem 6, Section 11.1). It follows that a positive series behaves in one of two ways.

THEOREM 1 Partial Sum Theorem for Positive Series
If \(S = \sum_{n=1}^\infty a_n \) is a positive series, then either:

(i) The partial sums \(S_N \) are bounded above. In this case, \(S \) converges. Or,

(ii) The partial sums \(S_N \) are not bounded above. In this case, \(S \) diverges.

• Theorem 1 remains true if \(a_n \geq 0 \). It is not necessary to assume that \(a_n > 0 \).

• It also remains true if \(a_n > 0 \) for all \(n \geq M \) for some \(M \), because the convergence or divergence of a series is not affected by the first \(M \) terms.

Assumptions Matter
The theorem does not hold for nonpositive series. Consider

\[
S = \sum_{n=1}^\infty (-1)^{n-1} = 1 - 1 + 1 - 1 + 1 - 1 + \cdots
\]

The partial sums are bounded (because \(S_N = 1 \) or 0), but \(S \) diverges.

Our first application of Theorem 1 is the following Integral Test. It is extremely useful because integrals are easier to evaluate than series in most cases.
The convergence of the series is determined by the integral test.

Theorem 2 Integral Test Let \(a_n = f(n) \), where \(f \) is a positive, decreasing, and continuous function of \(x \) for \(x \geq 1 \).

(i) If \(\int_1^\infty f(x) \, dx \) converges, then \(\sum_{n=1}^\infty a_n \) converges.

(ii) If \(\int_1^\infty f(x) \, dx \) diverges, then \(\sum_{n=1}^\infty a_n \) diverges.

Proof Because \(f \) is decreasing, the shaded rectangles in Figure 2 lie below the graph of \(f \), and therefore for all \(N \)

\[
\frac{a_2 + \cdots + a_N}{\text{Area of shaded rectangles in Figure 2}} \leq \int_1^N f(x) \, dx \leq \int_1^\infty f(x) \, dx
\]

If the improper integral on the right converges, then the sums \(a_2 + \cdots + a_N \) remain bounded. In this case, \(S_N \) also remains bounded, and the infinite series converges by the Partial Sum Theorem for Positive Series (Theorem 1). This proves (i).

On the other hand, the rectangles in Figure 3 lie above the graph of \(f(x) \), so

\[
\int_1^N f(x) \, dx \leq a_1 + a_2 + \cdots + a_{N-1}
\]

Area of shaded rectangles in Figure 3

If \(\int_1^\infty f(x) \, dx \) diverges, then \(\int_1^N f(x) \, dx \) tends to \(\infty \), and Eq. (1) shows that \(S_N \) also tends to \(\infty \). This proves (ii).

Example 1 The Harmonic Series Diverges Show that \(\sum_{n=1}^\infty \frac{1}{n} \) diverges.

Solution Let \(f(x) = \frac{1}{x} \). Then \(f(n) = \frac{1}{n} \), and the Integral Test applies because \(f \) is positive, decreasing, and continuous for \(x \geq 1 \). The integral diverges:

\[
\int_1^\infty \frac{dx}{x} = \lim_{R \to \infty} \int_1^R \frac{dx}{x} = \lim_{R \to \infty} \ln R = \infty
\]

Therefore, the series \(\sum_{n=1}^\infty \frac{1}{n} \) diverges.

Example 2 Does \(\sum_{n=1}^\infty \frac{n}{(n^2 + 1)^2} = \frac{1}{2^2} + \frac{2}{5^2} + \frac{3}{10^2} + \cdots \) converge?

Solution The function \(f(x) = \frac{x}{(x^2 + 1)^2} \) is positive and continuous for \(x \geq 1 \). It is decreasing because \(f'(x) \) is negative:

\[
f'(x) = \frac{1 - 3x^2}{(x^2 + 1)^3} < 0 \quad \text{for} \quad x \geq 1
\]

Therefore, the Integral Test applies. Using the substitution \(u = x^2 + 1, \, du = 2x \, dx \), we have

\[
\int_1^\infty \frac{x}{(x^2 + 1)^2} \, dx = \lim_{R \to \infty} \int_1^R \frac{x}{(x^2 + 1)^2} \, dx = \lim_{R \to \infty} \frac{1}{2} \int_{u_2}^{R^2+1} \frac{du}{u^2}
\]

\[
= \lim_{R \to \infty} \frac{-1}{2u_2} \bigg|_{u_2}^{R^2+1} = \lim_{R \to \infty} \left(\frac{1}{4} - \frac{1}{2(R^2 + 1)} \right) = \frac{1}{4}
\]

Thus, the integral converges, and therefore, \(\sum_{n=1}^\infty \frac{n}{(n^2 + 1)^2} \) also converges by the Integral Test.
The sum of the reciprocal powers \(n^{-p} \) is called a \(p \)-series.

THEOREM 3 Convergence of \(p \)-Series The infinite series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) converges if \(p > 1 \) and diverges otherwise.

Proof If \(p \leq 0 \), then the general term \(n^{-p} \) does not tend to zero, so the series diverges by the nth Term Divergence Test. If \(p > 0 \), then \(f(x) = x^{-p} \) is positive and decreasing for \(x \geq 1 \), so the Integral Test applies. According to Theorem 1 in Section 8.7,

\[
\int_1^{\infty} \frac{1}{x^p} \, dx = \begin{cases} \frac{1}{p-1} & \text{if } p > 1 \\ \infty & \text{if } p \leq 1 \end{cases}
\]

Therefore, \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) converges for \(p > 1 \) and diverges for \(p \leq 1 \).

Here are two examples of \(p \)-series:

\(p = \frac{1}{3} \):

\[
\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = \frac{1}{\sqrt[3]{1}} + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \frac{1}{\sqrt[3]{4}} + \cdots = \infty \text{ diverges}
\]

\(p = 2 \):

\[
\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \text{ converges}
\]

Another powerful method for determining convergence of positive series occurs via comparison with other series. Suppose that \(0 \leq a_n \leq b_n \). Figure 4 suggests that if the larger sum \(\sum b_n \) converges, then the smaller sum \(\sum a_n \) also converges. Similarly, if the smaller sum diverges, then the larger sum also diverges.

THEOREM 4 Direct Comparison Test

Assume that there exists \(M > 0 \) such that \(0 \leq a_n \leq b_n \) for \(n \geq M \).

(i) If \(\sum_{n=1}^{\infty} b_n \) converges, then \(\sum_{n=1}^{\infty} a_n \) also converges.

(ii) If \(\sum_{n=1}^{\infty} a_n \) diverges, then \(\sum_{n=1}^{\infty} b_n \) also diverges.

Proof We can assume, without loss of generality, that \(M = 1 \). If \(S = \sum_{n=1}^{\infty} b_n \) converges, then the partial sums of \(\sum_{n=1}^{\infty} a_n \) are bounded above by \(S \) because

\[
a_1 + a_2 + \cdots + a_N \leq b_1 + b_2 + \cdots + b_N \leq \sum_{n=1}^{\infty} b_n = S
\]

Therefore, \(\sum_{n=1}^{\infty} a_n \) converges by the Partial Sum Theorem for Positive Series (Theorem 1). This proves (i). On the other hand, if \(\sum_{n=1}^{\infty} a_n \) diverges, then \(\sum_{n=1}^{\infty} b_n \) must also diverge. Otherwise, we would have a contradiction to (i).

EXAMPLE 3 Does \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{3^n}} \) converge?
Solution For \(n \geq 1 \), we have
\[
\frac{1}{\sqrt{n} 3^n} \leq \frac{1}{3^n}
\]
The larger series \(\sum_{n=1}^{\infty} \frac{1}{3^n} \) converges because it is a geometric series with \(r = \frac{1}{3} < 1 \). By the Direct Comparison Test, the smaller series \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} 3^n} \) also converges.

Example 4 Does \(S = \sum_{n=2}^{\infty} \frac{1}{n(n^2+3)^{1/3}} \) converge?

Solution Let us show that
\[
\frac{1}{n} \leq \frac{1}{(n^2 + 3)^{1/3}} \quad \text{for } n \geq 2
\]
This inequality is equivalent to \((n^2 + 3) \leq n^3 \), so we must show that
\[
f(x) = x^3 - (x^2 + 3) \geq 0 \quad \text{for } x \geq 2
\]
The function \(f \) is increasing because its derivative \(f'(x) = 3x(x - \frac{2}{3}) \) is positive for \(x \geq 2 \). Since \(f(2) = 1 \), it follows that \(f(x) \geq 1 \) for \(x \geq 2 \), and our original inequality follows. We know that the smaller harmonic series \(\sum_{n=2}^{\infty} \frac{1}{n} \) diverges. Therefore, the larger series \(\sum_{n=2}^{\infty} \frac{1}{(n^2 + 1)^{1/3}} \) also diverges.

Example 5 Using the Comparison Correctly Determine the convergence of
\[
\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}
\]
Solution We might be tempted to compare \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \) to the harmonic series \(\sum_{n=2}^{\infty} \frac{1}{n} \) using the inequality (valid for \(n \geq 3 \) since \(\ln 3 > 1 \))
\[
\frac{1}{n(\ln n)^2} \leq \frac{1}{n}
\]
However, \(\sum_{n=2}^{\infty} \frac{1}{n} \) diverges, and this says nothing about the smaller series \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \).
Fortunately, the Integral Test can be used. The substitution \(u = \ln x \) yields
\[
\int_{2}^{\infty} \frac{dx}{x(\ln x)^2} = \int_{\ln 2}^{\infty} \frac{du}{u^2} = \lim_{R \to \infty} \left(\frac{1}{\ln 2} - \frac{1}{R} \right) = \frac{1}{\ln 2} < \infty
\]
The Integral Test shows that \(\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2} \) converges.

Suppose we wish to study the convergence of
\[
S = \sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}
\]
For large \(n \), the general term is very close to \(1/n^2 \):
\[
\frac{n^2}{n^4 - n - 1} = \frac{1}{n^2 - n^{-1} - n^{-2}} \approx \frac{1}{n^2}
\]
Thus, we might try to compare S with $\sum_{n=2}^{\infty} \frac{1}{n^2}$. Unfortunately, however, the inequality goes in the wrong direction:

$$\frac{n^2}{n^4 - n - 1} > \frac{n^2}{n^4} = \frac{1}{n^2}$$

Although the smaller series $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges, we cannot use the Direct Comparison Test to say anything about our larger series. In this situation, the following variation of the Direct Comparison Test can be used.

THEOREM 5 Limit Comparison Test Let $\{a_n\}$ and $\{b_n\}$ be positive sequences. Assume that the following limit exists:

$$L = \lim_{n \to \infty} \frac{a_n}{b_n}$$

- If $L > 0$, then $\sum a_n$ converges if and only if $\sum b_n$ converges.
- If $L = \infty$ and $\sum a_n$ converges, then $\sum b_n$ converges.
- If $L = 0$ and $\sum b_n$ converges, then $\sum a_n$ converges.

Proof Assume first that L is finite (possibly zero) and that $\sum b_n$ converges. Choose a positive number $R > L$. Then $0 \leq \frac{a_n}{b_n} \leq R$ for all n sufficiently large because $\frac{a_n}{b_n}$ approaches L. Therefore, $a_n \leq Rb_n$. The series $\sum Rb_n$ converges because it is a multiple of the convergent series $\sum b_n$. Thus, $\sum a_n$ converges by the Direct Comparison Test.

Next, suppose that L is nonzero (positive or infinite) and that $\sum a_n$ converges. Let $L = \lim_{n \to \infty} \frac{a_n}{b_n}$. Then L is finite and we can apply the result of the previous paragraph with the roles of $\{a_n\}$ and $\{b_n\}$ reversed to conclude that $\sum b_n$ converges.

CONCEPTUAL INSIGHT To remember the different cases of the Limit Comparison Test, you can think of it this way: If $L > 0$, then $a_n \approx Lb_n$ for large n. In other words, the series $\sum a_n$ and $\sum b_n$ are roughly multiples of each other, so one converges if and only if the other converges. If $L = \infty$, then a_n is much larger than b_n (for large n), so if $\sum a_n$ converges, $\sum b_n$ certainly converges. Finally, if $L = 0$, then b_n is much larger than a_n and the convergence of $\sum b_n$ yields the convergence of $\sum a_n$.

EXAMPLE 6 Show that $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$ converges.

Solution Let

$$a_n = \frac{n^2}{n^4 - n - 1} \quad \text{and} \quad b_n = \frac{1}{n^2}$$

We observed above that $a_n \approx b_n$ for large n. To apply the Limit Comparison Test, we observe that the limit L exists and $L > 0$:

$$L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{n^4 - n - 1} \frac{n^4}{1} = \lim_{n \to \infty} \frac{1}{1 - n^{-3} - n^{-4}} = 1$$

Since $\sum_{n=2}^{\infty} \frac{1}{n^2}$ converges, our series $\sum_{n=2}^{\infty} \frac{n^2}{n^4 - n - 1}$ also converges by Theorem 5.
Example 7 Determine whether \(\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^2 + 4}} \) converges.

Solution Apply the Limit Comparison Test with \(a_n = \frac{1}{\sqrt{n^2 + 4}} \) and \(b_n = \frac{1}{n} \). Then

\[
L = \lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{\sqrt{n^2 + 4}} = \lim_{n \to \infty} \frac{1}{\sqrt{1 + 4/n^2}} = 1
\]

Since \(\sum_{n=3}^{\infty} \frac{1}{n} \) diverges and \(L > 0 \), the series \(\sum_{n=3}^{\infty} \frac{1}{\sqrt{n^2 + 4}} \) also diverges.

In the Limit Comparison Test, when attempting to find an appropriate \(b_n \) to compare with \(a_n \), we typically keep only the largest power of \(n \) in the numerator and denominator of \(a_n \), as we did in each of the previous examples.

11.3 Summary

- The partial sums \(S_N \) of a positive series \(S = \sum a_n \) form an increasing sequence.
- Partial Sum Theorem for Positive Series: A positive series \(S \) converges if its partial sums \(S_N \) remain bounded. Otherwise, it diverges.
- Integral Test: Assume that \(f \) is positive, decreasing, and continuous for \(x > M \). Set \(a_n = f(n) \). If \(\int_M^{\infty} f(x) \, dx \) converges, then \(\sum a_n \) converges, and if \(\int_M^{\infty} f(x) \, dx \) diverges, then \(\sum a_n \) diverges.
- \(p \)-Series: The series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \) converges if \(p > 1 \) and diverges if \(p \leq 1 \).
- Direct Comparison Test: Assume there exists \(M > 0 \) such that \(0 \leq a_n \leq b_n \) for all \(n \geq M \). If \(\sum b_n \) converges, then \(\sum a_n \) converges, and if \(\sum a_n \) diverges, then \(\sum b_n \) diverges.
- Limit Comparison Test: Assume that \(\{a_n\} \) and \(\{b_n\} \) are positive and that the following limit exists:

\[
L = \lim_{n \to \infty} \frac{a_n}{b_n}
\]

- If \(L > 0 \), then \(\sum a_n \) converges if and only if \(\sum b_n \) converges.
- If \(L = \infty \) and \(\sum a_n \) converges, then \(\sum b_n \) converges.
- If \(L = 0 \) and \(\sum b_n \) converges, then \(\sum a_n \) converges.

11.3 Exercises

Preliminary Questions

1. Let \(S = \sum_{n=1}^{\infty} a_n \). If the partial sums \(S_N \) are increasing, then (choose the correct conclusion):
 - \(\{a_n\} \) is an increasing sequence.
 - \(\{a_n\} \) is a positive sequence.
2. What are the hypotheses of the Integral Test?
3. Which test would you use to determine whether \(\sum_{n=1}^{\infty} n^{-3.2} \) converges?
4. Which test would you use to determine whether \(\sum_{n=1}^{\infty} \frac{1}{2n + \sqrt{n}} \) converges?
5. Ralph hopes to investigate the convergence of \(\sum_{n=1}^{\infty} \frac{e^{-n}}{n} \) by comparing it with \(\sum_{n=1}^{\infty} \frac{1}{n} \). Is Ralph on the right track?
In Exercises 1–14, use the Integral Test to determine whether the infinite series is convergent.

1. \(\sum_{n=1}^{\infty} \frac{1}{n^4} \)
2. \(\sum_{n=1}^{\infty} \frac{1}{n + 3} \)
3. \(\sum_{n=1}^{\infty} \frac{1}{n - 1/3} \)
4. \(\sum_{n=5}^{\infty} \frac{1}{\sqrt{n - 4}} \)
5. \(\sum_{n=25}^{\infty} \frac{n^2}{(n^3 + 9)^{5/2}} \)
6. \(\sum_{n=1}^{\infty} \frac{n}{(n^2 + 1)^{3/5}} \)
7. \(\sum_{n=1}^{\infty} \frac{1}{n^2 + 1} \)
8. \(\sum_{n=1}^{\infty} \frac{1}{n^2 - 1} \)
9. \(\sum_{n=1}^{\infty} \frac{1}{n(n + 1)} \)
10. \(\sum_{n=1}^{\infty} n e^{-n^2} \)
11. \(\sum_{n=1}^{\infty} \frac{1}{n(\ln n)^2} \)
12. \(\sum_{n=1}^{\infty} \frac{\ln n}{n^2} \)
13. \(\sum_{n=1}^{\infty} \frac{1}{2\ln n} \)
14. \(\sum_{n=1}^{\infty} \frac{1}{3\ln n} \)

15. Show that \(\sum_{n=1}^{\infty} \frac{1}{n^3 + 8n} \) converges by using the Direct Comparison Test with \(\sum_{n=1}^{\infty} n^{-3} \).

16. Show that \(\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2 - 3}} \) diverges by comparing with \(\sum_{n=2}^{\infty} n^{-1} \).

17. Let \(S = \sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}} \). Verify that for \(n \geq 1 \),

\[
\frac{1}{n + \sqrt{n}} \leq \frac{1}{n}, \quad \frac{1}{n + \sqrt{n}} \leq \frac{1}{\sqrt{n}}
\]

Can either inequality be used to show that \(S \) diverges? Show that \(\frac{1}{n + \sqrt{n}} \geq \frac{1}{2n} \) for \(n \geq 1 \) and conclude that \(S \) diverges.

18. Which of the following inequalities can be used to study the convergence of \(\sum_{n=2}^{\infty} \frac{1}{n^2 + \sqrt{n}} \)? Explain.

\[
\frac{1}{n^2 + \sqrt{n}} \leq \frac{1}{\sqrt{n}}, \quad \frac{1}{n^2 + \sqrt{n}} \leq \frac{1}{n^2}
\]

In Exercises 19–30, use the Direct Comparison Test to determine whether the infinite series is convergent.

19. \(\sum_{n=1}^{\infty} \frac{1}{n^{2n}} \)
20. \(\sum_{n=1}^{\infty} \frac{n^3}{n^8 + 4n + 1} \)
21. \(\sum_{n=1}^{\infty} \frac{1}{n^{1/3} + 2n} \)
22. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + 2n - 1}} \)
23. \(\sum_{m=1}^{\infty} \frac{4}{m! + 4^m} \)
24. \(\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n - 3} \)
25. \(\sum_{k=1}^{\infty} \frac{\sin^2 k}{k^2} \)
26. \(\sum_{k=1}^{\infty} \frac{k^{1/3}}{k^{5/4} - k} \)
27. \(\sum_{n=1}^{\infty} \frac{2}{3^n + 3^{-n}} \)
28. \(\sum_{k=1}^{\infty} 2^{-k^2} \)
29. \(\sum_{n=1}^{\infty} \frac{1}{(n + 1)!} \)
30. \(\sum_{n=1}^{\infty} \frac{n!}{n^3} \)

Exercise 31–36: For all \(a > 0 \) and \(b > 1 \), the inequalities

\[
\ln n \leq n^a, \quad n^a < b^n
\]

are true for \(n \) sufficiently large (this can be proved using L'Hôpital's Rule). Use this, together with the Direct Comparison Test, to determine whether the series converges or diverges.

31. \(\sum_{n=1}^{\infty} \frac{\ln n}{n^5} \)
32. \(\sum_{n=2}^{\infty} \frac{1}{\ln n} \)
33. \(\sum_{n=1}^{\infty} \frac{(\ln n)^{100}}{n^{1.1}} \)
34. \(\sum_{n=1}^{\infty} \frac{1}{(\ln n)^{10}} \)
35. \(\sum_{n=1}^{\infty} \frac{n}{3^n} \)
36. \(\sum_{n=1}^{\infty} \frac{n^5}{2^n} \)

37. Show that \(\sum_{n=1}^{\infty} \frac{\sin \frac{1}{n^2}}{n^2} \) converges. Hint: Use \(\sin x \leq x \) for \(x \geq 0 \).

38. Does \(\sum_{n=2}^{\infty} \frac{\sin(1/n)}{\ln n} \) converge? Hint: By Theorem 3 in Section 2.6, \(\sin(1/n) > (\cos(1/n))/n \). Thus, \(\sin(1/n) > 1/(2n) \) for \(n > 2 \) [because \(\cos(1/n) > 1/2 \)].

In Exercises 39–48, use the Limit Comparison Test to prove convergence or divergence of the infinite series.

39. \(\sum_{n=2}^{\infty} \frac{n^2}{n^3 - 1} \)
40. \(\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}} \)
41. \(\sum_{n=2}^{\infty} \frac{n}{\sqrt{n^3 + 1}} \)
42. \(\sum_{n=2}^{\infty} \frac{n^3}{\sqrt{n^3 + 2n^2 + 1}} \)
43. \(\sum_{n=3}^{\infty} \frac{3n + 5}{n(n - 1)(n - 2)} \)
44. \(\sum_{n=1}^{\infty} \frac{e^n + n}{e^{2n} - n^2} \)
For which a does \(\sum_{n=2}^{\infty} \frac{1}{n(n+1)^a} \) converge?

For which a does \(\sum_{n=2}^{\infty} \frac{1}{n^a} \) converge?

For which values of p does \(\sum_{n=1}^{\infty} \frac{n^p}{(n+1)^p} \) converge?

For which values of p does \(\sum_{n=1}^{\infty} \frac{e^{n^p}}{(1+e^{n^p})^p} \) converge?

Approximating Infinite Sums

In Exercises 83–85, let $a_n = f(n)$, where f is a continuous, decreasing function such that $f(x) \geq 0$ and \(\int_1^{\infty} f(x) \, dx \) converges.

Show that
\[
\int_1^{\infty} f(x) \, dx \leq \sum_{n=1}^{\infty} a_n \leq a_1 + \int_1^{\infty} f(x) \, dx
\]

Using Eq. (3), show that
\[
5 \leq \sum_{n=1}^{\infty} \frac{1}{n^{1/2}} \leq 6
\]

This series converges slowly. Use a computer algebra system to verify that $S_M < 5$ for $N \leq 43,128$ and $S_{43,129} \approx 5.00000021$.

Let $S = \sum_{n=1}^{\infty} a_n$. Arguing as in Exercise 83, show that
\[
\sum_{n=1}^{M} a_n + \int_{M+1}^{\infty} f(x) \, dx \leq S \leq \sum_{n=1}^{\infty} a_n + \int_{M+1}^{\infty} f(x) \, dx
\]

Conclude that
\[
0 \leq S - \left(\sum_{n=1}^{M} a_n + \int_{M+1}^{\infty} f(x) \, dx \right) \leq a_{M+1}
\]

This provides a method for approximating S with an error of at most a_{M+1}.

Use Eq. (4) from Exercise 85 with $M = 43,129$ to prove that
\[
5.5915810 \leq \sum_{n=1}^{\infty} \frac{1}{n^{1/2}} \leq 5.5915839
\]

Apply Eq. (4) from Exercise 85 with $M = 40,000$ to show that
\[
1.644934066 \leq \sum_{n=1}^{\infty} \frac{1}{n^{1/2}} \leq 1.644934068
\]

Is this consistent with Euler’s result, according to which this infinite series has sum $\pi^2/6$?

Using a CAS and Eq. (5) from Exercise 85, determine the value of $\sum_{n=1}^{\infty} n^{-6}$ to within an error less than 10^{-4}. Check that your result is consistent with that of Euler, who proved that the sum is equal to $\pi^6/945$.

Using a CAS and Eq. (5) from Exercise 85, determine the value of $\sum_{n=1}^{\infty} n^{-5}$ to within an error less than 10^{-4}.
90. How far can a stack of identical books (of mass \(m \) and unit length) extend without tipping over? The stack will not tip over if the \((n + 1)\)st book is placed at the bottom of the stack with its right edge located at \(x \) or before the center of mass of the first \(n \) books (Figure 6). Let \(c_n \) be the center of mass of the first \(n \) books, measured along the \(x \)-axis, where we take the positive \(x \)-axis to the left of the origin as in Figure 7. Recall that if an object of mass \(m_1 \) has center of mass at \(x_1 \) and a second object of mass \(m_2 \) has center of mass \(x_2 \), then the center of mass of the system has \(x \)-coordinate

\[
\frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}
\]

(a) Show that if the \((n + 1)\)st book is placed with its right edge at \(c_n \), then its center of mass is located at \(c_n + 1 \).

(b) Consider the first \(n \) books as a single object of mass \(nm \) with center of mass at \(c_n \) and the \((n + 1)\)st book as a second object of mass \(m \). Show that if the \((n + 1)\)st book is placed with its right edge at \(c_n \), then

\[c_{n+1} = c_n + \frac{1}{2(n + 1)} \]

(c) Prove that \(\lim_{n \to \infty} c_n = \infty \). Thus, by using enough books, the stack can be extended as far as desired without tipping over.

91. The following argument proves the divergence of the harmonic series \(S = \sum_{n=1}^{\infty} \frac{1}{n} \) without using the Integral Test. Let

\[
S_1 = 1 + \frac{1}{3} + \frac{1}{5} + \cdots, \quad S_2 = \frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \cdots
\]

Show that if \(S \) converges, then

(a) \(S_1 \) and \(S_2 \) also converge and \(S = S_1 + S_2 \).

(b) \(S_1 > S_2 \) and \(S_2 = \frac{1}{2}S \).

Observe that (b) contradicts (a), and conclude that \(S \) diverges.

Further Insights and Challenges

92. Let \(S = \sum_{n=2}^{\infty} a_n \), where \(a_n = (\ln(n))^{1/n} \).

(a) Show, by taking logarithms, that \(a_n = \frac{1}{n} \ln(\ln(n)) \).

(b) Show that \(\ln(\ln(n)) \geq 2 \) if \(n \geq e^2 \), where \(C = e^{e^2} \).

(c) Show that \(S \) converges.

93. Kummer’s Acceleration Method Suppose we wish to approximate \(S = \sum_{n=1}^{\infty} \frac{1}{n^2} \). There is a similar telescoping series whose value can be computed exactly (Example 2 in Section 11.2):

\[
\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1
\]

(a) Verify that

\[
S = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n^2} - \frac{1}{n(n+1)}
\]

Thus for \(M \) large,

\[
S \approx 1 + \frac{M}{\sum_{n=1}^{M} \frac{1}{n^2}}
\]

(b) Explain what has been gained. Why is Eq. (6) a better approximation to \(S \) than \(\sum_{n=1}^{M} \frac{1}{n^2} ? \)

(c) CAS Compute

\[
\sum_{n=1}^{1000} \frac{1}{n^2} = 1 + \sum_{n=1}^{100} \frac{1}{n^2(n+1)}
\]

Which is a better approximation to \(S \), whose exact value is \(\pi^2/6 \)?

94. CAS The series \(S = \sum_{k=1}^{\infty} k^{-3} \) has been computed to more than 100 million digits. The first 30 digits are

\[
S = 1.20205690315954285399738161511
\]

Approximate \(S \) using Kummer’s Acceleration Method of Exercise 93 with \(M = 100 \) and auxiliary series \(R = \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} \). According to Exercise 54 in Section 11.2, \(R \) is a telescoping series with the sum \(R = \frac{1}{4} \).
11.4 Absolute and Conditional Convergence

In the previous section, we studied positive series, but we still lack the tools to analyze series with both positive and negative terms. One of the keys to understanding such series is the concept of absolute convergence.

DEFINITION Absolute Convergence The series \(\sum a_n \) converges absolutely if \(\sum |a_n| \) converges.

EXAMPLE 1 Verify that the series
\[
\sum_{n=1}^{\infty} \left(\frac{(-1)^{n-1}}{n^2}\right) = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots
\]
converges absolutely.

Solution This series converges absolutely because the positive series (with absolute values) is a \(p \)-series with \(p = 2 > 1 \):
\[
\sum_{n=1}^{\infty} \left|\frac{(-1)^{n-1}}{n^2}\right| = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots \quad \text{(convergent} p\text{-series)}
\]

The next theorem tells us that if the series of absolute values converges, then the original series also converges.

THEOREM 1 Absolute Convergence Implies Convergence If \(\sum |a_n| \) converges, then \(\sum a_n \) also converges.

Proof We have \(-|a_n| \leq a_n \leq |a_n|\). By adding \(|a_n|\) to all parts of the inequality, we get \(0 \leq |a_n| + a_n \leq 2|a_n|\). If \(\sum |a_n| \) converges, then \(\sum 2|a_n| \) also converges, and therefore, \(\sum (a_n + |a_n|) \) converges by the Comparison Test. Our original series converges because it is the difference of two convergent series:
\[
\sum a_n = \sum (a_n + |a_n|) - \sum |a_n|
\]

EXAMPLE 2 Verify that \(S = \sum_{n=1}^{\infty} \left(\frac{(-1)^{n-1}}{n^2}\right) \) converges.

Solution We showed that \(S \) converges absolutely in Example 1. By Theorem 1, \(S \) itself converges.

EXAMPLE 3 Does \(S = \sum_{n=1}^{\infty} \left(\frac{(-1)^{n-1}}{\sqrt{n}}\right) = \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \cdots \) converge absolutely?

Solution The positive series \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \) is a \(p \)-series with \(p = \frac{1}{2} \). It diverges because \(p < 1 \). Therefore, \(S \) does not converge absolutely.

The series in the previous example does not converge absolutely, but we still do not know whether or not it converges. A series \(\sum a_n \) may converge without converging absolutely. In this case, we say that \(\sum a_n \) is conditionally convergent.
DEFINITION Conditional Convergence
An infinite series \(\sum a_n \) converges conditionally if \(\sum a_n \) converges but \(\sum |a_n| \) diverges.

If a series is not absolutely convergent, how can we determine whether it is conditionally convergent? This is often a more difficult question, because we cannot use the Integral Test or the Comparison Test (they apply only to positive series). However, convergence is guaranteed in the particular case of an alternating series

\[
S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots
\]

where the terms \(b_n \) are positive and decrease to zero (Figure 1).

THEOREM 2 Alternating Series Test
Assume that \(\{b_n\} \) is a positive sequence that is decreasing and converges to 0:

\[
b_1 > b_2 > b_3 > b_4 > \cdots > 0, \quad \lim_{n \to \infty} b_n = 0
\]

Then the following alternating series converges:

\[
S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots
\]

Furthermore,

\[
0 < S < b_1 \quad \text{and} \quad S_{2N} < S < S_{2N+1}, \quad N \geq 1
\]

As we will see, this last fact allows the estimation of such a series to any level of accuracy needed.

Notice that under the same conditions, the series

\[
\sum_{n=1}^{\infty} (-1)^{n} b_n = -b_1 + b_2 - b_3 + b_4 - \cdots
\]

also converges since it is just \(-1\) times the series appearing in the theorem.

Proof We will prove that the partial sums zigzag above and below the sum \(S \) as in Figure 2. Note first that the even partial sums are increasing. Indeed, the odd-numbered terms occur with a plus sign and thus, for example,

\[
S_4 + b_5 - b_6 = S_6
\]

But \(b_5 - b_6 > 0 \) because \(b_n \) is decreasing, and therefore \(S_4 < S_6 \). In general,

\[
S_{2N} + (b_{2N+1} - b_{2N+2}) = S_{2N+2}
\]

where \(b_{2n+1} - b_{2n+2} > 0 \). Thus, \(S_{2N} < S_{2N+2} \) and

\[
0 < S_2 < S_4 < S_6 < \cdots
\]

Similarly,

\[
S_{2N-1} - (b_{2N} - b_{2N+1}) = S_{2N+1}
\]

Therefore, \(S_{2N+1} < S_{2N-1} \), and the sequence of odd partial sums is decreasing:

\[
\cdots < S_7 < S_5 < S_3 < S_1
\]

Finally, \(S_{2N} < S_{2N} + b_{2N+1} = S_{2N+1} \). The picture is as follows:

\[
0 < S_2 < S_4 < S_6 < \cdots < S_7 < S_5 < S_3 < S_1
\]
Now, because bounded monotonic sequences converge (Theorem 6 of Section 11.1), the even and odd partial sums approach limits that are sandwiched in the middle:

\[0 < S_2 < S_4 < \cdots < \lim_{N \to \infty} S_{2N} \leq \lim_{N \to \infty} S_{2N+1} < \cdots < S_5 < S_3 < S_1 \quad \tag{1} \]

These two limits must have a common value \(L \) because

\[\lim_{N \to \infty} S_{2N+1} - \lim_{N \to \infty} S_{2N} = \lim_{N \to \infty} (S_{2N+1} - S_{2N}) = \lim_{N \to \infty} b_{2N+1} = 0 \]

Therefore, \(S_N = L \) and the infinite series converges to \(S = L \). From Eq. (1) we also see that \(0 < S < S_1 = b_1 \) and \(S_{2N} < S < S_{2N+1} \) for all \(N \) as claimed. \(\blacksquare \)

Example 4 Show that \(S = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n}} \) converges conditionally and that \(0 \leq S \leq 1 \).

Solution The terms \(b_n = 1/\sqrt{n} \) are positive and decreasing, and \(\lim_{n \to \infty} b_n = 0 \). Therefore, \(S \) converges by the Alternating Series Test. Furthermore, \(0 \leq S \leq 1 \) because \(b_1 = 1 \).

However, the positive series \(\sum_{n=1}^{\infty} 1/\sqrt{n} \) diverges because it is a \(p \)-series with \(p = \frac{1}{2} < 1 \).

Thus, \(S \) is conditionally convergent but not absolutely convergent (Figure 3). \(\blacksquare \)

The inequality \(S_{2N} < S < S_{2N+1} \) in Theorem 2 gives us important information about the error; it tells us that \(|S_N - S| \) is less than \(|S_N - S_{N+1}| = b_{N+1} \) for all \(N \).

Theorem 3 Let \(S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n \), where \(\{b_n\} \) is a positive decreasing sequence that converges to 0. Then

\[|S - S_N| < b_{N+1} \quad \tag{2} \]

In other words, when we approximate \(S \) by \(S_N \), the error is less than the size of the first omitted term \(b_{N+1} \).

Example 5 Alternating Harmonic Series Show that \(S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \) converges conditionally. Then:

(a) Show that \(|S - S_0| < \frac{1}{4} \).

(b) Find an \(N \) such that \(S_N \) approximates \(S \) with an error less than \(10^{-3} \).

Solution The terms \(b_n = 1/n \) are positive and decreasing, and \(\lim_{n \to \infty} b_n = 0 \). Therefore, \(S \) converges by the Alternating Series Test. The harmonic series \(\sum_{n=1}^{\infty} 1/n \) diverges, so \(S \) converges conditionally but not absolutely. Now, applying Eq. (2), we have

\[|S - S_N| < b_{N+1} = \frac{1}{N+1} \]

For \(N = 6 \), we obtain \(|S - S_6| < b_7 = \frac{1}{7} \). We can make the error less than \(10^{-3} \) by choosing \(N \) so that

\[\frac{1}{N+1} \leq 10^{-3} \implies N + 1 \geq 10^3 \implies N \geq 999 \]

Using a computer algebra system, we find that \(S_{999} \approx 0.69365 \). In Exercise 86 of Section 11.7, we will prove that \(S = \ln 2 \approx 0.69314 \), and thus we can verify that

\[|S - S_{990}| \approx |\ln 2 - 0.69365| \approx 0.0005 < 10^{-3} \]

\(\blacksquare \)
CONCEPTUAL INSIGHT The convergence of an infinite series \(\sum a_n \) depends on two factors: (1) how quickly \(a_n \) tends to zero, and (2) how much cancellation takes place among the terms. Consider

Harmonic series (diverges): \(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots \)

\(p \)-Series with \(p = 2 \) (converges): \(1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots \)

Alternating harmonic series (converges): \(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots \)

The harmonic series diverges because reciprocals \(\frac{1}{n} \) do not tend to zero quickly enough. By contrast, the reciprocal squares \(\frac{1}{n^2} \) tend to zero quickly enough for the \(p \)-series with \(p = 2 \) to converge. The alternating harmonic series converges, but only due to the cancelation among the terms.

11.4 SUMMARY

- \(\sum a_n \) converges absolutely if the positive series \(\sum |a_n| \) converges.
- Absolute convergence implies convergence: If \(\sum |a_n| \) converges, then \(\sum a_n \) also converges.
- \(\sum a_n \) converges conditionally if \(\sum a_n \) converges but \(\sum |a_n| \) diverges.
- Alternating Series Test: If \(\{b_n\} \) is positive and decreasing and \(\lim_{n \to \infty} b_n = 0 \), then the alternating series

\[
S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - \cdots
\]

converges. Furthermore, \(|S - S_N| < b_{N+1} \).
- We have developed two ways to handle nonpositive series: Show absolute convergence if possible, or use the Alternating Series Test if applicable.

11.4 EXERCISES

Preliminary Questions

1. Give an example of a series such that \(\sum a_n \) converges but \(\sum |a_n| \) diverges.
2. Which of the following statements is equivalent to Theorem 1?
 (a) If \(\sum_{n=0}^{\infty} |a_n| \) diverges, then \(\sum_{n=0}^{\infty} a_n \) also diverges.
 (b) If \(\sum_{n=0}^{\infty} a_n \) diverges, then \(\sum_{n=0}^{\infty} |a_n| \) also diverges.
 (c) If \(\sum_{n=0}^{\infty} a_n \) converges, then \(\sum_{n=0}^{\infty} |a_n| \) also converges.
3. A student argues that \(\sum_{n=1}^{\infty} (-1)^n \sqrt{n} \) is an alternating series and therefore converges. Is the student right?
4. Suppose that \(b_n \) is positive, decreasing, and tends to 0, and let

\[
S = \sum_{n=1}^{\infty} (-1)^{n-1} b_n .
\]

What can we say about \(|S - S_{100}| \) if \(a_{101} = 10^{-3} \)? Is \(S \) larger or smaller than \(S_{100} \)?

Exercises

1. Show that

\[
\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}
\]

converges absolutely.

2. Show that the following series converges conditionally:

\[
\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^{2/3}} = \frac{1}{1^{2/3}} - \frac{1}{2^{2/3}} + \frac{1}{3^{2/3}} - \frac{1}{4^{2/3}} + \cdots
\]
In Exercises 3–10, determine whether the series converges absolutely, conditionally, or not at all.

3. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{1/3}} \)

4. \(\sum_{n=1}^{\infty} \frac{(-1)^n n^4}{n^3 + 1} \)

5. \(\sum_{n=0}^{\infty} \frac{(-1)^n}{(1.1)^n} \)

6. \(\sum_{n=1}^{\infty} \frac{\sin(\frac{n\pi}{2})}{n^3} \)

7. \(\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n} \)

8. \(\sum_{n=1}^{\infty} \frac{(-1)^n}{1 + \frac{1}{n}} \)

9. \(\sum_{n=2}^{\infty} \frac{\cos n\pi}{(n \ln n)^2} \)

10. \(\sum_{n=1}^{\infty} \frac{\cos n\pi}{2n} \)

11. Let \(S = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3} \)

(a) Calculate \(S_n \) for \(1 \leq n \leq 10 \).

(b) Use Eq. (2) to show that \(0.9 \leq S \leq 0.902 \).

12. Use Eq. (2) to approximate

\[\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n!} \]

to four decimal places.

13. Approximate \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3} \) to three decimal places.

14. **CAS**

Let

\[S = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \ln n}{n^2 + 1} \]

Use a computer algebra system to calculate and plot the partial sums \(S_n \) for \(1 \leq n \leq 100 \). Observe that the partial sums zigzag above and below the limit.

In Exercises 15–16, find a value of \(N \) such that \(S_N \) approximates the series with an error of at most \(10^{-5} \). If you have a CAS, compute this value of \(S_N \).

15. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n(n+2)(n+3)} \)

16. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \ln n}{n!} \)

In Exercises 17–32, determine convergence or divergence by any method.

17. \(\sum_{n=0}^{\infty} 7^{-n} \)

18. \(\sum_{n=1}^{\infty} \frac{1}{n^{1.5}} \)

19. \(\sum_{n=1}^{\infty} \frac{1}{5^n - 3^n} \)

20. \(\sum_{n=2}^{\infty} \frac{n}{n^2 - n} \)

21. \(\sum_{n=1}^{\infty} \frac{1}{5n^3 + 12n} \)

22. \(\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2 + 1}} \)

23. \(\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n^2 + 1}} \)

24. \(\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{5^n} \)

25. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n + 1} \)

26. \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^3} \)

27. \(\sum_{n=1}^{\infty} \frac{(-1)^n n^2 e^{-n/3}}{3} \)

28. \(\sum_{n=1}^{\infty} ne^{-n^3/3} \)

29. \(\sum_{n=2}^{\infty} \frac{(-1)^n}{n^{1/2} (\ln n)^2} \)

30. \(\sum_{n=1}^{\infty} \frac{1}{n(n \ln n)^{1/4}} \)

31. \(\sum_{n=1}^{\infty} \frac{\ln n}{n^{105}} \)

32. \(\sum_{n=2}^{\infty} \frac{1}{(\ln n)^2} \)

33. Show that

\[S = \frac{1}{2} - \frac{1}{2} + \frac{3}{4} - \frac{1}{3} + \frac{1}{4} - \frac{1}{4} + \cdots \]

converges by computing the partial sums. Does it converge absolutely?

34. The Alternating Series Test cannot be applied to

\[\frac{1}{2} - \frac{1}{5} + \frac{1}{3} - \frac{1}{8} + \frac{1}{4} - \frac{1}{16} + \cdots + \left(\frac{1}{n} - \frac{1}{2^n} \right) + \cdots \]

Why not? Show that it converges by another method.

35. **Assumptions Matter**

Show by counterexample that the Alternating Series Test does not remain true if the sequence \(a_n \) tends to zero but is not assumed to be decreasing. **Hint:** Consider

\[R = \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{8} + \frac{1}{4} - \frac{1}{16} + \cdots \]

36. Determine whether the following series converges conditionally:

\[1 - \frac{1}{3} + \frac{1}{2} - \frac{1}{5} + \frac{1}{3} - \frac{1}{7} + \frac{1}{4} - \frac{1}{9} + \frac{1}{5} - \frac{1}{11} + \cdots \]

37. Prove that if \(\sum a_n \) converges absolutely, then \(\sum a_n^2 \) also converges. Give an example where \(\sum a_n \) is only conditionally convergent and \(\sum a_n^2 \) diverges.

38. Prove the following variant of the Alternating Series Test: If \(\{b_n\} \) is a positive, decreasing sequence with \(\lim_{n \to \infty} b_n = 0 \), then the series

\[b_1 + b_2 - 2b_3 + a_4 + b_5 - 2a_6 + \cdots \]

converges. **Hint:** Show that \(S_{3N} \) is increasing and bounded by \(a_1 + a_2 \), and continue as in the proof of the Alternating Series Test.

39. Use Exercise 38 to show that the following series converges:

\[S = \frac{1}{\ln 2} + \frac{1}{\ln 3} - \frac{2}{\ln 4} + \frac{1}{\ln 5} + \frac{1}{\ln 6} - \frac{2}{\ln 7} + \cdots \]

40. Prove the conditional convergence of

\[R = 1 + \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{3}{8} + \cdots \]

41. Show that the following series diverges:

\[S = 1 + \frac{1}{2} + \frac{1}{3} - \frac{2}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} - \frac{2}{8} + \cdots \]

Hint: Use the result of Exercise 40 to write \(S \) as the sum of a convergent series and a divergent series.
42. Prove that
\[\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(\ln n)^a}{n} \]
converges for all exponents \(a \). \textit{Hint}: Show that \(f(x) = (\ln x)^a/x \) is decreasing for \(x \) sufficiently large.

43. We say that \(\{b_n\} \) is a rearrangement of \(\{a_n\} \) if \(\{b_n\} \) has the same terms as \(\{a_n\} \) but occurring in a different order. Show that if \(\{b_n\} \) is a rearrangement of \(\{a_n\} \) and \(S = \sum_{n=1}^{\infty} a_n \) converges absolutely, then \(T = \sum_{n=1}^{\infty} b_n \) also converges absolutely. (This result does not hold if \(S \) is only conditionally convergent.) \textit{Hint}: Prove that the partial sums \(\sum_{n=1}^{\infty} |b_n| \) are bounded. It can be shown further that \(S = T \).

44. Assumptions Matter In 1829 Lejeune Dirichlet pointed out that the great French mathematician Augustin Louis Cauchy made a mistake in a published paper by improperly assuming the Limit Comparison Test to be valid for nonpositive series. Here are Dirichlet’s two series:
\[\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}, \quad \sum_{n=1}^{\infty} \frac{(-1)^n}{(1 + \frac{(-1)^n}{\sqrt{n}})} \]
Explain how they provide a counterexample to the Limit Comparison Test when the series are not assumed to be positive.

11.5 The Ratio and Root Tests and Strategies for Choosing Tests

Series such as
\[S = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \frac{2^3}{3!} + \frac{2^4}{4!} + \cdots \]
arise in applications, but the convergence tests developed so far cannot be applied easily. Fortunately, the Ratio Test can be used for this and many other series.

\textbf{THEOREM 1 Ratio Test} Assume that the following limit exists:
\[\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \]
(i) If \(\rho < 1 \), then \(\sum_{n=1}^{\infty} a_n \) converges absolutely.
(ii) If \(\rho > 1 \), then \(\sum_{n=1}^{\infty} a_n \) diverges.
(iii) If \(\rho = 1 \), the test is inconclusive (the series may converge or diverge).

\textbf{Proof} The idea is to compare with a geometric series. If \(\rho < 1 \), we may choose a number \(r \) such that \(\rho < r < 1 \). Since \(\left| \frac{a_{n+1}}{a_n} \right| \) converges to \(\rho \), there exists a number \(M \) such that \(\left| \frac{a_{n+1}}{a_n} \right| < r \) for all \(n \geq M \). Therefore,
\[|a_{M+1}| < r |a_M| \]
\[|a_{M+2}| < r |a_{M+1}| < r \left(r |a_M| \right) = r^2 |a_M| \]
\[|a_{M+3}| < r |a_{M+2}| < r^3 |a_M| \]
In general, \(|a_{M+n}| < r^n |a_M| \), and thus,
\[\sum_{n=M}^{\infty} |a_n| = \sum_{n=0}^{\infty} |a_{M+n}| \leq \sum_{n=0}^{\infty} |a_M| r^n = |a_M| \sum_{n=0}^{\infty} r^n \]
The geometric series on the right converges because \(0 < r < 1 \), so \(\sum_{n=M}^{\infty} |a_n| \) converges by the Direct Comparison Test and thus \(\sum_{n=1}^{\infty} a_n \) converges absolutely.

If \(\rho > 1 \), choose \(r \) such that \(1 < r < \rho \). Then there exists a number \(M \) such that \(\left| \frac{a_{n+1}}{a_n} \right| > r \) for all \(n \geq M \). Arguing as before with the inequalities reversed, we find that \(\left| a_{M+n} \right| \geq r^n |a_M| \). Since \(r^n \) tends to \(\infty \), the terms \(a_{M+n} \) do not tend to zero, and consequently, \(\sum_{n=1}^{\infty} a_n \) diverges. Finally, Example 4 below shows that both convergence and divergence are possible when \(\rho = 1 \), so the test is inconclusive in this case. \(\blacksquare \)
 EXAMPLE 1 Prove that $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ converges.

Solution Compute the ratio and its limit with $a_n = \frac{n^n}{n!}$. Note that $(n + 1)! = (n + 1)n!$. Thus,

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n + 1)^{n+1}}{(n + 1)!} \cdot \frac{n^n}{n!} = \frac{(n + 1)^n + n + 1}{2^n} \cdot \frac{1}{(n + 1)!} = \frac{2}{n + 1}$$

We obtain

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2}{n + 1} = 0$$

Since $\rho < 1$, the series $\sum_{n=1}^{\infty} \frac{n^n}{n!}$ converges by the Ratio Test.

 EXAMPLE 2 Does $\sum_{n=1}^{\infty} \frac{n}{2^n}$ converge?

Solution Apply the Ratio Test with $a_n = \frac{n}{2^n}$:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{(n + 1)}{2^{n+1}} \cdot \frac{2^n}{n} = \frac{1}{2} \left(\frac{n + 1}{n} \right) = \frac{1}{2} \left(1 + \frac{1}{n} \right)$$

We obtain

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = \frac{1}{2}$$

Since $\rho < 1$, the series converges by the Ratio Test.

 EXAMPLE 3 Does $\sum_{n=0}^{\infty} (-1)^n \frac{n!}{1000^n}$ converge?

Solution This series diverges by the Ratio Test because $\rho > 1$:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n + 1)!}{1000^{n+1}} \cdot \frac{1000^n}{n!} = \lim_{n \to \infty} \frac{n!}{1000^n} = \frac{n + 1}{1000} = \infty$$

 EXAMPLE 4 Ratio Test Inconclusive Show that both convergence and divergence are possible when $\rho = 1$ by considering $\sum_{n=1}^{\infty} n^2$ and $\sum_{n=1}^{\infty} n^{-2}$.

Solution For $a_n = n^2$, we have

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n + 1)^2}{n^2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2} = \lim_{n \to \infty} \left(1 + \frac{2}{n} + \frac{1}{n^2} \right) = 1$$

On the other hand, for $b_n = n^{-2}$,

$$\rho = \lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{1}{\left| \frac{a_{n+1}}{a_n} \right|} = 1$$

Thus, $\rho = 1$ in both cases, but, in fact, $\sum_{n=1}^{\infty} n^2$ diverges by the nth Term Divergence Test since $\lim_{n \to \infty} n^2 = \infty$, and $\sum_{n=1}^{\infty} n^{-2}$ converges since it is a p-series with $p = 2 > 1$. This shows that both convergence and divergence are possible when $\rho = 1$.

Our next test is based on the limit of the nth roots $\sqrt[n]{|a_n|}$ rather than the ratios a_{n+1}/a_n. Its proof, like that of the Ratio Test, is based on a comparison with a geometric series (see Exercise 63).

THEOREM 2 Root Test Assume that the following limit exists:

$$L = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

(i) If $L < 1$, then $\sum a_n$ converges absolutely.

(ii) If $L > 1$, then $\sum a_n$ diverges.

(iii) If $L = 1$, the test is inconclusive (the series may converge or diverge).

EXAMPLE 5 Does $\sum_{n=1}^{\infty} \left(\frac{n}{2n + 3} \right)^n$ converge?

Solution We have $L = \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \frac{n}{2n + 3} = \frac{1}{2}$. Since $L < 1$, the series converges by the Root Test.

Determining Which Test to Apply

We end this section with a brief review of all of the tests we have introduced for determining convergence so far and how one decides which test to apply.

Let $\sum_{n=1}^{\infty} a_n$ be given. Keep in mind that the series for which convergence or divergence is known include the geometric series $\sum_{n=0}^{\infty} ar^n$, which converge for $|r| < 1$, and the p-series $\sum_{n=0}^{\infty} \frac{1}{n^p}$, which converge for $p > 1$.

1. **The nth Term Divergence Test** Always check this test first. If $\lim_{n \to \infty} a_n \neq 0$, then the series diverges. But if $\lim_{n \to \infty} a_n = 0$, we do not know whether the series converges or diverges, and hence we move on to the next step.

2. **Positive Series** If all terms in the series are positive, try one of the following tests:
 (a) **The Direct Comparison Test** Consider whether dropping terms in the numerator or denominator gives a series that we know either converges or diverges. If a larger series converges or a smaller series diverges, then the original series does the same. For example, $\sum_{n=1}^{\infty} \frac{1}{n^2 + \sqrt{n}}$ converges because $\frac{1}{n^2 + \sqrt{n}} < \frac{1}{n^2}$, and $\sum_{n=1}^{\infty} \frac{1}{n^2}$ is a p-series with $p = 2 > 1$ so it converges. On the other hand, this does not work for $\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}}$ since then the comparison series $\sum_{n=1}^{\infty} \frac{1}{n^2}$, while still converging, is smaller than the original series, so the Direct Comparison Test does not apply. In this case, we can often apply the Limit Comparison Test as follows.

 (b) **The Limit Comparison Test** Consider the dominant term in the numerator and denominator, and compare the original series to the ratio of those terms. For example, for $\sum_{n=2}^{\infty} \frac{1}{n^2 - \sqrt{n}}$, n^2 is dominant over \sqrt{n} as it grows faster as n increases. So, we let $b_n = \frac{1}{n^2}$. Then

 $$\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n^2}{n^2 - \sqrt{n}} = \lim_{n \to \infty} \frac{n^2}{n^2 - \sqrt{n}} = 1$$
The limit is a positive number, so the Limit Comparison Test applies. Since \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges, so does the original series.

(c) **The Ratio Test** The Ratio Test is often effective in the presence of a factorial such as \(n! \) since in the ratio, the factorial disappears after cancellation. It is also effective when there are constants to the power \(n \), such as \(2^n \), since in the ratio, the power \(n \) disappears after cancelation. For example, if the series is \(\sum_{n=1}^{\infty} \frac{3^n}{n!} \), then applying the Ratio Test yields

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{2^{n+1}}{(n+1)!} = \lim_{n \to \infty} \frac{3}{n+1} = 0 < 1
\]

Therefore, the series converges.

(d) **The Root Test** The Root Test is often effective when there is a term of the form \(f(n)/g(n) \). For example, \(\sum_{n=1}^{\infty} \frac{2^n}{n^{2^n}} \) is a good example since applying the Root Test yields

\[
\lim_{n \to \infty} |a_n|^{1/n} = \lim_{n \to \infty} \left(\frac{2^n}{n^{2^n}} \right)^{1/n} = \lim_{n \to \infty} \frac{2}{n^2} = 0 < 1
\]

Thus, the series converges.

(e) **The Integral Test** When the other tests fail on a positive series, consider the Integral Test. If \(a_n = f(n) \) is a decreasing function, then the series converges if and only if the improper integral \(\int_1^{\infty} f(x) \, dx \) converges. For example, the other tests do not easily apply to \(\sum_{n=2}^{\infty} \frac{1}{n \ln n} \). However \(f(x) = \frac{1}{n \ln n} \) is a decreasing function and

\[
\int_2^{\infty} \frac{1}{x \ln x} \, dx = \ln(\ln x) \bigg|_2^{\infty} = \infty.
\]

Thus, the integral and, hence, the series diverges.

3. **Series That Are Not Positive Series**

(a) **Alternating Series Test** If the series is alternating of the form \(\sum_{n=1}^{\infty} (-1)^{n-1} b_n \), show that \(b_{n+1} < b_n \) and \(\lim_{n \to \infty} b_n = 0 \). Then the Alternating Series Test shows the series converges.

(b) **Absolute Convergence** If the series is not alternating, then see if its absolute value, which is a positive series, converges using the tests for positive series. If so, the original series converges as well.

11.5 **Summary**

- **Ratio Test**: Assume that \(\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \) exists. Then \(\sum a_n \)
 - Converges absolutely if \(\rho < 1 \).
 - Diverges if \(\rho > 1 \).
 - Inconclusive if \(\rho = 1 \).

- **Root Test**: Assume that \(L = \lim_{n \to \infty} \sqrt[n]{|a_n|} \) exists. Then \(\sum a_n \)
 - Converges absolutely if \(L < 1 \).
 - Diverges if \(L > 1 \).
 - Inconclusive if \(L = 1 \).
11.5 EXERCISES

Preliminary Questions

1. In the Ratio Test, is ρ equal to $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ or $\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|}$?

2. Is the Ratio Test conclusive for $\sum_{n=1}^{\infty} \frac{1}{2^n}$? Is it conclusive for $\sum_{n=1}^{\infty} \frac{1}{n^2}$?

3. Can the Ratio Test be used to show convergence if the series is only conditionally convergent?

Exercises

In Exercises 1–20, apply the Ratio Test to determine convergence or divergence, or state that the Ratio Test is inconclusive.

1. $\sum_{n=1}^{\infty} \frac{1}{5^n}$

2. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{5^n}$

3. $\sum_{n=1}^{\infty} \frac{1}{n^n}$

4. $\sum_{n=0}^{\infty} \frac{3n + 2}{5^{3n} + 1}$

5. $\sum_{n=1}^{\infty} \frac{n}{n^2 + 1}$

6. $\sum_{n=1}^{\infty} \frac{2^n}{n}$

7. $\sum_{n=1}^{\infty} \frac{2^n}{n!}$

8. $\sum_{n=1}^{\infty} \frac{n^3}{3n^2}$

9. $\sum_{n=1}^{\infty} \frac{10^n}{2^n}$

10. $\sum_{n=1}^{\infty} \frac{n^6}{n^3}$

11. $\sum_{n=1}^{\infty} \frac{e^n}{n^2}$

12. $\sum_{n=1}^{\infty} \frac{n^{10}}{n!}$

13. $\sum_{n=0}^{\infty} \frac{n!}{6^n}$

14. $\sum_{n=1}^{\infty} \frac{n!}{(2n)!}$

15. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

16. $\sum_{n=1}^{\infty} \frac{1}{(2n)!}$

17. $\sum_{n=1}^{\infty} \frac{n^2}{(2n + 1)!}$

18. $\sum_{n=1}^{\infty} \frac{(n)!}{(3n)!}$

19. $\sum_{n=2}^{\infty} \frac{2n + 1}{n^3}$

20. $\sum_{n=2}^{\infty} \frac{2^n}{n^2}$

21. Show that $\sum_{n=1}^{\infty} \frac{n^k}{3^n}$ converges for all exponents k.

22. Show that $\sum_{n=1}^{\infty} \frac{n^2x^n}{3^n}$ converges if $|x| < 1$.

23. Show that $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$ converges if $|x| < \frac{1}{2}$.

24. Show that $\sum_{n=1}^{\infty} \frac{r^n}{n^2}$ converges for all r.

25. Show that $\sum_{n=1}^{\infty} \frac{r^n}{n}$ converges if $|r| < 1$.

26. Is there any value of k such that $\sum_{n=1}^{\infty} \frac{n^k}{n^k}$ converges?

27. Show that $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ converges. Hint: Use $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$.

In Exercises 28–33, assume that $|a_{n+1}/a_n|$ converges to $\rho = \frac{1}{3}$. What can you say about the convergence of the given series?

28. $\sum_{n=1}^{\infty} na_n$

29. $\sum_{n=1}^{\infty} n^3a_n$

30. $\sum_{n=1}^{\infty} 2^n a_n$

31. $\sum_{n=1}^{\infty} 3^na_n$

32. $\sum_{n=1}^{\infty} 4^na_n$

33. $\sum_{n=1}^{\infty} a_n^2$

34. Assume that $|a_{n+1}/a_n|$ converges to $\rho = 4$. Does $\sum_{n=1}^{\infty} a_n^{-1}$ converge (assume that $a_n \neq 0$ for all n)?

35. Is the Ratio Test conclusive for the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$?

In Exercises 36–41, use the Root Test to determine convergence or divergence (or state that the test is inconclusive).

36. $\sum_{n=0}^{\infty} \frac{1}{10^n}$

37. $\sum_{n=0}^{\infty} \frac{1}{n^n}$

38. $\sum_{k=0}^{\infty} \left(\frac{k}{k + 10} \right)^k$

39. $\sum_{k=0}^{\infty} \left(\frac{k}{3k + 1} \right)^k$

40. $\sum_{n=1}^{\infty} \left(\frac{1 + \frac{1}{n}}{n} \right)^{-n^2}$

41. $\sum_{n=4}^{\infty} \left(\frac{1 + \frac{1}{n}}{n} \right)^{-n^2}$

42. Prove that $\sum_{n=1}^{\infty} \frac{2n^2}{n!}$ diverges. Hint: Use $2n^2 = (2n)^2$ and $n! \leq n^n$.

In Exercises 43–62, determine convergence or divergence using any method covered in the text so far.

43. $\sum_{n=1}^{\infty} \frac{2^n + 4^n}{7^n}$

44. $\sum_{n=1}^{\infty} \frac{n^3}{n!}$

45. $\sum_{n=1}^{\infty} \frac{n}{2n + 1}$

46. $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$

47. $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$

48. $\sum_{n=1}^{\infty} \frac{(n)!}{(2n)!}$

49. $\sum_{n=1}^{\infty} \frac{1}{n + \sqrt{n}}$

50. $\sum_{n=2}^{\infty} \frac{1}{n(n(n + 3))!}$

51. $\sum_{n=1}^{\infty} \frac{n^3}{5^n}$

52. $\sum_{n=2}^{\infty} \frac{1}{n(n(n + 3))!}$

53. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 - n^2}}$

54. $\sum_{n=1}^{\infty} \frac{n^2 + 4n}{3n^4 + 9}$

55. $\sum_{n=1}^{\infty} \cos \frac{1}{n}$

56. $\sum_{n=1}^{\infty} \cos \frac{1}{n}$

57. $\sum_{n=1}^{\infty} \frac{1}{n^{1/2}}$
Further Insights and Challenges

63. **Proof of the Root Test** Let \(S = \sum_{n=0}^{\infty} a_n \) be a positive series, and assume that \(L = \lim_{n \to \infty} \sqrt[n]{a_n} \) exists.

(a) Show that \(S \) converges if \(L < 1 \). **Hint:** Choose \(R \) with \(L < R < 1 \) and show that \(a_n \leq R^n \) for \(n \) sufficiently large. Then compare with the geometric series \(\sum R^n \).

(b) Show that \(S \) diverges if \(L > 1 \).

64. Show that the Ratio Test does not apply, but verify convergence using the Direct Comparison Test for the series

\[
\frac{1}{2} + \frac{1}{3^2} + \frac{1}{3^3} + \frac{1}{3^4} + \frac{1}{3^5} + \cdots
\]

65. Let \(S = \sum_{n=1}^{\infty} c^n n! \), where \(c \) is a constant.

(a) Prove that \(S \) converges absolutely if \(|c| < e \) and diverges if \(|c| > e \).

(b) It is known that \(\lim_{n \to \infty} \frac{e^n n!}{n^n} = \sqrt{2\pi} \). Verify this numerically.

(c) Use the Limit Comparison Test to prove that \(S \) diverges for \(c = \pm 1 \).

11.6 Power Series

A **power series** with center \(c \) is an infinite series

\[
F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n = a_0 + a_1(x - c) + a_2(x - c)^2 + a_3(x - c)^3 + \cdots
\]

where \(x \) is a variable. For example,

\[
F(x) = 1 + (x - 2) + 2(x - 2)^2 + 3(x - 2)^3 + \cdots
\]

is a power series with center \(c = 2 \).

A power series \(F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n \) converges for some values of \(x \) and may diverge for others. For example, if we set \(x = \frac{9}{4} \) in the power series of Eq. (1), we obtain the infinite series

\[
F\left(\frac{9}{4}\right) = 1 + \left(\frac{9}{4} - 2\right) + 2\left(\frac{9}{4} - 2\right)^2 + 3\left(\frac{9}{4} - 2\right)^3 + \cdots
\]

\[
= 1 + \left(\frac{1}{4}\right) + 2\left(\frac{1}{4}\right)^2 + 3\left(\frac{1}{4}\right)^3 + \cdots + n\left(\frac{1}{4}\right)^n + \cdots
\]

This converges by the Ratio Test:

\[
\lim_{n \to \infty} \left|\frac{a_{n+1}}{a_n}\right| = \lim_{n \to \infty} \frac{n+1}{n} \left|\frac{1/4}{1/4}\right| = \lim_{n \to \infty} \frac{n+1}{n} \times \frac{1/4}{1/4} = \lim_{n \to \infty} \frac{1}{4} = \frac{1}{4}
\]

On the other hand, the power series in Eq. (1) diverges for \(x = 3 \) by the \(n \)th Term Test:

\[
F(3) = 1 + (3 - 2) + 2(3 - 2)^2 + 3(3 - 2)^3 + \cdots
\]

\[
= 1 + 1 + 2 + 3 + \cdots
\]

There is a surprisingly simple way to describe the set of values \(x \) at which a power series \(F(x) \) converges. According to our next theorem, either \(F(x) \) converges absolutely for all values of \(x \) or there is a radius of convergence \(R \) such that

\[
F(x) \text{ converges absolutely when } |x - c| < R \text{ and diverges when } |x - c| > R.
\]
This means that \(F(x) \) converges for \(x \) in an **interval of convergence** consisting of the open interval \((c - R, c + R) \) and possibly one or both of the endpoints \(c - R \) and \(c + R \) (Figure 1). Note that \(F(x) \) automatically converges at \(x = c \) because

\[
F(c) = a_0 + a_1(c - c) + a_2(c - c)^2 + a_3(c - c)^3 + \cdots = a_0
\]

We set \(R = 0 \) if \(F(x) \) converges only for \(x = c \), and we set \(R = \infty \) if \(F(x) \) converges for all values of \(x \).

![Figure 1: Interval of convergence of a power series.](https://example.com/figure1)

Theorem 1: Radius of Convergence

Every power series

\[
F(x) = \sum_{n=0}^{\infty} a_n(x - c)^n
\]

has a radius of convergence \(R \), which is either a nonnegative number \((R \geq 0)\) or infinity \((R = \infty)\). If \(R \) is finite, \(F(x) \) converges absolutely when \(|x - c| < R\) and diverges when \(|x - c| > R\). If \(R = \infty \), then \(F(x) \) converges absolutely for all \(x \).

Proof. We assume that \(c = 0 \) to simplify the notation. If \(F(x) \) converges only at \(x = 0 \), then \(R = 0 \). Otherwise, \(F(x) \) converges for some nonzero value \(x = B \). We claim that \(F(x) \) must then converge absolutely for all \(|x| < |B|\). To prove this, note that because

\[
F(B) = \sum_{n=0}^{\infty} a_n B^n
\]

converges, the general term \(a_n B^n \) tends to zero. In particular, there exists \(M > 0 \) such that \(|a_n B^n| < M \) for all \(n \). Therefore,

\[
\sum_{n=0}^{\infty} |a_n x^n| = \sum_{n=0}^{\infty} |a_n B^n| \frac{|x|^n}{|B|^n} < M \sum_{n=0}^{\infty} \frac{|x|^n}{|B|^n}
\]

If \(|x| < |B|\), then \(|x|/|B| < 1\) and the series on the right is a convergent geometric series. By the Direct Comparison Test, the series on the left also converges. This proves that \(F(x) \) converges absolutely if \(|x| < |B|\).

Now let \(S \) be the set of numbers \(x \) such that \(F(x) \) converges. Then \(S \) contains 0, and we have shown that if \(S \) contains a number \(B \neq 0 \), then \(S \) contains the open interval \((-|B|, |B|)\). If \(S \) is bounded, then \(S \) has a least upper bound \(L > 0 \) (see marginal note). In this case, there exist numbers \(B \in S \) smaller than but arbitrarily close to \(L \), and thus, \(S \) contains \((-B, B)\) for all \(0 < B < L \). It follows that \(S \) contains the open interval \((-L, L)\). The set \(S \) cannot contain any number \(x \) with \(|x| > L \), but \(S \) may contain one or both of the endpoints \(x = \pm L \). So in this case, \(F \) has radius of convergence \(R = L \). If \(S \) is not bounded, then \(S \) contains intervals \((-B, B)\) for \(B \) arbitrarily large. In this case, \(S \) is the entire real line \(R \), and the radius of convergence is \(R = \infty \). □

From Theorem 1, we see that there are two steps in determining the interval of convergence of \(F \):

1. **Step 1.** Find the radius of convergence \(R \) (using the Ratio Test, in most cases).
2. **Step 2.** Check convergence at the endpoints (if \(R \neq 0 \) or \(\infty \)).
EXAMPLE 1 Using the Ratio Test

Where does $F(x) = \sum_{n=0}^{\infty} \frac{x^n}{2^n}$ converge?

Solution

Step 1. Find the radius of convergence.

Let $a_n = \frac{x^n}{2^n}$ and compute ρ from the Ratio Test:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{2^{n+1}} \cdot \frac{2^n}{x^n} \right| = \lim_{n \to \infty} \frac{1}{2} |x| = \frac{1}{2} |x|$$

We find that

$$\rho < 1 \quad \text{if} \quad \frac{1}{2} |x| < 1, \quad \text{that is, if} \quad |x| < 2$$

Thus, $F(x)$ converges if $|x| < 2$. Similarly, $\rho > 1$ if $\frac{1}{2} |x| > 1$, or $|x| > 2$. So, $F(x)$ diverges if $|x| > 2$. Therefore, the radius of convergence is $R = 2$.

Step 2. Check the endpoints.

The Ratio Test is inconclusive for $x = \pm 2$, so we must check these cases directly:

$$F(2) = \sum_{n=0}^{\infty} \frac{2^n}{2^n} = 1 + 1 + 1 + 1 + 1 \cdots$$

$$F(-2) = \sum_{n=0}^{\infty} \frac{(-2)^n}{2^n} = 1 - 1 + 1 - 1 + 1 - 1 \cdots$$

Both series diverge. We conclude that $F(x)$ converges only for $|x| < 2$ (Figure 2).

EXAMPLE 2 Where does $F(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{4^n} (x - 5)^n$ converge?

Solution

We compute ρ with $a_n = \frac{(-1)^n}{4^n} (x - 5)^n$:

$$\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(x - 5)^{n+1}}{4^{n+1}(n+1)} \cdot \frac{4^n}{(x - 5)^n} \right| = |x - 5| \lim_{n \to \infty} \frac{n}{4(n+1)} = \frac{1}{4}|x - 5|$$

We find that

$$\rho < 1 \quad \text{if} \quad \frac{1}{4}|x - 5| < 1, \quad \text{that is, if} \quad |x - 5| < 4$$

Thus, $F(x)$ converges absolutely on the open interval $(1, 9)$ of radius 4 with center $c = 5$. In other words, the radius of convergence is $R = 4$. Next, we check the endpoints:

$x = 9$: \[\sum_{n=1}^{\infty} \frac{(-1)^n}{4^n}(9 - 5)^n = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \] converges (Alternating Series Test)

$x = 1$: \[\sum_{n=1}^{\infty} \frac{(-1)^n}{4^n}(-4)^n = \sum_{n=1}^{\infty} \frac{1}{n} \] diverges (harmonic series)

We conclude that $F(x)$ converges for x in the half-open interval $(1, 9]$ shown in Figure 3.

Some power series contain only even powers or only odd powers of x. The Ratio Test can still be used to find the radius of convergence.
EXAMPLE 3 An Even Power Series Where does \(\sum_{n=0}^{\infty} x^{2n} (2n)! \) converge?

Solution Although this power series has only even powers of \(x \), we can still apply the Ratio Test with \(a_n = x^{2n} / (2n)! \). We have

\[
\frac{a_{n+1}}{a_n} = \frac{x^{2(n+1)}}{(2(n+1))!} \frac{(2n)!}{x^{2n}} \frac{1}{(2n+2)!} = \frac{x^2}{(2n+2)(2n+1)}
\]

Furthermore, \((2n+2)(2n+1) = (2n+2)(2n+1)(2n)! \), so

\[
\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{x^2}{(2n+2)(2n+1)} = |x|^2 \lim_{n \to \infty} \frac{1}{(2n+2)(2n+1)} = 0
\]

Thus, \(\rho = 0 \) for all \(x \), and \(F(x) \) converges for all \(x \). The radius of convergence is \(R = \infty \).

Geometric series are important examples of power series. Recall the formula

\[
\sum_{n=0}^{\infty} r^n = \frac{1}{1 - r}, \text{ valid for } |r| < 1.
\]

Writing \(x \) in place of \(r \), we obtain a power series expansion with radius of convergence \(R = 1 \):

\[
\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n \quad \text{for } |x| < 1
\]

The next two examples show that we can modify this formula to find the power series expansions of other functions.

EXAMPLE 4 Geometric Series Prove that

\[
\frac{1}{1 - 2x} = \sum_{n=0}^{\infty} 2^n x^n \quad \text{for } |x| < \frac{1}{2}
\]

Solution Substitute \(2x \) for \(x \) in Eq. (2):

\[
\frac{1}{1 - 2x} = \sum_{n=0}^{\infty} 2^n x^n = \sum_{n=0}^{\infty} 2^n x^n
\]

Expansion (2) is valid for \(|x| < 1 \), so Eq. (3) is valid for \(|2x| < 1 \), or \(|x| < \frac{1}{2} \).

EXAMPLE 5 Find a power series expansion with center \(c = 0 \) for

\[
f(x) = \frac{1}{2 + x^2}
\]

and find the interval of convergence.

Solution We need to rewrite \(f(x) \) so we can use Eq. (2). We have

\[
f(x) = \frac{1}{2 + x^2} = \frac{1}{2} \left(\frac{1}{1 + \frac{1}{2} x^2} \right) = \frac{1}{2} \left(\frac{1}{1 - \left(-\frac{1}{2} x^2 \right)} \right) = \frac{1}{2} \left(\frac{1}{1 - u} \right)
\]

where \(u = -\frac{1}{2} x^2 \). Now substitute \(u = -\frac{1}{2} x^2 \) for \(x \) in Eq. (2) to obtain

\[
f(x) = \frac{1}{2 + x^2} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x^2}{2} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{2^{n+1}}
\]

This expansion is valid if \(\left| -\frac{x^2}{2} \right| < 1 \), or \(|x| < \sqrt{2} \). The interval of convergence is \((-\sqrt{2}, \sqrt{2}) \).
Our next theorem tells us that within the interval of convergence, we can treat a power series as though it were a polynomial; that is, we can differentiate and integrate term by term.

THEOREM 2 Term-by-Term Differentiation and Integration Assume that

\[F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n \]

has radius of convergence \(R > 0 \). Then \(F \) is differentiable on \((c - R, c + R)\) (or for all \(x \) if \(R = \infty \)). Furthermore, we can integrate and differentiate term by term. For \(x \in (c - R, c + R) \),

\[F'(x) = \sum_{n=1}^{\infty} na_n (x - c)^{n-1} \]

\[\int F(x) \, dx = A + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - c)^{n+1} \quad (A \text{ any constant}) \]

These series have the same radius of convergence \(R \).

The proof of Theorem 2 is somewhat technical and is omitted. See Exercise 66 for a proof that \(F \) is continuous.

EXAMPLE 6 Differentiating a Power Series Prove that for \(-1 < x < 1)\,

\[\frac{1}{(1 - x)^2} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots \]

Solution The geometric series has radius of convergence \(R = 1 \):

\[\frac{1}{1 - x} = 1 + x + x^2 + x^3 + x^4 + \cdots \]

By Theorem 2, we can differentiate term by term for \(|x| < 1 \) to obtain

\[\frac{d}{dx} \left(\frac{1}{1 - x} \right) = \frac{d}{dx} (1 + x + x^2 + x^3 + x^4 + \cdots) \]

\[\frac{1}{(1 - x)^2} = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \cdots \]

Theorem 2 is a powerful tool in the study of power series.

EXAMPLE 7 Power Series for Arctangent Prove that for \(-1 < x < 1)\,

\[\tan^{-1} x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \]

Solution Recall that \(\tan^{-1} x \) is an antiderivative of \((1 + x^2)^{-1}\). We obtain a power series expansion of this antiderivative by substituting \(-x^2\) for \(x \) in the geometric series of Eq. (2):

\[\frac{1}{1 + x^2} = 1 - x^2 + x^4 - x^6 + \cdots \]

This expansion is valid for \(|x^2| < 1 \)—that is, for \(|x| < 1 \). By Theorem 2, we can integrate series term by term. The resulting expansion is also valid for \(|x| < 1 \):

\[\tan^{-1} x = \int \frac{dx}{1 + x^2} = \int (1 - x^2 + x^4 - x^6 + \cdots) \, dx \]

\[= A + x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \]

Setting \(x = 0 \), we obtain \(A = \tan^{-1} 0 = 0 \). Thus, Eq. (4) is valid for \(-1 < x < 1 \).
Power Series Solutions of Differential Equations

Power series are a basic tool in the study of differential equations. To illustrate, consider the differential equation with initial condition

\[y' = y, \quad y(0) = 1 \]

We know that \(f(x) = e^x \) is the unique solution, but let’s try to find a power series that satisfies this Initial Value Problem. We have

\[
F(x) = \sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots
\]

\[
F'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + 4a_4 x^3 + \cdots
\]

Therefore, \(F'(x) = F(x) \) if

\[a_0 = a_1, \quad a_1 = 2a_2, \quad a_2 = 3a_3, \quad a_3 = 4a_4, \quad \ldots \]

In other words, \(F'(x) = F(x) \) if \(a_{n-1} = n a_n \), or

\[a_n = \frac{a_{n-1}}{n} \]

An equation of this type is called a **recursion relation**. It enables us to determine all of the coefficients \(a_n \) successively from the first coefficient \(a_0 \), which may be chosen arbitrarily. For example,

\[
\begin{align*}
 n &= 1: & a_1 &= \frac{a_0}{1} \\
 n &= 2: & a_2 &= \frac{a_1}{2} = \frac{a_0}{2!} \\
 n &= 3: & a_3 &= \frac{a_2}{3} = \frac{a_1}{3 \cdot 2} = \frac{a_0}{3!}
\end{align*}
\]

To obtain a general formula for \(a_n \), apply the recursion relation \(n \) times:

\[a_n = \frac{a_{n-1}}{n} = \frac{a_{n-2}}{n(n-1)} = \frac{a_{n-3}}{n(n-1)(n-2)} = \cdots = \frac{a_0}{n!} \]
We conclude that

\[F(x) = a_0 \sum_{n=0}^{\infty} \frac{x^n}{n!} \]

In Example 3, we showed that this power series has radius of convergence \(R = \infty \), so \(y = F(x) \) satisfies \(y' = y \) for all \(x \). Moreover, \(F(0) = a_0 \), so the initial condition \(y(0) = 1 \) is satisfied with \(a_0 = 1 \).

What we have shown is that \(f(x) = e^x \) and \(F(x) \) with \(a_0 = 1 \) are both solutions of the Initial Value Problem. They must be equal because the solution is unique. This proves that for all \(x \),

\[e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots \]

In this example, we knew in advance that \(y = e^x \) is a solution of \(y' = y \), but suppose we are given a differential equation whose solution is unknown. We can try to find a solution in the form of a power series \(F(x) = \sum_{n=0}^{\infty} a_n x^n \). In favorable cases, the differential equation leads to a recursion relation that enables us to determine the coefficients \(a_n \).

EXAMPLE 8 Find a power series solution to the Initial Value Problem:

\[x^2 y'' + xy' + (x^2 - 1)y = 0, \quad y'(0) = 1 \]

Solution Assume that Eq. (5) has a power series solution \(F(x) = \sum_{n=0}^{\infty} a_n x^n \). Then

\[y' = F'(x) = \sum_{n=0}^{\infty} n a_n x^{n-1} = a_1 + 2a_2 x + 3a_3 x^2 + \cdots \]

\[y'' = F''(x) = \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} = 2a_2 + 6a_3 x + 12a_4 x^2 + \cdots \]

Now substitute the series for \(y, y' \), and \(y'' \) into the differential equation (5) to determine the recursion relation satisfied by the coefficients \(a_n \):

\[x^2 y'' + xy' + (x^2 - 1)y \]

\[= x^2 \sum_{n=0}^{\infty} n(n-1) a_n x^{n-2} + x \sum_{n=0}^{\infty} n a_n x^{n-1} + (x^2 - 1) \sum_{n=0}^{\infty} a_n x^n \]

\[= \sum_{n=0}^{\infty} n(n-1) a_n x^n + \sum_{n=0}^{\infty} n a_n x^n + \sum_{n=0}^{\infty} a_n x^{n+2} \]

\[= \sum_{n=0}^{\infty} (n^2 - 1) a_n x^n + \sum_{n=2}^{\infty} a_{n-2} x^n = 0 \]

The differential equation is satisfied if

\[\sum_{n=0}^{\infty} (n^2 - 1) a_n x^n = -\sum_{n=2}^{\infty} a_{n-2} x^n \]

The first few terms on each side of this equation are

\[-a_0 + 0 \cdot x + 3a_2 x^2 + 8a_3 x^3 + 15a_4 x^4 + \cdots = 0 + 0 \cdot x - a_0 x^2 - a_1 x^3 - a_2 x^4 - \cdots \]
Matching up the coefficients of \(x^n \), we find that
\[
-a_0 = 0, \quad 3a_2 = -a_0, \quad 8a_3 = -a_1, \quad 15a_4 = -a_2
\]

In general, \((n^2 - 1)a_n = -a_{n-2}\), and this yields the recursion relation
\[
a_n = -\frac{a_{n-2}}{n^2 - 1} \quad \text{for} \quad n \geq 2
\]

Note that \(a_0 = 0\) by Eq. (7). The recursion relation forces all of the even coefficients \(a_2, a_4, a_6, \ldots\) to be zero:
\[
a_2 = \frac{a_0}{2^2 - 1} \quad \text{so} \quad a_2 = 0, \quad \text{and then} \quad a_4 = \frac{a_2}{4^2 - 1} = 0 \quad \text{so} \quad a_4 = 0, \quad \text{etc.}
\]

As for the odd coefficients, \(a_1\) may be chosen arbitrarily. Because \(F'(0) = a_1\), we set \(a_1 = 1\) to obtain a solution \(y = F(x)\) satisfying \(F'(0) = 1\). Now apply Eq. (8):
\[
\begin{align*}
 n &= 3: \quad a_3 = -\frac{a_1}{3^2 - 1} = -\frac{1}{3^2 - 1} \\
 n &= 5: \quad a_5 = -\frac{a_3}{5^2 - 1} = \frac{1}{5^2 - 1}(3^2 - 1) \\
 n &= 7: \quad a_7 = -\frac{a_5}{7^2 - 1} = -\frac{1}{7^2 - 1}(5^2 - 1)(3^2 - 1)
\end{align*}
\]

This shows the general pattern of coefficients. To express the coefficients in a compact form, let \(n = 2k + 1\). Then the denominator in the recursion relation (8) can be written
\[
n^2 - 1 = (2k + 1)^2 - 1 = 4k^2 + 4k = 4k(k + 1)
\]

and
\[
a_{2k+1} = -\frac{a_{2k-1}}{4k(k + 1)}
\]

Applying this recursion relation \(k\) times, we obtain the closed formula
\[
a_{2k+1} = (-1)^k \left(\frac{1}{4k(k + 1)}\right) \left(\frac{1}{4(k - 1)k}\right) \cdots \left(\frac{1}{4(1)(2)}\right) = \frac{(-1)^k}{4^k k!(k + 1)!}
\]

Thus, we obtain a power series representation of our solution:
\[
F(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{4^k k!(k + 1)!} x^{2k+1}
\]

A straightforward application of the Ratio Test shows that \(F\) has an infinite radius of convergence. Therefore, \(F(x)\) is a solution of the Initial Value Problem for all \(x\).

11.6 SUMMARY

- A **power series** is an infinite series of the form
 \[
 F(x) = \sum_{n=0}^{\infty} a_n (x - c)^n
 \]
 The constant \(c\) is called the **center** of \(F(x)\).
- Every power series \(F(x)\) has a **radius of convergence** \(R\) (Figure 5) such that
 - \(F(x)\) converges absolutely for \(|x - c| < R\) and diverges for \(|x - c| > R\).
 - \(F(x)\) may converge or diverge at the endpoints \(c - R\) and \(c + R\).

We set \(R = 0\) if \(F(x)\) converges only for \(x = c\) and \(R = \infty\) if \(F(x)\) converges for all \(x\).
The interval of convergence of F consists of the open interval $(c - R, c + R)$ and possibly one or both endpoints $c - R$ and $c + R$.

In many cases, the Ratio Test can be used to find the radius of convergence R. It is necessary to check convergence at the endpoints separately.

If $R > 0$, then F is differentiable on $(c - R, c + R)$ and

$$F'(x) = \sum_{n=1}^{\infty} na_n(x - c)^{n-1}, \quad \int F(x) \, dx = A + \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - c)^{n+1}$$

(A is any constant). These two power series have the same radius of convergence R.

The expansion $\frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n$ is valid for $|x| < 1$. It can be used to derive expansions of other related functions by substitution, integration, or differentiation.

11.6 Exercises

Preliminary Questions

1. Suppose that $\sum a_n x^n$ converges for $x = 5$. Must it also converge for $x = 4$? What about $x = -3$?

2. Suppose that $\sum a_n (x - 6)^n$ converges for $x = 10$. At which of the points (a)–(d) must it also converge?
 (a) $x = 8$
 (b) $x = 11$
 (c) $x = 3$
 (d) $x = 0$

3. What is the radius of convergence of $F(3x)$ if $F(x)$ is a power series with radius of convergence $R = 12$?

4. The power series $F(x) = \sum_{n=1}^{\infty} nx^n$ has radius of convergence $R = 1$. What is the power series expansion of $F'(x)$ and what is its radius of convergence?

Exercises

1. Use the Ratio Test to determine the radius of convergence R of $\sum_{n=0}^{\infty} \frac{x^n}{2^n}$. Does it converge at the endpoints $x = \pm R$?

2. Use the Ratio Test to show that $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n} 2^n}$ has radius of convergence $R = 2$. Then determine whether it converges at the endpoints $R = \pm 2$.

3. Show that the power series (a)–(c) have the same radius of convergence. Then show that (a) diverges at both endpoints, (b) converges at one endpoint but diverges at the other, and (c) converges at both endpoints.
 (a) $\sum_{n=1}^{\infty} \frac{x^n}{3^n}$
 (b) $\sum_{n=1}^{\infty} \frac{x^n}{n 3^n}$
 (c) $\sum_{n=1}^{\infty} \frac{x^n}{n^2 3^n}$

4. Repeat Exercise 3 for the following series:
 (a) $\sum_{n=1}^{\infty} \frac{(x - 5)^n}{9^n}$
 (b) $\sum_{n=1}^{\infty} \frac{(x - 5)^n}{n^9 9^n}$
 (c) $\sum_{n=1}^{\infty} \frac{(x - 5)^n}{n^2 9^n}$

5. Show that $\sum_{n=0}^{\infty} n^n x^n$ diverges for all $x \neq 0$.

6. For which values of x does $\sum_{n=0}^{\infty} n! x^n$ converge?

7. Use the Ratio Test to show that $\sum_{n=0}^{\infty} \frac{x^n}{3^n}$ has radius of convergence $R = \sqrt{3}$.

8. Show that $\sum_{n=0}^{\infty} \frac{x^{3n+1}}{64^n}$ has radius of convergence $R = 4$.

In Exercises 9–34, find the interval of convergence.

9. $\sum_{n=0}^{\infty} nx^n$
10. $\sum_{n=1}^{\infty} \frac{x^n}{n}$

11. $\sum_{n=1}^{\infty} (-1)^n \frac{2n+1}{2^n n}$
12. $\sum_{n=0}^{\infty} (-1)^n \frac{n}{4^n 2n}$

13. $\sum_{n=4}^{\infty} \frac{x^n}{n^5}$
14. $\sum_{n=8}^{\infty} \frac{n^7 x^n}{n!}$

15. $\sum_{n=0}^{\infty} \frac{x^n}{(n!)^2}$
16. $\sum_{n=0}^{\infty} \frac{8^n}{n!} x^n$

17. $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^3} x^n$
18. $\sum_{n=0}^{\infty} \frac{4^n}{(2n+1)!} x^{2n-1}$

19. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{\sqrt{n^2 + 1}}$
20. $\sum_{n=0}^{\infty} \frac{x^n}{n^3 + 2}$

21. $\sum_{n=15}^{\infty} \frac{x^{2n+1}}{3n + 1}$
22. $\sum_{n=9}^{\infty} \frac{x^n}{n - 4 \ln n}$

23. $\sum_{n=2}^{\infty} \frac{x^n}{\ln n}$
24. $\sum_{n=2}^{\infty} \frac{x^{3n+2}}{\ln n}$

25. $\sum_{n=1}^{\infty} \frac{n(x - 3)^n}{n^2}$
26. $\sum_{n=1}^{\infty} \frac{(-5)^n (x - 3)^n}{n^2}$
27. \[\sum_{n=1}^{\infty} (-1)^n n^3 (x - 7)^n \]
28. \[\sum_{n=0}^{\infty} 27^n (x - 1)^{3n+2} \]
29. \[\sum_{n=1}^{\infty} \frac{2^n}{3n} (x + 3)^n \]
30. \[\sum_{n=0}^{\infty} \frac{(x - 4)^n}{n!} \]
31. \[\sum_{n=0}^{\infty} \frac{(-5)^n}{n!} (x + 10)^n \]
32. \[\sum_{n=10}^{\infty} n! (x + 5)^n \]
33. \[\sum_{n=12}^{\infty} e^n (x - 2)^n \]
34. \[\sum_{n=2}^{\infty} \frac{(x + 4)^n}{n! (n \ln n)^2} \]

In Exercises 35–40, use Eq. (2) to expand the function in a power series with center \(c = 0 \) and determine the interval of convergence.

35. \(f(x) = \frac{1}{1 - 3x} \)
36. \(f(x) = \frac{1}{1 + 3x} \)
37. \(f(x) = \frac{1}{3 - x} \)
38. \(f(x) = \frac{1}{4 + 3x} \)
39. \(f(x) = \frac{1}{1 + x^2} \)
40. \(f(x) = \frac{1}{16 + 2x^3} \)

41. Use the equalities
\[
\frac{1}{1 - x} = \frac{1}{-3 - (x - 4)} = \frac{-1}{1 + \left(\frac{x-4}{3}\right)}
\]
to show that for \(|x - 4| < 3 \),
\[
\frac{1}{1 - x} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} (x - 4)^n
\]

42. Use the method of Exercise 41 to expand \(1/(1 - x) \) in power series with centers \(c = 2 \) and \(c = -2 \). Determine the interval of convergence.

43. Use the method of Exercise 41 to expand \(1/(d - x) \) in a power series with center \(c = 5 \). Determine the interval of convergence.

44. Find a power series that converges only for \(x \) in \([2, 6)\).

45. Apply integration to the expansion
\[
\frac{1}{1 + x} = \sum_{n=0}^{\infty} (-1)^n x^n = 1 - x + x^2 - x^3 + \cdots
\]
to prove that for \(-1 < x < 1\),
\[
\ln(1 + x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots
\]

46. Use the result of Exercise 45 to prove that
\[
\ln \frac{3}{2} = \frac{1}{2} - \frac{1}{2 \cdot 2^2} + \frac{1}{3 \cdot 2^3} - \frac{1}{4 \cdot 2^4} + \cdots
\]
Use your knowledge of alternating series to find an \(N \) such that the partial sum \(S_N \) approximates \(\ln \frac{3}{2} \) to within an error of at most \(10^{-3} \).
Confirm using a calculator to compute both \(S_N \) and \(\ln \frac{3}{2} \).

47. Let \(F(x) = (x + 1) \ln(1 + x) - x \).
(a) Apply integration to the result of Exercise 45 to prove that for \(-1 < x < 1\),
\[F(x) = \sum_{n=1}^{\infty} \frac{(-1)^n+1 x^n}{n(n+1)} \]
(b) Evaluate at \(x = \frac{1}{2} \) to prove
\[\frac{3}{2} \ln \frac{3}{2} - \frac{1}{2} = \frac{1}{1 \cdot 2 \cdot 2^2} - \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1}{3 \cdot 4 \cdot 2^4} - \frac{1}{4 \cdot 5 \cdot 2^5} + \cdots \]
(c) Use a calculator to verify that the partial sum \(S_4 \) approximates the left-hand side with an error no greater than the term \(a_5 \) of the series.

48. Prove that for \(|x| < 1 \),
\[\int \frac{dx}{x^4 + 1} = A + x - \frac{x^5}{5} + \frac{x^9}{9} - \cdots \]
Use the first two terms to approximate \(\int_0^{1/2} dx/(x^4 + 1) \) numerically. Use the fact that you have an alternating series to show that the error in this approximation is at most \(0.000022 \).

49. Use the result of Example 7 to show that
\[F(x) = \frac{x^2}{1 - 2} + \frac{x^4}{3 - 4} + \frac{x^6}{5 - 6} + \frac{x^8}{7 - 8} + \cdots \]
is an antiderivative of \(f(x) = \tan^{-1} x \) satisfying \(F(0) = 0 \). What is the radius of convergence of this power series?

50. Verify that function \(F(x) = x \tan^{-1} x - \frac{1}{2} \log(x^2 + 1) \) is an antiderivative of \(f(x) = \tan^{-1} x \) satisfying \(F(0) = 0 \). Then use the result of Exercise 49 with \(x = \frac{1}{\sqrt{3}} \) to show that
\[\pi \cdot \frac{1}{2} - \frac{1}{4} \ln 3 = \frac{1}{3} \cdot \frac{1}{1 \cdot 2(3^2)} + \frac{1}{3} \cdot \frac{1}{3 \cdot 4(3^2)} + \frac{1}{5} \cdot \frac{1}{5 \cdot 6(3^2)} - \frac{1}{7 \cdot 8(3^4)} + \cdots \]
Use a calculator to compare the value of the left-hand side with the partial sum \(S_4 \) of the series on the right.

51. Evaluate \(\sum_{n=1}^{\infty} \frac{n}{2^n} \)

Hint: Use differentiation to show that
\[(1 - x)^{-2} = \sum_{n=1}^{\infty} n x^{n-1} \quad \text{(for } |x| < 1 \text{)}
\]

52. Use the power series for \((1 + x^2)^{-1}\) and differentiation to prove that for \(|x| < 1\),
\[\frac{2x}{(x^2 + 1)^2} = \sum_{n=1}^{\infty} (-1)^{n-1}(2n)x^{2n-1} \]

53. Show that the following series converges absolutely for \(|x| < 1\) and compute its sum:
\[F(x) = 1 - x - x^2 + x^3 - x^4 - x^5 + x^6 - x^7 - x^8 + \cdots \]

Hint: Write \(F(x) \) as a sum of three geometric series with common ratio \(x^3 \).

54. Show that for \(|x| < 1\),
\[\frac{1 + 2x}{1 + x + x^2} = 1 + x - 2x^2 + x^3 + x^4 - 2x^5 + x^6 + x^7 - 2x^8 + \cdots \]

Hint: Use the hint from Exercise 53.

55. Find all values of \(x \) such that \(\sum_{n=1}^{\infty} \frac{x^n}{n!} \) converges.

56. Find all values of \(x \) such that the following series converges:
\[F(x) = 1 + 3x + x^2 + 27x^3 + x^4 + 243x^5 + \cdots \]

57. Find a power series \(P(x) = \sum_{n=0}^{\infty} a_n x^n \) satisfying the differential equation \(y' = -y \) with initial condition \(y(0) = 1 \). Then use Theorem 1 of Section 7.4 to conclude that \(P(x) = e^{-x} \).

58. Let \(C(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \).
(a) Show that \(C(x) \) has an infinite radius of convergence.
(b) Prove that \(C(x) \) and \(f(x) = \cos x \) are both solutions of \(y'' = -y \) with initial conditions \(y(0) = 1 \), \(y'(0) = 0 \). This Initial Value Problem has a unique solution, so we have \(C(x) = \cos x \) for all \(x \).
59. Use the power series for \(y = e^x \) to show that
\[
\frac{1}{e} = \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \cdots
\]
Use your knowledge of alternating series to find an \(N \) such that the partial sum \(S_N \) approximates \(e^{-1} \) to within an error of at most \(10^{-3} \). Confirm this using a calculator to compute both \(S_N \) and \(e^{-1} \).

60. Let \(P(x) = \sum_{n=0}^{\infty} a_n x^n \) be a power series solution to \(y' = 2xy \) with initial condition \(y(0) = 1 \).
(a) Show that the odd coefficients \(a_{2k+1} \) are all zero.
(b) Prove that \(a_{2k} = \frac{a_{2k-2}}{k} \) and use this result to determine the coefficients \(a_{2k} \).

61. Find a power series \(P(x) \) satisfying the differential equation
\[
y'' - xy' + y = 0
\]
with initial condition \(y(0) = 1 \), \(y'(0) = 0 \). What is the radius of convergence of the power series?

62. Find a power series satisfying Eq. (9) with initial condition \(y(0) = 0 \), \(y'(0) = 1 \).

63. Prove that
\[
J_2(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^{k+2} k! (k + 3)!} x^{2k+2}
\]
is a solution of the Bessel differential equation of order 2:
\[
x^2 y'' + xy' + (x^2 - 4)y = 0
\]

64. Why is it impossible to expand \(f(x) = |x| \) as a power series that converges in an interval around \(x = 0 \)? Explain using Theorem 2.

Further Insights and Challenges

65. Suppose that the coefficients of \(F(x) = \sum_{n=0}^{\infty} a_n x^n \) are periodic; that is, for some whole number \(M > 0 \), we have \(a_{M+n} = a_n \). Prove that \(F(x) \) converges absolutely for \(|x| < 1 \) and that
\[
F(x) = \frac{a_0 + a_1 x + \cdots + a_{M-1} x^{M-1}}{1 - x^M}
\]
Hint: Use the hint for Exercise 53.

66. **Continuity of Power Series** Let \(F(x) = \sum_{n=0}^{\infty} a_n x^n \) be a power series with radius of convergence \(R > 0 \).
(a) Prove the inequality
\[
|x^n - y^n| \leq n|x - y|(|x|^{n-1} + |y|^{n-1})
\]
Hint: \(x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \cdots + y^{n-1}) \).

(b) Choose \(R_1 \) with \(0 < R_1 < R \). Show that the infinite series
\[
M = \sum_{n=0}^{\infty} 2n|a_n| R_1^n
\]
converges. Hint: Show that \(n|a_n| R_1^n < |a_n| x^n \) for all \(n \) sufficiently large if \(R_1 < x < R \).
(c) Use Eq. (10) to show that if \(|x| < R_1 \) and \(|y| < R_1 \), then \(|F(x) - F(y)| \leq M|x - y| \).
(d) Prove that if \(|x| < R \), then \(F \) is continuous at \(x \). Hint: Choose \(R_1 \) such that \(|x| < R_1 < R \). Show that if \(\epsilon > 0 \) is given, then \(|F(x) - F(y)| \leq \epsilon \) for all \(y \) such that \(|x - y| < \delta \), where \(\delta \) is any positive number that is less than \(\epsilon / M \) and \(R_1 - |x| \) (see Figure 6).

11.7 Taylor Series

In this section, we develop general methods for finding power series representations. Ultimately, we will see that these power series are, in fact, the extended versions of the Taylor polynomials we discussed in Section 9.4, which we used to approximate values of functions. Suppose that \(f(x) \) is represented by a power series centered at \(x = c \) on an interval \((c - R, c + R)\) with \(R > 0 \):
\[
f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n = a_0 + a_1(x - c) + a_2(x - c)^2 + \cdots
\]
According to Theorem 2 in Section 11.6, we can compute the derivatives of \(f \) by differentiating the series expansion term by term:
\[
f(x) = \quad a_0 + \quad a_1(x - c) + \quad a_2(x - c)^2 + \quad a_3(x - c)^3 + \cdots
\]
\[
f'(x) = \quad a_1 + \quad 2a_2(x - c) + \quad 3a_3(x - c)^2 + \quad 4a_4(x - c)^3 + \cdots
\]
\[
f''(x) = \quad 2a_2 + \quad 2 \cdot 3a_3(x - c) + \quad 3 \cdot 4a_4(x - c)^2 + \quad 4 \cdot 5a_5(x - c)^3 + \cdots
\]
\[
f'''(x) = 2 \cdot 3a_3 + 2 \cdot 3 \cdot 4a_4(x - c) + 3 \cdot 4 \cdot 5a_5(x - c)^2 + \cdots
\]
In general,
\[f^{(k)}(x) = k!a_k + \left(2 \cdot 3 \cdots (k + 1)\right)a_{k+1}(x - c) + \cdots \]

Setting \(x = c \) in each of these series, we find that
\[f(c) = a_0, \quad f'(c) = a_1, \quad f''(c) = 2a_2, \quad f'''(c) = 2 \cdot 3a_3, \ldots, \quad f^{(k)}(c) = k!a_k, \ldots \]

We see that \(a_k \) is the \(k \)th coefficient of the Taylor polynomial studied in Section 9.4:

\[a_k = \frac{f^{(k)}(c)}{k!} \]

Therefore, \(f(x) = T(x) \), where \(T(x) \) is the Taylor series of \(f(x) \) centered at \(x = c \):

\[T(x) = f(c) + f'(c)(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + \cdots \]

This proves the next theorem.

THEOREM 1 Taylor Series Expansion If \(f(x) \) is represented by a power series centered at \(c \) in an interval \(|x - c| < R\) with \(R > 0 \), then that power series is the Taylor series

\[T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x - c)^n \]

In the special case \(c = 0 \), \(T(x) \) is also called the Maclaurin series:

\[f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \cdots \]

EXAMPLE 1 Find the Taylor series for \(f(x) = x^{-3} \) centered at \(c = 1 \).

Solution It often helps to create a table, as in Table 1, to see the pattern. The derivatives of \(f(x) \) are \(f'(x) = -3x^{-4}, \quad f''(x) = (-3)(-4)x^{-5} \), and in general,

\[f^{(n)}(x) = (-1)^n(3)(4)\cdots(n + 2)x^{-3-n} \]

Note that \((3)(4)\cdots(n + 2) = \frac{1}{2}(n + 2)!\). Therefore,

\[f^{(n)}(1) = (-1)^n\frac{1}{2}(n + 2)! \]

Noting that \((n + 2)! = (n + 2)(n + 1)n!\), we write the coefficients of the Taylor series as

\[a_n = \frac{f^{(n)}(1)}{n!} = (-1)^n\frac{1}{2}\frac{(n + 2)!}{n!} = (-1)^n\frac{(n + 2)(n + 1)}{2} \]

The Taylor series for \(f(x) = x^{-3} \) centered at \(c = 1 \) is

\[T(x) = 1 - 3(x - 1) + 6(x - 1)^2 - 10(x - 1)^3 + \cdots = \sum_{n=0}^{\infty} (-1)^n\frac{(n + 2)(n + 1)}{2}(x - 1)^n \]

\[= \sum_{n=0}^{\infty} (-1)^n\frac{(n + 2)(n + 1)}{2}(x - 1)^n \]
Theorem 1 tells us that if we want to represent a function \(f \) by a power series centered at \(c \), then the only candidate for the job is the Taylor series:

\[
T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n
\]

However, there is no guarantee that \(T(x) \) converges to \(f(x) \), even if \(T(x) \) converges. To study convergence, we consider the \(k \)th partial sum, which is the Taylor polynomial of degree \(k \):

\[
T_k(x) = f(c) + f'(c)(x-c) + \frac{f''(c)}{2!}(x-c)^2 + \cdots + \frac{f^{(k)}(c)}{k!}(x-c)^k
\]

In Section 9.4, we defined the remainder

\[
R_k(x) = f(x) - T_k(x)
\]

Since \(T(x) \) is the limit of the partial sums \(T_k(x) \), we see that

\[
The Taylor series converges to \(f(x) \) if and only if \(\lim_{k \to \infty} R_k(x) = 0 \).
\]

There is no general method for determining whether \(R_k(x) \) tends to zero, but the following theorem can be applied in some important cases.

Theorem 2 Let \(I = (c-R, c+R) \), where \(R > 0 \). Suppose there exists \(K > 0 \) such that all derivatives of \(f \) are bounded by \(K \) on \(I \):

\[
|f^{(k)}(x)| \leq K \quad \text{for all } k \geq 0 \text{ and } x \in I
\]

Then \(f \) is represented by its Taylor series in \(I \):

\[
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n \quad \text{for all } x \in I
\]

Proof According to the Error Bound for Taylor polynomials (Theorem 2 in Section 9.4),

\[
|R_k(x)| = |f(x) - T_k(x)| \leq K \frac{|x-c|^{k+1}}{(k+1)!}
\]

If \(x \in I \), then \(|x-c| < R \) and

\[
|R_k(x)| \leq K \frac{R^{k+1}}{(k+1)!}
\]

We showed in Example 9 of Section 11.1 that \(R^k/k! \) tends to zero as \(k \to \infty \). Therefore, \(\lim_{k \to \infty} R_k(x) = 0 \) for all \(x \in (c-R, c+R) \), as required.

Example 2 Expansions of Sine and Cosine Show that the following Maclaurin expansions are valid for all \(x \):

\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots
\]

\[
\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots
\]
In Example 4, we can also write the Maclaurin series as
\[
\sum_{n=0}^{\infty} \frac{x^{n+2}}{n!}
\]
In other words, the even derivatives are zero and the odd derivatives alternate in sign:
\[f^{(2n+1)}(0) = (-1)^n.\] Therefore, the nonzero Taylor coefficients for \(\sin x\) are
\[a_{2n+1} = \frac{(-1)^n}{(2n+1)!}\]
For \(f(x) = \cos x\), the situation is reversed. The odd derivatives are zero and the even derivatives alternate in sign: \(f^{(2n)}(0) = (-1)^n \cos 0 = (-1)^n\). Therefore, the nonzero Taylor coefficients for \(\cos x\) are \(a_{2n} = (-1)^n/(2n)!\).
We can apply Theorem 2 with \(K = 1\) and any value of \(R\) because both sine and cosine satisfy \(|f^{(n)}(x)| \leq 1\) for all \(x\) and \(n\). The conclusion is that the Taylor series converges to \(f(x)\) for \(|x| < R\). Since \(R\) is arbitrary, the Taylor expansions hold for all \(x\).

Example 3 Taylor Expansion of \(f(x) = e^x\) at \(x = c\)

Find the Taylor series \(T(x)\) of \(f(x) = e^x\) at \(x = c\).

Solution We have \(f^{(n)}(c) = e^c\) for all \(x\). Thus,
\[T(x) = \sum_{n=0}^{\infty} \frac{e^c}{n!} (x-c)^n\]
Because \(f(x) = e^x\) is increasing for all \(R > 0\), \(|f^{(k)}(x)| \leq e^{x+R}\) for \(x \in (c-R, c+R)\). Applying Theorem 2 with \(K = e^{x+R}\), we conclude that \(T(x)\) converges to \(f(x)\) for all \(x \in (c-R, c+R)\). Since \(R\) is arbitrary, the Taylor expansion holds for all \(x\). For \(c = 0\), we obtain the standard Maclaurin series
\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots\]

Shortcuts to Finding Taylor Series

There are several methods for generating new Taylor series from known ones. First of all, we can differentiate and integrate Taylor series term by term within its interval of convergence, by Theorem 2 of Section 11.6. We can also multiply two Taylor series or substitute one Taylor series into another (we omit the proofs of these facts).

Example 4 Find the Maclaurin series for \(f(x) = x^2 e^x\).

Solution Multiply the known Maclaurin series for \(e^x\) by \(x^2\):
\[
x^2 e^x = x^2 \left(1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots\right)
= x^2 + x^3 + \frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \frac{x^7}{5!} + \cdots = \sum_{n=2}^{\infty} \frac{x^n}{(n-2)!}\]

Example 5 Substitution Find the Maclaurin series for \(f(x) = e^{-x^2}\).

Solution Substitute \(-x^2\) in the Maclaurin series for \(e^x\):
\[e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{n!} = 1 - x^2 + \frac{x^4}{2!} - \frac{x^6}{3!} + \frac{x^8}{4!} - \cdots\]
The Taylor expansion of \(e^x\) is valid for all \(x\), so this expansion is also valid for all \(x\).
EXAMPLE 6 Integration Find the Maclaurin series for \(f(x) = \ln(1 + x) \).

Solution We integrate the geometric series with common ratio \(-x\) (valid for \(|x| < 1\)):

\[
\frac{1}{1 + x} = 1 - x + x^2 - x^3 + \cdots
\]

\[
\ln(1 + x) = \int \frac{dx}{1 + x} = A + x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots = A + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}
\]

The constant of integration \(A\) on the right is zero because \(\ln(1 + x) = 0\) for \(x = 0\), so

\[
\ln(1 + x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}
\]

This expansion is valid for \(|x| < 1\). It also holds for \(x = 1\) (see Exercise 86).

In many cases, there is no convenient general formula for the Taylor coefficients, but we can still compute as many coefficients as desired.

EXAMPLE 7 Multiplying Taylor Series Write out the terms up to degree 5 in the Maclaurin series for \(f(x) = e^x \cos x \).

Solution We multiply the fifth-order Taylor polynomials of \(e^x\) and \(\cos x\) together, dropping the terms of degree greater than 5:

\[
\left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120}\right) \left(1 - \frac{x^2}{2} + \frac{x^4}{24}\right)
\]

Distributing the term on the left (and ignoring terms of degree greater than 5), we obtain

\[
1 + x - \frac{x^3}{3} - x^4 - \frac{x^5}{6} + \frac{x^4}{30}
\]

Retain terms of degree \(\leq 5\)

We conclude that the fifth Maclaurin polynomial for \(f(x) = e^x \cos x \) is

\[T_5(x) = 1 + x - \frac{x^3}{3} - \frac{x^4}{6} - \frac{x^5}{30}\]

In the next example, we express the definite integral of \(\sin(x^2)\) as an infinite series. This is useful because the integral cannot be evaluated explicitly. Figure 1 shows the graph of the Taylor polynomial \(y = T_{12}(x)\) of the Taylor series expansion of the antiderivative.

EXAMPLE 8 Let \(J = \int_0^1 \sin(x^2) \, dx \).

(a) Express \(J \) as an infinite series.

(b) Determine \(J \) to within an error less than \(10^{-4}\).

Solution

(a) The Maclaurin expansion for \(f(x) = \sin x \) is valid for all \(x\), so we have

\[
\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} \quad \Rightarrow \quad \sin(x^2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{4n+2}
\]

We obtain an infinite series for \(J \) by integration:

\[
J = \int_0^1 \sin(x^2) \, dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \int_0^1 x^{4n+2} \, dx = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \left(\frac{1}{4n+3} \right)
\]

\[
= \frac{1}{3} - \frac{1}{42} + \frac{1}{1320} - \frac{1}{75,600} + \cdots
\]
The infinite series for J is an alternating series with decreasing terms, so the sum of the first N terms is accurate to within an error that is less than the $(N + 1)$st term. The absolute value of the fourth term $1/75,600$ is smaller than 10^{-4}, so we obtain the desired accuracy using the first three terms of the series for J:

$$J \approx \frac{1}{3} - \frac{1}{42} + \frac{1}{1320} \approx 0.31028$$

The error satisfies

$$|J - \left(\frac{1}{3} - \frac{1}{42} + \frac{1}{1320}\right)| < \frac{1}{75,600} \approx 1.3 \times 10^{-5}$$

The percentage error is less than 0.005% with just three terms.

Power series have additional applications.

Example 9 Determine $\lim_{x \to 0} \frac{x - \sin x}{x^3 \cos x}$.

Solution This limit is of indeterminate form $0/0$, so we could use L’Hôpital’s Rule repeatedly. However, instead, we will work with the Maclaurin series. We have

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$$

Hence, the limit becomes

$$\lim_{x \to 0} \frac{x - \sin x}{x^3 \cos x} = \lim_{x \to 0} \frac{x - (x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots)}{x^3(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots)}$$

$$= \lim_{x \to 0} \frac{x^3(1 - \frac{x^2}{3!} + \cdots)}{x^3(1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots)}$$

$$= \lim_{x \to 0} \frac{1}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots}$$

$$= \frac{1}{3!} = \frac{1}{6}$$

Binomial Series

Isaac Newton discovered an important generalization of the Binomial Theorem around 1665. For any number a (integer or not) and integer $n \geq 0$, we define the **binomial coefficient**:

$$\binom{a}{n} = \frac{a(a-1)(a-2)\cdots(a-n+1)}{n!}, \quad \binom{a}{0} = 1$$

For example,

$$\binom{6}{3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20, \quad \binom{4}{3} = \frac{4 \cdot 3 \cdot 2 \cdot (-\frac{4}{3} \cdot 2 \cdot 1)}{3 \cdot 2 \cdot 1} = -\frac{4}{81}$$

Let

$$f(x) = (1 + x)^a$$

The **Binomial Theorem** of algebra (see Appendix C) states that for any whole number a,

$$(r + s)^a = r^a + \binom{a}{1} r^{a-1}s + \binom{a}{2} r^{a-2}s^2 + \cdots + \binom{a}{a-1} rs^{a-1} + s^a$$
Setting \(r = 1 \) and \(s = x \), we obtain the expansion of \(f(x) \):
\[
(1 + x)^a = 1 + \binom{a}{1}x + \frac{a}{2}x^2 + \cdots + \binom{a}{a-1}x^{a-1} + x^a
\]

We derive Newton’s generalization by computing the Maclaurin series of \(f(x) \) without assuming that \(a \) is a whole number. Observe that the derivatives follow a pattern:
\[
\begin{align*}
 f(x) &= (1 + x)^a & f(0) &= 1 \\
 f'(x) &= a(1 + x)^{a-1} & f'(0) &= a \\
 f''(x) &= a(a - 1)(1 + x)^{a-2} & f''(0) &= a(a - 1) \\
 f'''(x) &= a(a - 1)(a - 2)(1 + x)^{a-3} & f'''(0) &= a(a - 1)(a - 2)
\end{align*}
\]

In general, \(f^{(n)}(0) = a(a - 1)(a - 2) \cdots (a - n + 1) \)

\[
\frac{f^{(n)}(0)}{n!} = \frac{a(a - 1)(a - 2) \cdots (a - n + 1)}{n!} = \binom{a}{n}
\]

Hence, the Maclaurin series for \(f(x) = (1 + x)^a \) is the binomial series
\[
\sum_{n=0}^{\infty} \binom{a}{n} x^n = 1 + ax + \frac{a(a - 1)}{2!}x^2 + \frac{a(a - 1)(a - 2)}{3!}x^3 + \cdots + \binom{a}{n} x^n + \cdots
\]

The Ratio Test shows that this series has radius of convergence \(R = 1 \) (Exercise 88), and an additional argument (developed in Exercise 89) shows that it converges to \((1 + x)^a\) for \(|x| < 1\).

Theorem 3: The Binomial Series For any exponent \(a \) and for \(|x| < 1\),
\[
(1 + x)^a = 1 + \binom{a}{1}x + \frac{a(a - 1)}{2!}x^2 + \frac{a(a - 1)(a - 2)}{3!}x^3 + \cdots + \binom{a}{n} x^n + \cdots
\]

Example 10 Find the terms through degree 4 in the Maclaurin expansion of
\[
f(x) = (1 + x)^{4/3}
\]

Solution The binomial coefficients \(\binom{4/3}{n} \) for \(a = \frac{4}{3} \) for \(0 < n < 4 \) are
\[
\begin{align*}
 \frac{4}{3!} &= \frac{4}{3} \\
 \frac{4}{2!} &= \frac{4}{2} = 2 \\
 \frac{4}{3} \left(-\frac{2}{3} \right) &= \frac{4}{3} \left(-\frac{2}{3} \right) = -\frac{4}{8} = -\frac{1}{2} \\
 \frac{4}{4!} \left(\frac{1}{3} \right) \left(-\frac{2}{3} \right) \left(-\frac{5}{3} \right) &= \frac{4}{4!} \left(\frac{1}{3} \right) \left(-\frac{2}{3} \right) \left(-\frac{5}{3} \right) = \frac{5}{243}
\end{align*}
\]

Therefore, \((1 + x)^{4/3} \approx 1 + \frac{4}{3}x + \frac{2}{3}x^2 - \frac{4}{81}x^3 + \frac{5}{243}x^4 + \cdots \).

Example 11 Find the Maclaurin series for
\[
f(x) = \frac{1}{\sqrt{1-x^2}}
\]

Solution First, let’s find the coefficients in the binomial series for \((1 + x)^{-1/2}\):
\[
\begin{align*}
 \binom{-1/2}{1} &= -1 \\
 \binom{-1/2}{2} &= -\frac{1}{2} \left(-\frac{1}{2} \right) = \frac{1}{2} \cdot \frac{3}{2} = \frac{3}{2} \\
 \binom{-1/2}{3} &= \frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right) = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{5}{2} = \frac{15}{8}
\end{align*}
\]

The general pattern is
\[
\binom{-1/2}{n} = \binom{-1/2}{1} \binom{-3/2}{2} \cdots \binom{-(2n-1)/2}{n} = \frac{(-1)^n \cdot 1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n}
\]

Thus, the following binomial expansion is valid for \(|x| < 1\):
\[
\frac{1}{\sqrt{1+x}} = 1 + \sum_{n=1}^{\infty} (-1)^n \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} x^n = 1 - \frac{1}{2}x + \frac{1}{2} \cdot \frac{3}{4} x^2 - \cdots
\]
If \(|x| < 1\), then \(|x|^2 < 1\), and we can substitute \(-x^2\) for \(x\) to obtain
\[
\frac{1}{\sqrt{1-x^2}} = 1 + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdots 2n} x^{2n} = 1 + \frac{1}{2} x^2 + \frac{1}{2} \cdot 3 x^4 + \cdots
\]

Taylor series are particularly useful for studying the so-called special functions (such as Bessel and hypergeometric functions) that appear in a wide range of physics and engineering applications. One example is the following elliptic integral of the first kind, defined for \(|k| < 1\):

\[
E(k) = \int_0^{\pi/2} \frac{dt}{\sqrt{1-k^2 \sin^2 t}}
\]

This function is used in physics to compute the period \(T\) of pendulum of length \(L\) released from an angle \(\theta\) (Figure 2). We can use the “small-angle approximation” \(T \approx 2\pi \sqrt{\frac{L}{g}}\) when \(\theta\) is small (where \(g = 9.8 \text{ m/s}^2\)), but this approximation breaks down for large angles (Figure 3). The exact value of the period is \(T = 4\sqrt{\frac{L}{g}} E(k)\), where \(k = \sin \frac{\theta}{2}\).

Example 12 Elliptic Function Find the Maclaurin series for \(E(k)\) and estimate \(E(k)\) for \(k = \sin \frac{\pi}{6}\).

Solution Substitute \(x = k \sin t\) in the Taylor expansion (4):

\[
\frac{1}{\sqrt{1-k^2 \sin^2 t}} = 1 + \frac{1}{2} k^2 \sin^2 t + \frac{1}{2} \cdot 3 k^4 \sin^4 t + \frac{1}{2} \cdot 3 \cdot 5 k^6 \sin^6 t + \cdots
\]

This expansion is valid because \(|k| < 1\) and hence \(|x| = |k \sin t| < 1\). Thus, \(E(k)\) is equal to

\[
\int_0^{\pi/2} \frac{dt}{\sqrt{1-k^2 \sin^2 t}} = \int_0^{\pi/2} dt + \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} \left(\int_0^{\pi/2} \sin^{2n} t \ dt \right) k^{2n} \]

According to Exercise 80 in Section 8.2,

\[
\int_0^{\pi/2} \sin^{2n} t \ dt = \left(\frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} \right) \frac{\pi}{2^n}
\]

This yields

\[
E(k) = \frac{\pi}{2} + \frac{\pi}{2} \sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} \right)^2 k^{2n}
\]

We approximate \(E(k)\) for \(k = \sin \left(\frac{\pi}{6} \right) = \frac{1}{2}\) using the first five terms:

\[
E \left(\frac{1}{2} \right) \approx \frac{\pi}{2} \left(1 + \left(\frac{1}{2} \right)^2 + \frac{1}{2} \left(\frac{1}{2} \cdot 3 \right)^2 + \frac{1}{2} \left(\frac{1}{2} \cdot 3 \cdot 5 \right)^2 + \frac{1}{2} \left(\frac{1}{2} \cdot 3 \cdot 5 \cdot 7 \right)^2 \right)
\]

\[
\approx 1.68517
\]

The value given by a computer algebra system to seven places is \(E \left(\frac{1}{2} \right) \approx 1.6856325\).
11.7 SUMMARY

- **Taylor series of** \(f(x) \) centered at \(x = c \):

 \[
 T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n
 \]

 The partial sum \(T_k(x) \) is the \(k \)th Taylor polynomial.
- **Maclaurin series** (\(c = 0 \)):

 \[
 T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n
 \]

- If \(f(x) \) is represented by a power series \(\sum_{n=0}^{\infty} a_n(x - c)^n \) for \(|x - c| < R \) with \(R > 0 \), then this power series is necessarily the Taylor series centered at \(x = c \).
- A function \(f \) is represented by its Taylor series \(T(x) \) if and only if the remainder \(R_k(x) = f(x) - T_k(x) \) tends to zero as \(k \to \infty \).
- Let \(I = (c - R, c + R) \) with \(R > 0 \). Suppose that there exists \(K > 0 \) such that \(|f^{(k)}(x)| < K \) for all \(x \in I \) and all \(k \). Then \(f \) is represented by its Taylor series on \(I \); that is, \(f(x) = T(x) \) for \(x \in I \).
- A good way to find the Taylor series of a function is to start with known Taylor series and apply one of the following operations: differentiation, integration, multiplication, or substitution.
- For any exponent \(a \), the binomial expansion is valid for \(|x| < 1 \):

 \[
 (1 + x)^a = 1 + ax + \frac{a(a - 1)}{2!} x^2 + \frac{a(a - 1)(a - 2)}{3!} x^3 + \cdots + \binom{a}{n} x^n + \cdots
 \]
11.7 EXERCISES

Preliminary Questions

1. Determine \(f(0) \) and \(f^{(n)}(0) \) for a function \(f \) with Maclaurin series
 \[
 T(x) = 3 + 2x + 12x^2 + 5x^3 + \cdots
 \]

2. Determine \(f(-2) \) and \(f^{(4)}(-2) \) for a function with Taylor series
 \[
 T(x) = 3(x + 2) + (x + 2)^2 - 4(x + 2)^3 + 2(x + 2)^4 + \cdots
 \]

3. What is the easiest way to find the Maclaurin series for the function \(f(x) = \sin(x^2) \)?

Exercises

1. Write out the first four terms of the Maclaurin series of \(f(x) \) if
 \[
 f(0) = 2, \quad f'(0) = 3, \quad f''(0) = 4, \quad f'''(0) = 12
 \]

2. Write out the first four terms of the Taylor series of \(f(x) \) centered at \(c = 3 \) if
 \[
 f(3) = 1, \quad f'(3) = 2, \quad f''(3) = 12, \quad f'''(3) = 3
 \]

In Exercises 3–18, find the Maclaurin series and find the interval on which the expansion is valid.

3. \(f(x) = \frac{1}{1 - 2x} \) 4. \(f(x) = \frac{x}{1 - x^4} \)

5. \(f(x) = \cos 3x \) 6. \(f(x) = \sin(2x) \)

7. \(f(x) = \sin^2 x \) 8. \(f(x) = e^{4x} \)

9. \(f(x) = \ln(1 - x^2) \) 10. \(f(x) = (1 - x)^{-1/2} \)

11. \(f(x) = \tan^{-1}(x^2) \) 12. \(f(x) = x^2e^{x^2} \)

13. \(f(x) = e^{x^2} \) 14. \(f(x) = \frac{1 - \cos x}{x} \)

15. \(f(x) = \ln(1 - 5x) \) 16. \(f(x) = (x^2 + 2x)e^x \)

17. \(f(x) = \sin x \) 18. \(f(x) = \cosh x \)

In Exercises 19–28, find the terms through degree 4 of the Maclaurin series of \(f(x) \). Use multiplication and substitution as necessary:

19. \(f(x) = e^x \sin x \) 20. \(f(x) = e^x \ln(1 - x) \)

21. \(f(x) = \frac{\sin x}{1 - x} \) 22. \(f(x) = \frac{1}{1 + \sin x} \)

23. \(f(x) = (1 + x)^{1/4} \) 24. \(f(x) = (1 + x)^{-3/2} \)

25. \(f(x) = e^x \tan^{-1} x \) 26. \(f(x) = x^3 - x \)

27. \(f(x) = e^x \ln x \) 28. \(f(x) = e^{x^2} \)

In Exercises 29–38, find the Taylor series centered at \(c \) and the interval on which the expansion is valid.

29. \(f(x) = \frac{1}{x} \), \(c = 1 \) 30. \(f(x) = e^{3x} \), \(c = -1 \)

31. \(f(x) = \frac{1}{1 - x} \), \(c = 5 \) 32. \(f(x) = \sin x \), \(c = \frac{\pi}{2} \)

33. \(f(x) = x^3 + 3x - 1 \), \(c = 2 \) 34. \(f(x) = x^4 + 3x - 1 \), \(c = 0 \)

35. \(f(x) = \frac{1}{x^2} \), \(c = 4 \) 36. \(f(x) = \sqrt{x} \), \(c = 4 \)

37. \(f(x) = \frac{1}{1 - x^2} \), \(c = 3 \) 38. \(f(x) = \frac{1}{3x - 2} \), \(c = -1 \)

39. Use the identity \(\cos^2 x = \frac{1}{2}(1 + \cos 2x) \) to find the Maclaurin series for \(f(x) = \cos^2 x \).

40. Show that for \(|x| < 1 \),
 \[
 \tanh^{-1} x = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots
 \]
 Hint: Recall that \(\frac{d}{dx} \tanh^{-1} x = \frac{1}{1 - x^2} \).

41. Use the Maclaurin series for \(\ln(1 + x) \) and \(\ln(1 - x) \) to show that
 \[
 \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) = x + \frac{x^3}{3} + \frac{x^5}{5} + \cdots
 \]
 for \(|x| < 1 \). What can you conclude by comparing this result with that of Exercise 40?

42. Differentiate the Maclaurin series for \(\ln(1 - x) \) twice to find the Maclaurin series of \(\frac{1}{(1 - x)^2} \).

43. Show, by integrating the Maclaurin series for \(f(x) = \frac{1}{\sqrt{1 - x^2}} \) that for \(|x| < 1 \),
 \[
 \sin^{-1} x = x \sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \cdots (2n - 1) x^{2n+1}}{2 \cdot 4 \cdot 6 \cdots (2n)}
 \]

44. Use the first five terms of the Maclaurin series in Exercise 43 to approximate \(\sin^{-1} \frac{1}{2} \). Compare the result with the calculator value.

45. How many terms of the Maclaurin series of \(f(x) = \ln(1 + x) \) are needed to compute \(\ln 1.2 \) to within an error of at most 0.0001? Make the computation and compare the result with the calculator value.

46. Show that
 \[
 \pi = \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \frac{\pi^7}{7!} + \cdots
 \]
 converges to zero. How many terms must be computed to get within 0.01 of zero?

47. Use the Maclaurin expansion for \(e^{-x^2} \) to express the function
 \[
 F(x) = \int_0^x e^{-t^2} \, dt
 \]
as an alternating power series in \(x \) (Figure 4).
 (a) How many terms of the Maclaurin series are needed to approximate the integral for \(x = 1 \) to within an error of at most 0.001?
In Exercises 49–52, express the definite integral as an infinite series and find its value to within an error of at most 10^{-4}.

49. $\int_0^1 \cos(x^2) \, dx$
50. $\int_0^1 \tan^{-1}(x^2) \, dx$

51. $\int_0^1 e^{-x^2} \, dx$
52. $\int_0^1 \frac{dx}{\sqrt{x^4 + 1}}$

In Exercises 53–56, express the integral as an infinite series.

53. $\int_0^x \frac{1 - \cos t}{t} \, dt$, for all x
54. $\int_0^x \frac{t - \sin t}{t} \, dt$, for all x

55. $\int_0^x \frac{\ln(1 + t^2)}{t} \, dt$, for $|x| < 1$
56. $\int_0^x \frac{dt}{\sqrt{1 - t^4}}$, for $|x| < 1$

57. Which function has Maclaurin series $\sum_{n=0}^{\infty} (-1)^n n^2 x^n$?

58. Which function has Maclaurin series $\sum_{k=0}^{\infty} (-1)^k \frac{(x - 3)^k}{3k + 1}$?

For which values of x is the expansion valid?

59. Using Maclaurin series, determine to exactly what value the following series converges:

$$\sum_{n=0}^{\infty} (-1)^n \frac{(\pi)^{2n}}{(2n)!}$$

60. Using Maclaurin series, determine to exactly what value the following series converges:

$$\sum_{n=0}^{\infty} \frac{(\ln 5)^n}{n!}$$

In Exercises 61–64, use Theorem 2 to prove that the $f(x)$ is represented by its Maclaurin series for all x.

61. $f(x) = \sin(x/2) + \cos(x/3)$
62. $f(x) = e^{-x}$

63. $f(x) = \sinh x$
64. $f(x) = (1 + x)^{100}$

In Exercises 65–68, find the functions with the following Maclaurin series (refer to Table 2 on page 587).

65. $1 + x^3 + \frac{x^6}{2!} + \frac{x^9}{3!} + \frac{x^{12}}{4!} + \cdots$

66. $1 - 4x + 4^2 x^2 - 4^3 x^3 + 4^4 x^4 - 4^5 x^5 + \cdots$

67. $1 - \frac{5^3 x^3}{3!} + \frac{5^5 x^5}{5!} - \frac{5^7 x^7}{7!} + \cdots$

68. $x^4 - \frac{x^{12}}{3} + \frac{x^{20}}{5} - \frac{x^{28}}{7} + \cdots$

In Exercises 69 and 70, let

$$f(x) = \frac{1}{(1-x)(1-2x)}$$

69. Find the Maclaurin series of $f(x)$ using the identity

$$f(x) = \frac{2}{1 - 2x} - \frac{1}{1 - x}$$

70. Find the Taylor series for $f(x)$ at $c = 2$. Hint: Rewrite the identity of Exercise 69 as

$$f(x) = \frac{2}{-3 - 2(x - 2)} - \frac{1}{-1 - (x - 2)}$$

71. When a voltage V is applied to a series circuit consisting of a resistor R and an inductor L, the current at time t is

$$I(t) = \frac{V}{R} \left(1 - e^{-Rt/L}\right)$$

Expand $I(t)$ in a Maclaurin series. Show that $I(t) \approx \frac{Vt}{L}$ for small t.

72. Use the result of Exercise 71 and your knowledge of alternating series to show that

$$\frac{Vt}{L} \left(1 - \frac{R}{2L}t\right) \leq I(t) \leq \frac{Vt}{L} \quad \text{for all } t$$

73. Find the Maclaurin series for $f(x) = \cos(x^3)$ and use it to determine $f^{(6)}(0)$.

74. Find $f^{(7)}(0)$ and $f^{(8)}(0)$ for $f(x) = \tan^{-1} x$ using the Maclaurin series.

75. Use substitution to find the first three terms of the Maclaurin series for $f(x) = e^{2x}$. How does the result show that $f^{(k)}(0) = 0$ for $1 \leq k \leq 19$?

76. Use the binomial series to find $f^{(8)}(0)$ for $f(x) = \sqrt{1 - x^2}$.

77. Does the Maclaurin series for $f(x) = (1 + x)^{3/4}$ converge to $f(x)$ at $x = 2$? Give numerical evidence to support your answer.

78. Explain the steps required to verify that the Maclaurin series for $f(x) = e^x$ converges to $f(x)$ for all x.

79. Let $f(x) = \sqrt{1 + x}$.

(a) Use a graphing calculator to compare the graph of f with the graphs of the first five Taylor polynomials for f. What do they suggest about the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f is valid for $x = 1$ and $x = -1$.

80. Use the first five terms of the Maclaurin series for the elliptic integral $E(k)$ to estimate the period T of a 1-meter pendulum released at an angle $\theta = \frac{\pi}{4}$ (see Example 12).
81. Use Example 12 and the approximation \(\sin x \approx x \) to show that the period \(T \) of a pendulum released at an angle \(\theta \) has the following second-order approximation:

\[
T \approx 2\pi \sqrt{\frac{L}{g}} \left(1 + \frac{\theta^2}{16}\right)
\]

Further Insights and Challenges

86. In this exercise, we show that the Maclaurin expansion of \(f(x) = \ln(1 + x) \) is valid for \(x = 1 \).

(a) Show that for all \(x \neq -1 \),

\[
\frac{1}{1 + x} = \sum_{n=0}^{N} (-1)^n x^n + \frac{(-1)^{N+1} x^{N+1}}{1 + x}
\]

(b) Integrate from 0 to 1 to obtain

\[
\ln 2 = \sum_{n=1}^{N} \frac{(-1)^{n-1}}{n} + (-1)^{N+1} \int_{0}^{1} x^{N+1} \, dx
\]

(c) Verify that the integral on the right tends to zero as \(N \to \infty \) by showing that it is smaller than \(\int_{0}^{1} x^{N+1} \, dx \).

(d) Prove the formula

\[
\ln 2 = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots
\]

87. Let \(g(t) = \frac{1}{1 + t^2} - \frac{t}{1 + t^2} \).

(a) Show that \(\int_{0}^{1} g(t) \, dt = \frac{\pi}{4} - \frac{1}{2} \ln 2 \).

(b) Show that \(g(t) = 1 - t - t^2 + t^3 + t^4 - t^5 \ldots \).

(c) Evaluate \(S = 1 - \frac{1}{2} + \frac{1}{3} + \frac{1}{4} - \frac{1}{5} - \frac{1}{6} - \frac{1}{7} + \cdots \).

In Exercises 88 and 89, we investigate the convergence of the binomial series

\[
T_a(x) = \sum_{n=0}^{\infty} \binom{a}{n} x^n
\]

88. Prove that \(T_a(x) \) has radius of convergence \(R = 1 \) if \(a \) is not a whole number. What is the radius of convergence if \(a \) is a whole number?

89. By Exercise 88, \(T_a(x) \) converges for \(|x| < 1 \), but we do not yet know whether \(T_a(x) = (1 + x)^a \).

(a) Verify the identity

\[
a \binom{a}{n} = n \binom{a}{n} + (n + 1) \binom{a}{n+1}
\]

(b) Use (a) to show that \(y = T_a(x) \) satisfies the differential equation \((1 + x)y' = ay \) with initial condition \(y(0) = 1 \).

(c) Prove \(T_a(x) = (1 + x)^a \) for \(|x| < 1 \) by showing that the derivative of the ratio \(\frac{T_a(x)}{(1 + x)^a} \) is zero.

In Exercises 82–85, find the Maclaurin series of the function and use it to calculate the limit.

82. \(\lim_{x \to 0} \frac{\cos x - 1 + x^2}{x^4} \)

83. \(\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{3!}}{x^5} \)

84. \(\lim_{x \to 0} \frac{\tan^{-1} x - x}{x^3} \)

85. \(\lim_{x \to 0} \frac{\sin(x^2) - \cos x}{x^4} \)

90. The function \(G(k) = \int_{0}^{\pi/2} \sqrt{1 - k^2 \sin^2 t} \, dt \) is called an elliptic integral of the second kind. Prove that for \(|k| < 1 \),

\[
G(k) = \frac{\pi}{2} - \frac{\pi}{2} \sum_{n=1}^{\infty} \left(\frac{1 \cdot 3 \ldots (2n-1)}{2 \cdot 4 \cdot 6 \ldots (2n)} \right)^2 \frac{k^{2n}}{2n-1}
\]

91. Assume that \(a < b \) and let \(L \) be the arc length (circumference) of the ellipse \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \) shown in Figure 5. There is no explicit formula for \(L \), but it is known that \(L = 4bG(k) \), with \(G(k) \) as in Exercise 90 and \(k = \sqrt{1 - a^2/b^2} \). Use the first three terms of the expansion of Exercise 90 to estimate \(L \) when \(a = 4 \) and \(b = 5 \).

\[\text{FIGURE 5} \quad \text{The ellipse} \quad \left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1.\]

92. Use Exercise 90 to prove that if \(a < b \) and \(a/b \) is near 1 (a nearly circular ellipse), then

\[L \approx \frac{\pi}{2} \left(3b + \frac{a^2}{b} \right)\]

Hint: Use the first two terms of the series for \(G(k) \).

93. Irrationality of \(e \) Prove that \(e \) is an irrational number using the following argument by contradiction. Suppose that \(e = M/N \), where \(M, N \) are nonzero integers.

(a) Show that \(M! \cdot e^{-1} \) is a whole number.

(b) Use the power series for \(f(x) = e^x \) at \(x = -1 \) to show that there is an integer \(B \) such that \(M! \cdot e^{-1} \) equals

\[
B + (-1)^{M+1} \left(\frac{1}{M+1} - \frac{1}{(M+1)(M+2)} + \ldots \right)
\]

(c) Use your knowledge of alternating series with decreasing terms to conclude that \(0 < |M! \cdot e^{-1} - B| < 1 \) and observe that this contradicts (a). Hence, \(e \) is not equal to \(M/N \).

94. Use the result of Exercise 71 in Section 7.7 to show that the Maclaurin series of the function

\[f(x) = \begin{cases} e^{-1/x^2} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}\]

is \(T(x) = 0 \). This provides an example of a function \(f \) whose Maclaurin series converges but does not converge to \(f(x) \) (except at \(x = 0 \)).
CHAPTER REVIEW EXERCISES

1. Let \(a_n = \frac{n - 3}{n!} \) and \(b_n = a_{n+3} \). Calculate the first three terms in each sequence.
 (a) \(a_n^2 \)
 (b) \(b_n \)
 (c) \(a_n b_n \)
 (d) \(2a_{n+1} - 3a_n \)

2. Prove that \(\lim_{n \to \infty} \frac{2n - 1}{3n + 2} = \frac{2}{3} \) using the limit definition.

In Exercises 3–8, compute the limit (or state that it does not exist) assuming that \(\lim_{n \to \infty} a_n = 2 \).

3. \(\lim_{n \to \infty} (5a_n - 2a_n^2) \)
4. \(\lim_{n \to \infty} \frac{1}{a_n} \)
5. \(\lim_{n \to \infty} e^{a_n} \)
6. \(\lim_{n \to \infty} \cos(\pi a_n) \)
7. \(\lim_{n \to \infty} (-1)^n a_n \)
8. \(\lim_{n \to \infty} \frac{a_n^2 + n}{a_n + n^2} \)

In Exercises 9–22, determine the limit of the sequence or show that the sequence diverges.

9. \(a_n = \sqrt{n + 5} - \sqrt{n + 2} \)
10. \(a_n = \frac{3n^3 - n}{1 - 2n^2} \)
11. \(a_n = 2^{1/n^2} \)
12. \(a_n = \frac{10^n}{n!} \)
13. \(b_m = 1 + (-1)^m \)
14. \(b_m = \frac{1 + (-1)^m}{m} \)
15. \(b_n = \tan^{-1} \left(\frac{n + 2}{n + 5} \right) \)
16. \(a_n = \frac{100^n}{n!} - \frac{3 + \pi^n}{n^a} \)
17. \(b_n = \sqrt{n^2 + n} - \sqrt{n^2 + 1} \)
18. \(c_n = \sqrt{n^2 + n} - \sqrt{n^2 + n} - n \)
19. \(b_m = \left(1 + \frac{1}{m} \right)^{3m} \)
20. \(c_n = \left(1 + \frac{3}{n} \right)^n \)
21. \(b_n = n(\ln(n + 1) - \ln n) \)
22. \(c_n = \frac{\ln(n^2 + 1)}{\ln(n^3 + 1)} \)

23. Use the Squeeze Theorem to show that \(\lim_{n \to \infty} \frac{\arctan(n^2)}{\sqrt{n^2}} = 0 \).

24. Give an example of a divergent sequence \(\{a_n\} \) such that \(\{\sin a_n\} \) is convergent.

25. Calculate \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \), where \(a_n = \frac{1}{2} 3^n - \frac{1}{3} 2^n \).

26. Define \(a_{n+1} = \sqrt{a_n} + 6 \) with \(a_1 = 2 \).
 (a) Compute \(a_n \) for \(n = 2, 3, 4, 5 \).
 (b) Show that \(\{a_n\} \) is increasing and is bounded by 3.
 (c) Prove that \(\lim_{n \to \infty} a_n \) exists and find its value.

27. Calculate the partial sums \(S_4 \) and \(S_7 \) of the series \(\sum_{n=1}^{\infty} \frac{n - 2}{n^2 + 2n} \).

28. Find the sum \(1 - \frac{1}{4} + \frac{1}{4^2} - \frac{1}{4^3} + \cdots \).

29. Find the sum \(\frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \frac{32}{243} + \cdots \).

30. Use series to determine a reduced fraction that has decimal expansion 0.121212 \cdots.

31. Use series to determine a reduced fraction that has decimal expansion 0.108108108 \cdots.

32. Find the sum \(\sum_{n=2}^{\infty} \left(\frac{2}{e^n} \right) \).

33. Find the sum \(\sum_{n=-1}^{\infty} \frac{2n + 3}{3^n} \).

34. Show that \(\sum_{n=1}^{\infty} (b - \tan^{-1} n^2) \) diverges if \(b \neq \frac{\pi}{2} \).

35. Give an example of a divergent series \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) such that \(\sum_{n=1}^{\infty} (a_n + b_n) = 1 \).

36. Let \(S = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n + 2} \right) \). Compute \(S_N \) for \(N = 1, 2, 3, 4 \). Find \(S \) by showing that \(S_N = \frac{3}{2} - \frac{1}{N + 1} - \frac{1}{N + 2} \).

37. Evaluate \(S = \sum_{n=1}^{\infty} \frac{1}{n(n + 3)} \).

38. Find the total area of the infinitely many circles on the interval [0, 1] in Figure 1.

\[\begin{array}{c}
0 \quad \cdots \quad \frac{\pi}{4} \quad 1 \\
\end{array} \]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{circle.png}
\caption{Figure 1}
\end{figure}

In Exercises 39–42, use the Integral Test to determine whether the infinite series converges.

39. \(\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1} \)

40. \(\sum_{n=3}^{\infty} \frac{n^2}{(n^3 + 1)^{1.011}} \)

41. \(\sum_{n=1}^{\infty} \frac{1}{(n + 2)(\ln(n + 2))^3} \)

42. \(\sum_{n=1}^{\infty} \frac{n^3}{e^{n^2}} \)

In Exercises 43–50, use the Direct Comparison or Limit Comparison Test to determine whether the infinite series converges.

43. \(\sum_{n=1}^{\infty} \frac{1}{(n + 1)^2} \)

44. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n + 1}} \)

45. \(\sum_{n=2}^{\infty} \frac{n^2 + 1}{n^{5.5} - 2} \)

46. \(\sum_{n=1}^{\infty} \frac{1}{n - \ln n} \)

47. \(\sum_{n=2}^{\infty} \frac{n}{\sqrt{n^3 + 5}} \)

48. \(\sum_{n=1}^{\infty} \frac{1}{3^n - 2n^2} \)
49. \(\sum_{n=1}^{\infty} \frac{n^{10} + 10^n}{n^{11} + 11^n} \)
50. \(\sum_{n=1}^{\infty} \frac{n^{20} + 21^n}{n^{21} + 20^n} \)

51. Determine the convergence of \(\sum_{n=1}^{\infty} \frac{2^n + n}{3^n - 2} \) using the Limit Comparison Test with \(b_n = \left(\frac{2}{3} \right)^n \).

52. Determine the convergence of \(\sum_{n=1}^{\infty} \frac{\ln n}{1.5^n} \) using the Limit Comparison Test with \(b_n = \frac{1}{1.45^n} \).

53. Let \(a_n = 1 - \sqrt{1 - \frac{1}{n}} \). Show that \(\lim_{n \to \infty} a_n = 0 \) and that \(\sum_{n=1}^{\infty} a_n \) diverges. \textit{Hint:} Show that \(a_n \geq \frac{1}{2n} \).

54. Determine whether \(\sum_{n=2}^{\infty} \left(1 - \sqrt{1 - \frac{1}{n^2}} \right) \) converges.

55. Let \(S = \sum_{n=1}^{\infty} \frac{n}{(n^2 + 1)^2} \).
 (a) Show that \(S \) converges.
 (b) \textit{CAS} Use Eq. (4) in Exercise 85 of Section 11.3 with \(M = 99 \) to approximate \(S \). What is the maximum size of the error?

In Exercises 56–59, determine whether the series converges absolutely. If it does not, determine whether it converges conditionally.

56. \(\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} + 2n} \)
57. \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{1.1} \ln(n + 1)} \)
58. \(\sum_{n=1}^{\infty} \frac{\cos \left(\frac{\pi}{4} + \pi n\right)}{\sqrt{n}} \)
59. \(\sum_{n=1}^{\infty} \frac{\cos \left(\frac{\pi}{4} + 2\pi n\right)}{\sqrt{n}} \)

60. \textit{CAS} Use a computer algebra system to approximate \(\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3 + \sqrt{n}} \) to within an error of at most 10\(^{-5}\).

61. Catalan’s constant is defined by \(K = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k + 1)^2} \).
 (a) How many terms of the series are needed to calculate \(K \) with an error of less than \(10^{-6} \)?
 (b) \textit{CAS} Carry out the calculation.

62. Give an example of a conditionally convergent series \(\sum_{n=1}^{\infty} a_n \) and \(\sum_{n=1}^{\infty} b_n \) such that \(\sum_{n=1}^{\infty} (a_n + b_n) \) converges absolutely.

63. Let \(\sum_{n=1}^{\infty} a_n \) be an absolutely convergent series. Determine whether the following series are convergent or divergent:
 (a) \(\sum_{n=1}^{\infty} \left(a_n + \frac{1}{n^2} \right) \)
 (b) \(\sum_{n=1}^{\infty} (-1)^n a_n \)
 (c) \(\sum_{n=1}^{\infty} \frac{1}{1 + a_n^2} \)
 (d) \(\sum_{n=1}^{\infty} \frac{|a_n|}{n} \)

64. Let \(|a_n| \) be a positive sequence such that \(\lim_{n \to \infty} \sqrt[n]{a_n} = \frac{1}{2} \). Determine whether the following series converge or diverge:

65. \(\sum_{n=1}^{\infty} \frac{n^5}{n^7} \)
66. \(\sum_{n=1}^{\infty} \frac{\sqrt{n + 1}}{n^8} \)
67. \(\sum_{n=1}^{\infty} \frac{1}{n^2 + n^3} \)
68. \(\sum_{n=1}^{\infty} \frac{n^4}{n!} \)
69. \(\sum_{n=1}^{\infty} \frac{2n^2}{n!} \)
70. \(\sum_{n=1}^{\infty} \frac{\ln n}{n^{3/2}} \)
71. \(\sum_{n=1}^{\infty} \left(\frac{n}{2} \right)^n \frac{1}{n!} \)
72. \(\sum_{n=1}^{\infty} \left(\frac{n}{4} \right)^n \frac{1}{n!} \)

In Exercises 73–76, apply the Root Test to determine convergence or divergence, or state that the Root Test is inconclusive.

73. \(\sum_{n=1}^{\infty} \frac{1}{4^n} \)
74. \(\sum_{n=1}^{\infty} \left(\frac{2}{n} \right)^n \)
75. \(\sum_{n=1}^{\infty} \left(\frac{3}{4n} \right)^n \)
76. \(\sum_{n=1}^{\infty} \left(\cos \frac{1}{n} \right)^n \)

In Exercises 77–100, determine convergence or divergence using any method covered in the text.

77. \(\sum_{n=1}^{\infty} \left(\frac{2}{3} \right)^n \)
78. \(\sum_{n=1}^{\infty} \frac{\pi^n}{n!} \)
79. \(\sum_{n=1}^{\infty} e^{-0.02n} \)
80. \(\sum_{n=1}^{\infty} ne^{-0.02n} \)
81. \(\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{1.1} + \sqrt{n} + 1} \)
82. \(\sum_{n=1}^{\infty} \frac{1}{n (\ln n)^{3/2}} \)
83. \(\sum_{n=2}^{\infty} \frac{(-1)^n}{\ln n} \)
84. \(\sum_{n=2}^{\infty} \frac{n!}{(2n)!} \)
85. \(\sum_{n=2}^{\infty} \frac{n}{1 + 100n} \)
86. \(\sum_{n=2}^{\infty} \frac{n^3 - 2n^2 + n - 4}{2n^4 + 3n^3 - 4n^2 - 1} \)
87. \(\sum_{n=1}^{\infty} \frac{\cos n}{n^{3/2}} \)
88. \(\sum_{n=1}^{\infty} \frac{n}{n^{3/2} + 1} \)
89. \(\sum_{n=1}^{\infty} \left(\frac{n}{5n + 2} \right)^n \)
90. \(\sum_{n=1}^{\infty} \frac{n^2}{n!} \)
91. \(\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n + \ln n}} \)
92. \(\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} (1 + \sqrt{n})} \)
93. \(\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n + 1}} \right) \)
94. \(\sum_{n=1}^{\infty} (\ln n - \ln (n + 1)) \)
95. \[\sum_{n=0}^{\infty} \frac{1}{n + \sqrt{n}} \]
96. \[\sum_{n=2}^{\infty} \frac{\cos(n\pi)}{n^{2/3}} \]
97. \[\sum_{n=2}^{\infty} \frac{1}{n \ln n} \]
98. \[\sum_{n=2}^{\infty} \frac{1}{n^2} \]
99. \[\sum_{n=1}^{\infty} \sin^2 \frac{\pi}{n} \]
100. \[\sum_{n=0}^{\infty} \frac{2n}{n!} \]

In Exercises 101–106, find the interval of convergence of the power series.

101. \[\sum_{n=0}^{\infty} \frac{n^2 x^n}{n!} \]
102. \[\sum_{n=0}^{\infty} \frac{x^n}{n+1} \]
103. \[\sum_{n=0}^{\infty} \frac{n^6}{n^8 + 1} (x - 3)^n \]
104. \[\sum_{n=0}^{\infty} \frac{n x^n}{n} \]
105. \[\sum_{n=0}^{\infty} (nx)^n \]
106. \[\sum_{n=2}^{\infty} \frac{(2x - 3)^n}{n \ln n} \]

107. Expand \(f(x) = \frac{2}{4 - 3x} \) as a power series centered at \(c = 0 \). Determine the values of \(x \) for which the series converges.

108. Prove that
\[\sum_{n=0}^{\infty} n e^{-nx} = \frac{e^{-x}}{(1 - e^{-x})^2} \]

Hint: Express the left-hand side as the derivative of a geometric series.

109. Let \(F(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{k!} \).
(a) Show that \(F(x) \) has infinite radius of convergence.
(b) Show that \(y = F(x) \) is a solution of
\[y'' = xy' + y, \quad y(0) = 1, \quad y'(0) = 0 \]
(c) CAS Plot the partial sums \(S_N \) for \(N = 1, 3, 5, 7 \) on the same set of axes.

110. Find a power series \(P(x) = \sum_{n=0}^{\infty} a_n x^n \) that satisfies the Laguerre differential equation
\[xy'' + (1 - x)y' - y = 0 \]
with initial condition satisfying \(P(0) = 1 \).

111. Use power series to evaluate \(\lim_{x \to 0} \frac{x^2 e^x}{\cos x - 1} \).

112. Use power series to evaluate \(\lim_{x \to 0} \frac{x^2(1 - \ln(x + 1))}{\sin x - x} \).

In Exercises 113–122, find the Taylor series centered at \(c \).

113. \(f(x) = e^{4x}, \quad c = 0 \)
114. \(f(x) = e^{2x}, \quad c = -1 \)
115. \(f(x) = x^4, \quad c = 2 \)
116. \(f(x) = x^3 - x, \quad c = -2 \)
117. \(f(x) = \sin x, \quad c = \pi \)
118. \(f(x) = e^{x-1}, \quad c = -1 \)
119. \(f(x) = \frac{1}{1 - 2x}, \quad c = -2 \)
120. \(f(x) = \frac{1}{(1 - 2x)^2}, \quad c = -2 \)
121. \(f(x) = \ln \left(\frac{x}{2} \right), \quad c = 2 \)
122. \(f(x) = x \ln \left(\frac{1 + \frac{x}{2}}{2} \right), \quad c = 0 \)

In Exercises 123–126, find the first three terms of the Maclaurin series of \(f(x) \) and use it to calculate \(f^{(3)}(0) \).

123. \(f(x) = (x^2 - x)e^{x^2} \)
124. \(f(x) = \tan^{-1}(x^2 - x) \)
125. \(f(x) = \frac{1}{1 + \tan x} \)
126. \(f(x) = (\sin x) \sqrt{1 + x} \)

127. Calculate \(\frac{\pi}{2} - \frac{\pi^3}{2^3 3!} + \frac{\pi^5}{2^5 5!} - \frac{\pi^7}{2^7 7!} + \cdots \).

128. Find the Maclaurin series of the function \(F(x) = \int_0^x e^t - \frac{1}{t} \, dt \).
Ellipses, which are a type of conic section, and parametric equations are used to track satellites as they orbit Earth. (Chad Baker/Getty Images)

12
PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

This chapter introduces two important new tools. First, we consider parametric equations, which describe curves in a form that is particularly useful for analyzing motion and is indispensable in fields such as computer graphics and computer-aided design. We then study polar coordinates, an alternative to rectangular coordinates that simplifies computations in many applications. The chapter closes with a discussion of the conic sections (ellipses, hyperbolas, and parabolas).

12.1 Parametric Equations
Imagine a particle moving along a curve C in the plane as in Figure 1. We would like to be able to describe the particle’s motion; however, the curve C is not the graph of a function $y = h(x)$ since it fails the vertical line test. Instead, we can describe the particle’s motion by specifying its coordinates as functions of time t:

$$x = f(t), \quad y = g(t)$$

In other words, at time t, the particle is located at the point $c(t) = (x(t), y(t))$.

The equations (1) are called **parametric equations**, and C is called a **parametric curve**. We refer to $c(t)$ as a **parametrization** with **parameter** t.

Because x and y are functions of t, we often write $c(t) = (x(t), y(t))$ instead of $(f(t), g(t))$. Of course, we are free to use any variable for the parameter (such as s or θ). In plots of parametric curves, the direction of motion is often indicated by an arrow as in Figure 1.

Example 1 Sketch the curve with parametric equations

$$x = 2t - 4, \quad y = 3 + t^2$$

Solution First compute the x- and y-coordinates for several values of t as in Table 1, and plot the corresponding points (x, y) as in Figure 2. Then join the points by a smooth curve, indicating the direction of motion (direction of increasing t) with an arrow.

<table>
<thead>
<tr>
<th>t</th>
<th>$x = 2t - 4$</th>
<th>$y = 3 + t^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-8</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>-4</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>19</td>
</tr>
</tbody>
</table>

(Figure 2) The parametric curve $x = 2t - 4, y = 3 + t^2$. 595
The graph of \(y = x^2 \) can be parametrized in a simple way. We take \(x = t \), and we take \(y = t^2 \). Then, clearly this generates the right curve, since eliminating the variable \(t \) returns us to the original equation \(y = x^2 \). Thus, the parabola \(y = x^2 \) is parametrized by \(c(t) = (t, t^2) \). More generally, we can parametrize the graph of \(y = f(x) \) by taking \(x = t \) and \(y = f(t) \). Therefore, \(c(t) = (t, f(t)) \) parametrizes the graph. For another example, the graph of \(y = e^x \) is parametrized by \(c(t) = (t, e^t) \).

An advantage of parametric equations is that they enable us to describe curves that are not graphs of functions. For example, the curve in Figure 3 is not of the form \(y = f(x) \) but it can be expressed parametrically.

As we have just noted, a parametric curve \(c(t) \) need not be the graph of a function. If it is, however, it may be possible to find the function \(f \) by “eliminating the parameter” as in the next example.

Example 2 Eliminating the Parameter

Describe the parametric curve

\[
c(t) = (2t - 4, 3 + t^2)
\]

of the previous example in the form \(y = f(x) \).

Solution We “eliminate the parameter” by solving for \(y \) as a function of \(x \). First, express \(t \) in terms of \(x \): Since \(x = 2t - 4 \), we have \(t = \frac{1}{2}x + 2 \). Then substitute

\[
y = 3 + t^2 = 3 + \left(\frac{1}{2}x + 2 \right)^2 = 7 + 2x + \frac{1}{4}x^2
\]

Thus, \(c(t) \) traces out the graph of \(f(x) = 7 + 2x + \frac{1}{4}x^2 \) shown in Figure 2.

Example 3 A model rocket follows the trajectory

\[
c(t) = (80t, 200t - 4.9t^2)
\]

until it hits the ground, with \(t \) in seconds and distance in meters (Figure 4). Find:

(a) The rocket’s height at \(t = 5 \) s.

(b) Its maximum height.

Solution The height of the rocket at time \(t \) is \(y(t) = 200t - 4.9t^2 \).

(a) The height at \(t = 5 \) s is

\[
y(5) = 200(5) - 4.9(5^2) = 877.5 \text{ m}
\]

(b) The maximum height occurs at the critical point of \(y(t) \):

\[
y'(t) = \frac{d}{dt}(200t - 4.9t^2) = 200 - 9.8t = 0 \quad \Rightarrow \quad t = \frac{200}{9.8} \approx 20.4 \text{ s}
\]

The rocket’s maximum height is \(y(20.4) = 200(20.4) - 4.9(20.4)^2 \approx 2041 \text{ m} \).

We now discuss parametrizations of lines and circles. They will appear frequently in later chapters.

Theorem 1 Parametrization of a Line

(a) The line through \(P = (a, b) \) of slope \(m \) is parametrized by

\[
x = a + rt, \quad y = b + st \quad \text{for any } r \text{ and } s \text{ (with } r \neq 0) \text{ such that } m = s/r.
\]

(b) The line through \(P = (a, b) \) and \(Q = (c, d) \) has parametrization

\[
x = a + t(c - a), \quad y = b + t(d - b) \quad \text{for } -\infty < t < \infty
\]
SECTION 12.1 Parametric Equations

Proof (a) Solve \(x = a + rt \) for \(t \) in terms of \(x \) to obtain \(t = (x - a)/r \). Then

\[
y = b + st = b + s \left(\frac{x - a}{r} \right) = b + m(x - a) \quad \text{or} \quad y - b = m(x - a)
\]

This is the equation of the line through \(P = (a, b) \) of slope \(m \). The choice \(r = 1 \) and \(s = m \) yields the parametrization in Figure 5.

The parametrization in (b) defines a line that satisfies \((x(0), y(0)) = (a, b) \) and \((x(1), y(1)) = (c, d) \). Thus, it parametrizes the line through \(P \) and \(Q \) and traces the segment from \(P \) to \(Q \) as \(t \) varies from 0 to 1.

EXAMPLE 4 Parametrization of a Line Find parametric equations for the line through \(P = (3, -1) \) of slope \(m = 4 \).

Solution We can parametrize the line by taking \(r = 1 \) and \(s = 4 \) in Eq. (3):

\[
x = 3 + t, \quad y = -1 + 4t
\]

This is also written as \(c(t) = (3 + t, -1 + 4t) \). Another parametrization of the line is \(c(t) = (3 + 5t, -1 + 20t) \), corresponding to \(r = 5 \) and \(s = 20 \) in Eq. (3).

The circle of radius \(R \) centered at the origin has the parametrization

\[
x = R \cos \theta, \quad y = R \sin \theta
\]

The parameter \(\theta \) represents the angle corresponding to the point \((x, y) \) on the circle (Figure 6). The circle is traversed once in the counterclockwise direction as \(\theta \) varies over a half-open interval of length \(2\pi \) such as \([0, 2\pi)\) or \([-\pi, \pi)\).

More generally, the circle of radius \(R \) with center \((a, b)\) has parametrization (Figure 6)

\[
x = a + R \cos \theta, \quad y = b + R \sin \theta
\]

As a check, let’s verify that a point \((x, y)\) given by Eq. (5) satisfies the equation of the circle of radius \(R \) centered at \((a, b)\):

\[
(x - a)^2 + (y - b)^2 = (a + R \cos \theta - a)^2 + (b + R \sin \theta - b)^2
\]

\[
= R^2 \cos^2 \theta + R^2 \sin^2 \theta = R^2
\]

In general, to **translate** (meaning “to move”) a parametric curve horizontally \(a \) units and vertically \(b \) units, replace \(c(t) = (x(t), y(t)) \) by \(c(t) = (a + x(t), b + y(t)) \).

Suppose we have a parametrization \(c(t) = (x(t), y(t)) \), where \(x(t) \) is an even function and \(y(t) \) is an odd function, that is, \(x(-t) = x(t) \) and \(y(-t) = -y(t) \). In this case, \(c(-t) \) is the reflection of \(c(t) \) across the \(x \)-axis:

\[
c(-t) = (x(-t), y(-t)) = (x(t), -y(t))
\]

The curve, therefore, is **symmetric** with respect to the \(x \)-axis. We apply this remark in the next example and in Example 7 below.

EXAMPLE 5 Parametrization of an Ellipse Verify that the ellipse with equation \(\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1 \) is parametrized by

\[
c(t) = (a \cos t, b \sin t) \quad \text{(for } -\pi \leq t < \pi)\]

Plot the case \(a = 4 \), \(b = 2 \).

Solution To verify that \(c(t) \) parametrizes the ellipse, show that the equation of the ellipse is satisfied with \(x = a \cos t, y = b \sin t \):

\[
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{a \cos t}{a}\right)^2 + \left(\frac{b \sin t}{b}\right)^2 = \cos^2 t + \sin^2 t = 1
\]
To plot the case $a = 4$, $b = 2$, we connect the points for the t-values in Table 2 [see Figure 7(A)]. This gives us the top half of the ellipse for $0 \leq t \leq \pi$. Then we observe that $x(t) = 4 \cos t$ is even and $y(t) = 2 \sin t$ is odd. As noted above, this tells us that the bottom half of the ellipse is obtained by symmetry with respect to the x-axis, as in Figure 7(B). Alternatively, we could also evaluate $x(t)$ and $y(t)$ for negative values of t between $-\pi$ and 0 to determine the bottom portion of the ellipse.

A parametric curve $c(t)$ is also called a path. This term emphasizes that $c(t)$ describes not just an underlying curve C, but a particular way of moving along the curve.

CONCEPTUAL INSIGHT The parametric equations for the ellipse in Example 5 illustrate a key difference between the path $c(t)$ and its underlying curve C. The curve C is an ellipse in the plane, whereas $c(t)$ describes a particular, counterclockwise motion of a particle along the ellipse. If we let t vary from 0 to 4π, then the particle goes around the ellipse twice.

A key feature of parametrizations is that they are not unique. In fact, every curve can be parametrized in infinitely many different ways. For instance, the parabola $y = x^2$ is parametrized not only by (t, t^2) but also by (t^3, t^6), or (t^5, t^{10}), and so on.

EXAMPLE 6 Different Parametrizations of the Same Curve

Describe the motion of a particle moving along each of the following paths:

(a) $c_1(t) = (t^3, t^6)$
(b) $c_2(t) = (t^2, t^4)$
(c) $c_3(t) = (\cos t, \cos^2 t)$

Solution Each of these parametrizations satisfies $y = x^2$, so all three parametrize portions of the parabola $y = x^2$.

(a) As t varies from $-\infty$ to ∞, t^3 also varies from $-\infty$ to ∞. Therefore, $c_1(t) = (t^3, t^6)$ traces the entire parabola $y = x^2$, moving from left to right and passing through each point once [Figure 8(A)].

(b) Since $x = t^2 \geq 0$, the path $c_2(t) = (t^2, t^4)$ traces only the right half of the parabola. The particle comes in toward the origin as t varies from $-\infty$ to 0, and it goes back out to the right as t varies from 0 to ∞ [Figure 8(B)].

(c) As t varies from $-\infty$ and ∞, $\cos t$ oscillates between 1 and -1. Thus, a particle following the path $c_3(t) = (\cos t, \cos^2 t)$ oscillates back and forth between the points $(1, 1)$ and $(-1, 1)$ on the parabola [Figure 8(C)].

EXAMPLE 7 Using Symmetry to Sketch a Loop

Sketch the parametric curve $c(t) = (t^2 + 1, t^3 - 4t)$

Label the points corresponding to $t = 0, \pm 1, \pm 2, \pm 2.5$.

Solution

Step 1. Use symmetry.

Observe that $x(t) = t^2 + 1$ is an even function and that $y(t) = t^3 - 4t$ is an odd function. As noted before Example 5, this tells us that $c(t)$ is symmetric with respect to the x-axis. Therefore, we will plot the curve for $t \geq 0$ and reflect across the x-axis to obtain the part for $t \leq 0$.

TABLE 2

<table>
<thead>
<tr>
<th>t</th>
<th>$x(t) = 4 \cos t$</th>
<th>$y(t) = 2 \sin t$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>$\frac{\pi}{6}$</td>
<td>$2\sqrt{3}$</td>
<td>1</td>
</tr>
<tr>
<td>$\frac{\pi}{3}$</td>
<td>2</td>
<td>$\sqrt{3}$</td>
</tr>
<tr>
<td>$\frac{\pi}{2}$</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$\frac{2\pi}{3}$</td>
<td>-2</td>
<td>$\sqrt{3}$</td>
</tr>
<tr>
<td>$\frac{5\pi}{6}$</td>
<td>$-2\sqrt{3}$</td>
<td>1</td>
</tr>
<tr>
<td>π</td>
<td>-4</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 7 Ellipse with parametric equations $x = 4 \cos t$, $y = 2 \sin t$.

FIGURE 8 Three parametrizations of portions of the parabola.
Step 2. Analyze \(x(t) \), \(y(t) \) as functions of \(t \).

We have \(x(t) = t^2 + 1 \) and \(y(t) = t^3 - 4t \). The \(x \)-coordinate \(x(t) = t^2 + 1 \) increases to \(\infty \) as \(t \to \infty \). To analyze the \(y \)-coordinate, we graph \(y(t) = t^3 - 4t = t(t - 2)(t + 2) \) as a function of \(t \) (not as a function of \(x \)). Since \(y(t) \) is the height above the \(x \)-axis, Figure 9(A) shows that

\[
\begin{align*}
y(t) &< 0 \quad \text{for} \quad 0 < t < 2, \quad \Rightarrow \quad \text{curve below \(x \)-axis} \\
y(t) &> 0 \quad \text{for} \quad t > 2, \quad \Rightarrow \quad \text{curve above \(x \)-axis}
\end{align*}
\]

So, the curve starts at \(c(0) = (1,0) \), dips below the \(x \)-axis, and returns to the \(x \)-axis at \(t = 2 \). Both \(x(t) \) and \(y(t) \) tend to \(\infty \) as \(t \to \infty \). The curve is concave up because \(y(t) \) increases more rapidly than \(x(t) \).

Step 3. Plot points and join by an arc.

The points \(c(0) \), \(c(1) \), \(c(2) \), \(c(2.5) \) tabulated in Table 3 are plotted and joined by an arc to create the sketch for \(t \geq 0 \) as in Figure 9(B). The sketch is completed by reflecting across the \(x \)-axis as in Figure 9(C).

TABLE 3

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x = t^2 + 1)</th>
<th>(y = t^3 - 4t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2.5</td>
<td>7.25</td>
<td>5.625</td>
</tr>
</tbody>
</table>

A cycloid is a curve traced by a point on the circumference of a rolling wheel as in Figure 10. Cycloids are famous for their “brachistochrone property” (see the marginal note below).

![Figure 10: A cycloid.](image)

Example 8: Parametrizing the Cycloid Find parametric equations for the cycloid generated by a point \(P \) on the unit circle.

Solution The point \(P \) is located at the origin at \(t = 0 \). At time \(t \), the circle has rolled \(t \) radians along the \(x \)-axis and the center \(C \) of the circle then has coordinates \((t, 1) \) as in Figure 11(A). Figure 11(B) shows that we get from \(C \) to \(P \) by moving down \(\cos t \) units and to the left \(\sin t \) units, giving us the parametric equations

\[
x(t) = t - \sin t, \quad y(t) = 1 - \cos t
\]

The argument in Example 8 shows in a similar fashion that the cycloid generated by a circle of radius \(R \) has parametric equations

\[
x = Rt - R \sin t, \quad y = R - R \cos t
\]
CHAPTER 12 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

1. Position of \(P \) at time \(t \)

\[\begin{align*}
\text{A} & \quad \text{B} \\
\text{t} & \quad \sin t \\
\text{P} & \quad \text{C} \\
\text{O} & \quad 1 \\
\text{x} & \quad \text{y} \\
\text{1} & \quad \text{1} \\
\text{t} & \quad \text{t} \\
\text{C = (t, 1)} & \quad \text{C = (t, 1)} \\
\text{P} & \quad \text{P} \\
\text{1} & \quad \text{1} \\
\text{x} & \quad \text{y} \\
\end{align*} \]

FIGURE 11 Tangent Lines to Parametric Curves

Just as we use tangent lines to the graph of \(y = f(x) \) to determine the rate of change of the function \(f \), we would like to be able to determine how \(y \) changes with \(x \) when the curve is described by parametric equations. The slope of the tangent line is the derivative \(\frac{dy}{dx} \), but we have to use the Chain Rule to compute it because \(y \) is not given explicitly as a function of \(x \). Write \(x = f(t) \), \(y = g(t) \). Then, by the Chain Rule,

\[\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{g'(t)}{f'(t)} \]

If \(f'(t) \neq 0 \), we can divide by \(f'(t) \) to obtain

\[\frac{dy}{dx} = \frac{g'(t)}{f'(t)} \]

This calculation is valid if \(f(t) \) and \(g(t) \) are differentiable, \(f'(t) \) is continuous, and \(f'(t) \neq 0 \). In this case, the inverse \(t = f^{-1}(x) \) exists, and the composite \(y = g(f^{-1}(x)) \) is a differentiable function of \(x \).

CAUTION Do not confuse \(\frac{dy}{dx} \) with the derivatives \(\frac{dx}{dt} \) and \(\frac{dy}{dt} \), which are derivatives with respect to the parameter \(t \). Only \(\frac{dy}{dx} \) is the slope of the tangent line.

EXAMPLE 9 Let \(c(t) = (t^2 + 1, t^3 - 4t) \). Find:

(a) An equation of the tangent line at \(t = 3 \)

(b) The points where the tangent is horizontal (Figure 12).

Solution We have

\[\frac{dy}{dx} = \frac{y'(t)}{x'(t)} = \frac{(t^3 - 4t)'}{(t^2 + 1)'} = \frac{3t^2 - 4}{2t} \]

(a) The slope at \(t = 3 \) is

\[\frac{dy}{dx} = \frac{3(3)^2 - 4}{2(3)} \bigg|_{t=3} = \frac{3(9) - 4}{6} = \frac{23}{6} \]

Since \(c(3) = (10, 15) \), the equation of the tangent line in point-slope form is

\[y - 15 = \frac{23}{6}(x - 10) \]
(b) The slope \(dy/dx\) is zero if \(y'(t) = 0\) and \(x'(t) \neq 0\). We have \(y'(t) = 3t^2 - 4 = 0\) for \(t = \pm2/\sqrt{3}\) (and \(x'(t) = 2t \neq 0\) for these values of \(t\)). Therefore, the tangent line is horizontal at the points

\[
\begin{align*}
 c \left(-\frac{2}{\sqrt{3}} \right) &= \left(\frac{7}{3}, \frac{16}{3\sqrt{3}} \right), \\
 c \left(\frac{2}{\sqrt{3}} \right) &= \left(\frac{7}{3}, -\frac{16}{3\sqrt{3}} \right)
\end{align*}
\]

Parametric curves are widely used in the field of computer graphics. A particularly important class of curves are Bézier curves, which we discuss here briefly in the cubic case. Given four “control points” (Figure 13):

\[
\begin{align*}
P_0 &= (a_0, b_0), & P_1 &= (a_1, b_1), & P_2 &= (a_2, b_2), & P_3 &= (a_3, b_3)
\end{align*}
\]

the Bézier curve \(c(t) = (x(t), y(t))\) is defined for \(0 \leq t \leq 1\) by

\[
\begin{align*}
x(t) &= a_0(1-t)^3 + 3a_1t(1-t)^2 + 3a_2t^2(1-t) + a_3t^3 \\
y(t) &= b_0(1-t)^3 + 3b_1t(1-t)^2 + 3b_2t^2(1-t) + b_3t^3
\end{align*}
\]

Note that \(c(0) = (a_0, b_0)\) and \(c(1) = (a_3, b_3)\), so the Bézier curve begins at \(P_0\) and ends at \(P_3\) (Figure 13). It can also be shown that the Bézier curve is within the quadrilateral (shown in blue) with vertices \(P_0, P_1, P_2, P_3\). However, \(c(t)\) does not pass through \(P_1\) and \(P_2\). Instead, these intermediate control points determine the slopes of the tangent lines at \(P_0\) and \(P_3\), as we show in the next example (also, see Exercises 67–70).

Example 10 Show that the Bézier curve is tangent to segment \(\overline{P_0 P_1}\) at \(P_0\).

Solution The Bézier curve passes through \(P_0\) at \(t = 0\), so we must show that the slope of the tangent line at \(t = 0\) is equal to the slope of \(\overline{P_0 P_1}\). To find the slope, we compute the derivatives:

\[
\begin{align*}
x'(t) &= -3a_0(1-t)^2 + 3a_1(1-4t + 3t^2) + 2a_2(2t - 3t^2) + 3a_3t^2 \\
y'(t) &= -3b_0(1-t)^2 + 3b_1(1-4t + 3t^2) + 2b_2(2t - 3t^2) + 3b_3t^2
\end{align*}
\]

Evaluating at \(t = 0\), we obtain \(x'(0) = 3(a_1 - a_0)\), \(y'(0) = 3(b_1 - b_0)\), and

\[
\frac{dy}{dx} \mid_{t=0} = \frac{y'(0)}{x'(0)} = \frac{3(b_1 - b_0)}{3(a_1 - a_0)} = \frac{b_1 - b_0}{a_1 - a_0}
\]

This is equal to the slope of the line through \(P_0 = (a_0, b_0)\) and \(P_1 = (a_1, b_1)\), as claimed (provided that \(a_1 \neq a_0\)).

Area Under a Parametric Curve

As we know, the area under a curve given by \(y = h(x)\) when \(h(x) \geq 0\) for \(a \leq x \leq b\) is given by

\[
A = \int_a^b h(x) \, dx
\]

When the curve \(y = h(x)\) is traced once by a parametric curve \(c(t) = (x(t), y(t))\) as in Figure 14, where \(x(t_0) = a\) and \(x(t_1) = b\), then we can substitute, replacing \(y = h(x)\) by \(y(t)\) and \(dx\) by \(x'(t) \, dt\), yielding a formula for the area \(A\) under the curve:

\[
A = \int_{t_0}^{t_1} y(t)x'(t) \, dt
\]
EXAMPLE 11 Find the area inside the ellipse of Example 5.

Solution The ellipse was found to be parametrized by $c(t) = (a \cos t, b \sin t)$ for $-\pi \leq t \leq \pi$. The top half of the ellipse corresponds to $0 \leq t \leq \pi$, and since this yields the graph of a function that is nonnegative, we can find the area under the curve using formula (10). Notice, however, that $t_0 = \pi$ and $t_1 = 0$, so $x(t_0) = -a$ and $x(t_1) = a$. Thus, the area of the ellipse is given by

$$A = 2 \int_0^\pi b \sin t (-a \sin t) \, dt = 2ab \int_0^\pi \sin^2 t \, dt$$

$$= 2ab \left[\int_0^\pi \frac{1 - \cos 2t}{2} \, dt \right] = 2ab \left[\frac{t}{2} - \frac{\sin 2t}{4} \right]_0^\pi = \pi ab$$

12.1 SUMMARY

- A parametric curve $c(t) = (f(t), g(t))$ describes the path of a particle moving along a curve as a function of the parameter t.
- Parametrizations are not unique: Every curve C can be parametrized in infinitely many ways. Furthermore, the path $c(t)$ may traverse all or part of C more than once.
- Slope of the tangent line at $c(t)$:

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)} \quad [\text{valid if } x'(t) \neq 0]$$

- Do not confuse the slope of the tangent line dy/dx with the derivatives dy/dt and dx/dt, with respect to t.
- Standard parametrizations:
 - Line of slope $m = s/r$ through $P = (a, b)$: $c(t) = (a + rt, b + st)$
 - Circle of radius R centered at $P = (a, b)$: $c(t) = (a + R \cos t, b + R \sin t)$
 - Cycloid generated by a circle of radius R: $c(t) = (R(t - \sin t), R(1 - \cos t))$
- Area under a parametric curve $c(t) = (x(t), y(t))$ that does not dip below the x-axis and that traces once the graph of a function is given by $A = \int_{t_1}^{t_2} y(t)x'(t) \, dt$.

12.1 EXERCISES

Preliminary Questions
1. Describe the shape of the curve $x = 3 \cos t, y = 3 \sin t$.
2. How does $x = 4 + 3 \cos t, y = 5 + 3 \sin t$ differ from the curve in the previous question?
3. What is the maximum height of a particle whose path has parametric equations $x = 1, y = 4 - t^2$?
4. Can the parametric curve $(t, \sin t)$ be represented as a graph $y = f(x)$? What about $(\sin t, t)$?
5. (a) Describe the path of an ant that is crawling along the plane according to $c_1(t) = (f(t), f'(t))$, where $f(t)$ is an increasing function. (b) Compare that path to the path of a second ant crawling according to $c_2(t) = (f(2t), f(2t))$.
6. Find three different parametrizations of the graph of $y = x^3$.
7. Match the derivatives with a verbal description:
 (a) $\frac{dx}{dt}$ (b) $\frac{dy}{dt}$ (c) $\frac{dy}{dx}$
 (i) Slope of the tangent line to the curve (ii) Vertical rate of change with respect to time (iii) Horizontal rate of change with respect to time

Exercises
1. Find the coordinates at times $t = 0, 2, 4$ of a particle following the path $x = 1 + t^3, y = 9 - 3t^2$.
2. Find the coordinates at $t = 0, \frac{\pi}{2}, \pi$ of a particle moving along the path $c(t) = (\cos 2t, \sin^2 t)$.
3. Show that the path traced by the bullet in Example 3 is a parabola by eliminating the parameter.

4. Use the table of values to sketch the parametric curve (x(t), y(t)), indicating the direction of motion.

<table>
<thead>
<tr>
<th>t</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-15</td>
<td>0</td>
<td>3</td>
<td>-3</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>5</td>
<td>0</td>
<td>-3</td>
<td>-4</td>
<td>-3</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

5. Graph the parametric curves. Include arrows indicating the direction of motion.
 (a) (t, t), \(-\infty < t < \infty\)
 (b) (\sin t, \sin t), \(0 \leq t \leq 2\pi\)
 (c) \((e^t, e^t)\), \(-\infty < t < \infty\)
 (d) \((t^3, t^3)\), \(-1 \leq t \leq 1\)

6. Give two different parametrizations of the line through (4, 1) with slope 2.

In Exercises 7–14, express in the form \(y = f(x)\) by eliminating the parameter.

7. \(x = t + 3,\ y = 4t\)
8. \(x = r^2,\ y = r^2\)
9. \(x = t,\ y = \tan^{-1}(t^3 + e^t)\)
10. \(x = t^2,\ y = t^3 + 1\)
11. \(x = e^{-2t},\ y = 6e^{4t}\)
12. \(x = 1 + t^{-1},\ y = t^2\)
13. \(x = \ln t,\ y = 2 - t\)
14. \(x = \cos t,\ y = \tan t\)

In Exercises 15–18, graph the curve and draw an arrow specifying the direction corresponding to motion.

15. \(x = \frac{3}{2}t,\ y = 2t^2\)
16. \(x = 2 + 4t,\ y = 3 + 2t\)
17. \(x = \pi t,\ y = \sin t\)
18. \(x = t^2,\ y = t^3\)

19. Match the parametrizations (a)–(d) below with their plots in Figure 15, and draw an arrow indicating the direction of motion.

20. Find an interval of \(t\)-values such that \(c(t) = (\cos t, \sin t)\) traces the lower half of the unit circle.

21. A particle follows the trajectory \(x(t) = \frac{1}{4}t^3 + 2t,\ y(t) = 20t - t^2\) with \(t\) in seconds and distance in centimeters.
 (a) What is the particle’s maximum height?
 (b) When does the particle hit the ground and how far from the origin does it land?

22. Find an interval of \(t\)-values such that \(c(t) = (2t + 1, 4t - 5)\) parametrizes the segment from \((0, -7)\) to \((7, 7)\).

In Exercises 23–38, find parametric equations for the given curve.

23. \(y = 9 - 4x\)
24. \(y = 8x^2 - 3x\)
25. \(4x - y^2 = 5\)
26. \(x^2 + y^2 = 49\)
27. \((x + 9)^2 + (y - 4)^2 = 49\)
28. \(\left(\frac{x}{5}\right)^2 + \left(\frac{y}{12}\right)^2 = 1\)
29. Line of slope 8 through \((-4, 9)\)
30. Line through \((2, 5)\) perpendicular to \(y = 3x\)
31. Line through \((3, 1)\) and \((-5, 4)\)
32. Line through \(\left(\frac{1}{3}, \frac{1}{6}\right)\) and \(\left(-\frac{7}{3}, \frac{5}{2}\right)\)
33. Segment joining \((1, 1)\) and \((2, 3)\)
34. Segment joining \((-3, 0)\) and \((0, 4)\)
35. Circle of radius 4 with center \((3, 9)\)
36. Ellipse of Exercise 28, with its center translated to \((7, 4)\)
37. \(y = x^2\), translated so that the minimum occurs at \((-4, -8)\)
38. \(y = \cos x\), translated so that a maximum occurs at \((3, 5)\)

In Exercises 39–42, find a parametrization \(c(t)\) of the curve satisfying the given condition.

39. \(y = 3x - 4,\ c(0) = (2, 2)\)
40. \(y = 3x - 4,\ c(3) = (2, 2)\)
41. \(y = x^2,\ c(0) = (3, 9)\)
42. \(x^2 + y^2 = 4,\ c(0) = (1, \sqrt{3})\)

43. Describe \(c(t) = (\sec t, \tan t)\) for \(0 \leq t < \frac{\pi}{2}\) in the form \(y = f(x)\). Specify the domain of \(x\).

44. Find a parametrization of the right branch \((x > 0)\) of the hyperbola
 \(\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1\)
 using \(\cosh t\) and \(\sinh t\). How can you parametrize the branch \(x < 0\)?

45. The graphs of \(x(t)\) and \(y(t)\) as functions of \(t\) are shown in Figure 16(A). Which of (I)–(III) is the plot of \(c(t) = (x(t), y(t))\)? Explain.

46. Which graph, (I) or (II), is the graph of \(x(t)\) and which is the graph of \(y(t)\) for the parametric curve in Figure 17(A)?

47. Sketch \(c(t) = (t^3 - 4t, t^2)\) following the steps in Example 7.
48. Sketch \(c(t) = (t^2 - 4t, 9 - t^2)\) for \(-4 \leq t \leq 10\).
In Exercises 49–54, use Eq. (8) to find dy/dx at the given point.

49. \((t^3, t^2 - 1), \quad t = -4\)
50. \((2t + 9, 7t - 9), \quad t = 1\)
51. \((s^{-1} - 3s, s^3), \quad s = -1\)
52. \((\sin 2\theta, \cos 3\theta), \quad \theta = \frac{\pi}{4}\)
53. \((\sin^3 \theta, \cos \theta), \quad \theta = \frac{\pi}{4}\)
54. \((e^t, t^2), \quad t = 1\)

In Exercises 55–58, find an equation \(y = f(x)\) for the parametric curve and compute \(dy/dx\) in two ways: using Eq. (8) and by differentiating \(f(x)\).

55. \(c(t) = (2t + 1, 1 - 9t)\)
56. \(c(t) = \left(\frac{1}{4}t^3, \frac{1}{4}t^2 - t\right)\)
57. \(x = s^3, \quad y = s^6 + s^{-3}\)
58. \(x = \cos \theta, \quad y = \cos \theta + \sin^2 \theta\)

59. Find the points on the parametric curve \(c(t) = (3t^2 - 2t, t^3 - 6t)\) where the tangent line has slope 3.
60. Find the equation of the tangent line to the cycloid generated by a circle of radius 4 at \(t = \frac{\pi}{2}\).

In Exercises 61–64, let \(c(t) = (t^2 - 9, t^2 - 8t)\) (see Figure 18).

61. Draw an arrow indicating the direction of motion, and determine the interval of \(t\)-values corresponding to the portion of the curve in each of the four quadrants.
62. Find the equation of the tangent line at \(t = 4\).
63. Find the points where the tangent has slope \(\frac{1}{2}\).
64. Find the points where the tangent is horizontal or vertical.

65. Let \(A\) and \(B\) be the points where the ray of angle \(\theta\) intersects the two concentric circles of radii \(r < R\) centered at the origin (Figure 19). Let \(P\) be the point of intersection of the horizontal line through \(A\) and the vertical line through \(B\). Express the coordinates of \(P\) as a function of \(\theta\) and describe the curve traced by \(P\) for \(0 \leq \theta \leq 2\pi\).

66. A 10-ft ladder slides down a wall as its bottom \(B\) is pulled away from the wall (Figure 20). Using the angle \(\theta\) as a parameter, find the parametric equations for the path followed by (a) the top of the ladder \(A\), (b) the bottom of the ladder \(B\), and (c) the point \(P\) located 4 ft from the top of the ladder. Show that \(P\) describes an ellipse.

In Exercises 67–70, refer to the Bézier curve defined by Eqs. (9) and (10).

67. Show that the Bézier curve with control points \(P_0 = (1, 4), \quad P_1 = (3, 12), \quad P_2 = (6, 15), \quad P_3 = (7, 4)\) has parametrization \(c(t) = (1 + 6t + 3t^2 - 3t^3, 4 + 24t - 15t^2 - 9t^3)\). Verify that the slope at \(t = 0\) is equal to the slope of the segment \(P_0P_1\).
68. Find an equation of the tangent line to the Bézier curve in Exercise 67 at \(t = \frac{1}{3}\).

69. CAS Find and plot the Bézier curve \(c(t)\) with control points \(P_0 = (3, 2), \quad P_1 = (0, 2), \quad P_2 = (5, 4), \quad P_3 = (2, 4)\).
70. Show that a cubic Bézier curve is tangent to the segment \(P_2P_3\) at \(P_3\).

71. A bullet fired from a gun follows the trajectory \(x = at, \quad y = bt - 16t^2\) \((a, b > 0)\). Show that the bullet leaves the gun at an angle \(\theta = \tan^{-1}\left(\frac{b}{a}\right)\) and lands at a distance \(\frac{ab}{16}\) from the origin.
72. CAS Plot \(c(t) = (t^3 - 4t, t^4 - 12t^2 + 48)\) for \(-3 \leq t \leq 3\). Find the points where the tangent line is horizontal or vertical.
73. CAS Plot the astroid \(x = \cos^3 \theta, \quad y = \sin^3 \theta\) and find the equation of the tangent line at \(\theta = \frac{\pi}{4}\).
74. Find the equation of the tangent line at \(t = \frac{\pi}{4}\) to the cycloid generated by the unit circle with parametric equation (6).
75. Find the points with a horizontal tangent line on the cycloid with parametric equation (6).

76. Property of the Cycloid Prove that the tangent line at a point \(P\) on the cycloid always passes through the top point on the rolling circle as indicated in Figure 21. Assume the generating circle of the cycloid has radius 1.
77. A curtate cycloid (Figure 22) is the curve traced by a point at a distance \(h \) from the center of a circle of radius \(R \) rolling along the \(x \)-axis where \(h < R \). Show that this curve has parametric equations \(x = R t - h \sin t, y = R - h \cos t \).

![Figure 22 Curtate cycloid.](image)

78. \(\text{CAS} \) Use a computer algebra system to explore what happens when \(h > R \) in the parametric equations of Exercise 77. Describe the result.

79. Show that the line of slope \(t \) through \((-1, 0)\) intersects the unit circle in the point with coordinates

\[
x = \frac{1 - t^2}{t^2 + 1}, \quad y = \frac{2t}{t^2 + 1}
\]

Conclude that these equations parametrize the unit circle with the point \((-1, 0)\) excluded (Figure 23). Show further that \(t = y/(x + 1) \).

![Figure 23 Unit circle.](image)

80. The folium of Descartes is the curve with equation \(x^3 + y^3 = 3axy \), where \(a \neq 0 \) is a constant (Figure 24).

(a) Show that the line \(y = tx \) intersects the folium at the origin and at one other point \(P \) for all \(t \neq -1, 0 \). Express the coordinates of \(P \) in terms of \(t \) to obtain a parametrization of the folium. Indicate the direction of the parametrization on the graph.

(b) Describe the interval of \(t \)-values parametrizing the parts of the curve in quadrants I, II, and IV. Note that \(t = -1 \) is a point of discontinuity of the parametrization.

(c) Calculate \(dy/dx \) as a function of \(t \) and find the points with horizontal or vertical tangent.

![Figure 24 Folium \(x^3 + y^3 = 3axy \).](image)

81. Use the results of Exercise 80 to show that the asymptote of the folium is the line \(x + y = -a \). \(\text{Hint: Show that} \lim_{t \to -1} (x + y) = -a \).

82. Find a parametrization of \(x^{2n+1} + y^{2n+1} = ax^n y^n \), where \(a \) and \(n \) are constants.

83. Second Derivative for a Parametrized Curve Given a parametrized curve \(c(t) = (x(t), y(t)) \), show that

\[
\frac{d}{dt} \left(\frac{dy}{dx} \right) = \frac{x'(t)y''(t) - y'(t)x''(t)}{x'(t)^3}
\]

Use this to prove the formula

\[
\frac{d^2y}{dx^2} = \frac{x'(t)y''(t) - y'(t)x''(t)}{x'(t)^3}
\]

84. The second derivative of \(y = x^2 \) is \(dy^2/dx^2 = 2 \). Verify that Eq. (13) applied to \(c(t) = (x(t), y(t)) \) yields \(dy^2/dx^2 = 2 \). In fact, any parametrization may be used. Check that \(c(t) = (t^3, t^6) \) and \(c(t) = (\tan t, \tan^2 t) \) also yield \(dy^2/dx^2 = 2 \).

In Exercises 85–88, use Eq. (13) to find \(d^2y/dx^2 \).

85. \(x = t^3 + t^2, \quad y = 7t^2 - 4, \quad t = 2 \)

86. \(x = s^{-1} + s, \quad y = 4 - s^{-2}, \quad s = 1 \)

87. \(x = 8t + 9, \quad y = 1 - 4t, \quad t = -3 \)

88. \(x = \cos \theta, \quad y = \sin \theta, \quad \theta = \frac{\pi}{4} \)

89. Use Eq. (13) to find the \(t \)-intervals on which \(c(t) = (t^2, t^3 - t) \) is concave up.

90. Use Eq. (13) to find the \(t \)-intervals on which \(c(t) = (t^2, t^4 - t) \) is concave up.

91. Calculate the area under \(y = x^2 \) over \([0, 1]\) using Eq. (11) with the parametrizations \((t^3, t^6)\) and \((t^2, t^4)\).

92. What does Eq. (11) say if \(c(t) = (t, f(t)) \)?

93. Consider the curve \(c(t) = (t^2, t^3) \) for \(0 \leq t \leq 1 \).

(a) Find the area under the curve using Eq. (11).

(b) Find the area under the curve by expressing \(y \) as a function of \(x \) and finding the area using the standard method.

94. Compute the area under the parametrized curve \(c(t) = (e^t, t) \) for \(0 \leq t \leq 1 \) using Eq. (11).

95. Compute the area under the parametrized curve given by \(c(t) = (\sin t, \cos^2 t) \) for \(0 \leq t \leq \pi/2 \) using Eq. (11).

96. Sketch the graph of \(c(t) = (\ln t, 2 - t) \) for \(1 \leq t \leq 2 \) and compute the area under the graph using Eq. (11).

97. Galileo tried unsuccessfully to find the area under a cycloid. Around 1630, Gilles de Roberval proved that the area under one arch of the cycloid \(c(t) = (Rt - R \sin t, R - R \cos t) \) generated by a circle of radius \(R \) is equal to three times the area of the circle (Figure 25). Verify Roberval’s result using Eq. (11).

![Figure 25 The area of one arch of the cycloid equals three times the area of the generating circle.](image)
98. Prove the following generalization of Exercise 97: For all \(t > 0 \), the area of the cycloidal sector \(OPC \) is equal to three times the area of the circular segment cut by the chord \(PC \) in Figure 26.

\[\text{FIGURE 26} \]

(A) Cycloidal sector \(OPC \)
(B) Circular segment cut by the chord \(PC \)

99. Derive the formula for the slope of the tangent line to a parametric curve \(c(t) = (x(t), y(t)) \) using a method different from that presented in the text. Assume that \(x'(t_0) \) and \(y'(t_0) \) exist and \(x'(t_0) \neq 0 \). Show that

\[\lim_{h \to 0} \frac{y(t_0 + h) - y(t_0)}{x(t_0 + h) - x(t_0)} = \frac{y'(t_0)}{x'(t_0)} \]

Then explain why this limit is equal to the slope \(dy/dx \). Draw a diagram showing that the ratio in the limit is the slope of a secant line.

100. Verify that the tractrix curve \((\ell > 0) \)

\[c(t) = \left(t - \ell \sech \frac{t}{\ell}, \ell \tanh \frac{t}{\ell} \right) \]

has the following property: For all \(t \), the segment from \(c(t) \) to \((t, 0) \) is tangent to the curve and has length \(\ell \) (Figure 27).

\[\text{FIGURE 27} \]

The parametrization of the ellipse by the angle \(\theta \) is

\[x = \frac{ab \cos \theta}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \]
\[y = \frac{ab \sin \theta}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}} \]

101. In Exercise 59 of Section 10.1, we described the tractrix by the differential equation

\[\frac{dy}{dx} = -\frac{y}{\sqrt{\ell^2 - y^2}} \]

Show that the parametric curve \(c(t) \) identified as the tractrix in Exercise 100 satisfies this differential equation. Note that the derivative on the left is taken with respect to \(x \), not \(t \).

102. In the parametrization \(c(t) = (a \cos t, b \sin t) \) of an ellipse, \(t \) is not an angular parameter unless \(a = b \) (in which case, the ellipse is a circle). However, \(t \) can be interpreted in terms of area: Show that if \(c(t) = (x, y) \), then \(t = \frac{2}{ab} A \), where \(A \) is the area of the shaded region in Figure 28. Hint: Use Eq. (11).

\[\text{FIGURE 28} \]

The parameter \(\theta \) on the ellipse \(\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1 \).

12.2 Arc Length and Speed

We now derive a formula for the arc length of a curve in parametric form. Recall that in Section 9.1, arc length was defined as the limit of the lengths of polygonal approximations (Figure 1).

\[\text{FIGURE 1} \]

Polygonal approximations for \(N = 5 \) and \(N = 10 \).
Given a parametrization \(c(t) = (x(t), y(t)) \) for \(a \leq t \leq b \), we construct a polygonal approximation \(L \) consisting of the \(N \) segments by joining points

\[
P_0 = c(t_0), \quad P_1 = c(t_1), \quad \ldots, \quad P_N = c(t_N)
\]

Corresponding to a choice of values \(t_0 = a < t_1 < t_2 < \cdots < t_N = b \). By the distance formula,

\[
P_{i-1}P_i = \sqrt{(x(t_i) - x(t_{i-1}))^2 + (y(t_i) - y(t_{i-1}))^2}
\]

Now assume that \(x(t) \) and \(y(t) \) are differentiable. According to the Mean Value Theorem, there are values \(t_i^* \) and \(t_i^{**} \) in the interval \([t_{i-1}, t_i]\) such that

\[
x(t_i) - x(t_{i-1}) = x'(t_i^*) \Delta t_i, \quad y(t_i) - y(t_{i-1}) = y'(t_i^{**}) \Delta t_i
\]

where \(\Delta t_i = t_i - t_{i-1} \), and therefore,

\[
P_{i-1}P_i = \sqrt{x'(t_i^*)^2 \Delta t_i^2 + y'(t_i^{**})^2 \Delta t_i^2} = \sqrt{x'(t_i^*)^2 + y'(t_i^{**})^2} \Delta t_i
\]

The length of the polygonal approximation \(L \) is equal to the sum

\[
\sum_{i=1}^{N} P_{i-1}P_i = \sum_{i=1}^{N} \sqrt{x'(t_i^*)^2 + y'(t_i^{**})^2} \Delta t_i
\]

This is nearly a Riemann sum for the function \(\sqrt{x'(t)^2 + y'(t)^2} \). It would be a true Riemann sum if the intermediate values \(t_i^* \) and \(t_i^{**} \) were equal. Although they are not necessarily equal, it can be shown (and we will take for granted) that if \(x'(t) \) and \(y'(t) \) are continuous, then the sum in Eq. (2) still approaches the integral as the widths \(\Delta t_i \) tend to 0. Thus,

\[
s = \lim_{\Delta t_i \to 0} \sum_{i=1}^{N} P_{i-1}P_i = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]

Theorem 1 Arc Length Let \(c(t) = (x(t), y(t)) \), where \(x'(t) \) and \(y'(t) \) exist and are continuous. Then the arc length \(s \) of \(c(t) \) for \(a \leq t \leq b \) is equal to

\[
s = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]

The graph of a function \(y = f(x) \) has parametrization \(c(t) = (t, f(t)) \). In this case,

\[
\sqrt{x'(t)^2 + y'(t)^2} = \sqrt{1 + f'(t)^2}
\]

and Eq. (3) reduces to the arc length formula derived in Section 9.1.

As mentioned above, the arc length integral can be evaluated explicitly only in special cases. The circle and the cycloid are two such cases.

Example 1 Use Eq. (3) to calculate the arc length of a circle of radius \(R \).

Solution With the parametrization \(x = R \cos \theta, \ y = R \sin \theta \),

\[
x'(\theta)^2 + y'(\theta)^2 = (-R \sin \theta)^2 + (R \cos \theta)^2 = R^2
\]

We obtain the expected result:

\[
s = \int_{0}^{2\pi} \sqrt{x'(\theta)^2 + y'(\theta)^2} \, d\theta = \int_{0}^{2\pi} R \, d\theta = 2\pi R
\]
\section*{Example 2} Find the arc length of the curve given in parametric form by \(c(t) = (t^2, t^3) \) for \(0 \leq t \leq 1 \).

\textbf{Solution} The arc length of this curve is given by

\[
\begin{align*}
 s &= \int_0^1 \sqrt{x'(t)^2 + y'(t)^2} \, dt \\
 &= \int_0^1 \sqrt{(2t)^2 + (3t^2)^2} \, dt \\
 &= \int_0^1 t\sqrt{4 + 9t^2} \, dt \\
\end{align*}
\]

Letting \(u = 4 + 9t^2 \), and therefore \(du = 18t \, dt \), we obtain

\[
\begin{align*}
 s &= \frac{1}{18} \int_4^{13} \sqrt{u} \, du \\
 &= \frac{2}{3} u^{\frac{3}{2}} \bigg|_4^{13} \\
 &= \frac{1}{27} (13^\frac{3}{2} - 4^{\frac{3}{2}}) \approx 1.4397
\end{align*}
\]

\section*{Example 3} \textbf{Length of the Cycloid} Calculate the length \(s \) of one arch of the cycloid generated by a circle of radius \(R = 2 \) (Figure 2).

\textbf{Solution} We use the parametrization of the cycloid in Eq. (7) of Section 12.1:

\[
x(t) = 2(t - \sin t), \quad y(t) = 2(1 - \cos t)
\]

Thus,

\[
x'(t) = 2(1 - \cos t), \quad y'(t) = 2 \sin t
\]

One arch of the cycloid is traced as \(t \) varies from 0 to \(2\pi \), so

\[
s = \int_0^{2\pi} \sqrt{x'(t)^2 + y'(t)^2} \, dt
= \int_0^{2\pi} \sqrt{4 \cos^2 t + 4 \sin^2 t} \, dt
\]

Note that because \(\sin^2 t \geq 0 \) for \(0 \leq t \leq 2\pi \), we did not need an absolute value when taking the square root of \(16 \sin^2 \frac{t}{2} \).

Now consider a particle moving along a path \(c(t) \). The distance traveled by the particle over the time interval \([t_0, t]\) is given by the arc length integral:

\[
s(t) = \int_{t_0}^t \sqrt{x'(u)^2 + y'(u)^2} \, du
\]

On the other hand, speed is defined as the rate of change of distance traveled with respect to time, so by the Fundamental Theorem of Calculus,

\[
\text{Speed} = \frac{ds}{dt} = \frac{d}{dt} \int_{t_0}^t \sqrt{x'(u)^2 + y'(u)^2} \, du = \sqrt{x'(t)^2 + y'(t)^2}
\]

\section*{Theorem 2} \textbf{Speed Along a Parametrized Path} The speed of \(c(t) = (x(t), y(t)) \) is

\[
\text{Speed} = \frac{ds}{dt} = \sqrt{x'(t)^2 + y'(t)^2}
\]

The next example illustrates the difference between distance traveled along a path and displacement (also called the net change in position). The displacement along a path is the distance between the initial point \(c(t_0) \) and the endpoint \(c(t_1) \). The distance traveled is greater than the displacement unless the particle happens to move in a straight line (Figure 3).
EXAMPLE 4 A particle travels along the path \(c(t) = (2t, 1 + t^{3/2}) \). Find:

(a) The particle’s speed at \(t = 1 \) (assume units of meters and minutes).
(b) The distance traveled \(s \) and displacement \(d \) during the interval \(0 \leq t \leq 4 \).

Solution We have

\[
x'(t) = 2, \quad y'(t) = \frac{3}{2}t^{1/2}
\]

The speed at time \(t \) is

\[
s'(t) = \sqrt{x'(t)^2 + y'(t)^2} = \sqrt{\frac{9}{2} + \frac{9}{4}t} \text{ m/min}
\]

(a) The particle’s speed at \(t = 1 \) is \(s'(1) = \sqrt{\frac{9}{2}} = 2.5 \text{ m/min} \).

(b) The distance traveled in the first 4 min is

\[
s = \int_{0}^{4} \sqrt{\frac{9}{2} + \frac{9}{4}t} \, dt = \left[\frac{8}{27} \left(\frac{9}{4}t + \frac{9}{2} \right)^{3/2} \right]_{0}^{4} = \frac{8}{27}(13.37 - 8) \approx 11.52 \text{ m}
\]

The displacement \(d \) is the distance from the initial point \(c(0) = (0, 1) \) to the endpoint \(c(4) = (8, 1 + 4^{3/2}) = (8, 9) \) (see Figure 4):

\[
d = \sqrt{(8 - 0)^2 + (9 - 1)^2} = 8\sqrt{2} \approx 11.31 \text{ m}
\]

In physics, we often describe the path of a particle moving with constant speed along a circle of radius \(R \) in terms of a constant \(\omega \) (lowercase Greek omega) as follows:

\[
c(t) = (R \cos \omega t, R \sin \omega t)
\]

The constant \(\omega \), called the angular velocity, is the rate of change with respect to time of the particle’s angle \(\theta \) (Figure 5).

EXAMPLE 5 Angular Velocity Calculate the speed of the circular path of radius \(R \) and angular velocity \(\omega \). What is the speed if \(R = 3 \text{ m} \) and \(\omega = 4 \text{ radians per second (rad/s)} \)?

Solution We have \(x = R \cos \omega t \) and \(y = R \sin \omega t \), and

\[
x'(t) = -\omega R \sin \omega t, \quad y'(t) = \omega R \cos \omega t
\]

The particle’s speed is

\[
\frac{ds}{dt} = \sqrt{x'(t)^2 + y'(t)^2} = \sqrt{(-\omega R \sin \omega t)^2 + (\omega R \cos \omega t)^2}
\]

\[
= \sqrt{\omega^2 R^2(\sin^2 \omega t + \cos^2 \omega t)} = |\omega|R
\]

Thus, the speed is constant with value \(|\omega|R \). If \(R = 3 \text{ m} \) and \(\omega = 4 \text{ rad/s} \), then the speed is \(|\omega|R = 3(4) = 12 \text{ m/s} \).

Consider the surface obtained by rotating a parametric curve \(c(t) = (x(t), y(t)) \) about the x-axis. The surface area is given by Eq. (4) in the next theorem. It can be derived in much the same way as the formula for a surface of revolution of a graph \(y = f(x) \) in Section 9.1. In this theorem, we assume that \(y(t) \geq 0 \) so the parametric curve \(c(t) \) lies above the x-axis, and that \(x(t) \) is increasing so the curve does not reverse direction.

THEOREM 3 Surface Area Let \(c(t) = (x(t), y(t)) \), where \(y(t) \geq 0 \), \(x(t) \) is increasing, and \(x'(t) \) and \(y'(t) \) are continuous. Then the surface obtained by rotating \(c(t) \) about the x-axis for \(a \leq t \leq b \) has surface area

\[
S = 2\pi \int_{a}^{b} y(t)\sqrt{x'(t)^2 + y'(t)^2} \, dt
\]
EXAMPLE 6 Calculate the surface area of the surface obtained by rotating the parametric curve \(c(t) = (t, t^3) \) about the \(x \)-axis for \(0 \leq t \leq 1 \). The surface appears as in Figure 6.

Solution We have \(x'(t) = 1 \) and \(y'(t) = 3t^2 \).

Therefore,
\[
S = 2\pi \int_0^1 t \sqrt{1 + (3t^2)^2} \, dt = 2\pi \int_0^1 t \sqrt{1 + 9t^4} \, dt
\]

With the substitution \(u = 1 + 9t^4 \) and \(du = 36t^3 \, dt \), we obtain
\[
S = 2\pi \frac{1}{36} \int_1^{10} \sqrt{u} \, du = \pi \left(\frac{2}{3} \right) u^{3/2} \bigg|_1^{10} = \frac{\pi}{27} (10^2 - 1) \approx 3.5631
\]

12.2 SUMMARY

- Arc length of \(c(t) = (x(t), y(t)) \) for \(a \leq t \leq b \):
 \[
s = \text{arc length} = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]

- The arc length is the distance along the path \(c(t) \). The displacement is the distance from the starting point \(c(a) \) to the endpoint \(c(b) \).

- Arc length integral as a function of \(t \):
 \[
s(t) = \int_0^t \sqrt{x'(u)^2 + y'(u)^2} \, du
\]

- Speed at time \(t \):
 \[
\frac{ds}{dt} = \sqrt{x'(t)^2 + y'(t)^2}
\]

- Surface area of the surface obtained by rotating \(c(t) = (x(t), y(t)) \) about the \(x \)-axis for \(a \leq t \leq b \):
 \[
S = 2\pi \int_a^b y(t) \sqrt{x'(t)^2 + y'(t)^2} \, dt
\]

12.2 EXERCISES

Preliminary Questions

1. What is the definition of arc length?
2. Can the distance traveled by a particle ever be less than its displacement? When are they equal?
3. What is the interpretation of \(\sqrt{x'(t)^2 + y'(t)^2} \) for a particle following the trajectory \((x(t), y(t)) \)?
4. A particle travels along a path from \((0, 0)\) to \((3, 4)\). What is the displacement? Can the distance traveled be determined from the information given?
5. A particle traverses the parabola \(y = x^2 \) with constant speed 3 cm/s. What is the distance traveled during the first minute? **Hint:** Only simple computation is necessary.
6. If the straight line segment given by \(c(t) = (3, t) \) for \(0 \leq t \leq 2 \) is rotated around the \(x \)-axis, what surface area results? **Hint:** Only simple computation is necessary.

Exercises

In Exercises 1–10, use Eq. (3) to find the length of the path over the given interval.

1. \((3t + 1, 9 - 4t), \quad 0 \leq t \leq 2 \)
2. \((1 + 2t, 2 + 4t), \quad 1 \leq t \leq 4 \)
3. \((2t^2, 3t^2 - 1), \quad 0 \leq t \leq 4 \)
4. \((3t, 4t^{3/2}), \quad 0 \leq t \leq 1 \)
5. \((3t^2, 4t^3), \quad 1 \leq t \leq 4 \)
6. \((t^3 + 1, t^2 - 3), \quad 0 \leq t \leq 1 \)
7. \((\sin 3t, \cos 3t), \quad 0 \leq t \leq \pi \)
8. \((\sin \theta - \theta \cos \theta, \cos \theta + \theta \sin \theta), \quad 0 \leq \theta \leq 2 \)
In Exercises 9 and 10, use the identity
\[
\frac{1 - \cos t}{2} = \sin^2 \frac{t}{2}
\]
9. \((2 \cos t - \cos 2t, 2 \sin t - \sin 2t), \quad 0 \leq t \leq \frac{\pi}{2}\)
10. \((5(\theta - \sin \theta), 5(1 - \cos \theta)), \quad 0 \leq \theta \leq 2\pi\)

11. Show that one arch of a cycloid generated by a circle of radius \(R\) has length \(8R\).

12. Find the length of the spiral \(c(t) = (t \cos t, t \sin t)\) for \(0 \leq t \leq 2\pi\) to three decimal places (Figure 7). Hint: Use the formula
\[
\int \sqrt{1 + t^2} \, dt = \frac{1}{2} \sqrt{1 + t^2} + \frac{1}{2} \ln(t + \sqrt{1 + t^2})
\]

13. Find the length of the parabola given by \(c(t) = (t, t^2)\) for \(0 \leq t \leq 1\). See the hint for Exercise 12.

14. CAS Find a numerical approximation to the length of \(c(t) = (\cos 5t, \sin 3t)\) for \(0 \leq t \leq 2\pi\) (Figure 8).

24. Calculate the arc length integral \(s(t)\) for the logarithmic spiral \(c(t) = (e^t \cos t, e^t \sin t)\).

CAS In Exercises 25–28, plot the curve and use the Midpoint Rule with \(N = 10, 20, 30, \text{and} 50\) to approximate its length.
25. \(c(t) = (\cos t, e^{\sin t})\) for \(0 \leq t \leq 2\pi\)
26. \(c(t) = (t - \sin 2t, 1 - \cos 2t)\) for \(0 \leq t \leq 2\pi\)
27. The ellipse \(\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1\)
28. \(x = \sin 2t, \quad y = \sin 3t\) for \(0 \leq t \leq 2\pi\)
29. If you unwind thread from a stationary circular spool, keeping the thread taut at all times, then the endpoint traces a curve \(C\) called the involute of the circle (Figure 9). Observe that \(PQ\) has length \(R\theta\). Show that \(C\) is parametrized by
\[
c(\theta) = \left(R(\cos \theta + \theta \sin \theta), \quad R(\sin \theta - \theta \cos \theta)\right)
\]
Then find the length of the involute for \(0 \leq \theta \leq 2\pi\).

30. Let \(a > b\) and set
\[
k = \sqrt{1 - \frac{b^2}{a^2}}
\]
Use a parametric representation to show that the ellipse \(\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1\) has length \(L = 4aG(\frac{1}{2}, k)\), where
\[
G(\theta, k) = \int_{0}^{\theta} \sqrt{1 - k^2 \sin^2 t} \, dt
\]
is the elliptic integral of the second kind.

In Exercises 31–38, use Eq. (4) to compute the surface area of the given surface.
31. The cone generated by revolving \(c(t) = (t, mt)\) about the \(x\)-axis for \(0 \leq t \leq A\).
32. A sphere of radius \(R\).
33. The surface generated by revolving the curve \(c(t) = (t^2, t)\) about the \(x\)-axis for \(0 \leq t \leq 1\).
34. The surface generated by revolving the curve \(c(t) = (t, e^t)\) about the \(x\)-axis for \(0 \leq t \leq 1\).
35. The surface generated by revolving the curve \(c(t) = (\sin^2 t, \cos^2 t)\) about the \(x\)-axis for \(0 \leq t \leq \frac{\pi}{2}\).
36. The surface generated by revolving the curve \(c(t) = (t, \sin t)\) about the \(x\)-axis for \(0 \leq t \leq 2\pi\).
37. The surface generated by revolving one arch of the cycloid \(c(t) = (t - \sin t, 1 - \cos t) \) about the x-axis.

38. The surface generated by revolving the astroid \(c(t) = (\cos^3 t, \sin^3 t) \) about the x-axis for \(0 \leq t \leq \frac{\pi}{2} \).

Further Insights and Challenges

39. **CAS** Let \(b(t) \) be the “Butterfly Curve”:

\[
\begin{align*}
x(t) &= \sin t (e^{\cos t} - 2 \cos 4t - \sin \left(\frac{t}{12} \right)^5) \\
y(t) &= \cos t (e^{\cos t} - 2 \cos 4t - \sin \left(\frac{t}{12} \right)^5)
\end{align*}
\]

(a) Use a computer algebra system to plot \(b(t) \) and the speed \(s'(t) \) for \(0 \leq t \leq 12\pi \).

(b) Approximate the length \(b(t) \) for \(0 \leq t \leq 10\pi \).

40. **CAS** Let \(a \geq b > 0 \) and set \(k = \frac{2\sqrt{ab}}{a - b} \). Show that the trochoid

\[
\begin{align*}
x &= at - b \sin t, \\
y &= a - b \cos t, \\
0 &\leq t \leq T
\end{align*}
\]

has length \(2(a - b)G(\frac{1}{2}, k) \), with \(G(\theta, k) \) as in Exercise 30.

41. A satellite orbiting at a distance \(R \) from the center of the earth follows the circular path \(x(t) = R \cos \omega t, y(t) = R \sin \omega t \).

Polar Coordinates

Polar coordinates are appropriate when distance from the origin or angle plays a role. For example, the gravitational force exerted on a planet by the sun depends only on the distance \(r \) from the sun and is conveniently described in polar coordinates.

Every point in the plane other than the origin lies at the intersection of the two grid lines and these two grid lines determine its polar coordinates. For example, point \(Q \) in Figure 3 lies on the circle \(r = 3 \) and the ray \(\theta = \frac{5\pi}{6} \), so \(Q = (3, \frac{5\pi}{6}) \) in polar coordinates.

Figure 1 shows that polar and rectangular coordinates are related by the equations \(x = r \cos \theta \) and \(y = r \sin \theta \). On the other hand, \(r^2 = x^2 + y^2 \) by the distance formula, and \(\tan \theta = y/x \) if \(x \neq 0 \). This yields the conversion formulas:

Polar to Rectangular

\[
\begin{align*}
x &= r \cos \theta \\
y &= r \sin \theta
\end{align*}
\]

Rectangular to Polar

\[
\begin{align*}
r &= \sqrt{x^2 + y^2} \\
\tan \theta &= \frac{y}{x} \quad (x \neq 0)
\end{align*}
\]
a coordinate
\[(r, \theta) = \left(\frac{5\pi}{6}, \frac{\pi}{2}\right) \]

\(\theta = \tan^{-1} \frac{y}{x} \) if \(x > 0 \)
\(\theta = \tan^{-1} \frac{y}{x} + \pi \) if \(x < 0 \)
\(\theta = \frac{\pi}{2} \) if \(x = 0 \)

A few remarks are in order before proceeding:

- The angular coordinate is not unique because \((r, \theta)\) and \((r, \theta + 2\pi n)\) label the same point for any integer \(n\). For instance, point \(P\) in Figure 5 has radial coordinate \(r = 2\), but its angular coordinate can be any one of \(\frac{\pi}{2}, \frac{3\pi}{2}, \ldots\) or \(-\frac{\pi}{2}, -\frac{3\pi}{2}, \ldots\).
- The origin \(O\) has no well-defined angular coordinate, so we assign to \(O\) the polar coordinates \((0, \theta)\) for any angle \(\theta\).

- By convention, we allow negative radial coordinates. By definition, \((-r, \theta)\) is the reflection of \((r, \theta)\) through the origin (Figure 6). With this convention, \((-r, \theta)\) and \((r, \theta + \pi)\) represent the same point.
- We may specify unique polar coordinates for points other than the origin by placing restrictions on \(r\) and \(\theta\). We commonly choose \(r > 0\) and \(0 \leq \theta < 2\pi\), but other choices are sometimes made.

When determining the angular coordinate of a point \(P = (x, y)\), remember that there are two angles between 0 and \(2\pi\) satisfying \(\tan \theta = y/x\). You must choose \(\theta\) so that \((r, \theta)\) lies in the quadrant containing \(P\) if you use \(r > 0\) and in the opposite quadrant if you use \(r < 0\) (Figure 7).
EXAMPLE 3 Choosing \(\theta \) Correctly Find two polar representations of \(P = (-1, 1) \), one with \(r > 0 \) and one with \(r < 0 \).

Solution The point \(P = (x, y) = (-1, 1) \) has polar coordinates \((r, \theta)\), where

\[
r = \sqrt{(-1)^2 + 1^2} = \sqrt{2}, \quad \tan \theta = \frac{y}{x} = -1
\]

However, \(\theta \) is not given by

\[
\theta = \tan^{-1} \left(\frac{1}{-1} \right) = -\frac{\pi}{4}
\]

Because \(\theta = -\frac{\pi}{4} \), this would place \(P \) in the fourth quadrant (Figure 7). Since \(P \) is in the second quadrant, the correct angle is

\[
\theta = -\frac{\pi}{4} + \pi = -\frac{\pi}{4} + \frac{3\pi}{4} = \frac{\pi}{2}
\]

If we wish to use the negative radial coordinate \(r = -\sqrt{2} \), then the angle becomes \(\theta = -\frac{\pi}{4} \) or \(\frac{7\pi}{4} \). Thus,

\[
P = \left(-\sqrt{2}, \frac{3\pi}{4} \right) \quad \text{or} \quad \left(-\sqrt{2}, \frac{7\pi}{4} \right)
\]

A curve is described in polar coordinates by an equation involving \(r \) and \(\theta \), which we call a **polar equation**. By convention, we allow solutions with \(r < 0 \).

A line through the origin \(O \) has the simple equation \(\theta = \theta_0 \), where \(\theta_0 \) is the angle between the line and the \(x \)-axis (Figure 8). Indeed, the points with \(\theta = \theta_0 \) are \((r, \theta_0)\), where \(r \) is arbitrary (positive, negative, or zero).

EXAMPLE 4 Line Through the Origin Find the polar equation of the line through the origin of slope \(\frac{3}{2} \) (Figure 9).

Solution A line of slope \(m \) makes an angle \(\theta_0 \) with the \(x \)-axis, where \(m = \tan \theta_0 \). In our case, \(\theta_0 = \tan^{-1} \frac{3}{2} \approx 0.98 \). The equation of the line is \(\theta = \tan^{-1} \frac{3}{2} \) or \(\theta \approx 0.98 \).

To describe lines that do not pass through the origin, we note that any such line has a unique point \(P_0 \) that is **closest** to the origin. The next example shows how to write down the polar equation of the line in terms of \(P_0 \) (Figure 10).

EXAMPLE 5 Line Not Passing Through the Origin Show that

\[
r = d \sec(\theta - \alpha)
\]

is the polar equation of the line \(\mathcal{L} \) whose point closest to the origin is \(P_0 = (d, \alpha) \).

Solution The point \(P_0 \) is obtained by dropping a perpendicular from the origin to \(\mathcal{L} \) (Figure 10), and if \(P = (r, \theta) \) is any point on \(\mathcal{L} \) other than \(P_0 \), then \(\triangle OPP_0 \) is a right triangle. Therefore, \(d/r = \cos(\theta - \alpha) \), or \(r = d \sec(\theta - \alpha) \), as claimed.

EXAMPLE 6 Find the polar equation of the line \(\mathcal{L} \) tangent to the circle \(r = 4 \) at the point with polar coordinates \(P_0 = (4, \frac{\pi}{3}) \).

Solution The point on \(\mathcal{L} \) closest to the origin is \(P_0 \) itself (Figure 11). Therefore, we take \((d, \alpha) = (4, \frac{\pi}{3})\) in Eq. (1) to obtain the equation \(r = 4 \sec(\theta - \frac{\pi}{3}) \).
EXAMPLE 7 Sketch the curve corresponding to \(r = 1 + \sin \theta \).

Solution If we let \(\theta \) vary from 0 to \(2\pi \), we see all possible values of the function, and then it will repeat. So, we consider values in the range from 0 to \(2\pi \).

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
\theta & 0 & \frac{\pi}{4} & \frac{\pi}{2} & \frac{3\pi}{4} & \pi & \frac{5\pi}{4} & \frac{3\pi}{2} & \frac{7\pi}{4} \\
\hline
r = 1 + \sin \theta & 1 & 1.707 & 2 & 1.707 & 1.293 & 0 & 0.293 & 0.293 \\
\hline
\end{array}
\]

For each of the given angles, we plot the point as in Figure 12, and then we connect the points with a smooth curve. The resulting curve is called a *cardioid*, which is Greek for the "heart" that it resembles.

Often, it is hard to guess the shape of a graph of a polar equation. In some cases, it is helpful to rewrite the equation in rectangular coordinates.

EXAMPLE 8 Converting to Rectangular Coordinates Identify the curve with polar equation \(r = 2a \cos \theta \) (a positive constant).

Solution Multiply the equation by \(r \) to obtain \(r^2 = 2ar \cos \theta \). Because \(r^2 = x^2 + y^2 \) and \(x = r \cos \theta \), this equation becomes

\[
x^2 + y^2 = 2ax \quad \text{or} \quad x^2 - 2ax + y^2 = 0
\]

Then complete the square to obtain \((x - a)^2 + y^2 = a^2\). This is the equation of the circle of radius \(a \) and center \((a, 0)\) (Figure 13).

A similar calculation shows that the circle \(x^2 + (y - a)^2 = a^2 \) of radius \(a \) and center \((0, a)\) has polar equation \(r = 2a \sin \theta \). In the next example, we make use of symmetry. Note that the points \((r, \theta)\) and \((r, -\theta)\) are symmetric with respect to the \(x \)-axis (Figure 14).

EXAMPLE 9 Symmetry About the \(x \)-Axis Sketch the *limaçon* curve \(r = 2 \cos \theta - 1 \).

Solution Since \(f(\theta) = \cos \theta \) is periodic, it suffices to plot points for \(-\pi \leq \theta \leq \pi\).

Step 1. Plot points.

To get started, we plot points \(A \)–\(G \) on a grid and join them by a smooth curve (Figure 15).

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
\theta & 0 & \frac{\pi}{6} & \frac{\pi}{3} & \frac{\pi}{2} & \frac{2\pi}{3} & \frac{5\pi}{6} & \pi \\
\hline
r = 2 \cos \theta - 1 & 1 & 0.73 & 0 & -1 & -2 & -2.73 & -3 \\
\hline
\end{array}
\]
Step 2. Analyze \(r \) as a function of \(\theta \).

For a better understanding, it is helpful to graph \(r \) as a function of \(\theta \) in rectangular coordinates. Figure 16(A) shows that

\[
\begin{align*}
\text{As } \theta \text{ varies from } 0 \text{ to } \frac{\pi}{3}, & \quad r \text{ varies from } 1 \text{ to } 0. \\
\text{As } \theta \text{ varies from } \frac{\pi}{3} \text{ to } \pi, & \quad r \text{ is negative and varies from } 0 \text{ to } -3.
\end{align*}
\]

We conclude:

- The graph begins at point \(A \) in Figure 16(B) and moves in toward the origin as \(\theta \) varies from 0 to \(\frac{\pi}{3} \).
- Since \(r \) is negative for \(\frac{\pi}{3} \leq \theta \leq \pi \), the curve continues into the third and fourth quadrants (rather than into the first and second quadrants), moving toward the point \(G = (-3, \pi) \) in Figure 16(C).

Step 3. Use symmetry.

Since \(r(\theta) = r(-\theta) \), the curve is symmetric with respect to the \(x \)-axis. So, the part of the curve with \(-\pi \leq \theta \leq 0 \) is obtained by reflection through the \(x \)-axis as in Figure 16(D).

\(r = 2 \cos \theta - 1 \)

(A) Variation of \(r \) as a function of \(\theta \).

(B) \(\theta \) varies from 0 to \(\pi/3 \); \(r \) varies from 1 to 0.

(C) \(\theta \) varies from \(\pi/3 \) to \(\pi \), but \(r \) is negative and varies from 0 to \(-3\).

(D) The entire limaçon.

FIGURE 16 The curve \(r = 2 \cos \theta - 1 \) is called the *limaçon*, from the Latin word for “snail.” It was first described in 1525 by the German artist Albrecht Dürer.

12.3 SUMMARY

- A point \(P = (x, y) \) has polar coordinates \((r, \theta)\), where \(r \) is the distance to the origin and \(\theta \) is the angle between the positive \(x \)-axis and the segment \(\overline{OP} \), measured in the counterclockwise direction:

\[
\begin{align*}
x &= r \cos \theta, & r &= \sqrt{x^2 + y^2} \\
y &= r \sin \theta, & \tan \theta &= \frac{y}{x} \quad (x \neq 0)
\end{align*}
\]

- The angular coordinate \(\theta \) must be chosen so that \((r, \theta)\) lies in the proper quadrant. If \(r > 0 \), then

\[
\theta = \begin{cases}
\tan^{-1} \frac{y}{x} & \text{if } x > 0 \\
\tan^{-1} \frac{y}{x} + \pi & \text{if } x < 0 \\
\pm \frac{\pi}{2} & \text{if } x = 0
\end{cases}
\]

- Nonuniqueness: \((r, \theta)\) and \((r, \theta + 2\pi n)\) represent the same point for all integers \(n \). The origin \(O \) has polar coordinates \((0, \theta)\) for any \(\theta \).
12.3 EXERCISES

Preliminary Questions

1. Points P and Q with the same radial coordinate (choose the correct answer):
 (a) lie on the same circle with the center at the origin.
 (b) lie on the same ray based at the origin.
 (c) lie on the same ray passing through the origin.

2. Give two polar representations for the point $(x, y) = (0, 1)$, one with negative r and one with positive r.

Exercises

1. Find polar coordinates for each of the seven points plotted in Figure 17. (Choose $r \geq 0$ and θ in $[0, 2\pi]$.)

2. Plot the points with polar coordinates:
 (a) $(2, \frac{\pi}{3})$
 (b) $(4, \frac{3\pi}{4})$
 (c) $(3, -\frac{\pi}{2})$
 (d) $(0, \frac{\pi}{4})$

3. Describe each of the following curves:
 (a) $r = 2$
 (b) $r^2 = 2$
 (c) $r \cos \theta = 2$

4. If $f(-\theta) = f(\theta)$, then the curve $r = f(\theta)$ is symmetric with respect to the (choose the correct answer):
 (a) x-axis.
 (b) y-axis.
 (c) origin.

5. Convert from rectangular to polar coordinates:
 (a) $(1, 0)$
 (b) $(3, \sqrt{3})$
 (c) $(-2, 2)$
 (d) $(-1, \sqrt{3})$

6. Convert from polar to rectangular coordinates:
 (a) $(3, \frac{\pi}{2})$
 (b) $(6, \frac{3\pi}{4})$
 (c) $(0, \frac{\pi}{3})$
 (d) $(5, -\frac{\pi}{2})$

7. Describe each shaded sector in Figure 18 by inequalities in r and θ.

8. Find the equation in polar coordinates of the line through the origin with slope $\frac{1}{2}$.

9. What is the slope of the line $\theta = \frac{3\pi}{5}$?

10. Which of $r = 2 \sec \theta$ and $r = 2 \csc \theta$ defines a horizontal line?

In Exercises 11–16, convert to an equation in rectangular coordinates.

11. $r = 7$
12. $r = \sin \theta$
13. $r = 2 \sin \theta$
14. $r = 2 \csc \theta$
15. $r = \frac{1}{\cos \theta - \sin \theta}$
16. $r = \frac{1}{2 - \cos \theta}$
In Exercises 17–22, convert to an equation in polar coordinates of the form \(r = f(\theta) \).

17. \(x^2 + y^2 = 5 \) \hspace{1cm} 18. \(x = 5 \)
19. \(y = x^2 \) \hspace{1cm} 20. \(xy = 1 \)
21. \(e^{\sqrt{x^2+y^2}} = 1 \) \hspace{1cm} 22. \(\ln x = 1 \)

23. Match each equation with its description:
 (a) \(r = 2 \) \hspace{1cm} (i) Vertical line
 (b) \(\theta = 2 \) \hspace{1cm} (ii) Horizontal line
 (c) \(r = 2 \sec \theta \) \hspace{1cm} (iii) Circle
 (d) \(r = 2 \csc \theta \) \hspace{1cm} (iv) Line through origin

24. Suppose that \(P = (x, y) \) has polar coordinates \((r, \theta)\). Find the polar coordinates for the points:
 (a) \((x, -y)\) \hspace{1cm} (b) \((-x, -y)\) \hspace{1cm} (c) \((-x, y)\) \hspace{1cm} (d) \((y, x)\)

25. Find the values of \(\theta \) in the plot of \(r = 4 \cos \theta \) corresponding to points \(A, B, C, D \) in Figure 19. Then indicate the portion of the graph traced out as \(\theta \) varies in the following intervals:
 (a) \(0 \leq \theta \leq \frac{\pi}{2} \) \hspace{1cm} (b) \(\frac{\pi}{2} \leq \theta \leq \pi \) \hspace{1cm} (c) \(\pi \leq \theta \leq 2\pi \)

![Figure 19 Plot of \(r = 4 \cos \theta \).](image)

26. Match each equation in rectangular coordinates with its equation in polar coordinates:
 (a) \(x^2 + y^2 = 4 \) \hspace{1cm} (i) \(r^2(1 - 2\sin^2 \theta) = 4 \)
 (b) \(x^2 + (y - 1)^2 = 1 \) \hspace{1cm} (ii) \(r(\cos \theta + \sin \theta) = 4 \)
 (c) \(x^2 - y^2 = 4 \) \hspace{1cm} (iii) \(r = 2 \sin \theta \)
 (d) \(x + y = 4 \) \hspace{1cm} (iv) \(r = 2 \)

27. What are the polar equations of the lines parallel to the line \(r \cos(\theta - \frac{\pi}{4}) = 1 \)?

28. Show that the circle with its center at \(\left(\frac{1}{2}, \frac{1}{2} \right) \) in Figure 20 has polar equation \(r = \sin \theta + \cos \theta \) and find the values of \(\theta \) between 0 and \(\pi \) corresponding to points \(A, B, C, \) and \(D \).

![Figure 20 Plot of \(r = \sin \theta + \cos \theta \).](image)

29. Sketch the curve \(r = \frac{1}{2} \theta \) (the spiral of Archimedes) for \(\theta \) between 0 and \(2\pi \) by plotting the points for \(\theta = 0, \frac{\pi}{2}, \frac{3\pi}{2}, \ldots, 2\pi \).

30. Sketch \(r = 3 \cos \theta - 1 \) (see Example 9).
31. Sketch the cardioid curve \(r = 1 + \cos \theta \).

32. Show that the cardioid of Exercise 31 has equation
 \[(x^2 + y^2 - x)^2 = x^2 + y^2 \]
 in rectangular coordinates.

33. Figure 21 displays the graphs of \(r = \sin 2\theta \) in rectangular coordinates and in polar coordinates, where it is a "rose with four petals." Identify:
 (a) The points in (B) corresponding to points \(A–I \) in (A).
 (b) The parts of the curve in (B) corresponding to the angle intervals \([0, \frac{\pi}{4}], [\frac{\pi}{2}, \frac{3\pi}{4}], \) and \([\frac{5\pi}{4}, 2\pi] \).

![Figure 21](image)

34. Sketch the curve \(r = \sin 3\theta \). First fill in the table of \(r \)-values below and plot the corresponding points of the curve. Notice that the three petals of the curve correspond to the angle intervals \([0, \frac{\pi}{3}], [\frac{\pi}{3}, \frac{2\pi}{3}] \), and \([\frac{2\pi}{3}, \pi] \). Then plot \(r = \sin 3\theta \) in rectangular coordinates and label the points on this graph corresponding to \((r, \theta)\) in the table.

<table>
<thead>
<tr>
<th>(\theta)</th>
<th>0</th>
<th>(\frac{\pi}{12})</th>
<th>(\frac{\pi}{6})</th>
<th>(\frac{\pi}{4})</th>
<th>(\frac{\pi}{3})</th>
<th>(\frac{5\pi}{12})</th>
<th>(\cdots)</th>
<th>(\frac{11\pi}{12})</th>
<th>(\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r)</td>
<td>(\sqrt{2})</td>
</tr>
</tbody>
</table>

35. CAS Plot the cardioid \(r = 2 \sin \theta \tan \theta \) and show that its equation in rectangular coordinates is
 \[y^2 = \frac{x^3}{2 - x} \]

36. Prove that \(r = 2a \cos \theta \) is the equation of the circle in Figure 22 using only the fact that a triangle inscribed in a circle with one side a diameter is a right triangle.

![Figure 22](image)

37. Show that
 \[r = a \cos \theta + b \sin \theta \]
is the equation of a circle passing through the origin. Express the radius and center (in rectangular coordinates) in terms of \(a \) and \(b \) and write down the equation in rectangular coordinates.
38. Use the previous exercise to write the equation of the circle of radius 5 and center (3, 4) in the form \(r = a \cos \theta + b \sin \theta \).

39. Use the identity \(\cos 2\theta = \cos^2 \theta - \sin^2 \theta \) to find a polar equation of the hyperbola \(x^2 - y^2 = 1 \).

40. Find an equation in rectangular coordinates for the curve \(r^2 = \cos 2\theta \).

41. Show that \(\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta \) and use this identity to find an equation in rectangular coordinates for the curve \(r = \cos 3\theta \).

42. Use the addition formula for the cosine to show that the line \(r \cos(\theta - \alpha) = d \) has the equation in rectangular coordinates \((\cos \alpha)x + (\sin \alpha)y = d \). Show that \(L \) has slope \(-\cot \alpha \) and \(y \)-intercept \(d/\sin \alpha \).

In Exercises 43–46, find an equation in polar coordinates of the line \(L \) with the given description.

43. The point on \(L \) closest to the origin has polar coordinates \((2, \pi/2) \).

44. The point on \(L \) closest to the origin has rectangular coordinates \((-2, 2)\).

45. \(L \) is tangent to the circle \(r = 2\sqrt{10} \) at the point with rectangular coordinates \((-2, -6)\).

46. \(L \) has slope 3 and is tangent to the unit circle in the fourth quadrant.

47. Show that every line that does not pass through the origin has a polar equation of the form

\[
r = \frac{b}{\sin \theta - a \cos \theta}
\]

where \(b \neq 0 \).

48. By the Law of Cosines, the distance \(d \) between two points (Figure 23) with polar coordinates \((r, \theta)\) and \((r_0, \theta_0)\) is

\[
d^2 = r^2 + r_0^2 - 2rr_0 \cos(\theta - \theta_0)
\]

Use this distance formula to show that

\[
r^2 - 10r \cos \left(\theta - \frac{\pi}{4} \right) = 56
\]

is the equation of the circle of radius 9 whose center has polar coordinates \((5, \pi/4)\).

\[\text{FIGURE 23}\]

49. For \(a > 0 \), a lemniscate curve is the set of points \(P \) such that the product of the distances from \(P \) to \((a, 0)\) and \((-a, 0)\) is \(a^2 \). Show that the equation of the lemniscate is

\[
(x^2 + y^2)^2 = 2a^2(x^2 - y^2)
\]

Then find the equation in polar coordinates. To obtain the simplest form of the equation, use the identity \(\cos 2\theta = \cos^2 \theta - \sin^2 \theta \). Plot the lemniscate for \(a = 2 \) if you have a computer algebra system.

50. Let \(c \) be a fixed constant. Explain the relationship between the graphs of:

(a) \(y = f(x + c) \) and \(y = f(x) \) (rectangular).
(b) \(r = f(\theta + c) \) and \(r = f(\theta) \) (polar).
(c) \(y = f(x) + c \) and \(y = f(x) \) (rectangular).
(d) \(r = f(\theta) + c \) and \(r = f(\theta) \) (polar).

51. The Derivative in Polar Coordinates

Show that a polar curve \(r = f(\theta) \) has parametric equations

\[
x = f(\theta) \cos \theta, \quad y = f(\theta) \sin \theta
\]

Then apply Theorem 2 of Section 12.1 to prove

\[
\frac{dy}{dx} = \frac{f'(\theta) \cos \theta + f(\theta) \sin \theta}{-f(\theta) \sin \theta + f'(\theta) \cos \theta}
\]

where \(f'(\theta) = df/d\theta \).

52. Use Eq. (2) to find the slope of the tangent line to \(r = \sin \theta \) at \(\theta = \pi \).

53. Use Eq. (2) to find the slope of the tangent line to \(r = \theta \) at \(\theta = \pi/2 \) and \(\theta = \pi \).

54. Find the equation in rectangular coordinates of the tangent line to \(r = 4 \cos 3\theta \) at \(\theta = \pi/2 \).

55. Find the polar coordinates of the points on the lemniscate \(r^2 = \cos 2\theta \) in Figure 24 where the tangent line is horizontal.

\[\text{FIGURE 24}\]

56. Find the polar coordinates of the points on the cardioid \(r = 1 + \cos \theta \) where the tangent line is horizontal (see Figure 25(A)).

57. Use Eq. (2) to show that for \(r = \sin \theta + \cos \theta \),

\[
\frac{dy}{dx} = \frac{\cos 2\theta + \sin 2\theta}{\cos 2\theta - \sin 2\theta}
\]

Then calculate the slopes of the tangent lines at points \(A, B, C \) in Figure 20.

Further Insights and Challenges

58. Let \(y = f(x) \) be a periodic function of period \(2\pi \)—that is, \(f(x) = f(x + 2\pi) \). Explain how this periodicity is reflected in the graph of:

(a) \(y = f(x) \) in rectangular coordinates.
(b) \(r = f(\theta) \) in polar coordinates.
59. [GU] Use a graphing utility to convince yourself that the polar equations \(r = f_1(\theta) = 2\cos \theta - 1 \) and \(r = f_2(\theta) = 2\cos \theta + 1 \) have the same graph. Then explain why. **Hint:** Show that the points \((f_1(\theta + \pi), \theta + \pi)\) and \((f_2(\theta), \theta)\) coincide.

60. CAS We investigate how the shape of the limaçon curve \(r = b + \cos \theta \) depends on the constant \(b \) (see Figure 25).

(a) Argue as in Exercise 59 to show that the constants \(b \) and \(-b\) yield the same curve.

(b) Plot the limaçon for \(b = 0, 0.2, 0.5, 0.8, 1 \) and describe how the curve changes.

(c) Plot the limaçon for \(b = 1.2, 1.5, 1.8, 2, 2.4 \) and describe how the curve changes.

(d) Use Eq. (2) to show that
\[
\frac{dy}{dx} = -\left(\frac{b \cos \theta + 2b}{b \cos \theta + 2} \right) \csc \theta
\]

(e) Find the points where the tangent line is vertical. Note that there are three cases: \(0 \leq b < 2 \), \(b = 2 \), and \(b > 2 \). Do the plots constructed in (b) and (c) reflect your results?

12.4 Area and Arc Length in Polar Coordinates

Integration in polar coordinates involves finding not the area *underneath* a curve, but rather the area of a sector bounded by a curve as in Figure 1(A). Consider the region bounded by the curve \(r = f(\theta) \) where \(f(\theta) \geq 0 \) and the two rays \(\theta = \alpha \) and \(\theta = \beta \) with \(\alpha < \beta \). To derive a formula for the area, divide the region into \(N \) narrow sectors of angle \(\Delta \theta = (\beta - \alpha)/N \) corresponding to a partition of the interval \([\alpha, \beta]\) as in Figure 1(B):

\[
\theta_0 = \alpha < \theta_1 < \theta_2 < \cdots < \theta_N = \beta
\]

Recall that a circular sector of angle \(\Delta \theta \) and radius \(r \) has area \(\frac{1}{2} r^2 \Delta \theta \) (Figure 2). If \(\Delta \theta \) is small, the \(j \)th narrow sector (Figure 3) is nearly a circular sector of radius \(r_j = f(\theta_j) \), so its area is approximately \(\frac{1}{2} r_j^2 \Delta \theta \). The total area is approximated by the sum:

\[
\text{Area of region} \approx \sum_{j=1}^{N} \frac{1}{2} r_j^2 \Delta \theta = \frac{1}{2} \sum_{j=1}^{N} f(\theta_j)^2 \Delta \theta
\]

This is a Riemann sum for the integral \(\frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^2 d\theta \). If \(f \) is continuous, then the sum approaches the integral as \(N \to \infty \), and we obtain the following formula.

THEOREM 1 Area in Polar Coordinates If \(f \) is a continuous function, then the area bounded by a curve in polar form \(r = f(\theta) \) and the rays \(\theta = \alpha \) and \(\theta = \beta \) (with \(\alpha < \beta \)) is equal to

\[
\frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta = \frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^2 d\theta
\]

We know that \(r = R \) defines a circle of radius \(R \). By Eq. (2), the area is equal to

\[
\frac{1}{2} \int_{0}^{2\pi} R^2 d\theta = \frac{1}{2} R^2 (2\pi) = \pi R^2,
\]

as expected.
EXAMPLE 1 Use Theorem 1 to compute the area of the right semicircle with equation \(r = 4 \sin \theta \).

Solution The equation \(r = 4 \sin \theta \) defines a circle of radius 2 tangent to the \(x \)-axis at the origin. The right semicircle is “swept out” as \(\theta \) varies from 0 to \(\frac{\pi}{2} \) as in Figure 4(A). By Eq. (2), the area of the right semicircle is

\[
\frac{1}{2} \int_0^{\pi/2} r^2 \, d\theta = \frac{1}{2} \int_0^{\pi/2} (4 \sin \theta)^2 \, d\theta = 8 \int_0^{\pi/2} \sin^2 \theta \, d\theta
\]

\[
= 8 \int_0^{\pi/2} \frac{1}{2} (1 - \cos 2\theta) \, d\theta
\]

\[
= (4\theta - 2 \sin 2\theta) \bigg|_0^{\pi/2} = 4 \left(\frac{\pi}{2} \right) - 0 = 2\pi
\]

REMINDER In Eq. (3), we use the identity

\[
\sin^2 \theta = \frac{1}{2} (1 - \cos 2\theta)
\]

EXAMPLE 2 Sketch \(r = \sin 3\theta \) and compute the area of one “petal.”

Solution To sketch the curve, we first graph \(r = \sin 3\theta \) in rectangular coordinates. Figure 5 shows that the radius \(r \) varies from 0 to 1 and back to 0 as \(\theta \) varies from 0 to \(\frac{\pi}{3} \). This gives petal A in Figure 6. Petal B is traced as \(\theta \) varies from \(\frac{\pi}{3} \) to \(\frac{2\pi}{3} \) (with \(r \leq 0 \)), and petal C is traced for \(\frac{2\pi}{3} \leq \theta \leq \pi \). We find that the area of petal A [using Eq. (4) in the margin to evaluate the integral] is equal to

\[
\frac{1}{2} \int_0^{\pi/3} (\sin 3\theta)^2 \, d\theta = \frac{1}{2} \int_0^{\pi/3} \left(\frac{1 - \cos 6\theta}{2} \right) \, d\theta = \left(\frac{1}{4} \theta - \frac{1}{24} \sin 6\theta \right) \bigg|_0^{\pi/3} = \frac{\pi}{12}
\]

The region sandwiched between two polar curves \(r = f_1(\theta) \) and \(r = f_2(\theta) \) with \(f_2(\theta) \geq f_1(\theta) > 0 \), for \(\alpha \leq \theta \leq \beta \), is called a **radially simple region**. It has the property that every radial line through the origin that intersects the region does so in either a single point or a single line segment that begins on the curve \(r = f_1(\theta) \) and ends on the curve \(r = f_2(\theta) \) (Figure 7). For such a radially simple region, we have the following formula for its area:

\[
\text{Area between two curves} = \frac{1}{2} \int_a^\beta (f_2(\theta)^2 - f_1(\theta)^2) \, d\theta
\]

FIGURE 4

(A) The polar integral computes the area swept out by a radial segment.

(B) The ordinary integral in rectangular coordinates computes the area underneath a curve.

FIGURE 5 Graph of \(r = \sin 3\theta \) as a function of \(\theta \).

FIGURE 6 Graph of polar curve \(r = \sin 3\theta \), a “rose with three petals.”

FIGURE 7 A radially simple region.
EXAMPLE 3 Area Between Two Curves Find the area of the region inside the circle $r = 2 \cos \theta$ but outside the circle $r = 1$ [Figure 8(A)].

Solution The two circles intersect at the points where $(r, 2 \cos \theta) = (r, 1)$ or, in other words, when $2 \cos \theta = 1$. This yields $\cos \theta = \frac{1}{2}$, which has solutions $\theta = \pm \frac{\pi}{3}$.

We see in Figure 8 that region I is the difference of regions II and III in Figures 8(B) and (C). Therefore,

\[
\text{Area of I} = \text{Area of II} - \text{Area of III}
\]

\[
= \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (2 \cos \theta)^2 d\theta - \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (1)^2 d\theta
\]

\[
= \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (4 \cos^2 \theta - 1) d\theta - \frac{1}{2} \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} (2 \cos 2\theta + 1) d\theta
\]

\[
= \frac{1}{2} \left(\sin 2\theta + \theta \right) \Big|_{-\frac{\pi}{3}}^{\frac{\pi}{3}} = \frac{\sqrt{3}}{2} + \frac{\pi}{3} \approx 1.91
\]

EXAMPLE 4 Find the total length of the circle $r = 2a \cos \theta$ for $a > 0$.

Solution In this case, $f(\theta) = 2a \cos \theta$ and

\[
f(\theta)^2 + f'(\theta)^2 = 4a^2 \cos^2 \theta + 4a^2 \sin^2 \theta = 4a^2
\]

The total length of this circle of radius a has the expected value:

\[
\int_{0}^{\pi} \sqrt{f(\theta)^2 + f'(\theta)^2} d\theta = \int_{0}^{\pi} (2a) d\theta = 2\pi a
\]

Note that the upper limit of integration is π rather than 2π because the entire circle is traced out as θ varies from 0 to π (see Figure 9).
12.4 SUMMARY

- Area of the sector bounded by a polar curve \(r = f(\theta) \) and two rays \(\theta = \alpha \) and \(\theta = \beta \) (Figure 10):
 \[
 \text{Area} = \frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^2 \, d\theta
 \]

- Area of a radially simple region, which is between \(r = f_1(\theta) \) and \(r = f_2(\theta) \), where \(f_2(\theta) \geq f_1(\theta) \) (Figure 11):
 \[
 \text{Area} = \frac{1}{2} \int_{\alpha}^{\beta} \left(f_2(\theta)^2 - f_1(\theta)^2 \right) \, d\theta
 \]

- Arc length of the polar curve \(r = f(\theta) \) for \(\alpha \leq \theta \leq \beta \):
 \[
 \text{Arc length} = \int_{\alpha}^{\beta} \sqrt{f(\theta)^2 + f'(\theta)^2} \, d\theta
 \]

12.4 EXERCISES

Preliminary Questions

1. Polar coordinates are suited to finding the area (choose one):
 (a) under a curve between \(x = a \) and \(x = b \).
 (b) bounded by a curve and two rays through the origin.

2. Is the formula for area in polar coordinates valid if \(f(\theta) \) takes negative values?

3. The horizontal line \(y = 1 \) has polar equation \(r = \csc \theta \). Which area is represented by the integral \(\frac{1}{2} \int_{\pi/6}^{\pi/2} \csc^2 \theta \, d\theta \) (Figure 12)?
 (a) \(\Box ABCD \) (b) \(\Delta A\!B\!C \) (c) \(\Delta A\!C\!D \)

Exercises

1. Sketch the area bounded by the circle \(r = 5 \) and the rays \(\theta = \frac{\pi}{2} \) and \(\theta = \pi \), and compute its area as an integral in polar coordinates.

2. Sketch the region bounded by the line \(r = \sec \theta \) and the rays \(\theta = 0 \) and \(\theta = \frac{\pi}{2} \). Compute its area in two ways: as an integral in polar coordinates and using geometry.

3. Calculate the area of the circle \(r = 4 \sin \theta \) as an integral in polar coordinates (see Figure 4). Be careful to choose the correct limits of integration.

4. Find the area of the shaded triangle in Figure 13 as an integral in polar coordinates. Then find the rectangular coordinates of \(P \) and \(Q \), and compute the area via geometry.
5. Find the area of the shaded region in Figure 14. Note that θ varies from 0 to $\frac{\pi}{2}$.

6. Which interval of θ-values corresponds to the shaded region in Figure 15? Find the area of the region.

7. Find the total area enclosed by the cardioid in Figure 16.

8. Find the area of the shaded region in Figure 16.

9. Find the area of one leaf of the “four-petaled rose” $r = \sin 2 \theta$ (Figure 17). Then prove that the total area of the rose is equal to one-half the area of the circumscribed circle.

10. Find the area enclosed by one loop of the lemniscate with equation $r^2 = \cos 2 \theta$ (Figure 18). Choose your limits of integration carefully.

11. Sketch the spiral $r = \theta$ for $0 \leq \theta \leq 2\pi$ and find the area bounded by the curve and the first quadrant.

12. Find the area of the intersection of the circles $r = \sin \theta$ and $r = \cos \theta$.

13. Find the area of region A in Figure 19.

14. Find the area of the shaded region in Figure 20 enclosed by the circle $r = \frac{1}{2}$ and a petal of the curve $r = \cos 3 \theta$. Hint: Compute the area of both the petal and the region inside the petal and outside the circle.

15. Find the area of the inner loop of the limaçon with polar equation $r = 2 \cos \theta - 1$ (Figure 21).

16. Find the area of the shaded region in Figure 21 between the inner and outer loop of the limaçon $r = 2 \cos \theta - 1$.

17. Find the area of the part of the circle $r = \sin \theta + \cos \theta$ in the fourth quadrant (see Exercise 28 in Section 12.3).

18. Find the area of the region inside the circle $r = 2 \sin (\theta + \frac{\pi}{2})$ and above the line $r = \sec (\theta - \frac{\pi}{4})$.

19. Find the area between the two curves in Figure 22(A).

20. Find the area between the two curves in Figure 22(B).

21. Find the area inside both curves in Figure 23.

22. Find the area of the region that lies inside one but not both of the curves in Figure 23.
23. Calculate the total length of the circle \(r = 4 \sin \theta \) as an integral in polar coordinates.

24. Sketch the segment \(r = \sec \theta \) for \(0 \leq \theta \leq A \). Then compute its length in two ways: as an integral in polar coordinates and using trigonometry.

In Exercises 25–32, compute the length of the polar curve.

25. The length of \(r = \theta^2 \) for \(0 \leq \theta \leq \pi \)

26. The spiral \(r = \theta \) for \(0 \leq \theta \leq A \)

27. The curve \(r = \sin \theta \) for \(0 \leq \theta \leq \pi \)

28. The equiangular spiral \(r = e^\theta \) for \(0 \leq \theta \leq 2\pi \)

29. \(r = \sqrt{1 + \sin 2\theta} \) for \(0 \leq \theta \leq \pi/4 \)

30. The cardioid \(r = 1 - \cos \theta \) in Figure 16

31. \(r = \cos^2 \theta \)

32. \(r = 1 + \theta \) for \(0 \leq \theta \leq \pi/2 \)

Further Insights and Challenges

41. Suppose that the polar coordinates of a moving particle at time \(t \) are \((r(t), \theta(t))\). Prove that the particle’s speed is equal to \(\sqrt{(dr/dt)^2 + r^2(d\theta/dt)^2} \).

42. Compute the speed at time \(t = 1 \) of a particle whose polar coordinates at time \(t \) are \(r = t, \theta = t \) (use Exercise 41). What would the speed be if the particle’s rectangular coordinates were \(x = t, y = t \)? Why is the speed increasing in one case and constant in the other?

12.5 Conic Sections

Three familiar families of curves—ellipses, hyperbolas, and parabolas—appear throughout mathematics and its applications. They are called conic sections because they are obtained as the intersection of a cone with a suitable plane (Figure 1). Our goal in this section is to derive equations for the conic sections from their geometric definitions as curves in the plane.
An ellipse is an oval-shaped curve [Figure 2(A)] consisting of all points \(P \) such that the sum of the distances to two fixed points \(F_1 \) and \(F_2 \) is a constant \(K > 0 \):

\[
P F_1 + P F_2 = K
\]

The points \(F_1 \) and \(F_2 \) are called the foci (plural of “focus”) of the ellipse. Note that if the foci coincide, then Eq. (1) reduces to \(2 P F_1 = K \) and we obtain a circle of radius \(\frac{1}{2} K \) centered at \(F_1 \).

We use the following terminology:

- The midpoint of \(F_1 F_2 \) is the center of the ellipse.
- The line through the foci is the focal axis.
- The line through the center perpendicular to the focal axis is the conjugate axis.

![Diagram of an ellipse with foci, center, and axes labeled](image)

FIGURE 2

The ellipse is said to be in standard position if the focal and conjugate axes are the \(x \)- and \(y \)-axes, as shown in Figure 2(B). In this case, the foci have coordinates \(F_1 = (c, 0) \) and \(F_2 = (-c, 0) \) for some \(c > 0 \). Let us prove that the equation of this ellipse has the particularly simple form

\[
\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1
\]

where \(a = K/2 \) and \(b = \sqrt{a^2 - c^2} \).

By the distance formula, \(P = (x, y) \) lies on the ellipse in Figure 2(B) if

\[
P F_1 + P F_2 = \sqrt{(x-c)^2 + y^2} + \sqrt{(x+c)^2 + y^2} = 2a
\]

Move the first term on the left over to the right and square both sides:

\[
(x + c)^2 + y^2 = 4a^2 - 4a\sqrt{(x-c)^2 + y^2} + (x - c)^2 + y^2
\]

\[
4a\sqrt{(x-c)^2 + y^2} = 4a^2 + (x - c)^2 - (x + c)^2 = 4a^2 - 4cx
\]

Now divide by 4, square, and simplify:

\[
a^2(x^2 - 2cx + c^2 + y^2) = a^4 - 2a^2 cx + c^2 x^2
\]

\[
(a^2 - c^2)x^2 + a^2 y^2 = a^4 - a^2 c^2 = a^2(a^2 - c^2)
\]

\[
\frac{x^2}{a^2} + \frac{y^2}{a^2 - c^2} = 1
\]

This is Eq. (2) with \(b^2 = a^2 - c^2 \) as claimed.
The ellipse intersects the axes in four points A, A', B, B' called vertices. Vertices A and A' along the focal axis are called the focal vertices. Following common usage, the numbers a and b are referred to as the semimajor axis and the semiminor axis (even though they are numbers rather than axes).

THEOREM 1 Ellipse in Standard Position Let $a > b > 0$, and set $c = \sqrt{a^2 - b^2}$. The ellipse $PF_1 + PF_2 = 2a$ with foci $F_1 = (c, 0)$ and $F_2 = (-c, 0)$ has equation

$$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

Furthermore, the ellipse has:

- semimajor axis a, semiminor axis b.
- focal vertices ($\pm a$, 0), minor vertices (0, $\pm b$).

If $b > a > 0$, then Eq. (5) defines an ellipse with foci $(0, \pm c)$, where $c = \sqrt{b^2 - a^2}$.

Example 1 Find the equation of the ellipse with foci ($\pm \sqrt{11}$, 0) and semimajor axis $a = 6$. Then find the semiminor axis and sketch the graph.

Solution The foci are ($\pm c$, 0) with $c = \sqrt{11}$, and the semimajor axis is $a = 6$, so we can use the relation $c = \sqrt{a^2 - b^2}$ to find b:

$$b^2 = a^2 - c^2 = 6^2 - (\sqrt{11})^2 = 25 \Rightarrow b = 5$$

Thus, the semimajor axis is $b = 5$ and the ellipse has equation $\left(\frac{x}{6}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$. To sketch this ellipse, plot the vertices (± 6, 0) and (0, ± 5) and connect them as in Figure 3.

To write down the equation of an ellipse with axes parallel to the x- and y-axes and center translated to the point $C = (h, k)$, replace x by $x - h$ and y by $y - k$ in the equation (Figure 4):

$$\left(\frac{x-h}{a}\right)^2 + \left(\frac{y-k}{b}\right)^2 = 1$$

Example 2 Translating an Ellipse Find an equation of the ellipse with center $C = (6, 7)$, vertical focal axis, semimajor axis 5, and semiminor axis 3. Where are the foci located?

Solution Since the focal axis is vertical, we have $a = 3$ and $b = 5$, so that $a < b$ (Figure 4). The ellipse centered at the origin would have equation $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{5}\right)^2 = 1$. When the center is translated to $(h, k) = (6, 7)$, the equation becomes

$$\left(\frac{x - 6}{3}\right)^2 + \left(\frac{y - 7}{5}\right)^2 = 1$$

Furthermore, $c = \sqrt{b^2 - a^2} = \sqrt{5^2 - 3^2} = 4$, so the foci are located ± 4 vertical units above and below the center—that is, $F_1 = (6, 11)$ and $F_2 = (6, 3)$.
A hyperbola is the set of all points \(P \) such that the difference of the distances from \(P \) to two foci \(F_1 \) and \(F_2 \) is \(\pm K \):

\[
P F_1 - P F_2 = \pm K
\]

We assume that \(K \) is less than the distance \(F_1 F_2 \) between the foci (the hyperbola has no points if \(K > F_1 F_2 \)). Note that a hyperbola consists of two branches corresponding to the choices of sign \(\pm \) (Figure 5).

As before, the midpoint of \(F_1 F_2 \) is the center of the hyperbola, the line through \(F_1 \) and \(F_2 \) is called the focal axis, and the line through the center perpendicular to the focal axis is called the conjugate axis. The vertices are the points where the focal axis intersects the hyperbola; they are labeled \(A \) and \(A' \) in Figure 5. The hyperbola is said to be in standard position when the focal and conjugate axes are the \(x \)- and \(y \)-axes, respectively, as in Figure 6. The next theorem can be verified in much the same way as Theorem 1.

Theorem 2 Hyperbola in Standard Position Let \(a > 0 \) and \(b > 0 \), and set \(c = \sqrt{a^2 + b^2} \). The hyperbola \(PF_1 - PF_2 = \pm 2a \) with foci \(F_1 = (c, 0) \) and \(F_2 = (-c, 0) \) has equation

\[
\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1
\]

A hyperbola has two asymptotes \(y = \pm \frac{b}{a} x \); that is, we claim, diagonals of the rectangle whose sides pass through \((\pm a, 0)\) and \((0, \pm b)\) as in Figure 6. To prove this, consider a point \((x, y)\) on the hyperbola in the first quadrant. By Eq. (7),

\[
y = \frac{b}{a} \sqrt{x^2 - a^2} - b^2 = \frac{b}{a} \sqrt{x^2 - a^2}
\]

The following limit shows that a point \((x, y)\) on the hyperbola approaches the line \(y = \frac{b}{a} x \) as \(x \to \infty \):

\[
\lim_{x \to \infty} \left(y - \frac{b}{a} x \right) = \frac{b}{a} \lim_{x \to \infty} \left(\sqrt{x^2 - a^2} - x \right)
\]

\[
= \frac{b}{a} \lim_{x \to \infty} \left(\sqrt{x^2 - a^2} - x \right) \left(\frac{\sqrt{x^2 - a^2} + x}{\sqrt{x^2 - a^2} + x} \right)
\]

\[
= \frac{b}{a} \lim_{x \to \infty} \left(\frac{-a^2}{\sqrt{x^2 - a^2} + x} \right) = 0
\]

The asymptotic behavior in the remaining quadrants is similar.

Example 3 Find the foci of the hyperbola \(9x^2 - 4y^2 = 36 \). Sketch its graph and asymptotes.

Solution First divide by 36 to write the equation in standard form:

\[
\frac{x^2}{4} - \frac{y^2}{9} = 1 \quad \text{or} \quad \left(\frac{x}{2} \right)^2 - \left(\frac{y}{3} \right)^2 = 1
\]

Thus, \(a = 2 \), \(b = 3 \), and \(c = \sqrt{a^2 + b^2} = \sqrt{4 + 9} = \sqrt{13} \). The foci are

\[
F_1 = (\sqrt{13}, 0), \quad F_2 = (-\sqrt{13}, 0)
\]

To sketch the graph, we draw the rectangle through the points \((\pm 2, 0)\) and \((0, \pm 3)\) as in Figure 7. The diagonals of the rectangle are the asymptotes \(y = \pm \frac{3}{2} x \). The hyperbola passes through the vertices \((\pm 2, 0)\) and approaches the asymptotes.
Unlike the ellipse and hyperbola, which are defined in terms of two foci, a parabola is the set of points P equidistant from a focus F and a line D called the directrix:

$$PF = PD$$

Here, when we speak of the distance from a point P to a line D, we mean the distance from P to the point Q on D closest to P, obtained by dropping a perpendicular from P to D (Figure 8). We denote this distance by PD.

The line through the focus F perpendicular to D is called the axis of the parabola. The vertex is the point where the parabola intersects its axis. We say that the parabola is in standard position if, for some c, the focus is $F = (0, c)$ and the directrix is $y = -c$, as shown in Figure 8. We verify in Exercise 73 that the vertex is then located at the origin and the equation of the parabola is $y = x^2/4c$. If $c < 0$, then the parabola opens downward.

THEOREM 3 Parabola in Standard Position Let $c \neq 0$. The parabola with focus $F = (0, c)$ and directrix $y = -c$ has equation

$$y = \frac{1}{4c}x^2$$

The vertex is located at the origin. The parabola opens upward if $c > 0$ and downward if $c < 0$.

EXAMPLE 4 The standard parabola with directrix $y = -2$ is translated so that its vertex is located at $(2, 8)$. Find its equation, directrix, and focus.

Solution By Eq. (9) with $c = 2$, the standard parabola with directrix $y = -2$ has equation $y = \frac{1}{8}x^2$ (Figure 9). The focus of this standard parabola is $(0, c) = (0, 2)$, which is 2 units above the vertex $(0, 0)$.

To obtain the equation when the parabola is translated with vertex at $(2, 8)$, we replace x by $x - 2$ and y by $y - 8$:

$$y - 8 = \frac{1}{8}(x - 2)^2$$

or

$$y = \frac{1}{8}x^2 - \frac{1}{2}x + \frac{17}{2}$$

The vertex has moved up 8 units, so the directrix also moves up 8 units to become $y = 6$. The new focus is 2 units above the new vertex $(2, 8)$, so the new focus is $(2, 10)$.

Eccentricity

Some ellipses are flatter than others, just as some hyperbolas are steeper. The “shape” of a conic section is measured by a number e called the eccentricity. For an ellipse or hyperbola,

$$e = \frac{\text{distance between foci}}{\text{distance between vertices on focal axis}}$$

A parabola is defined to have eccentricity $e = 1$.

THEOREM 4 For ellipses and hyperbolas in standard position,

$$e = \frac{c}{a}$$

1. An ellipse has eccentricity $0 \leq e < 1$.
2. A hyperbola has eccentricity $e > 1$.

Proof The foci are located at $(\pm c, 0)$ and the vertices are on the focal axis at $(\pm a, 0)$. Therefore,

$$e = \frac{\text{distance between foci}}{\text{distance between vertices on focal axis}} = \frac{2c}{2a} = \frac{c}{a}$$
For an ellipse, $c = \sqrt{a^2 - b^2}$ and so $e = c/a < 1$. For a hyperbola, $c = \sqrt{a^2 + b^2}$ and thus $e = c/a > 1$.

How does eccentricity determine the shape of a conic? Consider the ratio b/a of the semiminor axis to the semimajor axis of an ellipse. The ellipse is nearly circular if b/a is close to 1, whereas it is elongated and flat if b/a is small. Now

$$\frac{b}{a} = \sqrt{1 - \frac{c^2}{a^2}} = \sqrt{1 - e^2}$$

This shows that b/a gets smaller (and the ellipse gets flatter) as $e \to 1$.

The “roundest” ellipse is the circle, with $e = 0$. Similarly, for a hyperbola,

$$\frac{b}{a} = \sqrt{1 + e^2}$$

The ratios $\pm b/a$ are the slopes of the asymptotes, so the asymptotes get steeper as $e \to \infty$.

CONCEPTUAL INSIGHT There is a more precise way to explain how eccentricity determines the shape of a conic. We can prove that if two conics C_1 and C_2 have the same eccentricity e, then there is a change of scale that makes C_1 congruent to C_2. Changing the scale means changing the units along the x- and y-axes by a common positive factor. A curve scaled by a factor of 10 has the same shape but is ten times as large. This corresponds, for example, to changing units from centimeters to millimeters (smaller units make for a larger figure). By “congruent” we mean that after scaling, it is possible to move C_1 by a rigid motion (involving rotation and translation, but no stretching or bending) so that it lies directly on top of C_2.

All circles ($e = 0$) have the same shape because scaling by a factor $r > 0$ transforms a circle of radius R into a circle of radius rR. Similarly, any two parabolas ($e = 1$) become congruent after suitable scaling. However, an ellipse of eccentricity $e = 0.5$ cannot be made congruent to an ellipse of eccentricity $e = 0.8$ by scaling (see Exercise 74).

Eccentricity can be used to give a unified focus-directrix definition of the conic sections. Given a point F (the focus), a line D (the directrix), and a number $e > 0$, we consider the set of all points P such that $PF = ePD$.

For $e = 1$, this is our definition of a parabola. According to the next theorem, Eq. (10) defines a conic section of eccentricity e for all $e > 0$ (Figures 11 and 12). Note, however, that there is no focus-directrix definition for circles ($e = 0$).
THEOREM 5 Focus-Directrix Definition For all $e > 0$, the set of points satisfying Eq. (10) is a conic section of eccentricity e. Furthermore,

- **Ellipse:** Let $a > b > 0$ and $c = \sqrt{a^2 - b^2}$. The ellipse
 $$\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$
 satisfies Eq. (10) with $F = (c, 0)$, $e = \frac{c}{a}$, and vertical directrix $x = \frac{a}{c}$.

- **Hyperbola:** Let $a, b > 0$ and $c = \sqrt{a^2 + b^2}$. The hyperbola
 $$\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$$
 satisfies Eq. (10) with $F = (c, 0)$, $e = \frac{c}{a}$, and vertical directrix $x = \frac{a}{c}$.

Proof Assume that $e > 1$ (the case $e < 1$ is similar, see Exercise 66). We may choose our coordinate axes so that the focus F lies on the x-axis and the directrix is vertical, lying to the left of F, as in Figure 13. Anticipating the final result, we let d be the distance from the focus F to the directrix D and set

$$c = \frac{d}{1 - e^{-2}}, \quad a = \frac{c}{e}, \quad b = \sqrt{c^2 - a^2}$$

Since we are free to shift the y-axis, let us choose the y-axis so that the focus has coordinates $F = (c, 0)$. Then the directrix is the line

$$x = c - d = c - e(1 - e^{-2})$$

$$= c e^{-2} = \frac{a}{e}$$

Now, the equation $PF = ePD$ for a point $P = (x, y)$ may be written

$$\frac{\sqrt{(x-c)^2 + y^2}}{PF} = e \frac{\sqrt{(x-(a/e))^2}}{PD}$$

Algebraic manipulation yields

$$(x - c)^2 + y^2 = e^2 \left(x - (a/e)\right)^2 \quad \text{(square)}$$

$$x^2 - 2cx + c^2 + y^2 = e^2 x^2 - 2aex + a^2$$

$$x^2 - 2aex + a^2 + y^2 = e^2 x^2 - 2aex + a^2 \quad \text{(use } c = ae\text{)}$$

$$(e^2 - 1)x^2 - y^2 = a^2(e^2 - 1) \quad \text{(rearrange)}$$

$$\frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} = 1 \quad \text{(divide)}$$

This is the desired equation because $a^2(e^2 - 1) = c^2 - a^2 = b^2$.

EXAMPLE 5 Find the equation, foci, and directrix of the standard ellipse with eccentricity $e = 0.8$ and focal vertices $(\pm 10, 0)$.

Solution The vertices are $(\pm a, 0)$ with $a = 10$ (Figure 14). By Theorem 5,

$$c = ae = 10(0.8) = 8, \quad b = \sqrt{a^2 - c^2} = \sqrt{100^2 - 8^2} = 6$$

Thus, our ellipse has equation

$$\left(\frac{x}{10}\right)^2 + \left(\frac{y}{6}\right)^2 = 1$$

The foci are $(\pm c, 0) = (\pm 8, 0)$ and the directrix is $x = \frac{a}{c} = \frac{10}{0.8} = 12.5$.

![Figure 13](image-url)

Figure 13

![Figure 14](image-url)

Figure 14

Ellipse of eccentricity $e = 0.8$ with focus at $(8, 0)$.

For SECTION 12.5 Conic Sections 631
In Section 14.6, we discuss the famous law of Johannes Kepler stating that the orbit of a planet around the sun is an ellipse with one focus at the sun. In this discussion, we will need to write the equation of an ellipse in polar coordinates. To derive the polar equations of the conic sections, it is convenient to use the focus-directrix definition with focus F at the origin O and vertical line $x = d$ as directrix D (Figure 15). Note from the figure that if $P = (r, \theta)$, then

$$PF = r, \quad PD = d - r \cos \theta$$

Thus, the focus-directrix equation of the ellipse $PF = ePD$ becomes

$$r = \frac{ed}{1 + e \cos \theta}$$

This proves the following result, which is also valid for the hyperbola and parabola (see Exercise 67).

THEOREM 6 Polar Equation of a Conic Section The conic section of eccentricity $e > 0$ with focus at the origin and directrix $x = d$ has polar equation

$$r = \frac{ed}{1 + e \cos \theta}\quad\text{(11)}$$

Example 6 Find the eccentricity, directrix, and focus of the conic section

$$r = \frac{24}{4 + 3 \cos \theta}$$

Solution First, we write the equation in the standard form

$$r = \frac{24}{4 + 3 \cos \theta} = \frac{6}{1 + \frac{3}{4} \cos \theta}$$

Comparing with Eq. (11), we see that $e = \frac{3}{4}$ and $ed = 6$. Therefore, $d = 8$. Since $e < 1$, the conic is an ellipse. By Theorem 6, the directrix is the line $x = 8$ and the focus is the origin.

Reflective Properties of Conic Sections

The conic sections have numerous geometric properties. Especially important are the reflective properties, which are used in optics and communications (e.g., in antenna and telescope design; Figure 16). We describe these properties here briefly without proof (but see Exercises 68–70 and Exercise 71 for proofs of the reflective property of ellipses).

- **Ellipse**: The segments F_1P and F_2P make equal angles with the tangent line at a point P on the ellipse. Therefore, a beam of light originating at focus F_1 is reflected off the ellipse toward the second focus F_2 [Figure 17(A)]. See also Figure 18.
- **Hyperbola**: The tangent line at a point P on the hyperbola bisects the angle formed by the segments F_1P and F_2P. Therefore, a beam of light directed toward F_2 is reflected off the hyperbola toward the second focus F_1 [Figure 17(B)].
- **Parabola**: The segment FP and the line through P parallel to the axis make equal angles with the tangent line at a point P on the parabola [Figure 17(C)]. Therefore, a beam of light approaching P from above in the axial direction is reflected off the parabola toward the focus F.

FIGURE 17

(A) Ellipse (B) Hyperbola (C) Parabola
The equations of the standard conic sections are special cases of the general equation of degree 2 in \(x\) and \(y\):

\[
ax^2 + bxy + cy^2 + dx + ey + f = 0
\]

Here, \(a, b, c, d, e, f\) are constants with \(a, b, c\) not all zero. It turns out that this general equation of degree 2 does not give rise to any new types of curves. Apart from certain “degenerate cases,” Eq. (12) defines a conic section that is not necessarily in standard position: It need not be centered at the origin, and its focal and conjugate axes may be rotated relative to the coordinate axes. For example, the equation

\[
6x^2 - 8xy + 8y^2 - 12x - 24y + 38 = 0
\]

defines an ellipse with its center at \((3, 3)\) whose axes are rotated (Figure 19).

We say that Eq. (12) is degenerate if the set of solutions is a pair of intersecting lines, a pair of parallel lines, a single line, a point, or the empty set. For example:

- \(x^2 - y^2 = 0\) defines a pair of intersecting lines \(y = x\) and \(y = -x\).
- \(x^2 - x = 0\) defines a pair of parallel lines \(x = 0\) and \(x = 1\).
- \(x^2 = 0\) defines a single line (the \(y\)-axis).
- \(x^2 + y^2 = 0\) has just one solution \((0, 0)\).
- \(x^2 + y^2 = -1\) has no solutions.

Now assume that Eq. (12) is nondegenerate. The term \(bxy\) is called the cross term. When the cross term is zero (i.e., when \(b = 0\)), we can “complete the square” to show that Eq. (12) defines a translate of the conic in standard position. In other words, the axes of the conic are parallel to the coordinate axes. This is illustrated in the next example.

Example 7 Completing the Square Show that

\[
4x^2 + 9y^2 + 24x - 72y + 144 = 0
\]

defines a translate of a conic section in standard position (Figure 20).

Solution Since there is no cross term, we may complete the square of the terms involving \(x\) and \(y\) separately:

\[
4(x^2 + 6x + 9) + 9(y^2 - 8y + 16) + 144 = 0
\]

\[
4(x + 3)^2 - 4(9) + 9(y - 4)^2 - 9(16) + 144 = 0
\]

\[
4(x + 3)^2 + 9(y - 4)^2 = 36
\]

Therefore, this quadratic equation can be rewritten in the form

\[
\left(\frac{x + 3}{3}\right)^2 + \left(\frac{y - 4}{2}\right)^2 = 1
\]

When the cross term \(bxy\) is nonzero, Eq. (12) defines a conic whose axes are rotated relative to the coordinate axes. The marginal note describes how this may be verified in general. We illustrate with the following example.

Example 8 Show that \(2xy = 1\) defines a conic section whose focal and conjugate axes are rotated relative to the coordinate axes.

Solution Figure 22(A) shows axes labeled \(\tilde{x}\) and \(\tilde{y}\) that are rotated by 45° relative to the standard coordinate axes. A point \(P\) with coordinates \((x, y)\) may also be described by
coordinates \((\tilde{x}, \tilde{y})\) relative to these rotated axes. Applying Eqs. (13) and (14) with \(\theta = \frac{\pi}{4}\), we find that \((x, y)\) and \((\tilde{x}, \tilde{y})\) are related by the formulas

\[
\begin{align*}
 x &= \frac{\tilde{x} - \tilde{y}}{\sqrt{2}}, \\
 y &= \frac{\tilde{x} + \tilde{y}}{\sqrt{2}}
\end{align*}
\]

Therefore, if \(P = (x, y)\) lies on the hyperbola—that is, if \(2xy = 1\)—then

\[
2xy = 2 \left(\frac{\tilde{x} - \tilde{y}}{\sqrt{2}} \right) \left(\frac{\tilde{x} + \tilde{y}}{\sqrt{2}} \right) = \tilde{x}^2 - \tilde{y}^2 = 1
\]

Thus, the coordinates \((\tilde{x}, \tilde{y})\) satisfy the equation of the standard hyperbola \(\tilde{x}^2 - \tilde{y}^2 = 1\) whose focal and conjugate axes are the \(\tilde{x}\)- and \(\tilde{y}\)-axes, respectively.

We conclude our discussion of conics by stating the Discriminant Test. Suppose that the equation

\[
ax^2 + bxy + cy^2 + dx + ey + f = 0
\]

is nondegenerate and thus defines a conic section. According to the Discriminant Test, the type of conic is determined by the discriminant \(D\):

\[
D = b^2 - 4ac
\]

We have the following cases:

- \(D < 0\): Ellipse or circle
- \(D > 0\): Hyperbola
- \(D = 0\): Parabola

For example, the discriminant of the equation \(2xy = 1\) is

\[
D = b^2 - 4ac = 2^2 - 0 = 4 > 0
\]

According to the Discriminant Test, \(2xy = 1\) defines a hyperbola. This agrees with our conclusion in Example 8.

12.5 Summary

- An ellipse with foci \(F_1\) and \(F_2\) is the set of points \(P\) such that \(PF_1 + PF_2 = K\), where \(K\) is a constant such that \(K > F_1F_2\). The equation in standard position is

\[
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1
\]

The vertices of the ellipse are \((\pm a, 0)\) and \((0, \pm b)\).
SECTION 12.5 Conic Sections

<table>
<thead>
<tr>
<th>Focal axis</th>
<th>Foci</th>
<th>Focal vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a > b$</td>
<td>x-axis</td>
<td>$(\pm c, 0)$ with $c = \sqrt{a^2 - b^2}$</td>
</tr>
<tr>
<td>$a < b$</td>
<td>y-axis</td>
<td>$(0, \pm c)$ with $c = \sqrt{b^2 - a^2}$</td>
</tr>
</tbody>
</table>

Eccentricity: $e = \frac{c}{a}$ ($0 \leq e < 1$). Directrix: $x = \frac{a}{e}$ (if $a > b$).

- A hyperbola with foci F_1 and F_2 is the set of points P such that
 \[PF_1 - PF_2 = \pm K \]
 where K is a constant such that $0 < K < F_1F_2$. The equation in standard position is
 \[\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1 \]

<table>
<thead>
<tr>
<th>Focal axis</th>
<th>Foci</th>
<th>Vertices</th>
<th>Asymptotes</th>
</tr>
</thead>
<tbody>
<tr>
<td>x-axis</td>
<td>$\pm c, 0$ with $c = \sqrt{a^2 + b^2}$</td>
<td>$\pm \frac{b}{a}$</td>
<td>[y = \pm \frac{b}{a}x]</td>
</tr>
</tbody>
</table>

Eccentricity: $e = \frac{c}{a}$ ($e > 1$). Directrix: $x = \frac{a}{e}$.

- A parabola with focus F and directrix D is the set of points P such that $PF = PD$.
 The equation in standard position is
 \[y = \frac{1}{4c}x^2 \]
 Focus $F = (0, c)$, directrix $y = -c$, and vertex at the origin $(0, 0)$.

- Focus-directrix definition of conic with focus F and directrix D: $PF = ePD$.
- To translate a conic section h units horizontally and k units vertically, replace x by $x - h$ and y by $y - k$ in the equation.
- Polar equation of conic of eccentricity $e > 0$, focus at the origin, directrix $x = d$:
 \[r = \frac{ed}{1 + e \cos \theta} \]

12.5 EXERCISES

Preliminary Questions

1. Decide if the equation defines an ellipse, a hyperbola, a parabola, or no conic section at all.
 - (a) $4x^2 - 9y^2 = 12$
 - (b) $-4x + 9y^2 = 0$
 - (c) $4y^2 + 9x^2 = 12$
 - (d) $4x^3 + 9y^3 = 12$

2. For which conic sections do the vertices lie between the foci?

3. What are the foci of
 \[\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1 \] if $a < b$?

4. What is the geometric interpretation of b/a in the equation of a hyperbola in standard position?

Exercises

In Exercises 1–6, find the vertices and foci of the conic section.

1. $\left(\frac{x}{9}\right)^2 + \left(\frac{y}{4}\right)^2 = 1$
2. $\frac{x^2}{9} + \frac{y^2}{4} = 1$
3. $\left(\frac{x}{4}\right)^2 - \left(\frac{y}{5}\right)^2 = 1$
4. $\frac{x^2}{9} - \frac{y^2}{4} = 36$
5. $\left(\frac{x - 3}{7}\right)^2 - \left(\frac{y + 1}{4}\right)^2 = 1$
6. $\left(\frac{x - 3}{4}\right)^2 + \left(\frac{y + 1}{7}\right)^2 = 1$

In Exercises 7–10, find the equation of the ellipse obtained by translating (as indicated) the ellipse

7. Translated with center at the origin
 \[\left(\frac{x - 8}{6}\right)^2 + \left(\frac{y + 4}{3}\right)^2 = 1 \]
8. Translated with center at $(-2, -12)$
9. Translated to the right 6 units
10. Translated down 4 units

In Exercises 11–14, find the equation of the given ellipse.

11. Vertices (±5, 0) and (0, ±7)
12. Foci (±6, 0) and focal vertices (±10, 0)
13. Foci (0, ±10) and eccentricity e = \(\frac{3}{5} \)
14. Vertices (4, 0), (28, 0) and eccentricity e = \(\frac{3}{2} \)

In Exercises 15–20, find the equation of the given hyperbola.

15. Vertices (±3, 0) and foci (±5, 0)
16. Vertices (±3, 0) and asymptotes \(y = ±\frac{1}{2}x \)
17. Foci (±4, 0) and eccentricity e = 2
18. Vertices (0, ±6) and eccentricity e = 3
19. Vertices (−3, 0), (7, 0) and eccentricity e = 3
20. Vertices (0, −6), (0, 4) and foci (0, −9), (0, 7)

In Exercises 21–28, find the equation of the parabola with the given properties.

21. Vertex (0, 0), focus (\(\frac{1}{12} \), 0)
22. Vertex (0, 0), focus (0, 2)
23. Vertex (0, 0), directrix \(y = −5 \)
24. Vertex (3, 4), directrix \(y = −2 \)
25. Focus (0, 4), directrix \(y = −4 \)
26. Focus (0, −4), directrix \(y = 4 \)
27. Focus (2, 0), directrix \(x = −2 \)
28. Focus (−2, 0), vertex (2, 0)

In Exercises 29–38, find the vertices, foci, center (if an ellipse or a hyperbola), and asymptotes (if a hyperbola).

29. \(x^2 + 4y^2 = 16 \)
30. \(4x^2 + y^2 = 16 \)
31. \(\left(\frac{x−3}{4} \right)^2 − \left(\frac{y+5}{7} \right)^2 = 1 \)
32. \(3x^2 − 27y^2 = 12 \)
33. \(4x^2 − 3y^2 + 8x + 30y = 215 \)
34. \(y = 4x^2 \)
35. \(y = 4(x−4)^2 \)
36. \(8y^2 + 6x^2 − 36x − 64y + 134 = 0 \)
37. \(4x^2 + 25y^2 − 8x − 10y = 20 \)
38. \(16x^2 + 25y^2 − 64x − 200y + 64 = 0 \)

In Exercises 39–42, use the Discriminant Test to determine the type of the conic section (in each case, the equation is nondegenerate). Plot the curve if you have a computer algebra system.

39. \(4x^2 + 5xy + 7y^2 = 24 \)

40. \(x^2 − 2xy + y^2 + 24x − 8 = 0 \)
41. \(2x^2 − 8xy + 3y^2 − 4 = 0 \)
42. \(2x^2 − 3xy + 5y^2 − 4 = 0 \)

43. Show that the ”conic” \(x^2 + 3y^2 − 6x + 12y + 23 = 0 \) has no points.

44. For which values of \(a \) does the conic \(3x^2 + 2y^2 − 16y + 12x = a \) have at least one point?

45. Show that \(\frac{b}{a} = \sqrt{1−e^2} \) for a standard ellipse of eccentricity \(e \).

46. Show that the eccentricity of a hyperbola in standard position is \(e = \sqrt{1+m^2} \), where \(±m \) are the slopes of the asymptotes.

47. Explain why the dots in Figure 23 lie on a parabola. Where are the focus and directrix located?

48. Find the equation of the ellipse consisting of points \(P \) such that \(PF_1 + PF_2 = 12 \), where \(F_1 = (4, 0) \) and \(F_2 = (−2, 0) \).

49. A latus rectum of a conic section is a chord through a focus parallel to the directrix. Find the area bounded by the parabola \(y = x^2/(4c) \) and its latus rectum (refer to Figure 8).

50. Show that the tangent line at a point \(P = (x_0, y_0) \) on the hyperbola \(\left(\frac{x}{a} \right)^2 - \left(\frac{y}{b} \right)^2 = 1 \) has equation \(Ax − By = 1 \)

where \(A = \frac{x_0}{a^2} \) and \(B = \frac{y_0}{b^2} \).

In Exercises 51–54, find the polar equation of the conic with the given eccentricity and directrix, and focus at the origin.

51. \(e = \frac{1}{2} \), \(x = 3 \)
52. \(e = \frac{1}{2} \), \(x = −3 \)
53. \(e = 1 \), \(x = 4 \)
54. \(e = \frac{3}{2} \), \(x = −4 \)

In Exercises 55–58, identify the type of conic, the eccentricity, and the equation of the directrix.

55. \(r = \frac{8}{1 + 4 \cos \theta} \)
56. \(r = \frac{8}{4 + \cos \theta} \)
57. \(r = \frac{8}{4 + 3 \cos \theta} \)
58. \(r = \frac{12}{4 + 3 \cos \theta} \)

59. Find a polar equation for the hyperbola with focus at the origin, directrix \(x = −2 \), and eccentricity \(e = 1.2 \).

60. Let \(C \) be the ellipse \(r = \frac{de}{1 + e \cos \theta} \), where \(e < 1 \). Show that the \(x \)-coordinates of the points in Figure 24 are as follows:

<table>
<thead>
<tr>
<th>Point</th>
<th>(A)</th>
<th>(C)</th>
<th>(F_2)</th>
<th>(A')</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)-coordinate</td>
<td>(\frac{de}{e+1})</td>
<td>(\frac{de^2}{1−e^2})</td>
<td>(\frac{2de^2}{1−e^2})</td>
<td>(\frac{de}{1−e})</td>
</tr>
</tbody>
</table>
61. Find an equation in rectangular coordinates of the conic
\[r = \frac{16}{5 + 3 \cos \theta} \]
Hint: Use the results of Exercise 60.

62. Let \(e > 1 \). Show that the vertices of the hyperbola \(r = \frac{ed}{e + 1} \) and \(r = \frac{ed}{e - 1} \) have \(x \)-coordinates \(\frac{e}{e+1} \) and \(\frac{e}{e-1} \).

Further Insights and Challenges

65. Verify Theorem 2.

66. Verify Theorem 5 in the case \(0 < e < 1 \). *Hint: Repeat the proof of Theorem 5, but set \(e = d/(e^2 - 1) \).*

67. Verify that if \(e > 1 \), then Eq. (11) defines a hyperbola of eccentricity \(e \), with its focus at the origin and directrix at \(x = d \).

Reflective Property of the Ellipse In Exercises 68–70, we prove that the focal radii at a point on an ellipse make equal angles with the tangent line \(L \). Let \(P = (x_0, y_0) \) be a point on the ellipse in Figure 25 with foci \(F_1 = (-c, 0) \) and \(F_2 = (c, 0) \), and eccentricity \(e = c/a \).

68. Show that the equation of the tangent line at \(P \) is \(Ax + By = 1 \), where \(A = x_0/a^2 \) and \(B = y_0/b^2 \).

69. Points \(R_1 \) and \(R_2 \) in Figure 25 are defined so that \(F_1R_1 \) and \(F_2R_2 \) are perpendicular to the tangent line.

![Figure 25](image)

(a) Show, with \(A \) and \(B \) as in Exercise 68, that
\[\frac{\alpha_1 + c}{\beta_1} = \frac{\alpha_2 - c}{\beta_2} = \frac{A}{B} \]

(b) Use (a) and the distance formula to show that
\[\frac{F_1R_1}{F_2R_2} = \frac{\beta_1}{\beta_2} \]

(c) Use (a) and the equation of the tangent line in Exercise 68 to show that
\[\beta_1 = \frac{B(1 + Ac)}{A^2 + B^2}, \quad \beta_2 = \frac{B(1 - Ac)}{A^2 + B^2} \]

70. (a) Prove that \(PF_1 = a + x_0e \) and \(PF_2 = a - x_0e \). *Hint: Show that \(PF_1^2 - PF_2^2 = 4x_0c \). Then use the defining property \(PF_1 + PF_2 = 2a \) and the relation \(e = c/a \).

(b) Verify that \(\frac{F_1R_1}{PF_1} = \frac{F_2R_2}{PF_2} \).

(c) Show that \(\sin \theta_1 = \sin \theta_2 \). Conclude that \(\theta_1 = \theta_2 \).

71. Here is another proof of the Reflective Property.

(a) Figure 25 suggests that \(L \) is the unique line that intersects the ellipse only in the point \(P \). Assuming this, prove that \(QR_1 + QR_2 > PF_1 + PF_2 \) for all points \(Q \) on the tangent line other than \(P \).

(b) Use the Principle of Least Distance (Example 6 in Section 4.6) to prove that \(\theta_1 = \theta_2 \).

72. Show that the length \(QR \) in Figure 26 is independent of the point \(P \).

![Figure 26](image)

73. Show that \(y = x^2/4c \) is the equation of a parabola with directrix \(y = -c \), focus \((0, c)\), and the vertex at the origin, as stated in Theorem 3.

74. Consider two ellipses in standard position:
\[E_1 : \left(\frac{x}{a_1} \right)^2 + \left(\frac{y}{b_1} \right)^2 = 1 \]
\[E_2 : \left(\frac{x}{a_2} \right)^2 + \left(\frac{y}{b_2} \right)^2 = 1 \]

We say that \(E_1 \) is similar to \(E_2 \) under scaling if there exists a factor \(r > 0 \) such that for all \((x, y)\) on \(E_1 \), the point \((rx, ry)\) lies on \(E_2 \). Show that \(E_1 \) and \(E_2 \) are similar under scaling if and only if they have the same eccentricity. Show that any two circles are similar under scaling.
75. Derive Equations (13) and (14) in the text as follows. Write the coordinates of \(P \) with respect to the rotated axes in Figure 21 in polar form \(x = r \cos \alpha, \ y = r \sin \alpha \). Explain why \(P \) has polar coordinates \((r, \alpha + \theta) \) with respect to the standard \(x \)- and \(y \)-axes, and derive (13) and (14) using the addition formulas for cosine and sine.

76. If we rewrite the general equation of degree 2 (Eq. 12) in terms of variables \(x \) and \(y \) that are related to \(x \) and \(y \) by Eqs. (13) and (14), we obtain a new equation of degree 2 in \(\dot{x} \) and \(\dot{y} \) of the same form but with different coefficients:

\[
d^2 \dot{x}^2 + b' \dot{x} \dot{y} + c' \dot{y}^2 + d' \ddot{x} + e' \ddot{y} + f' = 0
\]

CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point \((1, 4)\)?
 (a) \(c(t) = (t^2, t + 3) \)
 (b) \(c(t) = (t^2, t - 3) \)
 (c) \(c(t) = (t^2, 3 - t) \)
 (d) \(c(t) = (t - 3, t^2) \)

2. Find parametric equations for the line through \(P = (2, 5) \) perpendicular to the line \(y = 4x - 3 \).

3. Find parametric equations for the circle of radius 2 with center \((1, 1)\). Use the equations to find the points of intersection of the circle with the \(x \)- and \(y \)-axes.

4. Find a parametrization \(c(t) \) of the line \(y = 5 - 2x \) such that \(c(0) = (2, 1) \).

5. Find a parametrization \(c(\theta) \) of the unit circle such that \(c(0) = (-1, 0) \).

6. Find a path \(c(t) \) that traces the parabolic arc \(y = x^2 \) from \((0, 0)\) to \((3, 9)\) for \(0 \leq t \leq 1 \).

7. Find a path \(c(t) \) that traces the line \(y = 2x + 1 \) from \((1, 3)\) to \((3, 7)\) for \(0 \leq t \leq 1 \).

8. Sketch the graph \(c(t) = (1 + \cos t, \sin 2t) \) for \(0 \leq t \leq 2\pi \) and draw arrows specifying the direction of motion.

In Exercises 9–12, express the parametric curve in the form \(y = f(x) \).

9. \(c(t) = (4t - 3, 10 - t) \)

10. \(c(t) = (t^3 + 1, t^2 - 4) \)

11. \(c(t) = \left(\frac{3 - 2}{t}, \frac{3}{t} + \frac{1}{t} \right) \)

12. \(x = \tan t, \ y = \sec t \)

In Exercises 13–16, calculate \(dy/dx \) at the point indicated.

13. \(c(t) = (t^3 + t, t^2 - 1), \ t = 3 \)

14. \(c(\theta) = (\tan^2 \theta, \cos \theta), \ \theta = \frac{\pi}{4} \)

15. \(c(t) = (e^t - 1, \sin t), \ t = 20 \)

16. \(c(t) = (\ln t, 3t^2 - t), \ P = (0, 2) \)

17. **CAS** Find the point on the cycloid \(c(t) = (t - \sin t, 1 - \cos t) \) where the tangent line has slope \(\frac{1}{2} \).

18. Find the points on \((t + \sin t, t - 2 \sin t)\) where the tangent is vertical or horizontal.

19. Find the equation of the Bézier curve with control points
 \[P_0 = (-1, -1), \ P_1 = (-1, 1), \ P_2 = (1, 1), \ P_3 = (1, -1) \]

20. Find the speed at \(t = \frac{\pi}{4} \) of a particle whose position at time \(t \) seconds is \(c(t) = (\sin 4t, \cos 3t) \).

21. Find the speed (as a function of \(t \)) of a particle whose position at time \(t \) seconds is \(c(t) = (\sin t + t, \cos t + t) \). What is the particle’s maximal speed?

22. Find the length of \((3e^t - 3, 4e^t + 7)\) for \(0 \leq t \leq 1 \).

In Exercises 23 and 24, let \(c(t) = (e^{-t} \cos t, e^{-t} \sin t) \).

23. Show that \(c(t) \) for \(0 \leq t < \infty \) has finite length and calculate its value.

24. Find the first positive value of \(t_0 \) such that the tangent line to \(c(t_0) \) is vertical, and calculate the speed at \(t = t_0 \).

25. **CAS** Plot \(c(t) = (\sin 2t, 2 \cos t) \) for \(0 \leq t \leq \pi \). Express the length of the curve as a definite integral, and approximate it using a computer algebra system.

26. Convert the points \((x, y) = (1, -3), (3, -1)\) from rectangular to polar coordinates.

27. Convert the points \((r, \theta) = (1, \frac{\pi}{6}), (3, \frac{5\pi}{4})\) from polar to rectangular coordinates.

28. Write \((x + y)^2 = xy + 6\) as an equation in polar coordinates.

29. Write \(r = \frac{2 \cos \theta}{\cos \theta - \sin \theta} \) as an equation in rectangular coordinates.

30. Show that \(r = \frac{4}{7 \cos \theta - \sin \theta} \) is the polar equation of a line.

31. **GU** Convert the equation
 \[9(x^2 + y^2) = (x^2 + y^2 - 2y)^2 \]
 to polar coordinates, and plot it with a graphing utility.

32. Calculate the area of the circle \(r = 3 \sin \theta \) bounded by the rays \(\theta = \frac{\pi}{4} \) and \(\theta = \frac{3\pi}{4} \).

33. Calculate the area of one petal of \(r = \sin 4\theta \) (see Figure 1).

34. The equation \(r = \sin(nθ) \), where \(n \geq 2 \) is even, is a “rose” of \(2n \) petals (Figure 1). Compute the total area of the flower, and show that it does not depend on \(n \).

![Figure 1 Plot of \(r = \sin(nθ) \).](image-url)
35. Calculate the total area enclosed by the curve \(r^2 = \cos \theta \sin \theta \) (Figure 2).

36. Find the shaded area in Figure 3.

37. Find the area enclosed by the cardioid \(r = a(1 + \cos \theta) \), where \(a > 0 \).

38. Calculate the length of the curve with polar equation \(r = \theta \) in Figure 4.

39. CAS Figure 5 shows the graph of \(r = e^{0.5 \theta} \sin \theta \) for \(0 \leq \theta \leq 2\pi \). Use a computer algebra system to approximate the difference in length between the outer and inner loops.

40. Show that \(r = f_1(\theta) \) and \(r = f_2(\theta) \) define the same curves in polar coordinates if \(f_1(\theta) = -f_2(\theta + \pi) \). Use this to show that the following define the same conic section:

\[
\begin{align*}
 r &= \frac{de}{1 - e \cos \theta}, \\
 r &= \frac{-de}{1 + e \cos \theta}
\end{align*}
\]

In Exercises 41–44, identify the conic section. Find the vertices and foci.

41. \(\left(\frac{x}{3} \right)^2 + \left(\frac{y}{2} \right)^2 = 1 \)

42. \(x^2 - 2y^2 = 4 \)

43. \((2x + \frac{1}{2}y)^2 = 4 - (x - y)^2 \)

44. \((y - 3)^2 = 2x^2 - 1 \)

In Exercises 45–50, find the equation of the conic section indicated.

45. Ellipse with vertices \((\pm 8, 0)\), foci \((\pm \sqrt{3}, 0)\)

46. Ellipse with foci \((\pm 8, 0)\), eccentricity \(e = \frac{1}{5}\)

47. Hyperbola with vertices \((\pm 8, 0)\), asymptotes \(y = \pm \frac{3}{4}x\)

48. Hyperbola with foci \((2, 0)\) and \((10, 0)\), eccentricity \(e = 4\)

49. Parabola with focus \((8, 0)\), directrix \(x = -8\)

50. Parabola with vertex \((4, -1)\), directrix \(x = 15\)

51. Find the asymptotes of the hyperbola \(3x^2 + 6x - y^2 - 10y = 1\).

52. Show that the “conic section” with equation \(x^2 - 4x + y^2 + 5 = 0\) has no points.

53. Show that the relation \(\frac{dy}{dx} = (e^2 - 1) \frac{y}{x} \) holds on a standard ellipse or hyperbola of eccentricity \(e\).

54. The orbit of Jupiter is an ellipse with the sun at a focus. Find the eccentricity of the orbit if the perihelion (closest distance to the sun) equals \(740 \times 10^6\) km and the aphelion (farthest distance from the sun) equals \(816 \times 10^6\) km.

55. Refer to Figure 25 in Section 12.5. Prove that the product of the perpendicular distances \(F_1R_1\) and \(F_2R_2\) from the foci to a tangent line of an ellipse is equal to the square \(b^2\) of the semiminor axes.
Ferrofluids contain suspended magnetic nanoparticles. When placed in a magnetic field, they form peaks and valleys to minimize the total energy of the system. Vectors and their cross products play a key role in understanding the behavior of ferrofluids as the magnetic field varies. (Oliver Hoffmann/Shutterstock)

13 VECTOR GEOMETRY

Vectors play a role in nearly all areas of mathematics and its applications. In physical settings, they are used to represent quantities that have both magnitude and direction, such as velocity and force. Newtonian mechanics, quantum physics, and special and general relativity all depend fundamentally on vectors. We could not understand electricity and magnetism without vectors, which are used in constructing the theoretical framework.

Vectors also play a critical role in computer graphics, describing how light should be depicted, and providing a means to change the viewpoint of the screen appropriately. Fields such as economics and statistics use vectors to encapsulate information in a manner that provides for efficient manipulation. Vectors are an indispensable tool across a wide array of disciplines.

This chapter develops the basic geometric and algebraic properties of vectors. Although no calculus is required, the concepts developed will be used throughout the remainder of the text.

13.1 Vectors in the Plane

A two-dimensional vector \(\mathbf{v} \) is determined by two points in the plane: an initial point \(P \) (also called the “tail” or basepoint) and a terminal point \(Q \) (also called the “head”). We write

\[\mathbf{v} = \overrightarrow{PQ} \]

and we draw \(\mathbf{v} \) as an arrow pointing from \(P \) to \(Q \). This vector is said to be based at \(P \).

Figure 1(A) shows the vector with initial point \(P = (2, 2) \) and terminal point \(Q = (7, 5) \). The length or magnitude of \(\mathbf{v} \), denoted \(\| \mathbf{v} \| \), is the distance from \(P \) to \(Q \).

The vector \(\mathbf{v} = \overrightarrow{OR} \) pointing from the origin to a point \(R \) is called the position vector of \(R \). Figure 1(B) shows the position vector of the point \(R = (3, 5) \).

We now introduce some vector terminology.

- Two vectors \(\mathbf{v} \) and \(\mathbf{w} \) of nonzero length are called parallel if the lines through \(\mathbf{v} \) and \(\mathbf{w} \) are parallel. Parallel vectors point either in the same or in opposite directions [Figure 2(A)].
- A vector \(\mathbf{v} \) is said to undergo a translation when it is moved to begin at a new point without changing its length or direction. The resulting vector \(\mathbf{w} \) is called a translate of \(\mathbf{v} \) [Figure 2(B)]. Translates have the same length and direction but different basepoints.

NOTATION In this text, vectors are represented by boldface lowercase letters such as \(\mathbf{v}, \mathbf{w}, \mathbf{a}, \mathbf{b} \), etc.

(A) Vectors parallel to \(\mathbf{v} \)

(B) \(\mathbf{w} \) is a translate of \(\mathbf{v} \).

FIGURE 2
In almost all situations, it is convenient to treat vectors with the same length and direction as equivalent, even if they have different basepoints. With this in mind, we say that
- v and w are equivalent if w is a translate of v [Figure 3(A)].

Every vector can be translated so that its tail is at the origin [Figure 3(C)]. Therefore,

Every vector \(v \) is equivalent to a unique vector \(v_0 \) based at the origin.

To work algebraically, we define the components of a vector (Figure 4).

DEFINITION Components of a Vector The components of \(\overrightarrow{PQ} \), where \(P = (a_1, b_1) \) and \(Q = (a_2, b_2) \), are the quantities

\[
\begin{align*}
 a &= a_2 - a_1 \quad (x\text{-component}), \\
 b &= b_2 - b_1 \quad (y\text{-component})
\end{align*}
\]

The pair of components is denoted \((a, b) \).

- When the basepoint \(P = (0, 0) \), the components of \(v \) are just the coordinates of its endpoint \(Q \).
- The length of a vector in terms of its components (by the distance formula, see Figure 4) is

\[
\|v\| = \|\overrightarrow{PQ}\| = \sqrt{a^2 + b^2}
\]

- The zero vector (whose head and tail coincide) is the vector \(\mathbf{0} = (0, 0) \) of length zero. It is the only vector that lacks a direction.

The components \((a, b) \) determine the length and direction of \(v \), but not its basepoint. Therefore, two vectors are equivalent if and only if they have the same components. Nevertheless, the standard practice is to describe a vector by its components, and thus we write

\[v = (a, b) \]

Equivalent vectors have the same length and point in the same direction. But, they can start at any basepoint. When not specified otherwise, we assume that the vector under consideration is based at the origin.

EXAMPLE 1 Determine whether \(v_1 = \overrightarrow{P_1Q_1} \) and \(v_2 = \overrightarrow{P_2Q_2} \) are equivalent, where

\[
\begin{align*}
 P_1 &= (3, 7), \quad Q_1 = (6, 5) \quad \text{and} \quad P_2 = (-1, 4), \quad Q_2 = (2, 1)
\end{align*}
\]

What is the magnitude of \(v_1 \)?
We now define two basic vector operations: vector addition and scalar multiplication.

The vector sum \(\mathbf{v} + \mathbf{w} \) is defined when \(\mathbf{v} \) and \(\mathbf{w} \) have the same basepoint: Translate \(\mathbf{w} \) to the equivalent vector \(\mathbf{w}' \) whose tail coincides with the head of \(\mathbf{v} \). The sum \(\mathbf{v} + \mathbf{w} \) is the vector pointing from the tail of \(\mathbf{v} \) to the head of \(\mathbf{w}' \) [Figure 7(A)]. Alternatively, we can use the Parallelogram Law: \(\mathbf{v} + \mathbf{w} \) is the vector pointing from the basepoint to the opposite vertex of the parallelogram formed by \(\mathbf{v} \) and \(\mathbf{w} \) [Figure 7(B)].

To add several vectors \(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n \), translate the vectors to \(\mathbf{v}_1 = \mathbf{v}'_1, \mathbf{v}_2 = \mathbf{v}'_2, \ldots, \mathbf{v}_n = \mathbf{v}'_n \) so that they lie head to tail as in Figure 8. The vector sum \(\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_n \) is the vector whose terminal point is the terminal point of \(\mathbf{v}'_n \).

Vector subtraction \(\mathbf{v} - \mathbf{w} \) is carried out by adding \(-\mathbf{w}\) to \(\mathbf{v} \) as in Figure 9(A). Or, more simply, draw the vector pointing from \(\mathbf{w} \) to \(\mathbf{v} \) as in Figure 9(B), and translate it back to the basepoint to obtain \(\mathbf{v} - \mathbf{w} \).

The term scalar is another word for “real number,” and we often speak of scalar versus vector quantities. Thus, the number 8 is a scalar, while \((8, 2)\) is a vector. If \(\lambda \) is a scalar and \(\mathbf{v} \) is a nonzero vector, the scalar multiple \(\lambda \mathbf{v} \) is defined as follows (Figure 10):

- \(\lambda \mathbf{v} \) has length \(|\lambda| \|\mathbf{v}\| \).
- It points in the same direction as \(\mathbf{v} \) if \(\lambda > 0 \).
- It points in the opposite direction if \(\lambda < 0 \).

Solution We can test for equivalence by computing the components (Figure 5):

\[
\mathbf{v}_1 = (6 - 3, 5 - 7) = (3, -2), \quad \mathbf{v}_2 = (2 - (-1), 1 - 4) = (3, -3)
\]

The components of \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are not the same, so \(\mathbf{v}_1 \) and \(\mathbf{v}_2 \) are not equivalent. Since \(\mathbf{v}_1 = (3, -2) \), its magnitude is

\[
\|\mathbf{v}_1\| = \sqrt{3^2 + (-2)^2} = \sqrt{13}
\]

EXAMPLE 2 Sketch the vector \(\mathbf{v} = (2, -3) \) based at \(P = (1, 4) \) and the vector \(\mathbf{v}_0 \) equivalent to \(\mathbf{v} \) based at the origin.

Solution The vector \(\mathbf{v} = (2, -3) \), which is based at \(P = (1, 4) \), has the terminal point \(Q = (1 + 2, 4 - 3) = (3, 1) \), located 2 units to the right and 3 units down from \(P \) as shown in Figure 6. The vector \(\mathbf{v}_0 \) equivalent to \(\mathbf{v} \) based at \(O \) has terminal point \((2, -3) \).

Vector Algebra

CAUTION Remember that the vector \(\mathbf{v} - \mathbf{w} \) points in the direction from the tip of \(\mathbf{w} \) to the tip of \(\mathbf{v} \) (not from the tip of \(\mathbf{v} \) to the tip of \(\mathbf{w} \)).

NOTATION \(\lambda \) (pronounced “lambda”) is the eleventh letter in the Greek alphabet. We use the symbol \(\lambda \) often (but not exclusively) to denote a scalar.
CHAPTER 13 VECTOR GEOMETRY

FIGURE 9 Vector subtraction.

FIGURE 10 Vectors \(\mathbf{v} \) and \(2\mathbf{v} \) are based at \(P \) but \(2\mathbf{v} \) is twice as long. Vectors \(\mathbf{v} \) and \(-\mathbf{v} \) have the same length but opposite directions.

FIGURE 11 Vector operations using components.

Note that \(0 \mathbf{v} = \mathbf{0} \) for all \(\mathbf{v} \), and

\[
\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|
\]

In particular, \(-\mathbf{v} \) has the same length as \(\mathbf{v} \) but points in the opposite direction. A vector \(\mathbf{w} \) is parallel to \(\mathbf{v} \) if and only if \(\mathbf{w} = \lambda \mathbf{v} \) for some nonzero scalar \(\lambda \).

Vector addition and scalar multiplication operations are easily performed using components. To add or subtract two vectors \(\mathbf{v} \) and \(\mathbf{w} \), we add or subtract their components. This follows from the Parallelogram Law as indicated in Figure 11(A).

Similarly, to multiply \(\mathbf{v} \) by a scalar \(\lambda \), we multiply the components of \(\mathbf{v} \) by \(\lambda \) [Figures 11(B) and (C)]. Indeed, if \(\mathbf{v} = \langle a, b \rangle \) is nonzero, \(\langle \lambda a, \lambda b \rangle \) has length \(|\lambda| \|\mathbf{v}\| \). It points in the same direction as \(\langle a, b \rangle \) if \(\lambda > 0 \), and in the opposite direction if \(\lambda < 0 \).

Vector Operations Using Components

If \(\mathbf{v} = \langle a, b \rangle \) and \(\mathbf{w} = \langle c, d \rangle \), then:

(i) \(\mathbf{v} + \mathbf{w} = \langle a + c, b + d \rangle \)
(ii) \(\mathbf{v} - \mathbf{w} = \langle a - c, b - d \rangle \)
(iii) \(\lambda \mathbf{v} = \langle \lambda a, \lambda b \rangle \)
(iv) \(\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v} \)

We also note that if \(P = (a_1, b_1) \) and \(Q = (a_2, b_2) \), then components of the vector \(\mathbf{v} = \overrightarrow{PQ} \) are conveniently computed as the difference

\[
\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = (a_2, b_2) - (a_1, b_1) = (a_2 - a_1, b_2 - b_1)
\]

EXAMPLE 3 For \(\mathbf{v} = \langle 1, 4 \rangle \), \(\mathbf{w} = \langle 3, 2 \rangle \), calculate:

(a) \(\mathbf{v} + \mathbf{w} \)
(b) \(5 \mathbf{v} \)

Solution

\[
\mathbf{v} + \mathbf{w} = \langle 1, 4 \rangle + \langle 3, 2 \rangle = \langle 1 + 3, 4 + 2 \rangle = \langle 4, 6 \rangle
\]

\[
5 \mathbf{v} = 5 \langle 1, 4 \rangle = \langle 5, 20 \rangle
\]

The vector sum is illustrated in Figure 12.

Vector operations obey the usual laws of algebra.
THEOREM 1 Basic Properties of Vector Algebra

For all vectors \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) and for all scalars \(\lambda \),

- **Commutative Law:** \(\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} \)
- **Associative Law:** \(\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w} \)
- **Distributive Law for Scalars:** \(\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w} \)

These properties are verified easily using components. For example, we can check that vector addition is commutative:

\[
\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = \begin{pmatrix} v_1 + w_1 \\ v_2 + w_2 \end{pmatrix} = \begin{pmatrix} w_1 + v_1 \\ w_2 + v_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}
\]

Commutativity of ordinary addition

A **linear combination** of vectors \(\mathbf{v} \) and \(\mathbf{w} \) is a vector \(r \mathbf{v} + s \mathbf{w} \) where \(r \) and \(s \) are scalars. If \(\mathbf{v} \) and \(\mathbf{w} \) are not parallel, then every vector \(\mathbf{u} \) in the plane can be expressed as a linear combination \(\mathbf{u} = r \mathbf{v} + s \mathbf{w} \) [Figure 13(A)]. The parallelogram \(P \) whose vertices are the origin and the terminal points of \(\mathbf{v}, \mathbf{w} \) and \(\mathbf{v} + \mathbf{w} \) is called the **parallelogram spanned** by \(\mathbf{v} \) and \(\mathbf{w} \) [Figure 13(B)]. It consists of the linear combinations \(r \mathbf{v} + s \mathbf{w} \) with \(0 \leq r \leq 1 \) and \(0 \leq s \leq 1 \).

EXAMPLE 4 Linear Combinations

Express the vector \(\mathbf{u} = (4, 4) \) in Figure 14 as a linear combination of \(\mathbf{v} = (6, 2) \) and \(\mathbf{w} = (2, 4) \).

Solution

We must find \(r \) and \(s \) such that \(r \mathbf{v} + s \mathbf{w} = (4, 4) \), or

\[
(6r + 2s, 2r + 4s) = (4, 4)
\]

The components must be equal, so we have a system of two linear equations:

\[
\begin{align*}
6r + 2s &= 4 \\
2r + 4s &= 4
\end{align*}
\]

Subtracting the equations, we obtain \(4r - 2s = 0 \) or \(s = 2r \). Setting \(s = 2r \) in the first equation yields \(6r + 4r = 4 \) or \(r = \frac{1}{5} \), and then \(s = 2r = \frac{2}{5} \). Therefore,

\[
\mathbf{u} = (4, 4) = \frac{2}{5} \langle 6, 2 \rangle + \frac{4}{5} \langle 2, 4 \rangle
\]
A vector of length 1 is called a unit vector. Unit vectors are often used to indicate direction, when it is not necessary to specify length. The head of a unit vector \(\mathbf{e} \) based at the origin lies on the unit circle and can be given as

\[
\mathbf{e} = (\cos \theta, \sin \theta)
\]

where \(\theta \) is the angle between \(\mathbf{e} \) and the positive \(x \)-axis (Figure 15). The fact that its length is 1 when represented in this way follows immediately from the trigonometric identity \(\sin^2 \theta + \cos^2 \theta = 1 \).

We can always scale a nonzero vector \(\mathbf{v} = (v_1, v_2) \) to obtain a unit vector pointing in the same direction (Figure 16):

\[
\mathbf{e}_v = \frac{1}{\|\mathbf{v}\|} \mathbf{v}
\]

Indeed, we can check that \(\mathbf{e}_v \) is a unit vector as follows:

\[
\|\mathbf{e}_v\| = \left\| \frac{1}{\|\mathbf{v}\|} \mathbf{v} \right\| = \frac{1}{\|\mathbf{v}\|} \|\mathbf{v}\| = 1
\]

If \(\mathbf{v} = (v_1, v_2) \) makes an angle \(\theta \) with the positive \(x \)-axis, then

\[
\mathbf{v} = (v_1, v_2) = \|\mathbf{v}\| \mathbf{e}_v = \|\mathbf{v}\| (\cos \theta, \sin \theta)
\]

Example 5 Find the unit vector in the direction of \(\mathbf{v} = (3, 5) \).

Solution \(\|\mathbf{v}\| = \sqrt{3^2 + 5^2} = \sqrt{34} \), and thus, \(\mathbf{e}_v = \frac{1}{\sqrt{34}} \mathbf{v} = \left(\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}} \right) \).

It is customary to introduce a special notation for the unit vectors in the direction of the positive \(x \)- and \(y \)-axes (Figure 17):

\[
\mathbf{i} = (1, 0), \quad \mathbf{j} = (0, 1)
\]

The vectors \(\mathbf{i} \) and \(\mathbf{j} \) are called the standard basis vectors. Every vector in the plane is a linear combination of \(\mathbf{i} \) and \(\mathbf{j} \) (Figure 17):

\[
\mathbf{v} = (a, b) = a\mathbf{i} + b\mathbf{j}
\]

For example, \((4, -2) = 4\mathbf{i} - 2\mathbf{j} \). Vector addition is performed by adding the \(\mathbf{i} \) and \(\mathbf{j} \) coefficients. For example,

\[
(4\mathbf{i} - 2\mathbf{j}) + (5\mathbf{i} + 7\mathbf{j}) = (4 + 5)\mathbf{i} + (-2 + 7)\mathbf{j} = 9\mathbf{i} + 5\mathbf{j}
\]
FIGURE 18 When an airplane traveling with velocity \(\mathbf{v}_1 \) encounters a wind of velocity \(\mathbf{v}_2 \), its resultant velocity is the vector sum \(\mathbf{v}_1 + \mathbf{v}_2 \).

CONCEPTUAL INSIGHT It is often said that quantities such as force and velocity are vectors because they have both magnitude and direction, but there is more to this statement than meets the eye. A vector quantity must obey the Law of Vector Addition (Figure 18), so if we say that force is a vector, we are really claiming that forces add according to the Parallelogram Law. In other words, if forces \(\mathbf{F}_1 \) and \(\mathbf{F}_2 \) act on an object, then the resultant force is the vector sum \(\mathbf{F}_1 + \mathbf{F}_2 \). This is a physical fact that must be verified experimentally. It was well known to scientists and engineers long before the vector concept was introduced formally in the 1800s.

EXAMPLE 6 Find the forces on cables 1 and 2 in Figure 19(A).

Solution Three forces act on the point \(P \) in Figure 19(A): the force \(\mathbf{F}_g \) due to gravity of \(100\, g = 980 \text{ newtons} \) or \(N \) (\(g = 9.8 \text{ m/s}^2 \)) acting vertically downward, and two unknown forces \(\mathbf{F}_1 \) and \(\mathbf{F}_2 \) acting through cables 1 and 2, as indicated in Figure 19(B).

Since the point \(P \) is not in motion, the net force on \(P \) is zero:

\[
\mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_g = \mathbf{0}
\]

We use this fact to determine \(\mathbf{F}_1 \) and \(\mathbf{F}_2 \).

Let \(f_1 = \| \mathbf{F}_1 \| \) and \(f_2 = \| \mathbf{F}_2 \| \). Because \(\mathbf{F}_1 \) makes an angle of 125° (the supplement of 55°) with the positive \(x \)-axis, and \(\mathbf{F}_2 \) makes an angle of 30°, we can use Eq. (1) and the table in the margin to write these vectors in component form:

\[
\begin{align*}
\mathbf{F}_1 &= f_1 \langle \cos 125^\circ, \sin 125^\circ \rangle \approx f_1 \langle -0.573, 0.819 \rangle \\
\mathbf{F}_2 &= f_2 \langle \cos 30^\circ, \sin 30^\circ \rangle \approx f_2 \langle 0.866, 0.5 \rangle \\
\mathbf{F}_g &= (0, -980)
\end{align*}
\]

\[
\begin{align*}
f_1 &= (-0.573, 0.819) + f_2 (0.866, 0.5) + (0, -980) = (0, 0)
\end{align*}
\]

This gives us two equations in two unknowns:

\[-0.573 f_1 + 0.866 f_2 = 0, \quad 0.819 f_1 + 0.5 f_2 - 980 = 0\]

By the first equation, \(f_2 = \left(\frac{0.573}{0.866} \right) f_1 \). Substitution in the second equation yields

\[
0.819 f_1 + 0.5 \left(\frac{0.573}{0.866} \right) f_1 - 980 \approx 1.15 f_1 - 980 = 0
\]

Therefore, the forces in newtons are

\[
\begin{align*}
f_1 &\approx \frac{980}{1.15} \approx 852 \text{ newtons} \quad \text{and} \quad f_2 \approx \left(\frac{0.573}{0.866} \right) 852 \approx 564 \text{ newtons}
\end{align*}
\]

Hence,

\[
\mathbf{F}_1 \approx 852 (-0.573, 0.819) \approx (-488.196, 697.788)
\]

and

\[
\mathbf{F}_2 \approx 564 (0.866, 0.5) \approx (488.424, 282)
\]
We close this section with the Triangle Inequality. Figure 20 shows the vector sum
\(v + w\) for three different vectors \(w\) of the same length. Notice that the length \(\|v + w\|\) varies depending on the angle between \(v\) and \(w\). So in general, \(\|v + w\|\) is not equal to the sum \(\|v\| + \|w\|\). What we can say is that \(\|v + w\|\) is at most equal to the sum \(\|v\| + \|w\|\). This corresponds to the fact that the length of one side of a triangle is at most the sum of the lengths of the other two sides. A formal proof may be given using the dot product (see Exercise 92 in Section 13.3).

THEOREM 2 Triangle Inequality For any two vectors \(v\) and \(w\),

\[\|v + w\| \leq \|v\| + \|w\|\]

Equality holds only if \(v = 0\) or \(w = 0\), or if \(w = \lambda v\), where \(\lambda \geq 0\).

![Figure 20](image-url) The length of \(v + w\) depends on the angle between \(v\) and \(w\).

13.1 SUMMARY

- A vector \(v = \overrightarrow{PQ}\) is determined by a basepoint \(P\) (the “tail”) and a terminal point \(Q\) (the “head”).
- Components of \(v = \overrightarrow{PQ}\), where \(P = (a_1, b_1)\) and \(Q = (a_2, b_2)\):
 \[v = (a, b)\]
 with \(a = a_2 - a_1, b = b_2 - b_1\).
- Length or magnitude: \(\|v\| = \sqrt{a^2 + b^2}\).
- The length \(\|v\|\) is the distance from \(P\) to \(Q\).
- The position vector of \(P_0 = (a, b)\) is the vector \(v = (a, b)\) pointing from the origin \(O\) to \(P_0\).
- Vectors \(v\) and \(w\) are equivalent if they have the same magnitude and direction. Two vectors are equivalent if and only if they have the same components.
- The zero vector is the vector \(\mathbf{0} = (0, 0)\) of length 0.
- Vector addition is defined geometrically by the Parallelogram Law. In components,
 \[\langle v_1, v_2 \rangle + \langle w_1, w_2 \rangle = \langle v_1 + w_1, v_2 + w_2 \rangle\]
- Scalar multiplication: \(\lambda v\) is the vector of length \(|\lambda|\|v\|\) in the same direction as \(v\) if \(\lambda > 0\), and in the opposite direction if \(\lambda < 0\). In components,
 \[\lambda \langle v_1, v_2 \rangle = \langle \lambda v_1, \lambda v_2 \rangle\]
- Nonzero vectors \(v\) and \(w\) are parallel if \(w = \lambda v\) for some scalar \(\lambda\).
- Unit vector making an angle \(\theta\) with the positive \(x\)-axis: \(e = (\cos \theta, \sin \theta)\).
- Unit vector in the direction of \(v \neq 0\): \(e_v = \frac{1}{\|v\|} v\).
- If \(v = \langle v_1, v_2 \rangle\) makes an angle \(\theta\) with the positive \(x\)-axis, then
 \[v_1 = \|v\| \cos \theta, \quad v_2 = \|v\| \sin \theta, \quad e_v = (\cos \theta, \sin \theta)\]
13. In Exercises 13–18, calculate.

- Standard basis vectors: \(\mathbf{i} = (1, 0) \) and \(\mathbf{j} = (0, 1) \).
- Every vector \(\mathbf{v} = \langle a, b \rangle \) is a linear combination \(\mathbf{v} = a\mathbf{i} + b\mathbf{j} \).
- Triangle Inequality: \(\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\| \).

13.1 Exercises

Preliminary Questions

1. Answer true or false. Every nonzero vector is:
 - (a) equivalent to a vector based at the origin.
 - (b) equivalent to a unit vector based at the origin.
 - (c) parallel to a vector based at the origin.
 - (d) parallel to a unit vector based at the origin.

2. What is the length of \(-3\mathbf{a}\) if \(\|\mathbf{a}\| = 5\)?

3. Suppose that \(\mathbf{v}\) has components \((3, 1)\). How, if at all, do the components change if you translate \(\mathbf{v}\) horizontally 2 units to the left?

Exercises

1. Sketch the vectors \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\) with tail \(\mathbf{P}\) and head \(\mathbf{Q}\), and compute their lengths. Are any two of these vectors equivalent?

<table>
<thead>
<tr>
<th>(\mathbf{v}_1)</th>
<th>(\mathbf{v}_2)</th>
<th>(\mathbf{v}_3)</th>
<th>(\mathbf{v}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbf{P})</td>
<td>(2, 4)</td>
<td>((-1, 3))</td>
<td>((-1, 3))</td>
</tr>
<tr>
<td>(\mathbf{Q})</td>
<td>((4, 4))</td>
<td>((1, 3))</td>
<td>((2, 4))</td>
</tr>
</tbody>
</table>

2. Sketch the vector \(\mathbf{b} = (3, 4)\) at \(\mathbf{P} = (-2, -1)\).

3. What is the terminal point of the vector \(\mathbf{a} = (1, 3)\) at \(\mathbf{P} = (2, 2)\)? Sketch \(\mathbf{a}\) and the vector \(\mathbf{a}_0\) based at the origin and equivalent to \(\mathbf{a}\).

4. Let \(\mathbf{v} = \overrightarrow{\mathbf{PQ}}\), where \(\mathbf{P} = (1, 1)\) and \(\mathbf{Q} = (2, 2)\). What is the head of the vector \(\mathbf{v}'\) equivalent to \(\mathbf{v}\) at \((2, 4)\)? What is the head of the vector \(\mathbf{v}_0\) equivalent to \(\mathbf{v}\) at the origin? Sketch \(\mathbf{v}, \mathbf{v}_0\), and \(\mathbf{v}'\).

In Exercises 5–8, refer to Figure 21.

5. Find the components of \(\mathbf{u}\).
6. Find the components of \(\mathbf{v}\).
7. Find the components of \(\mathbf{w}\).
8. Find the components of \(\mathbf{q}\).

In Exercises 9–12, find the components of \(\overrightarrow{\mathbf{PQ}}\).

9. \(\mathbf{P} = (3, 2), \quad \mathbf{Q} = (2, 7)\)
10. \(\mathbf{P} = (1, -4), \quad \mathbf{Q} = (3, 5)\)
11. \(\mathbf{P} = (3, 5), \quad \mathbf{Q} = (1, -4)\)
12. \(\mathbf{P} = (0, 2), \quad \mathbf{Q} = (5, 0)\)

In Exercises 13–18, calculate.

13. \(\mathbf{v} = (2, 1) + (3, 4)\)
14. \((-4, 6) - (3, -2)\)
15. \(5(6, 2)\)
16. \(4(1, 1) + (3, 2)\)
17. \(\left\langle \frac{1}{2}, 5 \right\rangle + \left\langle 3, \frac{10}{3} \right\rangle\)
18. \((\ln 2, e) + (\ln 3, \pi)\)
19. Which of the vectors (A)–(C) in Figure 22 is equivalent to \(\mathbf{v} - \mathbf{w}\)?

20. Sketch \(\mathbf{v} + \mathbf{w}\) and \(\mathbf{v} - \mathbf{w}\) for the vectors in Figure 23.

21. Sketch \(2\mathbf{v}, -\mathbf{w}, \mathbf{v} + \mathbf{w}\), and \(2\mathbf{v} - \mathbf{w}\) for the vectors in Figure 24.

22. Sketch \(\mathbf{v} = (1, 3), \mathbf{w} = (2, -2), \ \mathbf{v} + \mathbf{w}, \ \mathbf{v} - \mathbf{w}\).
23. Sketch \(\mathbf{v} = (0, 2), \mathbf{w} = (-2, -4), 3\mathbf{v} + \mathbf{w}, 2\mathbf{v} - 2\mathbf{w}\).
24. Sketch \(\mathbf{v} = (-2, 1), \mathbf{w} = (2, 2), \mathbf{v} + 2\mathbf{w}, \mathbf{v} - 2\mathbf{w}\).
25. Sketch the vector \(\mathbf{v}\) such that \(\mathbf{v} + \mathbf{v}_1 + \mathbf{v}_2 = \mathbf{0}\) for \(\mathbf{v}_1\) and \(\mathbf{v}_2\) in Figure 25(A).
26. Sketch the vector sum \(v = v_1 + v_2 + v_3 + v_4 \) in Figure 25(B).

![Figure 25](image)

27. Let \(v = \vec{PQ} \), where \(P = (−2, 5), \) \(Q = (1, −2) \). Which of the following vectors with the given tails and heads are equivalent to \(v \)?
 (a) \((−3, 3) \), \((0, 4) \)
 (b) \((0, 0) \), \((3, −7) \)
 (c) \((−1, 2) \), \((2, −5) \)
 (d) \((4, −5) \), \((1, 4) \)

28. Which of the following vectors are parallel to \(v = (6, 9) \) and which point in the same direction?
 (a) \((12, 18) \)
 (b) \((3, 2) \)
 (c) \((2, 3) \)
 (d) \((−6, −9) \)
 (e) \((−24, −27) \)
 (f) \((−24, −36) \)

In Exercises 29–32, sketch the vectors \(\overrightarrow{AB} \) and \(\overrightarrow{PQ} \) and determine whether they are equivalent.

29. \(A = (1, 1), \ B = (3, 7), \ P = (4, −1), \ Q = (6, 5) \)
30. \(A = (1, 4), \ B = (−6, 3), \ P = (1, 4), \ Q = (6, 3) \)
31. \(A = (−3, 2), \ B = (0, 0), \ P = (0, 0), \ Q = (3, −2) \)
32. \(A = (5, 8), \ B = (1, 8), \ P = (1, 8), \ Q = (−3, 8) \)

In Exercises 33–36, are \(\overrightarrow{AB} \) and \(\overrightarrow{PQ} \) parallel? And if so, do they point in the same direction?

33. \(A = (1, 1), \ B = (3, 4), \ P = (1, 1), \ Q = (7, 10) \)
34. \(A = (−3, 2), \ B = (0, 0), \ P = (0, 0), \ Q = (3, 2) \)
35. \(A = (2, 2), \ B = (−6, 3), \ P = (9, 5), \ Q = (17, 4) \)
36. \(A = (5, 8), \ B = (2, 2), \ P = (2, 2), \ Q = (−3, 8) \)

In Exercises 37–40, let \(R = (−2, 7) \). Calculate the following:

37. The length of \(\overrightarrow{OR} \)
38. The components of \(\overrightarrow{PQ} \), where \(P = (1, 2) \)
39. The point \(P \) such that \(\overrightarrow{PR} \) has components \((−2, 7) \)
40. The point \(Q \) such that \(\overrightarrow{OQ} \) has components \((8, −3) \)

In Exercises 41–48, find the given vector:

41. Unit vector \(\mathbf{e}_v \) where \(v = (3, 4) \)
42. Unit vector \(\mathbf{e}_w \) where \(w = (24, 7) \)
43. Vector of length 4 in the direction of \(u = (−1, −1) \)
44. Vector of length 3 in the direction of \(v = 4i + 3j \)
45. Vector of length 2 in the direction opposite to \(v = i − j \)
46. Unit vector in the direction opposite to \(v = (−2, 4) \)
47. Unit vector \(\mathbf{e} \) making an angle of \(\frac{3\pi}{4} \) with the x-axis
48. Vector \(v \) of length 2 making an angle of \(30^\circ \) with the x-axis
49. Find all scalars \(\lambda \) such that \((2, 3) \) has length 1.
50. Find a vector \(v \) satisfying \(3v + (5, 20) = (11, 17) \).
51. What are the coordinates of the point \(P \) in the parallelogram in Figure 26(A)?
52. What are the coordinates \(a \) and \(b \) in the parallelogram in Figure 26(B)?

![Figure 26](image)

53. Let \(v = \overrightarrow{AB} \) and \(w = \overrightarrow{AC} \), where \(A, B, C \) are three distinct points in the plane. Match (a)-(d) with (i)-(iv). (Hint: Draw a picture.)
 (a) \(−w \)
 (b) \(−v \)
 (c) \(w − v \)
 (d) \(v − w \)
 (i) \(\overrightarrow{CA} \)
 (ii) \(\overrightarrow{BC} \)
 (iii) \(\overrightarrow{BA} \)
 (iv) \(\overrightarrow{AC} \)

54. Find the components and length of the following vectors:
 (a) \(4i + 3j \)
 (b) \(2i − 3j \)
 (c) \(i + j \)
 (d) \(i − 3j \)

In Exercises 55–58, calculate the linear combination.
55. \(3j + (9i + 4j) \)
56. \(−\frac{1}{2}i + 5(j + \frac{1}{2}j) \)
57. \((3i + j) − 6j + 2(j − 4i) \)
58. \(3(3i − 4j) + 5(i + 4j) \)
59. For each of the position vectors \(u \) with endpoints \(A, B, \) and \(C \) in Figure 27, indicate with a diagram the multiples \(rv \) and \(sw \) such that \(u = rv + sw \). A sample is shown for \(u = \overrightarrow{OQ} \).

![Figure 27](image)

60. Sketch the parallelogram spanned by \(v = (1, 4) \) and \(w = (5, 2) \). Add the vector \(u = (2, 3) \) to the sketch and express \(u \) as a linear combination of \(v \) and \(w \).

In Exercises 61 and 62, express \(u \) as a linear combination \(u = rv + sw \). Then sketch \(u, v, w, \) and the parallelogram formed by \(rv \) and \(sw \).

61. \(u = (3, −1); \ v = (2, 1), w = (1, 3) \)
62. \(u = (6, −2); \ v = (1, 1), w = (1, −1) \)
63. Calculate the magnitude of the force on cables 1 and 2 in Figure 28.

64. Determine the magnitude of the forces F_1 and F_2 in Figure 29, assuming that there is no net force on the object.

65. A plane flying due east at 200 km/h encounters a 40-km/h wind blowing in the northeast direction. The resultant velocity of the plane is the vector sum $v = v_1 + v_2$, where v_1 is the velocity vector of the plane and v_2 is the velocity vector of the wind (Figure 30). The angle between v_1 and v_2 is $\pi/4$. Determine the resultant speed of the plane (the length of the vector v).

66. Find the components of the vector $\mathbf{r} = \overrightarrow{OP}$ in terms of θ_1 and θ_2.

67. Let $L_1 = 5$ and $L_2 = 3$. Find r for $\theta_1 = \pi/3$, $\theta_2 = \pi/4$.

68. Let $L_1 = 5$ and $L_2 = 3$. Show that the set of points reachable by the robotic arm with $\theta_1 = \theta_2$ is an ellipse.

69. Use vectors to prove that the diagonals \overline{AC} and \overline{BD} of a parallelogram bisect each other (Figure 32). Hint: Observe that the midpoint of \overline{BD} is the terminal point of $\mathbf{w} + \frac{1}{2}(\mathbf{v} - \mathbf{w})$.

70. Use vectors to prove that the segments joining the midpoints of opposite sides of a quadrilateral bisect each other (Figure 33). Hint: Show that the midpoints of these segments are the terminal points of $\frac{1}{4}(2\mathbf{u} + \mathbf{v} + \mathbf{z})$ and $\frac{1}{4}(2\mathbf{v} + \mathbf{w} + \mathbf{u})$.

71. Prove that two vectors $\mathbf{v} = (a, b)$ and $\mathbf{w} = (c, d)$ are perpendicular if and only if $ac + bd = 0$.

Further Insights and Challenges

In Exercises 66–68, refer to Figure 31, which shows a robotic arm consisting of two segments of lengths L_1 and L_2.

66. Find the components of the vector $\mathbf{r} = \overrightarrow{OP}$ in terms of θ_1 and θ_2.

67. Let $L_1 = 5$ and $L_2 = 3$. Find r for $\theta_1 = \pi/3$, $\theta_2 = \pi/4$.

68. Let $L_1 = 5$ and $L_2 = 3$. Show that the set of points reachable by the robotic arm with $\theta_1 = \theta_2$ is an ellipse.

13.2 Vectors in Three Dimensions

This section extends the vector concepts introduced in the previous section to three-dimensional space. We begin with some introductory remarks about the three-dimensional coordinate system.

By convention, we label the axes as in Figure 1(A), where the positive sides of the axes are labeled x, y, and z. This labeling satisfies the right-hand rule, which means that when you position your right hand so that your fingers curl from the positive x-axis toward the positive y-axis, your thumb points in the positive z-direction. The axes in Figure 1(B) are not labeled according to the right-hand rule.
CHAPTER 13 VECTOR GEOMETRY

Standard coordinate system (satisfies the right-hand rule).

\[P = (a, b, c) \]

FIGURE 1 The fingers of the right hand curl from the positive \(x \)-axis to the positive \(y \)-axis.

Each point in space has unique coordinates \((a, b, c) \) relative to the axes (Figure 2). We denote the set of all triples \((a, b, c) \) by \(\mathbb{R}^3 \). The coordinate planes in \(\mathbb{R}^3 \) are defined by setting one of the coordinates equal to zero (Figure 3). The \(xy \)-plane consists of the points \((a, b, 0) \) and is defined by the equation \(z = 0 \). Similarly, \(x = 0 \) defines the \(yz \)-plane consisting of the points \((0, b, c) \), and \(y = 0 \) defines the \(xz \)-plane consisting of the points \((a, 0, c) \). The coordinate planes divide \(\mathbb{R}^3 \) into eight octants (analogous to the four quadrants in the plane). Each octant corresponds to a possible combination of signs of the coordinates. The set of points \((a, b, c) \) with \(a, b, c > 0 \) is called the first octant.

As in two dimensions, we derive the distance formula in \(\mathbb{R}^3 \) from the Pythagorean Theorem.

THEOREM 1 Distance Formula in \(\mathbb{R}^3 \) The distance \(|P - Q| \) between the points \(P = (a_1, b_1, c_1) \) and \(Q = (a_2, b_2, c_2) \) is

\[
|P - Q| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2}
\]

Proof First apply the distance formula in the plane to the points \(P \) and \(R \) (Figure 4):

\[
|P - R|^2 = (a_2 - a_1)^2 + (b_2 - b_1)^2
\]

FIGURE 4 Compute \(|P - Q| \) using the right triangle \(\triangle PRQ \).
Then observe that $\triangle PRQ$ is a right triangle [Figure 4(B)] and use the Pythagorean Theorem:

$$|P - Q|^2 = |P - R|^2 + |R - Q|^2 = (a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2$$

The sphere of radius R with center $Q = (a, b, c)$ consists of all points $P = (x, y, z)$ located a distance R from Q (Figure 5). By the distance formula, the coordinates of $P = (x, y, z)$ must satisfy

$$\sqrt{(x - a)^2 + (y - b)^2 + (z - c)^2} = R$$

On squaring both sides, we obtain the standard equation of the sphere [Eq. (3) below].

Now consider the equation

$$(x - a)^2 + (y - b)^2 = R^2$$

In the xy-plane, Eq. (2) defines the circle of radius R with center (a, b). However, as an equation in \mathbb{R}^3, it defines the right circular cylinder of radius R whose central axis is the vertical line through $(a, b, 0)$ (Figure 6). Indeed, a point (x, y, z) satisfies Eq. (2) for any value of z if (x, y) lies on the circle. It is usually clear from the context which of the following is intended:

Circle = \{$(x, y) : (x - a)^2 + (y - b)^2 = R^2$\}

Right circular cylinder = \{$(x, y, z) : (x - a)^2 + (y - b)^2 = R^2$\}

Equations of Spheres and Cylinders

An equation of the sphere in \mathbb{R}^3 of radius R centered at $Q = (a, b, c)$ is

$$(x - a)^2 + (y - b)^2 + (z - c)^2 = R^2$$

An equation of the right circular cylinder in \mathbb{R}^3 of radius R whose central axis is the vertical line through $(a, b, 0)$ is

$$(x - a)^2 + (y - b)^2 = R^2$$

EXAMPLE 1 Describe the sets of points defined by the following conditions:

(a) $x^2 + y^2 + z^2 = 4, \quad y \geq 0$
(b) $(x - 3)^2 + (y - 2)^2 = 1, \quad z \geq -1$

Solution

(a) The equation $x^2 + y^2 + z^2 = 4$ defines a sphere of radius 2 centered at the origin. The inequality $y \geq 0$ holds for points lying on the positive side of the xz-plane. We obtain the right hemisphere of radius 2 illustrated in Figure 7(A).

(b) The equation $(x - 3)^2 + (y - 2)^2 = 1$ defines a cylinder of radius 1 whose central axis is the vertical line through $(3, 2, 0)$. The part of the cylinder where $z \geq -1$ is illustrated in Figure 7(B).
Vector Concepts

As in the plane, a vector \(\mathbf{v} = \overrightarrow{PQ} \) in \(\mathbb{R}^3 \) is determined by an initial point \(P \) and a terminal point \(Q \) (Figure 8). If \(P = (a_1, b_1, c_1) \) and \(Q = (a_2, b_2, c_2) \), then the length or magnitude of \(\mathbf{v} = \overrightarrow{PQ} \), denoted \(\| \mathbf{v} \| \), is the distance from \(P \) to \(Q \):

\[
\| \mathbf{v} \| = \| \overrightarrow{PQ} \| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2}
\]

The terminology and basic properties discussed in the previous section carry over to \(\mathbb{R}^3 \) with little change.

- A vector \(\mathbf{v} \) is said to undergo a translation if it is moved without changing direction or magnitude.
- Two vectors \(\mathbf{v} \) and \(\mathbf{w} \) are equivalent if \(\mathbf{w} \) is a translate of \(\mathbf{v} \); that is, \(\mathbf{v} \) and \(\mathbf{w} \) have the same length and direction.
- Two nonzero vectors \(\mathbf{v} \) and \(\mathbf{w} \) are parallel if \(\mathbf{v} = \lambda \mathbf{w} \) for some scalar \(\lambda \).
- The position vector of a point \(Q \) is the vector \(\mathbf{OQ} = \overrightarrow{OQ} \) based at the origin (Figure 9).
- A vector \(\mathbf{v} = \overrightarrow{PQ} \) with components \(\langle a, b, c \rangle \) is equivalent to the vector \(\mathbf{v}_0 = \overrightarrow{OQ}_0 \) based at the origin with \(\mathbf{Q}_0 = \langle a, b, c \rangle \) (Figure 9).
- The components of \(\mathbf{v} = \overrightarrow{PQ} \), where \(\mathbf{P} = (a_1, b_1, c_1) \) and \(\mathbf{Q} = (a_2, b_2, c_2) \), are the differences \(a = a_2 - a_1, b = b_2 - b_1, c = c_2 - c_1 \); that is,

\[
\mathbf{v} = \overrightarrow{PQ} = OQ - OP = (a_2, b_2, c_2) - (a_1, b_1, c_1)
\]

For example, if \(\mathbf{P} = (3, -4, -4) \) and \(\mathbf{Q} = (2, 5, -1) \), then

\[
\mathbf{v} = \overrightarrow{PQ} = (2, 5, -1) - (3, -4, -4) = (-1, 9, 3)
\]

- Two vectors are equivalent if and only if they have the same components.
- Vector addition and scalar multiplication are defined as in the two-dimensional case. Vector addition is defined by the Parallelogram Law (Figure 10).
- In terms of components, if \(\mathbf{v} = \langle v_1, v_2, v_3 \rangle \) and \(\mathbf{w} = \langle w_1, w_2, w_3 \rangle \), then

\[
\lambda \mathbf{v} = \lambda \langle v_1, v_2, v_3 \rangle = \langle \lambda v_1, \lambda v_2, \lambda v_3 \rangle
\]

\[
\mathbf{v} + \mathbf{w} = \langle v_1, v_2, v_3 \rangle + \langle w_1, w_2, w_3 \rangle = \langle v_1 + w_1, v_2 + w_2, v_3 + w_3 \rangle
\]

- Vector addition is commutative, is associative, and satisfies the distributive property with respect to scalar multiplication (Theorem 1 in Section 13.1).

Example 2 Vector Calculations

Calculate \(\| \mathbf{v} \| \) and \(6 \mathbf{v} - \frac{1}{2} \mathbf{w} \), where \(\mathbf{v} = (3, -1, 2) \) and \(\mathbf{w} = (4, 6, -8) \). Then determine whether \(\mathbf{v} \) and \(\mathbf{w} \) are parallel.

Solution

\[
\| \mathbf{v} \| = \sqrt{3^2 + (-1)^2 + 2^2} = \sqrt{14}
\]

\[
6 \mathbf{v} - \frac{1}{2} \mathbf{w} = 6 (3, -1, 2) - \frac{1}{2} (4, 6, -8) = (18, -6, 12) - (2, 3, -4) = (16, -9, 16)
\]

If the vectors \(\mathbf{v} \) and \(\mathbf{w} \) are parallel, then there must be a scalar \(\lambda \) such that \(\mathbf{v} = \lambda \mathbf{w} \). Thus,

\[
(3, -1, 2) = \lambda (4, 6, -8)
\]

Considering components, this means that

\[
3 = \lambda 4, \quad -1 = \lambda 6, \quad 2 = \lambda (-8)
\]

But then \(\lambda = \frac{3}{4} \), the value of which does not satisfy either of the other two equations. So, the two vectors are not parallel.
The standard basis vectors in \mathbb{R}^3 are

$$i = (1, 0, 0), \quad j = (0, 1, 0), \quad k = (0, 0, 1)$$

Every vector is a linear combination of the standard basis vectors (Figure 11):

$$\langle a, b, c \rangle = ai + bj + ck$$

For example, $\langle -9, -4, 17 \rangle = -9i - 4j + 17k$.

EXAMPLE 3 Find the unit vector e_v in the direction of $v = 3i + 2j - 4k$.

Solution Since $||v|| = \sqrt{3^2 + 2^2 + (-4)^2} = \sqrt{29}$,

$$e_v = \frac{1}{||v||} v = \frac{1}{\sqrt{29}} (3i + 2j - 4k) = \left(\frac{3}{\sqrt{29}}, \frac{2}{\sqrt{29}}, \frac{-4}{\sqrt{29}} \right)$$

Parametric Equations of a Line

Although the basic vector concepts in two and three dimensions are essentially the same, there is an important difference in the way lines are described. A line in \mathbb{R}^2 is defined by a single linear equation such as $y = mx + b$. In \mathbb{R}^3, a single linear equation defines a plane rather than a line. Therefore, we describe lines in \mathbb{R}^3 in parametric form.

We note first that a line L_0 through the origin consists of the multiples of a nonzero vector $v = (a, b, c)$, as in Figure 12(A). More precisely,

$$tv = (ta, tb, tc) \quad (-\infty < t < \infty)$$
Then the line L_0 consists of the terminal points (ta, tb, tc) of the vectors tv as t varies from $-\infty$ to ∞. The coordinates (x, y, z) of the points on the line are given by the parametric equations

$$x = at, \quad y = bt, \quad z = ct$$

Suppose, more generally, that we would like to parametrize the line L parallel to v but passing through a point $P_0 = (x_0, y_0, z_0)$ as in Figure 12(B). We must translate the line tv so that it passes through P_0. To do this, we add the position vector $r_0 = \overrightarrow{OP_0}$ to the multiples tv:

$$r(t) = r_0 + tv = (x_0, y_0, z_0) + t(a, b, c)$$

The terminal point of $r(t)$ traces out L as t varies from $-\infty$ to ∞. The vector v is called a direction vector for L, and coordinates (x, y, z) of the points on the line L are given by the parametric equations

$$x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct$$

Equation of a Line (Point-Direction Form) The line L through $P_0 = (x_0, y_0, z_0)$ in the direction of $v = (a, b, c)$ is described by

* Vector parametrization:

$$r(t) = r_0 + tv = (x_0, y_0, z_0) + t(a, b, c)$$

where $r_0 = \overrightarrow{OP_0}$.

* Parametric equations:

$$x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct$$

The parameter t takes on values $-\infty < t < \infty$.

Parametric equations specify the x-, y-, and z-coordinates of a point on the line as a function of the parameter t. These are familiar from our discussion of parametric curves in the plane in Section 12.1. Note that each of the three parametric equations is itself a linear function in the parameter t. What is new here is the notion of a vector parametrization, the idea that $r(t)$ describes a vector whose terminal point traces out a line as t varies from $-\infty$ to ∞ (Figure 13).

Example 4 Find a vector parametrization and parametric equations for the line through $P_0 = (3, -1, 4)$ with direction vector $v = (2, 1, 7)$.

Solution By Eq. (5), the following is a vector parametrization:

$$r(t) = \left(\begin{array}{c} 3, -1, 4 \\ 2, 1, 7 \end{array}\right) + t \left(\begin{array}{c} 3 + 2t, -1 + t, 4 + 7t \end{array}\right)$$

The corresponding parametric equations are $x = 3 + 2t, y = -1 + t, z = 4 + 7t$.

Example 5 **Parametric Equations of the Line Through Two Points** Find parametric equations for the line through $P = (1, 0, 2)$ and $Q = (2, 5, -1)$. Use them to find parametric equations for the line segment between P and Q.

Solution We can take our direction vector to be $v = \overrightarrow{PQ} = (2 - 1, 5 - 0, -1 - 2) = (1, 5, -3)$.

Hence, we obtain

$$r(t) = (1, 0, 2) + t (1, 5, -3) = (1 + t, 5t, 2 - 3t)$$

Thus, the parametric equations for the line are $x = 1 + t, y = 5t, z = 2 - 3t$, where $-\infty < t < \infty$.
To obtain parametric equations for the line segment between P and Q, we note that $\mathbf{r}(0) = (1,0,2) = \overrightarrow{OP}$ and $\mathbf{r}(1) = (2,5,-1) = \overrightarrow{OQ}$. Therefore, if we use the same parametric equations, but restrict t so that $0 \leq t \leq 1$, we obtain parametric equations for the line segment.

The parametrization of a line L is not unique. We are free to choose any point P_0 on L and we may replace the direction vector \mathbf{v} by any nonzero scalar multiple $\lambda \mathbf{v}$. However, two lines in \mathbb{R}^3 coincide if they are parallel and pass through a common point, so we can always check whether two parametrizations describe the same line.

Example 6 Different Parametrizations of the Same Line
Show that
$$\mathbf{r}_1(t) = (1, 1, 0) + t (-2, 1, 3) \quad \text{and} \quad \mathbf{r}_2(t) = (-3, 3, 6) + t (4, -2, -6)$$
parametrize the same line.

Solution The line $\mathbf{r}_1(t)$ has direction vector $\mathbf{v} = (-2, 1, 3)$, whereas $\mathbf{r}_2(t)$ has direction vector $\mathbf{w} = (4, -2, -6)$. These vectors are parallel because $\mathbf{w} = -2\mathbf{v}$. Therefore, the lines described by $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ are parallel. We must check that they have a point in common. Choose any point on $\mathbf{r}_1(t)$, say, $P = (1, 1, 0)$ [corresponding to $t = 0$]. This point lies on $\mathbf{r}_2(t)$ if there is a value of t such that
$$(1, 1, 0) = (-3, 3, 6) + t (4, -2, -6)$$

This yields three equations
$$1 = -3 + 4t, \quad 1 = 3 - 2t, \quad 0 = 6 - 6t$$

All three are satisfied with $t = 1$. Therefore, P also lies on $\mathbf{r}_2(t)$. We conclude that $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ parametrize the same line. If Eq. (7) had no solution, we would conclude that $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ are parallel but do not coincide.

Example 7 Intersection of Two Lines
Determine whether the following two lines intersect:
$$\mathbf{r}_1(t) = (1, 0, 1) + t (3, 3, 5) \quad \text{and} \quad \mathbf{r}_2(t) = (3, 6, 1) + t (4, -2, 7)$$

Solution The two lines intersect if there exist parameter values t_1 and t_2 such that $\mathbf{r}_1(t_1) = \mathbf{r}_2(t_2)$—that is, if
$$(1, 0, 1) + t_1 (3, 3, 5) = (3, 6, 1) + t_2 (4, -2, 7)$$

This is equivalent to three equations for the components:
$$x = 1 + 3t_1 = 3 + 4t_2, \quad y = 3t_1 = 6 - 2t_2, \quad z = 1 + 5t_1 = 1 + 7t_2$$

Let’s solve the first two equations for t_1 and t_2. Subtracting the second equation from the first, we get $1 = 6t_2 - 3$ or $t_2 = \frac{2}{3}$. Using this value in the second equation, we get $t_1 = 2 - \frac{2}{3}t_2 = \frac{14}{9}$. The values $t_1 = \frac{14}{9}$ and $t_2 = \frac{2}{3}$ satisfy the first two equations, and thus, $\mathbf{r}_1(t_1)$ and $\mathbf{r}_2(t_2)$ have the same x- and y-coordinates (Figure 14). However, they do not have the same z-coordinates because t_1 and t_2 do not satisfy the third equation in (9):
$$1 + 5 \left(\frac{14}{9} \right) \neq 1 + 7 \left(\frac{2}{3} \right)$$

Therefore, Eq. (8) has no solution and the lines do not intersect.
13.2 SUMMARY

- The axes in \(\mathbb{R}^3 \) are labeled so that they satisfy the right-hand rule: When the fingers of your right hand curl from the positive \(x \)-axis toward the positive \(y \)-axis, your thumb points in the positive \(z \)-direction (Figure 15).

- Sphere of radius \(R \) and center \((a, b, c)\)
\[
(x - a)^2 + (y - b)^2 + (z - c)^2 = R^2
\]

- Cylinder of radius \(R \) with vertical axis through \((a, b, 0)\)
\[
(x - a)^2 + (y - b)^2 = R^2
\]

- The notation and terminology for vectors in the plane carry over to vectors in \(\mathbb{R}^3 \).
- The length (or magnitude) of \(\mathbf{v} = \overrightarrow{PQ} \), where \(P = (a_1, b_1, c_1) \) and \(Q = (a_2, b_2, c_2) \), is
\[
||\mathbf{v}|| = ||\overrightarrow{PQ}|| = \sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2 + (c_2 - c_1)^2}
\]

- Equations for the line through \(P = (x_0, y_0, z_0) \) with direction vector \(\mathbf{v} = (a, b, c) \):

 - Vector parametrization:
\[
\mathbf{r}(t) = \overrightarrow{OP} + t\mathbf{v} = (x_0, y_0, z_0) + t(a, b, c)
\]

 - Parametric equations:
\[
x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct
\]

- To obtain the line through \(P = (a_1, b_1, c_1) \) and \(Q = (a_2, b_2, c_2) \), take direction vector \(\mathbf{v} = \overrightarrow{PQ} = (a_2 - a_1, b_2 - b_1, c_2 - c_1) \), and use the parametrization above. The segment \(\overrightarrow{PQ} \) is parametrized by \(\mathbf{r}(t) \) for \(0 \leq t \leq 1 \).

13.2 EXERCISES

Preliminary Questions

1. What is the terminal point of the vector \(\mathbf{v} = (3, 2, 1) \) based at the point \(P = (1, 1, 1) \)?

2. What are the components of the vector \(\mathbf{v} = (3, 2, 1) \) based at the point \(P = (1, 1, 1) \)?

3. If \(\mathbf{v} = -3\mathbf{w} \), then (choose the correct answer):
 - (a) \(\mathbf{v} \) and \(\mathbf{w} \) are parallel.
 - (b) \(\mathbf{v} \) and \(\mathbf{w} \) point in the same direction.

Exercises

1. Sketch the vector \(\mathbf{v} = (1, 3, 2) \) and compute its length.

2. Let \(\mathbf{v} = \overrightarrow{PQ} \), where \(P = (1, -2, 5) \) and \(Q = (0, 1, -4) \). Which of the following vectors (with tail \(P \) and head \(Q \)) are equivalent to \(\mathbf{v} \)?

<table>
<thead>
<tr>
<th>(\mathbf{v}_1)</th>
<th>(\mathbf{v}_2)</th>
<th>(\mathbf{v}_3)</th>
<th>(\mathbf{v}_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P)</td>
<td>(1, 2, 4)</td>
<td>(1, 5, 4)</td>
<td>(0, 0, 0)</td>
</tr>
<tr>
<td>(Q)</td>
<td>(0, 5, -5)</td>
<td>(0, -8, 13)</td>
<td>(-1, 3, -9)</td>
</tr>
</tbody>
</table>

3. Sketch the vector \(\mathbf{v} = (1, 1, 0) \) based at \(P = (0, 1, 1) \). Describe this vector in the form \(\overrightarrow{PQ} \) for some point \(Q \), and sketch the vector \(\mathbf{v}_0 \) based at the origin equivalent to \(\mathbf{v} \).

4. Determine whether the coordinate systems (A)–(C) in Figure 16 satisfy the right-hand rule.

5. Which of the following is a direction vector for the line through \(P = (3, 2, 1) \) and \(Q = (1, 1, 1) \)?
 - (a) \((3, 2, 1) \)
 - (b) \((1, 1, 1) \)
 - (c) \((2, 1, 0) \)

6. How many different direction vectors does a line have?

7. True or false? If \(\mathbf{v} \) is a direction vector for a line \(\mathbb{L} \), then \(-\mathbf{v} \) is also a direction vector for \(\mathbb{L} \).

8. In Exercises 5–8, find the components of the vector \(\overrightarrow{PQ} \).

 - 5. \(P = (1, 0, 1), \ Q = (2, 1, 0) \)
 - 6. \(P = (-3, -4, 2), \ Q = (1, -4, 3) \)
 - 7. \(P = (4, 6, 0), \ Q = (-\frac{1}{2}, \frac{9}{7}, 1) \)
 - 8. \(P = (-\frac{1}{2}, \frac{9}{7}, 1), \ Q = (4, 6, 0) \)
In Exercises 9–12, let \(R = (1, 4, 3) \).

9. Calculate the length of \(\overrightarrow{OR} \).

10. Find the point \(Q \) such that \(v = \overrightarrow{RQ} \) has components \((4, 1, 1)\), and sketch \(v \).

11. Find the point \(P \) such that \(w = \overrightarrow{PR} \) has components \((3, -2, 3)\), and sketch \(w \).

12. Find the components of \(u = \overrightarrow{PR} \), where \(P = (1, 2, 2) \).

13. Let \(v = (4, 8, 12) \). Which of the following vectors is parallel to \(v \)? Which point in the same direction?
 (a) \((2, 4, 6)\)
 (b) \((-1, -2, 3)\)
 (c) \((-7, -14, -21)\)
 (d) \((6, 10, 14)\)

In Exercises 14–17, determine whether \(\overrightarrow{AB} \) is equivalent to \(\overrightarrow{PQ} \).

14. \(A = (1, 1, 1) \) \(B = (3, 3, 3) \)
 \(P = (1, 4, 5) \) \(Q = (3, 6, 7) \)

15. \(A = (1, 4, 1) \) \(B = (-2, 2, 0) \)
 \(P = (2, 5, 7) \) \(Q = (-3, 2, 1) \)

16. \(A = (0, 0, 0) \) \(B = (-4, 2, 3) \)
 \(P = (4, -2, -3) \) \(Q = (0, 0, 0) \)

17. \(A = (1, 1, 0) \) \(B = (3, 3, 5) \)
 \(P = (2, -9, 7) \) \(Q = (4, -7, 13) \)

In Exercises 18–23, calculate the linear combinations.

18. \(5 (2, 2, -3) + 3 (1, 7, 2) \)
19. \(-2 (8, 11, 3) + 4 (2, 1, 1) \)

20. \(6(4j + 2k) - 3(2i + 7k) \)

21. \(\frac{1}{2} (4, -2, 8) - \frac{1}{3} (12, 3, 3) \)

22. \(5(i + 2j) - 3(2j + k) + 7(2k - i) \)

23. \(4 (6, -1, 1) - 2 (1, 0, -1) + 3 (-2, 1, 1) \)

In Exercises 24–27, determine whether or not the two vectors are parallel.

24. \(u = (1, -2, 5) \), \(v = (-2, 4, -10) \)

25. \(u = (4, 2, -6) \), \(v = (2, -1, 3) \)

26. \(u = (4, 2, -6) \), \(v = (2, 1, 3) \)

27. \(u = (-3, 1, 4) \), \(v = (6, -2, 8) \)

In Exercises 28–31, find the given vector.

28. \(ev \), where \(v = (1, 1, 2) \)

29. \(ew \), where \(w = (4, -2, -1) \)

30. Unit vector in the direction of \(u = (1, 0, 7) \)

31. Unit vector in the direction of \(v = (-4, 4, 2) \)

32. Sketch the following vectors, and find their components and lengths:
 (a) \(4i + 3j - 2k \)
 (b) \(i + j + k \)
 (c) \(4j + 3k \)
 (d) \(12i + 6j - k \)

In Exercises 33–40, find a vector parametrization for the line with the given description.

33. Passes through \(P = (1, 2, -8) \), direction vector \(v = (2, 1, 3) \)

34. Passes through \(P = (4, 0, 8) \), direction vector \(v = (1, 0, 1) \)

35. Passes through \(P = (4, 0, 8) \), direction vector \(v = 7i + 4k \)

36. Passes through \(O \), direction vector \(v = (3, -1, -4) \)

37. Passes through \((1, 1, 1)\) and \((3, -5, 2)\)

38. Passes through \((-2, 0, -2)\) and \((4, 3, 7)\)

39. Passes through \(O \) and \((4, 1, 1)\)

40. Passes through \((1, 1, 1)\) parallel to the line through \((2, 0, -1)\) and \((4, 1, 3)\)

In Exercises 41–44, find parametric equations for the lines with the given description.

41. Perpendicular to the \(xy \)-plane, passes through the origin

42. Perpendicular to the \(yz \)-plane, passes through \((0, 0, 2)\)

43. Parallel to the line through \((1, 1, 0)\) and \((0, -1, -2)\), passes through \((0, 0, 4)\)

44. Passes through \((1, -1, 0)\) and \((0, -1, 2)\)

45. Which of the following is a parametrization of the line through \(P = (4, 9, 8) \) perpendicular to the \(xz \)-plane (Figure 17)?
 (a) \(r(t) = (4, 9, 8) + t (0, 1, 1) \)
 (b) \(r(t) = (4, 9, 8) + t (0, 0, 1) \)
 (c) \(r(t) = (4, 9, 8) + t (0, 1, 0) \)
 (d) \(r(t) = (4, 9, 8) + t (1, 1, 0) \)

46. Find a parametrization of the line through \(P = (4, 9, 8) \) perpendicular to the \(yz \)-plane.

47. Show that \(r_1(t) \) and \(r_2(t) \) define the same line, where
 \(r_1(t) = (3, -1, 4) + t (8, 12, -6) \)
 \(r_2(t) = (11, 11, -2) + t (4, 6, -3) \)

Hint: Show that \(r_2(t) \) passes through \((3, -1, 4)\) and that the direction vectors for \(r_1(t) \) and \(r_2(t) \) are parallel.

48. Show that \(r_1(t) \) and \(r_2(t) \) define the same line, where
 \(r_1(t) = t (2, 1, 3) \), \(r_2(t) = -6, -3, -9) + t (8, 4, 12) \)

49. Find two different vector parametrizations of the line through \(P = (5, 5, 2) \) with direction vector \(v = (0, -2, 1) \).

50. Find the point of intersection of the lines \(r(t) = (1, 0, 0) + t (-3, 1, 0) \) and \(s(t) = (0, 1, 1) + t (2, 0, 1) \).

51. Show that the lines \(r_1(t) = (-1, 2, 2) + t (-4, 2, 1) \) and \(r_2(t) = (0, 1, 1) + t (2, 0, 1) \) do not intersect.

52. Determine whether the lines \(r_1(t) = (2, 1, 1) + t (-4, 0, 1) \) and \(r_2(s) = (-4, 1, 5) + s (2, 1, -2) \) intersect, and if so, find the point of intersection.
53. Determine whether the lines \(\mathbf{r}_1(t) = (0, 1, 1) + t(1, 1, 2) \) and \(\mathbf{r}_2(s) = (2, 0, 3) + s(1, 4, 4) \) intersect, and if so, find the point of intersection.

54. Find the intersection of the lines \(\mathbf{r}_1(t) = (-1, 1) + t(2, 4) \) and \(\mathbf{r}_2(s) = (2, 1) + s(-1, 6) \) in \(\mathbb{R}^2 \).

55. A meteor follows a trajectory \(\mathbf{r}(t) = (2, 1, 4) + t(3, 2, -1) \) km. with \(v \) in minutes, near the surface of the earth, which is represented by the \(xy \)-plane. Determine at what time the meteor hits the ground.

56. A laser's beam shines along the ray given by \(\mathbf{r}_1(t) = (1, 2, 4) + t(2, 1, -1) \) for \(t \geq 0 \). A second laser's beam shines along the ray given by \(\mathbf{r}_2(s) = (6, 3, -1) + s(-5, 2, c) \) for \(s \geq 0 \), where the value of \(c \) allows for the adjustment of the \(z \)-coordinate of its direction vector. Find the value of \(c \) that will make the two beams intersect.

57. Find the components of the vector \(\mathbf{v} \) whose tail and head are the midpoints of segments \(\overline{AC} \) and \(\overline{BC} \) in Figure 18. [Note that the midpoint of \((a_1, a_2, a_3) \) and \((b_1, b_2, b_3) \) is \((\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}, \frac{a_3+b_3}{2}) \).]

58. Find the components of the vector \(\mathbf{w} \) whose tail is \(C \) and head is the midpoint of \(\overline{AB} \) in Figure 18.

59. A box that weighs 1000 kg is hanging from a crane at the dock. The crane has a square 20 m by 20 m framework as in Figure 19, with four cables, each of the same length, supporting the box. The box hangs 10 m below the level of the framework. Find the magnitude of the force acting on each cable.

Further Insights and Challenges

In Exercises 60–66, we consider the equations of a line in symmetric form, when \(a \neq 0, b \neq 0, c \neq 0 \).

\[
\frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}
\]

60. Let \(\mathcal{L} \) be the line through \(P_0 = (x_0, y_0, z_0) \) with direction vector \(\mathbf{v} = (a, b, c) \). Show that \(\mathcal{L} \) is defined by the symmetric equations (10). *Hint: Use the vector parametrization to show that every point on \(\mathcal{L} \) satisfies (10).*

61. Find the symmetric equations of the line through \(P_0 = (-2, 3, 3) \) with direction vector \(\mathbf{v} = (2, 4, 3) \).

62. Find the symmetric equations of the line through \(P = (1, 1, 2) \) and \(Q = (-2, 4, 0) \).

63. Find the symmetric equations of the line \(x = 3 + 2t, \ y = 4 - 9t, \ z = 12t \).

64. Find a vector parametrization for the line \(\frac{x-5}{9} = \frac{y+3}{7} = z-10 \).

65. Find a vector parametrization for the line \(\frac{x}{2} = \frac{y}{7} = \frac{z}{8} \).

66. Show that the line in the plane through \((x_0, y_0)\) of slope \(m \) has symmetric equations \(x - x_0 = \frac{y - y_0}{m} \).

67. A median of a triangle is a segment joining a vertex to the midpoint of the opposite side. Referring to Figure 20(A), prove that three medians of triangle \(ABC \) intersect at the terminal point \(P \) of the vector \(\frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) \). The point \(P \) is the centroid of the triangle. *Hint: Show, by parametrizing the segment \(\overline{AA'} \), that \(P \) lies two-thirds of the way from \(A \) to \(A' \). It will follow similarly that \(P \) lies on the other two medians.*

68. A median of a tetrahedron is a segment joining a vertex to the centroid of the opposite face. The tetrahedron in Figure 20(B) has vertices at the origin and at the terminal points of vectors \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \). Show that the medians intersect at the terminal point of \(\frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) \).
13.3 Dot Product and the Angle Between Two Vectors

The dot product is one of the most important vector operations. It plays a role in nearly all aspects of multivariable calculus.

DEFINITION Dot Product The dot product \(\mathbf{v} \cdot \mathbf{w} \) of two vectors
\[
\mathbf{v} = (v_1, v_2, v_3), \quad \mathbf{w} = (w_1, w_2, w_3)
\]
is the scalar defined by
\[
\mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2 + v_3w_3
\]

In words, to compute the dot product, multiply the corresponding components and add. For example,
\[
\langle 2, 3, 1 \rangle \cdot \langle -4, 2, 5 \rangle = 2(-4) + 3(2) + 1(5) = -8 + 6 + 5 = 3
\]

The dot product of vectors \(\mathbf{v} = \langle v_1, v_2 \rangle \) and \(\mathbf{w} = \langle w_1, w_2 \rangle \) in \(\mathbb{R}^2 \) is defined similarly:
\[
\mathbf{v} \cdot \mathbf{w} = v_1w_1 + v_2w_2
\]

We will see in a moment that the dot product is closely related to the angle between \(\mathbf{v} \) and \(\mathbf{w} \). Before getting to this, we describe some elementary properties of dot products.

First, the dot product is commutative: \(\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \), because the components can be multiplied in either order. Second, the dot product of a vector with itself is the square of the length: If \(\mathbf{v} = \langle v_1, v_2, v_3 \rangle \), then
\[
\mathbf{v} \cdot \mathbf{v} = v_1^2 + v_2^2 + v_3^2 = ||\mathbf{v}||^2
\]

The dot product also satisfies the Distributive Law and a scalar property as summarized in the next theorem (see Exercises 88 and 89).

THEOREM 1 Properties of the Dot Product

(i) \(\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0 \)

(ii) Commutativity: \(\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \)

(iii) Pulling out scalars: \((\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda (\mathbf{v} \cdot \mathbf{w}) \)

(iv) Distributive Law: \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \)

(v) Relation with length: \(\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2 \)

EXAMPLE 1 Verify the Distributive Law \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \) for \(\mathbf{u} = (4, 3, 3) \), \(\mathbf{v} = (1, 2, 2) \), \(\mathbf{w} = (3, -2, 5) \)

Solution We compute both sides and check that they are equal:
\[
\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = (4, 3, 3) \cdot ((1, 2, 2) + (3, -2, 5)) \\
= (4, 3, 3) \cdot (4, 0, 7) = 4(4) + 3(0) + 3(7) = 37
\]
\[
\mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} = (4, 3, 3) \cdot (1, 2, 2) + (4, 3, 3) \cdot (3, -2, 5) \\
= (4(1) + 3(2) + 3(2)) + (4(3) + 3(-2) + 3(5)) \\
= 16 + 21 = 37
\]

As mentioned above, the dot product \(\mathbf{v} \cdot \mathbf{w} \) is related to the angle \(\theta \) between \(\mathbf{v} \) and \(\mathbf{w} \). This angle \(\theta \) is not uniquely defined because, as we see in Figure 1, both \(\theta \) and \(2\pi - \theta \) can serve as an angle between \(\mathbf{v} \) and \(\mathbf{w} \). Furthermore, any multiple of \(2\pi \) may be added.
The standard basis vectors are mutually orthogonal and have length 1 (Figure 4). In terms of dot products, because \(\mathbf{i} = (1, 0, 0), \mathbf{j} = (0, 1, 0), \) and \(\mathbf{k} = (0, 0, 1), \)

\[
\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0, \quad \mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1
\]

All of these angles have the same cosine, so it does not matter which angle we use in the next theorem. However, we shall adopt the following convention:

The angle between two vectors is chosen to satisfy \(0 \leq \theta \leq \pi. \)

Theorem 2 Dot Product and the Angle Let \(\theta \) be the angle between two nonzero vectors \(\mathbf{v} \) and \(\mathbf{w}. \) Then

\[
\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta \quad \text{or} \quad \cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|}
\]

Proof According to the Law of Cosines, the three sides of a triangle satisfy (Figure 2)

\[
c^2 = a^2 + b^2 - 2ab \cos \theta
\]

If two sides of the triangle are \(\mathbf{v} \) and \(\mathbf{w}, \) then the third side is \(\mathbf{v} - \mathbf{w}, \) as in the figure, and the Law of Cosines gives

\[
\|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\|\mathbf{v}\|\|\mathbf{w}\| \cos \theta
\]

Now, by property (v) of Theorem 1 and the Distributive Law,

\[
\|\mathbf{v} - \mathbf{w}\|^2 = (\mathbf{v} - \mathbf{w}) \cdot (\mathbf{v} - \mathbf{w}) = \mathbf{v} \cdot \mathbf{v} - 2\mathbf{v} \cdot \mathbf{w} + \mathbf{w} \cdot \mathbf{w}
\]

\[
= \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\mathbf{v} \cdot \mathbf{w}
\]

Comparing Eq. (2) and Eq. (3), we obtain \(-2\cos \theta \|\mathbf{v}\| \|\mathbf{w}\| = -2\mathbf{v} \cdot \mathbf{w}, \) and Eq. (1) follows.

By definition of the arccosine, the angle \(\theta = \cos^{-1} x \) is the angle in the interval \([0, \pi]\) satisfying \(\cos \theta = x. \) Thus, for nonzero vectors \(\mathbf{v} \) and \(\mathbf{w}, \) we have

\[
\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \quad \text{or} \quad \theta = \cos^{-1} \left(\frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} \right)
\]

Example 2 Find the angle \(\theta \) between \(\mathbf{v} = (3, 6, 2) \) and \(\mathbf{w} = (4, 2, 4). \)

Solution Compute \(\cos \theta \) using the dot product:

\[
\|\mathbf{v}\| = \sqrt{3^2 + 6^2 + 2^2} = \sqrt{49} = 7, \quad \|\mathbf{w}\| = \sqrt{4^2 + 2^2 + 4^2} = \sqrt{36} = 6
\]

\[
\cos \theta = \frac{\mathbf{v} \cdot \mathbf{w}}{\|\mathbf{v}\| \|\mathbf{w}\|} = \frac{(3, 6, 2) \cdot (4, 2, 4)}{7 \cdot 6} = \frac{3 \cdot 4 + 6 \cdot 2 + 2 \cdot 4}{42} = \frac{32}{42} = \frac{16}{21}
\]

The angle itself is \(\theta = \cos^{-1} \left(\frac{16}{21} \right) \approx 0.705 \) radians or rad (Figure 3).

Two nonzero vectors \(\mathbf{v} \) and \(\mathbf{w} \) are called **perpendicular** or **orthogonal** if the angle between them is \(\frac{\pi}{2}. \) In this case, we write \(\mathbf{v} \perp \mathbf{w}. \)

We can use the dot product to test whether \(\mathbf{v} \) and \(\mathbf{w} \) are orthogonal. Because the angle \(\theta \) between 0 and \(\pi \) satisfies \(\cos \theta = 0 \) if and only if \(\theta = \frac{\pi}{2}, \) we see that

\[
\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta = 0 \quad \iff \quad \theta = \frac{\pi}{2}
\]

Defining the zero vector to be orthogonal to all other vectors, we then have

\[
\mathbf{v} \perp \mathbf{w} \quad \text{if and only if} \quad \mathbf{v} \cdot \mathbf{w} = 0
\]

The standard basis vectors are mutually orthogonal and have length 1 (Figure 4). In terms of dot products, because \(\mathbf{i} = (1, 0, 0), \mathbf{j} = (0, 1, 0), \) and \(\mathbf{k} = (0, 0, 1), \)

\[
\mathbf{i} \cdot \mathbf{j} = \mathbf{i} \cdot \mathbf{k} = \mathbf{j} \cdot \mathbf{k} = 0, \quad \mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1
\]
EXAMPLE 3 Testing for Orthogonality Determine whether \(\mathbf{v} = (2, 6, 1) \) is orthogonal to \(\mathbf{u} = (2, -1, 1) \) or \(\mathbf{w} = (-4, 1, 2) \).

Solution We test for orthogonality by computing the dot products (Figure 5):
\[
\mathbf{v} \cdot \mathbf{u} = (2, 6, 1) \cdot (2, -1, 1) = 2(2) + 6(-1) + 1(1) = -1 \quad \text{(not orthogonal)}
\]
\[
\mathbf{v} \cdot \mathbf{w} = (2, 6, 1) \cdot (-4, 1, 2) = 2(-4) + 6(1) + 1(2) = 0 \quad \text{(orthogonal)}
\]

EXAMPLE 4 Testing for Obtuseness Determine whether the angles between the vector \(\mathbf{v} = (3, 1, -2) \) and the vectors \(\mathbf{u} = \left(\frac{1}{2}, \frac{1}{2}, 5 \right) \) and \(\mathbf{w} = (4, -3, 0) \) are obtuse.

Solution By definition, the angle \(\theta \) between \(\mathbf{v} \) and \(\mathbf{u} \) is obtuse if \(\frac{\pi}{2} < \theta \leq \pi \), and this is the case if \(\cos \theta < 0 \). Since \(\mathbf{v} \cdot \mathbf{u} = \|\mathbf{v}\| \|\mathbf{u}\| \cos \theta \) and the lengths \(\|\mathbf{v}\| \) and \(\|\mathbf{u}\| \) are positive, we see that \(\cos \theta \) is negative if and only if \(\mathbf{v} \cdot \mathbf{u} \) is negative. Thus,

\[
\text{The angle } \theta \text{ between } \mathbf{v} \text{ and } \mathbf{u} \text{ is obtuse if } \mathbf{v} \cdot \mathbf{u} < 0.
\]

We have
\[
\mathbf{v} \cdot \mathbf{u} = (3, 1, -2) \cdot \left(\frac{1}{2}, \frac{1}{2}, 5 \right) = \frac{3}{2} + \frac{1}{2} - 10 = -8 < 0 \quad \text{(angle is obtuse)}
\]
\[
\mathbf{v} \cdot \mathbf{w} = (3, 1, -2) \cdot (4, -3, 0) = 12 - 3 + 0 = 9 > 0 \quad \text{(angle is acute)}
\]

EXAMPLE 5 Finding an Orthogonal Vector Find a vector orthogonal to \(\mathbf{w} = (1, 3, 2) \).

Solution Let \(\mathbf{v} = (a, b, c) \). Then if \(\mathbf{v} \) is orthogonal to \(\mathbf{w} \), it must be that
\[
\mathbf{w} \cdot \mathbf{v} = a + 3b + 2c = 0.
\]

So, any \(a, b, c \) satisfying this equation such that not all are 0 will do the trick. For instance, we could take \(a = 1 \) and \(b = 1 \). Then we have \(1 + 3(1) + 2c = 0 \) and hence \(c = -2 \). Thus, \(\mathbf{v} = (1, 1, -2) \) is such an orthogonal vector. Note that the collection of all such orthogonal vectors, when chosen with their basepoint at the origin, together forms a plane through the origin. That plane has equation \(x + 3y + 2z = 0 \) and it is the unique plane through the origin that is perpendicular to the original vector \(\mathbf{w} \). We will discuss planes in 3-space further in Section 13.5.

Another important use of the dot product is in finding the projection \(\mathbf{u}_{||\mathbf{v}} \) of a vector \(\mathbf{u} \) along a nonzero vector \(\mathbf{v} \). By definition, \(\mathbf{u}_{||\mathbf{v}} \) is the vector parallel to \(\mathbf{v} \) obtained by dropping a perpendicular from \(\mathbf{u} \) to the line through \(\mathbf{v} \) as in Figures 6 and 7. We think of \(\mathbf{u}_{||\mathbf{v}} \) as that part of \(\mathbf{u} \) that is parallel to \(\mathbf{v} \). It is the shadow vector obtained from \(\mathbf{u} \) when we shine a light down on \(\mathbf{v} \). In the next theorem, recall that \(\mathbf{e}_v \) represents a unit vector in the direction of \(\mathbf{v} \).

THEOREM 3 Projection Assume \(\mathbf{v} \neq 0 \). The projection of \(\mathbf{u} \) along \(\mathbf{v} \) is the vector
\[
\mathbf{u}_{||\mathbf{v}} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \right) \mathbf{e}_v
\]

This is sometimes denoted \(\text{proj}_v \mathbf{u} \).

The scalar \(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \) is called the component or the scalar component of \(\mathbf{u} \) along \(\mathbf{v} \) and is sometimes denoted \(\text{comp}_v \mathbf{u} \).

Proof Referring to Figures 6 and 7, we see by trigonometry that \(\mathbf{u}_{||\mathbf{v}} \) has length \(\|\mathbf{u}\| \|\cos \theta\| \). If \(\theta \) is acute, then \(\mathbf{u}_{||\mathbf{v}} \) is a positive multiple of \(\mathbf{v} \), and thus, \(\mathbf{u}_{||\mathbf{v}} = (\|\mathbf{u}\| \cos \theta) \mathbf{e}_v \) since \(\cos \theta > 0 \). Similarly, if \(\theta \) is obtuse, then \(\mathbf{u}_{||\mathbf{v}} \) is a negative multiple of \(\mathbf{e}_v \) and again \(\mathbf{u}_{||\mathbf{v}} = (\|\mathbf{u}\| \cos \theta) \mathbf{e}_v \) since \(\cos \theta < 0 \). The first formula for \(\mathbf{u}_{||\mathbf{v}} \) now follows because
\[
\mathbf{u}_{||\mathbf{v}} = (\|\mathbf{u}\| \cos \theta) \mathbf{e}_v = \|\mathbf{u}\| \cos \theta \frac{\mathbf{v}}{\|\mathbf{v}\|} = \frac{\|\mathbf{u}\| \|\mathbf{v}\| \cos \theta}{\|\mathbf{v}\|^2} \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \right) \mathbf{v}
\]
Example 6 Find the projection of \(\mathbf{u} = (5, 1, -3) \) along \(\mathbf{v} = (4, 4, 2) \).

Solution It is convenient to use the first formula in Eq. (4):

\[
\mathbf{u} \cdot \mathbf{v} = (5, 1, -3) \cdot (4, 4, 2) = 20 + 4 - 6 = 18, \\
\mathbf{v} \cdot \mathbf{v} = 4^2 + 4^2 + 2^2 = 36
\]

\[
\mathbf{u}_{\parallel \mathbf{v}} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v} = \left(\frac{18}{36} \right) (4, 4, 2) = (2, 2, 1)
\]

We show now that if \(\mathbf{v} \neq \mathbf{0} \), then every vector \(\mathbf{u} \) can be written as the sum of the projection \(\mathbf{u}_{\parallel \mathbf{v}} \) and a vector \(\mathbf{u}_{\perp \mathbf{v}} \) that is orthogonal to \(\mathbf{v} \) (see Figure 8). In fact, if we set

\[
\mathbf{u}_{\perp \mathbf{v}} = \mathbf{u} - \mathbf{u}_{\parallel \mathbf{v}}
\]

then we have

\[
\mathbf{u} = \mathbf{u}_{\parallel \mathbf{v}} + \mathbf{u}_{\perp \mathbf{v}}
\]

Eq. (5) is called the **decomposition** of \(\mathbf{u} \) with respect to \(\mathbf{v} \). It expresses \(\mathbf{u} \) as a sum of vectors, one parallel to \(\mathbf{v} \) and one perpendicular to \(\mathbf{v} \). We must verify, however, that \(\mathbf{u}_{\perp \mathbf{v}} \) is perpendicular to \(\mathbf{v} \). We do this by showing that the dot product is zero:

\[
\mathbf{u}_{\perp \mathbf{v}} \cdot \mathbf{v} = (\mathbf{u} - \mathbf{u}_{\parallel \mathbf{v}}) \cdot \mathbf{v} = (\mathbf{u} - \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v}) \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{v} - \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) (\mathbf{v} \cdot \mathbf{v}) = 0
\]

Example 7 Find the decomposition of \(\mathbf{u} = (5, 1, -3) \) with respect to \(\mathbf{v} = (4, 4, 2) \).

Solution In Example 6, we showed that \(\mathbf{u}_{\parallel \mathbf{v}} = (2, 2, 1) \). The orthogonal vector is

\[
\mathbf{u}_{\perp \mathbf{v}} = \mathbf{u} - \mathbf{u}_{\parallel \mathbf{v}} = (5, 1, -3) - (2, 2, 1) = (3, -1, -4)
\]

The decomposition of \(\mathbf{u} \) with respect to \(\mathbf{v} \) is

\[
\mathbf{u} = (5, 1, -3) = \mathbf{u}_{\parallel \mathbf{v}} + \mathbf{u}_{\perp \mathbf{v}} = (2, 2, 1) + (3, -1, -4)
\]

The decomposition into parallel and orthogonal vectors is useful in many applications.

Example 8 What is the minimum force you must apply to pull a 20-kg wagon up a frictionless ramp inclined at an angle \(\theta = 15^\circ \)?

Solution Let \(\mathbf{v} \) be a vector in the direction of the ramp, and let \(\mathbf{F}_g \) be the force on the wagon due to gravity. It has magnitude 20\(g \) newtons or \(N \) with \(g = 9.8 \). Referring to Figure 9, we decompose \(\mathbf{F}_g \) as a sum

\[
\mathbf{F}_g = \mathbf{F}_{\parallel \mathbf{v}} + \mathbf{F}_{\perp \mathbf{v}}
\]

where \(\mathbf{F}_{\parallel \mathbf{v}} \) is the projection along the ramp and \(\mathbf{F}_{\perp \mathbf{v}} \) is the “normal force” orthogonal to the ramp. The normal force \(\mathbf{F}_{\perp \mathbf{v}} \) is canceled by the ramp pushing back against the wagon in the normal direction, and thus (because there is no friction), you need only pull against \(\mathbf{F}_{\parallel \mathbf{v}} \).

Notice that the angle between \(\mathbf{F}_g \) and the ramp is the complementary angle \(90^\circ - \theta \). Since \(\mathbf{F}_{\parallel \mathbf{v}} \) is parallel to the ramp, the angle between \(\mathbf{F}_g \) and \(\mathbf{F}_{\parallel \mathbf{v}} \) is also \(90^\circ - \theta \), or \(75^\circ \), and

\[
\|\mathbf{F}_{\parallel \mathbf{v}}\| = \|\mathbf{F}_g\| \cos(75^\circ) \approx 20(9.8)(0.26) \approx 51 \text{ newtons}
\]

Since gravity pulls the wagon down the ramp with a 51-newton force, it takes a minimum force of 51 newtons to pull the wagon up the ramp.
13.3 Summary

- The dot product of \(\mathbf{v} = (a_1, b_1, c_1) \) and \(\mathbf{w} = (a_2, b_2, c_2) \) is
 \[
 \mathbf{v} \cdot \mathbf{w} = a_1a_2 + b_1b_2 + c_1c_2
 \]

- Basic Properties:
 - Commutativity: \(\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v} \)
 - Pulling out scalars: \((\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda (\mathbf{v} \cdot \mathbf{w}) \)
 - Distributive Law: \(\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w} \)
 - \((\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u} \)
 - \(\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\|^2 \)
 - \(\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta \), where \(\theta \) is the angle between \(\mathbf{v} \) and \(\mathbf{w} \)

- By convention, the angle \(\theta \) is chosen to satisfy \(0 \leq \theta \leq \pi \).
- Test for orthogonality: \(\mathbf{v} \perp \mathbf{w} \) if and only if \(\mathbf{v} \cdot \mathbf{w} = 0 \).
- The angle between \(\mathbf{v} \) and \(\mathbf{w} \) is acute if \(\mathbf{v} \cdot \mathbf{w} > 0 \) and obtuse if \(\mathbf{v} \cdot \mathbf{w} < 0 \).
- Assume \(\mathbf{v} \neq \mathbf{0} \). Every vector \(\mathbf{u} \) has a decomposition \(\mathbf{u} = \mathbf{u}_{||\mathbf{v}} + \mathbf{u}_{\perp\mathbf{v}} \), where \(\mathbf{u}_{||\mathbf{v}} \) is parallel to \(\mathbf{v} \), and \(\mathbf{u}_{\perp\mathbf{v}} \) is orthogonal to \(\mathbf{v} \) (see Figure 11). The vector \(\mathbf{u}_{||\mathbf{v}} \) is called the *projection* of \(\mathbf{u} \) along \(\mathbf{v} \).
- Let \(\mathbf{e}_v = \frac{\mathbf{v}}{\|\mathbf{v}\|} \). Then
 \[
 \mathbf{u}_{||\mathbf{v}} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \right) \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2} \right) \mathbf{e}_v,
 \quad \mathbf{u}_{\perp\mathbf{v}} = \mathbf{u} - \mathbf{u}_{||\mathbf{v}}
 \]

- The coefficient \(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|} \) is called the *component* of \(\mathbf{u} \) along \(\mathbf{v} \):
 \[
 \text{Component of } \mathbf{u} \text{ along } \mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|} = \|\mathbf{u}\| \cos \theta
 \]
13.3 EXERCISES

Preliminary Questions
1. Is the dot product of two vectors a scalar or a vector?
2. What can you say about the angle between \(\mathbf{a} \) and \(\mathbf{b} \) if \(\mathbf{a} \cdot \mathbf{b} < 0 \)?
3. Which property of dot products allows us to conclude that if \(\mathbf{v} \) is orthogonal to both \(\mathbf{u} \) and \(\mathbf{w} \), then \(\mathbf{v} \) is orthogonal to \(\mathbf{u} + \mathbf{w} \)?
4. Which is the projection of \(\mathbf{v} \) along \(\mathbf{v} \): (a) \(\mathbf{v} \) or (b) \(\mathbf{e}_v \)?

Exercises
In Exercises 1–12, compute the dot product.
1. \((1, 2, 1) \cdot (4, 3, 5) \)
2. \((3, -2, 2) \cdot (1, 0, 1) \)
3. \((0, 1, 0) \cdot (7, 41, -3) \)
4. \((1, 1, 1) \cdot (6, 4, 2) \)
5. \((3, 1) \cdot (4, -7) \)
6. \(\left(\frac{1}{6}, \frac{1}{2} \right) \cdot (3, \frac{1}{2}) \)
7. \(\mathbf{i} \cdot \mathbf{j} \)
8. \(\mathbf{k} \cdot \mathbf{k} \)
9. \((\mathbf{i} + \mathbf{j}) \cdot (\mathbf{j} + \mathbf{k}) \)
10. \((3 \mathbf{j} + 2 \mathbf{k}) \cdot (\mathbf{i} - 4 \mathbf{k}) \)
11. \((\mathbf{i} + \mathbf{j} + \mathbf{k}) \cdot (3 \mathbf{i} + 2 \mathbf{j} - 5 \mathbf{k}) \)
12. \((-\mathbf{k}) \cdot (\mathbf{i} - 2 \mathbf{j} + 7 \mathbf{k}) \)

In Exercises 13–18, determine whether the two vectors are orthogonal and, if not, whether the angle between them is acute or obtuse.
13. \((1, 1, 1), (1, -2, -2) \)
14. \((0, 2, 4), (-5, 0, 0) \)
15. \((1, 2, 1), (7, -3, -1) \)
16. \((0, 2, 4), (3, 1, 0) \)
17. \(\left(\frac{12}{5}, -\frac{3}{4} \right), \left(\frac{1}{2}, -\frac{7}{4} \right) \)
18. \((12, 6), (2, -4) \)

In Exercises 19–22, find the cosine of the angle between the vectors.
19. \((0, 3, 1), (4, 0, 0) \)
20. \((1, 1, 1), (-2, -1, 2) \)
21. \(\mathbf{i} + \mathbf{j} + 2 \mathbf{k} \)
22. \(3 \mathbf{i} + \mathbf{k}, \mathbf{i} + \mathbf{j} + \mathbf{k} \)

In Exercises 23–28, find the angle between the vectors. Use a calculator if necessary.
23. \((2, \sqrt{2}), (1 + \sqrt{2}, 1 - \sqrt{2}) \)
24. \((5, \sqrt{3}), (\sqrt{3}, 2) \)
25. \((1, 1, 1), (1, 0, 0) \)
26. \((3, 1, 1), (2, -4, 2) \)
27. \((0, 1, 1), (1, -1, 0) \)
28. \((1, 1, -1), (1, -2, -1) \)
29. Find all values of \(b \) for which the vectors are orthogonal.
 (a) \((b, 3, 2), (1, b, 1) \)
 (b) \((4, -2, 7), (b^2, b, 0) \)
30. Find a vector that is orthogonal to \((-1, 2, 2) \).
31. Find two vectors that are not multiples of each other and are both orthogonal to \((2, 0, -3) \).
32. Find a vector that is orthogonal to \(\mathbf{v} = (1, 2, 1) \) but not to \(\mathbf{w} = (1, 0, -1) \).
33. Find \(\mathbf{v} \cdot \mathbf{e} \) where \(||\mathbf{v}|| = 3 \), \(\mathbf{e} \) is a unit vector, and the angle between \(\mathbf{e} \) and \(\mathbf{v} \) is \(\frac{\pi}{5} \).
34. Assume that \(\mathbf{v} \) lies in the \(yz \)-plane. Which of the following dot products is equal to zero for all choices of \(\mathbf{v} \)?
 (a) \(\mathbf{v} \cdot (0, 2, 1) \)
 (b) \(\mathbf{v} \cdot \mathbf{k} \)
 (c) \(\mathbf{v} \cdot (-3, 0, 0) \)
 (d) \(\mathbf{v} \cdot \mathbf{j} \)

In Exercises 35–38, simplify the expression.
35. \((\mathbf{v} - \mathbf{w}) \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{w} \)
36. \((\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) - 2\mathbf{v} \cdot \mathbf{w} \)
37. \((\mathbf{v} + \mathbf{w}) \cdot \mathbf{v} - (\mathbf{v} + \mathbf{w}) \cdot \mathbf{w} \)
38. \((\mathbf{v} + \mathbf{w}) \cdot \mathbf{v} - (\mathbf{v} - \mathbf{w}) \cdot \mathbf{w} \)

In Exercises 39–42, use the properties of the dot product to evaluate the expression, assuming that \(\mathbf{u} \cdot \mathbf{v} = 2 \), \(||\mathbf{u}|| = 1 \), and \(||\mathbf{v}|| = 3 \).
39. \(\mathbf{u} \cdot (4\mathbf{v}) \)
40. \((\mathbf{u} + \mathbf{v}) \cdot \mathbf{v} \)
41. \(2\mathbf{u} \cdot (3\mathbf{u} - \mathbf{v}) \)
42. \((\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) \)

43. Find the angle between \(\mathbf{v} \) and \(\mathbf{w} \) if \(\mathbf{v} \cdot \mathbf{w} = -||\mathbf{v}|| ||\mathbf{w}|| \).
44. Find the angle between \(\mathbf{v} \) and \(\mathbf{w} \) if \(\mathbf{v} \cdot \mathbf{w} = \frac{1}{2} ||\mathbf{v}|| ||\mathbf{w}|| \).
45. Assume that \(||\mathbf{v}|| = 3 \), \(||\mathbf{w}|| = 5 \), and the angle between \(\mathbf{v} \) and \(\mathbf{w} \) is \(\theta = \frac{\pi}{3} \).
 (a) Use the relation \(||\mathbf{v} + \mathbf{w}||^2 = (\mathbf{v} + \mathbf{w}) \cdot (\mathbf{v} + \mathbf{w}) \) to show that \(||\mathbf{v} + \mathbf{w}||^2 = 2^2 + 5^2 + 2 \mathbf{v} \cdot \mathbf{w} \).
 (b) Find \(||\mathbf{v} + \mathbf{w}|| \).
46. Assume that \(||\mathbf{v}|| = 2 \), \(||\mathbf{w}|| = 3 \), and the angle between \(\mathbf{v} \) and \(\mathbf{w} \) is \(120^\circ \). Determine:
 (a) \(\mathbf{v} \cdot \mathbf{w} \)
 (b) \(2\mathbf{v} + \mathbf{w} \)
 (c) \(||2\mathbf{v} - 3\mathbf{w}|| \)
47. Show that if \(\mathbf{e} \) and \(\mathbf{f} \) are unit vectors such that \(||\mathbf{e} + \mathbf{f}|| = \frac{\sqrt{17}}{2} \), then \(||\mathbf{e} - \mathbf{f}|| = \frac{\sqrt{5}}{2} \). Hint: Show that \(\mathbf{e} \cdot \mathbf{f} = \frac{1}{2} \).
48. Find \(||2\mathbf{e} - 3\mathbf{f}|| \), assuming that \(\mathbf{e} \) and \(\mathbf{f} \) are unit vectors such that \(||\mathbf{e} + \mathbf{f}|| = \sqrt{17} \).
49. Find the angle \(\theta \) in the triangle in Figure 12.
50. Find all three angles in the triangle in Figure 13.

![Figure 13](Image)

51. (a) Draw \(u|_v \) and \(v|_u \) for the vectors appearing as in Figure 14.
(b) Which of \(u|_v \) and \(v|_u \) has the greater magnitude?

![Figure 14](Image)

52. Let \(u \) and \(v \) be two nonzero vectors.
(a) Is it possible for the component of \(u \) along \(v \) to have the opposite sign from the component of \(v \) along \(u \)? Why or why not?
(b) What must be true of the vectors if either of these two components is 0?

In Exercises 53–60, find the projection of \(u \) along \(v \).
53. \(u = (2, 5) \), \(v = (1, 1) \)
54. \(u = (2, -3) \), \(v = (1, 2) \)
55. \(u = (-1, 2, 0) \), \(v = (2, 0, 1) \)
56. \(u = (1, 1, 1) \), \(v = (1, 1, 0) \)
57. \(u = 5i + 7j - 4k \), \(v = k \)
58. \(u = i + 29k \), \(v = j \)
59. \(u = (a, b, c) \), \(v = i \)
60. \(u = (a, a, b) \), \(v = i - j \)

In Exercises 61 and 62, compute the component of \(u \) along \(v \).
61. \(u = (3, 2, 1) \), \(v = (1, 0, 1) \)
62. \(u = (3, 0, 9) \), \(v = (1, 2, 2) \)

63. Find the length of \(\overrightarrow{OP} \) in Figure 15.
64. Find \(||u|_v|| \) in Figure 15.

![Figure 15](Image)

In Exercises 65–70, find the decomposition \(\mathbf{a} = \mathbf{a}_b + \mathbf{a}_{\perp b} \) with respect to \(b \).
65. \(\mathbf{a} = (1, 0) \), \(\mathbf{b} = (1, 1) \)
66. \(\mathbf{a} = (2, 5) \), \(\mathbf{b} = (5, 0) \)
67. \(\mathbf{a} = (4, -1, 0) \), \(\mathbf{b} = (0, 1, 1) \)
68. \(\mathbf{a} = (4, -1, 5) \), \(\mathbf{b} = (2, 1, 1) \)
69. \(\mathbf{a} = (x, y) \), \(\mathbf{b} = (1, -1) \)

70. \(\mathbf{a} = (x, y, z) \), \(\mathbf{b} = (1, 1, 1) \)
71. Let \(\mathbf{e}_\theta = (\cos \theta, \sin \theta) \). Show that \(\mathbf{e}_\theta \cdot \mathbf{e}_\phi = \cos(\theta - \phi) \) for any two angles \(\theta \) and \(\phi \).
72. \(\nabla \) Let \(\mathbf{v} \) and \(\mathbf{w} \) be vectors in the plane.
(a) Use Theorem 2 to explain why the dot product \(\mathbf{v} \cdot \mathbf{w} \) does not change if both \(\mathbf{v} \) and \(\mathbf{w} \) are rotated by the same angle \(\theta \).
(b) Sketch the vectors \(\mathbf{e}_1 = (1, 0) \) and \(\mathbf{e}_2 = \left(\sqrt{2} \cos \frac{3\pi}{4}, \sqrt{2} \sin \frac{3\pi}{4} \right) \), and determine the vectors \(\mathbf{e}_1', \mathbf{e}_2' \) obtained by rotating \(\mathbf{e}_1, \mathbf{e}_2 \) through an angle \(\frac{\pi}{4} \). Verify that \(\mathbf{e}_1 \cdot \mathbf{e}_2 = \mathbf{e}_1' \cdot \mathbf{e}_2' \).

In Exercises 73–76, refer to Figure 16.
73. Find the angle between \(\overrightarrow{AB} \) and \(\overrightarrow{AC} \).
74. Find the angle between \(\overrightarrow{AB} \) and \(\overrightarrow{AD} \).
75. Calculate the projection of \(\overrightarrow{AC} \) along \(\overrightarrow{AD} \).
76. Calculate the projection of \(\overrightarrow{AD} \) along \(\overrightarrow{AB} \).

![Figure 16](Image)

77. The methane molecule \(\text{CH}_4 \) consists of a carbon molecule bonded to four hydrogen molecules that are spaced as far apart from each other as possible. The hydrogen atoms then sit at the vertices of a tetrahedron, with the carbon atom at its center, as in Figure 17. We can model this with the carbon atom at the point \(\left(\frac{1}{2}, \frac{1}{2}, 0 \right) \) and the hydrogen atoms at \((0, 0, 0), (1, 1, 0), (1, 0, 1) \), and \((0, 1, 1) \). Use the dot product to find the bond angle \(\alpha \) formed between any two of the line segments from the carbon atom to the hydrogen atoms.

![Figure 17](Image)

78. Iron forms a crystal lattice where each central atom appears at the center of a cube, the corners of which correspond to additional iron atoms, as in Figure 18. Use the dot product to find the angle \(\beta \) between the line segments from the central atom to two adjacent outer atoms. Hint: Take the central atom to be situated at the origin and the corner atoms to occur at \((\pm 1, \pm 1, \pm 1) \).

![Figure 18](Image)
79. Let \(\mathbf{v} \) and \(\mathbf{w} \) be nonzero vectors and set \(\mathbf{u} = \mathbf{v} + \mathbf{w} \). Use the dot product to show that the angle between \(\mathbf{u} \) and \(\mathbf{v} \) is equal to the angle between \(\mathbf{u} \) and \(\mathbf{w} \). Explain this result geometrically with a diagram.

80. Let \(\mathbf{v} \), \(\mathbf{w} \), and \(\mathbf{a} \) be nonzero vectors such that \(\mathbf{v} \cdot \mathbf{a} = \mathbf{w} \cdot \mathbf{a} \). Is it true that \(\mathbf{v} = \mathbf{w} \)? Either prove this or give a counterexample.

81. Calculate the force (in newtons) required to push a 40-kg wagon up a 10° incline (Figure 19).

82. A force \(\mathbf{F} \) is applied to each of two ropes (of negligible weight) attached to opposite ends of a 40-kg wagon and making an angle of 35° with the horizontal (Figure 20). What is the maximum magnitude of \(\mathbf{F} \) (in newtons) that can be applied without lifting the wagon off the ground?

83. A light beam travels along the ray determined by a unit vector \(\mathbf{L} \), strikes a flat surface at point \(P \), and is reflected along the ray determined by a unit vector \(\mathbf{R} \), where \(\theta_1 = \theta_2 \) (Figure 21). Show that if \(\mathbf{N} \) is the unit vector orthogonal to the surface, then

\[
\mathbf{R} = 2(\mathbf{L} \cdot \mathbf{N})\mathbf{N} - \mathbf{L}
\]

84. Let \(P \) and \(Q \) be antipodal (opposite) points on a sphere of radius \(r \) centered at the origin and let \(R \) be a third point on the sphere (Figure 22). Prove that \(PR \) and \(QR \) are orthogonal.

85. Prove that \(\|\mathbf{v} + \mathbf{w}\|^2 - \|\mathbf{v} - \mathbf{w}\|^2 = 4\mathbf{v} \cdot \mathbf{w} \).

86. Use Exercise 85 to show that \(\mathbf{v} \) and \(\mathbf{w} \) are orthogonal if and only if \(\|\mathbf{v} - \mathbf{w}\| = \|\mathbf{v} + \mathbf{w}\| \).

87. Show that the two diagonals of a parallelogram are perpendicular if and only if its sides have equal length. Hint: Use Exercise 86 to show that \(\mathbf{v} - \mathbf{w} \) and \(\mathbf{v} + \mathbf{w} \) are orthogonal if and only if \(\|\mathbf{v}\| = \|\mathbf{w}\| \).

88. Verify the Distributive Law:

\[
\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}
\]

89. Verify that \((\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda (\mathbf{v} \cdot \mathbf{w}) \) for any scalar \(\lambda \).

Further Insights and Challenges

90. Prove the Law of Cosines, \(c^2 = a^2 + b^2 - 2ab \cos \theta \), by referring to Figure 23. Hint: Consider the right triangle \(\triangle PQR \).

91. In this exercise, we prove the Cauchy–Schwarz inequality: If \(\mathbf{v} \) and \(\mathbf{w} \) are any two vectors, then

\[
\|\mathbf{v} \cdot \mathbf{w}\| \leq \|\mathbf{v}\| \|\mathbf{w}\|
\]

(a) Let \(f(x) = \|x\mathbf{v} + \mathbf{w}\|^2 \) for \(x \) a scalar. Show that \(f(x) = ax^2 + bx + c \), where \(a = \|\mathbf{v}\|^2 \), \(b = 2\mathbf{v} \cdot \mathbf{w} \), and \(c = \|\mathbf{w}\|^2 \).

(b) Conclude that \(b^2 - 4ac \leq 0 \). Hint: Observe that \(f(x) \geq 0 \) for all \(x \).

92. Use (6) to prove the Triangle Inequality:

\[
\|\mathbf{v} + \mathbf{w}\| \leq \|\mathbf{v}\| + \|\mathbf{w}\|
\]

Hint: First use the Triangle Inequality for numbers to prove

\[
\|\mathbf{v} + \mathbf{w}\| \cdot (\mathbf{v} + \mathbf{w}) \leq \|\mathbf{v} + \mathbf{w}\| + \|\mathbf{v} + \mathbf{w}\| \cdot |\mathbf{v} + \mathbf{w}|\]

93. This exercise gives another proof of the relation between the dot product and the angle \(\theta \) between two vectors \(\mathbf{v} = (a_1, b_1) \) and \(\mathbf{w} = (a_2, b_2) \) in the plane. Observe that \(\mathbf{v} = \|\mathbf{v}\| (\cos \theta_1, \sin \theta_1) \) and \(\mathbf{w} = \|\mathbf{w}\| (\cos \theta_2, \sin \theta_2) \), with \(\theta_1 \) and \(\theta_2 \) as in Figure 24. Then use the addition formula for the cosine to show that

\[
\mathbf{v} \cdot \mathbf{w} = \|\mathbf{v}\| \|\mathbf{w}\| \cos \theta
\]
94. Let \(v = (x, y) \) and
\[
v_\theta = (x \cos \theta + y \sin \theta, -x \sin \theta + y \cos \theta)
\]
Prove that the angle between \(v \) and \(v_\theta \) is \(\theta \).

95. Let \(v \) be a nonzero vector. The angles \(\alpha, \beta, \gamma \) between \(v \) and the unit vectors \(i, j, k \) are called the direction cosines of \(v \) (Figure 25). The cosines of these angles are called the direction cosines of \(v \). Prove that
\[
\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1
\]

96. Find the direction cosines of \(v = (3, 6, -2) \).

97. The set of all points \(X = (x, y, z) \) equidistant from two points \(P, Q \) in \(\mathbb{R}^3 \) is a plane (Figure 26). Show that \(X \) lies on this plane if
\[
\overrightarrow{PQ} \cdot \overrightarrow{OX} = \frac{1}{2} \left(\| \overrightarrow{OQ} \|^2 - \| \overrightarrow{OP} \|^2 \right)
\]

98. Sketch the plane consisting of all points \(X = (x, y, z) \) equidistant from the points \(P = (0, 1, 0) \) and \(Q = (0, 0, 1) \). Use Eq. (7) to show that \(X \) lies on this plane if and only if \(y = z \).

99. Use Eq. (7) to find the equation of the plane consisting of all points \(X = (x, y, z) \) equidistant from \(P = (2, 1, 1) \) and \(Q = (1, 0, 2) \).

13.4 The Cross Product

This section introduces the **cross product** \(v \times w \) of two 3-dimensional vectors \(v \) and \(w \). The cross product (sometimes called the **vector product**) is used in physics and engineering to describe quantities involving rotation, such as torque and angular momentum. In electromagnetic theory, magnetic forces are described using cross products (Figures 1 and 2).
Unlike the dot product \(\mathbf{v} \cdot \mathbf{w} \) (which is a scalar), the cross product \(\mathbf{v} \times \mathbf{w} \) is again a vector. It is defined using determinants, which we now define in the \(2 \times 2 \) and \(3 \times 3 \) cases. A \(2 \times 2 \) determinant is a number formed from an array of numbers with two rows and two columns (called a matrix) according to the formula

\[
\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc
\]

Note that the determinant is the difference of the diagonal products. For example,

\[
\begin{vmatrix} \frac{3}{2} & 2 \\ 1 & 4 \end{vmatrix} = \frac{3}{2} \cdot 4 - \frac{3}{2} \cdot 1 = 11
\]

The determinant of a \(3 \times 3 \) matrix is defined by the formula

\[
\begin{vmatrix} a_{11} & b_{11} & c_{11} \\ a_{21} & b_{21} & c_{21} \\ a_{31} & b_{31} & c_{31} \end{vmatrix} = a_{11}b_{22}c_{33} - a_{11}b_{32}c_{22} + a_{21}b_{32}c_{12} - a_{21}b_{22}c_{12} + a_{31}b_{12}c_{22} - a_{31}b_{22}c_{12}
\]

This formula expresses the \(3 \times 3 \) determinant in terms of \(2 \times 2 \) determinants called minors. The minors are obtained by crossing out the first row and one of the three columns of the \(3 \times 3 \) matrix. For example, the minor labeled \((1, 2) \) above is obtained as follows:

\[
\begin{vmatrix} a_{11} & b_{11} \\ a_{21} & b_{21} \\ a_{31} & b_{31} \end{vmatrix}
\]

Cross out row 1 and column 2

EXAMPLE 1 A \(3 \times 3 \) Determinant

Calculate

\[
\begin{vmatrix} 2 & 4 & 3 \\ 0 & 1 & -7 \\ -1 & 5 & 3 \end{vmatrix}
\]

Solution

\[
\begin{vmatrix} 2 & 4 & 3 \\ 0 & 1 & -7 \\ -1 & 5 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 4 & 3 \\ 0 & 1 & -7 \\ -1 & 5 & 3 \end{vmatrix} = 2(38) - 4(-7) + 3(1) = 107
\]

Later in this section we will see how determinants are related to area and volume. First, we introduce the cross product, which is defined as a “symbolic” determinant whose first row has the vector entries \(\mathbf{i}, \mathbf{j}, \mathbf{k} \).

DEFINITION The Cross Product

The cross product of vectors \(\mathbf{v} = (v_1, v_2, v_3) \) and \(\mathbf{w} = (w_1, w_2, w_3) \) is the vector

\[
\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k}
\]

EXAMPLE 2 Calculate \(\mathbf{v} \times \mathbf{w} \), where \(\mathbf{v} = (-2, 1, 4) \) and \(\mathbf{w} = (3, 2, 5) \).

Solution

\[
\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 & 1 & 4 \\ 3 & 2 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 4 \\ 2 & 5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -2 & 4 \\ 3 & 5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -2 & 1 \\ 3 & 2 \end{vmatrix} \mathbf{k} = (-3)\mathbf{i} - (22)\mathbf{j} + (-7)\mathbf{k} = (-3, 22, -7)
\]

The theory of matrices and determinants is part of linear algebra, a subject of great importance throughout mathematics. In this section, we discuss just a few basic definitions and facts needed for our treatment of multivariable calculus.

CAUTION Note in Eq. (3) that the middle term comes with a minus sign.

The cross product differs fundamentally from the dot product in that \(\mathbf{u} \times \mathbf{v} \) is a vector, whereas \(\mathbf{u} \cdot \mathbf{v} \) is a number.
Formula (3) gives no hint of the geometric meaning of the cross product. However, there is a simple way to visualize the vector \(\mathbf{v} \times \mathbf{w} \) using the right-hand rule. Suppose that \(\mathbf{v} \), \(\mathbf{w} \), and \(\mathbf{u} \) are nonzero vectors that do not all lie in a plane. We say that \(\{ \mathbf{v}, \mathbf{w}, \mathbf{u} \} \) forms a right-handed system if the direction of \(\mathbf{u} \) is determined by the right-hand rule: When the fingers of your right hand curl from \(\mathbf{v} \) to \(\mathbf{w} \), your thumb points to the same side of the plane spanned by \(\mathbf{v} \) and \(\mathbf{w} \) as \(\mathbf{u} \) (Figure 3). The following theorem is proved at the end of this section.

THEOREM 1 Geometric Description of the Cross Product Given two nonzero nonparallel vectors \(\mathbf{v} \) and \(\mathbf{w} \), the cross product \(\mathbf{v} \times \mathbf{w} \) is the unique vector with the following three properties:

(i) \(\mathbf{v} \times \mathbf{w} \) is orthogonal to \(\mathbf{v} \) and \(\mathbf{w} \).

(ii) \(\mathbf{v} \times \mathbf{w} \) has length \(\| \mathbf{v} \| \| \mathbf{w} \| \sin \theta \) \(\theta \) is the angle between \(\mathbf{v} \) and \(\mathbf{w} \), \(0 \leq \theta \leq \pi \).

(iii) \(\{ \mathbf{v}, \mathbf{w}, \mathbf{v} \times \mathbf{w} \} \) forms a right-handed system.

How do the three properties in Theorem 1 determine \(\mathbf{v} \times \mathbf{w} \)? By property (i), \(\mathbf{v} \times \mathbf{w} \) lies on the line orthogonal to \(\mathbf{v} \) and \(\mathbf{w} \). By property (ii), \(\mathbf{v} \times \mathbf{w} \) is one of the two vectors on this line of length \(\| \mathbf{v} \| \| \mathbf{w} \| \sin \theta \). Finally, property (iii) tells us which of these two vectors is \(\mathbf{v} \times \mathbf{w} \)—namely, the vector for which \(\{ \mathbf{v}, \mathbf{w}, \mathbf{u} \} \) is right-handed (Figure 4).

EXAMPLE 3 Let \(\mathbf{v} = (2, 0, 0) \) and \(\mathbf{w} = (0, 1, 1) \). Determine \(\mathbf{u} = \mathbf{v} \times \mathbf{w} \) using the geometric properties of the cross product rather than Eq. (3).

Solution We use Theorem 1. First, by property (i), \(\mathbf{u} = \mathbf{v} \times \mathbf{w} \) is orthogonal to \(\mathbf{v} \) and \(\mathbf{w} \). Since \(\mathbf{v} \) lies along the \(x \)-axis, \(\mathbf{u} \) must lie in the \(yz \)-plane (Figure 5). In other words, \(\mathbf{u} = (0, b, c) \). But \(\mathbf{u} \) is also orthogonal to \(\mathbf{w} = (0, 1, 1) \), so \(\mathbf{u} \cdot \mathbf{w} = b + c = 0 \) and thus \(\mathbf{u} = (0, b, -b) \).

Next, direct computation shows that \(\| \mathbf{v} \| = 2 \) and \(\| \mathbf{w} \| = \sqrt{2} \). Furthermore, the angle between \(\mathbf{v} \) and \(\mathbf{w} \) is \(\theta = \frac{\pi}{4} \) since \(\mathbf{v} \cdot \mathbf{w} = 0 \). By property (ii),

\[
\| \mathbf{u} \| = \sqrt{b^2 + (-b)^2} = |b| \sqrt{2}
\]

is equal to \(\| \mathbf{v} \| \| \mathbf{w} \| \sin \frac{\pi}{2} = 2 \sqrt{2} \).

Therefore, \(|b| = 2 \) and \(b = \pm 2 \). Finally, property (iii) tells us that \(\mathbf{u} \) points in the positive \(z \)-direction (Figure 5). Thus, \(b = -2 \) and \(\mathbf{u} = (0, -2, 2) \). You can verify that the formula for the cross product yields the same answer.

One of the most striking properties of the cross product is that it is **anticommutative**. Reversing the order changes the sign:

\[\mathbf{w} \times \mathbf{v} = -\mathbf{v} \times \mathbf{w} \]

We verify this using Eq. (3): When we interchange \(\mathbf{v} \) and \(\mathbf{w} \), each of the 2 \times 2 determinants changes sign. For example,

\[
\begin{vmatrix}
 v_1 & v_2 \\
 w_1 & w_2 \\
\end{vmatrix} = v_1 w_2 - v_2 w_1
\]

\[
= -(v_2 w_1 - v_1 w_2) = - \begin{vmatrix}
 w_1 & w_2 \\
 v_1 & v_2 \\
\end{vmatrix}
\]

Anticommutativity also follows from the geometric description of the cross product. By properties (i) and (ii) in Theorem 1, \(\mathbf{v} \times \mathbf{w} \) and \(\mathbf{w} \times \mathbf{v} \) are both orthogonal to \(\mathbf{v} \) and \(\mathbf{w} \) and have the same length. However, \(\mathbf{v} \times \mathbf{w} \) and \(\mathbf{w} \times \mathbf{v} \) point in opposite directions by the right-hand rule, and thus \(\mathbf{v} \times \mathbf{w} = -\mathbf{w} \times \mathbf{v} \) (Figure 6). In particular, \(\mathbf{v} \times \mathbf{v} = -\mathbf{v} \times \mathbf{v} \) and hence \(\mathbf{v} \times \mathbf{v} = \mathbf{0} \).
The next theorem lists some further properties of cross products (the proofs are given as Exercises 49–52).

THEOREM 2 Basic Properties of the Cross Product

(i) \(v \times v = -v \times w \)

(ii) \(v \times v = 0 \)

(iii) \(v \times w = 0 \) if and only if \(w = \lambda v \) for some scalar \(\lambda \) or \(v = 0 \)

(iv) \((\lambda v) \times w = v \times (\lambda w) = \lambda(v \times w) \)

(v) \(u \times (v + w) = u \times v + u \times w \)

The cross product of any two of the standard basis vectors \(i, j, \) and \(k \) is equal to the third, possibly with a minus sign. More precisely (see Exercise 53),

\[
\begin{align*}
i \times j &= k, \quad j \times k = i, \quad k \times i = j \\
i \times i &= j \times j = k \times k = 0
\end{align*}
\]

Since the cross product is anticommutative, minus signs occur when the cross products are taken in the opposite order. An easy way to remember these relations is to draw \(i, j, \) and \(k \) in a circle as in Figure 7. Go around the circle in the clockwise direction (starting at any point) and you obtain one of the relations (5). For example, starting at \(i \) and moving clockwise yield \(i \times j = k \). If you go around in the counterclockwise direction, you obtain the relations with a minus sign. Thus, starting at \(k \) and going counterclockwise give the relation \(k \times j = -i \).

EXAMPLE 4 Using the ijk Relations Compute \((2i + k) \times (3j + 5k) \).

Solution We use the Distributive Law for cross products:

\[
(2i + k) \times (3j + 5k) = (2i) \times (3j) + (2i) \times (5k) + k \times (3j) + k \times (5k)
\]

\[
= 6(i \times j) + 10(i \times k) + 3(k \times j) + 5(k \times k)
\]

\[
= 6k - 10j - 3i + 5(0) = -3i - 10j + 6k
\]

EXAMPLE 5 Velocity in a Magnetic Field The force \(F \) on a proton moving at velocity \(v \) m/s in a uniform magnetic field \(B \) (in teslas or T) is \(F = q(v \times B) \) in newtons or N, where \(q = 1.6 \times 10^{-19} \) coulombs or C (Figure 8). Calculate \(F \) if \(B = 0.0004k \) teslas and \(v \) has magnitude \(10^6 \),

\[
v = 10^6 \left(-\frac{j + k}{\sqrt{2}} \right)
\]

Therefore, the force (in newtons) is

\[
F = q(v \times B) = 10^6 q \left(-\frac{j + k}{\sqrt{2}} \right) \times (0.0004k) = \frac{400q}{\sqrt{2}} \left((-j + k) \times k \right)
\]

\[
= -\frac{400q}{\sqrt{2}} i = -\frac{400(1.6 \times 10^{-19})}{\sqrt{2}} i \approx -(4.5 \times 10^{-17})i
\]

Cross Products, Area, and Volume

Cross products and determinants are closely related to area and volume. Consider the parallelogram \(P \) spanned by nonzero vectors \(v \) and \(w \) with a common basepoint. In Figure 9(A), we see that \(P \) has base \(b = ||v|| \) and height \(h = ||w|| \sin \theta \), where \(\theta \) is the angle between \(v \) and \(w \). Therefore, \(P \) has area \(A = bh = ||v|| ||w|| \sin \theta = ||v \times w||. \)

FIGURE 7 Circle for computing the cross products of the basis vectors.

FIGURE 8 A proton in a uniform magnetic field travels in a helical path.

Note an important distinction between the dot product and cross product of a vector with itself:

\[
v \times v = 0 \quad \text{v \cdot v = ||v||^2}
\]
Notice also, as in Figure 9(B), that we also know the area of the triangle \mathcal{T} spanned by nonzero vectors v and w is exactly half the area of the parallelogram. Thus, we have the following:

Areas If \mathcal{P} is the parallelogram spanned by v and w, and \mathcal{T} is the triangle spanned by v and w, then

$\text{Area}(\mathcal{P}) = \|v \times w\|$ \hspace{1cm} (6)

and

$\text{Area}(\mathcal{T}) = \frac{\|v \times w\|}{2}$ \hspace{1cm} (7)

Next, consider the **parallelepiped** \mathbf{P} spanned by three nonzero vectors u, v, w in \mathbb{R}^3 (the three-dimensional prism in Figure 10). The base of \mathbf{P} is the parallelogram spanned by v and w, so the area of the base is $\|v \times w\|$. The height of \mathbf{P} is $h = \|u\| \cdot |\cos \theta|$, where θ is the angle between u and $v \times w$. Therefore,

$\text{Volume of } \mathbf{P} = (\text{area of base})(\text{height}) = \|v \times w\| \cdot \|u\| \cdot |\cos \theta|$

But, $\|v \times w\| \|u\| \cos \theta$ is equal to the dot product of $v \times w$ and u. This proves the formula

$\text{Volume of } \mathbf{P} = |u \cdot (v \times w)|$

The quantity $u \cdot (v \times w)$, called the **vector triple product**, can be expressed as a determinant. Let

$u = (u_1, u_2, u_3), \quad v = (v_1, v_2, v_3), \quad w = (w_1, w_2, w_3)$

Then

$u \cdot (v \times w) = u \cdot \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix}$

$= u_1 \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - u_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + u_3 \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix}$

$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \det \begin{pmatrix} u \\ v \\ w \end{pmatrix}$ \hspace{1cm} (8)

We obtain the following formulas for area and volume.
Theorem 3 Volume via Cross Products and Determinants Let \(\mathbf{u}, \mathbf{v}, \mathbf{w} \) be nonzero vectors in \(\mathbb{R}^3 \). Then the parallelepiped \(\mathbf{P} \) spanned by \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) has volume
\[
V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| = |\det \begin{vmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{vmatrix}|
\]

Example 6 Let \(\mathbf{v} = (1, 4, 5) \) and \(\mathbf{w} = (-2, -1, 2) \). Calculate:
(a) The area \(A \) of the parallelogram spanned by \(\mathbf{v} \) and \(\mathbf{w} \)
(b) The volume \(V \) of the parallelepiped in Figure 11

Solution We compute the cross product and apply Theorem 3:
\[
\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 5 & -1 \\ -2 & 2 & 1 \end{vmatrix} = (13, -12, 7)
\]

(a) The area of the parallelogram spanned by \(\mathbf{v} \) and \(\mathbf{w} \) is
\[
A = \|\mathbf{v} \times \mathbf{w}\| = \sqrt{13^2 + (-12)^2 + 7^2} = \sqrt{362} \approx 19
\]

(b) The vertical leg of the parallelepiped is the vector \(6 \mathbf{k} \), so by Eq. (9),
\[
V = |(6 \mathbf{k}) \cdot (\mathbf{v} \times \mathbf{w})| = |(0, 0, 6) \cdot (13, -12, 7)| = 6(7) = 42
\]

We can compute the area \(A \) of the parallelogram spanned by vectors \(\mathbf{v} = (v_1, v_2) \) and \(\mathbf{w} = (w_1, w_2) \) by regarding \(\mathbf{v} \) and \(\mathbf{w} \) as vectors in \(\mathbb{R}^3 \) with a zero component in the z-direction (Figure 12). Thus, we write \(\mathbf{v} = (v_1, v_2, 0) \) and \(\mathbf{w} = (w_1, w_2, 0) \). The cross product \(\mathbf{v} \times \mathbf{w} \) is a vector pointing in the z-direction:
\[
\mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ v_1 & v_2 & 0 \\ w_1 & w_2 & 0 \end{vmatrix} = \begin{vmatrix} v_2 & 0 \\ w_2 & 0 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & 0 \\ w_1 & 0 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k} = \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k}
\]

By Theorem 3, the parallelogram spanned by \(\mathbf{v} \) and \(\mathbf{w} \) has area \(A = \|\mathbf{v} \times \mathbf{w}\| \), and thus,
\[
A = \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} = |v_1w_2 - v_2w_1|
\]

Example 7 Compute the area \(A \) of the parallelogram in Figure 13.

Solution We have
\[
\begin{vmatrix} v_1 & 4 \\ w_1 & 2 \end{vmatrix} = 1 \cdot 2 - 3 \cdot 4 = -10. \text{ The area is the absolute value } A = | -10 | = 10.
\]

Proofs of Cross-Product Properties

We now derive the properties of the cross product listed in Theorem 1. Let
\[
\mathbf{v} = (v_1, v_2, v_3), \quad \mathbf{w} = (w_1, w_2, w_3)
\]

We prove that \(\mathbf{v} \times \mathbf{w} \) is orthogonal to \(\mathbf{v} \) by showing that \(\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) = 0 \). By Eq. (8),
\[
\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) = \det \begin{vmatrix} \mathbf{v} \\ \mathbf{w} \end{vmatrix} = v_1 \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} - v_2 \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} + v_3 \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix}
\]

Straightforward algebra (left to the reader) shows that the right-hand side of Eq. (11) is equal to zero. This shows that \(\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) = 0 \) and thus \(\mathbf{v} \times \mathbf{w} \) is orthogonal to \(\mathbf{v} \) as claimed. Interchanging the roles of \(\mathbf{v} \) and \(\mathbf{w} \), we conclude also that \(\mathbf{w} \times \mathbf{v} \) is orthogonal.
to \(w \), and since \(v \times w = -w \times v \), it follows that \(v \times w \) is orthogonal to \(w \). This proves part (i) of Theorem 1. To prove (ii), we shall use the following identity:

\[
\|v \times w\|^2 = \|v\|^2\|w\|^2 - (v \cdot w)^2
\]

To verify this identity, we compute \(\|v \times w\|^2 \) as the sum of the squares of the components of \(v \times w \):

\[
\|v \times w\|^2 = \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix}^2 + \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix}^2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix}^2 = (v_2w_3 - v_3w_2)^2 + (v_1w_3 - v_3w_1)^2 + (v_1w_2 - v_2w_1)^2
\]

On the other hand,

\[
\|v\|^2\|w\|^2 - (v \cdot w)^2 = (v_1^2 + v_2^2 + v_3^2)(w_1^2 + w_2^2 + w_3^2) - (v_1w_1 + v_2w_2 + v_3w_3)^2
\]

Again, algebra (left to the reader) shows that Eq. (13) is equal to Eq. (14).

Now let \(\theta \) be the angle between \(v \) and \(w \). By Eq. (12),

\[
\|v \times w\|^2 = \|v\|^2\|w\|^2 - (v \cdot w)^2 = \|v\|^2\|w\|^2 - \|v\|^2\|w\|^2 \cos^2 \theta
\]

\[
= \|v\|^2\|w\|^2(1 - \cos^2 \theta) = \|v\|^2\|w\|^2 \sin^2 \theta
\]

Therefore, \(\|v \times w\| = \|v\|\|w\| \sin \theta \). Note that \(\sin \theta \geq 0 \) since, by convention, \(\theta \) lies between 0 and \(\pi \). This proves (ii).

Part (iii) of Theorem 1 asserts that \(\{v, w, v \times w\} \) is a right-handed system. This is a more subtle property that cannot be verified by algebra alone. We must rely on the following relation between right-handedness and the sign of the determinant, which can be established using the continuity of determinants:

\[
\det \begin{pmatrix} u \\ v \\ w \end{pmatrix} > 0 \quad \text{if and only if} \quad \{u, v, w\} \text{ is a right-handed system}
\]

Furthermore, it can be checked directly from Eq. (2) that the determinant does not change when we replace \(\{u, v, w\} \) by \(\{v, w, u\} \) (or \(\{w, u, v\} \)). Granting this and using Eq. (8), we obtain

\[
\det \begin{pmatrix} v & w \\ v \times w & w \end{pmatrix} = \det \begin{pmatrix} v \times w & v \times w \\ v & w \end{pmatrix} = (v \times w) \cdot (v \times w) = \|v \times w\|^2 > 0
\]

Therefore \(\{v, w, v \times w\} \) is right-handed as claimed (Figure 14).

13.4 SUMMARY

- Determinants of sizes 2 \(\times \) 2 and 3 \(\times \) 3:

\[
\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}
\]

\[
\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}
\]

- The cross product of \(v = (v_1, v_2, v_3) \) and \(w = (w_1, w_2, w_3) \) is the symbolic determinant

\[
v \times w = \begin{vmatrix} i & j & k \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix} = v_2w_3i - v_1w_3j + v_1w_2k
\]
In Exercises 5–8, calculate the 3 × 3 determinant.

5. \[
\begin{vmatrix}
1 & 2 & 1 \\
4 & -3 & 0 \\
1 & 0 & 1
\end{vmatrix}
\]

6. \[
\begin{vmatrix}
1 & 0 & 1 \\
-2 & 0 & 3 \\
1 & 3 & -1
\end{vmatrix}
\]

7. \[
\begin{vmatrix}
1 & 2 & 3 \\
2 & 4 & 6 \\
-3 & -4 & 2
\end{vmatrix}
\]

8. \[
\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{vmatrix}
\]

In Exercises 9–12, calculate \(\mathbf{v} \times \mathbf{w} \).

9. \(\mathbf{v} = (1, 2, 1), \quad \mathbf{w} = (3, 1, 1) \)

10. \(\mathbf{v} = (2, 0, 0), \quad \mathbf{w} = (-1, 0, 1) \)

11. \(\mathbf{v} = \left(\frac{2}{3}, 1, \frac{1}{2} \right), \quad \mathbf{w} = (4, -6, 3) \)

12. \(\mathbf{v} = (1, 1, 0), \quad \mathbf{w} = (0, 1, 1) \)

The cross product \(\mathbf{v} \times \mathbf{w} \) is the unique vector with the following three properties:

(i) \(\mathbf{v} \times \mathbf{w} \) is orthogonal to \(\mathbf{v} \) and \(\mathbf{w} \).

(ii) \(\mathbf{v} \times \mathbf{w} \) has length \(\|\mathbf{v}\| \|\mathbf{w}\| \sin \theta \) (\(\theta \) is the angle between \(\mathbf{v} \) and \(\mathbf{w} \), \(0 \leq \theta \leq \pi \)).

(iii) \(\{\mathbf{v}, \mathbf{w}, \mathbf{v} \times \mathbf{w}\} \) is a right-handed system.

Properties of the cross product:

(i) \(\mathbf{w} \times \mathbf{v} = -\mathbf{v} \times \mathbf{w} \)

(ii) \(\mathbf{v} \times \mathbf{w} = \mathbf{0} \) if and only if \(\mathbf{w} = \lambda \mathbf{v} \) for some scalar or \(\mathbf{v} = \mathbf{0} \)

(iii) \((\lambda \mathbf{v}) \times \mathbf{w} = \lambda (\mathbf{v} \times \mathbf{w}) \)

(iv) \((\mathbf{u} + \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times \mathbf{w} + \mathbf{v} \times \mathbf{w} \)

\[\mathbf{v} \times (\mathbf{u} + \mathbf{w}) = \mathbf{v} \times \mathbf{u} + \mathbf{v} \times \mathbf{w} \]

Cross products of standard basis vectors (Figure 15):

\[\mathbf{i} \times \mathbf{j} = \mathbf{k}, \quad \mathbf{j} \times \mathbf{k} = \mathbf{i}, \quad \mathbf{k} \times \mathbf{i} = \mathbf{j} \]

The parallelogram spanned by \(\mathbf{v} \) and \(\mathbf{w} \) has area \(\|\mathbf{v} \times \mathbf{w}\| \).

The triangle spanned by \(\mathbf{v} \) and \(\mathbf{w} \) has area \(\frac{1}{2} \|\mathbf{v} \times \mathbf{w}\| \).

Cross-product identity: \(\|\mathbf{v} \times \mathbf{w}\|^2 = \|\mathbf{v}\|^2 \|\mathbf{w}\|^2 - (\mathbf{v} \cdot \mathbf{w})^2 \).

The vector triple product is defined by \(\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) \). We have

\[\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \text{det} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{pmatrix} \]

The parallelepiped spanned by \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) has volume \(|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \).
In Exercises 13–16, use the relations in Eq. (5) to calculate the cross product.

13. \((i + j) \times k\)
14. \((j - k) \times (j + k)\)
15. \((i - 3j + 2k) \times (j - k)\)
16. \((2i - 3j + 4k) \times (i + j - 7k)\)

In Exercises 17–22, calculate the cross product assuming that

\[u \times v = (1, 1, 0), \quad u \times w = (0, 3, 1), \quad v \times w = (2, -1, 1) \]

17. \(v \times u\)
18. \(v \times (u + v)\)
19. \(w \times (u + v)\)
20. \((3u + 4w) \times w\)
21. \((u - 2v) \times (u + 2v)\)
22. \((v + w) \times (3u + 2v)\)

23. Let \(v = (a, b, c)\). Calculate \(v \times i, v \times j,\) and \(v \times k\).

24. Find \(v \times w\), where \(v\) and \(w\) are vectors of length 3 in the \(xz\)-plane, oriented as in Figure 16, and \(\theta = \frac{\pi}{6}\).

25. Which of \(u\) and \(-u\) is equal to \(v \times w\)?

26. Which of the following form a right-handed system?
 - (a) \([v, w, u]\)
 - (b) \([w, v, u]\)
 - (c) \([v, u, w]\)
 - (d) \([u, v, w]\)
 - (e) \([w, v, -u]\)
 - (f) \([v, -u, w]\)

27. Let \(v = (3, 0, 0)\) and \(w = (0, 1, -1)\). Determine \(u = v \times w\) using the geometric properties of the cross product rather than the formula.

28. What are the possible angles \(\theta\) between two unit vectors \(e\) and \(f\) if \(\|e \times f\| = \frac{1}{2}\)?

29. Show that if \(v\) and \(w\) lie in the \(yz\)-plane, then \(v \times w\) is a multiple of \(i\).

30. Find the two unit vectors orthogonal to both \(u = (3, 1, 1)\) and \(b = (-1, 2, 1)\).

31. Let \(e\) and \(e'\) be unit vectors in \(\mathbb{R}^3\) such that \(e \perp e'\). Use the geometric properties of the cross product to compute \(e \times (e' \times e)\).

32. Calculate the force \(F\) on an electron (charge \(q = -1.6 \times 10^{-19}\) C) moving with velocity \(10^7\) m/s in the direction \(i\) in a uniform magnetic field \(B\), where \(B = 0.0004i + 0.0001j\) teslas (see Example 5).

33. An electron moving with velocity \(v\) in the plane experiences a force \(F = q(v \times B)\), where \(q\) is the charge on the electron and \(B\) is a uniform magnetic field pointing directly out of the page. Which of the two vectors \(F_1\) or \(F_2\) in Figure 18 represents the force on the electron? Remember that \(q\) is negative.

34. Calculate the scalar triple product \(u \cdot (v \times w)\), where \(u = (1, 1, 0), \ v = (3, -2, 2),\) and \(w = (4, -1, 2)\).

35. Verify identity (12) for vectors \(v = (3, -2, 2)\) and \(w = (4, -1, 2)\).

36. Find the volume of the parallelepiped spanned by \(u, v,\) and \(w\) in Figure 19.

37. Find the area of the parallelogram spanned by \(v\) and \(w\) in Figure 19.

38. Calculate the volume of the parallelepiped spanned by
 \[u = (2, 2, 1), \quad v = (1, 0, 3), \quad w = (0, -4, 0) \]

39. Sketch and compute the volume of the parallelepiped spanned by
 \[u = (1, 0, 0), \quad v = (0, 2, 0), \quad w = (1, 1, 2) \]

40. Sketch the parallelogram spanned by \(u = (1, 1, 1)\) and \(v = (0, 0, 4),\) and compute its area.

41. Calculate the area of the parallelogram spanned by \(u = (1, 0, 3)\) and \(v = (2, 1, 1)\).
42. Find the area of the parallelogram determined by the vectors \((a, 0, 0)\) and \((0, b, c)\).

43. Sketch the triangle with vertices at the origin \(O, P = (3, 3, 0)\), and \(Q = (0, 3, 3)\), and compute its area using cross products.

44. Use the cross product to find the area of the triangle with vertices \(P = (1, 1, 5), Q = (3, 4, 3)\), and \(R = (1, 5, 7)\) (Figure 20).

45. Use cross products to find the area of the triangle in the \(xy\)-plane defined by \((1, 2), (3, 4)\), and \((-2, 2)\).

46. Use cross products to find the area of the quadrilateral in the \(xy\)-plane defined by \((0, 0), (1, -1), (3, 1)\), and \((2, 4)\).

47. Check that the four points \(P(2, 4, 4), Q(3, 1, 6), R(2, 8, 0)\), and \(S(7, 3, 1)\) all lie in a plane. Then use vectors to find the area of the quadrilateral they define.

48. Find three nonzero vectors \(a, b, c\) such that \(a \times b = a \times c \neq 0\) but \(b \neq c\).

In Exercises 49–51, verify the identity using the formula for the cross product.

49. \(v \times w = -w \times v\)

50. \((\lambda v) \times w = \lambda(v \times w)\) (\(\lambda\) a scalar)

51. \((u + v) \times w = u \times w + v \times w\)

52. Use the geometric description in Theorem 1 to prove Theorem 2 (iii): \(v \times w = 0\) if and only if \(w = \lambda v\) for some scalar \(\lambda\) or \(v = 0\).

53. Verify the relations (5).

54. Show that \(i \times j \neq j \times i\)

Conclude that the Associative Law does not hold for cross products.

55. The components of the cross product have a geometric interpretation. Show that the absolute value of the \(k\)-component of \(v \times w\) is equal to the area of the parallelogram spanned by the projections \(v_0\) and \(w_0\) onto the \(xy\)-plane (Figure 21).

56. Formulate and prove analogs of the result in Exercise 55 for the \(i\) and \(j\)-components of \(v \times w\).

57. Show that three points \(P, Q, R\) are collinear (lie on a line) if and only if \(\overrightarrow{PQ} \times \overrightarrow{PR} = 0\).

58. Use the result of Exercise 57 to determine whether the points \(P, Q, R\) are collinear, and if not, find a vector normal to the plane containing them.

(a) \(P = (2, 1, 0), Q = (1, 5, 2), R = (-1, 13, 6)\)
(b) \(P = (2, 1, 0), Q = (-3, 21, 10), R = (5, -2, 9)\)
(c) \(P = (1, 1, 0), Q = (1, -2, -1), R = (3, 2, -4)\)

59. Solve the equation \((1, 1, 1) \times X = (1, -1, 0)\), where \(X = (x, y, z)\). \(\text{Note: There are infinitely many solutions.}\)

60. Explain geometrically why \((1, 1, 1) \times X = (1, 0, 0)\) has no solution, where \(X = (x, y, z)\).

61. Let \(X = (x, y, z)\). Show that \(i \times X = v\) has a solution if and only if \(v\) is contained in the \(yz\)-plane (the \(i\)-component is zero).

62. Suppose that vectors \(u, v, w\) are mutually orthogonal—that is, \(u \perp v, u \perp w, v \perp w\). Prove that \((u \times v) \times w = 0\) and \(u \times (v \times w) = 0\).

In Exercises 63–66, the \textit{torque} about the origin \(O\) due to a force \(F\) acting on an object with position vector \(r\) is the vector quantity \(\tau = r \times F\). If several forces \(F_j\) act at positions \(r_j\), then the net torque (units: \(N\)-m or lb-ft) is the sum \(\tau = \sum_{j} r_j \times F_j\)

\textit{Torque measures how much the force causes the object to rotate. By Newton’s Laws, \(\tau\) is equal to the rate of change of angular momentum.}

63. Calculate the torque \(\tau\) about \(O\) acting at the point \(P\) on the mechanical arm in Figure 22(A), assuming that a 25-newton force acts as indicated. Ignore the weight of the arm itself.

64. Calculate the net torque about \(O\) at \(P\), assuming that a 30-kg mass is attached at \(P\) [Figure 22(B)]. The force \(F_g\) due to gravity on a mass \(m\) has magnitude \(9.8m\) m/s² in the downward direction.
Show that the position vectors of the masses m_1, m_2, and m_3 are

$$r_1 = \frac{1}{2} L_1 (\sin \theta_1 \mathbf{i} + \cos \theta_1 \mathbf{j})$$

$$r_2 = L_1 (\sin \theta_1 \mathbf{i} + \cos \theta_1 \mathbf{j}) + \frac{1}{2} L_2 (\sin \theta_2 \mathbf{i} - \cos \theta_2 \mathbf{j})$$

$$r_3 = L_1 (\sin \theta_1 \mathbf{i} + \cos \theta_1 \mathbf{j}) + L_2 (\sin \theta_2 \mathbf{i} - \cos \theta_2 \mathbf{j})$$

Then show that

$$\tau = -g \left(L_1 \left(\frac{1}{2} m_1 + m_2 + m_3 \right) \sin \theta_1 + L_2 \left(\frac{1}{2} m_2 + m_3 \right) \sin \theta_2 \right) \mathbf{k}$$

where $g = 9.8 \text{ m/s}^2$. To simplify the computation, note that all three gravitational forces act in the $-\mathbf{j}$ direction, so the \mathbf{j}-components of the position vectors r_i do not contribute to the torque.

Further Insights and Challenges

65. Let τ be the net torque about O acting on the robotic arm of Figure 23. Assume that the two segments of the arms have mass m_1 and m_2 (in kilograms) and that a weight of m_3 kg is located at the endpoint P. In calculating the torque, we may assume that the entire mass of each arm segment lies at the midpoint of the arm (its center of mass).

66. Continuing with Exercise 65, suppose that $L_1 = 3 \text{ m}$, $L_2 = 2 \text{ m}$, $m_1 = 15 \text{ kg}$, $m_2 = 20 \text{ kg}$, and $m_3 = 18 \text{ kg}$. If the angles θ_1, θ_2 are equal (say, to θ), what is the maximum allowable value of θ if we assume that the robotic arm can sustain a maximum torque of 1200 N-m?

72. Suppose that \mathbf{u}, \mathbf{v}, \mathbf{w} are nonzero and

$$(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = \mathbf{0}$$

Show that \mathbf{u}, \mathbf{v}, and \mathbf{w} are either mutually parallel or mutually perpendicular. **Hint:** Use Exercise 71.

73. Let \mathbf{a}, \mathbf{b}, \mathbf{c} be nonzero vectors. Assume that \mathbf{b} and \mathbf{c} are not parallel, and set

$$\mathbf{v} = \mathbf{a} \times (\mathbf{b} \times \mathbf{c}), \quad \mathbf{w} = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$$

(a) Prove that:

(i) \mathbf{v} lies in the plane spanned by \mathbf{b} and \mathbf{c}.

(ii) \mathbf{v} is orthogonal to \mathbf{a}.

(b) Prove that \mathbf{w} also satisfies (i) and (ii). Conclude that \mathbf{v} and \mathbf{w} are parallel.

(c) Show algebraically that $\mathbf{v} = \mathbf{w}$ (Figure 24).
74. Use Exercise 73 to prove the identity
\[(a \times b) \times c - a \times (b \times c) = (a \cdot c)(b - c)a\]

75. Show that if \(a, b\) are nonzero vectors such that \(a \perp b\), then there exists a vector \(X\) such that
\[a \times X = b\]

Hint: Show that if \(X\) is orthogonal to \(b\) and is not a multiple of \(a\), then \(a \times X\) is a multiple of \(b\).

76. Show that if \(a, b\) are nonzero vectors such that \(a \perp b\), then the set of all solutions of Eq. (15) is a line with \(a\) as direction vector. **Hint:** Let \(X_0\) be any solution (which exists by Exercise 75), and show that every other solution is of the form \(X_0 + \lambda a\) for some scalar \(\lambda\).

77. Assume that \(v\) and \(w\) lie in the first quadrant in \(\mathbb{R}^2\) as in Figure 25. Use geometry to prove that the area of the parallelogram is equal to \[\text{det}\left(\begin{array}{c} v \\ w \end{array}\right)\].

78. Consider the tetrahedron spanned by vectors \(a, b, c\) as in Figure 26(A). Let \(A, B, C\) be the faces containing the origin \(O\), and let \(D\) be the fourth face opposite \(O\). For each face \(F\), let \(v_F\) be the vector normal to the face, pointing outside the tetrahedron, of magnitude equal to twice the area of \(F\). Prove the relations
\[v_A + v_B + v_C + v_D = 0\]

Hint: Show that \(v_D = (c - b) \times (b - a)\).

79. In the notation of Exercise 78, suppose that \(a, b, c\) are mutually perpendicular as in Figure 26(B). Let \(S_F\) be the area of face \(F\). Prove the following three-dimensional version of the Pythagorean Theorem:
\[S_A^2 + S_B^2 + S_C^2 = S_D^2\]

13.5 Planes in 3-Space

A linear equation \(ax + by = c\) in two variables defines a line in \(\mathbb{R}^2\). In this section, we show that a linear equation \(ax + by + cz = d\) in three variables defines a plane in \(\mathbb{R}^3\).

Consider a plane \(P\) that passes through a point \(P_0 = (x_0, y_0, z_0)\). We can determine \(P\) completely by specifying a nonzero vector \(n = \langle a, b, c \rangle\) that is orthogonal to \(P\). Such a vector is called a **normal vector**. Basing \(n\) at \(P_0\) as in Figure 1, we see that a point \(P = (x, y, z)\) lies on \(P\) precisely when \(\overrightarrow{P_0 P} = n\) is orthogonal to \(n\). Therefore, \(P\) lies on the plane if
\[n \cdot \overrightarrow{P_0 P} = 0\]

In components, \(\overrightarrow{P_0 P} = (x - x_0, y - y_0, z - z_0)\), so Eq. (1) reads
\[(a, b, c) \cdot (x - x_0, y - y_0, z - z_0) = 0\]

This gives us the following equation for the plane:
\[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0\]

This can also be written
\[ax + by + cz = ax_0 + by_0 + cz_0\] \[\text{or} \quad n \cdot \overrightarrow{OP} = n \cdot \overrightarrow{P_0} \]

When we set \(d = ax_0 + by_0 + cz_0\), Eq. (2) becomes \(n \cdot (x, y, z) = d\), or
\[ax + by + cz = d\]
THEOREM 1 Equation of a Plane Plane through \(P_0 = (x_0, y_0, z_0) \) with normal vector \(\mathbf{n} = (a, b, c) \):

Vector form: \(\mathbf{n} \cdot \langle x, y, z \rangle = d \)

Scalar forms: \(a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \)

where \(d = ax_0 + by_0 + cz_0 \).

Note that the equation \(ax + by + cz = d \) of a plane in 3-space is the direct generalization of the equation \(ax + by = c \) of a line in 2-space. In this sense, planes generalize lines.

To show how the plane equation works in a simple case, consider the plane \(\mathcal{P} \) through \(P_0 = (1, 2, 0) \) with normal vector \(\mathbf{n} = (0, 0, 3) \) (Figure 2). Because \(\mathbf{n} \) points in the \(z \)-direction, \(\mathcal{P} \) must be parallel to the \(xy \)-plane. On the other hand, \(P_0 \) lies on the \(xy \)-plane, so \(\mathcal{P} \) must be the \(xy \)-plane itself. This is precisely what Eq. (3) gives us:

\[\mathbf{n} \cdot \langle x, y, z \rangle = \mathbf{n} \cdot \langle 1, 2, 0 \rangle \]
\[(0, 0, 3) \cdot \langle x, y, z \rangle = (0, 0, 3) \cdot \langle 1, 2, 0 \rangle \]
\[3z = 0 \quad \text{or} \quad z = 0 \]

In other words, \(\mathcal{P} \) has equation \(z = 0 \), so \(\mathcal{P} \) is the \(xy \)-plane.

EXAMPLE 1 Find an equation of the plane through \(P_0 = (3, 1, 0) \) with normal vector \(\mathbf{n} = (3, 2, -5) \).

Solution Using Eq. (4), we obtain

\[3(x - 3) + 2(y - 1) - 5z = 0 \]

Alternatively, we can compute

\[d = \mathbf{n} \cdot \overrightarrow{OP_0} = \langle 3, 2, -5 \rangle \cdot \langle 3, 1, 0 \rangle = 11 \]

and write the equation as \(\langle 3, 2, -5 \rangle \cdot \langle x, y, z \rangle = 11 \), or \(3x + 2y - 5z = 11 \).

CONCEPTUAL INSIGHT Keep in mind that the components of a normal vector are “lurking” inside the equation \(ax + by + cz = d \), because \(\mathbf{n} = \langle a, b, c \rangle \). The same is true for lines in \(\mathbb{R}^2 \). The line \(ax + by = c \) in Figure 3 has normal vector \(\mathbf{n} = \langle a, b \rangle \) because the line has slope \(-a/b\) and the vector \(\mathbf{n} \) has slope \(b/a \) (lines are orthogonal if the product of their slopes is \(-1\)).

Note that if \(\mathbf{n} \) is normal to a plane \(\mathcal{P} \), then so is every nonzero scalar multiple \(\lambda \mathbf{n} \).

When we use \(\lambda \mathbf{n} \) instead of \(\mathbf{n} \), the resulting equation for \(\mathcal{P} \) changes by a factor of \(\lambda \). For example, the following two equations define the same plane:

\[x + y + z = 1, \quad 4x + 4y + 4z = 4 \]

The first equation uses the normal \(\langle 1, 1, 1 \rangle \), and the second uses the normal \(\langle 4, 4, 4 \rangle \).

On the other hand, two planes \(\mathcal{P} \) and \(\mathcal{P}' \) are parallel if they have a common normal vector. The following planes are parallel because each is normal to \(\mathbf{n} = \langle 1, 1, 1 \rangle \):

\[x + y + z = 1, \quad x + y + z = 2, \quad 4x + 4y + 4z = 7 \]

In general, a family of parallel planes is obtained by choosing a normal vector \(\mathbf{n} = \langle a, b, c \rangle \) and varying the constant \(d \) in the equation

\[ax + by + cz = d \]

The unique plane in this family through the origin has equation \(ax + by + cz = 0 \).
EXAMPLE 2 Parallel Planes Let \(P \) have equation \(7x - 4y + 2z = -10 \). Find an equation of the plane parallel to \(P \) passing through:

(a) The origin.
(b) \(Q = (2, -1, 3) \).

Solution The planes parallel to \(P \) have an equation of the form (Figure 4)

\[
7x - 4y + 2z = d
\]

(a) For \(d = 0 \), we get the plane through the origin: \(7x - 4y + 2z = 0 \).
(b) The point \(Q = (2, -1, 3) \) satisfies Eq. (6) with

\[
d = 7(2) - 4(-1) + 2(3) = 24
\]

Therefore, the plane parallel to \(P \) through \(Q \) has equation \(7x - 4y + 2z = 24 \).

![Figure 4: Parallel planes with normal vector \(n = \langle 7, -4, 2 \rangle \).]

Points that lie on a line are called **collinear**. If we are given three points \(P, Q, \) and \(R \) that are not collinear, then there is just one plane passing through \(P, Q, \) and \(R \) (Figure 5). The next example shows how to find an equation of this plane.

EXAMPLE 3 The Plane Determined by Three Points Find an equation of the plane \(P \) determined by the points

\[
P = (1, 0, -1), \quad Q = (2, 2, 1), \quad R = (4, 1, 2)
\]

Solution

Step 1. Find a normal vector.

The vectors \(\overrightarrow{PQ} \) and \(\overrightarrow{PR} \) lie in the plane \(P \), so their cross product is normal to \(P \):

\[
\overrightarrow{PQ} = (2, 2, 1) - (1, 0, -1) = (1, 2, 2)
\]
\[
\overrightarrow{PR} = (4, 1, 2) - (1, 0, -1) = (3, 1, 3)
\]

\[
n = \overrightarrow{PQ} \times \overrightarrow{PR} = \begin{vmatrix} i & j & k \\ 1 & 2 & 2 \\ 3 & 1 & 3 \end{vmatrix} = 4i + 3j - 5k = \langle 4, 3, -5 \rangle
\]

By Eq. (5), \(P \) has equation \(4x + 3y - 5z = d \) for some \(d \).
Step 2. Choose a point on the plane and compute d.

Now choose any one of the three points—say, $P = (1, 0, -1)$—and compute

$$d = \mathbf{n} \cdot \mathbf{OP} = (4, 3, -5) \cdot (1, 0, -1) = 9$$

We conclude that P has equation $4x + 3y - 5z = 9$. \[\Box\]

EXAMPLE 4 Intersection of a Plane and a Line

Find the point P where the plane $3x - 9y + 2z = 7$ and the line $r(t) = (1, 2, 1) + t(-2, 0, 1)$ intersect.

Solution The line has parametric equations

$$x = 1 - 2t, \quad y = 2, \quad z = 1 + t$$

Substitute in the equation of the plane and solve for t:

$$3x - 9y + 2z = 3(1 - 2t) - 9(2) + 2(1 + t) = 7$$

Simplification yields $-4t - 13 = 7$ or $t = -5$. Therefore, P has coordinates

$$x = 1 - 2(-5) = 11, \quad y = 2, \quad z = 1 + (-5) = -4$$

The plane and line intersect at the point $P = (11, 2, -4)$. \[\Box\]

The intersection of a plane P with a coordinate plane or a plane parallel to a coordinate plane is called a **trace**. The trace is a line unless P is parallel to the coordinate plane (in which case, the trace is empty or is P itself).

EXAMPLE 5 Traces of the Plane

Graph the plane $-2x + 3y + z = 6$ and then find its traces in the coordinate planes.

Solution To draw the plane, we determine its intersections with the coordinate axes. To find where it intersects the x-axis, we set $y = z = 0$ and obtain

$$-2x = 6 \quad \text{so} \quad x = -3$$

It intersects the y-axis when $x = z = 0$, giving

$$3y = 6 \quad \text{so} \quad y = 2$$

It intersects the z-axis when $x = y = 0$, giving

$$z = 6$$

Thus, the plane appears as in Figure 6.

We obtain the trace in the xy-plane by setting $z = 0$ in the equation of the plane. Therefore, the trace is the line $-2x + 3y = 6$ in the xy-plane (Figure 6).

Similarly, the trace in the xz-plane is obtained by setting $y = 0$, which gives the line $-2x + z = 6$ in the xz-plane. Finally, the trace in the yz-plane is $3y + z = 6$. \[\Box\]

To draw a plane, it works well to find its intersections with the coordinate axes, unless the plane is parallel to one of the axes and therefore does not intersect it, or the plane passes through the origin, and therefore intersects all three axes at the same point. In these cases, the normal vector can be used to see how the plane sits in space.

13.5 SUMMARY

- **Equation of plane through** $P_0 = (x_0, y_0, z_0)$ with normal vector $\mathbf{n} = (a, b, c)$:

 - **Vector form:** $\mathbf{n} \cdot (x, y, z) = d$
 - **Scalar forms:** $a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$
 - $ax + by + cz = d$

 where $d = \mathbf{n} \cdot (x_0, y_0, z_0) = ax_0 + by_0 + cz_0$.
The family of parallel planes with given normal vector \(\mathbf{n} = (a, b, c) \) consists of all planes with equation \(ax + by + cz = d \) for some \(d \).

The plane through three points \(P, Q, R \) that are not collinear:

\[
\mathbf{n} = \vec{PQ} \times \vec{PR}
\]

\[
d = \mathbf{n} \cdot (x_0, y_0, z_0), \text{ where } P = (x_0, y_0, z_0)
\]

The intersection of a plane \(\mathcal{P} \) with a coordinate plane or a plane parallel to a coordinate plane is called a trace. The trace in the \(yz \)-plane is obtained by setting \(x = 0 \) in the equation of the plane (and similarly for the traces in the \(xz \) - and \(xy \)-planes).

13.5 Exercises

Preliminary Questions

1. What is the equation of the plane parallel to \(3x + 4y - z = 5 \) passing through the origin?

2. The vector \(\mathbf{k} \) is normal to which of the following planes?
 (a) \(x = 1 \)
 (b) \(y = 1 \)
 (c) \(z = 1 \)

3. Which of the following planes is not parallel to the plane \(x + y + z = 1 \)?
 (a) \(2x + 2y + 2z = 1 \)
 (b) \(x + y + z = 3 \)
 (c) \(x - y + z = 0 \)

4. To which coordinate plane is the plane \(y = 1 \) parallel?

5. Which of the following planes contains the \(z \)-axis?
 (a) \(z = 1 \)
 (b) \(x + y = 1 \)
 (c) \(x + y = 0 \)

6. Suppose that a plane \(\mathcal{P} \) with normal vector \(\mathbf{n} \) and a line \(\mathcal{L} \) with direction vector \(\mathbf{v} \) both pass through the origin and that \(\mathbf{n} \cdot \mathbf{v} = 0 \). Which of the following statements is correct?
 (a) \(\mathcal{L} \) is contained in \(\mathcal{P} \).
 (b) \(\mathcal{L} \) is orthogonal to \(\mathcal{P} \).

Exercises

In Exercises 1–8, write the equation of the plane with normal vector \(\mathbf{n} \) passing through the given point in the scalar form \(ax + by + cz = d \).

1. \(\mathbf{n} = (1, 3, 2), \ (4, -1, 1) \)
2. \(\mathbf{n} = (-1, 2, 1), \ (3, 1, 9) \)
3. \(\mathbf{n} = (-1, 2, 1), \ (4, 1, 5) \)
4. \(\mathbf{n} = (2, -4, 1), \ (\frac{1}{2}, \frac{3}{2}, 1) \)
5. \(\mathbf{n} = \mathbf{i}, \ (3, 1, -9) \)
6. \(\mathbf{n} = \mathbf{j}, \ (-5, \frac{1}{2}, \frac{1}{2}) \)
7. \(\mathbf{n} = \mathbf{k}, \ (6, 7, 2) \)
8. \(\mathbf{n} = \mathbf{i} - \mathbf{k}, \ (4, 2, -8) \)

9. Write down the equation of any plane through the origin.

10. Write down the equations of any two distinct planes with normal vector \(\mathbf{n} = (3, 2, 1) \) that do not pass through the origin.

11. Which of the following statements are true of a plane that is parallel to the \(yz \)-plane?
 (a) \(\mathbf{n} = (0, 0, 1) \) is a normal vector.
 (b) \(\mathbf{n} = (1, 0, 0) \) is a normal vector.
 (c) The equation has the form \(ay + bz = d \)
 (d) The equation has the form \(x = d \)

12. Find a normal vector \(\mathbf{n} \) and an equation for the planes in Figures 7(A)–(C).

In Exercises 13–16, find a vector normal to the plane with the given equation.

13. \(9x - 4y - 11z = 2 \)
14. \(x - z = 0 \)
15. \(3(x - 4) - 8(y - 1) + 11z = 0 \)
16. \(x = 1 \)

In Exercises 17–20, find an equation of the plane passing through the three points given.

17. \(\mathbf{P} = (2, -1, 4), \ \mathbf{Q} = (1, 1, 1), \ \mathbf{R} = (3, 1, -2) \)
18. \(\mathbf{P} = (5, 1, 1), \ \mathbf{Q} = (1, 1, 2), \ \mathbf{R} = (2, 1, 1) \)
19. \(\mathbf{P} = (1, 0, 0), \ \mathbf{Q} = (0, 1, 1), \ \mathbf{R} = (2, 0, 1) \)
20. \(\mathbf{P} = (2, 0, 0), \ \mathbf{Q} = (0, 4, 0), \ \mathbf{R} = (0, 0, 2) \)

In Exercises 21–28, find the equation of the plane with the given description.

21. Passes through \(O \) and is parallel to \(4x - 9y + z = 3 \)
22. Passes through \((4, 1, 9) \) and is parallel to \(x + y + z = 3 \)
23. Passes through \((4, 1, 9) \) and is parallel to \(x = 3 \)
24. Passes through \(P = (3, 5, -9) \) and is parallel to the \(xz \)-plane
25. Passes through \((-2, -3, 5) \) and has normal vector \(\mathbf{i} + \mathbf{k} \)
26. Contains the lines \(\mathbf{r}_1(t) = (t, 2t, 3t) \) and \(\mathbf{r}_2(t) = (3t, t, 8t) \)
27. Contains the lines \(\mathbf{r}_1(t) = (2, 1, 0) + (t, 2t, 3t) \) and \(\mathbf{r}_2(t) = (2, 1, 0) + (3t, t, 8t) \)
28. Contains \(P = (-1, 0, 1) \) and \(\mathbf{r}(t) = (t + 1, 2t, 3t - 1) \)
29. Are the planes \(\frac{1}{2} x + 2y - z = 5 \) and \(3x + 12y - 6z = 1 \) parallel?
30. Are the planes \(2x - 4y - z = 3 \) and \(-6x + 12y + 3z = 1 \) parallel?

In Exercises 31–35, draw the plane given by the equation.
31. \(x + y + z = 4 \)
32. \(3x + 2y - 6z = 12 \)
33. \(12x - 6y + 4z = 6 \)
34. \(x + 2y = 6 \)
35. \(x + y + z = 0 \)

36. Let \(a, b, c \) be constants. Which two of the following equations define the plane passing through \((a, 0, 0), (0, b, 0), (0, 0, c) \)?
 (a) \(ax + by + cz = 1 \)
 (b) \(bcy + aby + abc = 0 \)
 (c) \(bx + cy + az = 1 \)
 (d) \(x + y + z = 1 \)

37. Find an equation of the plane \(P \) in Figure 8.

![Figure 8](image)

38. Verify that the plane \(x - y + 5z = 10 \) and the line \(\mathbf{r}(t) = (1, 0, 1) + t(-2, 1, 1) \) intersect at \(P = (-3, 2, 3) \).

In Exercises 39–42, find the intersection of the line and the plane.
39. \(x + y + z = 14 \), \(\mathbf{r}(t) = (1, 1, 0) + t(0, 2, 4) \)
40. \(2x + y = 3 \), \(\mathbf{r}(t) = (2, -1, -1) + t(1, 2, -4) \)
41. \(z = 12 \), \(\mathbf{r}(t) = t(-6, 9, 36) \)
42. \(x - z = 6 \), \(\mathbf{r}(t) = (1, 0, -1) + t(4, 9, 2) \)

In Exercises 43–48, find the trace of the plane in the given coordinate plane.
43. \(3x - 9y + 4z = 5 \), \(\mathbf{z} \)
44. \(3x - 9y + 4z = 5 \), \(\mathbf{x} \)
45. \(3x + 4z = -2 \), \(\mathbf{y} \)
46. \(3x + 4z = -2 \), \(\mathbf{x} \)
47. \(-x + y = 4 \), \(\mathbf{x} \)
48. \(-x + y = 4 \), \(\mathbf{y} \)

49. Does the plane \(x = 5 \) have a trace in the \(\mathbf{z} \)-plane? Explain.

50. Give equations for two distinct planes whose trace in the \(\mathbf{xy} \)-plane has equation \(4x + 3y = 8 \).
51. Give equations for two distinct planes whose trace in the \(\mathbf{yz} \)-plane has equation \(y = 4z \).

52. Find parametric equations for the line through \(P_0 = (3, -1, 1) \) perpendicular to the plane \(3x + 5y - 7z = 29 \).
53. Find all planes in \(\mathbb{R}^3 \) whose intersection with the \(\mathbf{z} \)-plane is the line with equation \(3x + 2z = 5 \).

54. Find all planes in \(\mathbb{R}^3 \) whose intersection with the \(\mathbf{xy} \)-plane is the line \(\mathbf{r}(t) = (2, 1, 0) \).

In Exercises 55–60, compute the angle between the two planes, defined as the angle \(\theta \) (between 0 and \(\pi \)) between their normal vectors (Figure 9).
55. Planes with normals \(\mathbf{n}_1 = (1, 0, 1), \mathbf{n}_2 = (-1, 1, 1) \)
56. Planes with normals \(\mathbf{n}_1 = (1, 2, 1), \mathbf{n}_2 = (4, 1, 3) \)
57. \(2x + 3y + 2z = 2 \) and \(4x - 2y + 2z = 4 \)
58. \(x - 3y + z = 3 \) and \(2x - 3z = 4 \)
59. \(3(x - 1) - 5y + 2(z - 2) = 0 \) and the plane with normal \(\mathbf{n} = (1, 0, 1) \)
60. The plane through \((1, 0, 0), (0, 1, 0), \) and \((0, 0, 1)\) and the \(\mathbf{yz} \)-plane

![Figure 9](image)

By definition, the angle between two planes is the angle between their normal vectors.

61. Find an equation of a plane making an angle of \(\frac{\pi}{3} \) with the plane \(3x + y - 4z = 2 \).
62. Let \(P_1 \) and \(P_2 \) be planes with normal vectors \(\mathbf{n}_1 \) and \(\mathbf{n}_2 \). Assume that the planes are not parallel, and let \(\mathcal{L} \) be their intersection (a line). Show that \(\mathbf{n}_1 \times \mathbf{n}_2 \) is a direction vector for \(\mathcal{L} \).
63. Find a plane that is perpendicular to the two planes \(x + y = 3 \) and \(x + 2y - z = 4 \).
64. Let \(\mathcal{L} \) be the intersection of the planes \(x + y + z = 1 \) and \(x + 2y + 3z = 1 \). Use Exercise 62 to find a direction vector for \(\mathcal{L} \). Then find a point \(P \) on \(\mathcal{L} \) by inspection, and write down the parametric equations for \(\mathcal{L} \).
65. Let \(\mathcal{L} \) denote the intersection of the planes \(x - y - z = 1 \) and \(2x + 3y + z = 2 \). Find parametric equations for the line \(\mathcal{L} \). Hint: To find a point on \(\mathcal{L} \), substitute an arbitrary value for \(z \) (say, \(z = 2 \)) and then solve the resulting pair of equations for \(x \) and \(y \).
66. Find parametric equations for the intersection of the planes \(2x + y - z = 0 \) and \(x + y = 1 \).
67. Two vectors \(\mathbf{v} \) and \(\mathbf{w} \), each of length 12, lie in the plane \(x + 2y - z = 0 \). The angle between \(\mathbf{v} \) and \(\mathbf{w} \) is \(\pi/6 \). This information determines \(\mathbf{v} \times \mathbf{w} \) up to a sign \(\pm 1 \). What are the two possible values of \(\mathbf{v} \times \mathbf{w} \)?
68. The plane \(\frac{x}{2} + \frac{y}{4} + \frac{z}{3} = 1 \) intersects the \(x \)-, \(y \)-, and \(z \)-axes in points \(P \), \(Q \), and \(R \). Find the area of the triangle \(\triangle PQR \).
69. In this exercise, we show that the orthogonal distance \(D \) from the plane \(P \) with equation \(ax + by + cz = d \) to the origin \(O \) is equal to (Figure 10)

\[
D = \frac{|d|}{\sqrt{a^2 + b^2 + c^2}}
\]

Let \(n = (a, b, c) \), and let \(P \) be the point where the line through \(n \) intercepts \(P \). By definition, the orthogonal distance from \(P \) to \(O \) is the distance from \(P \) to \(O \).

(a) Show that \(P \) is the terminal point of \(v = \left(\frac{d}{n \cdot n} \right) n \).

(b) Show that the distance from \(P \) to \(O \) is \(D \).

70. Use Exercise 69 to compute the orthogonal distance from the plane \(x + 2y + 3z = 5 \) to the origin.

72. By definition, the distance from \(Q = (x_1, y_1, z_1) \) to the plane \(P \) is the distance to the point \(P \) on \(P \) closest to \(Q \). Prove

\[
\text{Distance from } Q \text{ to } P = \frac{|ax_1 + by_1 + cz_1 - d|}{|n|}
\]

73. Use Eq. (7) to find the point \(P \) nearest to \(Q = (2, 1, 2) \) on the plane \(x + y + z = 1 \).

74. Find the point \(P \) nearest to \(Q = (-1, 3, -1) \) on the plane \(x - 4z = 2 \).

75. Use Eq. (8) to find the distance from \(Q = (1, 1, 1) \) to the plane \(2x + y + 5z = 2 \).

76. Find the distance from \(Q = (1, 2, 2) \) to the plane \(n \cdot (x, y, z) = 3 \), where \(n = \left(\frac{3}{5}, \frac{4}{5}, 0 \right) \).

77. What is the distance from \(Q = (a, b, c) \) to the plane \(x = 0 ? \) Visualize your answer geometrically and explain without computation. Then verify that Eq. (8) yields the same answer.

78. The equation of a plane \(n \cdot (x, y, z) = d \) is said to be in normal form if \(n \) is a unit vector. Show that in this case, \(|d| \) is the distance from the plane to the origin. Write the equation of the plane \(4x - 2y + 4z = 24 \) in normal form.

13.6 A Survey of Quadric Surfaces

Quadric surfaces are the surface analogs of conic sections. Recall that a conic section is a curve in \(\mathbb{R}^2 \) defined by a quadratic equation in two variables. A quadric surface is defined by a quadratic equation in three variables:

\[
Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fzx + ax + by + cz + d = 0
\]

Like conic sections, quadric surfaces are classified into a small number of types. When the coordinate axes are chosen to coincide with the axes of the quadric, the equation of the quadric has a simple form. The quadric is then said to be in standard position. In standard position, the coefficients \(D, E, F \) are all zero and the linear part \((ax + by + cz + d) \) also reduces to just the constant term \(d \). In this short survey of quadric surfaces, we restrict our attention to quadrics in standard position. The idea here is not to memorize the formulas.
for the various quadric surfaces, but rather to be able to recognize and graph them using cross sections obtained by slicing the surface with certain planes, as we describe below.

The surface analogs of ellipses are the egg-shaped ellipsoids (Figure 1). In standard form, an ellipsoid has the equation

\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1
\]

For \(a = b = c\), this equation is equivalent to \(x^2 + y^2 + z^2 = a^2\) and the ellipsoid is a sphere of radius \(a\).

Surfaces are often represented graphically by a mesh of curves called traces, obtained by intersecting the surface with planes parallel to one of the coordinate planes (Figure 2), yielding certain cross sections of the surface. Algebraically, this corresponds to freezing one of the three variables (holding it constant). For example, the intersection of the horizontal plane \(z = z_0\) with the surface is an ellipse.

EXAMPLE 1 The Traces of an Ellipsoid

Describe the traces of the ellipsoid

\[
\left(\frac{x}{5}\right)^2 + \left(\frac{y}{7}\right)^2 + \left(\frac{z}{9}\right)^2 = 1
\]

Solution First we observe that the traces in the coordinate planes are ellipses (Figure 3A):

- \(xy\)-trace (set \(z = 0\), blue in figure): \(\left(\frac{x}{5}\right)^2 + \left(\frac{y}{7}\right)^2 = 1\)
- \(yz\)-trace (set \(x = 0\), green in figure): \(\left(\frac{y}{7}\right)^2 + \left(\frac{z}{9}\right)^2 = 1\)
- \(xz\)-trace (set \(y = 0\), red in figure): \(\left(\frac{x}{5}\right)^2 + \left(\frac{z}{9}\right)^2 = 1\)

In fact, all the traces of an ellipsoid are ellipses (or just single points). For example, the horizontal trace defined by setting \(z = z_0\) is the ellipse [Figure 3(B)]

\[
\left(\frac{x}{5}\right)^2 + \left(\frac{y}{7}\right)^2 + \left(\frac{z_0}{9}\right)^2 = 1
\]

The trace at height \(z_0 = 9\) is the single point \((0, 0, 9)\) because \(x^2/25 + y^2/49 = 0\) has only one solution: \(x = 0, y = 0\). Similarly, for \(z_0 = -9\), the trace is the point \((0, 0, -9)\). If \(|z_0| > 9\), then \(1 - z_0^2/81 < 0\) and the plane lies above or below the ellipsoid. The trace has no points in this case. The traces in the vertical planes \(z = z_0\) have a similar description [Figure 3(C)].
The analogs of the hyperbolas are the hyperboloids, which come in two types, depending on whether the surface has one or two components. We refer to these types as hyperboloids of one or two sheets (Figure 4). Their equations in standard position are

\[
\begin{align*}
\text{Hyperboloids} \quad & \text{One Sheet:} \quad \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{c}{z}\right)^2 + 1 \\
& \text{Two Sheets:} \quad \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2 - 1
\end{align*}
\]

Notice that a hyperboloid of two sheets does not contain any points whose \(z\)-coordinate satisfies \(-c < z < c\) because the right-hand side \(\left(\frac{z}{c}\right)^2 - 1\) is then negative, but the left-hand side of the equation is greater than or equal to zero.

\[\text{FIGURE 4} \quad \text{Hyperboloids of one and two sheets.}\]

Example 2 The Traces of a Hyperboloid of One Sheet

Determine the traces of the hyperboloid \(\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = \left(\frac{z}{4}\right)^2 + 1\).

Solution The horizontal traces are ellipses and the vertical traces (parallel to either the \(yz\)-plane or the \(xz\)-plane) are hyperbolas or pairs of crossed lines (Figure 5):

- Trace \(z = z_0\) (ellipse, blue in figure): \(\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = \left(\frac{z_0}{4}\right)^2 + 1\)
- Trace \(x = x_0\) (hyperbola, green in figure): \(\left(\frac{y}{3}\right)^2 - \left(\frac{z}{4}\right)^2 = 1 - \left(\frac{x_0}{2}\right)^2\)
- Trace \(y = y_0\) (hyperbola, red in figure): \(\left(\frac{x}{2}\right)^2 - \left(\frac{z}{4}\right)^2 = 1 - \left(\frac{y_0}{3}\right)^2\)

\[\text{FIGURE 5} \quad \text{The hyperboloid} \left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = \left(\frac{z}{4}\right)^2 + 1.\]
EXAMPLE 3 Hyperboloid of Two Sheets Symmetric About the y-axis

Show that

$$
\left(\frac{x}{a}\right)^2 + \left(\frac{z}{c}\right)^2 = \left(\frac{y}{b}\right)^2 - 1
$$

has no points for $-b < y < b$.

Solution This equation does not have the same form as Eq. (3) because the variables y and z have been interchanged. This hyperboloid is symmetric about the y-axis rather than the z-axis (Figure 6). The left-hand side of the equation is always ≥ 0. Thus, there are no solutions with $|y| < b$ because the right-hand side is $(\frac{y}{b})^2 - 1 < 0$. Therefore, the hyperboloid has two sheets, corresponding to $y \geq b$ and $y \leq -b$.

The following equation defines an elliptic cone (Figure 7):

$$
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2
$$

An elliptic cone may be thought of as a limiting case of a hyperboloid of one sheet in which we “pinch the waist” down to a point. Elliptic cones can be difficult to graph. Notice what happens when we intersect the elliptic cone with the coordinate planes. When $z = 0$, we get $(\frac{x}{a})^2 + (\frac{y}{b})^2 = 0$, which forces $x = y = 0$. Thus, the only intersection with the xy-plane is the origin. When $y = 0$, we get $(\frac{x}{a})^2 = (\frac{z}{c})^2$, which is the pair of diagonal lines in the xz-plane given by $z = \pm (\frac{c}{a}) x$. When $x = 0$, we have $(\frac{y}{b})^2 = (\frac{z}{c})^2$, which is the pair of diagonal lines in the yz-plane given by $z = \pm (\frac{c}{b}) y$. But given these diagonal lines, how could we see they are generating an elliptic cone? The trick is to slice the surface with planes parallel to the xy-plane. For instance, if we set $z = 1$, then the trace in the plane $z = 1$ is given by $(\frac{x}{a})^2 + (\frac{y}{b})^2 = (\frac{1}{c})^2$. This is the equation of an ellipse. If we slice with the plane $z = 2$, we obtain a larger ellipse. We obtain similar ellipses when we slice with the planes $z = -1$ and $z = -2$. Hence, we can recognize that the resulting surface is the elliptic cone appearing in Figure 7.

The third main family of quadric surfaces are the paraboloids. There are two types—elliptic and hyperbolic. In standard position, their equations are

Elliptic

$$
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2
$$

Hyperbolic

$$
\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2
$$

Let’s compare their traces (Figure 8):

(A) Elliptic paraboloid

$$
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2
$$

(B) Hyperbolic paraboloid

$$
\left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2
$$
An elliptic cone opening on the z-axis.

![Figure 9](image9)

Notice, for example, that for the hyperbolic paraboloid, the vertical traces $x = x_0$ are downward parabolas (green in the figure)

$$z = -\left(\frac{y}{b}\right)^2 + \left(\frac{x_0}{a}\right)^2$$

Trace $x = x_0$ of hyperbolic paraboloid

whereas the vertical traces $y = y_0$ are upward parabolas (red in the figure)

$$z = \left(\frac{x}{a}\right)^2 - \left(\frac{y_0}{b}\right)^2$$

Trace $y = y_0$ of hyperbolic paraboloid

It is somewhat surprising to realize that if we slice the hyperbolic paraboloid with the plane $z = 0$, we obtain $0 = \left(\frac{y}{b}\right)^2 - \left(\frac{x}{a}\right)^2$, which yields the pair of diagonal lines given by $y = \left(\frac{b}{a}\right)x$ as the trace in the xy-plane. It is not obvious that this surface would contain these two diagonal lines, but in fact it does.

EXAMPLE 4 Alternative Form of a Hyperbolic Paraboloid

Show that $z = 4xy$ is a hyperbolic paraboloid by writing the equation in terms of the variables $u = x + y$ and $v = x - y$.

Solution Note that $u + v = 2x$ and $u - v = 2y$. Therefore,

$$4xy = (u + v)(u - v) = u^2 - v^2$$

and thus the equation takes the form $z = u^2 - v^2$ in the coordinates $[u, v, z]$. The coordinates $[u, v, z]$ are obtained by rotating the coordinates $[x, y, z]$ by 45° about the z-axis (Figure 9).

EXAMPLE 5 Without referring back to the formulas, use traces to determine and graph the quadric surface given by $x^2 + 2z^2 - y^2 = 0$.

Solution We first slice with the coordinate planes. When $x = 0$, we obtain $2z^2 - y^2 = 0$, and therefore the trace in the yz-plane is the pair of diagonal lines $z = \pm \frac{y}{\sqrt{2}}$. When $y = 0$, we have $x^2 + 2z^2 = 0$, which has the solution $x = z = 0$. Hence, the xz-plane only intersects the surface in the single point that is the origin. When $z = 0$, we obtain $x^2 - y^2 = 0$, which generates two diagonal lines in the xy-plane given by $y = \pm x$. However, it is still difficult to piece together the resultant surface from these traces. So, we will slice with planes parallel to the xz-plane. For instance, if we set $y = 1$, we obtain $x^2 + 2z^2 = 1$, which is an ellipse. If we set $y = 2$, we obtain $x^2 + 2z^2 = 4$, which is a larger ellipse. The same pair of ellipses are obtained when we slice with the planes $y = -1$ and $y = -2$, respectively. Hence, we can now see that the surface is an elliptic cone opening along the y-axis, as in Figure 10.

Further examples of quadric surfaces are the **quadratic cylinders**. We use the term **cylinder** in the following sense: Given a curve C in the xy-plane, the cylinder with base C is the surface consisting of all vertical lines passing through C (Figure 11). Equations of cylinders involve just the two variables x and y. The equation $x^2 + y^2 = r^2$ defines a circular cylinder of radius r with the z-axis as the central axis. Figure 12 shows a circular cylinder and three other types of quadratic cylinders.

The ellipsoids, hyperboloids, paraboloids, and quadratic cylinders are called **nondegenerate** quadric surfaces. There are also a certain number of “degenerate” quadric surfaces. For example, $x^2 + y^2 + z^2 = 0$ is a quadric that reduces to a single point $(0, 0, 0)$, and $(x + y + z)^2 = 1$ reduces to the union of the two planes $x + y + z = \pm 1$.

<table>
<thead>
<tr>
<th>Elliptic paraboloid</th>
<th>Hyperbolic paraboloid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal traces</td>
<td>ellipses</td>
</tr>
<tr>
<td>Vertical traces</td>
<td>upward parabolas</td>
</tr>
</tbody>
</table>
A quadric surface is a surface defined by a quadratic equation in three variables in which the coefficients $A–F$ are not all zero:

$$Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fzx + ax + by + cz + d = 0$$

- Quadric surfaces in standard position:

 - **Ellipsoid**
 \[
 \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1
 \]

 - **Hyperboloid (one sheet)**
 \[
 \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 - \left(\frac{z}{c}\right)^2 = 1
 \]

 - **Hyperboloid (two sheets)**
 \[
 \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = \left(\frac{z}{c}\right)^2 - 1
 \]

 - **Paraboloid (elliptic)**
 \[
 z = \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2
 \]

 - **Paraboloid (hyperbolic)**
 \[
 z = \left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2
 \]

 - **Cone (elliptic)**
 \[
 z = \left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 - \left(\frac{z}{c}\right)^2
 \]
13.6 EXERCISES

Preliminary Questions

1. True or false? All traces of an ellipsoid are ellipses.
2. True or false? All traces of a hyperboloid are hyperbolas.
3. Which quadric surfaces have both hyperbolas and parabolas as traces?
4. Is there any quadric surface whose traces are all parabolas?
5. A surface is called bounded if there exists $M > 0$ such that every point on the surface lies at a distance of at most M from the origin. Which of the quadric surfaces are bounded?
6. What is the definition of a parabolic cylinder?

Exercises

In Exercises 1–6, state whether the given equation defines an ellipsoid or hyperboloid, and if a hyperboloid, whether it is of one or two sheets.

1. $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 + \left(\frac{z}{5}\right)^2 = 1$
2. $\left(\frac{x}{5}\right)^2 + \left(\frac{y}{7}\right)^2 - \left(\frac{z}{5}\right)^2 = 1$
3. $x^2 + 3y^2 + 9z^2 = 1$
4. $-\left(\frac{x}{4}\right)^2 + \left(\frac{y}{7}\right)^2 + \left(\frac{z}{5}\right)^2 = 1$
5. $x^2 - 3y^2 + 9z^2 = 1$
6. $x^2 - 3y^2 - 9z^2 = 1$

In Exercises 7–12, state whether the given equation defines an elliptic paraboloid, a hyperbolic paraboloid, or an elliptic cone.

7. $z = \left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2$
8. $z^2 = \left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2$
9. $z = \left(\frac{x}{5}\right)^2 - \left(\frac{y}{12}\right)^2$
10. $4z = 9x^2 + 5y^2$
11. $3x^2 - 7y^2 = z$
12. $3x^2 + 7y^2 = 14z^2$

In Exercises 13–20, state the type of the quadric surface and describe the trace obtained by intersecting with the given plane.

13. $x^2 + \left(\frac{y}{4}\right)^2 + z^2 = 1$, $y = 0$
14. $x^2 + \left(\frac{y}{4}\right)^2 + z^2 = 1$, $y = 5$
15. $x^2 + \left(\frac{y}{4}\right)^2 + z^2 = 1$, $z = \frac{1}{4}$
16. $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{5}\right)^2 - 5z^2 = 1$, $x = 0$
17. $\left(\frac{x}{3}\right)^2 + \left(\frac{y}{5}\right)^2 - 5z^2 = 1$, $y = 1$
18. $4x^2 + \left(\frac{y}{3}\right)^2 - 2z^2 = -1$, $z = 1$
19. $y = 3x^2$, $z = 27$
20. $y = 3x^2$, $y = 27$

21. Match each of the ellipsoids in Figure 13 with the correct equation:
 (a) $x^2 + 4y^2 + 4z^2 = 16$
 (b) $4x^2 + y^2 + 4z^2 = 16$
 (c) $4x^2 + 4y^2 + z^2 = 16$

22. Describe the surface that is obtained when, in the equation $\pm 8x^2 + 3y^2 + z^2 = 1$, we choose (a) all plus signs, (b) one minus sign, and (c) two minus signs.
23. What is the equation of the surface obtained when the elliptic paraboloid $z = \left(\frac{x}{2}\right)^2 + \left(\frac{y}{4}\right)^2$ is rotated about the x-axis by 90°? Refer to Figure 14.
24. Describe the intersection of the horizontal plane \(z = h \) and the hyperboloid \(-x^2 - 4y^2 + 4z^2 = 1\). For which values of \(h \) is the intersection empty?

In Exercises 25–38, sketch the given surface.

25. \(x^2 + y^2 - z^2 = 1 \)
26. \(\left(\frac{x}{4}\right)^2 + \left(\frac{y}{8}\right)^2 + \left(\frac{z}{12}\right)^2 = 1 \)
27. \(z = \left(\frac{x}{4}\right)^2 + \left(\frac{y}{8}\right)^2 \)\)
28. \(z = \left(\frac{1}{4}\right)^2 - \left(\frac{y}{8}\right)^2 \)
29. \(z^2 = \left(\frac{x}{4}\right)^2 + \left(\frac{y}{8}\right)^2 \)
30. \(z = -x^2 \)
31. \(x^2 - y^2 + 9z^2 = 9 \)
32. \(y^2 + z^2 = 1 \)
33. \(x = \sin y \)
34. \(x = 2y^2 - z^2 \)
35. \(x = 1 + y^2 + z^2 \)
36. \(x^2 - 4y^2 = z \)
37. \(x^2 + 9y^2 + 4z^2 = 36 \)
38. \(y^2 - 4x^2 - z^2 = 4 \)
39. Find the equation of the ellipsoid passing through the points marked in Figure 15(A).
40. Find the equation of the elliptic cylinder passing through the points marked in Figure 15(B).
41. Find the equation of the hyperboloid shown in Figure 16(A).
42. Find the equation of the quadric surface shown in Figure 16(B).

Further Insights and Challenges

43. Determine the vertical traces of elliptic and parabolic cylinders in standard form.
44. What is the equation of a hyperboloid of one or two sheets in standard form if every horizontal trace is a circle?
45. Let \(C \) be an ellipse in a horizontal plane lying above the \(xy \)-plane. Which type of quadric surface is made up of all lines passing through the origin and a point on \(C \)?
46. The eccentricity of a conic section is defined in Section 12.5. Show that the horizontal traces of the ellipsoid

\[
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1
\]

are ellipses of the same eccentricity (apart from the traces at height \(h = \pm c \), which reduce to a single point). Find the eccentricity.

47. Let \(S \) be the hyperboloid \(x^2 + y^2 = z^2 + 1 \) and let \(P = (a, \beta, 0) \) be a point on \(S \) in the \((x, y) \)-plane. Show that there are precisely two lines through \(P \) entirely contained in \(S \) (Figure 17). Hint: Consider the line \(\mathbf{r}(t) = (\alpha + at, \beta + bt, t) \) through \(P \). Show that \(\mathbf{r}(t) \) is contained in \(S \) if \((a, b) \) is one of the two points on the unit circle obtained by rotating \((a, \beta)\) through \(\pm \frac{\pi}{2} \). This proves that a hyperboloid of one sheet is a **doubly ruled surface**, which means that it can be swept out by moving a line in space in two different ways.
In Exercises 48 and 49, let \(C \) be a curve in \(\mathbb{R}^3 \) not passing through the origin. The cone on \(C \) is the surface consisting of all lines passing through the origin and a point on \(C \) [Figure 18(A)].

48. Show that the elliptic cone \(\left(\frac{z}{c} \right)^2 = \left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 \) is, in fact, a cone on the ellipse \(C \) consisting of all points \((x, y, c)\) such that \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \).

49. Let \(a \) and \(c \) be nonzero constants and let \(C \) be the parabola at height \(c \) consisting of all points \((x, ax^2, c)\) [Figure 18(B)]. Let \(S \) be the cone consisting of all lines passing through the origin and a point on \(C \). This exercise shows that \(S \) is also an elliptic cone.

(a) Show that \(S \) has equation \(yz = ax^2 \).

(b) Show that under the change of variables \(y = u + v \) and \(z = u - v \), this equation becomes \(ax^2 = u^2 - v^2 \) or \(u^2 = ax^2 + v^2 \) (the equation of an elliptic cone in the variables \(x, v, u \)).

FIGURE 18

The magnetic field generated by a current flowing in a long, straight wire is conveniently expressed in cylindrical coordinates.

13.7 Cylindrical and Spherical Coordinates

This section introduces two generalizations of polar coordinates to \(\mathbb{R}^3 \): cylindrical and spherical coordinates. These coordinate systems are commonly used in problems having symmetry about an axis or rotational symmetry. For example, the magnetic field generated by a current flowing in a long, straight wire is conveniently expressed in cylindrical coordinates (Figure 1). We will also see the benefits of cylindrical and spherical coordinates when we study change of variables for multiple integrals.

Cylindrical Coordinates

In cylindrical coordinates, we replace the \(x \)- and \(y \)-coordinates of a point \(P = (x, y, z) \) by polar coordinates. Thus, the **cylindrical coordinates** of \(P \) are \((r, \theta, z)\), where \((r, \theta)\) are polar coordinates of the projection \(Q = (x, y, 0) \) of \(P \) onto the \(xy \)-plane (Figure 2). Note that the points at fixed distance \(r \) from the \(z \)-axis make up a cylinder; hence the name cylindrical coordinates.

We convert between rectangular and cylindrical coordinates using the rectangular-polar formulas of Section 12.3. In cylindrical coordinates, we usually assume \(r \geq 0 \).

<table>
<thead>
<tr>
<th>Cylindrical to rectangular</th>
<th>Rectangular to cylindrical</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = r \cos \theta)</td>
<td>(r = \sqrt{x^2 + y^2})</td>
</tr>
<tr>
<td>(y = r \sin \theta)</td>
<td>(\tan \theta = \frac{y}{x})</td>
</tr>
<tr>
<td>(z = z)</td>
<td>(z = z)</td>
</tr>
</tbody>
</table>

EXAMPLE 1 Converting from Cylindrical to Rectangular Coordinates

Find the rectangular coordinates of the point \(P \) with cylindrical coordinates \((r, \theta, z) = (2, \frac{3\pi}{4}, 5)\).

Solution Converting to rectangular coordinates is straightforward (Figure 3):

\[
x = r \cos \theta = 2 \cos \frac{3\pi}{4} = 2 \left(-\frac{\sqrt{2}}{2} \right) = -\sqrt{2}
\]
\[
y = r \sin \theta = 2 \sin \frac{3\pi}{4} = 2 \left(\frac{\sqrt{2}}{2} \right) = \sqrt{2}
\]

The \(z \)-coordinate is unchanged, so \((x, y, z) = (-\sqrt{2}, \sqrt{2}, 5)\).
Level Surfaces in Cylindrical Coordinates:

- \(r = R \) Cylindrical of radius \(R \) with the \(z \)-axis as axis of symmetry
- \(\theta = \theta_0 \) Half-plane through the \(z \)-axis making an angle \(\theta_0 \) with the \(xz \)-plane
- \(z = c \) Horizontal plane at height \(c \)

Example 2 Converting from Rectangular to Cylindrical Coordinates

Find cylindrical coordinates for the point with rectangular coordinates \((x, y, z) = (-3\sqrt{3}, -3, 5)\).

Solution We have \(r = \sqrt{x^2 + y^2} = \sqrt{(-3\sqrt{3})^2 + (-3)^2} = 6 \). The angle \(\theta \) satisfies

\[
\tan \theta = \frac{y}{x} = \frac{-3}{-3\sqrt{3}} = \frac{1}{\sqrt{3}} \implies \theta = \frac{\pi}{6} \text{ or } \frac{7\pi}{6}
\]

The correct choice is \(\theta = \frac{7\pi}{6} \) because the projection \(Q = (-3\sqrt{3}, -3, 0) \) lies in the third quadrant (Figure 4). The cylindrical coordinates are \((r, \theta, z) = (6, \frac{7\pi}{6}, 5)\).

Example 3 Equations in Cylindrical Coordinates

Find an equation of the form \(z = f(r, \theta) \) for the surfaces:

(a) \(x^2 + y^2 + z^2 = 9 \)
(b) \(x + y + z = 1 \)

Solution We use the formulas

\[
x^2 + y^2 = r^2, \quad x = r \cos \theta, \quad y = r \sin \theta
\]

(a) The equation \(x^2 + y^2 + z^2 = 9 \) becomes \(r^2 + z^2 = 9 \), or \(z = \pm\sqrt{9 - r^2} \). This is a sphere of radius 3.
(b) The plane \(x + y + z = 1 \) becomes

\[
z = 1 - x - y = 1 - r \cos \theta - r \sin \theta \quad \text{or} \quad z = 1 - r(\cos \theta + \sin \theta)
\]

Example 4 Graphing Equations in Cylindrical Coordinates

Graph the surface corresponding to the equation in cylindrical coordinates given by \(z = r^2 \).

Solution We could convert the equation to rectangular coordinates and then see that the equation was a quadric surface and use the techniques developed for them to graph it. However, graphing it without converting will be easier. We first graph its intersection with the \(yz \)-plane. Note that for a point in the \(yz \)-plane, \(|y| \) is the distance back to the \(z \)-axis. However, \(r \) is always the distance back to the \(z \)-axis. So in the \(yz \)-plane, \(y \) and \(r \) behave similarly. In this example, we can therefore replace \(z = r^2 \) with \(z = y^2 \) in the \(yz \)-plane. Once we have graphed this parabola, since there is no constraint on \(\theta \), we rotate the parabola around the \(z \)-axis to obtain the circular paraboloid shown in Figure 6.
Spherical Coordinates

Spherical coordinates make use of the fact that a point \(P \) on a sphere of radius \(\rho \) is determined by two angular coordinates \(\theta \) and \(\phi \) (Figure 7):

- \(\theta \) is the polar angle of the projection \(Q \) of \(P \) onto the \(xy \)-plane.
- \(\phi \) is the angle of declination, which measures how much the ray through \(P \) declines from the vertical.

Thus, \(P \) is determined by the triple \((\rho, \theta, \phi)\), which are called spherical coordinates.

![FIGURE 7 Spherical coordinates \((\rho, \theta, \phi)\).](image)

\[
\begin{align*}
\rho & = \text{distance from origin} \\
\theta & = \text{polar angle in the } xy\text{-plane} \\
\phi & = \text{angle of declination from the vertical}
\end{align*}
\]

Spherical to rectangular

<table>
<thead>
<tr>
<th>Spherical to rectangular</th>
<th>Rectangular to spherical</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x = \rho \sin \phi \cos \theta)</td>
<td>(\rho = \sqrt{x^2 + y^2 + z^2})</td>
</tr>
<tr>
<td>(y = \rho \sin \phi \sin \theta)</td>
<td>(\tan \theta = \frac{y}{x})</td>
</tr>
<tr>
<td>(z = \rho \cos \phi)</td>
<td>(\cos \phi = \frac{z}{\rho})</td>
</tr>
</tbody>
</table>

EXAMPLE 5 From Spherical to Rectangular Coordinates Find the rectangular coordinates of \(P = (\rho, \theta, \phi) = \left(\frac{\sqrt{3}}{2}, \frac{\pi}{3}, \frac{\pi}{4} \right) \), and find the radial coordinate \(r \) of its projection \(Q \) onto the \(xy \)-plane.

Solution By the formulas above,

\[
\begin{align*}
x &= \rho \sin \phi \cos \theta = 3 \sin \frac{\pi}{4} \cos \frac{\pi}{3} = 3 \left(\frac{\sqrt{3}}{2} \right) \left(\frac{1}{2} \right) = \frac{3\sqrt{3}}{4} \\
y &= \rho \sin \phi \sin \theta = 3 \sin \frac{\pi}{4} \sin \frac{\pi}{3} = 3 \left(\frac{\sqrt{3}}{2} \right) \left(\frac{\sqrt{3}}{2} \right) = \frac{3\sqrt{6}}{4} \\
z &= \rho \cos \phi = 3 \cos \frac{\pi}{4} = 3 \left(\frac{\sqrt{2}}{2} \right) = \frac{3\sqrt{2}}{2}
\end{align*}
\]
Now consider the projection \(Q = (x, y, 0) = \left(\frac{3\sqrt{2}}{4}, \frac{\sqrt{6}}{4}, 0 \right) \) (Figure 9). The radial coordinate \(r \) of \(Q \) satisfies
\[
r^2 = x^2 + y^2 = \left(\frac{3\sqrt{2}}{4} \right)^2 + \left(\frac{\sqrt{6}}{4} \right)^2 = \frac{9}{2}
\]
Therefore, \(r = 3/\sqrt{2} \).

EXAMPLE 6 From Rectangular to Spherical Coordinates Find the spherical coordinates of the point \(P = (x, y, z) = (2, -2\sqrt{3}, 3) \).

Solution The radial coordinate is \(\rho = \sqrt{2^2 + (-2\sqrt{3})^2 + 3^2} = \sqrt{25} = 5 \). The angular coordinate \(\theta \) satisfies
\[
\tan \theta = \frac{y}{x} = \frac{-2\sqrt{3}}{2} = -\sqrt{3} \Rightarrow \theta = \frac{2\pi}{3} \text{ or } \frac{5\pi}{3}
\]
Since the point \((x, y) = (2, -2\sqrt{3}) \) lies in the fourth quadrant, the correct choice is \(\theta = \frac{5\pi}{3} \) (Figure 10). Finally, \(\cos \phi = \frac{z}{\rho} = \frac{3}{5} \) and so \(\phi = \cos^{-1} \frac{3}{5} \approx 0.93 \). Therefore, \(P \) has spherical coordinates \((5, \frac{5\pi}{3}, 0.93)\).

Figure 11 shows the three types of level surfaces in spherical coordinates. Notice that if \(\phi \neq 0, \frac{\pi}{2} \text{ or } \pi \), then the level surface \(\phi = \phi_0 \) is the right circular cone consisting of points \(P \) such that \(\angle OP \) makes an angle \(\phi_0 \) with the \(z \)-axis. There are three exceptional cases: \(\phi = \frac{\pi}{2} \) defines the \(xy \)-plane, \(\phi = 0 \) is the positive \(z \)-axis, and \(\phi = \pi \) is the negative \(z \)-axis.

EXAMPLE 7 Finding an Equation in Spherical Coordinates Find an equation of the form \(\rho = f(\theta, \phi) \) for the following surfaces:

(a) \(x^2 + y^2 + z^2 = 9 \)
(b) \(z = x^2 - y^2 \)

Solution

(a) The equation \(x^2 + y^2 + z^2 = 9 \) defines the sphere of radius 3 centered at the origin. Since \(\rho^2 = x^2 + y^2 + z^2 \), the equation in spherical coordinates is \(\rho = 3 \).

(b) To convert \(z = x^2 - y^2 \) to spherical coordinates, we substitute the formulas for \(x, y, \) and \(z \) in terms of \(\rho, \theta, \) and \(\phi \):
\[
\begin{align*}
\rho &= \sqrt{x^2 + y^2 + z^2} = \sqrt{\rho^2 \sin^2 \phi \cos^2 \theta + \rho^2 \sin^2 \phi \sin^2 \theta} \\
&= \rho \sin \phi \sqrt{\cos^2 \theta - \sin^2 \theta} \\
&= \rho \sin \phi \cos \theta \\
&= \rho \sin^2 \phi \cos 2\theta
\end{align*}
\]
Solving for \(\rho \), we obtain \(\rho = \frac{\cos \phi}{\sin^2 \phi \cos 2\theta} \), which is valid for \(\phi \neq 0, \pi \), and when \(\theta \neq \pi/4, 3\pi/4, 5\pi/4, 7\pi/4 \).
The angular coordinates \((\theta, \phi)\) on a sphere of fixed radius are closely related to the longitude-latitude system used to identify points on the surface of the earth (Figure 12). By convention, in this system we use degrees rather than radians.

- **A longitude** is a half-circle stretching from the North to the South Pole (Figure 13). The axes are chosen so that \(\theta = 0\) passes through Greenwich, England (this longitude is called the **prime meridian**). We designate the longitude by an angle between \(0\) and \(180^\circ\) together with a label E or W, according to whether it lies to the east or west of the prime meridian.

- The set of points on the sphere satisfying \(\phi = \phi_0\) is a horizontal circle called a **latitude**. We measure latitudes from the equator and use the label N or S to specify the Northern or Southern Hemisphere. Thus, in the upper hemisphere \(0 \leq \phi_0 \leq 90^\circ\), a spherical coordinate \(\phi_0\) corresponds to the latitude \((90^\circ - \phi_0)\) N. In the lower hemisphere \(90^\circ \leq \phi_0 \leq 180^\circ\), \(\phi_0\) corresponds to the latitude \((\phi_0 - 90^\circ)\) S.

EXAMPLE 8 **Spherical Coordinates via Longitude and Latitude** Find the angles \((\theta, \phi)\) for Nairobi \((1.17^\circ\) S, \(36.48^\circ\) E) and Ottawa \((45.27^\circ\) N, \(75.42^\circ\) W).

Solution For Nairobi, \(\theta = 36.48^\circ\) since the longitude lies to the east of Greenwich. Nairobi’s latitude is south of the equator, so \(1.17 = \phi_0 - 90\) and \(\phi_0 = 91.17^\circ\).

For Ottawa, we have \(\theta = 360 - 75.42 = 284.58^\circ\) because \(75.42^\circ\) W refers to \(75.42^\circ\) in the negative \(\theta\) direction. Since the latitude of Ottawa is north of the equator, \(45.27 = 90 - \phi_0\) and \(\phi_0 = 44.73^\circ\).

EXAMPLE 9 **Graphing Equations in Spherical Coordinates** Graph the surface corresponding to the equation in spherical coordinates given by \(\rho = \sec \phi\).

Solution We could plug in values for \(\phi\) and obtain the corresponding values for \(\rho\) and then plot points, but that will not be entirely accurate. Instead, notice that we can rewrite the equation:

\[
\rho = \frac{1}{\cos \phi}
\]

\[
\rho \cos \phi = 1
\]

From our conversion equations, we see that this is \(z = 1\). Hence, our surface is simply the horizontal plane at height \(z = 1\), as in Figure 14.
In Exercises 5–10, convert from rectangular to cylindrical coordinates.

In Exercises 1–4, convert from cylindrical to rectangular coordinates.

Exercises

Preliminary Questions

1. Describe the surfaces \(r = R \) in cylindrical coordinates and \(\rho = R \) in spherical coordinates.

2. Which statement about cylindrical coordinates is correct?
 (a) If \(\theta = 0 \), then \(P \) lies on the \(z \)-axis.
 (b) If \(\theta = 0 \), then \(P \) lies in the \(xz \)-plane.

3. Which statement about spherical coordinates is correct?
 (a) If \(\phi = 0 \), then \(P \) lies in the \(z \)-axis, reduces to a half-line for two values of \(\phi \).
 (b) If \(\phi = 0 \), then \(P \) lies in the \(xy \)-plane.

4. The level surface \(\phi = \phi_0 \) in spherical coordinates, usually a cone, reduces to a half-line for two values of \(\phi_0 \). Which two values?

5. For which value of \(\phi_0 \) is \(\phi = \phi_0 \) a plane? Which plane?

Exercises

In Exercises 1–4, convert from cylindrical to rectangular coordinates.

1. \((4, \pi, 4)\)
2. \((2, \frac{\pi}{3}, -8)\)
3. \((0, \frac{\pi}{5}, \frac{1}{2})\)
4. \((1, \frac{\pi}{2}, -2)\)

In Exercises 5–10, convert from rectangular to cylindrical coordinates.

5. \((-1, -1, 1)\)
6. \((2, 2, 1)\)
7. \((1, \sqrt{3}, 7)\)
8. \((\frac{3}{2}, \frac{3\sqrt{3}}{2}, 9)\)
9. \((\frac{5}{\sqrt{2}}, \frac{5}{\sqrt{2}}, 2)\)
10. \((3, 3\sqrt{3}, 2)\)

In Exercises 11–16, describe the set in cylindrical coordinates.

11. \(x^2 + y^2 \leq 1\)
12. \(x^2 + y^2 + z^2 \leq 1\)
13. \(y^2 + z^2 \leq 4, \ x = 0\)
14. \(x^2 + y^2 + z^2 = 4, \ x \geq 0, \ y \geq 0, \ z \geq 0\)
15. \(x^2 + y^2 \leq 9, \ x \geq y\)
16. \(y^2 + z^2 \leq 9, \ x \geq y\)

In Exercises 17–26, sketch the set (described in cylindrical coordinates).

17. \(r = 4\)
18. \(\theta = \frac{\pi}{3}\)
19. \(z = -2\)
20. \(r = 2, \ z = 3\)
21. \(1 \leq r \leq 3, \ 0 \leq z \leq 4\)
22. \(z = r\)
23. \(r = \sin \theta\) (Hint: Convert to rectangular.)
24. \(1 \leq r \leq 3, \ 0 \leq \theta \leq \frac{\pi}{2}, \ 0 \leq z \leq 4\)
25. \(z^2 + r^2 \leq 4\)
26. \(r \leq 3, \ \pi \leq \theta \leq \frac{3\pi}{2}, \ z = 4\)

In Exercises 27–32, find an equation of the form \(r = f(\theta, z)\) in cylindrical coordinates for the following surfaces.
27. \(z = x + y\)
28. \(x^2 + y^2 + z^2 = 4\)
29. \(\frac{x^2}{y^2} = 1\)
30. \(x^2 - y^2 = 4\)
31. \(x^2 + y^2 = 4\)
32. \(z = 3xy\)

In Exercises 33–38, convert from spherical to rectangular coordinates.
33. \((3, 0, \frac{\pi}{2})\)
34. \((2, \frac{\pi}{4}, \frac{\pi}{3})\)
35. \((3, \pi, 0)\)
36. \((5, \frac{3\pi}{4}, \frac{\pi}{4})\)
37. \((6, \frac{\pi}{6}, \frac{5\pi}{6})\)
38. \((0.5, 3.7, 2)\)

In Exercises 39–44, convert from rectangular to spherical coordinates.
39. \((\sqrt{3}, 0, 1)\)
40. \((\frac{\sqrt{3}}{2}, \frac{3}{2}, \frac{1}{2})\)
41. \((1, 1, 1)\)
42. \((1, -1, 1)\)
43. \((\frac{1}{2}, \sqrt{3}, \frac{\sqrt{3}}{2})\)
44. \((\frac{\sqrt{3}}{2}, \frac{\sqrt{3}}{2}, \frac{3}{2})\)

In Exercises 45 and 46, convert from cylindrical to spherical coordinates.
45. \((2, 0, 2)\)
46. \((3, \pi, \sqrt{3})\)

In Exercises 47 and 48, convert from spherical to cylindrical coordinates.
47. \((4, 0, \frac{\pi}{3})\)
48. \((2, \frac{\pi}{3}, \frac{\pi}{6})\)

In Exercises 49–54, determine the given set in spherical coordinates.
49. \(x^2 + y^2 + z^2 \leq 1\)
50. \(x^2 + y^2 + z^2 = 1, \ z \geq 0\)
51. \(x^2 + y^2 + z^2 = 1, \ x \geq 0, \ y \geq 0, \ z \geq 0\)
52. \(x^2 + y^2 + z^2 \leq 1, \ x = y, \ x \geq 0, \ y \geq 0\)
53. \(y^2 + z^2 \leq 4, \ x = 0\)
54. \(x^2 + y^2 = z^2\)

In Exercises 55–64, sketch the set of points (described in spherical coordinates).
55. \(\rho = 4\)
56. \(\phi = \frac{\pi}{4}\)
57. \(\rho = 2, \ \theta = \frac{\pi}{4}\)
58. \(\rho = 2, \ \phi = \frac{\pi}{4}\)
59. \(\rho = 2, \ 0 \leq \phi \leq \frac{\pi}{2}\)
60. \(\theta = \frac{\pi}{2}, \ \phi = \frac{\pi}{4}, \ \rho \geq 1\)
61. \(\rho \leq 2, \ 0 \leq \theta \leq \frac{\pi}{2}, \ \frac{\pi}{2} \leq \phi \leq \pi\)

Let \(P_1 = (1, -\sqrt{3}, 5)\) and \(P_2 = (-1, \sqrt{3}, 5)\) in rectangular coordinates. In which quadrants do the projections of \(P_1\) and \(P_2\) onto the \(xy\)-plane lie? Find the polar angle \(\theta\) of each point.

Find the spherical angles \((\theta, \phi)\) for Helsinki, Finland \((60.1^\circ\ N, 25.0^\circ\ E)\), and São Paulo, Brazil \((23.52^\circ\ S, 46.52^\circ\ W)\).

Find the longitude and latitude for the points on the globe with angular coordinates \((\theta, \phi) = (\pi/8, 7\pi/12)\) and \((4, 2)\).

Consider a rectangular coordinate system with its origin at the center of the earth, \(z\)-axis through the North Pole, and \(x\)-axis through the prime meridian. Find the rectangular coordinates of Sydney, Australia \((34^\circ\ S, 151^\circ\ E)\), and Bogotá, Colombia \((4^\circ\ 32'\ N, 74^\circ\ 15'\ W)\). A minute is \(1/60^\circ\). Assume that the earth is a sphere of radius \(R = 6370\) km.

Find the equation in rectangular coordinates of the quadric surface consisting of the two cones \(\phi = \frac{\pi}{4}\) and \(\phi = \frac{3\pi}{4}\).

Find an equation of the form \(z = f(r, \theta)\) in cylindrical coordinates for \(z^2 = x^2 - y^2\).

Show that \(\rho = 2 \cos \phi\) is the equation of a sphere with its center on the \(z\)-axis. Find its radius and center.

An apple modeled by taking all the points in and on a sphere of radius 2 in. is cored with a vertical cylinder of radius 1 in. Use inequalities in cylindrical coordinates to describe the set of all points that remain in the apple once the core is removed.

Repeat Problem 79 using inequalities in spherical coordinates.
81. Explain the following statement: If the equation of a surface in cylindrical or spherical coordinates does not involve the coordinate \(\theta \), then the surface is rotationally symmetric with respect to the \(z \)-axis.

82. CAS Plot the surface \(\rho = 1 - \cos \phi \). Then plot the trace of \(S \) in the \(xy \)-plane and explain why \(S \) is obtained by rotating this trace.

83. Find equations \(r = g(\theta, z) \) (cylindrical) and \(\rho = f(\theta, \phi) \) (spherical) for the hyperboloid \(x^2 + y^2 = z^2 + 1 \) (Figure 18). Do there exist points on the hyperboloid with \(\phi = 0 \) or \(\pi \)? Which values of \(\phi \) occur for points on the hyperboloid?

Further Insights and Challenges

In Exercises 84–88, a great circle on a sphere \(S \) with center \(O \) and radius \(R \) is a circle obtained by intersecting \(S \) with a plane that passes through \(O \) (Figure 19). If \(P \) and \(Q \) are not antipodal (on opposite sides), there is a unique great circle through \(P \) and \(Q \) on \(S \) (intersect \(S \) with the plane through \(O, P, \) and \(Q \)).

84. Show that the geodesic distance from \(P \) to \(Q \) is equal to \(R \psi \), where \(\psi \) is the central angle between \(P \) and \(Q \) (the angle between the vectors \(\mathbf{v} = \overrightarrow{OP} \) and \(\mathbf{u} = \overrightarrow{OQ} \)).

85. Show that the geodesic distance from \(Q = (a, b, c) \) to the North Pole \(P = (0, 0, R) \) is equal to \(R \cos^{-1} \left(\frac{c}{R} \right) \).

86. The coordinates of Los Angeles are \(34^\circ \) N and \(118^\circ \) W. Find the geodesic distance from the North Pole to Los Angeles, assuming that the earth is a sphere of radius \(R = 6370 \) km.

87. Show that the central angle \(\psi \) between points \(P \) and \(Q \) on a sphere (of any radius) with angular coordinates \((\theta, \phi) \) and \((\theta', \phi') \) is equal to

\[
\psi = \cos^{-1} \left(\sin \phi \sin \phi' \cos(\theta - \theta') + \cos \phi \cos \phi' \right)
\]

CHAPTER REVIEW EXERCISES

In Exercises 1–6, let \(\mathbf{v} = (-2, 5) \) and \(\mathbf{w} = (3, -2) \).

1. Calculate \(5\mathbf{w} - 3\mathbf{v} \) and \(5\mathbf{v} - 3\mathbf{w} \).

2. Sketch \(\mathbf{v} \) and \(\mathbf{w} \), and \(2\mathbf{v} - 3\mathbf{w} \).

3. Find the unit vector in the direction of \(\mathbf{v} \).

4. Find the length of \(\mathbf{v} + \mathbf{w} \).

5. Express \(i \) as a linear combination \(r\mathbf{v} + s\mathbf{w} \).

6. Find a scalar \(\alpha \) such that \(\| \mathbf{v} + \alpha \mathbf{w} \| = 6 \).

7. If \(P = (1, 4) \) and \(Q = (-3, 5) \), what are the components of \(\overrightarrow{PQ} \)? What is the length of \(\overrightarrow{PQ} \)?

8. Let \(A = (2, -1) \), \(B = (1, 4) \), and \(P = (2, 3) \). Find the point \(Q \) such that \(\overrightarrow{PQ} \) is equivalent to \(\overrightarrow{AB} \). Sketch \(\overrightarrow{PQ} \) and \(\overrightarrow{AB} \).

9. Find the vector with length 3 making an angle of \(\frac{7\pi}{6} \) with the positive \(x \)-axis.

10. Calculate \(3(i - 2j) - 6(i + 6j) \).

11. Find the value of \(\beta \) for which \(\mathbf{w} = (-2, \beta) \) is parallel to \(\mathbf{v} = (4, -3) \).

12. Let \(\mathbf{P} = (1, 4, -3) \).

(a) Find the point \(Q \) such that \(\overrightarrow{OQ} \) is equivalent to \((3, -1, 5) \).

(b) Find a unit vector \(\mathbf{e} \) equivalent to \(\overrightarrow{OQ} \).

13. Let \(\mathbf{w} = (2, -2, 1) \) and \(\mathbf{v} = (4, 5, -4) \). Solve for \(\mathbf{u} \) if \(\mathbf{v} + 5\mathbf{u} = 3\mathbf{w} - \mathbf{u} \).

14. Let \(\mathbf{v} = 3i - j + 4k \). Find the length of \(\mathbf{v} \) and the vector \(2\mathbf{v} + 3(4i - k) \).

15. Find a parametrization \(\mathbf{r}_1(t) \) of the line passing through \((1, 4, 5) \) and \((-2, 3, -1) \). Then find a parametrization \(\mathbf{r}_2(t) \) of the line parallel to \(\mathbf{r}_1 \) passing through \((1, 0, 0) \).
16. Let \(\mathbf{r}_1(t) = \mathbf{v}_1 + t\mathbf{w}_1 \) and \(\mathbf{r}_2(t) = \mathbf{v}_2 + t\mathbf{w}_2 \) be parametrizations of lines \(L_1 \) and \(L_2 \). For each statement (a)-(e), provide a proof if the statement is true and a counterexample if it is false.

(a) If \(L_1 = L_2 \), then \(\mathbf{v}_1 = \mathbf{v}_2 \) and \(\mathbf{w}_1 = \mathbf{w}_2 \).

(b) If \(L_1 = L_2 \) and \(\mathbf{v}_1 = \mathbf{v}_2 \), then \(\mathbf{w}_1 = \mathbf{w}_2 \).

(c) If \(L_1 = L_2 \) and \(\mathbf{v}_1 = \mathbf{v}_2 \), then \(\mathbf{w}_1 = \mathbf{w}_2 \).

(d) If \(L_1 \) is parallel to \(L_2 \), then \(\mathbf{w}_1 = \mathbf{w}_2 \).

(e) If \(L_1 \) is parallel to \(L_2 \), then \(\mathbf{v}_1 = \lambda \mathbf{w}_2 \) for some scalar \(\lambda \).

17. Find a and b such that the lines \(L_1 = (1, 2, 1) + t(1, -1, 1) \) and \(L_2 = (3, -1, -1) + t(a, b, -2) \) are parallel.

18. Find a such that the lines \(L_1 = (1, 2, 1) + t(1, -1, 1) \) and \(L_2 = (3, -1, 1) + t(a, 4, -2) \) intersect.

19. Sketch the vector sum \(\mathbf{v} = \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3 \) for the vectors in Figure 1(A).

20. Sketch the sums \(\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_1 + 2\mathbf{v}_2, \) and \(\mathbf{v}_2 - \mathbf{v}_3 \) for the vectors in Figure 1(B).

21. Compute \(\mathbf{v} \cdot \mathbf{w} \).

22. Compute the angle between \(\mathbf{v} \) and \(\mathbf{w} \).

23. Compute \(\mathbf{v} \times \mathbf{w} \).

24. Find the area of the parallelogram spanned by \(\mathbf{v} \) and \(\mathbf{w} \).

25. Find the volume of the parallelepiped spanned by \(\mathbf{v}, \mathbf{w}, \) and \(\mathbf{u} = (1, 2, 6) \).

26. Find all the vectors orthogonal to both \(\mathbf{v} \) and \(\mathbf{w} \).

27. Use vectors to prove that the line connecting the midpoints of two sides of a triangle is parallel to the third side.

28. Let \(\mathbf{v} = (1, -1, 3) \) and \(\mathbf{w} = (4, -2, 1) \).

(a) Find the decomposition \(\mathbf{v} = \mathbf{v}_{||\mathbf{w}} + \mathbf{v}_{\perp\mathbf{w}} \) with respect to \(\mathbf{w} \).

(b) Find the decomposition \(\mathbf{w} = \mathbf{w}_{||\mathbf{v}} + \mathbf{w}_{\perp\mathbf{v}} \) with respect to \(\mathbf{v} \).

29. Calculate the component of \(\mathbf{v} = (-2, \frac{1}{2}, 3) \) along \(\mathbf{w} = (1, 2, 2) \).

30. Calculate the magnitude of the forces on the two ropes in Figure 2.

31. A 50-kg wagon is pulled to the right by a force \(\mathbf{F}_1 \) making an angle of 30° with the ground. At the same time, the wagon is pulled to the left by a horizontal force \(\mathbf{F}_2 \).

(a) Find the magnitude of \(\mathbf{F}_1 \) in terms of the magnitude of \(\mathbf{F}_2 \) if the wagon does not move.

(b) What is the maximal magnitude of \(\mathbf{F}_1 \) that can be applied to the wagon without lifting it?

32. Let \(\mathbf{v}, \mathbf{w}, \) and \(\mathbf{u} \) be the vectors in \(\mathbb{R}^3 \). Which of the following is a scalar?

(a) \(\mathbf{v} \times (\mathbf{u} + \mathbf{w}) \)

(b) \((\mathbf{u} + \mathbf{w}) \cdot (\mathbf{v} \times \mathbf{w}) \)

(c) \((\mathbf{u} \times \mathbf{w}) + (\mathbf{w} \times \mathbf{v}) \)

In Exercises 33–36, let \(\mathbf{v} = (1, 2, 4), \mathbf{u} = (6, -1, 2), \) and \(\mathbf{w} = (1, 0, -3) \). Calculate the given quantity.

33. \(\mathbf{v} \times \mathbf{w} \)

34. \(\mathbf{w} \times \mathbf{u} \)

35. \(\det \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \\ \mathbf{w} \end{pmatrix} \)

36. \(\mathbf{v} \cdot (\mathbf{u} \times \mathbf{w}) \)

37. Use the cross product to find the area of the triangle whose vertices are \((1, 3, -1), (2, -1, 3), \) and \((4, 1, 1) \).

38. Calculate \(||\mathbf{v} \times \mathbf{w}|| \) if \(||\mathbf{v}|| = 2, ||\mathbf{v} \cdot \mathbf{w}|| = 3 \), and the angle between \(\mathbf{v} \) and \(\mathbf{w} \) is \(\frac{\pi}{6} \).

39. Show that if the vectors \(\mathbf{v}, \mathbf{w} \) are orthogonal, then \(||\mathbf{v} + \mathbf{w}||^2 = ||\mathbf{v}||^2 + ||\mathbf{w}||^2 \).

40. Find the angle between \(\mathbf{v} \) and \(\mathbf{w} \) if \(||\mathbf{v} + \mathbf{w}|| = ||\mathbf{v}|| = ||\mathbf{w}|| \).

41. Find \(||\mathbf{e} - 4\mathbf{f}|| \), assuming that \(||\mathbf{e}|| = ||\mathbf{f}|| = \sqrt{3} \).

42. Find the area of the parallelogram spanned by vectors \(\mathbf{v}, \mathbf{w}, \) and \(\mathbf{u} = (1, 2, 6) \) such that \(||\mathbf{u}|| = ||\mathbf{w}|| = 2 \) and \(\mathbf{v} \cdot \mathbf{w} = 1 \).

43. Show that the equation \(\langle 1, 2, 3 \rangle \times \mathbf{v} = \langle -1, 2, a \rangle \) has no solution for \(a \neq -1 \).

44. Prove with a diagram the following: If \(\mathbf{e} \) is a unit vector orthogonal to \(\mathbf{v} \), then \(\mathbf{e} \times (\mathbf{v} \times \mathbf{e}) = (\mathbf{e} \times \mathbf{v}) \times \mathbf{e} = \mathbf{v} \).

45. Use the identity

\[\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \]

to prove that

\[\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) + \mathbf{v} \times (\mathbf{w} \times \mathbf{u}) + \mathbf{w} \times (\mathbf{u} \times \mathbf{v}) = \mathbf{0} \]

46. Find an equation of the plane through \((1, -3, 5) \) with normal vector \(\mathbf{n} = (2, 1, -4) \).

47. Write the equation of the plane \(P \) with vector equation

\[\langle 1, 4, -3 \rangle \cdot (x, y, z) = 7 \]

in the form

\[a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 \]

Hint: You must find a point \(P = (x_0, y_0, z_0) \) on \(P \).

48. Find all the planes parallel to the plane passing through the points \((1, 2, 3), (1, 2, 7), \) and \((1, 1, -3) \).

49. Find the plane through \(P = (4, -1, 9) \) containing the line \(\mathbf{r}(t) = \langle 1, 4, -3 \rangle + t(2, 1, 1) \).

50. Find the intersection of the line \(\mathbf{r}(t) = (3t + 2, 1, -7t) \) and the plane \(2x - 3y + z = 5 \).

51. Find the trace of the plane \(3x - 2y + 5z = 4 \) in the \(xy \)-plane.
52. Find the intersection of the planes \(x + y + z = 1 \) and \(3x - 2y + z = 5 \).

In Exercises 53–58, determine the type of the quadric surface.

53. \(\left(\frac{x}{3} \right)^2 + \left(\frac{y}{4} \right)^2 + 2z^2 = 1 \)

54. \(\left(\frac{x}{3} \right)^2 - \left(\frac{y}{4} \right)^2 + 2z^2 = 1 \)

55. \(\left(\frac{x}{3} \right)^2 + \left(\frac{y}{4} \right)^2 - 2z = 0 \)

56. \(\left(\frac{x}{3} \right)^2 - \left(\frac{y}{4} \right)^2 - 2z = 0 \)

57. \(\left(\frac{x}{3} \right)^2 - \left(\frac{y}{4} \right)^2 - 2z^2 = 0 \)

58. \(\left(\frac{x}{3} \right)^2 - \left(\frac{y}{4} \right)^2 + 2z^2 = 1 \)

59. Determine the type of the quadric surface \(ax^2 + by^2 - z^2 = 1 \) if:
 (a) \(a < 0, \ b < 0 \)
 (b) \(a > 0, \ b > 0 \)
 (c) \(a > 0, \ b < 0 \)

60. Describe the traces of the surface \(\left(\frac{x}{3} \right)^2 - y^2 + \left(\frac{z}{2} \right)^2 = 1 \) in the three coordinate planes.

61. Convert \((x, y, z) = (3, 4, -1)\) from rectangular to cylindrical and spherical coordinates.

62. Convert \((r, \theta, z) = (3, \frac{\pi}{6}, 4)\) from cylindrical to spherical coordinates.

63. Convert the point \((\rho, \theta, \phi) = (3, \frac{\pi}{6}, \frac{\pi}{3})\) from spherical to cylindrical coordinates.

64. Describe the set of all points \(P = (x, y, z) \) satisfying \(x^2 + y^2 \leq 4 \) in both cylindrical and spherical coordinates.

65. Sketch the graph of the cylindrical equation \(z = 2r \cos \theta \) and write the equation in rectangular coordinates.

66. Write the surface \(x^2 + y^2 - z^2 = 2(x + y) \) as an equation \(r = f(\theta, z) \) in cylindrical coordinates.

67. Show that the cylindrical equation \(r^2(1 - 2 \sin^2 \theta) + z^2 = 1 \) is a hyperboloid of one sheet.

68. Sketch the graph of the spherical equation \(\rho = 2 \cos \theta \sin \phi \) and write the equation in rectangular coordinates.

69. Describe how the surface with spherical equation \(\rho^2(1 + A \cos^2 \phi) = 1 \) depends on the constant \(A \).

70. Show that the spherical equation \(\cot \phi = 2 \cos \theta + \sin \theta \) defines a plane through the origin (with the origin excluded). Find a normal vector to this plane.

71. Let \(c \) be a scalar, \(a \) and \(b \) be vectors, and \(X = (x, y, z) \). Show that the equation \((X - a) \cdot (X - b) = c^2\) defines a sphere with center \(m = \frac{1}{2}(a + b) \) and radius \(R \), where \(R^2 = c^2 + \frac{1}{2}(a - b)^2 \).
14 CALCULUS OF VECTOR-VALUED FUNCTIONS

In this chapter, we study vector-valued functions and their derivatives, and we use them to analyze curves and motion in 3-space. Although many techniques from single-variable calculus carry over to the vector setting, there is an important new aspect to the derivative. A real-valued function \(f \) can change in just one of two ways: It can increase or decrease. By contrast, a vector-valued function can change not just in magnitude but also in direction, and the rate of change is not a single number but is itself a vector. To develop these new concepts, we begin with an introduction to vector-valued functions.

14.1 Vector-Valued Functions

Consider a particle moving in \(\mathbb{R}^3 \) whose coordinates at time \(t \) are \((x(t), y(t), z(t))\). It is convenient to represent the particle’s path by the vector-valued function

\[
\mathbf{r}(t) = (x(t), y(t), z(t)) = x(t)i + y(t)j + z(t)k
\]

Think of \(\mathbf{r}(t) \) as a moving vector that points from the origin to the position of the particle at time \(t \) (Figure 1).

More generally, a vector-valued function is any function \(\mathbf{r}(t) \) of the form in Eq. (1) whose domain \(\mathcal{D} \) is a set of real numbers and whose range is a set of position vectors. The variable \(t \) is called a parameter, and the functions \(x(t), y(t), z(t) \) are called the components or coordinate functions. We usually take as domain the set of all values of \(t \) for which \(\mathbf{r}(t) \) is defined—that is, all values of \(t \) that belong to the domains of all three coordinate functions \(x(t), y(t), z(t) \). For example,

\[
\begin{align*}
\mathbf{r}(t) &= (t^2, e^t, 4 - 7t), \quad \text{domain } \mathcal{D} = \mathbb{R} \\
\mathbf{r}(s) &= (\sqrt{s}, e^s, s^{-1}), \quad \text{domain } \mathcal{D} = \{s \in \mathbb{R} : s > 0\}
\end{align*}
\]

The terminal point of a vector-valued function \(\mathbf{r}(t) \) traces a path in \(\mathbb{R}^3 \) as \(t \) varies. We refer to \(\mathbf{r}(t) \) either as a path or as a vector parametrization of a path. We shall assume throughout this chapter that the components of \(\mathbf{r}(t) \) have continuous derivatives.
We have already studied special cases of vector parametrizations. In Chapter 13, we
described lines in \mathbb{R}^3 using vector parametrizations. Recall that
$$ \mathbf{r}(t) = (x_0, y_0, z_0) + t\mathbf{v} = (x_0 + ta, y_0 + tb, z_0 + tc) $$
parametrizes the line through $P = (x_0, y_0, z_0)$ in the direction of the vector $\mathbf{v} = (a, b, c)$.

In Chapter 12, we studied parametrized curves in the plane \mathbb{R}^2 in the form
$$ c(t) = (x(t), y(t)) $$
Such a curve is described equally well by the vector-valued function $\mathbf{r}(t) = (x(t), y(t))$.
The difference lies only in whether we visualize the path as traced by a “moving point”
$c(t)$ or a “moving vector” $\mathbf{r}(t)$. The vector form is used in this chapter because it leads
most naturally to the definition of vector-valued derivatives.

It is important to distinguish between the path parametrized by $\mathbf{r}(t)$ and the underlying
curve C traced by $\mathbf{r}(t)$. The curve C is the set of all points $(x(t), y(t), z(t))$ as t ranges over
the domain of $\mathbf{r}(t)$. The path is a particular way of traversing the curve; it may traverse
the curve several times, reverse direction, or move back and forth, etc.

\section*{EXAMPLE 1 The Path Versus the Curve}

Describe the path
$$ \mathbf{r}(t) = (\cos t, \sin t, 1), \quad -\infty < t < \infty $$
How are the path and the curve C traced by $\mathbf{r}(t)$ different?

\textbf{Solution} As t varies from $-\infty$ to ∞, the endpoint of the vector $\mathbf{r}(t)$ moves around a
unit circle at height $z = 1$ infinitely many times in the counterclockwise direction when viewed from above (Figure 2). The underlying curve C traced by $\mathbf{r}(t)$ is the circle itself.

A curve in \mathbb{R}^3 is also referred to as a \textbf{space curve} (as opposed to a curve in \mathbb{R}^2, which
is called a \textbf{plane curve}). Space curves can be quite complicated and difficult to sketch
by hand. The most effective way to visualize a space curve is to plot it from different
viewpoints using a computer (Figure 3). As an aid to visualization, we plot a “thickened”
curve as in Figures 3 and 5, but keep in mind that space curves are one-dimensional and
have no thickness.

\section*{EXAMPLE 2 Helix}

Describe the curve traced by $\mathbf{r}(t) = (-\sin t, \cos t, t)$ for $t \geq 0$
in terms of its projections onto the coordinate planes.

\textbf{Solution} The projections are as follows (Figure 4):
\begin{itemize}
 \item xy-plane (set $z = 0$): the path $\mathbf{p}(t) = (-\sin t, \cos t, 0)$, which describes a point
moving counterclockwise around the unit circle starting at $\mathbf{p}(0) = (0, 1, 0)$
\end{itemize}
SECTION 14.1 Vector-Valued Functions

- xz-plane (set $y = 0$): the path $(-\sin t, 0, t)$, which is a wave in the z-direction
- yz-plane (set $x = 0$): the path $(0, \cos t, t)$, which is a wave in the z-direction

The function $\mathbf{r}(t)$ describes a point moving above the unit circle in the xy-plane, while its height $z = t$ increases linearly, resulting in the helix of Figure 4.

Every curve can be parametrized in infinitely many ways (because there are infinitely many ways that a particle can traverse a curve as a function of time). The next example describes two very different parametrizations of the same curve.

\textbf{EXAMPLE 3 Parametrizing the Intersection of Surfaces} Parametrize the curve C obtained as the intersection of the surfaces $x^2 - y^2 = z - 1$ and $x^2 + y^2 = 4$ (Figure 5).

\textbf{Solution} We have to express the coordinates (x, y, z) of a point on the curve as functions of a parameter t. Here are two ways of doing this.
First method: Solve the given equations for y and z in terms of x. First, solve for y:

$$x^2 + y^2 = 4 \implies y^2 = 4 - x^2 \implies y = \pm\sqrt{4 - x^2}$$

The equation $x^2 - y^2 = z - 1$ can be written $z = x^2 - y^2 + 1$. Thus, we can substitute $y^2 = 4 - x^2$ to solve for z:

$$z = x^2 - y^2 + 1 = x^2 - (4 - x^2) + 1 = 2x^2 - 3$$

Now use $t = x$ as the parameter. Then $y = \pm\sqrt{4 - t^2}, z = 2t^2 - 3$. The two signs of the square root correspond to the two halves of the curve where $y > 0$ and $y < 0$, as shown in Figure 6. Therefore, we need two vector-valued functions to parametrize the entire curve:

$$r_1(t) = \left(t, \sqrt{4 - t^2}, 2t^2 - 3\right), \quad r_2(t) = \left(t, -\sqrt{4 - t^2}, 2t^2 - 3\right), \quad -2 \leq t \leq 2$$

![Figure 6](image)

Second method: Note that $x^2 + y^2 = 4$ has a trigonometric parametrization: $x = 2\cos t, y = 2\sin t$ for $0 \leq t < 2\pi$. The equation $x^2 - y^2 = z - 1$ gives us

$$z = x^2 - y^2 + 1 = 4\cos^2 t - 4\sin^2 t + 1 = 4\cos 2t + 1$$

Thus, we may parametrize the entire curve by a single vector-valued function:

$$r(t) = (2\cos t, 2\sin t, 4\cos 2t + 1), \quad 0 \leq t < 2\pi$$

Example 4 Parametrize the circle of radius 3 with its center $P = (2, 6, 8)$ located in a plane:

(a) parallel to the xy-plane.
(b) parallel to the xz-plane.

Solution (a) A circle of radius R in the xy-plane centered at the origin has parametrization $(R\cos t, R\sin t)$. To place the circle in a three-dimensional coordinate system, we use the parametrization $(R\cos t, R\sin t, 0)$.

Thus, the circle of radius 3 centered at $(0, 0, 0)$ has parametrization $(3\cos t, 3\sin t, 0)$. To move this circle in a parallel fashion so that its center lies at $P = (2, 6, 8)$, we translate by the vector $(2, 6, 8)$:

$$r_1(t) = (2, 6, 8) + (3\cos t, 3\sin t, 0) = (2 + 3\cos t, 6 + 3\sin t, 8)$$

(b) The parametrization $(3\cos t, 0, 3\sin t)$ gives us a circle of radius 3 centered at the origin in the xz-plane. To move the circle in a parallel fashion so that its center lies at $(2, 6, 8)$, we translate by the vector $(2, 6, 8)$:

$$r_2(t) = (2, 6, 8) + (3\cos t, 0, 3\sin t) = (2 + 3\cos t, 6, 8 + 3\sin t)$$

These two circles are shown in Figure 7.
14.1 SUMMARY

- A vector-valued function is a function of the form
 \[\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k} \]
- We often think of \(t \) as time and \(\mathbf{r}(t) \) as a “moving vector” whose terminal point traces out a path as a function of time. We refer to \(\mathbf{r}(t) \) as a vector parametrization of the path, or simply as a “path.”
- The underlying curve \(\mathcal{C} \) traced by \(\mathbf{r}(t) \) is the set of all points \((x(t), y(t), z(t)) \) in \(\mathbb{R}^3 \) for \(t \) in the domain of \(\mathbf{r}(t) \). A curve in \(\mathbb{R}^3 \) is also called a space curve.
- Every curve \(\mathcal{C} \) can be parametrized in infinitely many ways.
- The projection of \(\mathbf{r}(t) \) onto the \(xy \)-plane is the curve traced by \(\langle x(t), y(t), 0 \rangle \). The projection onto the \(xz \)-plane is \(\langle x(t), 0, z(t) \rangle \), and the projection onto the \(yz \)-plane is \(\langle 0, y(t), z(t) \rangle \).

14.1 EXERCISES

Preliminary Questions

1. Which one of the following does not parametrize a line?
 (a) \(\mathbf{r}_1(t) = (8 - t, 2t, 3t) \)
 (b) \(\mathbf{r}_2(t) = t^3\mathbf{i} - 7t^2\mathbf{j} + t^3\mathbf{k} \)
 (c) \(\mathbf{r}_3(t) = (8 - 4t^3, 2 + 5t^2, 9t^3) \)

2. What is the projection of \(\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + e^t\mathbf{k} \) onto the \(xz \)-plane?

3. Which projection of \((\cos t, \cos 2t, \sin t) \) is a circle?

4. What is the center of the circle with the following parametrization?
 \[\mathbf{r}(t) = (-2 + \cos t)\mathbf{i} + 2\mathbf{j} + (3 - \sin t)\mathbf{k} \]

5. How do the paths \(\mathbf{r}_1(t) = (\cos t, \sin t) \) and \(\mathbf{r}_2(t) = (\sin t, \cos t) \) around the unit circle differ?

6. Which three of the following vector-valued functions parametrize the same space curve?
 (a) \((2 + \cos t)\mathbf{i} - 9\mathbf{j} + (3 - \sin t)\mathbf{k} \)
 (b) \((2 + \cos t)\mathbf{i} + 9\mathbf{j} + (3 + \sin t)\mathbf{k} \)
 (c) \((-2 + \cos 3t)\mathbf{i} + 9\mathbf{j} + (3 - \sin 3t)\mathbf{k} \)
 (d) \((-2 - \cos t)\mathbf{i} + 9\mathbf{j} + (3 + \sin t)\mathbf{k} \)
 (e) \((2 + \cos t)\mathbf{i} + 9\mathbf{j} + (3 + \sin t)\mathbf{k} \)

Exercises

1. What is the domain of \(\mathbf{r}(t) = e^t\mathbf{i} + \frac{1}{t^2}\mathbf{j} + (t + 1)^{-3}\mathbf{k} \)?

2. What is the domain of \(\mathbf{r}(s) = e^s\mathbf{i} + \sqrt{s}\mathbf{j} + \cos s\mathbf{k} \)?

3. Evaluate \(\mathbf{r}(2) \) and \(\mathbf{r}(-1) \) for \(\mathbf{r}(t) = \left\langle \sin \frac{\pi}{2} t, t^2, (t^2 + 1)^{-1} \right\rangle \).

4. Does either of \(P = (4, 11, 20) \) or \(Q = (-1, 6, 16) \) lie on the path \(\mathbf{r}(t) = \left\langle 1 + t, 2 + t^2, t^6 \right\rangle \)?

5. Find a vector parametrization of the line through \(P = (3, -5, 7) \) in the direction \(\mathbf{v} = (3, 0, 1) \).

6. Find a direction vector for the line with parametrization \(\mathbf{r}(t) = \left(4 - t \right)\mathbf{i} + (2 + 5t)\mathbf{j} + \frac{1}{2}t\mathbf{k} \).

7. Determine whether the space curve given by \(\mathbf{r}(t) = (\sin t, \cos t/2, t) \) intersects the \(z \)-axis, and if it does, determine where.

8. Determine whether the space curve given by \(\mathbf{r}(t) = \left\langle t^2, t^2 - 2t - 3, t - 3 \right\rangle \) intersects the \(x \)-axis, and if it does, determine where.
9. Determine whether the space curve given by \(\mathbf{r}(t) = \langle t, t^3, t^2 + 1 \rangle \) intersects the \(xy \)-plane, and if it does, determine where.

10. Determine whether the space curves given by \(\mathbf{r}_1(t) = \langle t, t^2, t + 1 \rangle \) and \(\mathbf{r}_2(s) = \langle \sqrt{s}, s, s - 1 \rangle \) intersect, and if they do, determine where.

11. Match the space curves in Figure 8 with their projections onto the \(xy \)-plane in Figure 9.

12. Match the space curves in Figure 8 with the following vector-valued functions:
 (a) \(\mathbf{r}_1(t) = \langle \cos 2t, \cos t, \sin t \rangle \)
 (b) \(\mathbf{r}_2(t) = \langle t, \cos 2t, \sin 2t \rangle \)
 (c) \(\mathbf{r}_3(t) = \langle 1, t, t \rangle \)

13. Match the vector-valued functions (a)–(f) with the space curves (i)–(vi) in Figure 10.
 (a) \(\mathbf{r}(t) = \langle t + 15, e^{0.08t} \cos t, e^{0.08t} \sin t \rangle \)
 (b) \(\mathbf{r}(t) = \langle \cos t, \sin t, \sin 12t \rangle \)
 (c) \(\mathbf{r}(t) = \langle t, \frac{25t}{1 + t^2} \rangle \)
 (d) \(\mathbf{r}(t) = \langle \cos^3 t, \sin^3 t, t \rangle \)
 (e) \(\mathbf{r}(t) = \langle t, t^2, 2t \rangle \)
 (f) \(\mathbf{r}(t) = \langle \cos t, \sin t, \cos t \sin 12t \rangle \)

14. Which of the following curves have the same projection onto the \(xy \)-plane?
 (a) \(\mathbf{r}_1(t) = \langle t, t^3, e^t \rangle \)
 (b) \(\mathbf{r}_2(t) = \langle e^t, t^2, t \rangle \)
 (c) \(\mathbf{r}_3(t) = \langle t, t^2, \cos t \rangle \)

15. Match the space curves (A)–(C) in Figure 11 with their projections (i)–(iii) onto the \(xy \)-plane.

16. Describe the projections of the circle \(\mathbf{r}(t) = \langle \sin t, 0, 4 + \cos t \rangle \) onto the coordinate planes.

In Exercises 17–20, the function \(\mathbf{r}(t) \) traces a circle. Determine the radius, center, and plane containing the circle.

17. \(\mathbf{r}(t) = \langle 9 \cos t \rangle \hat{i} + (9 \sin t) \hat{j} \)

18. \(\mathbf{r}(t) = 7\hat{i} + (12 \cos t) \hat{j} + (12 \sin t) \hat{k} \)

19. \(\mathbf{r}(t) = \langle \sin t, 0, 4 + \cos t \rangle \)

20. \(\mathbf{r}(t) = \langle 6 + 3 \sin t, 9, 4 + 3 \cos t \rangle \)

21. Let \(C \) be the curve given by \(\mathbf{r}(t) = \langle t \cos t, t \sin t, t \rangle \).
 (a) Show that \(C \) lies on the cone \(x^2 + y^2 = z^2 \).
 (b) Sketch the cone and make a rough sketch of \(C \) on the cone.

22. *CAS* Use a computer algebra system to plot the projections onto the \(xy \)- and \(xz \)-planes of the curve \(\mathbf{r}(t) = \langle t \cos t, t \sin t, t \rangle \) in Exercise 21.

In Exercises 23 and 24, let

\[
\mathbf{r}(t) = \langle \sin t, \cos t, \sin t \cos 2t \rangle
\]

be the parametrization of the curve shown in Figure 12.

23. Find the points where \(\mathbf{r}(t) \) intersects the \(xy \)-plane.

24. Show that the projection of \(\mathbf{r}(t) \) onto the \(xz \)-plane is the curve

\[
z = x - 2x^3 \quad \text{for} \quad -1 \leq x \leq 1
\]
25. Parametrize the intersection of the surfaces
\[y^2 - z^2 = x - 2, \quad y^2 + z^2 = 9 \]
using \(t = y \) as the parameter (two vector functions are needed as in Example 3).

26. Find a parametrization of the curve in Exercise 25 using trigonometric functions.

27. Viviani’s Curve \(C \) is the intersection of the surfaces (Figure 13)
\[x^2 + y^2 = z^2, \quad y = z^2 \]
(a) Parametrize each of the two parts of \(C \) corresponding to \(x \geq 0 \) and \(x \leq 0 \), taking \(t = z \) as the parameter.
(b) Describe the projection of \(C \) onto the xy-plane.
(c) Show that \(C \) lies on the sphere of radius 1 with its center \((0, 1, 0)\). This curve looks like a figure eight lying on a sphere [Figure 13(B)].

28. (a) Show that any point on \(x^2 + y^2 = z^2 \) can be written in the form \((z \cos \theta, z \sin \theta, z)\) for some \(\theta \).
(b) Use this to find a parametrization of Viviani’s curve (Exercise 27) with \(\theta \) as the parameter.

29. Use sine and cosine to parametrize the intersection of the cylinders \(x^2 + y^2 = 1 \) and \(x^2 + z^2 = 1 \) (use two vector-valued functions). Then describe the projections of this curve onto the three coordinate planes.

30. Use hyperbolic functions to parametrize the intersection of the surfaces \(x^2 - y^2 = 4 \) and \(z = xy \).

31. Use sine and cosine to parametrize the intersection of the surfaces \(x^2 + y^2 = 1 \) and \(z = 4x^2 \) (Figure 14).

In Exercises 32–34, two paths \(r_1(t) \) and \(r_2(t) \) intersect if there is a point \(P \) lying on both curves. We say that \(r_1(t) \) and \(r_2(t) \) collide if \(r_1(t_0) = r_2(t_0) \) at some time \(t_0 \).

32. Which of the following statements are true?
(a) If \(r_1(t) \) and \(r_2(t) \) intersect, then they collide.
(b) If \(r_1(t) \) and \(r_2(t) \) collide, then they intersect.
(c) Intersection depends only on the underlying curves traced by \(r_1 \) and \(r_2 \), but collision depends on the actual parametrizations.

33. Determine whether \(r_1(t) \) and \(r_2(t) \) collide or intersect, giving the coordinates of the corresponding points if they exist:
\[r_1(t) = \langle t^2 + 3, t + 1, 6t^{-1} \rangle \]
\[r_2(t) = \langle 4t, 2t - 2, t^2 - 7 \rangle \]

34. Determine whether \(r_1(t) \) and \(r_2(t) \) collide or intersect, giving the coordinates of the corresponding points if they exist:
\[r_1(t) = \langle t, t^2, t^3 \rangle, \quad r_2(t) = \langle 4t + 6, 4t^2, 7 - t \rangle \]

In Exercises 35–44, find a parametrization of the curve.

35. The vertical line passing through the point \((3, 2, 0)\)
36. The line passing through \((1, 0, 4)\) and \((4, 1, 2)\)
37. The line through the origin whose projection on the \(xy\)-plane is a line of slope 3 and whose projection on the \(yz\)-plane is a line of slope 5 (i.e., \(\Delta z / \Delta y = 5 \))
38. The horizontal circle of radius 1 with center \((2, -1, 4)\)
39. The circle of radius 2 with center \((1, 2, 5)\) in a plane parallel to the \(yz\)-plane
40. The ellipse \(\frac{x^2}{2} + \frac{y^2}{3} = 1 \) in the \(xy\)-plane, translated to have center \((9, -4, 0)\)
41. The intersection of the plane \(y = \frac{1}{2} \) with the sphere \(x^2 + y^2 + z^2 = 1 \)
42. The intersection of the surfaces
\[z = x^2 - y^2 \quad \text{and} \quad z = x^2 + xy - 1 \]

43. The ellipse \(\left(\frac{x}{3} \right)^2 + \left(\frac{y}{3} \right)^2 = 1 \) in the \(xz \)-plane, translated to have center \((3, 1, 5)\) [Figure 15(A)]

44. The ellipse \(\left(\frac{y}{2} \right)^2 + \left(\frac{z}{3} \right)^2 = 1 \), translated to have center \((3, 1, 5)\) [Figure 15(B)]

45. Sketch the curve parametrized by \(\mathbf{r}(t) = \langle |t| + t, |t| - t \rangle \).

46. Find the maximum height above the \(xy \)-plane of a point on \(\mathbf{r}(t) = \langle e^t, \sin t, t(4 - t) \rangle \).

47. Let \(C \) be the curve obtained by intersecting a cylinder of radius \(r \) and a plane. Insert two spheres of radius \(r \) into the cylinder above and below the plane, and let \(F_1 \) and \(F_2 \) be the points where the plane is tangent to the spheres [Figure 16(A)]. Let \(K \) be the vertical distance between the equators of the two spheres. Rediscover Archimedes’s proof that \(C \) is an ellipse by showing that every point \(P \) on \(C \) satisfies
\[PF_1 + PF_2 = K \]
Hint: If two lines through a point \(P \) are tangent to a sphere and intersect the sphere at \(Q_1 \) and \(Q_2 \) as in Figure 16(B), then the segments \(PQ_1 \) and \(PQ_2 \) have equal length. Use this to show that \(PF_1 = PR_1 \) and \(PF_2 = PR_2 \).

48. Assume that the cylinder in Figure 16 has equation \(x^2 + y^2 = r^2 \) and the plane has equation \(z = ax + by \). Find a vector parametrization \(\mathbf{r}(t) \) of the curve of intersection using the trigonometric functions \(y = \cos t \) and \(y = \sin t \).

49. CAS Now reprove the result of Exercise 47 using vector geometry. Assume that the cylinder has equation \(x^2 + y^2 = r^2 \) and the plane has equation \(z = ax + by \).
(a) Show that the upper and lower spheres in Figure 16 have centers
\[C_1 = (0, 0, r \sqrt{a^2 + b^2 + 1}) \]
\[C_2 = (0, 0, -r \sqrt{a^2 + b^2 + 1}) \]
(b) Show that the points where the plane is tangent to the sphere are
\[F_1 = \frac{r}{\sqrt{a^2 + b^2 + 1}} (a, b, a^2 + b^2) \]
\[F_2 = \frac{-r}{\sqrt{a^2 + b^2 + 1}} (a, b, a^2 + b^2) \]
Hint: Show that \(C_1 F_1 \) and \(C_2 F_2 \) have length \(r \) and are orthogonal to the plane.
(c) Verify, with the aid of a computer algebra system, that Eq. (2) holds with
\[K = 2r \sqrt{a^2 + b^2 + 1} \]
To simplify the algebra, observe that since \(a \) and \(b \) are arbitrary, it suffices to verify Eq. (2) for the point \(P = (r, 0, ar) \).
14.2 Calculus of Vector-Valued Functions

In this section, we extend differentiation and integration to vector-valued functions. This is straightforward because the techniques of single-variable calculus carry over with little change. What is new and important, however, is the geometric interpretation of the derivative as a tangent vector. We describe this later in the section.

The first step is to define the limits of vector-valued functions.

DEFINITION Limit of a Vector-Valued Function A vector-valued function \(r(t) \) approaches the limit \(u \) (a vector) as \(t \) approaches \(t_0 \) if \(\lim_{t \to t_0} \| r(t) - u \| = 0 \). In this case, we write

\[
\lim_{t \to t_0} r(t) = u
\]

We can visualize the limit of a vector-valued function as a vector \(r(t) \) “moving” toward the limit vector \(u \) (Figure 1). According to the next theorem, vector limits may be computed componentwise.

THEOREM 1 Vector-Valued Limits Are Computed Componentwise A vector-valued function \(r(t) = (x(t), y(t), z(t)) \) approaches a limit as \(t \to t_0 \) if and only if each component approaches a limit, and in this case,

\[
\lim_{t \to t_0} r(t) = \left(\lim_{t \to t_0} x(t), \lim_{t \to t_0} y(t), \lim_{t \to t_0} z(t) \right)
\]

Proof Let \(u = (a, b, c) \) and consider the square of the length

\[
\| r(t) - u \|^2 = (x(t) - a)^2 + (y(t) - b)^2 + (z(t) - c)^2
\]

The term on the left approaches zero if and only if each term on the right approaches zero (because these terms are nonnegative). It follows that \(\| r(t) - u \| \) approaches zero if and only if \(|x(t) - a|, |y(t) - b|, \) and \(|z(t) - c| \) tend to zero. Therefore, \(r(t) \) approaches a limit \(u \) as \(t \to t_0 \) if and only if \(x(t), y(t), \) and \(z(t) \) converge to the components \(a, b, \) and \(c \).

EXAMPLE 1 Calculate \(\lim_{t \to 3} r(t) \), where \(r(t) = (t^2, 1 - t, t^{-1}) \).

Solution By Theorem 1,

\[
\lim_{t \to 3} r(t) = \left(\lim_{t \to 3} t^2, \lim_{t \to 3} (1 - t), \lim_{t \to 3} t^{-1} \right) = \left(9, -2, \frac{1}{3} \right)
\]

Continuity of vector-valued functions is defined in the same way as in the scalar case. A vector-valued function \(r(t) = (x(t), y(t), z(t)) \) is **continuous** at \(t_0 \) if

\[
\lim_{t \to t_0} r(t) = r(t_0)
\]

By Theorem 1, \(r(t) \) is continuous at \(t_0 \) if and only if the components \(x(t), y(t), z(t) \) are continuous at \(t_0 \).

We define the derivative of \(r(t) \) as the limit of the difference quotient:

\[
r'(t) = \frac{d}{dt} r(t) = \lim_{h \to 0} \frac{r(t + h) - r(t)}{h}
\]

In Leibniz notation, the derivative is written \(dr/dt \).
We say that \(\mathbf{r}(t) \) is differentiable at \(t \) if the limit in Eq. (3) exists. Notice that the components of the difference quotient are themselves difference quotients:

\[
\lim_{h \to 0} \frac{\mathbf{r}(t + h) - \mathbf{r}(t)}{h} = \left(\frac{x(t + h) - x(t)}{h}, \frac{y(t + h) - y(t)}{h}, \frac{z(t + h) - z(t)}{h} \right)
\]

and by Theorem 1, \(\mathbf{r}(t) \) is differentiable if and only if the components are differentiable. In this case, \(\mathbf{r}'(t) \) is equal to the vector of derivatives \(\langle x'(t), y'(t), z'(t) \rangle \).

By Theorems 1 and 2, vector-valued limits and derivatives are computed "componentwise," so they are no more difficult to compute than ordinary limits and derivatives.

THEOREM 2 Vector-Valued Derivatives Are Computed Componentwise
A vector-valued function \(\mathbf{r}(t) = \langle x(t), y(t), z(t) \rangle \) is differentiable if and only if each component is differentiable. In this case, \(\mathbf{r}'(t) = \frac{d}{dt} \mathbf{r}(t) = \langle x'(t), y'(t), z'(t) \rangle \).

Here are some vector-valued derivatives, computed componentwise:

\[
\frac{d}{dt}[t^2, t^3, \sin t] = [2t, 3t^2, \cos t], \quad \frac{d}{dt}[\cos t, -1, e^{2t}] = [-\sin t, 0, 2e^{2t}]
\]

Higher order derivatives are defined by repeated differentiation:

\[\mathbf{r}''(t) = \frac{d}{dt} \mathbf{r}'(t), \quad \mathbf{r}'''(t) = \frac{d}{dt} \mathbf{r}''(t), \ldots\]

EXAMPLE 2 Calculate \(\mathbf{r}''(3) \), where \(\mathbf{r}(t) = [\ln t, t, t^2] \).

Solution We perform the differentiation componentwise:

\[
\mathbf{r}'(t) = \frac{d}{dt}[\ln t, t, t^2] = \langle t^{-1}, 1, 2t \rangle
\]

\[
\mathbf{r}''(t) = \frac{d}{dt}[t^{-1}, 1, 2t] = \langle -t^{-2}, 0, 2 \rangle
\]

Therefore, \(\mathbf{r}''(3) = [-\frac{1}{9}, 0, 2] \).

The differentiation rules of single-variable calculus carry over to the vector setting.

Differentiation Rules
Assume that \(\mathbf{r}(t), \mathbf{r}_1(t), \) and \(\mathbf{r}_2(t) \) are differentiable. Then

- **Sum Rule:** \((\mathbf{r}_1(t) + \mathbf{r}_2(t))' = \mathbf{r}_1'(t) + \mathbf{r}_2'(t) \)
- **Constant Multiple Rule:** For any constant \(c \), \((c \mathbf{r}(t))' = c \mathbf{r}'(t) \).
- **Product Rule:** For any differentiable scalar-valued function \(f \),

\[
\frac{d}{dt}(f(t)\mathbf{r}(t)) = f'(t)\mathbf{r}(t) + f(t)\mathbf{r}'(t)
\]

- **Chain Rule:** For any differentiable scalar-valued function \(g \),

\[
\frac{d}{dt}\mathbf{r}(g(t)) = \mathbf{r}'(g(t))g'(t)
\]

Proof Each rule is proved by applying the differentiation rules to the components. For example, to prove the Product Rule (we consider vector-valued functions in the plane, to keep the notation simple), we write

\[
f(t)\mathbf{r}(t) = f(t)\langle x(t), y(t) \rangle = \langle f(t)x(t), f(t)y(t) \rangle
\]
Now apply the Product Rule to each component:

\[\frac{d}{dt} f(t) r(t) = \left(\frac{d}{dt} f(t) x(t) \right) + \left(\frac{d}{dt} f(t) y(t) \right) \]

\[= \left\{ f'(t) x(t) + f(t) x'(t), f'(t) y(t) + f(t) y'(t) \right\} \]

\[= f'(t) \left\{ x(t), y(t) \right\} + f(t) \left\{ x'(t), y'(t) \right\} \]

\[= f'(t) (x(t), y(t)) + f(t) (x'(t), y'(t)) = f'(t) r(t) + f(t) r'(t) \]

The remaining proofs are left as exercises (Exercises 69–70).

EXAMPLE 3 Let \(r(t) = \langle t^2, 5t, 1 \rangle \) and \(f(t) = e^{3t} \). Calculate:

(a) \(\frac{d}{dt} f(t) r(t) \)
(b) \(\frac{d}{dt} r(f(t)) \)

Solution We have \(r'(t) = \langle 2t, 5, 0 \rangle \) and \(f'(t) = 3e^{3t} \).

(a) By the Product Rule,

\[\frac{d}{dt} f(t) r(t) = f'(t) r(t) + f(t) r'(t) = 3e^{3t} \langle t^2, 5t, 1 \rangle + e^{3t} \langle 2t, 5, 0 \rangle \]

\[= \langle 3t^2 + 2t)e^{3t}, (15t + 5)e^{3t}, 3e^{3t} \rangle \]

Note that we could have first found \(f(t) r(t) = e^{3t} \langle t^2, 5t, 1 \rangle = \langle e^{3t}t^2, e^{3t}5t, e^{3t} \rangle \), and then differentiated to obtain the same answer but our goal here was to demonstrate how to apply the Product Rule for a scalar-valued function \(f \).

(b) By the Chain Rule,

\[\frac{d}{dt} r(f(t)) = r'(f(t)) f'(t) = r'(e^{3t}) 3e^{3t} = \langle 6e^{3t}, 15e^{3t}, 0 \rangle \]

There are three different Product Rules for vector-valued functions. In addition to the rule for the product of a scalar function \(f \) and a vector-valued function \(r \) stated above, there are Product Rules for the dot and cross products. These rules are very important in applications, as we will see.

THEOREM 3 Product Rule for Dot and Cross Products
Assume that \(r_1(t) \) and \(r_2(t) \) are differentiable. Then

Dot Products: \[\frac{d}{dt} (r_1(t) \cdot r_2(t)) = r_1'(t) \cdot r_2(t) + r_1(t) \cdot r_2'(t) \]

Cross Products: \[\frac{d}{dt} (r_1(t) \times r_2(t)) = \left[r_1'(t) \times r_2(t) \right] + \left[r_1(t) \times r_2'(t) \right] \]

Proof We verify Eq. (4) for vector-valued functions in the plane. If \(r_1(t) = \langle x_1(t), y_1(t) \rangle \) and \(r_2(t) = \langle x_2(t), y_2(t) \rangle \), then

\[\frac{d}{dt} (r_1(t) \cdot r_2(t)) = \frac{d}{dt} \left(x_1(t)x_2(t) + y_1(t)y_2(t) \right) \]

\[= x_1'(t)x_2(t) + x_1(t)x_2'(t) + y_1'(t)y_2(t) + y_1(t)y_2'(t) \]

\[= (x_1'(t)x_2(t) + y_1'(t)y_2(t)) + (x_1(t)x_2'(t) + y_1(t)y_2'(t)) \]

\[= r_1'(t) \cdot r_2(t) + r_1(t) \cdot r_2'(t) \]

The proof of Eq. (5) is left as an exercise (Exercise 71).

In the next example and throughout this chapter, all vector-valued functions are assumed differentiable, unless otherwise stated.
EXAMPLE 4 Prove the formula \(\frac{d}{dt}(\mathbf{r}(t) \times \mathbf{r}'(t)) = \mathbf{r}(t) \times \mathbf{r}''(t) \).

Solution By the Product Formula for cross products,
\[
\frac{d}{dt}(\mathbf{r}(t) \times \mathbf{r}'(t)) = \mathbf{r}'(t) \times \mathbf{r}(t) + \mathbf{r}(t) \times \mathbf{r}'(t) = \mathbf{r}(t) \times \mathbf{r}''(t)
\]

Equals 0

Here, \(\mathbf{r}'(t) \times \mathbf{r}'(t) = \mathbf{0} \) because the cross product of a vector with itself is zero.

The Derivative as a Tangent Vector

The derivative vector \(\mathbf{r}'(t_0) \) has an important geometric property: It points in the direction tangent to the path traced by \(\mathbf{r}(t) \) at \(t = t_0 \).

To understand why, consider the difference quotient, where \(\Delta \mathbf{r} = \mathbf{r}(t_0 + h) - \mathbf{r}(t_0) \) and \(\Delta t = h \) with \(h \neq 0 \):
\[
\frac{\Delta \mathbf{r}}{\Delta t} = \frac{\mathbf{r}(t_0 + h) - \mathbf{r}(t_0)}{h}
\]

The vector \(\Delta \mathbf{r} \) points from the head of \(\mathbf{r}(t_0) \) to the head of \(\mathbf{r}(t_0 + h) \) as in Figure 2(A). The difference quotient \(\Delta \mathbf{r}/\Delta t \) is a scalar multiple of \(\Delta \mathbf{r} \) and therefore points in the same direction [Figure 2(B)].

As \(h = \Delta t \) tends to zero, \(\Delta \mathbf{r} \) also tends to zero but the quotient \(\Delta \mathbf{r}/\Delta t \) approaches a vector \(\mathbf{r}'(t_0) \) (assuming it exists), which, if nonzero, points in the direction tangent to the curve. Figure 3 illustrates the limiting process. We refer to \(\mathbf{r}'(t_0) \) as the tangent vector or the velocity vector at \(\mathbf{r}(t_0) \).

Although it has been our convention to regard all vectors as based at the origin, the tangent vector \(\mathbf{r}'(t) \) is an exception; we visualize it as a vector based at the terminal point of \(\mathbf{r}(t) \). This makes sense because \(\mathbf{r}'(t) \) then appears as a vector tangent to the curve (Figure 3).

EXAMPLE 5 Plotting Tangent Vectors CAS Plot \(\mathbf{r}(t) = (\cos t, \sin t, 4 \cos^2 t) \) together with its tangent vectors at \(t = \pi/4 \) and \(3 \pi/4 \). Find a parametrization of the tangent line at \(t = \pi/4 \).
at where the tangent vector is horizontal.

\[\mathbf{r}'(\pi/4) = \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -4\right), \quad \mathbf{r}'(3\pi/2) = (1, 0, 0) \]

Figure 4 shows a plot of \(\mathbf{r}(t) \) with \(\mathbf{r}'(\pi/4) \) based at \(\mathbf{r}(\pi/4) \) and \(\mathbf{r}'(3\pi/2) \) based at \(\mathbf{r}(3\pi/2) \).

At \(t = \pi/4 \), \(\mathbf{r}'(\pi/4) = \left(\sqrt{2}, \sqrt{2}, 2\right) \), and thus the tangent line is parametrized by

\[
L(t) = \mathbf{r}(\pi/4) + t \mathbf{r}'(\pi/4) = \left(\sqrt{2}, \sqrt{2}, 2\right) t - \left(-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, -4\right)
\]

There are some important differences between vector- and scalar-valued derivatives. The tangent line to a plane curve \(y = f(x) \) is horizontal at \(x = x_0 \) exactly when \(f'(x_0) = 0 \). But in a vector parametrization, the tangent vector \(\mathbf{r}'(t_0) = \langle x'(t_0), y'(t_0) \rangle \) is horizontal and nonzero if \(y'(t_0) = 0 \) but \(x'(t_0) \neq 0 \).

Example 6 Horizontal Tangent Vectors on the Cycloid

The function

\[
\mathbf{r}(t) = (t - \sin t, \cos t, 4 \cos^2 t)
\]

traces a cycloid. Find the points where:

(a) \(\mathbf{r}'(t) \) is horizontal and nonzero. \(\quad \) (b) \(\mathbf{r}'(t) \) is the zero vector.

Solution The tangent vector is \(\mathbf{r}'(t) = (1 - \cos t, \sin t) \). The \(y \)-component of \(\mathbf{r}'(t) \) is zero if \(\sin t = 0 \)—that is, if \(t = 0, \pi, 2\pi, \ldots \). We have

\[
\mathbf{r}(0) = (0, 0), \quad \mathbf{r}'(0) = (1 - \cos 0, \sin 0) = (0, 0) \quad (\text{zero vector})
\]

\[
\mathbf{r}(\pi) = (\pi, 2), \quad \mathbf{r}'(\pi) = (1 - \cos \pi, \sin \pi) = (2, 0) \quad (\text{horizontal})
\]

By periodicity, we conclude that \(\mathbf{r}'(t) \) is nonzero and horizontal for \(t = \pi, 3\pi, 5\pi, \ldots \) and \(\mathbf{r}'(t) = \mathbf{0} \) for \(t = 0, 2\pi, 4\pi, \ldots \) (Figure 5).

Example 7 Orthogonality of \(\mathbf{r} \) and \(\mathbf{r}' \) When \(\mathbf{r} \) Has Constant Length

Prove that if \(\mathbf{r}(t) \) has constant length, then \(\mathbf{r}(t) \) is orthogonal to \(\mathbf{r}'(t) \).

Solution By the Product Rule for Dot Products,

\[
dt \|\mathbf{r}(t)\|^2 = \dt (\mathbf{r}(t) \cdot \mathbf{r}(t)) = \mathbf{r}'(t) \cdot \mathbf{r}(t) + \mathbf{r}(t) \cdot \mathbf{r}'(t) = 2 \mathbf{r}'(t) \cdot \mathbf{r}(t)
\]

This derivative is zero because \(\|\mathbf{r}(t)\| \) is constant. Therefore, \(\mathbf{r}'(t) \cdot \mathbf{r}(t) = 0 \), and \(\mathbf{r}(t) \) is orthogonal to \(\mathbf{r}'(t) \) [or \(\mathbf{r}'(t) = \mathbf{0} \)].
The result of Example 7 has a geometric explanation. A vector parametrization \(\mathbf{r}(t) \) consisting of vectors of constant length \(R \) traces a curve on the surface of a sphere of radius \(R \) with its center at the origin (Figure 6). Thus, \(\mathbf{r}'(t) \) is tangent to this sphere. But any line that is tangent to a sphere at a point \(P \) is orthogonal to the radial vector through \(P \), and thus \(\mathbf{r}(t) \) is orthogonal to \(\mathbf{r}'(t) \).

Vector-Valued Integration

The integral of a vector-valued function can be defined in terms of Riemann sums as in Chapter 5. We will define it more simply via componentwise integration (the two definitions are equivalent). In other words,

\[
\int_a^b \mathbf{r}(t) \, dt = \left(\int_a^b x(t) \, dt, \int_a^b y(t) \, dt, \int_a^b z(t) \, dt \right)
\]

The integral exists if each of the components \(x(t), y(t), z(t) \) is integrable. For example,

\[
\int_0^\pi \langle 1, t, \sin t \rangle \, dt = \left(\int_0^\pi 1 \, dt, \int_0^\pi t \, dt, \int_0^\pi \sin t \, dt \right) = \left(\pi, \frac{1}{2} \pi^2, 2 \right)
\]

Vector-valued integrals obey the same linearity rules as scalar-valued integrals (see Exercise 72).

An antiderivative of \(\mathbf{r}(t) \) is a vector-valued function \(\mathbf{R}(t) \) such that \(\mathbf{R}'(t) = \mathbf{r}(t) \).

In the single-variable case, two functions \(f_1 \) and \(f_2 \) with the same derivative differ by a constant. Similarly, two vector-valued functions with the same derivative differ by a constant vector (i.e., a vector that does not depend on \(t \)). This is proved by applying the scalar result to each component of \(\mathbf{r}(t) \).

Theorem 4 If \(\mathbf{R}_1(t) \) and \(\mathbf{R}_2(t) \) are differentiable and \(\mathbf{R}_1'(t) = \mathbf{R}_2'(t) \), then

\[
\mathbf{R}_1(t) = \mathbf{R}_2(t) + \mathbf{c}
\]

for some constant vector \(\mathbf{c} \).

The general antiderivative of \(\mathbf{r}(t) \) is written

\[
\int \mathbf{r}(t) \, dt = \mathbf{R}(t) + \mathbf{c}
\]

where \(\mathbf{c} = (c_1, c_2, c_3) \) is an arbitrary constant vector. For example,

\[
\int \langle 1, t, \sin t \rangle \, dt = \left(t, \frac{1}{2} t^2, -\cos t \right) + \mathbf{c} = \left(t + c_1, \frac{1}{2} t^2 + c_2, -\cos t + c_3 \right)
\]

Fundamental Theorem of Calculus for Vector-Valued Functions If \(\mathbf{r}(t) \) is continuous on \([a, b]\), and \(\mathbf{R}(t) \) is an antiderivative of \(\mathbf{r}(t) \), then

\[
\int_a^b \mathbf{r}(t) \, dt = \mathbf{R}(b) - \mathbf{R}(a)
\]

Example 8 Finding Position via Vector-Valued Differential Equations The path of a particle satisfies

\[
\frac{d\mathbf{r}}{dt} = \left(1 - 6 \sin 3t, \frac{1}{5} t \right)
\]

Find the particle's location at \(t = 4 \) if \(\mathbf{r}(0) = (4, 1) \).

Solution The general solution is obtained by integration:

\[
\mathbf{r}(t) = \int \left(1 - 6 \sin 3t, \frac{1}{5} t \right) \, dt = \left(t + 2 \cos 3t, \frac{1}{10} t^2 \right) + \mathbf{c}
\]
The initial condition \(\mathbf{r}(0) = (4, 1) \) gives us

\[
\mathbf{r}(0) = (2, 0) + \mathbf{c} = (4, 1)
\]

Therefore, \(\mathbf{c} = (2, 1) \) and (Figure 7)

\[
\mathbf{r}(t) = \left(t + 2 \cos 3t, \frac{1}{10}t^2 \right) + (2, 1) = \left(t + 2 \cos 3t + 2, \frac{1}{10}t^2 + 1 \right)
\]

The particle’s position at \(t = 4 \) is

\[
\mathbf{r}(4) = \left(4 + 2 \cos 12 + 2, \frac{1}{10}(4^2) + 1 \right) \approx (7.69, 2.6)
\]

14.2 SUMMARY

- Limits, differentiation, and integration of vector-valued functions are performed componentwise.
- Differentiation rules:
 - Sum Rule: \((\mathbf{r}_1(t) + \mathbf{r}_2(t))' = \mathbf{r}_1'(t) + \mathbf{r}_2'(t)\)
 - Constant Multiple Rule: \((c \mathbf{r}_2(t))' = c \mathbf{r}_2'(t)\)
 - Chain Rule: \(\frac{d}{dt} \mathbf{r}(g(t)) = g'(t)\mathbf{r}'(g(t))\)
- Product Rules:
 - Scalar times vector: \(\frac{d}{dt}(f(t)\mathbf{r}(t)) = f'(t)\mathbf{r}(t) + f(t)\mathbf{r}'(t)\)
 - Dot product: \(\frac{d}{dt}(\mathbf{r}_1(t) \cdot \mathbf{r}_2(t)) = \mathbf{r}_1'(t) \cdot \mathbf{r}_2(t) + \mathbf{r}_1(t) \cdot \mathbf{r}_2'(t)\)
 - Cross product: \(\frac{d}{dt}(\mathbf{r}_1(t) \times \mathbf{r}_2(t)) = \left[\mathbf{r}_1'(t) \times \mathbf{r}_2(t)\right] + \left[\mathbf{r}_1(t) \times \mathbf{r}_2'(t)\right]\)
- The derivative \(\mathbf{r}'(t_0)\) is called the tangent vector or velocity vector.
- If \(\mathbf{r}'(t_0)\) is nonzero, then it points in the direction tangent to the curve at \(\mathbf{r}(t_0)\). The tangent line at \(\mathbf{r}(t_0)\) has vector parametrization

\[
\mathbf{L}(t) = \mathbf{r}(t_0) + t \mathbf{r}'(t_0)
\]

- If \(\mathbf{R}_1'(t) = \mathbf{R}_2'(t)\), then \(\mathbf{R}_1(t) = \mathbf{R}_2(t) + \mathbf{c}\) for some constant vector \(\mathbf{c}\).
- The Fundamental Theorem for vector-valued functions: If \(\mathbf{r}(t)\) is continuous and \(\mathbf{R}(t)\) is an antiderivative of \(\mathbf{r}(t)\), then

\[
\int_a^b \mathbf{r}(t) \, dt = \mathbf{R}(b) - \mathbf{R}(a)
\]

14.2 EXERCISES

Preliminary Questions

1. State the three forms of the Product Rule for vector-valued functions.

 In Questions 2–6, indicate whether the statement is true or false, and if it is false, provide a correct statement.

2. The derivative of a vector-valued function is defined as the limit of the difference quotient, just as in the scalar-valued case.

3. There are two Chain Rules for vector-valued functions: one for the composite of two vector-valued functions and one for the composite of a vector-valued and a scalar-valued function.

4. The terms “velocity vector” and “tangent vector” for a path \(\mathbf{r}(t)\) mean one and the same thing.

5. The derivative of a vector-valued function is the slope of the tangent line, just as in the scalar case.

6. The derivative of the cross product is the cross product of the derivatives.

7. State whether the following derivatives of vector-valued functions \(\mathbf{r}_1(t)\) and \(\mathbf{r}_2(t)\) are scalars or vectors:

 (a) \(\frac{d}{dt} \mathbf{r}_1(t)\)
 (b) \(\frac{d}{dt} (\mathbf{r}_1(t) \cdot \mathbf{r}_2(t))\)
 (c) \(\frac{d}{dt} (\mathbf{r}_1(t) \times \mathbf{r}_2(t))\)
Exercises

In Exercises 1–6, evaluate the limit.

1. \(\lim_{t \to 3} \left(t^2, 4t, \frac{1}{t} \right) \)

2. \(\lim_{t \to 2} \sin 2t \cos t + \tan 4t \kappa \)

3. \(\lim_{t \to 0} e^{2t}i + \ln(t + 1)j + 4k \)

4. \(\lim_{t \to 1} \left(\frac{1}{t + 1}, \frac{t^2 - 1}{t}, 4t \right) \)

5. Evaluate \(\lim_{t \to 0} \frac{r(t + h) - r(t)}{h} \) for \(r(t) = \left(t^{-1}, \sin t, 4 \right) \).

6. Evaluate \(\lim_{t \to 0} \frac{r(t)}{t} \) for \(r(t) = (\sin t, 1 - \cos t, -2t) \).

In Exercises 7–12, compute the derivative.

7. \(r(t) = (t, t^2, t^3) \), \(s(t) = (e^{3t}, e^{-t}, s^2) \)

8. \(r(t) = (7 - t, 4\sqrt{t}, 8) \)

9. \(b(t) = (e^{3t}, e^{-t}, (t + 1)^{-1}) \)

10. \(c(t) = t^{-1}i - e^{2t}k \)

11. \(a(t) = (\cos 3\theta)i + (\sin^2 \theta)j + (\tan \theta)k \)

12. Calculate \(r'(t) \) and \(e^r(t) \) for \(r(t) = (t, t^2, t^3) \).

13. Sketch the curve parametrized by \(r(t) = (1 - t^2, t) \) for \(-1 \leq t \leq 1 \). Compute the tangent vector at \(t = 1 \) and add it to the sketch.

14. Sketch the curve parametrized by \(r_1(t) = (t, t^2) \) together with its tangent vector at \(t = 1 \). Then do the same for \(r_2(t) = (t^3, t^6) \).

15. Sketch the cycloid \(r(t) = (t - \sin t, 1 - \cos t) \) together with its tangent vectors at \(t = \frac{\pi}{2} \) and \(\frac{3\pi}{2} \).

In Exercises 17–20, evaluate the derivative by using the appropriate Product Rule, where

\[r_1(t) = (t^2, r, t), \quad r_2(t) = (e^{3t}, e^{2t}, e^t) \]

17. \(\frac{d}{dt}(r_1(t) \cdot r_2(t)) \)

18. \(\frac{d}{dt}(r_1^2(t)) \)

19. \(\frac{d}{dt}(r_1(t) \times r_2(t)) \)

20. \(\frac{d}{dt}(r(t) \cdot r_1(t)) \bigg|_{t=2} \), assuming that \(r(2) = (2, 1, 0), \quad r'(2) = (1, 4, 3) \)

In Exercises 21 and 22, let

\[r_1(t) = (t^2, 1, 2t), \quad r_2(t) = (1, 2, e^t) \]

21. Compute \(\frac{d}{dt}(r_1(t) \cdot r_2(t)) \bigg|_{t=1} \) in two ways:
 (a) Calculate \(r_1(t) \cdot r_2(t) \) and differentiate.
 (b) Use the Product Rule.

22. Compute \(\frac{d}{dt}(r_1(t) \times r_2(t)) \bigg|_{t=1} \) in two ways:
 (a) Calculate \(r_1(t) \times r_2(t) \) and differentiate.
 (b) Use the Product Rule.

In Exercises 23–26, evaluate \(\frac{d}{dt}r(g(t)) \) using the Chain Rule.

23. \(r(t) = (t^2, 1-t), \quad g(t) = e^t \)

24. \(r(t) = (t^2, t^3), \quad g(t) = \sin t \)

25. \(r(t) = (e^t, e^{2t}, 4), \quad g(t) = 4t + 9 \)

26. \(r(t) = (4\sin 2t, 6\cos 2t), \quad g(t) = t^2 \)

27. Let \(r(t) = (t^2, 1-t, 4t) \). Calculate the derivative of \(r(t) \cdot a(t) \) at \(t = 2 \), assuming that \(a(2) = (1, 3, 3) \) and \(a'(2) = (-1, 4, 1) \).

28. Let \(v(s) = s^2i + 2s^3 + 9s^{-2}k \). Evaluate \(\frac{d}{ds}v(g(s)) \) at \(s = 4 \), assuming that \(g(4) = 3 \) and \(g'(4) = -9 \).

In Exercises 29–34, find a parametrization of the tangent line at the point indicated.

29. \(r(t) = (t^2, t^3), \quad t = -2 \)

30. \(r(t) = (\cos 2t, \sin 3t), \quad t = \frac{\pi}{2} \)

31. \(r(t) = (1-t^2, 5t, 2t^3), \quad t = 2 \)

32. \(r(t) = (4t, 5t, 9t), \quad t = -4 \)

33. \(r(s) = 4s^{-1}i - \frac{5}{3}s^{-3}k, \quad s = 2 \)

34. \(r(s) = \ln s)i + s^{-1}j + 9sk, \quad s = 1 \)

35. Use Example 4 to calculate \(\frac{d}{dt}(r \times r') \), where \(r(t) = (t, t^2, e^t) \).

36. Let \(r(t) = (3\cos t, 5\sin t, 4\cos t) \). Show that \(||r(t)|| \) is constant and conclude, using Example 7, that \(r(t) \) and \(r'(t) \) are orthogonal. Then compute \(r'(t) \) and verify directly that \(r'(t) \) is orthogonal to \(r(t) \).

37. Show that the derivative of the norm is not equal to the norm of the derivative by verifying that \(||r(t)||' \neq ||r'(t)|| \) for \(r(t) = (1, t, 1) \).

38. Show that \(\frac{d}{dt}(a \times r) = a \times r' \) for any constant vector \(a \).

In Exercises 39–46, evaluate the integrals.

39. \(\int_{-1}^{3} (8t^2 - t, 6t^3 + r) \, dt \)

40. \(\int_{0}^{1} \left(\frac{1}{1 + s^2}, \frac{s}{1 + s^2} \right) \, ds \)

41. \(\int_{-1}^{2} (u^3i + u^2j) \, du \)

42. \(\int_{0}^{1} \left(te^{-t^2}i + t \ln(t^2 + 1)j \right) \, dt \)

43. \(\int_{0}^{1} (2t, 4t, -\cos 3t) \, dt \)

44. \(\int_{0}^{1/2} \left(\frac{1}{u^2}, \frac{1}{u^3}, \frac{1}{u^5} \right) \, du \)

45. \(\int_{1}^{4} (t^{-1}i + 2tj - 4t^2k) \, dt \)

46. \(\int_{0}^{3} (3t + 6\sin^22j + 9k) \, ds \)

In Exercises 47–54, find both the general solution of the differential equation and the solution with the given initial condition.

47. \(\frac{dr}{dt} = (1 - 2t, 4t), \quad r(0) = (3, 1) \)

48. \(r'(t) = i - j, \quad r(0) = 2i + 3k \)

49. \(r'(t) = r^2i + 5j + k, \quad r(1) = j + 2k \)
50. \(r'(t) = (\sin 3t, \sin 3t, t), \quad r\left(\frac{\pi}{4}\right) = \left(2, 4, \frac{\pi^2}{4}\right) \)

51. \(r''(t) = 16k, \quad r(0) = (1, 0, 0), \quad r'(0) = (0, 1, 0) \)

52. \(r''(t) = \left(\frac{2t^2 - 1}{6}, 2 - 1, 1\right), \quad r(1) = (0, 0, 1), \quad r'(1) = (2, 0, 0) \)

53. \(r''(t) = (0, 2, 0), \quad r(3) = (1, 1, 0), \quad r'(3) = (0, 0, 1) \)

54. \(r''(t) = \langle e^t, \sin t, \cos t \rangle, \quad r(0) = (1, 0, 1), \quad r'(0) = (0, 2, 2) \)

55. Find the location at \(t = 3 \) of a particle whose path (Figure 8) satisfies
\[
\frac{dr}{dt} = \left(2t - \frac{1}{(t + 1)^2}, 2t - 4\right), \quad r(0) = (3, 8)
\]

56. Find the location and velocity at \(t = 4 \) of a particle whose path satisfies
\[
\frac{dr}{dt} = \left(2t^{-\frac{1}{2}}, 6, 8t\right), \quad r(1) = (4, 9, 2)
\]

57. A fighter plane, which can shoot a laser beam straight ahead, travels along the path \(r(t) = (3 - t, 21 - t^2, 3 - t^3) \). Show that there is precisely one time \(t \) at which the pilot can hit a target located at the origin.

58. The fighter plane of Exercise 57 travels along the path \(r(t) = (t - t^3, 12 - t^2, 3 - t) \). Show that the pilot cannot hit any target on the \(x \)-axis.

59. Find all solutions to \(r'(t) = v \) with initial condition \(r(1) = w \), where \(v \) and \(w \) are constant vectors in \(\mathbb{R}^3 \).

60. Let \(u \) be a constant vector in \(\mathbb{R}^3 \). Find the solution of the equation \(r'(t) = (\sin t) u \) satisfying \(r'(0) = 0 \).

61. Find all solutions to \(r'(t) = 2r(t) \), where \(r(t) \) is a vector-valued function in 3-space.

62. Show that \(w(t) = (\sin(3t + 4), \sin(3t - 2), \cos 3t) \) satisfies the differential equation \(w'(t) = -9w(t) \).

63. Prove that the Bernoulli spiral (Figure 9) with parametrization \(r(t) = (e^t \cos 4t, e^t \sin 4t) \) has the property that the angle \(\psi \) between the position vector and the tangent vector is constant. Find the angle \(\psi \) in degrees.

64. A curve in polar form \(r = f(\theta) \) has parametrization
\[
r(\theta) = f(\theta) \langle \cos \theta, \sin \theta \rangle
\]
Let \(\psi \) be the angle between the radial and tangent vectors (Figure 10). Prove that
\[
\tan \psi = \frac{r}{dr/d\theta} = \frac{f(\theta)}{f'(\theta)}
\]
Hint: Compute \(r(\theta) \times r'(\theta) \) and \(r(\theta) \cdot r'(\theta) \).

65. Prove that if \(||r'(t)|| \) takes on a local minimum or maximum value at \(t_0 \), then \(r(t_0) \) is orthogonal to \(r'(t_0) \). Explain how this result is related to Figure 11. *Hint:* Observe that if \(||r(t_0)|| \) is a minimum, then \(r(t) \) is tangent at \(t_0 \) to the sphere of radius \(||r(t_0)|| \) centered at the origin.

66. Newton’s Second Law of Motion in vector form states that \(F = \frac{d\mathbf{p}}{dt} \), where \(F \) is the force acting on an object of mass \(m \) and \(\mathbf{p} = m\mathbf{r}'(t) \) is the object’s momentum. The analogs of force and momentum for rotational motion are the **torque** \(\mathbf{r} = \mathbf{r} \times \mathbf{F} \) and the **angular momentum**
\[
\mathbf{J} = \mathbf{r}(t) \times \mathbf{p}(t)
\]
Use the Second Law to prove that \(\mathbf{r} = \frac{d\mathbf{J}}{dt} \).
Further Insights and Challenges

67. Let \(\mathbf{r}(t) = (x(t), y(t)) \) trace a plane curve \(C \). Assume that \(x'(t_0) \neq 0 \). Show that the slope of the tangent vector \(\mathbf{r}'(t_0) \) is equal to the slope \(dy/dx \) of the curve at \(\mathbf{r}(t_0) \).

68. Prove that \(\frac{d}{dt}(\mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}'')) = \mathbf{r} \cdot (\mathbf{r}' \times \mathbf{r}''') \).

69. Verify the Sum and Product Rules for derivatives of vector-valued functions.

70. Verify the Chain Rule for vector-valued functions.

71. Verify the Product Rule for cross products [Eq. (5)].

72. Verify the linearity properties

\[
\int c\mathbf{r}(t)\,dt = c \int \mathbf{r}(t)\,dt \quad \text{(c any constant)}
\]

\[
\int (\mathbf{r}_1(t) + \mathbf{r}_2(t))\,dt = \int \mathbf{r}_1(t)\,dt + \int \mathbf{r}_2(t)\,dt
\]

73. Prove the Substitution Rule [where \(g \) is a differentiable scalar function]:

\[
\int_a^b \mathbf{r}(g(t))g'(t)\,dt = \int_{g^{-1}(a)}^{g^{-1}(b)} \mathbf{r}(u)\,du
\]

74. Prove that \(||\mathbf{r}(t)|| \leq K \) for \(t \in [a, b] \), then

\[
\left| \int_a^b \mathbf{r}(t)\,dt \right| \leq K(b - a)
\]

14.3 Arc Length and Speed

In Section 12.2, we derived a formula for the arc length of a plane curve given in parametric form. This discussion applies to paths in 3-space with only minor changes.

Recall that arc length is defined as the limit of the lengths of polygonal approximations. To produce a polygonal approximation to a path

\[\mathbf{r}(t) = (x(t), y(t), z(t)), \quad a \leq t \leq b \]

we choose a partition \(a = t_0 < t_1 < t_2 < \cdots < t_N = b \) and join the terminal points of the vectors \(\mathbf{r}(t_j) \) by segments, as in Figure 1. As in Section 12.2, we find that if \(\mathbf{r}'(t) \) exists and is continuous on the interval \([a, b]\), then the lengths of the polygonal approximations approach a limit \(L \) as the maximum of the widths \(|t_j - t_{j-1}| \) tends to zero. This limit is the length \(s \) of the path that is computed by the integral in the next theorem.

THEOREM 1 Length of a Path Assume that \(\mathbf{r}(t) \) is differentiable and that \(\mathbf{r}'(t) \) is continuous on \([a, b]\). Then the length \(s \) of the path \(\mathbf{r}(t) \) for \(a \leq t \leq b \) is equal to

\[
s = \int_a^b ||\mathbf{r}'(t)||\,dt = \int_a^b \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}\,dt
\]

EXAMPLE 1 Find the arc length \(s \) of the helix given by \(\mathbf{r}(t) = (\cos 3t, \sin 3t, 3t) \) for \(0 \leq t \leq 2\pi \).

Solution The derivative is \(\mathbf{r}'(t) = (-3\sin 3t, 3\cos 3t, 3) \), and

\[
||\mathbf{r}'(t)||^2 = 9\sin^2 3t + 9\cos^2 3t + 9 = 9(\sin^2 3t + \cos^2 3t) + 9 = 18
\]

Therefore, \(s = \int_0^{2\pi} ||\mathbf{r}'(t)||\,dt = \int_0^{2\pi} \sqrt{18}\,dt = 6\sqrt{2}\pi \).

Speed, by definition, is the rate of change of distance traveled with respect to time \(t \). To calculate the speed, we define the **arc length function**:

\[
s(t) = \int_a^t ||\mathbf{r}'(u)||\,du
\]
Thus, \(s(t) \) is the distance traveled during the time interval \([a, t]\). By the Fundamental Theorem of Calculus (Part II),

\[
\text{Speed at time } t = \frac{ds}{dt} = \| \mathbf{r}'(t) \|
\]

Now we can see why \(\mathbf{r}'(t) \) is known as the velocity vector (and also as the tangent vector). It points in the direction of motion, and its magnitude is the speed (Figure 2). We often denote the velocity vector by \(\mathbf{v}(t) \) and the speed by \(v(t) \):

\[
\mathbf{v}(t) = \mathbf{r}'(t), \quad v(t) = \| \mathbf{v}(t) \|
\]

EXAMPLE 2 Find the speed at time \(t = 2 \) seconds (s) of a particle whose position vector is

\[
\mathbf{r}(t) = t^3 \mathbf{i} - e^t \mathbf{j} + 4t \mathbf{k}
\]

Solution The velocity vector is \(\mathbf{v}(t) = \mathbf{r}'(t) = 3t^2 \mathbf{i} - e^t \mathbf{j} + 4 \mathbf{k} \), and at \(t = 2 \),

\[
\mathbf{v}(2) = 12 \mathbf{i} - e^2 \mathbf{j} + 4 \mathbf{k}
\]

The particle’s speed is \(v(2) = \| \mathbf{v}(2) \| = \sqrt{12^2 + (-e^2)^2 + 4^2} \approx 14.65 \text{ ft/s.} \)

Arc Length Parametrization

We have seen that parametrizations are not unique. For example, \(\mathbf{r}_1(t) = [t, t^2] \) and \(\mathbf{r}_2(u) = [u^3, u^6] \) both parametrize the parabola \(y = x^2 \). Notice in this case that \(\mathbf{r}_2(u) \) is obtained by substituting \(t = u^2 \) in \(\mathbf{r}_1(t) \).

In general, we obtain a new parametrization by making a substitution \(t = g(u) \)—that is, by replacing \(\mathbf{r}(t) \) with \(\mathbf{r}_1(u) = \mathbf{r}(g(u)) \) (Figure 3). If \(t = g(u) \) increases from \(a \) to \(b \) as \(u \) varies from \(c \) to \(d \), then the path \(\mathbf{r}(t) \) for \(a \leq t \leq b \) is also parametrized by \(\mathbf{r}_1(u) \) for \(c \leq u \leq d \).

EXAMPLE 3 Parametrize the path \(\mathbf{r}(t) = (t^2, \sin t, t) \) for \(3 \leq t \leq 9 \) using the parameter \(u \), where \(t = g(u) = e^u \).

Solution Substituting \(t = e^u \) in \(\mathbf{r}(t) \), we obtain the parametrization

\[
\mathbf{r}_1(u) = \mathbf{r}(g(u)) = (e^{2u}, \sin e^u, e^u)
\]

Because \(u = \ln t \), the parameter \(t \) varies from 3 to 9 as \(u \) varies from \(\ln 3 \) to \(\ln 9 \). Therefore, the path is parametrized by \(\mathbf{r}_1(u) \) for \(3 \leq u \leq 9 \).

One way of parametrizing a path is to choose a starting point and "walk along the path" at unit speed (say, 1 m/s). A parametrization of this type is called an **arc length parametrization** [Figure 4(A)]. It is defined by the property that the speed has constant value 1:

\[
\| \mathbf{r}'(t) \| = 1 \quad \text{for all } t
\]
In an arc length parametrization, the distance traveled over any time interval \([a, b]\) is equal to the length of the interval:

\[
\text{Distance traveled over } [a, b] = \int_a^b \| \mathbf{r}'(t) \| \, dt = \int_a^b 1 \, dt = b - a
\]

Finding an arc length parametrization: Start with any parametrization \(\mathbf{r}(t)\) such that \(r'(t) \neq 0\) for all \(t\).

Step 1. Form the arc length integral

\[
s = g(t) = \int_0^t \| \mathbf{r}'(u) \| \, du
\]

Step 2. Because \(\| \mathbf{r}'(t) \| \neq 0\), \(s = g(t)\) is an increasing function and therefore it has an inverse \(t = g^{-1}(s)\).

Step 3. Take the new parametrization

\[
\mathbf{r}_1(s) = \mathbf{r}(g^{-1}(s))
\]

This is our arc length parametrization.

In most cases, we cannot evaluate the arc length integral \(s = g(t)\) explicitly, and we cannot find a formula for its inverse \(g^{-1}(s)\) either. So although arc length parametrizations exist in general, we can find them explicitly only in special cases.

Example 4 Finding an Arc Length Parametrization Find the arc length parametrization of the helix \(\mathbf{r}(t) = (\cos 4t, \sin 4t, 3t)\).

Solution **Step 1.** First, we evaluate the arc length function

\[
\| \mathbf{r}'(t) \| = \| (-4 \sin 4t, 4 \cos 4t, 3) \| = \sqrt{16 \sin^2 4t + 16 \cos^2 4t + 3^2} = 5
\]

\[
s = g(t) = \int_0^t \| \mathbf{r}'(u) \| \, du = \int_0^t 5 \, dt = 5t
\]

Step 2. Then we observe that the inverse of \(s = 5t\) is \(t = s/5\); that is, \(g^{-1}(s) = s/5\).

Step 3. Substituting \(s/5\) for each appearance of \(t\) in the original parametrization, we obtain the arc length parametrization

\[
\mathbf{r}_1(s) = \mathbf{r}(g^{-1}(s)) = \mathbf{r}\left(\frac{s}{5}\right) = \left(\cos \frac{4s}{5}, \sin \frac{4s}{5}, \frac{3s}{5}\right)
\]

As a check, let’s verify that \(\mathbf{r}_1(s)\) has unit speed:

\[
\| \mathbf{r}'_1(s) \| = \left\| \left(-\frac{4}{5} \sin \frac{4s}{5}, \frac{4}{5} \cos \frac{4s}{5}, \frac{3}{5} \right) \right\| = \sqrt{\frac{16}{25} \sin^2 \frac{4s}{5} + \frac{16}{25} \cos^2 \frac{4s}{5} + \frac{9}{25}} = 1
\]
14.3 SUMMARY

- The length s of a path $\mathbf{r}(t) = (x(t), y(t), z(t))$ for $a \leq t \leq b$ is
 \[s = \int_a^b \| \mathbf{r}'(t) \| \, dt = \int_a^b \sqrt{\dot{x}(t)^2 + \dot{y}(t)^2 + \dot{z}(t)^2} \, dt \]
- Arc length function: $s(t) = \int_a^t \| \mathbf{r}'(u) \| \, du$
- Speed is the derivative of distance traveled with respect to time:
 \[v(t) = \frac{ds}{dt} = \| \mathbf{r}'(t) \| \]
- The velocity vector $\mathbf{v}(t) = \mathbf{r}'(t)$ points in the direction of motion [provided that $\mathbf{r}'(t) \neq 0$] and its magnitude $v(t) = \| \mathbf{r}'(t) \|$ is the object’s speed.
- We say that $\mathbf{r}(s)$ is an arc length parametrization if $\| \mathbf{r}'(s) \| = 1$ for all s. In this case, the length of the path for $a \leq s \leq b$ is $b - a$.
- If $\mathbf{r}(t)$ is any parametrization such that $\mathbf{r}'(t) \neq 0$ for all t, then
 \[\mathbf{r}_1(s) = \mathbf{r}(g^{-1}(s)) \]
is an arc length parametrization, where $t = g^{-1}(s)$ is the inverse of the arc length function $s = g(t)$.

14.3 EXERCISES

Preliminary Questions

1. At a given instant, a car on a roller coaster has velocity vector $\mathbf{v}' = (25, -35, 10)$ (in miles per hour). What would the velocity vector be if the speed were doubled? What would it be if the car’s direction were reversed but its speed remained unchanged?
2. Two cars travel in the same direction along the same roller coaster (at different times). Which of the following statements about their velocity vectors point in the same direction but may have different lengths.
 (a) The velocity vectors are identical.
 (b) The velocity vectors point in the same direction but may have different lengths.
 (c) The velocity vectors may point in opposite directions.
3. A mosquito flies along a parabola with speed $v(t) = t^2$. Let $L(t)$ be the total distance traveled at time t.
 (a) How fast is $L(t)$ changing at $t = 2$?
 (b) Is $L(t)$ equal to the mosquito’s distance from the origin?
4. What is the length of the path traced by $\mathbf{r}(t)$ for $4 \leq t \leq 10$ if $\mathbf{r}(t)$ is an arc length parametrization?

Exercises

In Exercises 1–8, compute the length of the curve over the given interval.

1. $\mathbf{r}(t) = (3t, 4t - 3, 6t + 1), \quad 0 \leq t \leq 3$
2. $\mathbf{r}(t) = 2t - 3t\mathbf{k}, \quad 1 \leq t \leq 15$
3. $\mathbf{r}(t) = (2t, \ln t, t^2), \quad 1 \leq t \leq 4$
4. $\mathbf{r}(t) = (\cos t, \sin t, 3/2), \quad 0 \leq t \leq 2\pi$
5. $\mathbf{r}(t) = (t, 4t^{1/2}, 2t^{3/2}), \quad 0 \leq t \leq 3$
6. $\mathbf{r}(t) = (2t^2 + 1, 2t^2 - 1, t^3), \quad 0 \leq t \leq 2$
7. $\mathbf{r}(t) = (\cos t, \sin t, 3t), \quad 0 \leq t \leq 2\pi$
 \[\text{Hint:} \quad \int \sqrt{t^2 + a^2} \, dt = \frac{1}{2} t \sqrt{t^2 + a^2} + \frac{1}{2} a^2 \ln(t + \sqrt{t^2 + a^2}) \]
8. $\mathbf{r}(t) = t\mathbf{i} + 2t\mathbf{j} + (t^2 - 3)\mathbf{k}, \quad 0 \leq t \leq 2$ (See the hint above.)

In Exercises 9 and 10, compute the arc length function $s(t) = \int_a^t \| \mathbf{r}'(u) \| \, du$ for the given value of a.

9. $\mathbf{r}(t) = (t^2, 2t^2, t^3), \quad a = 0$
10. $\mathbf{r}(t) = (4t^{1/2}, \ln t, 2t), \quad a = 1$

In Exercises 11–16, find the speed at the given value of t.

11. $\mathbf{r}(t) = (2t + 3, 4t - 3, 5 - t), \quad t = 4$
12. $\mathbf{r}(t) = (t, t^2, t^3), \quad t = 1$
13. $\mathbf{r}(t) = (t, \sin t, \ln t^2), \quad t = 1$
14. $\mathbf{r}(t) = (e^{-t}, 12, 3t^{-1}), \quad t = 3$
15. $\mathbf{r}(t) = (\sin 3t, \cos 4t, \cos 5t), \quad t = \frac{\pi}{2}$
16. $\mathbf{r}(t) = (\cosh t, \sinh t, t), \quad t = 0$
17. At an air show, a jet has a trajectory following the curve \(y = x^2 \). If when the jet is at the point \((1, 1)\), it has a speed of 500 km/h, determine its tangent vector at this point.

18. What is the velocity vector of a particle traveling to the right along the hyperbola \(y = x^{-1} \) with constant speed 5 cm/s when the particle’s location is \((2, \frac{1}{2})\)?

19. A bee with velocity vector \(\mathbf{r}'(t) \) starts out at the origin at \(t = 0 \) and flies around for \(T \) seconds. Where is the bee located at time \(T \) if \(\int_0^T \mathbf{r}'(u) \, du = 0 \)? What does the quantity \(\int_0^T \| \mathbf{r}'(u) \| \, du \) represent?

20. The DNA molecule comes in the form of a double helix, meaning two helices that wrap around one another. Suppose a single one of the helices has a radius of 10 Å (1 angstrom Å = 10^{-10} cm) and one full turn of the helix has a height of 34 Å.
 (a) Show that the helix can be parametrized by \(\mathbf{r}(t) = \left(10 \cos t, 10 \sin t, \frac{34t}{10} \right) \).
 (b) Find the arc length of one full turn of the helix.

21. Let \(\mathbf{r}(t) = \left(R \cos \left(\frac{2\pi Nt}{h} \right), R \sin \left(\frac{2\pi Nt}{h} \right), t \right), \quad 0 \leq t \leq h \)
 (a) Show that \(\mathbf{r}(t) \) parametrizes a helix of radius \(R \) and height \(h \) making \(N \) complete turns.
 (b) Guess which of the two springs in Figure 5 uses more wire.
 (c) Compute the lengths of the two springs and compare.

22. Use Exercise 21 to find a general formula for the length of a helix of radius \(R \) and height \(h \) that makes \(N \) complete turns.

23. The cycloid generated by the unit circle has parametrization \(\mathbf{r}(t) = (t - \sin t, 1 - \cos t) \)
 (a) Find the value of \(t \) in \([0, 2\pi]\) where the speed is at a maximum.
 (b) Show that one arch of the cycloid has length 8. Recall the identity \(\sin^2(t/2) = (1 - \cos t)/2 \).

24. Which of the following is an arc length parametrization of a circle of radius 4 centered at the origin?
 (a) \(\mathbf{r}_1(t) = (4 \sin t, 4 \cos t) \)
 (b) \(\mathbf{r}_2(t) = (4 \sin 4t, 4 \cos 4t) \)
 (c) \(\mathbf{r}_3(t) = (4 \sin \frac{t}{4}, 4 \cos \frac{t}{4}) \)

25. Let \(\mathbf{r}(t) = (3t + 1, 4t - 5, 2t) \).
 (a) Evaluate the arc length integral \(s(t) = \int_0^t \| \mathbf{r}'(u) \| \, du \).
 (b) Find the inverse \(g(s) \) of \(s(t) \).
 (c) Verify that \(\mathbf{r}_1(s) = \mathbf{r}(g(s)) \) is an arc length parametrization.

26. Find an arc length parametrization of the line \(y = 4x + 9 \).

27. Let \(\mathbf{r}(t) = \mathbf{w} + t\mathbf{v} \) be the parametrization of a line.
 (a) Show that the arc length function \(s(t) = \int_0^t \| \mathbf{r}'(u) \| \, du \) is given by \(s(t) = t\|\mathbf{v}\| \). This shows that \(\mathbf{r}(t) \) is an arc length parametrization if and only if \(\mathbf{v} \) is a unit vector.
 (b) Find an arc length parametrization of the line with \(\mathbf{w} = (1, 2, 3) \) and \(\mathbf{v} = (3, 4, 5) \).

28. Find an arc length parametrization of the circle in the plane \(z = 9 \) with radius 4 and center \((1, 4, 9)\).

29. Find a path that traces the circle in the plane \(y = 10 \) with radius 4 and center \((2, 10, -3)\) with constant speed 8.

30. Find an arc length parametrization of the curve \(\mathbf{r}(t) = \left(t, \frac{2}{3}t^{3/2}, \frac{2}{3}t^{3/2} \right) \), with the parameter \(s \) measuring from \((0, 0, 0, 0)\).

31. Find an arc length parametrization of the curve \(\mathbf{r}(t) = \left(\cos t, \sin t, \frac{2}{3}t^{3/2} \right) \), with the parameter \(s \) measuring from \((1, 0, 0, 0)\).

32. Find an arc length parametrization of \(\mathbf{r}(t) = (e^t \sin t, e^t \cos t, e^t) \).

33. Find an arc length parametrization of \(\mathbf{r}(t) = (t^2, t^3) \).

34. Find an arc length parametrization of the cycloid with parametrization \(\mathbf{r}(t) = (t - \sin t, 1 - \cos t) \).

35. Find an arc length parametrization of the line \(y = mx \) for an arbitrary slope \(m \).

36. Express the arc length \(L \) of \(y = x^3 \) for \(0 \leq x \leq 8 \) as an integral in two ways, using the parametrizations \(\mathbf{r}_1(t) = (t, t^3) \) and \(\mathbf{r}_2(t) = (t^3, t^3) \). Do not evaluate the integrals, but use substitution to show that they yield the same result.

37. The curve known as the Bernoulli spiral (Figure 6) has parametrization \(\mathbf{r}(t) = (e^t \cos 4t, e^t \sin 4t) \).
 (a) Evaluate \(s(t) = \int_{-\infty}^t \| \mathbf{r}'(u) \| \, du \). It is convenient to take lower limit \(-\infty \) because \(\mathbf{r}(-\infty) = (0, 0) \).
 (b) Use (a) to find an arc length parametrization of \(\mathbf{r}(t) \).
Further Insights and Challenges

38. Prove that the length of a curve as computed using the arc length integral does not depend on its parametrization. More precisely, let \(C \) be the curve traced by \(\mathbf{r}(t) \) for \(a \leq t \leq b \). Let \(f(s) \) be a differentiable function such that \(f'(s) > 0 \) and \(f(c) = a \) and \(f(d) = b \). Then \(\mathbf{r}_s(s) = \mathbf{r}(f(s)) \) parametrizes \(C \) for \(c \leq s \leq d \). Verify that

\[
\int_a^b \| \mathbf{r}'(t) \| \, dt = \int_c^d \| \mathbf{r}'_s(s) \| \, ds
\]

39. The unit circle with the point \((-1, 0)\) removed has parametrization (see Exercise 79 in Section 12.1)

\[
\mathbf{r}(t) = \left(\frac{1 - t^2}{1 + t^2}, \frac{2t}{1 + t^2} \right), \quad -\infty < t < \infty
\]

Use this parametrization to compute the length of the unit circle as an improper integral. Hint: The expression for \(\| \mathbf{r}'(t) \| \) simplifies.

40. The involute of a circle (Figure 7), traced by a point at the end of a thread unwinding from a circular spool of radius \(R \), has parametrization (see Exercise 29 in Section 12.2)

\[
\mathbf{r}(\theta) = \left(R(\cos \theta + \theta \sin \theta), R(\sin \theta - \theta \cos \theta) \right)
\]

Find an arc length parametrization of the involute.

41. The curve \(\mathbf{r}(t) = (t - \tanh t, \sech t) \) is called a tractrix (see Exercise 100 in Section 12.1).

(a) Show that \(s(t) = \int_0^t \| \mathbf{r}'(u) \| \, du \) is equal to \(s(t) = \ln(\cosh t) \).

(b) Show that \(t = g(s) = \ln(e^s + \sqrt{e^{2s} - 1}) \) is an inverse of \(s(t) \) and verify that

\[
\mathbf{r}_s(s) = \left(\tanh^{-1} \left(\sqrt{1 - e^{-2s}} \right) - \sqrt{1 - e^{-2s}}, e^{-s} \right)
\]

is an arc length parametrization of the tractrix.

14.4 Curvature

Curvature is a measure of how much a curve bends. It is used to study geometric properties of curves and motion along curves, and has applications in diverse areas such as roller coaster design (Figure 1), optics, eye surgery (see Exercise 68), and biochemistry (Figure 2).

In Chapter 4, we used the value of second derivative \(f''(x) \) to measure the bending or concavity of the graph of \(y = f(x) \), so it might seem natural to take \(f''(x) \) as our definition of curvature. However, there are two reasons why this proposed definition will not work. First, \(f''(x) \) makes sense only for a graph \(y = f(x) \) in the plane, and our goal is to define curvature for curves in 3-space. A more serious problem is that \(f''(x) \) does not truly capture the intrinsic curvature of a curve. A circle, for example, is symmetric, so its curvature ought to be the same at every point (Figure 3). But the upper semicircle is the graph of \(f(x) = (1 - x^2)^{1/2} \) and the second derivative \(f''(x) = -(1 - x^2)^{-3/2} \) does not have the same value at each point of the semicircle. We must look for a definition that depends only on the curve itself and not how it is oriented relative to the axes.

Consider a path with parametrization \(\mathbf{r}(t) = (x(t), y(t), z(t)) \). We assume that \(\mathbf{r}'(t) \neq \mathbf{0} \) for all \(t \) in the domain of \(\mathbf{r}(t) \). A parametrization with this property is called regular. At every point \(P \) along the path, there is a unit tangent vector \(\mathbf{T} = \mathbf{T}_P \) that points in the
direction of motion of the parametrization. We write \(\mathbf{T}(t) \) for the unit tangent vector at the terminal point of \(\mathbf{r}(t) \):

\[
\text{Unit tangent vector } = \mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}
\]

For example, if \(\mathbf{r}(t) = (t, t^2, t^3) \), then \(\mathbf{r}'(t) = (1, 2t, 3t^2) \), and the unit tangent vector at \(P = (1, 1, 1) \), which is the terminal point of \(\mathbf{r}(1) = (1, 1, 1) \), is

\[
\mathbf{T}_P = \frac{(1, 2, 3)}{\|(1, 2, 3)\|} = \frac{(1, 2, 3)}{\sqrt{1^2 + 2^2 + 3^2}} = \left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right)
\]

If we choose another parametrization, say, \(\mathbf{r}_1(s) \), then we can also view \(\mathbf{T} \) as function of \(s \); \(\mathbf{T}(s) \) is the unit tangent vector at the terminal point of \(\mathbf{r}_1(s) \).

Now imagine walking along a path and observing how the unit tangent vector \(\mathbf{T} \) changes direction (Figure 4). A change in \(\mathbf{T} \) indicates that the path is bending, and the more rapidly \(\mathbf{T} \) changes, the more the path bends. Thus, \(\left\| \frac{d\mathbf{T}}{dt} \right\| \) would seem to be a good measure of curvature. However, \(\left\| \frac{d\mathbf{T}}{dt} \right\| \) depends on how fast you walk (when you walk faster, the unit tangent vector changes more quickly). Therefore, we assume that you walk at unit speed. In other words, curvature is the magnitude \(\kappa(s) = \left\| \frac{d\mathbf{T}}{ds} \right\| \), where \(s \) is the parameter of an arc length parametrization. Recall that \(r(s) \) is an arc length parametrization if \(\|r'(s)\| = 1 \) for all \(s \).

Definition Curvature Let \(\mathbf{r}(s) \) be an arc length parametrization and \(\mathbf{T} \) the unit tangent vector. The **curvature** at \(\mathbf{r}(s) \) is the quantity (denoted by a lowercase Greek letter “kappa”)

\[
\kappa(s) = \left\| \frac{d\mathbf{T}}{ds} \right\|
\]

Our first two examples illustrate curvature in the case of lines and circles.

Example 1 A Line Has Zero Curvature Compute the curvature at each point on the line \(\mathbf{r}(t) = (x_0, y_0, z_0) + tu \), where \(\|u\| = 1 \).

Solution First, we note that because \(u \) is a unit vector, \(\mathbf{r}(t) \) is an arc length parametrization. Indeed, \(\mathbf{r}'(t) = u \) and thus \(\|\mathbf{r}'(t)\| = \|u\| = 1 \). Therefore, we have \(\mathbf{T}(t) = \mathbf{r}'(t)/\|\mathbf{r}'(t)\| = \mathbf{r}'(t) \) and hence \(\mathbf{T}'(t) = \mathbf{r}''(t) = \mathbf{0} \) [because \(\mathbf{r}'(t) = u \) is constant]. As expected, the curvature is zero at all points on a line:

\[
\kappa(t) = \left\| \frac{d\mathbf{T}}{dt} \right\| = \left\| \mathbf{r}''(t) \right\| = 0
\]

Example 2 The Curvature of a Circle of Radius \(R \) Is \(1/R \) Compute the curvature of a circle of radius \(R \).

Solution Assume the circle is centered at the origin, so that it has parametrization \(\mathbf{r}(\theta) = (R \cos \theta, R \sin \theta) \) (Figure 5). This is not an arc length parametrization if \(R \neq 1 \). To find an arc length parametrization, we compute the arc length function:

\[
s(\theta) = \int_0^\theta \|\mathbf{r}'(u)\| \, du = \int_0^\theta R \, du = R \theta
\]
Thus, \(s = R \theta \), and the inverse of the arc length function \(s = g(\theta) \) is \(\theta = g^{-1}(s) = s/R \).

In Section 14.3, we showed that \(r_1(s) = r(g^{-1}(s)) \) is an arc length parametrization. In our case, we obtain

\[
r_1(s) = r(g(s)) = r \left(\frac{s}{R} \right) = \left\{ R \cos \frac{s}{R}, R \sin \frac{s}{R} \right\}
\]

The unit tangent vector and its derivative are

\[
T(s) = \frac{dr_1}{ds} = \frac{d}{ds} \left\{ R \cos \frac{s}{R}, R \sin \frac{s}{R} \right\} = \left\{ -\sin \frac{s}{R}, \cos \frac{s}{R} \right\}
\]

By definition of curvature,

\[
\kappa(s) = \left\| \frac{dT}{ds} \right\| = \frac{1}{R} \left\| \left\{ -\sin \frac{s}{R}, \cos \frac{s}{R} \right\} \right\| = \frac{1}{R}
\]

This shows that the curvature is \(1/R \) at all points on the circle.

In practice, it is often impossible to find an arc length parametrization explicitly. Fortunately, we can compute curvature using any regular parametrization \(r(t) \).

Since arc length \(s \) is a function of time \(t \), the derivatives of \(T \) with respect to \(t \) and \(s \) are related by the Chain Rule. Denoting the derivative with respect to \(t \) by a prime, we have

\[
T'(t) = \frac{dT}{dt} = \frac{d}{dt} \left\{ R \cos \frac{s}{R}, R \sin \frac{s}{R} \right\} = v(t) \frac{dT}{ds}
\]

where \(v(t) = \frac{ds}{dt} = \left\| r'(t) \right\| \) is the speed of \(r(t) \). Since curvature is the magnitude \(\left\| \frac{dT}{ds} \right\| \), we obtain

\[
\left\| T'(t) \right\| = v(t) \kappa(t)
\]

This yields an alternative formula for the curvature in the case where we do not have an arc length parametrization:

\[
\kappa(t) = \frac{1}{v(t)} \left\| T'(t) \right\| \tag{2}
\]

We can directly apply this formula to find curvature, but we can also use it to derive another option for calculations.

THEOREM 1 Formula for Curvature If \(r(t) \) is a regular parametrization, then the curvature at \(r(t) \) is

\[
\kappa(t) = \frac{\left\| r'(t) \times r''(t) \right\|}{\left\| r'(t) \right\|^3} \tag{3}
\]

Proof Since \(v(t) = \left\| r'(t) \right\| \), we have \(r'(t) = v(t)T(t) \). By the Product Rule,

\[
r''(t) = v'(t)T(t) + v(t)T'(t)
\]

Now compute the following cross product, using the fact that \(T(t) \times T(t) = 0 \):

\[
r'(t) \times r''(t) = v(t)T(t) \times (v'(t)T(t) + v(t)T'(t))
\]

\[
= v(t)^2 T(t) \times T'(t) \tag{4}
\]
Because $\mathbf{T}(t)$ and $\mathbf{T}'(t)$ are orthogonal (see the first marginal note), we have (by the second marginal note)
\[
\|\mathbf{T}(t) \times \mathbf{T}'(t)\| = \|\mathbf{T}(t)\| \|\mathbf{T}'(t)\| \sin \frac{\pi}{2} = \|\mathbf{T}'(t)\|
\]
Eq. (4) yields $\|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = v(t)^2 \|\mathbf{T}'(t)\|$. Using Eq. (2), we obtain
\[
\|\mathbf{r}'(t) \times \mathbf{r}''(t)\| = v(t)^2 \|\mathbf{T}'(t)\| = v(t)^3 \kappa(t) = \|\mathbf{r}'(t)\|^3 \kappa(t)
\]
This yields the desired formula.

Example 3 Twisted Cubic **CAS** Calculate the curvature $\kappa(t)$ of the twisted cubic $\mathbf{r}(t) = (t, t^2, t^3)$. Then plot the graph of $\kappa(t)$ and determine where the curvature is largest.

Solution The derivatives are
\[
\mathbf{r}'(t) = (1, 2t, 3t^2), \quad \mathbf{r}''(t) = (0, 2, 6t)
\]
The parametrization is regular because $\mathbf{r}'(t) \neq \mathbf{0}$ for all t, so we may use Eq. (3):
\[
\kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3} = \frac{\sqrt{36t^4 + 36t^2 + 4}}{(1 + 4t^2 + 9t^4)^{3/2}}
\]
The graph of $\kappa(t)$ in Figure 6 shows that the curvature is largest at $t = 0$. The curve $\mathbf{r}(t)$ is illustrated in Figure 7. The plot is colored by curvature, with large curvature represented in blue, small curvature in green.

In the second paragraph of this section, we pointed out that the curvature of a graph $y = f(x)$ must involve more than just the value of the second derivative $f''(x)$. We now show that the curvature can be expressed in terms of both $f''(x)$ and $f'(x)$.

Theorem 2 Curvature of a Graph in the Plane **Theorem** The curvature at the point $(x, f(x))$ on the graph of $y = f(x)$ is equal to
\[
\kappa(x) = \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}}
\]

Proof The curve $y = f(x)$ has parametrization $\mathbf{r}(x) = (x, f(x))$. Therefore, $\mathbf{r}'(x) = (1, f'(x))$ and $\mathbf{r}''(x) = (0, f''(x))$. To apply Theorem 1, we treat $\mathbf{r}'(x)$ and $\mathbf{r}''(x)$ as vectors in \mathbb{R}^3 with the z-component equal to zero. Then
\[
\mathbf{r}'(x) \times \mathbf{r}''(x) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & f'(x) & 0 \\ 0 & f''(x) & 1 \end{vmatrix} = f''(x)\mathbf{k}
\]
Since $\|\mathbf{r}'(x)\| = \|(1, f'(x))\| = (1 + f'(x)^2)^{1/2}$, Eq. (3) yields
\[
\kappa(x) = \frac{\|\mathbf{r}'(x) \times \mathbf{r}''(x)\|}{\|\mathbf{r}'(x)\|^3} = \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}}
\]

Conceptual Insight Curvature for plane curves has a geometric interpretation in terms of the angle of inclination, defined as the angle θ between the tangent vector and the horizontal (Figure 8). The angle θ changes as the curve bends, and we can show that the curvature κ is the rate of change of θ as you walk along the curve at unit speed (see Exercise 69).
Example 4 Compute the curvature of \(f(x) = x^3 - 3x^2 + 4 \) at \(x = 0, 1, 2, 3 \).

Solution We apply Eq. (5):

\[
\begin{align*}
 f'(x) &= 3x^2 - 6x = 3x(x - 2), & f''(x) &= 6x - 6 \\
 \kappa(x) &= \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}} = \frac{6|6x - 6|}{(1 + 9x^2(x - 2)^2)^{3/2}} \\
\end{align*}
\]

We obtain the following values:

\[
\begin{align*}
 \kappa(0) &= \frac{6}{(1 + 0)^{3/2}} = 6, & \kappa(1) &= \frac{0}{(1 + 9)^{3/2}} = 0 \\
 \kappa(2) &= \frac{6}{(1 + 0)^{3/2}} = 6, & \kappa(3) &= \frac{12}{82^{3/2}} \approx 0.016 \\
\end{align*}
\]

Figure 9 shows that the graph bends more where the curvature is large.

The Normal Vector

We noted above that \(\mathbf{T}'(t) \) and \(\mathbf{T}(t) \) are orthogonal. The unit vector in the direction of \(\mathbf{T}'(t) \), assuming it is nonzero, is called the **normal vector** and denoted \(\mathbf{N}(t) \) or simply \(\mathbf{N} \):

\[
\text{Normal vector: } \mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} \quad (6)
\]

This pair \(\mathbf{T} \) and \(\mathbf{N} \) of orthogonal unit vectors play a critical role in understanding a given space curve. Since \(\|\mathbf{T}'(t)\| = v(t)\kappa(t) \) by Eq. (2), we have

\[
\mathbf{T}'(t) = v(t)\kappa(t)\mathbf{N}(t) \quad (7)
\]

Intuitively, \(\mathbf{N} \) points in the direction in which the curve is turning (Figure 10). This is particularly clear for a plane curve. In this case, there are two unit vectors orthogonal to \(\mathbf{T} \) (Figure 11), and of these two, \(\mathbf{N} \) is the vector that points to the “inside” of the curve.

Example 5 Normal Vector to a Helix Find the unit normal vector at \(t = \frac{\pi}{4} \) to the helix \(\mathbf{r}(t) = (\cos t, \sin t, t) \).

Solution The tangent vector \(\mathbf{r}'(t) = (-\sin t, \cos t, 1) \) has length \(\|\mathbf{r}'(t)\| = \sqrt{(-\sin t)^2 + (\cos t)^2 + 1} = \sqrt{2} \), so

\[
\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \frac{1}{\sqrt{2}} (-\sin t, \cos t, 1)
\]

\[
\mathbf{T}'(t) = \frac{1}{\sqrt{2}} (-\cos t, -\sin t, 0)
\]

\[
\|\mathbf{T}'(t)\| = \frac{1}{\sqrt{2}} \sqrt{(-\cos t)^2 + (-\sin t)^2 + 0} = \frac{1}{\sqrt{2}}
\]

\[
\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} = (-\cos t, -\sin t, 0)
\]

Hence, \(\mathbf{N} \left(\frac{\pi}{4} \right) = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 0 \right) \) (Figure 11).

Note that at every point on the helix, the normal vector is a horizontal vector that points directly back at the \(z \)-axis. This reflects the fact that the curve is always turning back toward the \(z \)-axis.

Figure 9 Graph of \(f(x) = x^3 - 3x^2 + 4 \) and the curvature \(\kappa(x) \).

Figure 10 For a plane curve, the unit normal vector points in the direction of bending.

Figure 11 Unit tangent and unit normal vectors at \(t = \frac{\pi}{4} \) on the helix in Example 5.
The Frenet Frame

Given a point on a curve corresponding to a parameter value \(t \), we have now introduced two unit vectors at that point: the unit tangent vector \(T(t) \) that points in the direction of motion and the unit normal vector \(N(t) \) that points in the direction of turning. There is a third vector that is related to the first two, and that together with those two, provides a frame of reference at the point. The binormal vector, denoted \(B(t) \), is given by

\[
B(t) = T(t) \times N(t)
\]

The fact \(B \) is a unit vector is verified in Exercise 83. Since \(T \) and \(N \) are already perpendicular to one another, and since, by its definition in terms of a cross product, \(B \) is perpendicular to each of them, these three vectors form a set \((T, N, B)\) of mutually perpendicular unit vectors, which we call the Frenet frame, after the French geometer Jean Frenet (1816–1900). As we move along a space curve, this frame, always centered on the helix \(\mathbf{r}(t) = (\cos t, \sin t, t) \).

Solution We have already calculated

\[
T(t) = \frac{1}{\sqrt{2}} (\sin t, \cos t, 1)
\]
\[
N(t) = (\cos t, -\sin t, 0)
\]

Hence,

\[
B(t) = T(t) \times N(t) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -\sin t/\sqrt{2} & \cos t/\sqrt{2} & 1/\sqrt{2} \\ -\cos t & -\sin t & 0 \end{vmatrix} = \frac{\sin t}{\sqrt{2}} \mathbf{i} + \frac{-\cos t}{\sqrt{2}} \mathbf{j} + \frac{1}{\sqrt{2}} \mathbf{k}
\]

We conclude by describing another interpretation of curvature in terms of the osculating or “best-fitting circle” circle. Suppose that \(P \) is a point on a plane curve \(C \) where the curvature \(\kappa_P \) is nonzero. The osculating circle, denoted \(O_{\kappa_P} \), is the circle of radius \(R = 1/\kappa_P \) through \(P \) whose center \(Q \) lies in the direction of the unit normal \(N \) (Figure 13). In other words, the center \(Q \) is determined by

\[
\overrightarrow{OQ} = \mathbf{r}(t_0) + \frac{1}{\kappa_P} \mathbf{N} = \mathbf{r}(t_0) + R \mathbf{N}
\]

Among all circles tangent to \(C \) at \(P \), \(O_{\kappa_P} \) “best fits” the curve (Figure 14; see also Exercise 79). We refer to \(R = 1/\kappa_P \) as the radius of curvature at \(P \). The center \(Q \) of \(O_{\kappa_P} \) is called the center of curvature at \(P \).

\[
Q = \mathbf{r}(t_0) + R \mathbf{N}
\]

\[
R = \frac{1}{\kappa_P}
\]

\[
\kappa = 2^{1/2} \quad \kappa\left(\frac{1}{2}\right) = \frac{1}{\sqrt{2}}
\]

Exercise 79). We refer to

Solution Let \(f(x) = x^2 \). We use the parametrization

\[
\mathbf{r}(x) = (x, f(x)) = (x, x^2)
\]

and proceed by the following steps.

Step 1. Find the radius.

Apply Eq. (5) to \(f(x) = x^2 \) to compute the curvature:

\[
\kappa(x) = \frac{|f''(x)|}{(1 + f'(x)^2)^{3/2}} = \frac{2}{(1 + 4x^2)^{3/2}}, \quad \kappa\left(\frac{1}{2}\right) = \frac{2}{2^{3/2}} = \frac{1}{\sqrt{2}}
\]

The osculating circle has radius \(R = 1/\kappa\left(\frac{1}{2}\right) = \sqrt{2} \).
If a curve C lies in a plane, then this plane is the osculating plane. For a general curve in 3-space, the osculating plane varies from point to point.

Step 2. Find N at $t = \frac{1}{2}$.

For a plane curve, there is an easy way to find N without computing T'. The tangent vector is $r'(x) = (1, 2x)$, and we know that $\langle 2x, -1 \rangle$ is orthogonal to $r'(x)$ (because their dot product is zero). Therefore, $N(x) = \frac{\langle -2x, 1 \rangle}{\sqrt{1 + 4x^2}}$. Figure 15 shows that the normal vector points in the positive y-direction (the direction of bending). Therefore,

$$N\left(\frac{1}{2}\right) = \frac{\langle -2, 1 \rangle}{\sqrt{4}} = \frac{\langle -1, 1 \rangle}{\sqrt{2}}$$

Step 3. Find the center Q.

Apply Eq. (9) with $t_0 = \frac{1}{2}$:

$$\overrightarrow{OQ} = r\left(\frac{1}{2}\right) + \frac{1}{\kappa'(1/2)}N\left(\frac{1}{2}\right) = \left\langle \frac{1}{2}, \frac{1}{\sqrt{4}} \right\rangle + \sqrt{2}\left\langle \frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle = \left\langle -\frac{1}{2}, \frac{5}{4} \right\rangle$$

Step 4. Parametrize the osculating circle.

The osculating circle has radius $R = \sqrt{2}$, so it has parametrization

$$r(t) = \left\langle -\frac{1}{2}, \frac{5}{4} \right\rangle + \sqrt{2}\left(\cos t, \sin t\right)$$

To define the osculating circle at a point P on a space curve C, we must first specify the plane in which the circle lies. The **osculating plane** is the plane through P determined by the unit tangent T_P and the unit normal N_P at P (we assume that $T' \neq 0$, so N is defined). Intuitively, the osculating plane is the plane that “most nearly” contains the curve C near P (see Figure 16). Notice that because it contains the vectors T_P and N_P, the vector B_P is a normal vector for the plane. The osculating circle is the circle in the osculating plane through P of radius $R = 1/\kappa_P$ whose center is located in the normal direction N_P from P. Equation (9) remains valid for space curves.

EXAMPLE 8 Continuing Examples 5 and 6, find the osculating plane for the helix $r(t) = (\cos t, \sin t, t)$ at the point on the helix corresponding to $t = \frac{\pi}{4}$.

Solution The point on the helix is given by $r\left(\frac{\pi}{4}\right) = \left\langle \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{\pi}{4} \right\rangle$.

In Example 6, we found $B(t) = \left\langle \frac{\sin t}{\sqrt{2}}, \frac{-\cos t}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right\rangle$. Therefore, $B\left(\frac{\pi}{4}\right) = \left\langle \frac{1}{2}, -\frac{1}{2}, \frac{1}{\sqrt{2}} \right\rangle$.

Hence, the equation of the osculating plane, which contains this point and has its normal vector given by B, is

$$\frac{1}{2} \left(x - \frac{\sqrt{2}}{2} \right) - \frac{1}{2} \left(y - \frac{\sqrt{2}}{2} \right) + \frac{1}{\sqrt{2}} \left(z - \frac{\pi}{4} \right) = 0$$

or

$$x - y + \sqrt{2}z = \frac{\sqrt{2}\pi}{4}$$
14.4 SUMMARY

- A parametrization \(\mathbf{r}(t) \) is called regular if \(\mathbf{r}'(t) \neq \mathbf{0} \) for all \(t \). If \(\mathbf{r}(t) \) is regular, we define the unit tangent vector \(\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \).
- Curvature is defined by \(\kappa(s) = \left\| \frac{d\mathbf{T}}{ds} \right\| \), where \(\mathbf{r}(s) \) is an arc length parametrization or \(\kappa(s) = \frac{1}{v(t)} \left\| \frac{d\mathbf{T}}{dt} \right\| \) if \(\mathbf{r}(t) \) is not an arc length parametrization.
- In practice, we compute curvature using the following formula, which is valid for arbitrary regular parametrizations:
 \[
 \kappa(t) = \frac{\|\mathbf{r}'(t) \times \mathbf{r}''(t)\|}{\|\mathbf{r}'(t)\|^3}
 \]
- The curvature at a point on a graph \(y = f(x) \) in the plane is
 \[
 \kappa(x) = \frac{|f''(x)|}{\left(1 + f'(x)^2\right)^{3/2}}
 \]
- If \(\|\mathbf{T}'(t)\| \neq 0 \), we define the unit normal vector \(\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} \).
- \(\mathbf{T}'(t) = \kappa(t)\mathbf{v}(t)\mathbf{N}(t) \)
- The binormal vector is defined by \(\mathbf{B} = \mathbf{T} \times \mathbf{N} \).
- The osculating plane at a point \(P \) on a curve \(C \) is the plane through \(P \) determined by the vectors \(\mathbf{T}_P \) and \(\mathbf{N}_P \). It has normal vector \(\mathbf{B}_P \). It is defined only if the curvature \(\kappa_P \) at \(P \) is nonzero.
- The osculating circle \(\text{Osc}_P \) is the circle in the osculating plane through \(P \) of radius \(R = 1/\kappa_P \) whose center \(Q \) lies in the normal direction \(\mathbf{N}_P \):
 \[
 \overrightarrow{OQ} = \mathbf{r}(t_0) + \kappa_P^{-1}\mathbf{N}_P = \mathbf{r}(t_0) + RN_P
 \]
- The center of \(\text{Osc}_P \) is called the center of curvature and \(R \) the radius of curvature.

14.4 EXERCISES

Preliminary Questions

1. What is the unit tangent vector of a line with direction vector \(\mathbf{v} = (2, 1, -2) \)?

2. What is the curvature of a circle of radius 4?

3. Which has larger curvature, a circle of radius 2 or a circle of radius 4?

4. What is the curvature of \(\mathbf{r}(t) = (2 + 3t, 7t, 5 - t) \)?

5. What is the curvature at a point where \(\mathbf{T}'(s) = (1, 2, 3) \) in an arc length parametrization \(\mathbf{r}(s) \)?

6. What is the radius of curvature of a circle of radius 4?

7. What is the radius of curvature at \(P \) if \(\kappa_P = 9 \)?

Exercises

In Exercises 1–6, calculate \(\mathbf{r}'(t) \) and \(\mathbf{T}(t) \), and evaluate \(\mathbf{T}(1) \).

1. \(\mathbf{r}(t) = (4t^2, 9t) \)
2. \(\mathbf{r}(t) = (e^t, e^t) \)
3. \(\mathbf{r}(t) = (3 + 4t, 3 - 5t, 9t) \)
4. \(\mathbf{r}(t) = (1 + 2t, t^2, 3 - t^2) \)
5. \(\mathbf{r}(t) = (\cos \pi t, \sin \pi t, t) \)
6. \(\mathbf{r}(t) = (e^t, e^{-t}, t^2) \)

In Exercises 7–10, use Eq. (3) to calculate the curvature function \(\kappa(t) \).

7. \(\mathbf{r}(t) = (1, e^t, t) \)
8. \(\mathbf{r}(t) = (4 \cos t, t, 4 \sin t) \)
9. \(\mathbf{r}(t) = (4t + 1, 4t - 3, 2t) \)
10. \(\mathbf{r}(t) = (t^{-1}, 1, t) \)

In Exercises 11–14, use Eq. (3) to evaluate the curvature at the given point.

11. \(\mathbf{r}(t) = \left(\frac{1}{t}, \frac{1}{t^2}, t^2 \right), \quad t = -1 \)
12. \(\mathbf{r}(t) = (3 - t, e^{-t}, 8t - t^2), \quad t = 4 \)
13. \(\mathbf{r}(t) = (\cos \pi t, \sin t, t^2), \quad t = \frac{\pi}{2} \)
14. \(\mathbf{r}(t) = (e^t, \sin t, t), \quad t = 0 \)

In Exercises 15–18, find the curvature of the plane curve at the point indicated.

15. \(y = e^t, \quad t = 3 \)
16. \(y = \cos x, \quad x = 0 \)
17. \(y = t^4, \quad t = 2 \)
18. \(y = t^9, \quad t = 1 \)

19. Find the curvature of \(\mathbf{r}(t) = (2 \sin t, \cos 3t, t) \) at \(t = \frac{\pi}{3} \) and \(t = \frac{\pi}{2} \) (Figure 17).

\[\mathbf{r}(t) = (2 \sin t, \cos 3t, t). \]

\[\text{FIGURE 17 The curve } \mathbf{r}(t) = (2 \sin t, \cos 3t, t). \]

20. [GU] Find the curvature function \(\kappa(x) \) for \(y = \sin x \). Use a computer algebra system to plot \(\kappa(x) \) for \(0 \leq x \leq 2\pi \). Prove that the curvature takes its maximum at \(x = \frac{\pi}{2} \) and \(3\pi \text{.} \) Hint: As a shortcut to finding the max, observe that the maximum of the numerator and the minimum of the denominator of \(\kappa(x) \) occur at the same points.

21. Show that the tractrix \(\mathbf{r}(t) = (t - \tanh t, \sech t) \) has the curvature function \(\kappa(t) = \sech t \).

22. Show that curvature at an inflection point of a plane curve \(y = f(x) \) is zero.

23. Find the value(s) of \(a \) such that the curvature of \(y = e^{ax} \) at \(x = 0 \) is as large as possible.

24. Find the point of maximum curvature on \(y = e^x \).

25. Show that the curvature function of the parametrization \(\mathbf{r}(t) = (a \cos t, b \sin t) \) of the ellipse \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \) is

\[\kappa(t) = \frac{ab}{(b^2 \cos^2 t + a^2 \sin^2 t)^{3/2}} \]

26. Use a sketch to predict where the points of minimal and maximal curvature occur on an ellipse. Then use Eq. (10) to confirm or refute your prediction.

27. In the notation of Exercise 25, assume that \(a \geq b \). Show that \(b/a^2 \leq \kappa(t) \leq a/b^2 \) for all \(t \).

28. Use Eq. (3) to prove that for a plane curve \(\mathbf{r}(t) = (x(t), y(t)) \),

\[\kappa(t) = \frac{\left| x''(t)y'(t) - x'(t)y''(t) \right|}{\left(x'(t)^2 + y'(t)^2 \right)^{3/2}} \]

In Exercises 29–32, use Eq. (11) to compute the curvature at the given point.

29. \((t^2, t^3), \quad t = 2 \)
30. \((\cosh s, s), \quad s = 0 \)
31. \((t, \cos t, \sin t), \quad t = \pi \)
32. \((\sin 3s, 2 \sin 4s), \quad s = \frac{\pi}{2} \)

33. Let \(s(t) = \int_0^t \| \mathbf{r}'(u) \| \, du \) for the Bernoulli spiral \(\mathbf{r}(t) = \langle e^{2t} \cos 4t, e^{2t} \sin 4t \rangle \) (see Exercise 37 in Section 14.3). Show that the radius of curvature is proportional to \(s(t) \).

34. The Cornu spiral is the plane curve \(\mathbf{r}(t) = (x(t), y(t)), \) where

\[x(t) = \int_0^t \sin \frac{u^2}{2} \, du, \quad y(t) = \int_0^t \cos \frac{u^2}{2} \, du \]

Verify that \(\kappa(t) = |t| \). Since the curvature increases linearly, the Cornu spiral is used in highway design to create transitions between straight and curved road segments (Figure 18).

\[\text{FIGURE 18 Cornu spiral.} \]

35. CAS Plot the clothoid \(\mathbf{r}(t) = (x(t), y(t)), \) and compute its curvature \(\kappa(t) \) where

\[x(t) = \int_0^t \sin \frac{u^3}{3} \, du, \quad y(t) = \int_0^t \cos \frac{u^3}{3} \, du \]

36. Find the normal vector \(\mathbf{N}(\theta) \) to \(\mathbf{r}(\theta) = R(\cos \theta, \sin \theta), \) the circle of radius \(R \). Does \(\mathbf{N}(\theta) \) point inside or outside the circle? Draw \(\mathbf{N}(\theta) \) at \(\theta = \frac{\pi}{4} \) with \(R = 4 \).

37. Find the normal vector \(\mathbf{N}(t) \) to \(\mathbf{r}(t) = (4, \sin 2t, \cos 2t) \).

38. Sketch the graph of \(\mathbf{r}(t) = (t, \cos^3 t) \). Since \(\mathbf{r}'(t) = (1, 3 \cos^2 t \sin t) \), the unit normal \(\mathbf{N}(t) \) points in one of the two directions \(\pm (3 \sin^2 t, 1) \). Which sign is correct at \(t = 1 \)? Which is correct at \(t = -1 \)?

39. Find the normal vectors to \(\mathbf{r}(t) = (t, \cos t) \) at \(t = \frac{\pi}{2} \) and \(t = \frac{3\pi}{4} \).

40. Find the normal vector to the Cornu spiral (Exercise 34) at \(t = \frac{\pi}{2} \).

In Exercises 41–44, find \(\mathbf{T}, \mathbf{N}, \) and \(\mathbf{B} \) for the curve at the indicated point. Hint: After finding \(\mathbf{T}' \), plug in the specific value for \(t \) before computing \(\mathbf{N} \) and \(\mathbf{B} \).

41. \(\mathbf{r}(t) = \langle 0, t, t^3 \rangle \) at \((0, 1, 1) \). In this case, draw the curve and the three resultant vectors in 3-space.

42. \(\mathbf{r}(t) = \langle \cos t, \sin t, 2 \rangle \) at \((1, 0, 0) \). In this case, draw the curve and the three resultant vectors in 3-space.

43. \(\mathbf{r}(t) = \langle t, t^2, 3t^3 \rangle \) at \((1, 1, \frac{3}{4}) \).

44. \(\mathbf{r}(t) = \langle t, t, e^t \rangle \) at \((0, 0, 1) \).

45. Find the normal vector to the clothoid (Exercise 35) at \(t = \pi/3 \).

46. Method for Computing \(\mathbf{N} \) Let \(\mathbf{v}(t) = \| \mathbf{r}'(t) \| \). Show that

\[\mathbf{N}(t) = \frac{\mathbf{v}(t)\mathbf{r}''(t) - \mathbf{v}'(t)\mathbf{r}'(t)}{\| \mathbf{v}(t)\mathbf{r}''(t) - \mathbf{v}'(t)\mathbf{r}'(t) \|} \]

Hint: \(\mathbf{N} \) is the unit vector in the direction \(\mathbf{T}'(t) \). Differentiate \(\mathbf{T}'(t) = \frac{\mathbf{r}'(t)}{\| \mathbf{r}'(t) \|} \) to show that \(\mathbf{v}(t)\mathbf{r}''(t) - \mathbf{v}'(t)\mathbf{r}'(t) \) is a positive multiple of \(\mathbf{T}'(t) \).

In Exercises 47–52, use Eq. (12) to find \(\mathbf{N} \) at the point indicated.

47. \(\langle t^2, t^3 \rangle, \quad t = 1 \)
48. \(\langle t - \sin t, 1 - \cos t \rangle, \quad t = \pi \)
49. \(\langle y^2/2, r^3/3, t \rangle, \quad t = 1 \)
50. \(\langle t^{-1}, t, t^2 \rangle, \quad t = -1 \)
51. \(\{t, e^t, t \}, \ t = 0 \)
52. \(\{ \cosh t, \sinh t, t^2 \}, \ t = 0 \)

53. Let \(r(t) = (t, \frac{4t}{3}^{3/2}, r^2) \).
(a) Find \(T, N, \) and \(B \) at the point corresponding to \(t = 1 \).
(b) Find the equation of the osculating plane at the point corresponding to \(t = 1 \).

54. Let \(r(t) = (\cos t, \sin t, \ln(\cos t)) \).
(a) Find \(T, N, \) and \(B \) at \((1, 0, 0)\).
(b) Find the equation of the osculating plane at \((1, 0, 0)\).

55. Let \(r(t) = (t, 1 - t, t^2) \).
(a) Find the general formulas for \(T \) and \(N \) as functions of \(t \).
(b) Find the general formula for \(B \) as a function of \(t \).
(c) What can you conclude about the osculating planes of the curve based on your answer to \(b \)?

56. (a) What does it mean for a space curve to have a constant unit tangent vector \(T \)?
(b) What does it mean for a space curve to have a constant normal vector \(N \)?
(c) What does it mean for a space curve to have a constant binormal vector \(B \)?

57. Let \(f(x) = x^2 \). Show that the center of the osculating circle at \((x_0, x_0^2)\) is given by \((-4x_0^3, \frac{1}{2} + 3x_0^2)\).

58. Use Eq. (9) to find the center of curvature to \(r(t) = (t^2, t^3) \) at \(t = 1 \).

In Exercises 59–66, find a parametrization of the osculating circle at the point indicated.

59. \(r(t) = (\cos t, \sin t), \ t = \frac{\pi}{2} \)
60. \(r(t) = (\sin t, \cos t), \ t = 0 \)
61. \(\{t - \sin t, 1 - \cos t\}, \ t = \pi \)
62. \(\{t - \sin t, 1 - \cos t\}, \ t = 0 \)
63. \(\{t - \sin t, 1 - \cos t\}, \ t = \pi \)
64. \(r(t) = (t^2/2, t^3/3, t), \ t = 0 \)
65. \(r(t) = (\cos t, \sin t, t), \ t = 0 \)
66. \(r(t) = (\cos t, \sin t, t), \ t = 0 \)

67. Figure 19 shows the graph of the half-ellipse \(y = \pm \sqrt{2rx - px^2} \), where \(r \) and \(p \) are positive constants. Show that the radius of curvature at the origin is equal to \(r \). Hint: One way of proceeding is to write the ellipse in the form of Exercise 25 and apply Eq. (10).

68. In a recent study of laser eye surgery by Gatinkel, Hoang-Xuan, and Azar, a vertical cross section of the cornea is modeled by the half-ellipse of Exercise 67. Show that the half-ellipse can be written in the form \(x = f(y) \), where \(f(y) = p^{-1}(r - \sqrt{r^2 - p^2}) \). During surgery, tissue is removed to a depth \(t(y) \) at height \(y \) for \(-s \leq y \leq s \), where \(t(y) \) is given by Munnerlyn’s equation (for some \(R > r \)):

\[
t(y) = \sqrt{R^2 - 2s^2} - \sqrt{R^2 - y^2} - \sqrt{r^2 - R^2} + \sqrt{r^2 - y^2}
\]

After surgery, the cross section of the cornea has the shape \(x = f(y) + t(y) \) (Figure 20). Show that after surgery, the radius of curvature at the point \(P \) (where \(y = 0 \)) is \(R \).

69. The angle of inclination at a point \(P \) on a plane curve is the angle \(\theta \) between the unit tangent vector \(T \) and the \(x \)-axis (Figure 21). Assume that \(\gamma(s) \) is a arc length parametrization, and let \(\gamma = \theta(s) \) be the angle of inclination at \(\gamma(s) \). Prove that

\[
\kappa(s) = \left| \frac{d\gamma}{ds} \right|
\]

Hint: Observe that \(T(s) = (\cos \theta(s), \sin \theta(s)) \).

70. A particle moves along the path \(y = x^3 \) with unit speed. How fast is the tangent turning (i.e., how fast is the angle of inclination changing) when the particle passes through the point \((2, 8)\)?

71. Let \(\gamma(x) \) be the angle of inclination at a point on the graph \(y = f(x) \) (see Exercise 69).
(a) Use the relation \(f''(x) = \tan \theta \) to prove that \(\frac{d\theta}{dx} = \frac{f''(x)}{1 + f'(x)^2} \).
(b) Use the arc length integral to show that \(\frac{dx}{ds} = \sqrt{1 + f'(x)^2} \).
(c) Now give a proof of Eq. (5) using Eq. (13).

72. Use the parametrization \(r(\theta) = (f(\theta) \cos \theta, f(\theta) \sin \theta) \) to show that a curve \(r = f(\theta) \) in polar coordinates has curvature

\[
\kappa(\theta) = \frac{|f''(\theta) + 2f'(\theta)^2 - f'(\theta)^2f''(\theta)|}{(f(\theta)^2 + f'(\theta)^2)^{3/2}}
\]
In Exercises 73–75, use Eq. (14) to find the curvature of the curve given in polar form.

73. \(f(\theta) = 2 \cos \theta \)
74. \(f(\theta) = \theta \)
75. \(f(\theta) = e^\theta \)

Use Eq. (14) to find the curvature of the general Bernoulli spiral \(r = a e^{b \theta} \) in polar form \((a \text{ and } b \text{ are constants})\).

77. Show that both \(r'(t) \) and \(r''(t) \) lie in the osculating plane for a vector function \(r(t) \). *Hint: Differentiate \(r'(t) = v(t)T(t) \).*

78. Show that
\[
y(s) = r(t_0) + \frac{1}{\kappa}N + \frac{1}{\kappa}((\sin \kappa s)T - (\cos \kappa s)N)
\]
is an arc length parametrization of the osculating circle at \(r(t_0) \).

Further Insights and Challenges

81. Show that the curvature of Viviani’s curve, given by \(r(t) = (1 + t \cos t, \sin t, 2 \sin(t/2)) \), is
\[
\kappa(t) = \frac{\sqrt{13 + 3 \cos t}}{(3 + \cos t)^{3/2}}
\]

82. Let \(r(s) \) be an arc length parametrization of a closed curve \(C \) of length \(L \). We call \(C \) an oval if \(d\theta/ds > 0 \) (see Exercise 69). Observe that \(-N\) points to the outside of \(C \). For \(k > 0 \), the curve \(C_1 \) defined by \(r_1(s) = r(s) - kN \) is called the expansion of \(C \) in the normal direction.

(a) Show that \(\|r_1'(s)\| = \|r'(s)\| + k\kappa(s) \).
(b) As \(P \) moves around the oval counterclockwise, \(\theta \) increases by \(2\pi \) [Figure 22(A)]. Use this and a change of variables to prove that\[
\int_0^L \kappa(s) \, ds = 2\pi.
\]
(c) Show that \(C_1 \) has length \(L + 2\pi k \).

FIGURE 22 As \(P \) moves around the oval, \(\theta \) increases by \(2\pi \).

In Exercises 83–91, we investigate the binormal vector further.

83. Show that \(B \) is a unit vector.

84. Follow steps (a)–(c) to prove that there is a number \(\tau \) (lowercase Greek “tau”) called the torsion such that
\[
\frac{dB}{ds} = -\tau N
\]
(a) Show that \(\frac{dB}{ds} = T \times \frac{dN}{ds} \) and conclude that \(dB/ds \) is orthogonal to \(T \).

85. Show that \(T, B, N \) are called the Frenet formulas.

86. **Torsion** means “twisting.” Is this an appropriate name for \(\tau \)? Explain by interpreting \(\tau \) geometrically.

87. Use the identity \(\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c} \) to prove
\[
N \times B = T, \quad B \times T = N
\]

88. Follow steps (a)–(b) to prove
\[
\frac{dN}{ds} = -\kappa T + \tau B
\]
(a) Show that \(dN/ds \) is orthogonal to \(N \). Conclude that \(dN/ds \) lies in the plane spanned by \(T \) and \(B \), and hence, \(dN/ds = aT + bB \) for some scalars \(a, b \).
(b) Use \(N \cdot T = 0 \) to show that \(T \cdot \frac{dN}{ds} = -N \cdot \frac{dN}{ds} = -\kappa \), and compute \(B \). Compute \(b \) similarly. Equations (15) and (17) together with \(B = \kappa N \) are called the Binormal formulas.

89. Show that \(r' \times r'' \) is a multiple of \(B \). Conclude that \(B = \frac{r' \times r''}{\|r' \times r''\|} \)

90. Use the formula from the preceding problem to find \(B \) for the space curve given by \(r(t) = (\sin t, -\cos t, \sin t) \). Conclude that the space curve lies in a plane.

91. The vector \(N \) can be computed using \(N = B \times T \) [Eq. (16)] with \(B \), as in Eq. (18). Use this method to find \(N \) in the following cases:
(a) \(r(t) = (\cos t, -\cos t, \sin t) \) at \(t = 0 \)
(b) \(r(t) = (t^2, t^{-1}, t) \) at \(t = 1 \)
14.5 Motion in 3-Space

In this section, we study the motion of an object traveling along a path \(\mathbf{r}(t) \). That object could be a variety of things, including a particle, a baseball, or the space shuttle (Figure 1). Recall that the velocity vector is the derivative
\[
\mathbf{v}(t) = \mathbf{r}'(t) = \lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h}
\]
As we have seen, \(\mathbf{v}(t) \) points in the direction of motion (if it is nonzero), and its magnitude \(\| \mathbf{v}(t) \| \) is the particle’s speed. The acceleration vector is the second derivative \(\mathbf{r}''(t) \), which we shall denote as \(\mathbf{a}(t) \). In summary,
\[
\mathbf{v}(t) = \mathbf{r}'(t), \quad \mathbf{v}(t) = \| \mathbf{v}(t) \|, \quad \mathbf{a}(t) = \mathbf{r}''(t)
\]

EXAMPLE 1 Calculate and plot the velocity and acceleration vectors at \(t = 1 \) of \(\mathbf{r}(t) = (\sin 2t, -\cos 2t, \sqrt{1+t}) \). Then find the speed at \(t = 1 \) (Figure 2).

Solution
\[
\mathbf{v}(t) = \mathbf{r}'(t) = \left(2 \cos 2t, 2 \sin 2t, \frac{1}{2}(t+1)^{-1/2}\right), \quad \mathbf{v}(1) \approx (-0.83, 1.82, 0.35)
\]
\[
\mathbf{a}(t) = \mathbf{r}''(t) = \left(-4 \sin 2t, 4 \cos 2t, -\frac{1}{4}(t+1)^{-3/2}\right), \quad \mathbf{a}(1) \approx (-3.64, -1.66, -0.089)
\]
The speed at \(t = 1 \) is
\[
\| \mathbf{v}(1) \| \approx \sqrt{(-0.83)^2 + (1.82)^2 + (0.35)^2} \approx 2.03
\]
If an object’s acceleration is given, we can solve for \(\mathbf{v}(t) \) and \(\mathbf{r}(t) \) by integrating twice:
\[
\mathbf{v}(t) = \int \mathbf{a}(t) \, dt \\
\mathbf{r}(t) = \int \mathbf{v}(t) \, dt
\]
The arbitrary constants that result are determined by initial conditions.

EXAMPLE 2 Find \(\mathbf{r}(t) \) if
\[
\mathbf{a}(t) = 2\mathbf{i} + 12t\mathbf{j}, \quad \mathbf{v}(0) = 7\mathbf{i}, \quad \mathbf{r}(0) = 2\mathbf{i} + 9\mathbf{k}
\]

Solution We have
\[
\mathbf{v}(t) = \int \mathbf{a}(t) \, dt = 2t\mathbf{i} + 6t^2\mathbf{j} + C_0
\]
The initial condition \(\mathbf{v}(0) = 0 + C_0 = 7\mathbf{i} \) gives us \(\mathbf{v}(t) = 2t\mathbf{i} + 6t^2\mathbf{j} + 7\mathbf{i} = (2t + 7)\mathbf{i} + 6t^2\mathbf{j} \). Then we have
\[
\mathbf{r}(t) = \int \mathbf{v}(t) \, dt = (t^2 + 7t)\mathbf{i} + 2t^3\mathbf{j} + C_1
\]
The initial condition \(\mathbf{r}(0) = 0 + C_1 = 2\mathbf{i} + 9\mathbf{k} \) yields
\[
\mathbf{r}(t) = (t^2 + 7t)\mathbf{i} + 2t^3\mathbf{j} + (2\mathbf{i} + 9\mathbf{k}) = (t^2 + 7t + 2)\mathbf{i} + 2t^3\mathbf{j} + 9\mathbf{k}
\]

EXAMPLE 3 Find \(\mathbf{r}(t) \) if
\[
\mathbf{a}(t) = (\cos t)\mathbf{i} + e^t\mathbf{j} + t\mathbf{k}, \quad \mathbf{v}(0) = \mathbf{i}, \quad \mathbf{r}(0) = \mathbf{k}
\]
FIGURE 3 Trajectory of the bullet.

Solution We obtain

\[
v(t) = \int a(t) \, dt = (\sin t) \hat{i} + e^t \hat{j} + \frac{t^2}{2} \hat{k} + C_0
\]

Note that here, we must be careful, as it is not true that when \(v \) is evaluated at 0, all that remains is the arbitrary constant vector. The initial condition yields

\[
v(0) = \hat{j} + C_0 = \hat{i}
\]

Hence, \(C_0 = \hat{i} - \hat{j} \). Therefore,

\[
v(t) = (\sin t) \hat{i} + e^t \hat{j} + \frac{t^2}{2} \hat{k} + \hat{i} - \hat{j} = (\sin t + 1) \hat{i} + (e^t - 1) \hat{j} + \frac{t^2}{2} \hat{k}
\]

Then we have

\[
r(t) = \int v(t) \, dt = (-\cos t + t) \hat{i} + (e^t - t) \hat{j} + \frac{t^3}{6} \hat{i} + C_1
\]

The initial condition \(r(0) = -\hat{i} + \hat{j} + C_1 = \hat{k} \) yields \(C_1 = \hat{i} - \hat{j} + \hat{k} \). Thus,

\[
r(t) = (-\cos t + t) \hat{i} + (e^t - t) \hat{j} + \frac{t^3}{6} \hat{i} + \hat{i} - \hat{j} + \hat{k}
\]

\[
= (-\cos t + t + 1) \hat{i} + (e^t - t - 1) \hat{j} + (\frac{t^3}{6} + 1) \hat{k}
\]

Near the surface of the earth, gravity imparts an acceleration of \(-9.8 \text{ m/s}^2\) in the \(z\)-direction. If units are in feet, it is \(-32 \text{ ft/s}^2\). This means that if we have a projectile moving near the surface of the earth that has no additional means of acquiring acceleration, we know that its acceleration vector is given by \(a(t) = -9.8 \hat{k} \). Note that in the case where the projectile stays in a vertical plane, we can assume it is above the \(x\)-axis, so the entire problem occurs in the \(xy\)-plane. We can take the vertical direction to be in the direction of the \(y\)-axis, and take the acceleration vector to be \(a(t) = -9.8 \hat{j} \).

EXAMPLE 4 A bullet is fired from the ground at an angle of 60° above the horizontal. What initial speed \(v_0 \) must the bullet have in order to hit a point 150 m high on a tower located 250 m away (ignoring air resistance)?

Solution Place the gun at the origin, and let \(r(t) \) be the position vector of the bullet (Figure 3). Then we know \(r(0) = \mathbf{0} \). Furthermore, since the angle of the gun is 60°, even though we do not know the initial speed \(v_0 \), we can say that the initial velocity vector is \(v_0 = v_0 \cos 60° \hat{i} + v_0 \sin 60° \hat{j} = \frac{1}{2} v_0 \hat{i} + v_0 \frac{\sqrt{3}}{2} \hat{j} \).

Step 1. Use the acceleration due to gravity.

Since we can assume that the entire path lies in the \(xy \)-plane, we can assume that gravity exerts a downward force generating an acceleration vector \(a(t) = -9.8 \hat{j} \). We determine \(r(t) \) by integrating twice:

\[
v(t) = \int a(t) \, dt = -9.8t \hat{j} + C_0
\]

Step 2. Use the initial velocity.

We know that \(v(0) = v_0 \). Hence, \(\mathbf{0} + C_0 = \frac{1}{2} v_0 \hat{i} + v_0 \frac{\sqrt{3}}{2} \hat{j} \). Plugging this expression in for \(C_0 \), we obtain

\[
v(t) = -9.8t \hat{j} + \frac{1}{2} v_0 \hat{i} + v_0 \frac{\sqrt{3}}{2} \hat{j} = \frac{1}{2} v_0 \hat{i} + (v_0 \frac{\sqrt{3}}{2} - 9.8t) \hat{j}
\]

Step 3. Integrate again.

\[
r(t) = \int v(t) \, dt = \frac{1}{2} v_0 \hat{i} + (v_0 \frac{\sqrt{3}}{2} t - 4.9t^2) \hat{j} + C_1
\]
The constant \(\omega \) (lowercase Greek "omega") is called the angular speed because the particle’s angle along the circle changes at a rate of \(\omega \) radians per unit time.

\[a(t) = \dot{v}(t) = -R\omega^2[\cos \omega t, \sin \omega t], \quad ||a(t)|| = R\omega^2 = R \left(\frac{v}{R} \right)^2 = \frac{v^2}{R} \]

The vector \(a(t) \) is called the centripetal acceleration: It has length \(v^2/R \) and points in toward the origin [because \(a(t) \) is a negative multiple of the position vector \(r(t) \)], as in Figure 4.

Understanding the Acceleration Vector

We have noted that \(v(t) \) can change in two ways: in magnitude and in direction. To understand how the acceleration vector \(a(t) \) "encodes" both types of change, we decompose \(a(t) \) into a sum of tangential and normal components.

Recall the definition of unit tangent and unit normal vectors:

\[T(t) = \frac{v(t)}{||v(t)||}, \quad N(t) = \frac{T'(t)}{||T'(t)||} \]
Thus, \(\mathbf{v}(t) = v(t) \mathbf{T}(t) \), where \(v(t) = \| \mathbf{v}(t) \| \), so by the Product Rule,

\[
\mathbf{a}(t) = \frac{d\mathbf{v}}{dt} = \frac{dv}{dt} \mathbf{T}(t) = v'(t) \mathbf{T}(t) + v(t) \mathbf{T}'(t)
\]

Furthermore, \(\mathbf{T}'(t) = v(t) \kappa(t) \mathbf{N}(t) \) by Eq. (7) of Section 14.4, where \(\kappa(t) \) is the curvature. Thus, we can write

\[
\mathbf{a} = \alpha_T \mathbf{T} + \alpha_N \mathbf{N}, \quad \alpha_T = v'(t), \quad \alpha_N = \kappa(t) v(t)^2. \tag{1}
\]

The coefficient \(\alpha_T(t) \) is called the **tangential component** and \(\alpha_N(t) \) the **normal component** of acceleration (Figure 5).

CONCEPTUAL INSIGHT The tangential component \(\alpha_T = v'(t) \) is the rate at which speed \(v(t) \) changes, whereas the normal component \(\alpha_N = \kappa(t) v(t)^2 \) describes the change in \(\mathbf{v} \) due to a change in direction. These interpretations become clear once we consider the following extreme cases:

• A particle travels in a straight line. Then direction does not change \([\kappa(t) = 0] \) and \(\mathbf{a}(t) = v'(t) \mathbf{T} \) is parallel to the direction of motion.

• A particle travels with constant speed along a curved path. Then \(v'(t) = 0 \) and the acceleration vector \(\mathbf{a}(t) = \kappa(t) v(t)^2 \mathbf{N} \) is normal to the direction of motion.

General motion combines both tangential and normal acceleration.

EXAMPLE 6 The Giant Ferris Wheel in Vienna has radius \(R = 30 \text{ m} \) (Figure 6). Assume that at time \(t = t_0 \), the wheel rotates counterclockwise with a speed of 40 m/min and is slowing at a rate of 15 m/min\(^2\). Find the acceleration vector \(\mathbf{a} \) for a person seated in a car at the lowest point of the wheel.

Solution At the bottom of the wheel, \(\mathbf{T} = \langle 1, 0 \rangle \) and \(\mathbf{N} = \langle 0, 1 \rangle \). We are told that \(\alpha_T = v' = -15 \) at time \(t_0 \). The curvature of the wheel is \(\kappa = 1/R = 1/30 \), so the normal component is \(\alpha_N = \kappa v^2 = v^2/R = (40)^2/30 \approx 53.3 \). Therefore (Figure 7),

\[
\mathbf{a} \approx -15 \mathbf{T} + 53.3 \mathbf{N} = (-15, 53.3) \text{ m/min}^2
\]

The following theorem provides useful formulas for the tangential and normal components.

THEOREM 1 Tangential and Normal Components of Acceleration In the decomposition \(\mathbf{a} = \alpha_T \mathbf{T} + \alpha_N \mathbf{N} \), we have

\[
\alpha_T = \frac{\mathbf{a} \cdot \mathbf{T}}{\| \mathbf{v} \|}, \quad \alpha_N = \mathbf{a} \cdot \mathbf{N} = \sqrt{\| \mathbf{a} \|^2 - |\alpha_T|^2}. \tag{2}
\]

and

\[
\alpha_T \mathbf{T} = \left(\frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v}, \quad \alpha_N \mathbf{N} = \mathbf{a} - \alpha_T \mathbf{T} = \mathbf{a} - \left(\frac{\mathbf{a} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \right) \mathbf{v}. \tag{3}
\]
Summary of steps in Example 7:

1. **T** = \(\frac{v}{\|v\|} \)
2. \(a_T = a \cdot T \)
3. \(a_N = a - a_T T \)
4. \(a_N = \|a_N N\| \)
5. **N** = \(\frac{a_N N}{a_N} \)

Proof We have \(T \cdot T = 1 \) and \(N \cdot T = 0 \). Thus,

\[
a \cdot T = (a_T T + a_N N) \cdot T = a_T T
\]
\[
a \cdot N = (a_T T + a_N N) \cdot N = a_N N
\]

and since \(T = \frac{v}{\|v\|} \), we have

\[
a_T T = (a \cdot T) T = \left(\frac{a \cdot v}{\|v\|} \right) \frac{v}{\|v\|} = \left(\frac{a \cdot v}{v \cdot v} \right) v
\]

and

\[
a_N N = a - a_T T = a - \left(\frac{a \cdot v}{\|v\|} \right) v
\]

Finally, the vectors \(a_T T \) and \(a_N N \) are the sides of a right triangle with hypotenuse \(a \) as in Figure 5, so by the Pythagorean Theorem,

\[
\|a\|^2 = |a_T|^2 + |a_N|^2 \quad \Rightarrow \quad a_N = \sqrt{\|a\|^2 - |a_T|^2}
\]

Keep in mind that \(a_N \geq 0 \) but \(a_T \) is positive or negative, depending on whether the object is speeding up or slowing down.

Example 7 Decompose the acceleration vector \(a \) of \(r(t) = \langle t^2, 2t, \ln t \rangle \) into tangential and normal components at \(t = \frac{1}{2} \) (Figure 8).

Solution First, we compute the tangential components \(T \) and \(a_T \). We have

\[
v(t) = r'(t) = \langle 2t, 2, 0 \rangle = \langle 2, 2, 0 \rangle
\]

At \(t = \frac{1}{2} \),

\[
v = r' \left(\frac{1}{2} \right) = \left(2 \left(\frac{1}{2} \right), 2, 1 \right)^{-1} = \langle 1, 2, 2 \rangle
\]

\[
a = r'' \left(\frac{1}{2} \right) = \left(2, 0, - \left(\frac{1}{2} \right)^{-2} \right) = \langle 2, 0, -4 \rangle
\]

Thus,

\[
T = \frac{v}{\|v\|} = \frac{\langle 1, 2, 2 \rangle}{\sqrt{1^2 + 2^2 + 2^2}} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}
\]

and by Eq. (2),

\[
a_T = a \cdot T = \langle 2, 0, -4 \rangle \cdot \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = -2
\]

Next, we use Eq. (3):

\[
a_N = a - a_T T = \langle 2, 0, -4 \rangle - (-2) \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 8 \\ 4 \\ -8 \end{pmatrix}
\]

This vector has length

\[
a_N = \|a_N N\| = \sqrt{64/9 + 16/9 + 64/9} = 4
\]

and thus,

\[
N = \frac{a_N N}{a_N} = \frac{\begin{pmatrix} 8 \\ 4 \\ -8 \end{pmatrix}}{4} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}
\]

Finally, we obtain the decomposition

\[
a = \langle 2, 0, -4 \rangle = a_T T + a_N N = -2T + 4N
\]
EXAMPLE 8 Nonuniform Circular Motion

Figure 9 shows the acceleration vectors of three particles moving counterclockwise around a circle. In each case, state whether the particle’s speed \(v \) is increasing, decreasing, or momentarily constant.

\[\text{FIGURE 9} \quad \text{Acceleration vectors of particles moving counterclockwise (in the direction of} \ T) \text{ around a circle.} \]

Solution

The rate of change of speed depends on the angle \(\theta \) between \(a \) and \(T \):

\[v' = a \cdot T = \|a\| \|T\| \cos \theta \]

- In (A), \(\theta \) is obtuse, so \(\cos \theta < 0 \) and \(v' < 0 \). The particle’s speed is decreasing.
- In (B), \(\theta = \frac{\pi}{2} \), so \(\cos \theta = 0 \) and \(v' = 0 \). The particle’s speed is momentarily constant.
- In (C), \(\theta \) is acute, so \(\cos \theta > 0 \) and \(v' > 0 \). The particle’s speed is increasing.

EXAMPLE 9

Find the curvature \(\kappa \left(\frac{1}{2} \right) \) for the path \(r(t) = \langle t^2, 2t, \ln t \rangle \) in Example 7.

Solution

By Eq. (1), the normal component is

\[a_N = \kappa v^2 \]

In Example 7, we showed that \(a_N = 4 \) and \(v = \langle 1, 2, 2 \rangle \) at \(t = \frac{1}{2} \). Therefore, \(v^2 = v \cdot v = 9 \) and the curvature is \(\kappa \left(\frac{1}{2} \right) = a_N/v^2 = \frac{4}{9} \).

14.5 SUMMARY

- For an object whose path is described by a vector-valued function \(r(t) \),
 \[v(t) = r'(t), \quad v(t) = \|v(t)\|, \quad a(t) = r''(t) \]
 - The velocity vector \(v(t) \) points in the direction of motion. Its length \(v(t) = \|v(t)\| \) is the object’s speed.
 - The acceleration vector \(a \) is the sum of a tangential component (reflecting change in speed) and a normal component (reflecting change in direction):
 \[a(t) = a_T(t)T(t) + a_N(t)N(t) \]

<table>
<thead>
<tr>
<th>Unit tangent vector</th>
<th>(T(t) = \frac{v(t)}{|v(t)|})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit normal vector</td>
<td>(N(t) = \frac{T'(t)}{|T'(t)|})</td>
</tr>
<tr>
<td>Tangential component</td>
<td>(a_T = v'(t) = a \cdot T = \frac{a \cdot v}{|v|})</td>
</tr>
<tr>
<td>(a_T T)</td>
<td>(\frac{a \cdot v}{v \cdot v})</td>
</tr>
<tr>
<td>Normal component</td>
<td>(a_N = \kappa(t)v(t)^2 = \sqrt{|a|^2 -</td>
</tr>
<tr>
<td>(a_N N = a - a_T T = a - \left(\frac{a \cdot v}{v \cdot v} \right) v)</td>
<td></td>
</tr>
</tbody>
</table>
14.5 EXERCISES

Preliminary Questions

1. If a particle travels with constant speed, must its acceleration vector be zero? Explain.
2. For a particle in uniform circular motion around a circle, which of the vectors \(\mathbf{v}(t) \) or \(\mathbf{a}(t) \) always points toward the center of the circle?
3. Two objects travel to the right along the parabola \(y = x^2 \) with nonzero speed. Which of the following statements must be true?
 (a) Their velocity vectors point in the same direction.
 (b) Their velocity vectors have the same length.
 (c) Their acceleration vectors point in the same direction.
4. Use the decomposition of acceleration into tangential and normal components to explain the following statement: If the speed is constant, then the acceleration and velocity vectors are orthogonal.

Exercises

1. Use the table below to calculate the difference quotients \(\mathbf{r}'(1 + h) - \mathbf{r}'(1) \) for \(h = -0.2, -0.1, 0.1, 0.2 \). Then estimate the velocity and speed at \(t = 1 \).

 \[
 \begin{array}{c|c|c|c|c|c|c|c}
 t & \mathbf{r}(t) & \mathbf{r}'(t) & \mathbf{r}'(1 + h) & \mathbf{r}'(1) & \frac{\mathbf{r}'(1 + h) - \mathbf{r}'(1)}{h} \\
 \hline
 0 & (1.557, 2.459, -1.970) & (0.806, 3.865, -3.108) & (1.757, 2.622, -2.526) & (1.557, 2.459, -1.970) & 0 \\
 0.5 & (1.559, 2.634, -1.740) & (0.876, 4.274, -3.541) & (1.790, 2.907, -2.983) & (1.559, 2.634, -1.740) & 0 \\
 1 & (1.540, 2.841, -1.443) & (0.946, 4.541, -3.857) & (1.809, 3.148, -3.313) & (1.540, 2.841, -1.443) & 0 \\
 1.5 & (1.499, 3.078, -1.035) & (1.016, 4.775, -4.153) & (1.835, 3.315, -3.658) & (1.499, 3.078, -1.035) & 0 \\
 2 & (1.435, 3.342, -0.428) & (1.086, 4.976, -4.458) & (1.859, 3.560, -4.063) & (1.435, 3.342, -0.428) & 0 \\
 \end{array}
 \]

2. Draw the vectors \(\mathbf{r}(2 + h) - \mathbf{r}(2) \) and \(\mathbf{r}'(2 + h) - \mathbf{r}'(2) \) for \(h = 0.5 \) for the path in Figure 10. Draw \(v(2) \) (using a rough estimate for its length).

3. \(\mathbf{r}(t) = \langle t^3, 1 - t, 4t^2 \rangle \), \(t = 1 \)
4. \(\mathbf{r}(t) = \langle t^3 \rangle - \cos(2t) \mathbf{k} \), \(t = 0 \)
5. \(\mathbf{r}(\theta) = \langle \sin \theta, \cos \theta, \cos 3\theta \rangle \), \(\theta = \frac{\pi}{4} \)
6. \(\mathbf{r}(s) = \left(\frac{1}{1 + s^2}, \frac{s}{1 + s^2} \right) \), \(s = 2 \)
7. Find \(\mathbf{a}(t) \) for a particle moving around a circle of radius \(8 \) cm at a constant speed of \(v = 4 \) cm/s (see Example 5). Draw the path and acceleration vector at \(t = \frac{\pi}{4} \).
8. Sketch the path \(\mathbf{r}(t) = \langle 1 - t^2, 1 - t \rangle \) for \(-2 \leq t \leq 2\), indicating the direction of motion. Draw the velocity and acceleration vectors at \(t = 0 \) and \(t = 1 \).
9. Sketch the path \(\mathbf{r}(t) = \langle t^2, t^3 \rangle \) together with the velocity and acceleration vectors at \(t = 1 \).
10. The paths \(\mathbf{r}(t) = \langle t^2, t^4 \rangle \) and \(\mathbf{r}_1(t) = \langle t^3, t^6 \rangle \) trace the same curve, and \(\mathbf{r}_1(1) = \mathbf{r}(1) \). Do you expect either the velocity vectors or the acceleration vectors of these paths at \(t = 1 \) to point in the same direction? Compute these vectors and draw them on a single plot of the curve.

In Exercises 11–14, find \(\mathbf{v}(t) \) given \(\mathbf{a}(t) \) and the initial velocity.
11. \(\mathbf{a}(t) = \langle t, 4 \rangle, \quad \mathbf{v}(0) = \langle \frac{1}{2}, -2 \rangle \)
12. \(\mathbf{a}(t) = \langle t^2, 0, t + 1 \rangle, \quad \mathbf{v}(0) = \langle 1, -3, \sqrt{2} \rangle \)
13. \(\mathbf{a}(t) = \mathbf{k}, \quad \mathbf{v}(0) = \mathbf{i} \)
14. \(\mathbf{a}(t) = t^2 \mathbf{k}, \quad \mathbf{v}(0) = \mathbf{i} - \mathbf{j} \)

In Exercises 15–18, find \(\mathbf{r}(t) \) and \(\mathbf{v}(t) \) given \(\mathbf{a}(t) \) and the initial velocity and position.
15. \(\mathbf{a}(t) = \langle t, 4 \rangle, \quad \mathbf{v}(0) = \langle 3, -2 \rangle, \quad \mathbf{r}(0) = \langle 0, 0 \rangle \)
16. \(\mathbf{a}(t) = \langle t^2, 2t, t + 1 \rangle, \quad \mathbf{v}(0) = \langle 1, 0, 1 \rangle, \quad \mathbf{r}(0) = \langle 2, 1, 1 \rangle \)
17. \(\mathbf{a}(t) = t \mathbf{k}, \quad \mathbf{v}(0) = \mathbf{i}, \quad \mathbf{r}(0) = \mathbf{j} \)
18. \(\mathbf{a}(t) = \cos(t) \mathbf{k}, \quad \mathbf{v}(0) = \mathbf{i} - \mathbf{j}, \quad \mathbf{r}(0) = \mathbf{i} \)

In Exercises 19–26, recall that \(g = 9.8 \text{ m/s}^2 = 32 \text{ ft/s}^2 \) is the acceleration due to gravity on the earth’s surface.
19. A bullet is fired from the ground at an angle of 45°. What initial speed must the bullet have in order to hit the top of a 120-m tower located 180 m away?
20. Find the initial velocity vector \(\mathbf{v}_0 \) of a projectile released with initial speed 100 m/s that reaches a maximum height of 300 m.
21. Show that a projectile fired at an angle \(\theta \) with initial speed \(v_0 \) travels a total distance \(\left(\frac{v_0^2}{g} \right) \sin 2\theta \) before hitting the ground. Conclude that the maximum distance (for a given \(v_0 \)) is attained for \(\theta = 45^\circ \).
22. One player throws a baseball to another player standing 25 m away, with initial speed 18 m/s. Use the result of Exercise 21 to find two angles \(\theta \) at which the ball can be released. Which angle gets the ball there faster?
23. A bullet is fired at an angle \(\theta = \frac{\pi}{4} \) at a tower located \(d = 600 \) m away, with initial speed \(v_0 = 120 \) m/s. Find the height \(H \) at which the bullet hits the tower.
24. Show that a bullet fired at an angle \(\theta \) will hit the top of an \(h \)-meter tower located \(d \) meters away if its initial speed is

\[
v_0 = \sqrt{\frac{g d \sec \theta}{2 \tan \theta - h}}
\]

25. In the Superbowl, a quarterback throws a football while standing at the very center of the field on the 50 yard line. The ball leaves his hand at a height of 5 ft and has initial velocity \(v_0 = 40i + 35j + 32k \) ft/s. Assume an acceleration of 32 ft/s\(^2\) due to gravity and that the \(x \) vector points down the field toward the endzone and the \(j \) vector points to the sideline. The field is 150 ft in width and 300 ft in length.

(a) Determine the position function that gives the position of the ball \(t \) seconds after it is thrown.

(b) The ball is caught by a player 5 ft above the ground. Is the player in bounds or out of bounds when he receives the ball? Assume the player is standing vertically with both toes on the ground at the time of reception.

26. In the Women’s World Cup, Brazilian soccer star Marta has a penalty kick in the quarter-final match. She kicks the soccer ball from ground level with a penalty kick in the quarter-final match. She kicks the soccer ball from ground level with a

\[r(t) = \langle t, 0, t^2 \rangle \]

27. A constant force \(F = \langle 5, 2 \rangle \) (in newtons) acts on a 10-kg mass. Find the position of the mass at \(t = 10 \) s if it is located at the origin at \(t = 0 \) and has initial velocity \(v_0 = \langle 2, -3 \rangle \) (in meters per second).

28. A force \(F = \langle 24t, 16 - 8t \rangle \) (in newtons) acts on a 4-kg mass. Find the position of the mass at \(t = 3 \) s if it is located at \((10, 12) \) at \(t = 0 \) and has zero initial velocity.

29. A particle follows a path \(r(t) \) for \(0 \leq t \leq T \), beginning at the origin \(O \). The vector \(\vec{v} = \frac{1}{T} \int_0^T r'(t) \, dt \) is called the average velocity vector. Suppose that \(\vec{v} = \vec{0} \). Answer and explain the following:

(a) Where is the particle located at time \(T \) if \(\vec{v} = \vec{0} \)?

(b) Is the particle’s average speed necessarily equal to zero?

30. At a certain moment, a moving particle has velocity \(v = \langle 2, 2, -1 \rangle \) and acceleration \(a = \langle 0, 4, 3 \rangle \). Find \(T, N \), and the decomposition of \(a \) into tangential and normal components.

31. At a certain moment, a particle moving along a path has velocity \(v = \langle 12, 20, 20 \rangle \) and acceleration \(a = \langle 2, 1, -3 \rangle \). Is the particle speeding up or slowing down?

In Exercises 32–35, use Eq. (2) to find the coefficients \(a_T \) and \(a_N \) as a function of \(t \) (or at the specified value of \(t \)).

32. \(r(t) = \langle t^2, t^3 \rangle \)

33. \(r(t) = \langle t, \cos t, \sin t \rangle \)

34. \(r(t) = \langle t^{-1}, \ln t, t^2 \rangle \), \(t = 1 \)

35. \(r(t) = \langle e^{2t}, t, e^{-t} \rangle \), \(t = 0 \)

In Exercises 36–43, find the decomposition of \(a(t) \) into tangential and normal components at the point indicated, as in Example 7.

36. \(r(t) = \langle e^t, 1 - t \rangle \), \(t = 0 \)

37. \(r(t) = \langle \frac{1}{2}t^3, 1 - 3t \rangle \), \(t = -1 \)

38. \(r(t) = \langle t, t^2, \frac{1}{6}t^3 \rangle \), \(t = 1 \)

39. \(r(t) = \langle t, t^2, \frac{1}{6}t^3 \rangle \), \(t = 4 \)

40. \(r(t) = \langle 4 - t, t + 1, t^2 \rangle \), \(t = 2 \)

41. \(r(t) = \langle t, e^t, te^t \rangle \), \(t = 0 \)

42. \(r(t) = \langle \cos \theta, \sin \theta, \theta \rangle \), \(\theta = 0 \)

43. \(r(t) = \langle t, \cos t, t \sin t \rangle \), \(t = \frac{\pi}{2} \)

44. Let \(r(t) = \langle t^2, 4t - 3 \rangle \). Find \(T(t) \) and \(N(t) \), and show that the decomposition of \(a(t) \) into tangential and normal components is

\[
a(t) = \left(\frac{2t}{\sqrt{t^2 + 4}} \right) T + \left(\frac{4}{\sqrt{t^2 + 4}} \right) N
\]

45. Find the components \(a_T \) and \(a_N \) of the acceleration vector of a particle moving along a circular path of radius \(R = 100 \) cm with constant velocity \(v_0 = 5 \) cm/s.

46. In the notation of Example 6, find the acceleration vector for a person seated in a car at (a) the highest point of the Ferris wheel and (b) the two points level with the center of the wheel.

47. Suppose that the Ferris wheel in Example 6 is rotating clockwise and that the point \(P \) at angle \(45^\circ \) has acceleration vector \(a = \langle 0, -50 \rangle \) m/min\(^2\) pointing down, as in Figure 12. Determine the speed and tangential acceleration of the Ferris wheel.

48. At time \(t_0 \), a moving particle has velocity vector \(v = 2i \) and acceleration vector \(a = 3i + 18k \). Determine the curvature \(\kappa(t_0) \) of the particle’s path at time \(t_0 \).
49. A space shuttle orbits the Earth at an altitude 400 km above the Earth's surface, with constant speed \(v = 28,000 \) km/h. Find the magnitude of the shuttle's acceleration (in kilometers per square hour), assuming that the radius of the Earth is 6378 km (Figure 13).

50. A car proceeds along a circular path of radius \(R = 300 \) m centered at the origin. Starting at rest, its speed increases at a rate of \(t \) m/s\(^2\). Find the acceleration vector \(\mathbf{a} \) at time \(t = 3 \) s and determine its decomposition into normal and tangential components.

51. A runner runs along the helix \(\mathbf{r}(t) = (\cos t, \sin t, t) \). When he is at position \(\mathbf{r}(\frac{\pi}{2}) \), his speed is 3 m/s and he is accelerating at a rate of \(\frac{1}{2} \) m/s\(^2\). Find his acceleration vector \(\mathbf{a} \) at this moment. Note: The runner's acceleration vector does not coincide with the acceleration vector of \(\mathbf{r}(t) \).

52. Explain why the vector \(\mathbf{w} \) in Figure 14 cannot be the acceleration vector of a particle moving along the circle. Hint: Consider the sign of \(\mathbf{w} \cdot \mathbf{N} \).

Further Insights and Challenges

56. The orbit of a planet is an ellipse with the Sun at one focus. The Sun's gravitational force acts along the radial line from the planet to the Sun (the dashed lines in Figure 16), and by Newton's Second Law, the acceleration vector points in the same direction. Assuming that the orbit has positive eccentricity (the orbit is not a circle), explain why the planet must slow down in the upper half of the orbit (as it moves away from the Sun) and speed up in the lower half. Kepler's Second Law, discussed in the next section, is a precise version of this qualitative conclusion. Hint: Consider the decomposition of \(\mathbf{a} \) into normal and tangential components.

57. Show that the car will not skid if the curvature \(\kappa \) of the road is such that (with \(R = 1/\kappa \))
\[
(v')^2 + \left(\frac{v^2}{R} \right)^2 \leq (\mu g)^2
\]

Note that braking \((v' < 0)\) and speeding up \((v' > 0)\) contribute equally to skidding.

58. Suppose that the maximum radius of curvature along a curved highway is \(R = 180 \) m. How fast can an automobile travel (at constant speed) along the highway without skidding if the coefficient of friction is \(\mu = 0.5 \) ?

59. Beginning at rest, an automobile drives around a circular track of radius \(R = 300 \) m, accelerating at a rate of 0.3 m/s\(^2\). After how many seconds will the car begin to skid if the coefficient of friction is \(\mu = 0.6 \) ?

60. You want to reverse your direction in the shortest possible time by driving around a semicircular bend (Figure 17). If you travel at the maximum possible constant speed \(v \) that will not cause skidding, is it faster to hug the inside curve (radius \(r \)) or the outside curb (radius \(R \))? Hint: Use Eq. (4) to show that at maximum speed, the time required to drive around the semicircle is proportional to the square root of the radius.

61. What is the smallest radius \(R \) about which an automobile can turn without skidding at 100 km/h if \(\mu = 0.75 \) (a typical value)?
14.6 Planetary Motion According to Kepler and Newton

In this section, we derive Kepler’s laws of planetary motion, a feat first accomplished by Isaac Newton and published by him in 1687. No event was more emblematic of the scientific revolution. It demonstrated the power of mathematics to make the natural world comprehensible and it led succeeding generations of scientists to seek and discover mathematical laws governing other phenomena, such as electricity and magnetism, thermodynamics, and atomic processes.

According to Kepler, the planetary orbits are ellipses with the sun at one focus. Furthermore, if we imagine a radial vector $\mathbf{r}(t)$ pointing from the sun to the planet, as in Figure 1, then this radial vector sweeps out area at a constant rate or, as Kepler stated in his Second Law, the radial vector sweeps out equal areas in equal times (Figure 2). Kepler’s Third Law determines the period T of the orbit, defined as the time required to complete one full revolution. These laws are valid not just for planets orbiting the sun, but for any body orbiting about another body according to the inverse-square law of gravitation.

Kepler’s Three Laws

(i) **Law of Ellipses:** The orbit of a planet is an ellipse with the sun at one focus.

(ii) **Law of Equal Area in Equal Time:** The position vector pointing from the sun to the planet sweeps out equal areas in equal times.

(iii) **Law of the Period of Motion:** $T^2 = \left(\frac{4\pi^2}{GM}\right)a^3$, where

- a is the semimajor axis of the ellipse (Figure 1) in meters.
- G is the universal gravitational constant: 6.673×10^{-11} m3 kg$^{-1}$ s$^{-2}$.
- M is the mass of the sun, approximately 1.989×10^{30} kg.
- T is the period of the orbit, in seconds.

Our derivation makes a few simplifying assumptions. We treat the sun and planet as point masses and ignore the gravitational attraction of the planets on each other. And although both the sun and the planet revolve around their mutual center of mass, we ignore...
the sun’s motion and assume that the planet revolves around the center of the sun. This is justified because the sun is much more massive than the planet.

We place the sun at the origin of the coordinate system. Let \(\mathbf{r}(t) \) be the position vector of a planet of mass \(m \), as in Figure 1, and let (Figure 3)

\[
\mathbf{e}_r = \frac{\mathbf{r}(t)}{\|\mathbf{r}(t)\|}
\]

be the unit radial vector at time \(t \) (\(\mathbf{e}_r \) is the unit vector that points to the planet as it moves around the sun). By Newton’s Universal Law of Gravitation (the inverse-square law), the sun attracts the planet with a gravitational force

\[
\mathbf{F}(\mathbf{r}(t)) = -\left(\frac{k m}{\|\mathbf{r}(t)\|^2} \right) \mathbf{e}_r
\]

where \(k = GM \) (Figure 3). Combining the Law of Gravitation with Newton’s Second Law of Motion \(\mathbf{F}(\mathbf{r}(t)) = m\mathbf{r}''(t) \), we obtain

\[
\mathbf{r}''(t) = -\frac{k}{\|\mathbf{r}(t)\|^2} \mathbf{e}_r
\]

Kepler’s Laws are a consequence of this differential equation.

Kepler’s Second Law

The key to Kepler’s Second Law is the fact that the following cross product is a constant:

\[
\mathbf{J} = \mathbf{r}(t) \times \mathbf{r}'(t)
\]

THEOREM 1 The vector \(\mathbf{J} \) is constant—that is,

\[
\frac{d\mathbf{J}}{dt} = 0
\]

Proof By the Product Rule for cross products (Theorem 3 in Section 14.2),

\[
\frac{d\mathbf{J}}{dt} = \frac{d}{dt}(\mathbf{r}(t) \times \mathbf{r}'(t)) = \mathbf{r}'(t) \times \mathbf{r}'(t) + \mathbf{r}(t) \times \mathbf{r}''(t)
\]

The cross product of parallel vectors is zero, so the first term is certainly zero. The second term is also zero because \(\mathbf{r}''(t) \) is a multiple of \(\mathbf{e}_r \) by Eq. (1), and hence also of \(\mathbf{r}(t) \).

How can we use Eq. (2)? First of all, the cross product \(\mathbf{J} \) is orthogonal to both \(\mathbf{r}(t) \) and \(\mathbf{r}'(t) \). Because \(\mathbf{J} \) is constant, \(\mathbf{r}(t) \) and \(\mathbf{r}'(t) \) are confined to the fixed plane orthogonal to \(\mathbf{J} \). This proves that the motion of a planet around the sun takes place in a plane.

We can choose coordinates so that the sun is at the origin and the planet moves in the counterclockwise direction (Figure 4). Let \((r, \theta) \) be the polar coordinates of the planet, where \(r = r(t) \) and \(\theta = \theta(t) \) are functions of time. Note that \(r(t) = \|\mathbf{r}(t)\| \).

Recall from Section 12.4 (Theorem 1) that the area swept out by the planet’s radial vector is

\[
A = \frac{1}{2} \int_0^\theta r^2 \, d\theta
\]

Kepler’s Second Law states that this area is swept out at a constant rate. But, this rate is simply \(dA/dt \). By the Fundamental Theorem of Calculus, \(\frac{dA}{dt} = \frac{1}{2} r^2 \), and by the Chain Rule,

\[
\frac{dA}{dt} = \frac{dA}{d\theta} \frac{d\theta}{dt} = \frac{1}{2} \frac{d\theta}{dt} r(t)^2 = \frac{1}{2} r(t)^2 \theta'(t)
\]
Thus, Kepler’s Second Law follows from the next theorem, which tells us that dA/dt has the constant value $\frac{1}{2}||J||$.

Theorem 2 Let $J = ||J||$ (and hence J are constant by Theorem 1). Then

$$r(t)^2 \theta'(t) = J$$

Proof We note that in polar coordinates, $e_r = \langle \cos \theta, \sin \theta \rangle$. We also define the unit vector $e_\theta = \langle -\sin \theta, \cos \theta \rangle$ that is orthogonal to e_r (Figure 5). In summary,

$$r(t) = ||r(t)||, \quad e_r = \langle \cos \theta, \sin \theta \rangle, \quad e_\theta = \langle -\sin \theta, \cos \theta \rangle, \quad e_r \cdot e_\theta = 0$$

We see directly that the derivatives of e_r and e_θ with respect to θ are

$$\frac{d}{d\theta} e_r = e_\theta, \quad \frac{d}{d\theta} e_\theta = -e_r$$

The time derivative of e_r is computed using the Chain Rule:

$$e_r' = \left(\frac{d\theta}{dt} \right) e_r + r \frac{d}{d\theta} e_r = \theta'(t) e_\theta$$

Now apply the Product Rule to $r = re_r$:

$$r' = \frac{d}{dt} re_r = r'e_r + re_r' = r'e_r + r\theta'e_\theta$$

Using $e_r \times e_r = 0$, we obtain

$$J = r \times r' = re_r \times (r'e_r + r\theta'e_\theta) = r^2 \theta'(e_r \times e_\theta)$$

It is straightforward to check that $e_r \times e_\theta = k$, and since k is a unit vector, $J = ||J|| = |r^2\theta'|$. However, $\theta' > 0$ because the planet moves in the counterclockwise direction, so $J = r^2\theta'$. This proves Theorem 2.

Proof of the Law of Ellipses

We show that the orbit of a planet is indeed an ellipse with the sun as one of the foci.

Let $v = r'(t)$ be the velocity vector. Then $r'' = v'$ and Eq. (1) may be written

$$\frac{dv}{dt} = -\frac{k}{r(t)^2} e_r$$

On the other hand, by the Chain Rule and the relation $r(t)^2 \theta'(t) = J$ of Eq. (3),

$$\frac{dv}{dt} = \frac{d\theta}{dt} \frac{dv}{d\theta} = \theta'(t) \frac{dv}{d\theta} = \frac{J}{r(t)^2} \frac{dv}{d\theta}$$

Together with Eq. (6), this yields $\int \frac{dv}{d\theta} = -ke_r$, or

$$\frac{dv}{d\theta} = -\frac{k}{J} e_r = -\frac{k}{J} \langle \cos \theta, \sin \theta \rangle$$

This is a first-order differential equation that no longer involves time t. We can solve it by integration:

$$v = -\frac{k}{J} \int \langle \cos \theta, \sin \theta \rangle d\theta = \frac{k}{J} \langle -\sin \theta, \cos \theta \rangle + e = \frac{k}{J} e_\theta + e$$

where e is an arbitrary constant vector.

We are still free to rotate our coordinate system in the plane of motion, so we may assume that e points along the y-axis. We can then write $e = \langle 0, (k/J)e \rangle$ for some constant e. We finish the proof by computing $J = r \times v$:
approximately once every 24,000 years. The semimajor axis makes a full revolution slowly over time. For Mercury, the perihelion of an orbit shifts slowly over time. Copernicus paved the way for the earth to revolve around the sun, this idea was rejected and forgotten for nearly eighteen centuries, until the Polish astronomer Nicolaus Copernicus (1473–1543) introduced a revolutionary set of ideas about the solar system, including the hypothesis that the planets revolve around the sun. Copernicus paved the way for the next generation, most notably Tycho Brahe (1546–1601), Galileo Galilei (1564–1642), and Johannes Kepler (1571–1630).

The German astronomer Johannes Kepler was the son of a mercenary soldier who apparently left his family when Johannes was 5 and may have died at war. Johannes was raised by his mother in his grandfather’s inn. Kepler’s mathematical brilliance earned him a scholarship at the University of Tübingen, and at age of 29, he went to work for the Danish astronomer Tycho Brahe, who had compiled the most complete and accurate data on planetary motion then available. When Brahe died in 1601, Kepler succeeded him as “Imperial Mathematician” to the Holy Roman Emperor, and in 1609 he formulated the first two of his laws of planetary motion in a work entitled Astronomia Nova (New Astronomy).

In the centuries since Kepler’s death, as observational data improved, astronomers found that the planetary orbits are not exactly elliptical. Furthermore, the perihelion (the point on the orbit closest to the sun) shifts slowly over time (Figure 6). Most of these deviations can be explained by the mutual pull of the planets, but the perihelion shift of Mercury is larger than can be accounted for by Newton’s Laws. On November 18, 1915, Albert Einstein made a discovery about which he later wrote to a friend, “I was beside myself with ecstasy for days.” He had been working for a decade on his famous General Theory of Relativity, a theory that would replace Newton’s Law of Gravitation with a new set of much more complicated equations called the Einstein Field Equations. On that 18th of November, Einstein showed that Mercury’s perihelion shift was accurately explained by his new theory. At the time, this was the only substantial piece of evidence that the General Theory of Relativity was correct.
14.6 SUMMARY

- Kepler’s three laws of planetary motion:
 - Law of Ellipses
 - Law of Equal Area in Equal Time
 - Law of the Period \(T^2 = \left(\frac{4\pi^2}{GM} \right) a^3 \), where \(T \) is the period (time to complete one full revolution) and \(a \) is the semimajor axis (Figure 7)

- According to Newton’s Universal Law of Gravitation and Second Law of Motion, the position vector \(\mathbf{r}(t) \) of a planet satisfies the differential equation
 \[
 \mathbf{r}''(t) = -\frac{k}{r(t)^2} \mathbf{e}_r,
 \]
 where \(r(t) = ||\mathbf{r}(t)|| \), \(\mathbf{e}_r = \frac{\mathbf{r}(t)}{||\mathbf{r}(t)||} \)

- Properties of \(\mathbf{J} = \mathbf{r}(t) \times \mathbf{r}'(t) \):
 - \(\mathbf{J} \) is a constant of planetary motion.
 - Let \(J = ||\mathbf{J}|| \). Then \(J = r(t)^2 \theta'(t) \).
 - The planet sweeps out area at the rate \(\frac{dA}{dt} = \frac{1}{2} J \).

- A planetary orbit has polar equation \(r = \frac{J^2/k}{1 + e \cos \theta} \), where \(e \) is the eccentricity of the orbit.

14.6 EXERCISES

Preliminary Questions

1. Describe the relation between the vector \(\mathbf{J} = \mathbf{r} \times \mathbf{r}' \) and the rate at which the radial vector sweeps out area.

2. Equation (1) shows that \(\mathbf{r}'' \) is proportional to \(\mathbf{r} \). Explain how this fact is used to prove Kepler’s Second Law.

Exercises

1. Kepler’s Third Law states that \(T^2/a^3 \) has the same value for each planetary orbit. Do the data in the following table support this conclusion? Estimate the length of Jupiter’s period, assuming that \(a = 77.8 \times 10^{10} \) m.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Mercury</th>
<th>Venus</th>
<th>Earth</th>
<th>Mars</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a (10^{10}) m)</td>
<td>5.79</td>
<td>10.8</td>
<td>15.0</td>
<td>22.8</td>
</tr>
<tr>
<td>(T) (years)</td>
<td>0.241</td>
<td>0.615</td>
<td>1.00</td>
<td>1.88</td>
</tr>
</tbody>
</table>

2. Finding the Mass of a Star Using Kepler’s Third Law, show that if a planet revolves around a star with period \(T \) and semimajor axis \(a \), then the mass of the star is \(M = \left(\frac{4\pi^2}{G} \right) \left(\frac{a^3}{T^2} \right) \).

3. Ganymede, one of Jupiter’s moons discovered by Galileo, has an orbital period of 7.154 days and a semimajor axis of \(1.07 \times 10^{9} \) m. Use Exercise 2 to estimate the mass of Jupiter.

4. An astronomer observes a planet orbiting a star with a period of 9.5 years and a semimajor axis of \(3 \times 10^{9} \) km. Find the mass of the star using Exercise 2.

5. Mass of the Milky Way The sun revolves around the center of mass of the Milky Way galaxy in an orbit that is approximately circular, of radius \(a \approx 2.8 \times 10^{17} \) km and velocity \(v \approx 250 \) km/s. Use the result of Exercise 2 to estimate the mass of the portion of the Milky Way inside the sun’s orbit (place all of this mass at the center of the orbit).

6. A satellite orbiting above the equator of the earth is **geosynchronous** if the period is \(T = 24 \) hours (in this case, the satellite stays over a fixed point on the equator). Use Kepler’s Third Law to show that in a circular geosynchronous orbit, the distance from the center of the earth is \(R \approx 42,246 \) km. Then compute the altitude \(h \) of the orbit above the earth’s surface. The earth has mass \(M \approx 5.974 \times 10^{24} \) kg and radius \(R \approx 6371 \) km.

7. Show that a planet in a circular orbit travels at constant speed. **Hint**: Use the facts that \(\mathbf{J} \) is constant and that \(\mathbf{r}(t) \) is orthogonal to \(\mathbf{r}'(t) \) for a circular orbit.

8. Verify that the circular orbit
 \[
 \mathbf{r}(t) = (R \cos \omega t, R \sin \omega t)
 \]
 satisfies the differential equation, Eq. (1), provided that \(\omega^2 = kR^{-3} \). Then deduce Kepler’s Third Law \(T^2 = \left(\frac{4\pi^2}{k} \right) R^3 \) for this orbit.
9. Prove that if a planetary orbit is circular of radius \(R \), then \(vT = 2\pi R \), where \(v \) is the planet’s speed (constant by Exercise 7) and \(T \) is the period. Then use Kepler’s Third Law to prove that \(v = \sqrt{\frac{GM}{R}} \).

10. Find the velocity of a satellite in geosynchronous orbit about the earth. Hint: Use Exercises 6 and 9.

11. A communications satellite orbiting the earth has initial position \(r = (29,000, 20,000, 0) \) (in kilometers) and initial velocity \(\mathbf{v}' = (1, 1, 1) \) (in kilometers per second), where the origin is the earth’s center. Find the equation of the plane containing the satellite’s orbit. Hint: This plane is orthogonal to \(\mathbf{J} \).

12. Assume that the earth’s orbit is circular of radius \(R = 150 \times 10^6 \) km (it is nearly circular with eccentricity \(e = 0.017 \)). Find the rate at which the earth’s radial vector sweeps out area in units of square kilometers per second. What is the magnitude of the vector \(\mathbf{J} \) for the earth (in units of square kilometers per second)?

In Exercises 13–19, the perihelion and aphelion are the points on the orbit closest to and farthest from the sun, respectively (Figure 8). The distance from the sun at the perihelion is denoted \(r_{\text{per}} \) and the speed at this point is denoted \(v_{\text{per}} \). Similarly, we write \(r_{\text{ap}} \) and \(v_{\text{ap}} \) for the distance and speed at the aphelion. The semimajor axis is denoted \(a \).

13. Use the polar equation of an ellipse

\[
r = \frac{p}{1 + e \cos \theta}
\]

to show that \(r_{\text{per}} = a(1 - e) \) and \(r_{\text{ap}} = a(1 + e) \). Hint: Use the fact that \(r_{\text{per}} + r_{\text{ap}} = 2a \).

14. Use the result of Exercise 13 to prove the formulas

\[
e = \frac{r_{\text{ap}} - r_{\text{per}}}{r_{\text{ap}} + r_{\text{per}}}, \quad p = \frac{2r_{\text{ap}}r_{\text{per}}}{r_{\text{ap}} + r_{\text{per}}}.
\]

15. Use the fact that \(\mathbf{J} = \mathbf{r} \times \mathbf{r}' \) is constant to prove

\[
v_{\text{per}}(1 - e) = v_{\text{ap}}(1 + e).
\]

Hint: \(\mathbf{r} \) is perpendicular to \(\mathbf{r}' \) at the perihelion and aphelion.

16. Compute \(r_{\text{per}} \) and \(r_{\text{ap}} \) for the orbit of Mercury, which has eccentricity \(e = 0.244 \) (see the table in Exercise 1 for the semimajor axis).

17. Conservation of Energy The total mechanical energy (kinetic energy plus potential energy) of a planet of mass \(m \) orbiting a sun of mass \(M \) with position \(\mathbf{r} \) and speed \(v = \| \mathbf{v} \| \) is

\[
E = \frac{1}{2}mv^2 - \frac{GMm}{\| \mathbf{r} \|}.
\]

(a) Prove the equations

\[
\frac{d}{dt} \frac{1}{2}mv^2 = \mathbf{v} \cdot (m \mathbf{a}), \quad \frac{d}{dt} \frac{GMm}{\| \mathbf{r} \|} = \mathbf{v} \cdot \left(-\frac{GMm}{\| \mathbf{r} \|^3} \mathbf{r} \right)
\]

(b) Then use Newton’s Law \(\mathbf{F} = m \mathbf{a} \) and Eq. (1) to prove that energy is conserved—that is, \(\frac{dE}{dt} = 0 \).

Further Insights and Challenges

Exercises 23 and 24 prove Kepler’s Third Law. Figure 10 shows an elliptical orbit with polar equation

\[
r = \frac{p}{1 + e \cos \theta}
\]

where \(p = J^2 / k \). The origin of the polar coordinates occurs at \(F_1 \). Let \(a \) and \(b \) be the semimajor and semiminor axes, respectively.

18. Show that the total energy [Eq. (8)] of a planet in a circular orbit of radius \(R \) is \(E = -\frac{GMm}{2R} \). Hint: Use Exercise 9.

19. Prove that \(v_{\text{per}} = \sqrt{\frac{GM}{a}} \) as follows:

(a) Use Conservation of Energy (Exercise 17) to show that

\[
\frac{v_{\text{per}}}{v_{\text{ap}}} = \frac{r_{\text{ap}} - r_{\text{per}}}{r_{\text{ap}} + r_{\text{per}}}
\]

(b) Show that \(r_{\text{per}} - r_{\text{ap}} = \frac{2e}{1 - e^2} \) using Exercise 13.

(c) Show that \(\frac{v_{\text{per}}^2 - v_{\text{ap}}^2}{v_{\text{ap}}^2} = \frac{e}{1 + e} \) using Exercise 15. Then solve for \(v_{\text{per}} \) using (a) and (b).

20. Show that a planet in an elliptical orbit has total mechanical energy

\[
E = \frac{GMm}{2a},
\]

where \(a \) is the semimajor axis. Hint: Use Exercise 19 to compute the total energy at the perihelion.

21. Prove that \(v^2 = GM \left(\frac{2}{r} - \frac{1}{a} \right) \) at any point on an elliptical orbit, where \(r = \| \mathbf{r} \| \), \(v \) is the velocity, and \(a \) is the semimajor axis of the orbit.

22. Two space shuttles \(A \) and \(B \) orbit the earth along the solid trajectory in Figure 9. Hoping to catch up to \(B \), the pilot of \(A \) applies a forward thrust to increase her shuttle’s kinetic energy. Use Exercise 20 to show that shuttle \(A \) will move off into a larger orbit as shown in the figure. Then use Kepler’s Third Law to show that \(A \)’s orbital period \(T \) will increase (and she will fall farther and farther behind \(B \)).

23. This exercise shows that \(b = \sqrt{a(1 - e)} \).

(a) Show that \(C F_1 = ae \). Hint: \(r_{\text{per}} = a(1 - e) \) by Exercise 13.

(b) Show that \(a = \frac{p}{1 - e^2} \).

(c) Show that \(F_1 A + F_2 A = 2a \). Conclude that \(F_1 B + F_2 B = 2a \) and hence \(F_1 B = F_2 B = a \).
24. The area A of the ellipse is $A = \pi ab$.
(a) Prove, using Kepler’s First Law, that $A = \frac{1}{2} a T$, where T is the period of the orbit.
(b) Use Exercise 23 to show that $A = (\pi \sqrt{a^2 - b^2})^{3/2}$.
(c) Deduce Kepler’s Third Law: $T^2 = \frac{4\pi^2 a^3}{GM}$.

25. According to Eq. (7), the velocity vector of a planet as a function of the angle θ is

$$v(\theta) = \frac{k}{r} \mathbf{e}_\theta + \mathbf{c}$$

CHAPTER REVIEW EXERCISES

1. Determine the domains of the vector-valued functions.
(a) $\mathbf{r}_1(t) = (t^{-1}, (t + 1)^{-1}, \sin^{-1} t)$
(b) $\mathbf{r}_2(t) = (\sqrt{8 - t^2}, \ln t, e^{\sqrt{t}})$

2. Sketch the paths $\mathbf{r}_1(\theta) = (\theta, \cos \theta)$ and $\mathbf{r}_2(\theta) = (\cos \theta, \theta)$ in the xy-plane.

3. Find a vector parametrization of the intersection of the surfaces $x^2 + y^2 + 2z^2 = 6$ and $x = y$ in \mathbb{R}^3.

4. Find a vector parametrization using trigonometric functions of the intersection of the plane $x + y + z = 1$ and the elliptical cylinder $(\frac{y^2}{3} + \frac{z^2}{2}) = 1$ in \mathbb{R}^3.

In Exercises 5–10, calculate the derivative indicated.
5. $\mathbf{r}'(t), \quad \mathbf{r}(t) = (1 - t, t^{-2}, \ln t)$
6. $\mathbf{r}''(t), \quad \mathbf{r}(t) = (t^3, 4t^2, 7t)$
7. $\mathbf{r}'(0), \quad \mathbf{r}(t) = (e^{2t}, e^{-4t}, e^{6t})$
8. $\mathbf{r}''(-3), \quad \mathbf{r}(t) = (t^{-2}, (t + 1)^{-1}, t^3 - t)$
9. $\frac{d}{dt} (1, t^2)$
10. $\frac{d}{d\theta} \mathbf{r}(\cos \theta), \quad \mathbf{r}(s) = (s, 2s, s^2)$

In Exercises 11–14, calculate the derivative at $t = 3$, assuming that
$\mathbf{r}_1(3) = (1, 1, 0), \quad \mathbf{r}_2(3) = (1, 1, 0)$
$\mathbf{r}'_1(3) = (0, 0, 1), \quad \mathbf{r}'_2(3) = (0, 2, 4)$

11. $\frac{d}{dt} \mathbf{r}_1(t) - 4 \cdot \mathbf{r}_2(t)$
12. $\frac{d}{dt} \mathbf{r}_2(t)$
13. $\frac{d}{dt} (\mathbf{r}_1(t) \cdot \mathbf{r}_2(t))$
14. $\frac{d}{dt} (\mathbf{r}_1(t) \times \mathbf{r}_2(t))$
15. Calculate $\int_0^3 (4t + 3, t^2, -4t^3) dt$.
16. Calculate $\int_0^\pi (\sin \theta, \theta, \cos 2\theta) d\theta$.
17. A particle located at $(1, 1, 0)$ at time $t = 0$ follows a path whose velocity vector is $\mathbf{v}(t) = (1, t, 2t^2)$. Find the particle’s location at $t = 2$.
18. Find the vector-valued function $\mathbf{r}(t) = (x(t), y(t))$ in \mathbb{R}^2 satisfying $\mathbf{r}'(t) = -\mathbf{r}(t)$ with initial conditions $\mathbf{r}(0) = (1, 2)$.
19. Calculate $\mathbf{r}(t)$, assuming that $\mathbf{r}'(t) = \left(4 - 16t, 12t^2 - t\right), \quad \mathbf{r}'(0) = (1, 0), \quad \mathbf{r}(0) = (0, 1)$
20. Solve $\mathbf{r}''(t) = \left(2^2 - 1, t + 1, t^3\right)$ subject to the initial conditions $\mathbf{r}(0) = (1, 0, 0)$ and $\mathbf{r}'(0) = (-1, 1, 0)$
21. Compute the length of the path $\mathbf{r}(t) = (\sin 2t, \cos 2t, 3t - 1)$ for $1 \leq t \leq 3$
22. Express the length of the path $\mathbf{r}(t) = (\ln t, t, e^t)$ for $1 \leq t \leq 2$ as a definite integral, and use a computer algebra system to find its value to two decimal places.
23. Find an arc length parametrization of a helix of height 20 cm that makes four full rotations over a circle of radius 5 cm.
24. Find the minimum speed of a particle with trajectory $\mathbf{r}(t) = (t, e^{-t}, e^{4-t})$. Use this to explain the following statement: As a planet revolves around the sun, its velocity vector traces out a circle of radius k/J with its center at the terminal point of e (Figure 11). This beautiful but hidden property of orbits was discovered by William Rowan Hamilton in 1847.
25. A projectile fired at an angle of 60° lands 400 m away. What was its initial speed?

26. A specially trained mouse runs counterclockwise in a circle of radius 0.6 m on the floor of an elevator with speed 0.3 m/s, while the elevator ascends from ground level (along the z-axis) at a speed of 12 m/s. Find the mouse’s acceleration vector as a function of time. Assume that the circle is centered at the origin of the xy-plane and the mouse is at (2, 0, 0) at \(t = 0 \).

27. During a short time interval \([0.5, 1.5]\), the path of an unmanned spy plane is described by
\[
\mathbf{r}(t) = \left(\frac{100}{t^2}, 7 - t, 40 - t^2 \right)
\]
A laser is fired (in the tangential direction) toward the yz-plane at time \(t = 1 \). Which point in the yz-plane does the laser beam hit?

28. A force \(\mathbf{F} = (12t + 4, 8 - 24t) \) (in newtons) acts on a 2-kg mass. Find the position of the mass at \(t = 2 \) s if it is located at \((4, 6)\) at \(t = 0 \) and has initial velocity \((2, 3)\) in meters per second.

29. Find the unit tangent vector to \(\mathbf{r}(t) = (\sin t, t, \cos t) \) at \(t = \pi \).

30. Find the unit tangent vector to \(\mathbf{r}(t) = (t^2, \tan^{-1} t, t) \) at \(t = 1 \).

31. Calculate \(\kappa(1) \) for \(\mathbf{r}(t) = (\ln t, t) \).

32. Calculate \(\kappa \left(\frac{\pi}{2} \right) \) for \(\mathbf{r}(t) = (\tan t, \sec t, \cos t) \).

In Exercises 33 and 34, write the acceleration vector \(\mathbf{a} \) at the point indicated as a sum of tangential and normal components.

33. \(\mathbf{r}(\theta) = (\cos \theta, \sin 2\theta) \), \(\theta = \frac{\pi}{4} \)

34. \(\mathbf{r}(t) = (t^2, 2t - t^2, t) \), \(t = 2 \)

35. At a certain time \(t_0 \), the path of a moving particle is tangent to the y-axis in the positive direction. The particle’s speed at time \(t_0 \) is 4 m/s, and its acceleration vector is \(\mathbf{a} = (5, 4, 12) \). Determine the curvature of the path at \(t_0 \).

36. Parametrize the osculating circle to \(y = x^2 - x^3 \) at \(x = 1 \).

37. Parametrize the osculating circle to \(y = \sqrt{x} \) at \(x = 4 \).

38. Let \(\mathbf{r}(t) = (\cos t, \sin t, 2t) \).
 (a) Find \(\mathbf{T} \), \(\mathbf{N} \), and \(\mathbf{B} \) at the point corresponding to \(t = \frac{\pi}{4} \).
 Hint: Evaluate \(\mathbf{T} \) at \(t = \frac{\pi}{4} \) before finding \(\mathbf{N} \) and \(\mathbf{B} \).

39. Let \(\mathbf{r}(t) = \left(\ln t, t, \frac{t^2}{2} \right) \). Find the equation of the osculating plane corresponding to \(t = \frac{\pi}{2} \).

40. If a planet has zero mass \((m = 0)\), then Newton’s laws of motion reduce to \(\mathbf{r}’’(t) = 0 \) and the orbit is a straight line \(\mathbf{r}(t) = \mathbf{r}_0 + t\mathbf{v}_0 \), where \(\mathbf{r}_0 = \mathbf{r}(0) \) and \(\mathbf{v}_0 = \mathbf{r}’(0) \) (Figure 1). Show that the area swept out by the radial vector at time \(t \) is \(A(t) = \frac{1}{2} |\mathbf{r}_0 \times \mathbf{v}_0| t \), and thus Kepler’s Second Law continues to hold (the rate is constant).

41. Suppose the orbit of a planet is an ellipse of eccentricity \(e = c/a \) and period \(T \) (Figure 2). Use Kepler’s Second Law to show that the time required to travel from \(A’ \) to \(B’ \) is equal to
\[
\left(\frac{1}{4} + \frac{e}{2\pi} \right) T
\]

42. The period of Mercury is approximately 88 days, and its orbit has eccentricity 0.205. How much longer does it take Mercury to travel from \(A’ \) to \(B’ \) than from \(B’ \) to \(A \) (Figure 2)?
The slope experienced by a mountain climber, which is given by the appropriate generalization of the derivative of a function of one variable, depends on the direction of motion. (Philip and Karen Smith/Getty Images)

15 DIFFERENTIATION IN SEVERAL VARIABLES

In this chapter, we extend the concepts and techniques of differential calculus to functions of several variables. As we will see, a function f that depends on two or more variables has not just one derivative but rather a set of partial derivatives, one for each variable. The partial derivatives are the components of the gradient vector, which provides valuable insight into the function’s behavior. In the last two sections, we apply the tools we have developed to optimization in several variables.

15.1 Functions of Two or More Variables

A familiar example of a function of two variables is the area A of a rectangle, equal to the product xy of the base x and height y. We write

$$A(x, y) = xy$$

or $A = f(x, y)$, where $f(x, y) = xy$. An example in three variables is the distance from a point $P = (x, y, z)$ to the origin:

$$g(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

An important but less familiar example is the density of seawater, denoted ρ, which is a function of salinity S and temperature T (Figure 1). Although there is no simple formula for $\rho(S, T)$, scientists determine values of the function experimentally (Figure 2). According to Table 1, if $S = 32$ (in parts per thousand or ppt) and $T = 10^\circ\text{C}$, then

$$\rho(32, 10) = 1.0246 \text{ kg/m}^3$$

<table>
<thead>
<tr>
<th>Salinity (ppt)</th>
<th>(5)</th>
<th>(10)</th>
<th>(15)</th>
<th>(20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(32)</td>
<td>1.0253</td>
<td>1.0246</td>
<td>1.0237</td>
<td>1.0224</td>
</tr>
<tr>
<td>(32.5)</td>
<td>1.0257</td>
<td>1.0250</td>
<td>1.0240</td>
<td>1.0229</td>
</tr>
<tr>
<td>(33)</td>
<td>1.0261</td>
<td>1.0254</td>
<td>1.0244</td>
<td>1.0232</td>
</tr>
</tbody>
</table>

A function of n variables is a function $f(x_1, \ldots, x_n)$ that assigns a real number to each n-tuple (x_1, \ldots, x_n) in a domain in \mathbb{R}^n. Sometimes we write $f(P)$ for the value of f at a point $P = (x_1, \ldots, x_n)$. When f is defined by a formula, we usually take as domain the set of all n-tuples for which $f(x_1, \ldots, x_n)$ is defined. The range of f is the set of all values $f(x_1, \ldots, x_n)$ for (x_1, \ldots, x_n) in the domain. Since we focus on functions of two or three variables, we shall often use the variables x, y, and z (rather than x_1, x_2, x_3).
EXAMPLE 1 Sketch the domains of:

(a) \(f(x, y) = \sqrt{9 - x^2 - y} \)

(b) \(g(x, y, z) = x \sqrt{y} + \ln(z - 1) \)

What are the ranges of these functions?

Solution

(a) \(f(x, y) = \sqrt{9 - x^2 - y} \) is defined only when \(9 - x^2 - y \geq 0 \), or \(y \leq 9 - x^2 \). Thus, the domain consists of all points \((x, y)\) lying on or below the parabola \(y = 9 - x^2 \) [Figure 3(A)]:

\[D = \{(x, y) : y \leq 9 - x^2 \} \]

To determine the range, note that \(f \) is a nonnegative function and that \(f(0, y) = \sqrt{9 - y} \). Since \(9 - y \) can be any positive number, \(f(0, y) \) takes on all nonnegative values. Therefore, the range of \(f \) is the infinite interval \([0, \infty) \).

(b) \(g(x, y, z) = x \sqrt{y} + \ln(z - 1) \) is defined only when both \(\sqrt{y} \) and \(\ln(z - 1) \) are defined. Therefore, both \(y \geq 0 \) and \(z > 1 \) are required, so the domain of the function is given by \(\{(x, y, z) : y \geq 0, z > 1 \} \) [Figure 3(B)]. The range of \(g \) is the entire real line \(\mathbb{R} \).

Indeed, for the particular choices \(y = 1 \) and \(z = 2 \), we have \(g(x, 1, 2) = x \sqrt{1} + \ln 1 = x \), and since \(x \) is arbitrary, we see that \(g \) takes on all values.

GRAPHING FUNCTIONS OF TWO VARIABLES

In single-variable calculus, we use graphs to visualize the important features of a function. Graphs play a similar role for functions of two variables. The graph of a function \(f \) of two variables consists of all points \((a, b, f(a, b))\) in \(\mathbb{R}^3 \) for \((a, b)\) in the domain \(D \) of \(f \). Assuming that \(f \) is continuous (as defined in the next section), the graph is a surface whose height above or below the \(xy \)-plane at \((a, b)\) is the value of the function \(f(a, b) \) (Figure 4). We often write \(z = f(x, y) \) to stress that the \(z \)-coordinate of a point on the graph is a function of \(x \) and \(y \).

EXAMPLE 2 Sketch the graph of \(f(x, y) = 2x^2 + 5y^2 \).

Solution The graph is a paraboloid (Figure 5), which we saw in Section 13.6. We sketch the graph using the fact that the horizontal cross section (called the horizontal “trace” below) at height \(z = c \) is the ellipse \(2x^2 + 5y^2 = c \).
Traces and Level Curves

One way of analyzing the graph of $f(x, y)$ is to freeze the x-coordinate by setting $x = a$ and examine the resulting curve given by $z = f(a, y)$. Similarly, we may set $y = b$ and consider the curve $z = f(x, b)$. Curves of this type are called vertical traces. They are obtained by intersecting the graph with planes parallel to a vertical coordinate plane (Figure 7):

- **Vertical trace in the plane $x = a$:** Intersection of the graph with the vertical plane $x = a$, consisting of all points $(a, y, f(a, y))$
- **Vertical trace in the plane $y = b$:** Intersection of the graph with the vertical plane $y = b$, consisting of all points $(x, b, f(x, b))$
EXAMPLE 3 Describe the vertical traces of \(f(x, y) = x \sin y \).

Solution When we freeze the \(x \)-coordinate by setting \(x = a \), we obtain the trace curve \(z = a \sin y \) (see Figure 8). This is a sine curve located in the plane \(x = a \). When we set \(y = b \), we obtain a line \(z = x \sin b \) of slope \(\sin b \), located in the plane \(y = b \).

EXAMPLE 4 Identifying Features of a Graph Match the graphs in Figure 9 with the following functions:

(i) \(f(x, y) = x - y^2 \)
(ii) \(g(x, y) = x^2 - y \)

Solution Let’s compare vertical traces. The vertical trace of \(f(x, y) = x - y^2 \) in the plane \(x = a \) is a downward parabola \(z = a - y^2 \). This matches (B). On the other hand, the vertical trace of \(g(x, y) \) in the plane \(y = b \) is an upward parabola \(z = x^2 - b \). This matches (A).

Notice also that \(f(x, y) = x - y^2 \) is an increasing function of \(x \) [i.e., \(f(x, y) \) increases as \(x \) increases] as in (B), whereas \(g(x, y) = x^2 - y \) is a decreasing function of \(y \) as in (A).

Level Curves and Contour Maps

In addition to vertical traces, the graph of \(f(x, y) \) has horizontal traces. These traces and their associated level curves are especially important in analyzing the behavior of the function (Figure 10):

- Horizontal trace at height \(c \): Intersection of the graph with the horizontal plane \(z = c \), consisting of the points \((x, y, f(x, y)) \) such that \(f(x, y) = c \)
- Level curve: The curve \(f(x, y) = c \) in the \(xy \)-plane
Thus, the level curve corresponding to \(c \) consists of all points \((x, y)\) in the plane where the function takes the value \(c \). Each level curve is the projection onto the \(xy\)-plane of the horizontal trace on the graph that lies above it.

A contour map is a plot in the \(xy\)-plane that shows the level curves \(f(x, y) = c \) for equally spaced values of \(c \). The interval \(m \) between the values is called the contour interval. When you move from one level curve to next, the value of \(f(x, y) \) (and hence the height of the graph) changes by \(\pm m \).

On contour maps, level curves are often referred to as contour lines.

Figure 11 compares the graph of a function \(f(x, y) \) in (A) and its horizontal traces in (B) with the contour map in (C). The contour map in (C) has contour interval \(m = 10 \).

It is important to understand how the contour map indicates the steepness of the graph. If the level curves are close together, then a small move from one level curve to the next in the \(xy\)-plane leads to a large change in height. In other words, the level curves are close together if the graph is steep (Figure 11). Similarly, the graph is flatter when the level curves are farther apart.

EXAMPLE 5 Elliptic Paraboloid Sketch the contour map of \(f(x, y) = x^2 + 3y^2 \) and comment on the spacing of the contour curves.

Solution The level curves have equation \(f(x, y) = c \), or

\[
x^2 + 3y^2 = c
\]

- For \(c > 0 \), the level curve is an ellipse.
- For \(c = 0 \), the level curve is just the point \((0, 0)\) because \(x^2 + 3y^2 = 0 \) only for \((x, y) = (0, 0)\).
- The level curve is empty if \(c < 0 \) because \(f(x, y) \) is never negative.

The graph of \(f(x, y) \) is an elliptic paraboloid (Figure 12). As we move away from the origin, \(f(x, y) \) increases more rapidly. The graph gets steeper, and the level curves become closer together.

EXAMPLE 6 Hyperbolic Paraboloid Sketch the contour map of \(g(x, y) = x^2 - 3y^2 \).

Solution The level curves have equation \(g(x, y) = c \), or

\[
x^2 - 3y^2 = c
\]

- For \(c \neq 0 \), the level curve is the hyperbola \(x^2 - 3y^2 = c \).
- For \(c = 0 \), the level curve consists of the two lines \(x = \pm \sqrt{3}y \) because the equation \(g(x, y) = 0 \) factors as follows:

\[
x^2 - 3y^2 = 0 = (x - \sqrt{3}y)(x + \sqrt{3}y) = 0
\]
The graph of \(g(x, y) \) is a hyperbolic paraboloid (Figure 13). When you stand at the origin, \(g(x, y) \) increases as you move along the \(x \)-axis in either direction and decreases as you move along the \(y \)-axis in either direction. Furthermore, the graph gets steeper as you move out from the origin, so the level curves grow closer together.

\[\text{Example 7 Contour Map of a Linear Function} \]

Sketch the graph of \(f(x, y) = 12 - 2x - 3y \) and the associated contour map with contour interval \(m = 4 \).

\[\text{Solution} \]

Note that if we set \(z = f(x, y) \), we can write the equation as \(2x + 3y + z = 12 \). As we discussed in Section 13.5, this is the equation of a plane. To plot the graph, we find the intercepts of the plane with the axes (Figure 14). The graph intercepts the \(z \)-axis at \(z = f(0, 0) = 12 \). To find the \(x \)-intercept, we set \(y = z = 0 \) to obtain \(12 - 2x = 3(0) = 0 \), or \(x = 6 \). Similarly, solving \(12 - 3y = 0 \) gives the \(y \)-intercept \(y = 4 \). The graph is the plane determined by the three intercepts.

In general, the level curves of a linear function \(f(x, y) = qx + ry + s \) are the lines with equation \(qx + ry + s = c \). Therefore, the contour map of a linear function consists of equally spaced parallel lines. In our case, the level curves are the lines \(12 - 2x - 3y = c \), or \(2x + 3y = 12 - c \) (Figure 14).

How can we measure steepness quantitatively? Let’s imagine the surface given by \(z = f(x, y) \) as a mountain range. In fact, contour maps (also called topographical maps) are used extensively to describe terrain (Figure 15). We place the \(xy \)-plane at sea level, so that \(f(a, b) \) is the height (also called altitude or elevation) of the mountain above sea level at the point \((a, b) \) in the plane.

Figure 16(A) shows two points \(P \) and \(Q \) in the \(xy \)-plane, together with the points \(\tilde{P} \) and \(\tilde{Q} \) on the graph that lie above them. We define the **average rate of change**:

\[
\text{Average rate of change from } P \text{ to } Q = \frac{\Delta \text{ altitude}}{\Delta \text{ horizontal}}
\]

where

\[\Delta \text{ altitude} = \text{change in the height from } \tilde{P} \text{ and } \tilde{Q} \]

\[\Delta \text{ horizontal} = \text{distance from } P \text{ to } Q \]

\[\text{Conceptual Insight} \]

We will discuss the idea that rates of change depend on direction when we come to directional derivatives in Section 15.5. In single-variable calculus, we measure the rate of change by the derivative \(f'(a) \). In the multivariable case, there is no single rate of change because the change in \(f(x, y) \) depends on the direction: A rate is zero along a level curve [because \(f(x, y) \) is constant along level curves], and the rate is nonzero in directions pointing from one level curve to the next [Figure 16(B)].
EXAMPLE 8 Average Rate of Change Depends on Direction

Compute the average rate of change from A to the points B, C, and D in Figure 16(B).

Solution The contour interval in Figure 16(B) is $m = 100$ m. Segments \overline{AB} and \overline{AC} both span two level curves, so the change in altitude is 200 m in both cases. The horizontal scale shows that \overline{AB} corresponds to a horizontal change of 200 m, and \overline{AC} corresponds to a horizontal change of 400 m. On the other hand, there is no change in altitude from A to D. Therefore,

\[
\text{Average rate of change from } A \text{ to } B = \frac{\Delta \text{ altitude}}{\Delta \text{ horizontal}} = \frac{200}{200} = 1.0
\]

\[
\text{Average rate of change from } A \text{ to } C = \frac{\Delta \text{ altitude}}{\Delta \text{ horizontal}} = \frac{200}{400} = 0.5
\]

\[
\text{Average rate of change from } A \text{ to } D = \frac{\Delta \text{ altitude}}{\Delta \text{ horizontal}} = 0
\]

We see here explicitly that the average rate varies according to the direction.

When we walk up a mountain, the incline at each moment depends on the path we choose. If we walk “around” the mountain, our altitude does not change at all. On the other hand, at each point there is a steepest direction in which the altitude increases most rapidly. On a contour map, the steepest direction is approximately the direction that takes us to the closest point on the next highest level curve [Figure 17(A)]. We say “approximately”
CHAPTER 15 DIFFERENTIATION IN SEVERAL VARIABLES

Because the terrain may vary between level curves, a path of steepest ascent is a path that begins at a point \(P \) and, everywhere along the way, points in the steepest direction. We can approximate the path of steepest ascent by drawing a sequence of segments that move as directly as possible from one level curve to the next. Figure 17(B) shows two paths from \(P \) to \(Q \). The solid path is a path of steepest ascent, but the dashed path is not, because it does not move from one level curve to the next along the shortest possible segment.

More Than Two Variables

There are many situations where a function of more than two variables is necessary. For instance, we might want to keep track of temperature at the various points in a room using a function \(T(x, y, z) \) that depends on the three variables corresponding to the coordinates of each point. In making quantitative models of the economy, functions often depend on more than 100 variables.

Unfortunately, it is not possible to draw the graph of a function of more than two variables. The graph of a function \(f(x, y, z) \) would consist of the set of points \((x, y, z, f(x, y, z))\) in four-dimensional space \(\mathbb{R}^4 \). However, just as we can use contour maps to visualize a three-dimensional mountain using curves on a two-dimensional plane, it is possible to draw the level surfaces of a function of three variables \(f(x, y, z) \). These are the surfaces with equation \(f(x, y, z) = c \). For example, the level surfaces of \(f(x, y, z) = x^2 + y^2 + z^2 \) are the spheres with equation \(x^2 + y^2 + z^2 = c \) (Figure 18). In the case of a function \(T(x, y, z) \) that represents temperature of points in space, we call the level surfaces corresponding to \(T(x, y, z) = k \) the isotherms. These are the collections of points, all of which have the same temperature \(k \).

For functions of four or more variables, we can no longer visualize the graph or the level surfaces. We must rely on intuition developed through the study of functions of two and three variables.

EXAMPLE 9 Describe the level surfaces of \(g(x, y, z) = x^2 + y^2 - z^2 \).

Solution The level surface for \(c = 0 \) is the cone \(x^2 + y^2 - z^2 = 0 \). For \(c \neq 0 \), the level surfaces are the hyperboloids \(x^2 + y^2 - z^2 = c \). The hyperboloid has one sheet if \(c > 0 \) and two sheets if \(c < 0 \) (Figure 19).

15.1 SUMMARY

- The domain \(D \) of a function \(f(x_1, \ldots, x_n) \) of \(n \) variables is the set of \(n \)-tuples \((a_1, \ldots, a_n)\) in \(\mathbb{R}^n \) for which \(f(a_1, \ldots, a_n) \) is defined. The range of \(f \) is the set of values taken by \(f \).
The graph of a continuous real-valued function \(f(x, y) \) is the surface in \(\mathbb{R}^3 \) consisting of the points \((a, b, f(a, b)) \) for \((a, b) \) in the domain \(D \) of \(f \).

- A vertical trace is a curve obtained by intersecting the graph with a vertical plane \(x = a \) or \(y = b \).
- A level curve is a curve in the \(xy\)-plane defined by an equation \(f(x, y) = c \). The level curve \(f(x, y) = c \) is the projection onto the \(xy\)-plane of the horizontal trace curve, obtained by intersecting the graph with the horizontal plane \(z = c \).
- A contour map shows the level curves \(f(x, y) = c \) for equally spaced values of \(c \). The spacing \(m \) is called the contour interval.

When reading a contour map, keep in mind:
- Your altitude does not change when you hike along a level curve.
- Your altitude increases or decreases by \(m \) (the contour interval) when you hike from one level curve to the next.

- The spacing of the level curves indicates steepness: They are closer together where the graph is steeper.
- The average rate of change from \(P \) to \(Q \) is the ratio \(\frac{\Delta \text{altitude}}{\Delta \text{horizontal}} \).
- A direction of steepest ascent at a point \(P \) is a direction along which \(f(x, y) \) increases most rapidly. The steepest direction is obtained (approximately) by drawing the segment from \(P \) to the nearest point on the next level curve.
- Level surfaces can be used to understand a function \(f(x, y, z) \). In the case where the function represents temperature, we call the level surfaces isotherms.

15.1 Exercises

Preliminary Questions

1. What is the difference between a horizontal trace and a level curve? How are they related?
2. Describe the trace of \(f(x, y) = x^2 - \sin(x^3y) \) in the \(xz\)-plane.
3. Is it possible for two different level curves of a function to intersect? Explain.

Exercises

In Exercises 1–4, evaluate the function at the specified points.

1. \(f(x, y) = x + yx^3 \), \((2, 2), (-1, 4) \)
2. \(g(x, y) = \frac{y}{x^2 + y^2} \), \((1, 3), (3, -2) \)
3. \(h(x, y, z) = xyz^{-2} \), \((3, 8, 2), (3, -2, -6) \)
4. \(Q(y, z) = y^2 + y \sin z \), \((y, z) = (2, \frac{\pi}{2}), (-2, \frac{\pi}{6}) \)

In Exercises 5–12, sketch the domain of the function.

5. \(f(x, y) = 12x - 5y \)
6. \(f(x, y) = \sqrt{81 - x^2} \)
7. \(f(x, y) = \ln(4x^2 - y) \)
8. \(h(x, t) = \frac{1}{x + t} \)
9. \(g(y, z) = \frac{1}{z + y^2} \)
10. \(f(x, y) = \sin \frac{y}{x} \)
11. \(F(t, R) = \sqrt{tR} \)
12. \(f(x, y) = \cos^{-1}(x + y) \)

In Exercises 13–16, describe the domain and range of the function.

13. \(f(x, y, z) = xz + e^y \)
14. \(f(x, y, z) = x\sqrt{y + ze^{x/z}} \)
15. \(P(r, s, t) = \sqrt{16 - r^2s^2t^2} \)
16. \(g(r, s) = \cos^{-1}(rs) \)

17. Match graphs (A) and (B) in Figure 20 with the functions:

- (i) \(f(x, y) = -x + y^2 \)
- (ii) \(g(x, y) = x + y^2 \)

18. Match each of graphs (A) and (B) in Figure 21 with one of the following functions:

- (i) \(f(x, y) = (\cos x)(\cos y) \)
- (ii) \(g(x, y) = \cos(x^2 + y^2) \)
19. Match the functions (a)–(f) with their graphs (A)–(F) in Figure 22.
(a) \(f(x, y) = |x| + |y| \)
(b) \(f(x, y) = \cos(x - y) \)
(c) \(f(x, y) = \frac{-1}{1 + 9x^2 + y^2} \)
(d) \(f(x, y) = \cos(y^2)e^{-0.1(x^2+y^2)} \)
(e) \(f(x, y) = \frac{-1}{1 + 9x^2 + 9y^2} \)
(f) \(f(x, y) = \cos(x^2 + y^2)e^{-0.1(x^2+y^2)} \)

20. Match the functions (a)–(d) with their contour maps (A)–(D) in Figure 23.
(a) \(f(x, y) = 3x + 4y \)
(b) \(g(x, y) = x^3 - y \)
(c) \(h(x, y) = 4x - 3y \)
(d) \(k(x, y) = x^2 - y \)

21. \(f(x, y) = 12 - 3x - 4y \)
22. \(f(x, y) = \sqrt{4 - x^2 - y^2} \)
23. \(f(x, y) = x^2 + 4y^2 \)
24. \(f(x, y) = y^2 \)
25. \(f(x, y) = \sin(x - y) \)
26. \(f(x, y) = \frac{1}{x^2 + y^2 + 1} \)

27. Sketch contour maps of \(f(x, y) = x + y \) with contour intervals \(m = 1 \) and \(2 \).

28. Sketch the contour map of \(f(x, y) = x^2 + y^2 \) with level curves \(c = 0, 4, 8, 12, 16 \).

29. \(f(x, y) = x^2 - y \)
30. \(f(x, y) = \frac{y}{x} \)
31. \(f(x, y) = \frac{y}{x} \)
32. \(f(x, y) = xy \)
33. \(f(x, y) = x^2 + 4y^2 \)
34. \(f(x, y) = x + 2y - 1 \)
35. \(f(x, y) = x^2 \)
36. \(f(x, y) = 3x^2 - y^2 \)

37. Find the linear function whose contour map (with contour interval \(m = 6 \)) is shown in Figure 24. What is the linear function if \(m = 3 \) (and the curve labeled \(c = 6 \) is relabeled \(c = 3 \)?)

![Contour map with contour interval \(m = 6 \).](image)
38. Use the contour map in Figure 25 to calculate the average rate of change:
 (a) from A to B.
 (b) from A to C.

39. Referring to Figure 26, answer the following questions:
 (a) At which of (A)–(C) is pressure increasing in the northern direction?
 (b) At which of (A)–(C) is pressure increasing in the easterly direction?
 (c) In which direction at (B) is pressure increasing most rapidly?

40. \(T(x, y, z) = 2x + 3y - z, \ T = 0, 1, 2 \)
41. \(T(x, y, z) = x - y + 2z, \ T = 0, 1, 2 \)
42. \(T(x, y, z) = x^2 + y^2 - z, \ T = 0, 1, 2 \)
43. \(T(x, y, z) = x^2 - y^2 + z^2, \ T = 0, 1, 2, -1, -2 \)

In Exercises 44–47, \(\rho(S, T) \) is seawater density (kilograms per cubic meter) as a function of salinity \(S \) (parts per thousand) and temperature \(T \) (degrees Celsius). Refer to the contour map in Figure 27.

44. Calculate the average rate of change of \(\rho \) with respect to \(T \) from \(B \) to \(A \).
45. Calculate the average rate of change of \(\rho \) with respect to \(S \) from \(B \) to \(C \).

46. At a fixed level of salinity, is seawater density an increasing or a decreasing function of temperature?
47. Does water density appear to be more sensitive to a change in temperature at point \(A \) or point \(B \)?

In Exercises 48–51, refer to Figure 28.
48. Find the change in elevation from \(A \) and \(B \).
49. Estimate the average rate of change from \(A \) and \(B \) and from \(A \) to \(C \).
50. Estimate the average rate of change from \(A \) to points i, ii, and iii.
51. Sketch the path of steepest ascent beginning at \(D \).

52. Let temperature in 3-space be given by \(T(x, y, z) = x^2 + y^2 - z \). Draw isotherms corresponding to temperatures \(T = -2, -1, 0, 1, 2 \).
53. Let temperature in 3-space be given by \(T(x, y, z) = \frac{x^2}{4} + \frac{y^2}{9} + z^2 \). Draw isotherms corresponding to temperatures \(T = 0, 1, 4 \).
54. Let temperature in 3-space be given by \(T(x, y, z) = x^2 - y^2 - z \). Draw isotherms corresponding to temperatures \(T = -1, 0, 1 \).
55. Let temperature in 3-space be given by \(T(x, y, z) = x^2 - y^2 - z^2 \). Draw isotherms corresponding to temperatures \(T = -2, -1, 0, 1, 2 \).
Further Insights and Challenges

56. The function \(f(x, t) = t^{-1/2}e^{-x^2/t} \), whose graph is shown in Figure 29, models the temperature along a metal bar after an intense burst of heat is applied at its center point.

(a) Sketch the vertical traces at times \(t = 1, 2, 3 \). What do these traces tell us about the way heat diffuses through the bar?

(b) Sketch the vertical traces \(x = c \) for \(c = \pm 0.2, \pm 0.4 \). Describe how temperature varies in time at points near the center.

57. Let \(f(x, y) = \frac{x}{\sqrt{x^2 + y^2}} \) for \((x, y) \neq (0, 0) \).

Write \(f \) as a function \(f(r, \theta) \) in polar coordinates, and use this to find the level curves of \(f \).

15.2 Limits and Continuity in Several Variables

This section develops limits and continuity in the multivariable setting. We focus on functions of two variables, but similar definitions and results apply to functions of three or more variables.

Recall that on the real number line, a number \(x \) is close to \(a \) if the distance \(|x - a| \) is small. In the plane, a point \((x, y) \) is close to another point \(P = (a, b) \) if the distance \(d((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2} \) between them is small.

Note that if we take all the points that are a distance of less than \(r \) from \(P = (a, b) \), as in Figure 1, this is a disk \(D(P, r) \) centered at \(P \) that does not include its boundary. If we insist also that \(d((x, y), (a, b)) \neq 0 \), then we get a punctured disk that does not include \(P \) and that we denote \(D^*(P, r) \).

Now assume that \(f(x, y) \) is defined near \(P \) but not necessarily at \(P \) itself. In other words, \(f(x, y) \) is defined for all \((x, y) \) in some punctured disk \(D^*(P, r) \) with \(r > 0 \). We say that \(f(x, y) \) approaches the limit \(L \) as \((x, y) \) approaches \(P = (a, b) \) if \(|f(x, y) - L| \) becomes arbitrarily small for \((x, y) \) sufficiently close to \(P = (a, b) \) [Figure 2(C)]. In this case, we write

\[
\lim_{(x,y) \to P} f(x, y) = \lim_{(x,y) \to (a,b)} f(x, y) = L
\]

Here is the formal definition.

DEFINITION Limit Assume that \(f(x, y) \) is defined near \(P = (a, b) \). Then

\[
\lim_{(x,y) \to P} f(x, y) = L
\]

if, for any \(\epsilon > 0 \), there exists \(\delta > 0 \) such that if \((x, y) \) satisfies

\[
0 < d((x, y), (a, b)) < \delta, \quad \text{then} \quad |f(x, y) - L| < \epsilon
\]

This is similar to the definition of the limit in one variable, but there is an important difference. In a one-variable limit, we require that \(f(x) \) tend to \(L \) as \(x \) approaches \(a \) from the left or right [Figure 2(A)]. In a multivariable limit, \(f(x, y) \) must tend to \(L \) no matter how \((x, y) \) approaches \(P \) [Figure 2(B)].

EXAMPLE 1 Show that (a) \(\lim_{(x,y) \to (a,b)} x = a \) and (b) \(\lim_{(x,y) \to (a,b)} y = b \).

Solution Let \(P = (a, b) \). To verify (a), let \(f(x, y) = x \) and \(L = a \). We must show that for any \(\epsilon > 0 \), we can find \(\delta > 0 \) such that

\[
0 < d((x, y), (a, b)) < \delta, \quad \text{then} \quad |f(x, y) - L| = |x - a| < \epsilon
\]

In the case of (b), let \(f(x, y) = y \) and \(L = b \). Similarly, \(|y - b| < \epsilon \) when \(d((x, y), (a, b)) < \delta \).
In fact, we can choose \(\delta = \epsilon \), for if \(d((x, y), (a, b)) < \epsilon \), then
\[
(x - a)^2 + (y - b)^2 < \epsilon^2 \implies (x - a)^2 < \epsilon^2 \implies |x - a| < \epsilon
\]
In other words, for any \(\epsilon > 0 \), if \(0 < d((x, y), (a, b)) < \epsilon \), then \(|x - a| < \epsilon \). This proves (a). The limit (b) is similar (see Figure 3).

The following theorem lists the basic laws for limits. We omit the proofs, which are similar to the proofs of the single-variable Limit Laws.

THEOREM 1 Limit Laws Assume that \(\lim_{(x,y) \to P} f(x, y) \) and \(\lim_{(x,y) \to P} g(x, y) \) exist. Then:

(i) **Sum Law:**
\[
\lim_{(x,y) \to P} (f(x, y) + g(x, y)) = \lim_{(x,y) \to P} f(x, y) + \lim_{(x,y) \to P} g(x, y)
\]

(ii) **Constant Multiple Law:** For any number \(k \),
\[
\lim_{(x,y) \to P} k f(x, y) = k \lim_{(x,y) \to P} f(x, y)
\]

(iii) **Product Law:**
\[
\lim_{(x,y) \to P} f(x, y) g(x, y) = \left(\lim_{(x,y) \to P} f(x, y) \right) \left(\lim_{(x,y) \to P} g(x, y) \right)
\]

(iv) **Quotient Law:** If \(\lim_{(x,y) \to P} g(x, y) \neq 0 \), then
\[
\lim_{(x,y) \to P} \frac{f(x, y)}{g(x, y)} = \frac{\lim_{(x,y) \to P} f(x, y)}{\lim_{(x,y) \to P} g(x, y)}
\]

As in the single-variable case, we say that \(f \) is continuous at \(P = (a, b) \) if \(f(x, y) \) approaches the value of the function \(f(a, b) \) as \((x, y) \to (a, b) \).

DEFINITION Continuity A function \(f \) of two variables is **continuous** at \(P = (a, b) \) if
\[
\lim_{(x,y) \to (a,b)} f(x, y) = f(a, b)
\]
We say that \(f \) is continuous if it is continuous at each point \((a, b) \) in its domain.
The Limit Laws tell us that all sums, multiples, and products of continuous functions are continuous. When we apply them to \(f(x, y) = x \) and \(g(x, y) = y \), which are continuous by Example 1, we find that the power functions \(f(x, y) = x^m y^n \) are continuous for all whole numbers \(m, n \) and that all polynomials are continuous. Furthermore, a rational function \(h(x, y)/g(x, y) \), where \(h \) and \(g \) are polynomials, is continuous at all points \((a, b)\) where \(g(a, b) \neq 0 \). As in the single-variable case, we can evaluate limits of continuous functions using substitution.

Example 2 Evaluating Limits by Substitution
Show that
\[
f(x, y) = \frac{3x + y}{x^2 + y^2 + 1}
\]
is continuous (Figure 4). Then evaluate
\[
\lim_{(x,y) \to (1,2)} f(x, y).
\]

Solution
The function \(f \) is continuous at all points \((a, b)\) because it is a rational function whose denominator \(Q(x, y) = x^2 + y^2 + 1 \) is never zero. Therefore, we can evaluate the limit by substitution:
\[
\lim_{(x,y) \to (1,2)} f(x, y) = \lim_{(x,y) \to (1,2)} \frac{3x + y}{x^2 + y^2 + 1} = \frac{3(1) + 2}{1^2 + 2^2 + 1} = \frac{5}{6}
\]

If \(f \) is a product \(f(x, y) = h(x)g(y) \), where \(h(x) \) and \(g(y) \) are continuous, then the limit is a product of limits by the Product Law:
\[
\lim_{(x,y) \to (a,b)} f(x, y) = \lim_{(x,y) \to (a,b)} h(x)g(y) = \left(\lim_{x \to a} h(x) \right) \left(\lim_{y \to b} g(y) \right)
\]

Example 3 Product Functions
Evaluate
\[
\lim_{(x,y) \to (3,0)} x^3 \sin \frac{y}{y}.
\]

Solution
The limit is equal to a product of limits, and since \(\lim_{x \to 3} x^3 \) and \(\lim_{y \to 0} \sin \frac{y}{y} \) both exist:
\[
\lim_{(x,y) \to (3,0)} x^3 \sin \frac{y}{y} = \left(\lim_{x \to 3} x^3 \right) \left(\lim_{y \to 0} \sin \frac{y}{y} \right) = (3^3)(1) = 27
\]

Composition is another important way to build functions. If \(f \) is a function of two variables and \(G(u) \) a function of one variable, then the composite function \(G \circ f \) is the function of two variables given by \(G(f(x, y)) \). According to the next theorem, a composition of continuous functions is again continuous.

Theorem 2 A Composition of Continuous Functions Is Continuous
If a function of two variables \(f \) is continuous at \((a, b)\) and a function of one variable \(G \) is continuous at \(c = f(a, b) \), then the composite function \(G(f(x, y)) \) is continuous at \((a, b)\).

Example 4 Write \(H(x, y) = e^{-x^2+2y} \) as a composite function and evaluate
\[
\lim_{(x,y) \to (1,2)} H(x, y)
\]

Solution
We have \(H(x, y) = G \circ f \), where \(G(u) = e^u \) and \(f(x, y) = -x^2 + 2y \). Both \(f \) and \(G \) are continuous, so \(H \) is also continuous and
\[
\lim_{(x,y) \to (1,2)} H(x, y) = \lim_{(x,y) \to (1,2)} e^{-x^2+2y} = e^{-(1)^2+2(2)} = e^3
\]

As occurs for limits of functions of one variable, the most difficult limits are those that are of an indeterminate form. If we want to determine \(\lim_{(x,y) \to (a,b)} f(x, y) \), and plugging \((a, b)\) into \(f(x, y) \) yields the indeterminate form of type \(\frac{0}{0} \), then in some cases the limit
exists and in other cases, it does not. We know that if a limit \(\lim_{(x,y)\rightarrow(a,b)} f(x,y) \) exists and equals \(L \), then \(f(x,y) \) tends to \(L \) as \((x,y) \) approaches \((a,b) \) along any path. In the next example, we prove that a limit does not exist by showing that \(f(x,y) \) approaches different limits when \((0,0) \) is approached along different lines through the origin. We use three different methods on the problem to demonstrate a variety of approaches one can take.

Example 5 Showing a Limit Does Not Exist
Examine \(\lim_{(x,y)\rightarrow(0,0)} \frac{x^2}{x^2 + y^2} \) numerically. Then prove that the limit does not exist.

Solution If the limit existed, we would expect the values of \(f(x,y) \) in Table 1 to get closer to a limiting value \(L \) as \((x,y) \) gets close to \((0,0) \). However, the table suggests that \(f(x,y) \) takes on all values between 0 and 1, no matter how close \((x,y) \) gets to \((0,0) \). For example,

\[
\begin{align*}
 f(0.1, 0) &= 1, & f(0.1, 0.1) &= 0.5, & f(0, 0.1) &= 0
\end{align*}
\]

Thus, \(f(x,y) \) does not seem to approach any fixed value \(L \) as \((x,y) \rightarrow (0,0) \).

Table 1 Values of \(f(x,y) = \frac{x^2}{x^2 + y^2} \)

<table>
<thead>
<tr>
<th>(y)</th>
<th>(-0.5)</th>
<th>(-0.4)</th>
<th>(-0.3)</th>
<th>(-0.2)</th>
<th>(-0.1)</th>
<th>(0)</th>
<th>(0.1)</th>
<th>(0.2)</th>
<th>(0.3)</th>
<th>(0.4)</th>
<th>(0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>0.5</td>
<td>0.39</td>
<td>0.26</td>
<td>0.13</td>
<td>0.03</td>
<td>0.038</td>
<td>0.13</td>
<td>0.26</td>
<td>0.39</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.61</td>
<td>0.5</td>
<td>0.36</td>
<td>0.2</td>
<td>0.05</td>
<td>0.059</td>
<td>0.2</td>
<td>0.36</td>
<td>0.5</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.735</td>
<td>0.64</td>
<td>0.36</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.38</td>
<td>0.64</td>
<td>0.735</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.862</td>
<td>0.8</td>
<td>0.69</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.69</td>
<td>0.8</td>
<td>0.862</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>0.962</td>
<td>0.94</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0.941</td>
<td>0.962</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>−0.1</td>
<td>0.962</td>
<td>0.94</td>
<td>0.9</td>
<td>0.8</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>0.9</td>
<td>0.941</td>
<td>0.962</td>
<td></td>
</tr>
<tr>
<td>−0.2</td>
<td>0.862</td>
<td>0.8</td>
<td>0.69</td>
<td>0.5</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.69</td>
<td>0.8</td>
<td>0.862</td>
<td></td>
</tr>
<tr>
<td>−0.3</td>
<td>0.735</td>
<td>0.64</td>
<td>0.5</td>
<td>0.36</td>
<td>0.2</td>
<td>0.059</td>
<td>0.2</td>
<td>0.36</td>
<td>0.5</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>−0.4</td>
<td>0.610</td>
<td>0.5</td>
<td>0.36</td>
<td>0.2</td>
<td>0.1</td>
<td>0.059</td>
<td>0.2</td>
<td>0.36</td>
<td>0.5</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>−0.5</td>
<td>0.5</td>
<td>0.39</td>
<td>0.26</td>
<td>0.13</td>
<td>0.03</td>
<td>0.038</td>
<td>0.13</td>
<td>0.26</td>
<td>0.39</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Now let’s prove that the limit does not exist.

First Method We show that \(f(x,y) \) approaches different limits along the \(x \)- and \(y \)-axes (Figure 5):

\[
\text{Limit along } x\text{-axis: } \lim_{x \to 0} f(x,0) = \lim_{x \to 0} \frac{x^2}{x^2 + 0^2} = \lim_{x \to 0} 1 = 1
\]

\[
\text{Limit along } y\text{-axis: } \lim_{y \to 0} f(0,y) = \lim_{y \to 0} \frac{0^2}{0^2 + y^2} = \lim_{y \to 0} 0 = 0
\]

These two limits are different, and hence, \(\lim_{(x,y)\rightarrow(0,0)} f(x,y) \) does not exist.

Second Method If we set \(y = mx \), we have restricted ourselves to the line through the origin with slope \(m \). Then the limit becomes

\[
\lim_{x \to 0} f(x,mx) = \lim_{x \to 0} \frac{x^2}{x^2 + (mx)^2} = \frac{1}{1 + m^2}
\]
This clearly depends on the slope \(m \), and therefore gives different values when the origin is approached along lines of differing slope. For instance, when \(m = 0 \), so that we are approaching along the \(x \)-axis, we have a limit of 1. But when \(m = 1 \), so that we are approaching along the diagonal line, the limit is \(\frac{1}{2} \). Hence, the limit does not exist. The contour map in Figure 5 shows the variety of limits that occur as we approach the origin along various lines.

Third Method We convert to polar coordinates, setting \(x = r \cos \theta \) and \(y = r \sin \theta \). Then for any path that approaches \((0,0)\), it must be the case that \(r \) approaches 0. Different paths come from fixing \(\theta \) at various values as \(r \) approaches 0.

Hence, we can consider

\[
\lim_{r \to 0} \frac{x^2}{x^2 + y^2} = \lim_{r \to 0} \frac{(r \cos \theta)^2}{(r \cos \theta)^2 + (r \sin \theta)^2} = \lim_{r \to 0} \cos^2 \theta
\]

This result depends on \(\theta \). For instance, fixing \(\theta \) at 0 would mean we are approaching \((0,0)\) along the positive \(x \)-axis, and that gives a limit of 1. Fixing \(\theta \) at \(\pi / 2 \) would mean we are approaching \((0,0)\) along the positive \(y \)-axis, and that gives a limit of 0. Since different values of \(\theta \) yield different results, the limit does not exist.

\[\text{EXAMPLE 6 Verifying a Limit}\]

Calculate \(\lim_{(x,y) \to (0,0)} f(x, y) \), where \(f(x, y) \) is defined for \((x, y) \neq (0, 0)\) by

\[f(x, y) = \frac{xy^2}{x^2 + y^2}\]

as in Figure 6.

Solution Since substitution yields the indeterminate form of type \(\frac{0}{0} \), we will try converting to polar coordinates:

\[x = r \cos \theta, \quad y = r \sin \theta\]

Keep in mind that for any path approaching \((0,0)\), \(r \) will also have to approach 0.

Then \(x^2 + y^2 = r^2 \) and for \(r \neq 0 \),

\[0 \leq \left| \frac{xy^2}{x^2 + y^2} \right| = \left| \frac{(r \cos \theta)(r \sin \theta)^2}{r^2} \right| = r |\cos \theta \sin^2 \theta| \leq r\]

As \((x, y)\) approaches \((0, 0)\), the variable \(r \) also approaches 0, so the desired conclusion follows from the Squeeze Theorem:

\[0 \leq \lim_{(x,y) \to (0,0)} \left| \frac{xy^2}{x^2 + y^2} \right| \leq \lim_{r \to 0} r = 0\]

Note that in the last two examples, we have used polar coordinates to first, prove that a limit does not exist and second, prove that a limit does exist. One might conclude that polar coordinates can always be applied. Unfortunately, that is not the case. They can only work if we are taking a limit as \((x, y)\) approaches \((0, 0)\). Furthermore, there are many situations for which they will not work to prove either the existence or nonexistence of a limit even if \((x, y)\) is approaching \((0,0)\).

\[\text{EXAMPLE 7 Determine whether or not the following limit exists:}\]

\[\lim_{(x,y) \to (0,0)} \frac{x^3y}{x^4 + y^2}\]

Solution We first consider paths along lines through the origin of the form \(y = mx \).
Then the limit becomes
\[\lim_{x \to 0} \frac{x^2(mx)}{x^4 + (mx)^2} = \lim_{x \to 0} \frac{xm}{x^2 + m^2} = 0 \]
Thus, all paths along lines through the origin yield the same limit. However, this does not mean that all paths through the origin yield the same limit. Consider the path along the parabola \(y = x^2 \). Then the limit becomes
\[\lim_{x \to 0} \frac{x^2(x^2)}{x^4 + (x^2)^2} = \lim_{x \to 0} \frac{x^{4+2}}{x^4 + x^4} = \lim_{x \to 0} \frac{1}{2} = 1/2 \]
Since this does not equal the limit we obtained when we approached along straight lines, the limit does not exist.

To prove a limit does not exist, we need only find two paths that yield different limits. However, as Example 7 demonstrates, to prove that a limit does exist at a point, just considering the limit along any finite set of lines through the point or, for that matter, all the lines through the point, is not sufficient.

15.2 SUMMARY

- Suppose that \(f(x, y) \) is defined near \(P = (a, b) \). Then
 \[\lim_{(x,y) \to (a,b)} f(x, y) = L \]
 if, for any \(\epsilon > 0 \), there exists \(\delta > 0 \) such that if \((x, y) \) satisfies
 \[0 < d((x, y), (a, b)) < \delta, \]
 then \(|f(x, y) - L| < \epsilon \)
- The limit of a product \(f(x, y) = h(x)g(y) \) is a product of limits:
 \[\lim_{(x,y) \to (a,b)} f(x, y) = \left(\lim_{x \to a} h(x) \right) \left(\lim_{y \to b} g(y) \right) \]
- A function \(f \) of two variables is continuous at \(P = (a, b) \) if
 \[\lim_{(x,y) \to (a,b)} f(x, y) = f(a, b) \]
- To prove that a limit does not exist, it is enough to show that the limits obtained along two different paths are not equal.

15.2 EXERCISES

Preliminary Questions

1. What is the difference between \(D(P, r) \) and \(D^*(P, r) \)?
2. Suppose that \(f(x, y) \) is continuous at \((2, 3) \) and that \(f(2, y) = y^3 \) for \(y \neq 3 \). What is the value \(f(2, 3) \)?
3. Suppose that \(Q(x, y) \) is a function such that \(1/Q(x, y) \) is continuous for all \((x, y) \). Which of the following statements are true?
 - (a) \(Q(x, y) \) is continuous for all \((x, y) \).
 - (b) \(Q(x, y) \) is continuous for \((x, y) \neq (0, 0) \).
 - (c) \(Q(x, y) \neq 0 \) for all \((x, y) \).
4. Suppose that \(f(x, 0) = 3 \) for all \(x \neq 0 \) and \(f(0, y) = 5 \) for all \(y \neq 0 \). What can you conclude about \(\lim_{(x,y) \to (0,0)} f(x, y) \)?

Exercises

In Exercises 1–8, evaluate the limit using continuity.

1. \[\lim_{(x,y) \to (1,2)} (x^2 + y) \]
2. \[\lim_{(x,y) \to (1,1)} \frac{x}{\tan \cos y} \]
3. \[\lim_{(x,y) \to (2,-1)} (xy - 3x^2y^3) \]
4. \[\lim_{(x,y) \to (-2,1)} \frac{2x^2}{4x + y} \]
5. \[\lim_{(x,y) \to (0,0)} \tan x \cos y \]
6. \[\lim_{(x,y) \to (2,3)} \tan^{-1}(x^2 - y) \]
7. \[\lim_{(x,y) \to (1,1)} \frac{e^{x^2} - e^{-y^2}}{x + y} \]
8. \[\lim_{(x,y) \to (1,0)} \ln(x - y) \]
In Exercises 9–12, assume that
\[
\lim_{(x,y) \to (2,5)} f(x, y) = 3, \quad \lim_{(x,y) \to (2,5)} g(x, y) = 7
\]
to find the limit.

9. \(\lim_{(x,y) \to (2,5)} (g(x, y) - 2 f(x, y)) \)

10. \(\lim_{(x,y) \to (2,5)} f(x, y)^2 g(x, y) \)

11. \(\lim_{(x,y) \to (2,5)} e^{f(x,y)^2 - g(x,y)} \)

12. \(\lim_{(x,y) \to (2,5)} \frac{f(x,y)}{f(x,y) + g(x,y)} \)

13. Does \(\lim_{(x,y) \to (0,0)} \frac{y^2}{x^2 + y^2} \) exist? Explain.

14. Let \(f(x, y) = xy/(x^2 + y^2) \). Show that \(f(x, y) \) approaches zero along the x- and y-axes. Then prove that \(\lim_{(x,y) \to (0,0)} f(x, y) \) does not exist by showing that the limit along the line \(y = x \) is nonzero.

15. Let \(f(x, y) = \frac{x^3 + y^3}{x^2 y} \). Set \(y = mx \) and show that the resulting limit depends on \(m \), and therefore the limit \(\lim_{(x,y) \to (0,0)} f(x, y) \) does not exist.

16. Let \(f(x, y) = \frac{2x^2 + 3y^2}{xy} \). Set \(y = mx \) and show that the resulting limit depends on \(m \), and therefore the limit \(\lim_{(x,y) \to (0,0)} f(x, y) \) does not exist.

17. Prove that
\[
\lim_{(x,y) \to (0,0)} \frac{x}{x^2 + y^2}
\]
does not exist by considering the limit along the x-axis.

18. Let \(f(x, y) = x^3/(x^2 + y^2) \) and \(g(x, y) = x^2/(x^2 + y^2) \). Using polar coordinates, prove that
\[
\lim_{(x,y) \to (0,0)} f(x, y) = 0
\]
and that \(\lim_{(x,y) \to (0,0)} g(x, y) \) does not exist. \(\text{Hint: Show that } g(x, y) = \cos^2 \theta \) and observe that \(\cos \theta \) can take on any value between \(-1\) and \(1\) as \((x, y) \to (0,0) \).

In Exercises 19–22, use any method to evaluate the limit or show that it does not exist.

19. \(\lim_{(x,y) \to (0,0)} \frac{x^2 - y^2}{\sqrt{x^2 + y^2}} \)

20. \(\lim_{(x,y) \to (0,0)} \frac{x^2 - y^2}{x^2 + y^2} \)

21. \(\lim_{(x,y) \to (0,0)} \frac{xy}{x^3 + 2y^2} \)

22. \(\lim_{(x,y) \to (0,0)} \frac{x^4 - y^4}{x^4 + x^2y^2 + y^4} \)

In Exercises 23–24, show that the limit does not exist by approaching the origin along one or more of the coordinate axes.

23. \(\lim_{(x,y,z) \to (0,0,0)} \frac{x + y + z}{x^2 + y^2 + z^2} \)

24. \(\lim_{(x,y,z) \to (0,0,0)} \frac{x^2 - y^2 + z^2}{x^2 + y^2 + z^2} \)

25. Use the Squeeze Theorem to evaluate
\[
\lim_{(x,y) \to (4,0)} (x^2 - 16) \cos \left(\frac{1}{(x - 4)^2 + y^2} \right)
\]

26. Evaluate \(\lim_{(x,y) \to (0,0)} \frac{\tan x \sin \left(\frac{1}{|x| + |y|} \right)}{} \).

\begin{align*}
&\text{In Exercises 27–40, evaluate the limit or determine that it does not exist.} \\
&27. \lim_{(x, w) \to (2,1)} \frac{z^4 \cos(\pi w)}{e^{z^w}} \\
&28. \lim_{(x, w) \to (2,1)} \frac{(z^2 w - 9z)}{} \\
&29. \lim_{(x, y) \to (2, 4)} \frac{x - 2}{\sqrt{y^2 - 4}} \\
&30. \lim_{(x, y) \to (0,0)} \frac{x^2 + y^2}{1 + y^2} \\
&31. \lim_{(x, y) \to (3, 4)} \frac{1}{\sqrt{x^2 + y^2}} \\
&32. \lim_{(x, y) \to (0,0)} \frac{xy}{\sqrt{x^2 + y^2}} \\
&33. \lim_{(x, y) \to (1, -3)} e^{x - y} \ln(x - y) \\
&34. \lim_{(x, y) \to (0,0)} \frac{|x|}{|x| + |y|} \\
&35. \lim_{(x, y) \to (-3, 2)} (x^2 y^3 + 4xy) \\
&36. \lim_{(x, y) \to (2, 1)} e^{x^2 - y^2} \\
&37. \lim_{(x, y) \to (0,0)} \tan(x^2 + y^2) \tan^{-1} \left(\frac{1}{x^2 + y^2} \right) \\
&38. \lim_{(x, y) \to (0,0)} (x + y + 2)e^{-1/(x^2 + y^2)} \\
&39. \lim_{(x, y) \to (0, 0)} \frac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1 - 1}} \\
&40. \lim_{(x, y) \to (1, 1)} \frac{x^2 + y^2 - 2}{|x - 1| + |y - 1|} \\
&\text{Hint: Rewrite the limit in terms of } u = x - 1 \text{ and } v = y - 1.
\end{align*}
Further Insights and Challenges

44. Evaluate \(\lim_{{(x,y) \to (0,2)}} (1 + x)^{y/x} \).

45. Is the following function continuous?

\[
 f(x, y) = \begin{cases}
 x^2 + y^2 & \text{if } x^2 + y^2 < 1 \\
 1 & \text{if } x^2 + y^2 \geq 1
 \end{cases}
\]

46. CAS The function \(f(x, y) = \sin(xy)/xy \) is defined for \(xy \neq 0 \).

(a) Is it possible to extend the domain of \(f \) to all of \(\mathbb{R}^2 \) so that the result is a continuous function?

(b) Use a computer algebra system to plot \(f \). Does the result support your conclusion in (a)?

47. Prove that the function

\[
 f(x, y) = \begin{cases}
 (2^x - 1) \left(\frac{\sin y}{xy} \right) & \text{if } xy \neq 0 \\
 \ln 2 & \text{if } xy = 0
 \end{cases}
\]

is continuous at \((0, 0)\).

48. Prove that if \(f(x) \) is continuous at \(x = a \) and \(g(y) \) is continuous at \(y = b \), then \(F(x, y) = f(x)g(y) \) is continuous at \((a, b)\).

49. Consider the function \(f(x, y) = \frac{x^3 y}{x^6 + 2y^2} \).

(a) Show that as \((x, y) \to (0, 0)\) along any line \(y = mx \), the limit equals 0.

(b) Show that as \((x, y) \to (0, 0)\) along the curve \(y = x^3 \), the limit does not equal 0, and hence, \(\lim_{{(x,y) \to (0,0)}} f(x, y) \) does not exist.

15.3 Partial Derivatives

We have stressed that a function \(f \) of two or more variables does not have a unique rate of change because each variable may affect \(f \) in different ways. For example, the current \(I \) in a circuit is a function of both voltage \(V \) and resistance \(R \) given by Ohm’s Law:

\[I(V, R) = \frac{V}{R} \]

The current \(I \) is increasing as a function of \(V \) (when \(R \) is fixed) but decreasing as a function of \(R \) (when \(V \) is fixed).

The partial derivatives are the rates of change with respect to each variable separately. A function \(f(x, y) \) of two variables has two partial derivatives, denoted \(f_x \) and \(f_y \), defined by the following limits (if they exist):

\[
 f_x(a, b) = \lim_{{h \to 0}} \frac{f(a + h, b) - f(a, b)}{h}, \quad f_y(a, b) = \lim_{{k \to 0}} \frac{f(a, b + k) - f(a, b)}{k}
\]

Thus, \(f_x \) is the derivative of \(f(x, y) \) as a function of \(x \) alone, and \(f_y \) is the derivative at \(f(a, y) \) as a function of \(y \) alone. The Leibniz notation for partial derivatives is

\[
 \frac{\partial f}{\partial x} = f_x, \quad \frac{\partial f}{\partial y} = f_y
\]

If \(z = f(x, y) \), then we also write \(\partial z/\partial x \) and \(\partial z/\partial y \).

Partial derivatives are computed just like ordinary derivatives in one variable with this difference: To compute \(f_x \), treat \(y \) as a constant, and to compute \(f_y \), treat \(x \) as a constant.

EXAMPLE 1 Compute the partial derivatives of \(f(x, y) = x^2 y^5 \).

Solution

\[
 \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x^2 y^5) = y^5 \frac{\partial}{\partial x} (x^2) = y^5 (2x) = 2xy^5
\]

Treat \(y^5 \) as a constant

\[
 \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x^2 y^5) = x^2 \frac{\partial}{\partial x} (y^5) = x^2 (5y^4) = 5x^2 y^4
\]

Treat \(x^2 \) as a constant
The trace curves are constant when differentiating with respect to \(x \) or \(y \) because the denominator in Eq. (1) does not depend on \(x \) or \(y \). The partial derivatives are the slopes of the trace curves. CAUTION It is not necessary to use the Quotient Rule to compute the partial derivative in Eq. (1). The denominator does not depend on \(y \), so we treat it as a constant when differentiating with respect to \(y \).

Example 2

Calculate \(g_x(1, 3) \) and \(g_y(1, 3) \), where \(g(x, y) = \frac{y^2}{(1 + x^2)^3} \).

Solution To calculate \(g_x \), treat \(y \) (and therefore \(y^2 \)) as a constant:
\[
g_x(x, y) = \frac{\partial}{\partial x} \left(\frac{y^2}{(1 + x^2)^3} \right) = y^2 \frac{\partial}{\partial x} (1 + x^2)^{-3} = -6xy^2 \frac{1}{(1 + x^2)^4}
\]
\[
g_x(1, 3) = -6(1)(3)^2 \frac{1}{(1 + 1^2)^4} = -\frac{27}{8}
\]

To calculate \(g_y \), treat \(x \) (and therefore \(1 + x^2 \)) as a constant:
\[
g_y(x, y) = \frac{\partial}{\partial y} \left(\frac{y^2}{(1 + x^2)^3} \right) = \frac{1}{(1 + x^2)^3} \frac{\partial}{\partial y} y^2 = \frac{2y}{(1 + x^2)^3}
\]
\[
g_y(1, 3) = \frac{2(3)}{(1 + 1^2)^3} = \frac{3}{4}
\]

These partial derivatives are the slopes of the trace curves through the point \((1, 3, \frac{9}{8})\) shown in Figure 2.

Example 3 Chain Rule for Partial Derivatives

Compute \(\frac{\partial}{\partial x} \sin(x^2y^5) \).

Solution Write \(\sin(x^2y^5) = F(u) \), where \(F(u) = \sin u \) and \(u = x^2y^5 \). Then we have \(\frac{dF}{du} = \cos u \) and the Chain Rule gives
\[
\frac{\partial}{\partial x} \sin(x^2y^5) = \frac{dF}{du} \frac{\partial u}{\partial x} = \cos(x^2y^5) \frac{\partial}{\partial x} x^2y^5 = 2xy^5 \cos(x^2y^5)
\]
Partial derivatives are defined for functions of any number of variables. We compute the partial derivative with respect to any one of the variables by holding the remaining variables constant.

Example 4: More Than Two Variables Calculate \(f_z(0, 0, 1, 1) \), where

\[
f(x, y, z, w) = \frac{e^{xz+y}}{z^2+w}
\]

Solution

Use the Quotient Rule, treating \(x, y, \) and \(w \) as constants:

\[
f_z(x, y, z, w) = \frac{\partial}{\partial z} \left(\frac{e^{xz+y}}{z^2+w} \right) = \frac{(z^2+w) \frac{\partial}{\partial z} e^{xz+y} - e^{xz+y} \frac{\partial}{\partial z} (z^2+w)}{(z^2+w)^2}
\]

\[
= \frac{(z^2+w)xe^{xz+y} - 2ze^{xz+y}}{(z^2+w)^2} = \frac{(z^2+x + w)xe^{xz+y} - 2ze^{xz+y}}{(z^2+w)^2}
\]

\[
f_z(0, 0, 1, 1) = \frac{-2e^9}{(1^2+1)^2} = -\frac{1}{2}
\]

Because the partial derivative \(f_z(a, b) \) is the derivative \(f(x, b) \), viewed as a function of \(x \) alone, we can estimate the change \(\Delta f \) when \(x \) changes from \(a \) to \(a + \Delta x \) as in the single-variable case. Similarly, we can estimate the change when \(y \) changes by \(\Delta y \). For small \(\Delta x \) and \(\Delta y \) (just how small depends on \(f \) and the accuracy required):

\[
f(a + \Delta x, b) - f(a, b) \approx f_z(a, b) \Delta x
\]

\[
f(a, b + \Delta y) - f(a, b) \approx f_y(a, b) \Delta y
\]

This applies to functions \(f \) in any number of variables. For example, \(\Delta f \approx f_w \Delta w \) if one of the variables \(w \) changes by \(\Delta w \) and all other variables remain fixed.

Example 5: Testing Microchips

A **ball grid array** (BGA) is a microchip joined to a circuit board by small solder balls of radius \(R \) millimeters separated by a distance \(L \) millimeters (Figure 3). Manufacturers test the reliability of BGAs by subjecting them to repeated cycles in which the temperature is varied from 0°C to 100°C over a 40-minute period. According to one model, the average number \(N \) of cycles before the chip fails is

\[
N = \left(\frac{2200R}{Ld} \right)^{1.9}
\]

where \(d \) is the difference between the coefficients of expansion of the chip and the board. Estimate the change \(\Delta N \) when \(R = 0.12 \), \(d = 10 \), and \(L \) is increased from 0.4 to 0.42.

Solution

We use the approximation

\[
\Delta N \approx \frac{\partial N}{\partial L} \Delta L
\]

with \(\Delta L = 0.42 - 0.4 = 0.02 \). Since \(R \) and \(d \) are constant, the partial derivative is

\[
\frac{\partial N}{\partial L} = \frac{\partial}{\partial L} \left(\frac{2200R}{Ld} \right)^{1.9} = \left(\frac{2200R}{d} \right)^{1.9} \frac{\partial}{\partial L} L^{-1.9} = -1.9 \left(\frac{2200R}{d} \right)^{1.9} L^{-2.9}
\]
Now evaluate at \(L = 0.4, \ R = 0.12, \) and \(d = 10:\)

\[
\frac{\partial N}{\partial L} \bigg|_{(L,R,d)=(0.4,0.12,10)} = -1.9 \left(\frac{2200(0.12)}{10} \right) ^{1.9} (0.4) \approx -13,609
\]

The decrease in the average number of cycles before a chip fails is

\[
\Delta N \approx \frac{\partial N}{\partial L} \Delta L = -13,609(0.02) \approx -272 \text{ cycles}
\]

In the next example, we estimate a partial derivative numerically. Since \(f_x \) and \(f_y \) are limits of difference quotients, we have the following approximations when \(h \) and \(k \) are “small”:

\[
f_x(a, b) \approx \frac{\Delta f}{\Delta x} = \frac{f(a + h, b) - f(a, b)}{h}
\]

\[
f_y(a, b) \approx \frac{\Delta f}{\Delta y} = \frac{f(a, b + k) - f(a, b)}{k}
\]

Similar approximations are valid in any number of variables.

Example 6 Estimating Partial Derivatives Using Contour Maps Seawater density \(\rho \) (kilograms per cubic meter) depends on salinity \(S \) (parts per thousand) and the temperature \(T \) (degrees Celsius). Use the contour map of seawater density appearing in Figure 4 to estimate \(\partial \rho/\partial T \) and \(\partial \rho/\partial S \) at \(A \).

Solution Point \(A \) has coordinates \((S, T) = (33, 15)\) and lies on the level curve \(\rho = 1.0245 \). We estimate \(\partial \rho/\partial T \) at \(A \) in two steps.

Step 1. Move vertically from \(A \).
Since \(T \) varies in the vertical direction, we move up vertically from point \(A \) to point \(B \) on the next higher-level curve, where \(\rho = 1.0240 \). Point \(B \) has coordinates \((S, T) = (33, 17)\). Note that in moving from \(A \) to \(B \), we have kept \(S \) constant because both points have salinity \(S = 33 \).

Step 2. Compute the difference quotient.

\[
\Delta \rho = 1.0240 - 1.0245 = -0.0005 \text{ kg/m}^3
\]

\[
\Delta T = 17 - 15 = 2^\circ \text{C}
\]

This gives us the approximation

\[
\frac{\partial \rho}{\partial T} \bigg|_A \approx \frac{\Delta \rho}{\Delta T} = \frac{-0.0005}{2} = -0.00025 \text{ kg-m}^{-3}^\circ \text{C}
\]

We estimate \(\partial \rho/\partial S \) in a similar way, by moving to the right horizontally to point \(C \) with coordinates \((S, T) \approx (33.7, 15)\), where \(\rho = 1.0250 \):

\[
\frac{\partial \rho}{\partial S} \bigg|_A \approx \frac{\Delta \rho}{\Delta S} = \frac{1.0250 - 1.0245}{33.7 - 33} = \frac{0.0005}{0.7} \approx 0.0007 \text{ kg-m}^{-3}/\text{ppt}
\]

Higher Order Partial Derivatives

The higher order partial derivatives are the derivatives of derivatives. The *second-order* partial derivatives of \(f \) are the partial derivatives of \(f_x \) and \(f_y \). We write \(f_{xx} \) for the \(x \)-derivative of \(f_x \) and \(f_{yy} \) for the \(y \)-derivative of \(f_y \):

\[
f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \quad f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right)
\]
We also have the mixed partials:

\[f_{xy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right), \quad f_{yx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \]

The process can be continued. For example, \(f_{xyx} \) is the \(x \)-derivative of \(f_{xy} \), and \(f_{xyy} \) is the \(y \)-derivative of \(f_{xy} \) (perform the differentiation in the order of the subscripts from left to right). The Leibniz notation for higher order partial derivatives is

\[f_{xx} = \frac{\partial^2 f}{\partial x^2}, \quad f_{xy} = \frac{\partial^2 f}{\partial y \partial x}, \quad f_{yx} = \frac{\partial^2 f}{\partial x \partial y}, \quad f_{yy} = \frac{\partial^2 f}{\partial y^2} \]

Higher partial derivatives are defined for functions of three or more variables in a similar manner.

EXAMPLE 7 Calculate the second-order partials of \(f(x, y) = x^3 + y^2 e^x \).

Solution First, we compute the first-order partial derivatives:

\[
\begin{align*}
f_x(x, y) &= \frac{\partial}{\partial x} (x^3 + y^2 e^x) = 3x^2 + y^2 e^x, \\
f_y(x, y) &= \frac{\partial}{\partial y} (x^3 + y^2 e^x) = 2ye^x
\end{align*}
\]

Then we can compute the second-order derivatives:

\[
\begin{align*}
f_{xx}(x, y) &= \frac{\partial}{\partial x} f_x = \frac{\partial}{\partial x} (3x^2 + y^2 e^x) = 6x + y^2 e^x, \\
f_{yy}(x, y) &= \frac{\partial}{\partial y} f_y = \frac{\partial}{\partial y} (3x^2 + y^2 e^x) = 2e^x, \\
f_{xy}(x, y) &= \frac{\partial}{\partial y} f_x = \frac{\partial}{\partial y} (3x^2 + y^2 e^x) = 2ye^x, \\
f_{yx}(x, y) &= \frac{\partial}{\partial x} f_y = \frac{\partial}{\partial x} (2ye^x) = 2ye^x
\end{align*}
\]

EXAMPLE 8 Calculate \(f_{xyy} \) for \(f(x, y) = x^3 + y^2 e^x \).

Solution By the previous example, \(f_{xy} = 2ye^x \). Therefore,

\[f_{xyy} = \frac{\partial}{\partial y} f_{xy} = \frac{\partial}{\partial y} 2ye^x = 2e^x \]

Observe in Example 7 that \(f_{xy} \) and \(f_{yx} \) are both equal to \(2ye^x \). It is a pleasant circumstance that the equality \(f_{xy} = f_{yx} \) holds in general, provided that the mixed partials are continuous. See Appendix D for a proof of the following theorem named for the French mathematician Alexis Clairaut (Figure 5).

THEOREM 1 Clairaut’s Theorem: Equality of Mixed Partials

If \(f_{xy} \) and \(f_{yx} \) are both continuous functions on a disk \(D \), then \(f_{xy}(a, b) = f_{yx}(a, b) \) for all \((a, b) \in D \). In other words,

\[\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \]
EXAMPLE 9 Check that \(\frac{\partial^2 W}{\partial U \partial T} = \frac{\partial^2 W}{\partial T \partial U} \) for \(W = e^{U/T} \).

Solution We compute both derivatives and observe that they are equal:

\[
\frac{\partial W}{\partial T} = e^{U/T} \frac{U}{T}, \quad \frac{\partial W}{\partial U} = e^{U/T} \frac{T}{U} = T^{-1} \frac{U}{T}
\]

\[
\frac{\partial^2 W}{\partial U \partial T} = -e^{U/T} \frac{U^2}{T^2} = -T^{-2} e^{U/T} \quad \text{and} \quad \frac{\partial^2 W}{\partial T \partial U} = -e^{U/T} \frac{U}{T^2} = -T^{-3} e^{U/T}
\]

Although Clairaut’s Theorem is stated for \(f_{xy} \) and \(f_{yx} \), it implies more generally that partial differentiation may be carried out in any order, provided that the derivatives in question are continuous (see Exercise 75). For example, we can compute \(f_{xyxy} \) by differentiating \(f \) twice with respect to \(x \) and twice with respect to \(y \), in any order. Thus, \(f_{xyxy} = f_{xxyy} = f_{yyxx} = f_{yxxy} = f_{xyyx} = f_{yxxy} \).

EXAMPLE 10 Choosing the Order Wisely Calculate the partial derivative \(g_{zzwx} \), where \(g(x, y, z, w) = x^3 w^2 z^2 + \sin \left(\frac{xy}{z^2} \right) \).

Solution Let’s take advantage of the fact that the derivatives may be calculated in any order. If we differentiate with respect to \(w \) first, the second term disappears because it does not depend on \(w \):

\[
g_w = \frac{\partial}{\partial w} \left(x^3 w^2 z^2 + \sin \left(\frac{xy}{z^2} \right) \right) = 2x^3 w z^2
\]

Next, differentiate twice with respect to \(z \) and once with respect to \(x \):

\[
g_{wz} = \frac{\partial}{\partial z} 2x^3 w z^2 = 4x^3 w z
\]

\[
g_{wzz} = \frac{\partial}{\partial z} 4x^3 w z = 4x^3 w
\]

\[
g_{wzxx} = \frac{\partial}{\partial x} 12x^2 w = 12x^2 w
\]

We conclude that \(g_{zzwx} = g_{wzxx} = 12x^2 w \).

A **partial differential equation** (PDE) is a differential equation involving functions of several variables and their partial derivatives. A solution to a PDE is a function that satisfies the equation. The heat equation in the next example is a PDE that models temperature as heat spreads through an object. There are infinitely many solutions, but the particular function in the example describes temperature at times \(t > 0 \) along a metal rod when the center point is given a burst of heat at \(t = 0 \) (Figure 6).

A plot of \(u(x, t) = \frac{1}{2\sqrt{\pi t}} e^{-(x^2/4t)} \) illustrates the diffusion of a burst of heat over time.
Example 11 The Heat Equation

Show that \(u(x, t) = \frac{1}{2\sqrt{\pi t}} e^{-(x^2/4t)} \), defined for \(t > 0 \), satisfies the heat equation

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}
\]

Solution

We write \(u(x, t) = \frac{1}{2\sqrt{\pi t}} t^{-1/2} e^{-(x^2/4t)} \). We first compute \(\frac{\partial^2 u}{\partial x^2} \):

\[
\frac{\partial u}{\partial x} = \frac{1}{2\sqrt{\pi}} (t^{-1/2} e^{-(x^2/4t)}) = -\frac{1}{4\sqrt{\pi}} xt^{-3/2} e^{-(x^2/4t)}
\]

\[
\frac{\partial^2 u}{\partial x^2} = \frac{1}{2\sqrt{\pi}} (t^{-1/2} e^{-(x^2/4t)}) = -\frac{1}{8\sqrt{\pi}} t^{-3/2} e^{-(x^2/4t)} + \frac{1}{8\sqrt{\pi}} x^2 t^{-5/2} e^{-(x^2/4t)}
\]

Then compute \(\frac{\partial u}{\partial t} \) and observe that it equals \(\frac{\partial^2 u}{\partial x^2} \) as required:

\[
\frac{\partial u}{\partial t} = \frac{1}{2\sqrt{\pi}} t^{-1/2} e^{-(x^2/4t)} = -\frac{1}{4\sqrt{\pi}} t^{-3/2} e^{-(x^2/4t)} + \frac{1}{8\sqrt{\pi}} x^2 t^{-5/2} e^{-(x^2/4t)}
\]

Historical Perspective

The general heat equation, of which Eq. (2) is a special case, was first introduced in 1807 by French mathematician Jean Baptiste Joseph Fourier. As a young man, Fourier was unsure whether to enter the priesthood or pursue mathematics, but he must have been very ambitious. He wrote in a letter, “Yesterday was my 21st birthday, at that age Newton and Pascal had already acquired many claims to immortality.” In his twenties, Fourier got involved in the French Revolution and was imprisoned briefly in 1794 over an incident involving different factions. In 1798 he was summoned, along with more than 150 other scientists, to join Napoleon on his unsuccessful campaign in Egypt.

Fourier’s true impact, however, lay in his mathematical contributions. The heat equation is applied throughout the physical sciences and engineering, from the study of heat flow through the earth’s oceans and atmosphere to the use of heat probes to destroy tumors and treat heart disease.

Fourier also introduced a striking new technique—known as the Fourier transform—for solving his equation, based on the idea that a periodic function can be expressed as a (possibly infinite) sum of sines and cosines. Leading mathematicians of the day, including Lagrange and Laplace, initially raised objections because this technique was not easy to justify rigorously. Nevertheless, the Fourier transform turned out to be one of the most important mathematical discoveries of the nineteenth century. A Web search on the term “Fourier transform” reveals its vast range of modern applications.

In 1855 the German physiologist Adolf Fick showed that the heat equation describes not only heat conduction but also a wide range of diffusion processes, such as osmosis, ion transport at the cellular level, and the motion of pollutants through air or water. The heat equation thus became a basic tool in chemistry, molecular biology, and environmental science, where it is often called Fick’s Second Law.

15.3 Summary

- The partial derivatives of \(f(x, y) \) are defined as the limits

\[
f_x(a, b) = \frac{\partial f}{\partial x} \bigg|_{(a,b)} = \lim_{h \to 0} \frac{f(a + h, b) - f(a, b)}{h}
\]

\[
f_y(a, b) = \frac{\partial f}{\partial y} \bigg|_{(a,b)} = \lim_{k \to 0} \frac{f(a, b + k) - f(a, b)}{k}
\]
• Compute \(f_x \) by holding \(y \) constant, and compute \(f_y \) by holding \(x \) constant.
• \(f_x(a, b) \) is the slope at \(x = a \) of the tangent line to the trace curve \(z = f(x, b) \). Similarly, \(f_y(a, b) \) is the slope at \(y = b \) of the tangent line to the trace curve \(z = f(a, y) \).
• For small changes \(\Delta x \) and \(\Delta y \),
\[
f(a + \Delta x, b) - f(a, b) \approx f_x(a, b)\Delta x
\]
\[
f(a, b + \Delta y) - f(a, b) \approx f_y(a, b)\Delta y
\]

More generally, if \(f \) is a function of \(n \) variables and \(w \) is one of the variables, then \(\Delta f \approx f_w\Delta w \) if \(w \) changes by \(\Delta w \) and all other variables remain fixed.

• The second-order partial derivatives are
\[
\frac{\partial^2 f}{\partial x^2} = f_{xx}, \quad \frac{\partial^2 f}{\partial y \partial x} = f_{xy}, \quad \frac{\partial^2 f}{\partial x \partial y} = f_{yx}, \quad \frac{\partial^2 f}{\partial y^2} = f_{yy}
\]

• Clairaut’s Theorem states that mixed partials are equal—that is, \(f_{xy} = f_{yx} \) provided that \(f_{xy} \) and \(f_{yx} \) are continuous.

• More generally, higher order partial derivatives may be computed in any order. For example, \(f_{xyy} = f_{yxy} \) if \(f \) is a function of \(x, y, z \) whose fourth-order partial derivatives are continuous.

15.3 EXERCISES

Preliminary Questions

1. Patricia derived the following incorrect formula by misapplying the Product Rule:
\[
\frac{\partial}{\partial x} (x^2y^2) = x^2(2y) + y^2(2x)
\]
What was her mistake and what is the correct calculation?

2. Explain why it is not necessary to use the Quotient Rule to compute \(\frac{\partial}{\partial y} \left(\frac{x + y}{y + 1} \right) \). Should the Quotient Rule be used to compute \(\frac{\partial}{\partial y} \left(\frac{x + y}{y + 1} \right) \)?

Exercises

1. Use the limit definition of the partial derivative to verify the formulas
\[
\frac{\partial}{\partial x} xy^2 = y^2, \quad \frac{\partial}{\partial y} xy^2 = 2xy
\]

2. Use the Product Rule to compute \(\frac{\partial}{\partial y} (x^2 + y)(x + y^4) \).

3. Use the Quotient Rule to compute \(\frac{\partial}{\partial y} \frac{y}{x^2 + y} \).

4. Use the Chain Rule to compute \(\frac{\partial}{\partial u} \ln(u^2 + uv) \).

5. Calculate \(f_z(2, 3, 1) \), where \(f(x, y, z) = xyz \).

6. Explain the relation between the following two formulas (\(c \) is a constant):
\[
\frac{d}{dx} \sin(cx) = c \cos(cx), \quad \frac{d}{dx} \sin(xy) = y \cos(xy)
\]

7. The plane \(y = 1 \) intersects the surface \(z = x^4 + 6xy \) in a certain curve. Find the slope of the tangent line to this curve at the point \(P = (1, 1, 6) \).

8. Determine whether the partial derivatives \(df/dx \) and \(df/dy \) are positive or negative at the point \(P \) on the graph in Figure 7.

FIGURE 7

In Exercises 9–12, refer to Figure 8.

9. Estimate \(f_x \) and \(f_y \) at point \(A \).

10. Is \(f_x \) positive or negative at \(B \)?
11. Starting at point B, in which compass direction (N, NE, SW, etc.) does \(f \) increase most rapidly?

12. At which of A, B, or C is \(f_y \) smallest?

Figure 8 Contour map of \(f(x, y) \).

In Exercises 13–40, compute the first-order partial derivatives.

13. \(z = x^2 + y^2 \)

14. \(z = x^4y^3 \)

15. \(z = x^4y + xy^{-2} \)

16. \(V = \pi r^2h \)

17. \(z = \frac{1}{x+y} \)

18. \(z = \frac{x}{x-y} \)

19. \(z = \sqrt{\theta - x^2 - y^2} \)

20. \(z = \frac{x}{\sqrt{x^2 + y^2}} \)

21. \(z = \sin(x)\sin(y) \)

22. \(z = \sin(v^2) \)

23. \(z = \tan \frac{x}{y} \)

24. \(s = \tan^{-1}wz \)

25. \(z = \ln(x^2 + y^2) \)

26. \(A = \sin(4\theta - 9t) \)

27. \(W = e^{r+t} \)

28. \(Q = re^0 \)

29. \(z = e^{xy} \)

30. \(R = e^{-x^2/k} \)

31. \(z = e^{-x^2-y^2} \)

32. \(p = e^0 \)

33. \(U = \frac{e^{-rt}}{r} \)

34. \(z = y^t \)

35. \(z = \sinh(x^2y) \)

36. \(z = \cosh(t - \cos x) \)

37. \(w = xy^2z^3 \)

38. \(w = \frac{x}{y+z} \)

39. \(Q = \frac{L}{M}e^{-Lt/M} \)

In Exercises 41–44, compute the given partial derivatives.

41. \(f(x, y) = 3x^2y + 4x^3y^2 - 7xy^5 \)

42. \(f(x, y) = \sin(x^2 - y), \quad f_y(1, 2) \)

43. \(g(u, v) = u \ln(u + v), \quad g_u(1, 2) \)

44. \(h(x, z) = e^x - x^2z, \quad h_z(3, 0) \)

Exercises 45 and 46 refer to Example 5.

45. Calculate \(N \) for \(L = 0.4, R = 0.12, \) and \(d = 10, \) and use the linear approximation to estimate \(\Delta N \) if \(d \) is increased from 10 to 10.4.

46. Estimate \(\Delta N \) if \((L, R, d) = (0.5, 0.15, 8) \) and \(R \) is increased from 0.15 to 0.17.

47. The heat index \(I \) is a measure of how hot it feels when the relative humidity is \(H \) (as a percentage) and the actual air temperature is \(T \) (in degrees Fahrenheit). An approximate formula for the heat index that is valid for \((T, H)\) near \((90, 40)\) is

\[
I(T, H) = 45.33 + 0.68457T + 5.758H - 0.00365T^2 - 0.1565HT + 0.001HT^2
\]

(a) Calculate \(I \) at \((T, H) = (95, 50)\).

(b) Which partial derivative tells us the increase in \(I \) per degree increase in \(T \) when \((T, H) = (95, 50)\)? Calculate this partial derivative.

48. The wind-chill temperature \(W \) measures how cold people feel (based on the rate of heat loss from exposed skin) when the outside temperature is \(T \)°C (with \(T \leq 10 \)) and wind velocity is \(v \) m/s (with \(v \geq 2)\):

\[
W = 13.1267 + 0.6215T - 13.947v^{0.16} + 0.486Tv^{0.16}
\]

Calculate \(\partial W/\partial v \) at \((T, v) = (-10, 15)\) and use this value to estimate \(\Delta W \) if \(\Delta v = 2 \).

49. The volume of a right-circular cone of radius \(r \) and height \(h \) is \(V = \frac{1}{3}\pi r^2h \). Suppose that \(r = h = 12 \) cm. What leads to a greater increase in \(V \), a 1-cm increase in \(r \) or a 1-cm increase in \(h \)? Argue using partial derivatives.

50. Use the linear approximation to estimate the percentage change in volume of a right-circular cone of radius \(r = 40 \) cm if the height is increased from 40 to 41 cm.

51. Calculate \(\partial W/\partial E \) and \(\partial W/\partial T \), where \(W = e^{-E/kT} \), where \(k \) is a constant.

52. Calculate \(\partial P/\partial T \) and \(\partial P/\partial V \), where pressure \(P \), volume \(V \), and temperature \(T \) are related by the Ideal Gas Law, \(PV = nRT \) (\(R \) and \(n \) are constants).

53. Use the contour map of \(f(x, y) \) in Figure 9 to explain the following statements:

(a) \(f_y \) is larger at \(P \) than at \(Q \), and \(f_x \) is smaller (more negative) at \(P \) than at \(Q \).

(b) \(f_y(x, y) \) is decreasing as a function of \(y \); that is, for any fixed value \(x = a \), \(f_x(a, y) \) is decreasing in \(y \).

Figure 9

54. Estimate the partial derivatives at \(P \) of the function whose contour map is shown in Figure 10.

Figure 10
55. Over most of the earth, a magnetic compass does not point to true (geographic) north; instead, it points at some angle east or west of true north. The angle D between magnetic north and true north is called the magnetic declination. Use Figure 11 to determine which of the following statements is true:

(a) $\frac{\partial D}{\partial y} > 0$
(b) $\frac{\partial D}{\partial x} > 0$
(c) $\frac{\partial D}{\partial y} > 0$

Note that the horizontal axis increases from right to left because of the way longitude is measured.

![Magnetic Declination for the U.S. 2004](image)

FIGURE 11 Contour interval 1°.

56. Refer to Table 1.

(a) Estimate $\frac{\partial \rho}{\partial T}$ and $\frac{\partial \rho}{\partial S}$ at the points $(S, T) = (34, 2)$ and $(35, 10)$ by computing the average of left-hand and right-hand difference quotients.

(b) For fixed salinity $S = 33$, is ρ concave up or concave down as a function of T? Hint: Determine whether the quotients $\frac{\Delta \rho}{\Delta T}$ are increasing or decreasing. What can you conclude about the sign of $\frac{\partial^2 \rho}{\partial T^2}$?

<table>
<thead>
<tr>
<th>T</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>12</td>
<td>22.75</td>
<td>23.51</td>
<td>24.27</td>
<td>25.07</td>
<td>25.82</td>
<td>26.6</td>
</tr>
<tr>
<td>8</td>
<td>23.36</td>
<td>24.15</td>
<td>24.93</td>
<td>25.73</td>
<td>26.5</td>
<td>27.28</td>
<td>29.09</td>
</tr>
<tr>
<td>6</td>
<td>23.62</td>
<td>24.44</td>
<td>25.22</td>
<td>26</td>
<td>26.77</td>
<td>27.55</td>
<td>28.35</td>
</tr>
<tr>
<td>4</td>
<td>23.84</td>
<td>24.62</td>
<td>25.42</td>
<td>26.23</td>
<td>27</td>
<td>27.83</td>
<td>28.61</td>
</tr>
<tr>
<td>2</td>
<td>24.11</td>
<td>24.92</td>
<td>25.72</td>
<td>26.5</td>
<td>27.34</td>
<td>28.12</td>
<td>28.91</td>
</tr>
</tbody>
</table>

In Exercises 57–62, compute the derivatives indicated.

57. $f(x, y) = 3x^2y - 6xy^4$, $\frac{\partial^2 f}{\partial x^2}$ and $\frac{\partial^2 f}{\partial y^2}$

58. $g(x, y) = \frac{xy}{x - y}$, $\frac{\partial^2 g}{\partial x \partial y}$

59. $h(u, v) = \frac{u}{u + 4v}$, $h_{uv}(u, v)$

60. $h(x, y) = \ln(x^3 + y^3)$, $h_{xy}(x, y)$

61. $f(x, y) = x \ln(y^2)$, $f_{yy}(2, 3)$

62. $g(x, y) = x e^{-xy}$, $g_{xy}(-3, 2)$

63. Compute g_{xyz} for

$$f(x, y, z) = \frac{y \sin(xz) + (x + z^2) \tan y + x \tan \left(\frac{z + z^{-1}}{y - y^{-1}}\right)}{3y^2 + \ln(2 + u^2)}$$

Hint: Use a well-chosen order of differentiation on each term.

64. Let

$$f(x, y, u, v) = \frac{x^2 + e^3v}{3y^2 + \ln(2 + u^2)}$$

What is the fastest way to show that $f_{uxxuv}(x, y, u, v) = 0$ for all (x, y, u, v)?

In Exercises 65–72, compute the derivative indicated.

65. $f(u, v) = \cos(u + v^2)$, f_{uu}

66. $g(x, y, z) = x^4y^5$, g_{xxxz}

67. $F(r, s, t) = r(s^2 + t^2)$, F_{rst}

68. $u(x, t) = t^{-1/2}e^{-(x^2/4t)}$, u_{xx}

69. $F(\theta, u, v) = \sinh(\theta u + \theta^2)$, $F_{u\theta\theta}$

70. $R(u, v, w) = \frac{u}{v + w}$, R_{uvw}

71. $g(x, y, z) = \sqrt{x^2 + y^2 + z^2}$, g_{xyz}

72. $u(x, t) = \text{sech}^2(x - t)$, u_{xxx}

73. Find a function such that $\frac{\partial f}{\partial x} = 2xy$ and $\frac{\partial f}{\partial y} = x^2$.

74. Prove that there does not exist any function $f(x, y)$ such that $\frac{\partial f}{\partial x} = xy$ and $\frac{\partial f}{\partial y} = x^2$. Hint: Show that f cannot satisfy Clairaut’s Theorem.

75. Assume that f_{xy} and f_{yx} are continuous and that f_{xx} exists. Show that f_{xxy} also exists and that $f_{xxy} = f_{xx}$.

76. Show that $u(x, t) = \sin(nx) e^{-n^2t}$ satisfies the heat equation for any constant n:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

77. Find all values of A and B such that $f(x, t) = e^{At+Bt}$ satisfies Eq. (3).

78. The function

$$f(x, t) = \frac{1}{2\sqrt{\pi t}}e^{-x^2/4t}$$

describes the temperature profile along a metal rod at time $t > 0$ when a burst of heat is applied at the origin (see Example 11). A small bug sitting on the rod at distance x from the origin feels the temperature rise and fall as heat diffuses through the bar. Show that the bug feels the maximum temperature at time $t = \frac{x}{2}$.

In Exercises 79–82, the Laplace operator Δ is defined by $\Delta f = f_{xx} + f_{yy}$. A function $u(x, y)$ satisfying the Laplace equation $\Delta u = 0$ is called harmonic.

79. Show that the following functions are harmonic:
(a) \(u(x, y) = x \)
(b) \(u(x, y) = e^x \cos y \)
(c) \(u(x, y) = \tan^{-1} \frac{y}{x} \)
(d) \(u(x, y) = \ln(x^2 + y^2) \)

80. Find all harmonic polynomials \(u(x, y) \) of degree 3, that is, \(u(x, y) = ax^3 + bx^2y + cxy^2 + dy^3 \).

81. Show that if \(u(x, y) \) is harmonic, then the partial derivatives \(\partial u/\partial x \) and \(\partial u/\partial y \) are harmonic.

Further Insights and Challenges

84. Assumptions Matter This exercise shows that the hypotheses of Clairaut’s Theorem are needed. Let

\[
f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}
\]

for \((x, y) \neq (0, 0)\) and \(f(0, 0) = 0\).

(a) Verify for \((x, y) \neq (0, 0)\):

\[
\begin{align*}
fx(x, y) &= \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2} \\
fy(x, y) &= \frac{x(x^4 - 4x^2y^2 - y^4)}{(x^2 + y^2)^2}
\end{align*}
\]

(b) Use the limit definition of the partial derivative to show that \(f_x(0, 0) = f_y(0, 0) = 0\) and that \(f_{xx}(0, 0)\) and \(f_{yy}(0, 0)\) both exist but are not equal.

(c) Show that for \((x, y) \neq (0, 0)\):

\[
f_{xy}(x, y) = f_{yx}(x, y) = \frac{4x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}
\]

Show that \(f_{xy}\) is not continuous at \((0, 0)\). Hint: Show that \(\lim_{h \to 0} f_{xy}(h, 0) \neq \lim_{h \to 0} f_{xy}(0, h)\).

(d) Explain why the result of part (b) does not contradict Clairaut’s Theorem.

15.4 Differentiability and Tangent Planes

In this section, we generalize two basic concepts from single-variable calculus: differentiability and the tangent line. The tangent line becomes the **tangent plane** for functions of two variables (Figure 1).

Intuitively, we would like to say that a continuous function \(f(x, y)\) is differentiable if it is **locally linear**—that is, if its graph looks flatter and flatter as we zoom in on a point \(P = (a, b, f(a, b))\) and eventually becomes indistinguishable from the tangent plane (Figure 2).

Let us momentarily assume that our continuous function \(f(x, y)\) is locally linear, and let’s find the equation for the tangent plane at a point \(P = (a, b, f(a, b))\) on its graph. We already have a point, namely \(P\), on the plane. Hence, all we need is a normal vector to the plane. We currently know the slopes of two tangent lines at \(P\), the first with slope \(f_x(a, b)\) in the vertical plane given by \(x = a\), and the second with slope \(f_y(a, b)\) in the vertical plane given by \(y = b\). We will convert this information into two vectors \(\mathbf{u}\) and \(\mathbf{v}\) and then take their cross product to obtain a normal vector to the plane.

Consider first the tangent line in the plane \(x = a\) with slope \(f_x(a, b)\). To stay on that line, we can move 1 unit in the positive \(x\)-direction from \((a, b, f(a, b))\), and then \(f_x(a, b)\) units in the positive \(z\)-direction from the point \((a, b, f(a, b))\). In other words, the vector defined by \(\mathbf{u} = (1, 0, f_x(a, b))\) lies in that tangent line and therefore lies in the tangent plane, as in Figure 3.
Now consider the tangent line in the plane $y = b$, with slope $f_y(a, b)$. To stay on that line, we can move 1 unit in the positive y-direction from $(a, b, f(a, b))$, and then $f_y(a, b)$ units in the positive z-direction from the point $(a, b, f(a, b))$. That is to say the vector defined by $v = [0, 1, f_y(a, b)]$ lies in that tangent line and therefore lies in the tangent plane, as in Figure 3.

Thus, we have two vectors that both lie in the tangent plane. They can never be parallel since one lies in the plane given by $x = a$ and the other lies in the plane given by $y = b$, and parallel vectors in these two planes would have to be vertical, which these are not.

We can therefore take their cross product as a normal vector to the tangent plane:

$$n = v \times u = \begin{vmatrix} i & j & k \\ 0 & 1 & f_y(a, b) \\ 1 & 0 & f_x(a, b) \end{vmatrix} = \begin{vmatrix} f_x(a, b) & f_y(a, b) & -1 \end{vmatrix}$$

Now, we have a normal vector for the tangent plane and a point P on the plane, so we can write down the equation of the plane:

$$f_x(a, b)(x - a) + f_y(a, b)(y - b) - (z - f(a, b)) = 0$$

This gives us the following:

THEOREM 1 Equation of the Tangent Plane

If $f(x, y)$ is locally linear at (a, b), then its tangent plane is given by the equation

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

We define $L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$, which is the linear function that yields the tangent plane. Note that it is linear since it is of the form $L(x, y) = Ax + By + C$, where A, B, and C are constants.

Before we can say that the tangent plane exists, however, we must impose a condition on $f(x, y)$ guaranteeing that the graph looks flat as we zoom in on P. Set

$$e(x, y) = f(x, y) - L(x, y).$$

As we see in Figure 4(B), $|e(x, y)|$ is the vertical distance between the graph of $f(x, y)$ and the plane $z = L(x, y)$. We can think of it as the error we produce if we use $L(x, y)$ to approximate $f(x, y)$ at the point (x, y). This distance tends to zero as (x, y) approaches (a, b) because $f(x, y)$ is continuous. To be locally linear, we require that this distance tend to zero faster than the distance from (x, y) to (a, b). We express this by the requirement

$$\lim_{(x, y) \to (a, b)} \frac{|e(x, y)|}{\sqrt{(x - a)^2 + (y - b)^2}} = 0$$

FIGURE 4
DEFINITION Differentiability Assume that \(f(x, y) \) is defined in a disk \(D \) containing \((a, b)\) and that \(f_x(a, b) \) and \(f_y(a, b) \) exist.

- \(f(x, y) \) is **differentiable** at \((a, b)\) if it is locally linear— that is, if

\[
f(x, y) = L(x, y) + e(x, y)
\]

where \(e(x, y) \) satisfies

\[
\lim_{(x, y) \to (a, b)} \frac{e(x, y)}{\sqrt{(x-a)^2 + (y-b)^2}} = 0
\]

- In this case, the tangent plane to the graph at \((a, b, f(a, b))\) is the plane with equation \(z = L(x, y) \). Explicitly,

\[
z = f(a, b) + f_x(a, b)(x-a) + f_y(a, b)(y-b)
\]

If \(f(x, y) \) is differentiable at all points in a domain \(D \), we say that \(f(x, y) \) is differentiable on \(D \).

It is cumbersome to check the local linearity condition directly (see Exercise 41), but fortunately, this is rarely necessary. The following theorem provides a criterion for differentiability that is easy to apply. It assures us that most functions arising in practice are differentiable on their domains. See Appendix D for a proof.

THEOREM 2 Criterion for Differentiability If \(f_x(x, y) \) and \(f_y(x, y) \) exist and are continuous on an open disk \(D \), then \(f(x, y) \) is differentiable on \(D \).

EXAMPLE 1 Show that \(f(x, y) = 5x + 4y^2 \) is differentiable (Figure 5). Find the equation of the tangent plane at \((a, b) = (2, 1)\).

Solution The partial derivatives exist and are continuous functions:

\[
f(x, y) = 5x + 4y^2, \quad f_x(x, y) = 5, \quad f_y(x, y) = 8y
\]

Therefore, \(f(x, y) \) is differentiable for all \((x, y)\) by Theorem 2. To find the tangent plane, we evaluate the partial derivatives at \((2, 1)\):

\[
f(2, 1) = 14, \quad f_x(2, 1) = 5, \quad f_y(2, 1) = 8
\]

According to Eq. (2), the equation of the tangent plane at \((2, 1)\) is

\[
z = 14 + 5(x - 2) + 8(y - 1) = -4 + 5x + 8y
\]

The tangent plane through \(P = (2, 1, 14) \) has equation \(z = -4 + 5x + 8y \).

Assumptions Matter Local linearity plays a key role, and although most reasonable functions are locally linear, the mere existence of the partial derivatives does not guarantee local linearity. This is in contrast to the one-variable case, where \(f(x) \) is automatically locally linear at \(x = a \) if \(f'(a) \) exists (Exercise 44).

The function \(g(x, y) \) in Figure 6(A) shows what can go wrong. The graph contains the \(x \)- and \(y \)-axes— in other words, \(g(x, 0) = 0 \) and \(g(0, y) = 0 \)— and therefore, the partial derivatives \(g_x(0, 0) \) and \(g_y(0, 0) \) are both zero. The tangent plane at the origin \((0, 0)\), if it existed, would have to be the \(xy \)-plane. However, Figure 6(B) shows that the graph also contains lines through the origin that do not lie in the \(xy \)-plane (in fact, the graph is composed entirely of lines through the origin). As we zoom in on the origin, these lines remain at an angle to the \(xy \)-plane, and the surface does not get any flatter. Thus, \(g(x, y) \) cannot be locally linear at \((0, 0)\), and the tangent plane does not exist. In particular, \(g(x, y) \) cannot satisfy the assumptions of Theorem 1, so the partial derivatives \(g_x(x, y) \) and \(g_y(x, y) \) cannot be continuous at the origin (see Exercise 45 for details).
The function \(h(x, y) = \sqrt{x^2 + y^2} \) is not differentiable at the origin.

Example 2 Where is \(h(x, y) = \sqrt{x^2 + y^2} \) differentiable?

Solution The partial derivatives exist and are continuous for all \((x, y) \neq (0, 0)\):

\[
\begin{align*}
h_x(x, y) &= \frac{x}{\sqrt{x^2 + y^2}}, \\
h_y(x, y) &= \frac{y}{\sqrt{x^2 + y^2}}
\end{align*}
\]

However, the partial derivatives do not exist at \((0, 0)\). Indeed, \(h_x(0, 0) \) does not exist because \(h(x, 0) = \sqrt{x^2} = |x| \) is not differentiable at \(x = 0 \). Similarly, \(h_y(0, 0) \) does not exist. By Theorem 2, \(h(x, y) \) is differentiable except at \((0, 0)\) (Figure 7).

Example 3 Find a tangent plane of the graph of \(f(x, y) = xy^3 + x^2 \) at \((2, -2)\).

Solution The partial derivatives are continuous, so \(f(x, y) \) is differentiable:

\[
\begin{align*}
f_x(x, y) &= y^3 + 2x, \\
f_y(x, y) &= 3xy^2,
\end{align*}
\]

Since \(f(2, -2) = -12 \), the tangent plane through \((2, -2, -12)\) has equation

\[
z = -12 - 4(x - 2) + 24(y + 2)
\]

This can be rewritten as \(z = 44 - 4x + 24y \) (Figure 8).

Linear Approximation and Differentials

By definition, if \(f(x, y) \) is differentiable at \((a, b)\), then it is locally linear and the linear approximation is

\[
f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b) \quad \text{for } (x, y) \text{ near } (a, b)
\]

Letting \(x = a + \Delta x \) and \(y = b + \Delta y \), and thinking of \(\Delta x \) and \(\Delta y \) as small changes in \(x \) and \(y \), we obtain

\[
f(a + \Delta x, b + \Delta y) \approx f(a, b) + f_x(a, b)\Delta x + f_y(a, b)\Delta y
\]

We can also write the linear approximation in terms of the change in \(f \):

\[
\Delta f = f(x, y) - f(a, b)
\]

\[
\Delta f \approx f_x(a, b)\Delta x + f_y(a, b)\Delta y
\]
Finally, it is convenient to define the function called the **differential** of \(f \). Letting \(dx = \Delta x \) and \(dy = \Delta y \), we get

\[
df = f_x(x, y) \, dx + f_y(x, y) \, dy = \frac{\partial f}{\partial x} \, dx + \frac{\partial f}{\partial y} \, dy
\]

As shown in Figure 9, \(df \) represents the change in height of the tangent plane for given changes \(dx \) and \(dy \) in \(x \) and \(y \) (when we work with differentials, we call them \(dx \) and \(dy \) instead of \(\Delta x \) and \(\Delta y \)), whereas \(\Delta f \) is the change in the function itself. The linear approximation tells us that the two changes are approximately equal:

\[
\Delta f \approx df
\]

These approximations apply in any number of variables. In three variables,

\[
f(a + \Delta x, b + \Delta y, c + \Delta z) \approx f(a, b, c) + f_x(a, b, c) \Delta x + f_y(a, b, c) \Delta y + f_z(a, b, c) \Delta z
\]

Example 4

Use the linear approximation to estimate

\[
(3.99)^3(1.01)^4(1.98)^{-1}
\]

Then use a calculator to find the percentage error.

Solution

Think of \((3.99)^3(1.01)^4(1.98)^{-1}\) as a value of \(f(x, y, z) = x^3y^4z^{-1} \):

\[
f(3.99, 1.01, 1.98) = (3.99)^3(1.01)^4(1.98)^{-1}
\]

Then it makes sense to use the linear approximation at \((a, b, c) = (4, 1, 2)\):

\[
f(x, y, z) = x^3y^4z^{-1}, \quad f(4, 1, 2) = (4^3)(1^4)(2^{-1}) = 32
\]

\[
f_x(x, y, z) = 3x^2y^4z^{-1}, \quad f_x(4, 1, 2) = 24
\]

\[
f_y(x, y, z) = 4x^3y^3z^{-1}, \quad f_y(4, 1, 2) = 128
\]

\[
f_z(x, y, z) = -x^3y^4z^{-2}, \quad f_z(4, 1, 2) = -16
\]

The linear approximation in three variables stated above, with \(a = 4, b = 1, c = 2\), gives us

\[
\frac{(4 + \Delta x)^3(1 + \Delta y)^4(2 + \Delta z)^{-1}}{f(4 + \Delta x, 1 + \Delta y, 2 + \Delta z)} \approx 32 + 24\Delta x + 128\Delta y - 16\Delta z
\]

For \(\Delta x = -0.01, \Delta y = 0.01, \) and \(\Delta z = -0.02\), we obtain the desired estimate

\[
(3.99)^3(1.01)^4(1.98)^{-1} \approx 32 + 24(-0.01) + 128(0.01) - 16(-0.02) = 33.36
\]

The calculator value is \((3.99)^3(1.01)^4(1.98)^{-1} \approx 33.38\), so the error in our estimate is less than 0.025. The percentage error is

\[
\text{Percentage error} \approx \frac{|33.38 - 33.36|}{33.38} \times 100 \approx 0.075\%
\]

Example 5

Body Mass Index

A person’s BMI is \(I = \frac{W}{H^2} \), where \(W \) is the body weight (in kilograms) and \(H \) is the body height (in meters). Estimate the change in a child’s BMI if \((W, H)\) changes from \((40, 1.45)\) to \((41.5, 1.47)\).

Solution

Step 1. Compute the partial derivatives at \((W, H) = (40, 1.45)\).

\[
\frac{\partial I}{\partial W} = \frac{1}{H^2}, \quad \frac{\partial I}{\partial H} = -\frac{2W}{H^3}
\]

BMI is one factor used to assess the risk of certain diseases such as diabetes and high blood pressure. The range 18.5 \(\leq I \leq 24.9 \) is considered normal for adults over 20 years of age.
At \((W, H) = (40, 1.45)\), we have
\[\frac{\partial I}{\partial W} \bigg|_{(40, 1.45)} \approx 0.48, \quad \frac{\partial I}{\partial H} \bigg|_{(40, 1.45)} \approx -26.24 \]

Step 2. Estimate the change.

If \((W, H)\) changes from \((40, 1.45)\) to \((41.5, 1.47)\), then
\[
\Delta W = 41.5 - 40 = 1.5, \quad \Delta H = 1.47 - 1.45 = 0.02
\]
Therefore, by Eq. (5),
\[
\Delta I \approx \frac{\partial I}{\partial W} \Delta W + \frac{\partial I}{\partial H} \Delta H = 0.48(1.5) - 26.24(0.02) \approx 0.2
\]
We find that BMI increases by approximately 0.2.

15.4 SUMMARY

- The linearization of \(f\) in two and three variables:
 \[L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b) \]
 \[L(x, y, z) = f(a, b, c) + f_x(a, b, c)(x - a) + f_y(a, b, c)(y - b) + f_z(a, b, c)(z - c) \]
- \(f(x, y)\) is differentiable at \((a, b)\) if \(f_x(a, b)\) and \(f_y(a, b)\) exist and
 \[f(x, y) = L(x, y) + e(x, y) \]
 where \(e(x, y)\) is a function such that
 \[\lim_{(x,y) \to (a,b)} \frac{e(x, y)}{\sqrt{(x-a)^2 + (y-b)^2}} = 0 \]
- Result used in practice: If \(f_x(x, y)\) and \(f_y(x, y)\) exist and are continuous in a disk \(D\) containing \((a, b)\), then \(f(x, y)\) is differentiable at \((a, b)\).
- Equation of the tangent plane to \(z = f(x, y)\) at \((a, b)\):
 \[z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b) \]
- Linear approximation:
 \[f(a + \Delta x, b + \Delta y) \approx f(a, b) + f_x(a, b)\Delta x + f_y(a, b)\Delta y \]
 \[\Delta f \approx f_x(a, b)\Delta x + f_y(a, b)\Delta y \]
- In differential form, \(\Delta f \approx df\), where
 \[df = f_x(x, y)\, dx + f_y(x, y)\, dy = \frac{\partial f}{\partial x}\, dx + \frac{\partial f}{\partial y}\, dy \]
 \[df = f_x(x, y, z)\, dx + f_y(x, y, z)\, dy + f_z(x, y, z)\, dz = \frac{\partial f}{\partial x}\, dx + \frac{\partial f}{\partial y}\, dy + \frac{\partial f}{\partial z}\, dz \]

15.4 EXERCISES

Preliminary Questions

1. How is the linearization of \(f(x, y)\) at \((a, b)\) defined?
 In Exercises 3–5, assume that \(f(2, 3) = 8, f_x(2, 3) = 5, f_y(2, 3) = 7\)

2. Define local linearity for functions of two variables.
3. Which of (a)–(b) is the linearization of \(f \) at \((2, 3) \)?
 (a) \(L(x, y) = 8 + 5x + 7y \)
 (b) \(L(x, y) = 8 + 5(x - 2) + 7(y - 3) \)

4. Estimate \(f(2, 3.1) \).

5. Estimate \(\Delta f \) at \((2, 3) \) if \(\Delta x = -0.3 \) and \(\Delta y = 0.2 \).

6. Which theorem allows us to conclude that \(f(x, y) = x^3y^8 \) is differentiable?

Exercises

1. Use Eq. (2) to find an equation of the tangent plane to the graph of \(f(x, y) = 2x^2 - 4xy^2 \) at \((-1, 2)\).

2. Find the equation of the plane in Figure 10, which is tangent to the graph at \((x, y) = (1, 0.8)\).

FIGURE 10 Graph of \(f(x, y) = 0.2x^4 + y^6 - xy \).

In Exercises 3–10, find an equation of the tangent plane at the given point.

3. \(f(x, y) = x^2y + xy^3, \quad (2, 1) \)
4. \(f(x, y) = \frac{x}{\sqrt{y}}, \quad (4, 4) \)
5. \(f(x, y) = x^2 + y^{-2}, \quad (4, 1) \)
6. \(G(u, w) = \sin(\pi u), \quad \left(\frac{\pi}{6}, 1\right) \)
7. \(F(r, s) = r^2s^{-1/2} + s^{-3}, \quad (2, 1) \)
8. \(g(x, y) = e^{x/y}, \quad (2, 1) \)
9. \(f(x, y) = \sech(x - y), \quad (\ln 4, \ln 2) \)
10. \(f(x, y) = \ln(4x^2 - y^2), \quad (1, 1) \)

11. Find the points on the graph of \(z = 3x^2 - 4y^2 \) at which the vector \(\mathbf{n} = (3, 2, 2) \) is normal to the tangent plane.

12. Find the points on the graph of \(z = xy^3 + 8y^{-1} \) where the tangent plane is parallel to \(2x + 7y + 2z = 0 \).

13. Find the linearization \(L(x, y) \) of \(f(x, y) = x^2y^3 \) at \((a, b) = (2, 1)\). Use it to estimate \(f(2.01, 1.02) \) and \(f(1.97, 1.01) \), and compare with values obtained using a calculator.

14. Write the linear approximation to \(f(x, y) = x(1 + y)^{-1} \) at \((a, b) = (8, 1)\) in the form
 \[f(a + h, b + k) \approx f(a, b) + f_x(a, b)h + f_y(a, b)k \]
 Use it to estimate \(\frac{7.98}{2.02} \) and compare with the value obtained using a calculator.

15. Let \(f(x, y) = x^3y^{-4} \). Use Eq. (5) to estimate the change
 \[\Delta f = f(2.03, 0.9) - f(2, 1) \]

16. Use the linear approximation to \(f(x, y) = \sqrt{x+y} \) at \((9, 4)\) to estimate \(\sqrt{9.1/3.9} \).

17. Use the linear approximation of \(f(x, y) = e^{x^2+y^2} \) at \((0, 0)\) to estimate \(f(0.01, -0.02) \). Compare with the value obtained using a calculator.

18. Let \(f(x, y) = x^2/(y^2 + 1) \). Use the linear approximation at an appropriate point \((a, b)\) to estimate \(f(4.01, 0.98) \).

19. Find the linearization of \(f(x, y, z) = z\sqrt{x+y} \) at \((8, 4, 5)\).

20. Find the linearization to \(f(x, y, z) = xy/z \) at the point \((2, 1, 2)\). Use it to estimate \(f(2.05, 0.9, 2.01) \) and compare with the value obtained from a calculator.

21. Estimate \(f(2.1, 3.8) \) assuming that
 \[f(2, 4) = 5, \quad f_x(2, 4) = 0.3, \quad f_y(2, 4) = -0.2 \]

22. Estimate \(f(1.02, 0.01, -0.03) \) assuming that
 \[f(1, 0, 0) = -3, \quad f_x(1, 0, 0) = -2, \quad f_y(1, 0, 0) = 4, \quad f_z(1, 0, 0) = 2 \]

In Exercises 23–28, use the linear approximation to estimate the value. Compare with the value given by a calculator.

23. \((2.01)^3(1.02)^2 \)
24. \(\frac{4.1}{7.9} \)
25. \(\sqrt{3.01^2 + 3.99^2} \)
26. \(\frac{0.98^2}{2.01^3 + 1} \)
27. \(\sqrt{(1.9)(2.02)(4.05)} \)
28. \(\frac{8.01}{(1.99)(2.01)} \)

29. Suppose that the plane tangent to \(z = f(x, y) \) at \((-2, 3, 4)\) has equation \(4x + 2y + z = 2 \). Estimate \(f(-2.1, 3.2) \).

30. In the derivation of the equation for the tangent plane that appears in Theorem 1, we chose \(\mathbf{n} = \mathbf{v} \times \mathbf{u} \) for the normal vector to the plane. How would the choice of \(\mathbf{n} = \mathbf{u} \times \mathbf{v} \) for the normal vector have affected the resultant equation?

In Exercises 31–34, let \(I = W/H^2 \) denote the BMI described in Example 5.

31. A boy has weight \(W = 34 \) kg and height \(H = 1.3 \) m. Use the linear approximation to estimate the change in \(I \) if \((W, H)\) changes to \((36, 1.32)\).

32. Suppose that \((W, H) = (34, 1.3)\). Use the linear approximation to estimate the increase in \(H \) required to keep \(I \) constant if \(W \) increases to 35.

33. (a) Show that \(\Delta I \approx 0 \) if \(\Delta H/\Delta W \approx H/2W \).

(b) Suppose that \((W, H) = (25, 1.1)\). What increase in \(H \) will leave \(I \) (approximately) constant if \(W \) is increased by 1 kg?

34. Estimate the change in height that will decrease \(I \) by \(1 \) if \((W, H) = (25, 1.1)\), assuming that \(W \) remains constant.
35. A cylinder of radius r and height h has volume $V = \pi r^2 h$.
(a) Use the linear approximation to show that
\[
\frac{\Delta V}{V} \approx \frac{2\Delta r}{r} + \frac{\Delta h}{h}
\]
(b) Estimate the percentage increase in V if r and h are each increased by 2%.
(c) The volume of a certain cylinder V is determined by measuring r and h. Which will lead to a greater error in V: a 1% error in r or a 1% error in h?

36. Use the linear approximation to show that if $I = x^a y^b$, then
\[
\frac{\Delta I}{I} \approx a \frac{\Delta x}{x} + b \frac{\Delta y}{y}
\]

37. The monthly payment for a home loan is given by a function $f(P, r, N)$, where P is the principal (initial size of the loan), r the interest rate, and N the length of the loan in months. Interest rates are expressed as a decimal: A 6% interest rate is denoted by $r = 0.06$. If $P = $100,000, $r = 0.06$, and $N = 240$ (a 20-year loan), then the monthly payment is $f(100,000, 0.06, 240) = 716.43$. Furthermore, at these values, we have
\[
\frac{\partial f}{\partial P} = 0.0071, \quad \frac{\partial f}{\partial r} = 5769, \quad \frac{\partial f}{\partial N} = -1.5467
\]
Estimate:
(a) The change in monthly payment per $1000 increase in loan principal
(b) The change in monthly payment if the interest rate increases to $r = 6.5\%$ and $r = 7\%$
(c) The change in monthly payment if the length of the loan increases to 24 years

38. Automobile traffic passes a point P on a road of width w feet (ft) at an average rate of R vehicles per second. Although the arrival of automobiles is irregular, traffic engineers have found that the average waiting time T until there is a gap in traffic of at least t seconds is approximately $T = te^{Rt}$ seconds (s). A pedestrian walking at a speed of 3.5 ft/s (5.1 mph) requires $t = w/3.5$ s to cross the road. Therefore, the average time the pedestrian will have to wait before crossing is $f(w, R) = (w/3.5)e^{W/3.5}$.
(a) What is the pedestrian’s average waiting time if $w = 25$ ft and $R = 0.2$ vehicle per second?
(b) Use the linear approximation to estimate the increase in waiting time if w is increased to 27 ft.
(c) Estimate the waiting time if the width is increased to 27 ft and R decreases to 0.18.
(d) What is the rate of increase in waiting time per 1-ft increase in width when $w = 30$ ft and $R = 0.3$ vehicle per second?

39. The volume V of a right-circular cylinder is computed using the values 3.5 m for diameter and 6.2 m for height. Use the linear approximation to estimate the maximum error in V if each of these values has a possible error of at most 5%. Recall that $V = \pi r^2 h$.

Further Insights and Challenges

40. Show that if $f(x, y)$ is differentiable at (a, b), then the function of one variable $f(x, b)$ is differentiable at $x = a$. Use this to prove that $f(x, y) = \sqrt{x^2 + y^2}$ is not differentiable at $(0, 0)$.

41. This exercise shows directly (without using Theorem 2) that the function $f(x, y) = 5x + 4y^2$ from Example 1 is locally linear at $(a, b) = (2, 1)$.
(a) Show that $f(x, y) = L(x, y) + e(x, y)$ with $e(x, y) = 4(y - 1)^2$.
(b) Show that $e(x, y) = 4(y - 1)^2$.
(c) Verify that $f(x, y)$ is locally linear.

42. Show directly, as in Exercise 41, that $f(x, y) = xy^2$ is differentiable at $(0, 2)$.

43. Differentiability Implies Continuity Use the definition of differentiability to prove that if f is differentiable at (a, b), then f is continuous at (a, b).

44. Let $f(x)$ be a function of one variable defined near $x = a$. Given a number M, set
\[
L(x) = f(a) + M(x - a), \quad e(x) = f(x) - L(x)
\]
Thus, $f(x) = L(x) + e(x)$. We say that f is locally linear at $x = a$ if M can be chosen so that $\lim_{x \to a} \frac{e(x)}{|x - a|} = 0$.
(a) Show that if $f(x)$ is differentiable at $x = a$, then $f(x)$ is locally linear with $M = f'(a)$.
(b) Show conversely that if f is locally linear at $x = a$, then $f(x)$ is differentiable and $M = f'(a)$.

45. Assumptions Matter Define $g(x, y) = 2xy(x + y)/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$ and $g(0, 0) = 0$. In this exercise, we show that $g(x, y)$ is continuous at $(0, 0)$ and that $g_x(0, 0)$ and $g_y(0, 0)$ exist, but $g(x, y)$ is not differentiable at $(0, 0)$.
(a) Show using polar coordinates that $g(x, y)$ is continuous at $(0, 0)$.
(b) Use the limit definitions to show that $g_x(0, 0)$ and $g_y(0, 0)$ exist and that both are equal to zero.
(c) Show that the linearization of $g(x, y)$ at $(0, 0)$ is $L(x, y) = 0$.
(d) Show that if $g(x, y)$ were locally linear at $(0, 0)$, we would have $\lim_{h \to 0} \frac{g(h, h)}{h} = 0$. Then observe that this is not the case because $g(h, h) = 2h$. This shows that $g(x, y)$ is not locally linear at $(0, 0)$ and hence not differentiable at $(0, 0)$.

15.5 The Gradient and Directional Derivatives

We have seen that the rate of change of a function f of several variables depends on a choice of direction. Since directions are indicated by vectors, it is natural to use vectors to describe the derivative of f in a specified direction.

To do this, we introduce the gradient ∇f_P, which is the vector whose components are the partial derivatives of f at P.
The gradient of a function of \(n \) variables is the vector
\[
\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right)
\]
Initially, we can think of it as a convenient method for keeping track of the collection of first partial derivatives. We will soon see, though, it is much more than just that.

The symbol \(\nabla \), called “del,” is an upside-down Greek delta. It was popularized by the Scottish physicist P. G. Tait (1831–1901), who called the symbol “nabla,” because of its resemblance to an ancient Assyrian harp. The great physicist James Clerk Maxwell was reluctant to adopt this term and would refer to the gradient simply as the “slope.” He wrote jokingly to his friend Tait in 1871, “Still harping on that nabla?”

Example 1

Let \(f(x, y) = x^2 + y^2 \). Calculate the gradient \(\nabla f \), draw several gradient vectors, and compute \(\nabla f_P \) at \(P = (1, 1) \).

Solution

The partial derivatives are
\[
\frac{\partial f}{\partial x} = 2x, \quad \frac{\partial f}{\partial y} = 2y
\]
Therefore, \(\nabla f = (2x, 2y) \).

The gradient attaches the vector \((2x, 2y) \) to the point \((x, y) \). As we see in Figure 1, these vectors point away from the origin. At the particular point \((1, 1) \),
\[
\nabla f = \nabla f(1, 1) = (2, 2)
\]

Example 2

Calculate \(\nabla f(3, -2, 4) \), where
\[
f(x, y, z) = ze^{2x+3y}
\]

Solution

The partial derivatives and the gradient are
\[
\frac{\partial f}{\partial x} = 2ze^{2x+3y}, \quad \frac{\partial f}{\partial y} = 3ze^{2x+3y}, \quad \frac{\partial f}{\partial z} = e^{2x+3y}
\]
Therefore, \(\nabla f(3, -2, 4) = (2ze^{2x+3y}, 3ze^{2x+3y}, e^{2x+3y}) = (8, 12, 1) \).

The following theorem lists some useful properties of the gradient. The proofs are left as exercises (see Exercises 64–66).

Theorem 1 Properties of the Gradient

If \(f(x, y, z) \) and \(g(x, y, z) \) are differentiable and \(c \) is a constant, then

(i) \(\nabla (f + g) = \nabla f + \nabla g \)

(ii) \(\nabla (cf) = c \nabla f \)

(iii) **Product Rule for Gradients:** \(\nabla (fg) = f \nabla g + g \nabla f \)

(iv) **Chain Rule for Gradients:** If \(F(t) \) is a differentiable function of one variable, then
\[\nabla (F(f(x, y, z))) = F'(f(x, y, z)) \nabla f \]
Note that ∇f is behaving just as we would expect a derivative to behave.

Example 3 Using the Chain Rule for Gradients Find the gradient of

$$g(x, y, z) = (x^2 + y^2 + z^2)^8$$

Solution The function g is a composite $g(x, y, z) = F(f(x, y, z))$ with $F(t) = t^8$ and $f(x, y, z) = x^2 + y^2 + z^2$. Apply Eq. (1):

$$\nabla g = \nabla ((x^2 + y^2 + z^2)^8) = 8(x^2 + y^2 + z^2)^7(2x, 2y, 2z)$$

$$= 16(x^2 + y^2 + z^2)^7(x, y, z)$$

The Chain Rule for Paths

Our first application of the gradient is the Chain Rule for Paths. In Chapter 14, we represented a path in \mathbb{R}^3 by a vector-valued function $\mathbf{r}(t) = (x(t), y(t), z(t))$. When there is no harm in doing so, we will sometimes think of $\mathbf{r}(t)$ as the path of endpoints of the vectors, rather than as the path of vectors themselves (Figure 2). Thus, we might write $\mathbf{r}(t) = (x(t), y(t), z(t))$ rather than $\mathbf{r}(t) = (x(t), y(t), z(t))$.

By definition, $\mathbf{r}'(t)$ is the vector of derivatives as before:

$$\mathbf{r}'(t) = (x'(t), y'(t), z'(t))$$

Recall from Section 14.2 that $\mathbf{r}'(t)$ is the tangent or “velocity” vector that is tangent to the path and points in the direction of motion. We use similar notation for paths in \mathbb{R}^2.

The Chain Rule for Paths deals with composite functions of the type $f(\mathbf{r}(t))$. What is the idea behind a composite function of this type? As an example, suppose that $T(x, y)$ is the temperature at location (x, y) (Figure 3). Now imagine a bike—we’ll call her Alexa—riding along a path $\mathbf{r}(t)$. We suppose that Alexa carries a thermometer with her and checks it as she rides. Her location at time t is $\mathbf{r}(t)$, so her temperature reading at time t is the composite function

$$T(\mathbf{r}(t)) = \text{Alexa’s temperature at time } t$$

The temperature reading varies as Alexa’s location changes, and the rate at which it changes is the derivative

$$\frac{d}{dt} T(\mathbf{r}(t))$$

The Chain Rule for Paths tells us that this derivative is simply the dot product of the temperature gradient ∇T evaluated at $\mathbf{r}(t)$ and Alexa’s velocity vector $\mathbf{r}'(t)$.

Theorem 2 Chain Rule for Paths If f and $\mathbf{r}(t)$ are differentiable, then

$$\frac{d}{dt} f(\mathbf{r}(t)) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$$

Explicitly, in the case of three variables, if $\mathbf{r}(t) = (x(t), y(t), z(t))$, then

$$\frac{d}{dt} f(\mathbf{r}(t)) = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \end{bmatrix} \cdot (x'(t), y'(t), z'(t)) = \frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt}$$

Proof By definition,

$$\frac{d}{dt} f(\mathbf{r}(t)) = \lim_{h \to 0} \frac{f(x(t + h), y(t + h)) - f(x(t), y(t))}{h}$$
To calculate this derivative, set
\[
\Delta f = f(x(t + h), y(t + h)) - f(x(t), y(t))
\]
\[
\Delta x = x(t + h) - x(t), \quad \Delta y = y(t + h) - y(t)
\]
The proof is based on the local linearity of \(f \). As in Section 15.4, we write
\[
\Delta f = f_x(x(t), y(t))\Delta x + f_y(x(t), y(t))\Delta y + e(x(t + h), y(t + h))
\]
Now set \(h = \Delta t \) and divide by \(\Delta t \):
\[
\frac{\Delta f}{\Delta t} = f_x(x(t), y(t))\frac{\Delta x}{\Delta t} + f_y(x(t), y(t))\frac{\Delta y}{\Delta t} + \frac{e(x(t + \Delta t), y(t + \Delta t))}{\Delta t}
\]
Suppose for a moment that the last term tends to zero as \(\Delta t \to 0 \). Then we obtain the desired result:
\[
\frac{df}{dt}(r(t)) = \lim_{\Delta t \to 0} \frac{\Delta f}{\Delta t}
\]
\[
= f_x(x(t), y(t)) \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} + f_y(x(t), y(t)) \lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t}
\]
\[
= f_x(x(t), y(t)) \frac{dx}{dt} + f_y(x(t), y(t)) \frac{dy}{dt}
\]
\[
= \nabla f(r(t)) \cdot r'(t)
\]
We verify that the last term tends to zero as follows:
\[
\lim_{\Delta t \to 0} \frac{e(x(t + \Delta t), y(t + \Delta t))}{\Delta t} = \lim_{\Delta t \to 0} \frac{e(x(t + \Delta t), y(t + \Delta t))}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} \left(\frac{(\Delta x)^2 + (\Delta y)^2}{\Delta t} \right)
\]
\[
= \left(\lim_{\Delta t \to 0} \frac{e(x(t + \Delta t), y(t + \Delta t))}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} \right) \lim_{\Delta t \to 0} \left(\frac{(\Delta x)^2 + (\Delta y)^2}{\Delta t} \right) = 0
\]
The first limit is zero because a differentiable function is locally linear (Section 15.4). The second limit is equal to \(\sqrt{x'(t)^2 + y'(t)^2} \), so the product is zero.

Example 4 The temperature at location \((x, y)\) is \(T(x, y) = 20 + 10e^{-0.3(x^2+y^2)} \) °C.

A bug carries a tiny thermometer along the path
\[r(t) = (\cos(t - 2), \sin 2t) \]
\((t \text{ in seconds}) \) as in Figure 4. How fast is the temperature changing at \(t = 0.6 \) s?

Solution At \(t = 0.6 \) s, the bug is at location
\[r(0.6) = (\cos(-1.4), \sin 0.6) \approx (0.170, 0.932) \]
By the Chain Rule for Paths, the rate of change of temperature is the dot product
\[
\left. \frac{dT}{dt} \right|_{t=0.6} = \nabla T_{r(0.6)} \cdot r'(0.6)
\]
We compute the vectors
\[
\nabla T = \begin{bmatrix} -6xe^{-0.3(x^2+y^2)} \\ -6ye^{-0.3(x^2+y^2)} \end{bmatrix}
\]
\[
r'(t) = (-\sin(t - 2), 2 \cos 2t)
\]
and evaluate at \(r(0.6) = (0.170, 0.932) \) using a calculator:
\[
\nabla T_{r(0.6)} \approx (-0.779, -4.272)
\]
\[
r'(0.6) \approx (0.985, 0.725)
\]
Therefore, the rate of change is

\[
\frac{dT}{dt} \bigg|_{t=0.6} = \nabla T_{r(0.6)} \cdot \mathbf{r}'(t) \approx \langle -0.779, -4.272 \rangle \cdot \langle 0.985, 0.725 \rangle \approx -3.87 \text{C/s}
\]

In the next example, we apply the Chain Rule for Paths to a function of three variables. In general, if \(f(x_1, \ldots, x_n) \) is a differentiable function of \(n \) variables and \(\mathbf{r}(t) = (x_1(t), \ldots, x_n(t)) \) is a differentiable path, then

\[
\frac{d}{dt} f(\mathbf{r}(t)) = \nabla f \cdot \mathbf{r}'(t) = \sum \frac{\partial f}{\partial x_i} \frac{dx_i}{dt}
\]

EXAMPLE 5 Calculate \(\frac{d}{dt} f(\mathbf{r}(t)) \bigg|_{t=\pi/2} \), where \(f(x, y, z) = xy + z^2 \) and \(\mathbf{r}(t) = (\cos t, \sin t, t) \)

Solution We have \(\mathbf{r}(\pi/2) = (0, 1, \pi/2) \). Compute the gradient:

\[
\nabla f = \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \rangle = \langle y, x, 2z \rangle, \quad \nabla f_{r(\pi/2)} = \nabla f \left(0, 1, \frac{\pi}{2} \right) = \langle 1, 0, \pi \rangle
\]

Then compute the tangent vector:

\[
\mathbf{r}'(t) = (-\sin t, \cos t, 1), \quad \mathbf{r}' \left(\frac{\pi}{2} \right) = (-\sin \frac{\pi}{2}, \cos \frac{\pi}{2}, 1) = (-1, 0, 1)
\]

By the Chain Rule,

\[
\left. \frac{d}{dt} f(\mathbf{r}(t)) \right|_{t=\pi/2} = \nabla f_{r(\pi/2)} \cdot \mathbf{r}' \left(\frac{\pi}{2} \right) = \langle 1, 0, \pi \rangle \cdot (-1, 0, 1) = \pi - 1
\]

Directional Derivatives

We come now to one of the most important applications of the Chain Rule for Paths. Consider a line through a point \(P = (a, b) \) in the direction of a unit vector \(\mathbf{u} = (h, k) \) (see Figure 5):

\[
\mathbf{r}(t) = (a + th, b + tk)
\]

The derivative of \(f(\mathbf{r}(t)) \) at \(t = 0 \) is called the **directional derivative of** \(f \) **with respect to** \(\mathbf{u} \) **at** \(P \), and is denoted \(D_uf(\mathbf{P}) \) or \(D_uf(a, b) \):

\[
D_uf(a, b) = \left. \frac{d}{dt} f(\mathbf{r}(t)) \right|_{t=0} = \lim_{t \to 0} \frac{f(a + th, b + tk) - f(a, b)}{t}
\]

Directional derivatives of functions of three or more variables are defined in a similar way.

DEFINITION Directional Derivative The directional derivative in the direction of a unit vector \(\mathbf{u} = (h, k) \) is the limit (assuming it exists)

\[
D_uf(\mathbf{P}) = D_uf(a, b) = \lim_{t \to 0} \frac{f(a + th, b + tk) - f(a, b)}{t}
\]

Note that the partial derivatives are the directional derivatives with respect to the standard unit vectors \(\mathbf{i} = (1, 0) \) and \(\mathbf{j} = (0, 1) \). For example,

\[
D_i f(a, b) = \lim_{t \to 0} \frac{f(a + t(1), b + t(0)) - f(a, b)}{t} = \lim_{t \to 0} \frac{f(a + t, b) - f(a, b)}{t} = f_x(a, b)
\]

FIGURE 5 The directional derivative \(D_uf(a, b) \) is the rate of change of \(f \) along the linear path through \(P \) with direction vector \(\mathbf{u} = (h, k) \).
Thus, we have

\[f_x(a, b) = D_i f(a, b), \quad f_y(a, b) = D_j f(a, b) \]

CONCEPTUAL INSIGHT The directional derivative \(D_u f(P) \) is the rate of change of \(f \) per unit change in the horizontal direction of \(u \) at \(P \) (Figure 6). This is the slope of the tangent line at \(Q \) to the trace curve obtained when we intersect the graph with the vertical plane through \(P \) in the direction \(u \).

![Figure 6](image)

To compute the directional derivative, we set \(r(t) = (a + th, b + tk) \). Then \(D_u f(a, b) \) is the derivative at \(t = 0 \) of the composite function \(f(r(t)) \), and we can evaluate it using the Chain Rule for Paths. We have \(r'(t) = (h, k) = u \), so

\[D_u f(a, b) = \nabla f(a, b) \cdot r'(0) = \nabla f(a, b) \cdot u \]

This yields the basic formula

\[D_u f(a, b) = \nabla f(a, b) \cdot u \]

Similarly, in three variables, \(D_u f(a, b, c) = \nabla f(a, b, c) \cdot u \).

THEOREM 3 Computing the Directional Derivative If \(u \) is a unit vector, then the directional derivative in the direction of \(u \) is given by

\[D_u f(P) = \nabla f_P \cdot u \]

EXAMPLE 6 Let \(f(x, y) = xe^y \), \(P = (2, -1) \), and \(v = (2, 3) \). Calculate the directional derivative in the direction of \(v \).

Solution First note that \(v \) is NOT a unit vector. So, we first replace it with the vector

\[u = \frac{v}{\|v\|} = \frac{(2, 3)}{\sqrt{13}} = \left(\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right) \]

Then compute the gradient at \(P = (2, -1) \):

\[\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right) = (e^y, xe^y) \Rightarrow \nabla f_P = \nabla f(2, -1) = \left(e^{-1}, 2e^{-1} \right) \]

Next use Theorem 3:

\[D_u f(P) = \nabla f_P \cdot u = \left(e^{-1}, 2e^{-1} \right) \cdot \left(\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}} \right) = \frac{8e^{-1}}{\sqrt{13}} \approx 0.82. \]

This means that if we think of this function as representing a mountain, then at coordinate \((x, y) = (2, -1)\), we should expect that if we head 1 unit in the direction of vector \(v \), we would have to step up in the vertical direction by approximately 0.82 units.
EXAMPLE 7 Find the rate of change of pressure at the point \(Q = (1, 2, 1) \) in the
direction of \(v = (0, 1, 1) \), assuming that the pressure (in millibars) is given by
\[
f(x, y, z) = 1000 + 0.01(yz^2 + x^2z - xy^2) \\
(x, y, z \text{ in kilometers})
\]

Solution First compute the gradient at \(Q = (1, 2, 1) \):
\[
\nabla f = 0.01 \begin{pmatrix} 2xz - y^2, z^2 - 2xy, 2yz + x^2 \end{pmatrix}
\]
\[
\nabla f_Q = \nabla f_{(1,2,1)} = (-0.02, -0.03, 0.05)
\]
Then we replace \(v \) with a unit vector \(u \) in the same direction:
\[
\u = \frac{v}{\|v\|} = \begin{pmatrix} 0, 1/\sqrt{2}, 1/\sqrt{2} \end{pmatrix}
\]
Next
\[
D_u f(Q) = \nabla f_Q \cdot u = (-0.02, -0.03, 0.05) \cdot \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \approx 0.014 \text{ millibars/km}
\]
Thus, we expect that as we move in the direction of \(v \) from \(Q \), the pressure should
increase by about 0.014 millibars/km.

Properties of the Gradient
We are now in a position to draw some interesting and important conclusions about the
gradient. First, suppose that \(\nabla f_P \neq 0 \) and let \(u \) be a unit vector (Figure 7). By the properties
of the dot product,
\[
D_u f(P) = \nabla f_P \cdot u = \| \nabla f_P \| \cos \theta
\]
where \(\theta \) is the angle between \(\nabla f_P \) and \(u \). In other words, the rate of change in a given
direction varies with the cosine of the angle \(\theta \) between the gradient and the direction.

Because the cosine takes values between \(-1\) and \(1\), we have
\[
-\| \nabla f_P \| \leq D_u f(P) \leq \| \nabla f_P \|
\]
Since \(\cos 0 = 1 \), the maximum value of \(D_u f(P) \) occurs for \(\theta = 0 \)—that is, when \(u \) points
in the direction of \(\nabla f_P \). In other words the gradient vector points in the direction of the
maximum rate of increase, and this maximum rate is \(\| \nabla f_P \| \). Similarly, \(f \) decreases
most rapidly in the opposite direction, \(-\nabla f_P \), because \(\cos \theta = -1 \) for \(\theta = \pi \). The rate of
maximum decrease is \(-\| \nabla f_P \| \). The directional derivative is zero in directions orthogonal
to the gradient because \(\cos \frac{\pi}{2} = 0 \).

In the earlier scenario where the biker Alexa rides along a path (Figure 8), the
temperature \(T \) changes at a rate that depends on the cosine of the angle \(\theta \) between \(\nabla T \) and
the direction of motion.
Another key property is that gradient vectors are normal to level curves (Figure 9). To prove this, suppose that \(P \) lies on the level curve \(f(x, y) = k \). We parametrize this level curve by a path \(\mathbf{r}(t) \) such that \(\mathbf{r}(0) = P \) and \(\mathbf{r}'(0) \neq 0 \) (this is possible whenever \(\nabla f_P \neq 0 \)). Then \(f(\mathbf{r}(t)) = k \) for all \(t \), so by the Chain Rule,

\[
\nabla f_P \cdot \mathbf{r}'(0) = \left. \frac{d}{dt} f(\mathbf{r}(t)) \right|_{t=0} = \frac{d}{dt} k = 0
\]

This proves that \(\nabla f_P \) is orthogonal to \(\mathbf{r}'(0) \), and since \(\mathbf{r}'(0) \) is tangent to the level curve, we conclude that \(\nabla f_P \) is normal to the level curve (Figure 9). We encapsulate these remarks in the following theorem.

Theorem 4 Interpretation of the Gradient Assume that \(\nabla f_P \neq 0 \). Let \(\mathbf{u} \) be a unit vector making an angle \(\theta \) with \(\nabla f_P \).

\[
D_\mathbf{u} f(P) = \|\nabla f_P\| \cos \theta
\]

- \(\nabla f_P \) points in the direction of maximum rate of increase of \(f \) at \(P \).
- \(-\nabla f_P \) points in the direction of maximum rate of decrease at \(P \).
- \(\nabla f_P \) is normal to the level curve (or surface) of \(f \) at \(P \).
- \(\|\nabla f_P\| \) yields the maximum slope of a tangent line to the surface given by \(z = f(x, y) \) at \((P, f(P))\).

Graphical Insight At each point \(P \), there is a unique direction in which \(f(x, y) \) increases most rapidly (per unit distance). Theorem 4 tells us that this direction of fastest increase is perpendicular to the level curves and that it is specified by the gradient vector (Figure 9). For most functions, however, the direction of maximum rate of increase varies from point to point.

Example 8 Let \(f(x, y) = x^4y^{-2} \) and \(P = (2, 1) \). Find the unit vector that points in the direction of maximum rate of increase at \(P \) and determine that maximum rate.

Solution The gradient points in the direction of maximum rate of increase, so we evaluate the gradient at \(P \):

\[
\nabla f = \left(4x^3y^{-2}, -2x^4y^{-3} \right), \quad \nabla f_{(2,1)} = (32, -32)
\]

The unit vector in this direction is

\[
\mathbf{u} = \frac{(32, -32)}{\| (32, -32) \|} = \frac{(32, -32)}{32\sqrt{2}} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)
\]

The maximum rate, which is the rate in this direction, is given by

\[
\| \nabla f_{(2,1)} \| = \sqrt{(32)^2 + (-32)^2} = 32\sqrt{2}
\]

Example 9 Draw the contour map and gradient vectors at various points in the plane corresponding to the function \(f(x, y) = y^2 - x^2 \).

Solution The equation \(z = y^2 - x^2 \) yields a saddle, or, as we have called it, a hyperbolic paraboloid. We can set \(z \) equal to various values, and determine the level curves and contour map as appears in Figure 10. At each point on any given level curve, the gradient vector must point in the horizontal direction that yields the steepest increase on the saddle. This will always be perpendicular to the level curve, since in the direction of the level curve, the altitude does not change. Thus, we get a picture as in Figure 10. If we were actually on the saddle, each gradient vector tells us the horizontal direction we should head in to go most steeply up the saddle surface. Note that at \((0, 0)\) the gradient vector is the zero vector, since the tangent plane to the saddle at that point is horizontal, and there is no direction that would correspond to the steepest ascent on the surface.
CHAPTER 15 DIFFERENTIATION IN SEVERAL VARIABLES

\[z = 1 \]
\[z = 1 \]
\[z = 2 \]
\[z = 1 \]
\[z = 2 \]
\[z = 0 \]
\[z = 2 \]
\[z = 2 \]
\[z = 0 \]
\[x \]
\[y \]

Example 10 The altitude of a mountain at \((x, y)\) is

\[f(x, y) = 2500 + 100(x + y^2)e^{-0.3y^2} \]

where \(x, y\) are in units of 100 m.

(a) Find the directional derivative of \(f\) at \(P = (-1, -1)\) in the direction of unit vector \(u\) making an angle of \(\theta = \frac{\pi}{4}\) with the gradient (Figure 11).

(b) What is the interpretation of this derivative?

Solution First compute \(\|\nabla f_P\|\):

\[f_x(x, y) = 100e^{-0.3y^2}, \quad f_y(x, y) = 100y(2 - 0.6x - 0.6y^2)e^{-0.3y^2} \]

\[f_x(-1, -1) = 100e^{-0.3} \approx 74, \quad f_y(-1, -1) = -200e^{-0.3} \approx -148 \]

Hence, \(\nabla f_P \approx (74, -148)\) and

\[\|\nabla f_P\| \approx \sqrt{74^2 + (-148)^2} \approx 165.5 \]

Apply Eq. (5) with \(\theta = \pi/4\):

\[D_u f(P) = \|\nabla f_P\| \cos \theta \approx 165.5 \left(\frac{\sqrt{2}}{2}\right) \approx 117 \]

Recall that \(x\) and \(y\) are measured in units of 100 m. Therefore, the interpretation is the following: If you stand on the mountain at the point lying above \((-1, -1)\) and begin climbing so that your horizontal displacement is in the direction of \(u\), then your altitude increases at a rate of 117 m per 100 m of horizontal displacement, or 1.17 m per meter of horizontal displacement.

CONCEPTUAL INSIGHT The directional derivative is related to the angle of inclination \(\psi\) in Figure 12. Think of the graph of \(z = f(x, y)\) as a mountain lying over the \(xy\)-plane. Let \(Q\) be the point on the mountain lying above a point \(P = (a, b)\) in the \(xy\)-plane. If you start moving up the mountain so that your horizontal displacement is in the direction of \(u\), then you will actually be moving up the mountain at an angle of inclination \(\psi\) defined by

\[\tan \psi = D_u f(P) \]

The steepest direction up the mountain is the direction for which the horizontal displacement is in the direction of \(\nabla f_P\).

Example 11 Angle of Inclination You are standing on the side of a mountain in the shape \(z = f(x, y)\), at a point \(Q = (a, b, f(a, b))\), where \(\nabla f(a, b) = (0.4, 0.02)\). Find the angle of inclination in a direction making an angle of \(\theta = \frac{\pi}{4}\) with the gradient.
Another use of the gradient is in finding normal vectors on a surface with equation \(F(x, y, z) = k \), where \(k \) is a constant.

THEOREM 5 Gradient as a Normal Vector
Let \(P = (a, b, c) \) be a point on the surface given by \(F(x, y, z) = k \) and assume that \(\nabla F_P \neq 0 \). Then \(\nabla F_P \) is a vector normal to the tangent plane to the surface at \(P \). Moreover, the tangent plane to the surface at \(P \) has equation

\[
F_x(a, b, c)(x - a) + F_y(a, b, c)(y - b) + F_z(a, b, c)(z - c) = 0
\]

Proof
Let \(\mathbf{r}(t) \) be any path on the surface such that \(\mathbf{r}(0) = P \) and \(\mathbf{r}'(0) \neq 0 \). Then \(F(\mathbf{r}(t)) = k \) since all points on the curve must satisfy the equation \(F(x, y, z) = k \). Differentiating both sides of this equation and applying the Chain Rule for Paths, we have

\[
\nabla F_P \cdot \mathbf{r}'(0) = 0
\]

Hence, \(\nabla F_P \) is perpendicular to \(\mathbf{r}'(0) \), which we know to be tangent to the curve given by \(\mathbf{r}(t) \) at \(P \) and thus tangent to the surface at \(P \). However, we can take \(\mathbf{r}(t) \) to pass through \(P \) from any direction, as in Figure 13, and hence, \(\nabla F_P \) must be perpendicular to tangent vectors pointing in any direction, and therefore perpendicular to the entire tangent plane at \(P \).

Since \(\nabla F_P = [F_x(a, b, c), F_y(a, b, c), F_z(a, b, c)] \) is a normal vector to the tangent plane and \((a, b, c) \) is a point on the plane, an equation of the tangent plane is given by

\[
F_x(a, b, c)(x - a) + F_y(a, b, c)(y - b) + F_z(a, b, c)(z - c) = 0
\]

EXAMPLE 12 Normal Vector and Tangent Plane
Find an equation of the tangent plane to the surface \(4x^2 + 9y^2 - z^2 = 16 \) at \(P = (2, 1, 3) \).

Solution
Let \(F(x, y, z) = 4x^2 + 9y^2 - z^2 \). Then

\[
\nabla F = (8x, 18y, -2z), \quad \nabla F_P = \nabla F_{(2,1,3)} = (16, 18, -6)
\]

The vector \((16, 18, -6) \) is normal to the surface \(F(x, y, z) = 16 \) (Figure 14), so the tangent plane at \(P \) has equation

\[
16(x - 2) + 18(y - 1) - 6(z - 3) = 0 \quad \text{or} \quad 16x + 18y - 6z = 32
\]
Notice how this equation for the tangent plane relates to Eq. (2) of Section 15.4, where we found the equation for the tangent plane to a surface given by $z = f(x, y)$ at a point $(a, b, f(a, b))$ to be given by

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

If we want to apply our new formula for the tangent plane to this situation, we must take $F(x, y, z) = f(x, y) - z = 0$. Then note that $F_x = f_x, F_y = f_y$ and $F_z = -1$. Hence, our new formula yields

$$f_x(a, b)(x - a) + f_y(a, b)(y - b) + (-1)(z - c) = 0$$

where $c = f(a, b)$. This agrees exactly with Eq. (2) from Section 15.4.

15.5 SUMMARY

- The gradient of a function f is the vector of partial derivatives:

 $$\nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} \quad \text{or} \quad \nabla f = \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{pmatrix}$$

- Chain Rule for Paths:

 $$\frac{d}{dt} f(r(t)) = \nabla f_{r(t)} \cdot r'(t)$$

- For u a unit vector, D_uf is called the directional derivative.

- Directional derivative with respect to $u = \langle h, k \rangle$:

 $$D_uf(a, b) = \lim_{t \to 0} \frac{f(a + th, b + tk) - f(a, b)}{t}$$

This definition extends to three or more variables.

- Formula for the directional derivative with respect to u: $D_uf(a, b) = \nabla f_{(a, b)} \cdot u$.

- Basic geometric properties of the gradient (assume $\nabla f \neq 0$):
 - ∇f_P points in the direction of maximum rate of increase. The maximum rate of increase is $||\nabla f_P||$.
 - $-\nabla f_P$ points in the direction of maximum rate of decrease. The maximum rate of decrease is $-||\nabla f_P||$.
 - ∇f_P is orthogonal to the level curve (or surface) through P.

- Equation of the tangent plane to the level surface $F(x, y, z) = k$ at $P = (a, b, c)$:

 $$\nabla F_P \cdot (x - a, y - b, z - c) = 0$$

 $$F_x(a, b, c)(x - a) + F_y(a, b, c)(y - b) + F_z(a, b, c)(z - c) = 0$$

15.5 EXERCISES

Preliminary Questions

1. Which of the following is a possible value of the gradient ∇f of a function $f(x, y)$ of two variables?
 (a) 5 (b) $(3, 4)$ (c) $(3, 4, 5)$

2. True or false? A differentiable function increases at the rate $||\nabla f_P||$ in the direction of ∇f_P.

3. Describe the two main geometric properties of the gradient ∇f.

4. You are standing at a point where the temperature gradient vector is pointing in the northeast (NE) direction. In which direction(s) should you walk to avoid a change in temperature?
 (a) NE (b) NW (c) SE (d) SW

5. What is the rate of change of $f(x, y)$ at $(0, 0)$ in the direction making an angle of 45° with the x-axis if $\nabla f(0, 0) = (2, 4)$?
Exercises

1. Let \(f(x, y) = xy^2 \) and \(\mathbf{r}(t) = \left(\frac{1}{2} t^2, t^3 \right) \).
 (a) Calculate \(\nabla f \) and \(\mathbf{r}'(t) \).
 (b) Use the Chain Rule for Paths to evaluate \(\frac{df}{dt} (\mathbf{r}(t)) \) at \(t = 1 \) and \(t = -1 \).

2. Let \(f(x, y) = e^{xy} \) and \(\mathbf{r}(t) = \left(t^3, 1 + t \right) \).
 (a) Calculate \(\nabla f \) and \(\mathbf{r}'(t) \).
 (b) Use the Chain Rule for Paths to calculate \(\frac{df}{dt} (\mathbf{r}(t)) \).
 (c) Write out the composite \(f(\mathbf{r}(t)) \) as a function of \(t \) and differentiate. Check that the result agrees with part (b).

3. Figure 15 shows the level curves of a function \(f(x, y) \) and a path \(\mathbf{r}(t) \), traversed in the direction indicated. State whether the derivative \(\frac{d}{dt} f(\mathbf{r}(t)) \) is positive, negative, or zero at points A–D.

4. Let \(f(x, y) = x^2 + y^2 \) and \(\mathbf{r}(t) = (\cos t, \sin t) \).
 (a) Find \(\frac{df}{dt} (\mathbf{r}(t)) \) without making any calculations. Explain.
 (b) Verify your answer to (a) using the Chain Rule.

In Exercises 5–8, calculate the gradient.

5. \(f(x, y) = \cos (x^2 + y) \)
6. \(g(x, y) = \frac{x}{\sqrt{x^2 + y^2}} \)
7. \(h(x, y, z) = xyz^{-3} \)
8. \(r(x, y, z, u) = xze^{yw} \)

In Exercises 9–20, use the Chain Rule to calculate \(\frac{df}{dt} (\mathbf{r}(t)) \).

9. \(f(x, y) = 3x - 7y, \quad \mathbf{r}(t) = (\cos t, \sin t), \quad t = 0 \)
10. \(f(x, y) = 3x - 7y, \quad \mathbf{r}(t) = \left(t^2, t^3 \right), \quad t = 2 \)
11. \(f(x, y) = x^2 - 3xy, \quad \mathbf{r}(t) = (\cos t, \sin t), \quad t = 0 \)
12. \(f(x, y) = x^2 - 3xy, \quad \mathbf{r}(t) = (\cos t, \sin t), \quad t = \frac{\pi}{2} \)
13. \(f(x, y) = \sin(xy), \quad \mathbf{r}(t) = \left(e^{2t}, e^{3t} \right), \quad t = 0 \)
14. \(f(x, y) = \cos(y-x), \quad \mathbf{r}(t) = \left(e^t, e^{2t} \right), \quad t = \ln 3 \)
15. \(f(x, y) = x - xy, \quad \mathbf{r}(t) = \left(t^2, t^2 - 4t \right), \quad t = 4 \)
16. \(f(x, y) = xe^y, \quad \mathbf{r}(t) = \left(t^2, t^2 - 4t \right), \quad t = 0 \)
17. \(f(x, y) = \ln x + \ln y, \quad \mathbf{r}(t) = \left(\cos t, t^2 \right), \quad t = \frac{\pi}{4} \)
18. \(g(x, y, z) = xye^{z^2}, \quad \mathbf{r}(t) = \left(t^2, t^3, t - 1 \right), \quad t = 1 \)
19. \(g(x, y, z) = xye^{-1}, \quad \mathbf{r}(t) = \left(t^2, t^3, t \right), \quad t = 1 \)
20. \(g(x, y, z, w) = x + 2y + 3z + 5w, \quad \mathbf{r}(t) = \left(t^2, t^3, t, t - 2 \right), \quad t = 1 \)

In Exercises 21–30, calculate the directional derivative in the direction of \(\mathbf{v} \) at the given point. Remember to normalize the direction vector.

21. \(f(x, y) = x^2 + y^3, \quad \mathbf{v} = (4, 3), \quad P = (1, 2) \)
22. \(f(x, y) = x^2y^3, \quad \mathbf{v} = i + j, \quad P = (-2, 1) \)
23. \(f(x, y) = x^2y^3, \quad \mathbf{v} = i + j, \quad P = \left(\frac{1}{6}, 3 \right) \)
24. \(f(x, y) = \sin(x - y), \quad \mathbf{v} = (1, 1), \quad P = \left(\frac{x}{2}, \frac{7}{6} \right) \)
25. \(f(x, y) = \tan^{-1}(xy), \quad \mathbf{v} = (1, 1), \quad P = (3, 4) \)
26. \(f(x, y) = e^{3y - x^2}, \quad \mathbf{v} = (12, -5), \quad P = (2, 2) \)
27. \(f(x, y) = \ln(x^2 + y^2), \quad \mathbf{v} = 3i - 2j, \quad P = (1, 0) \)
28. \(g(x, y, z) = z^2 - xy^2, \quad \mathbf{v} = (-1, 2, 2), \quad P = (2, 1, 3) \)
29. \(g(x, y, z) = xe^{-yz}, \quad \mathbf{v} = (1, 1, 1), \quad P = (1, 2, 0) \)
30. \(g(x, y, z) = x \ln(y + z), \quad \mathbf{v} = 2i - j + k, \quad P = (2, e, e) \)
31. Find the directional derivative of \(f(x, y, z) = x^2 + 4y^2 \) at the point \(P = (3, 2) \) in the direction pointing to the origin.
32. Find the directional derivative of \(f(x, y, z) = xy + z^3 \) at the point \(P = (3, -2, -1) \) in the direction pointing to the origin.
33. A bug located at \((3, 9, 4) \) begins walking in a straight line toward \((5, 7, 3) \). At what rate is the bug’s temperature changing if the temperature is \(T(x, y, z) = xe^{-xyz} \)? Units are in meters and degrees Celsius.

In Exercises 34–35, assume that the positive x-axis points East and the positive y-axis points North.

34. Suppose you are hiking on a terrain modeled by \(z = x^2 + y^2 - y \). You are at the point \((1, 2, 3) \).
 (a) Determine the slope you would encounter if you headed due East from your position. What angle of inclination does that correspond to?
 (b) Determine the slope you would encounter if you headed due North from your position. What angle of inclination does that correspond to?
 (c) Determine the slope you would encounter if you headed due Northeast from your position. What angle of inclination does that correspond to?
 (d) Determine the steepest slope you could encounter from your position.

35. Suppose you are hiking on a terrain modeled by \(z = xy + y^3 - x^2 \). You are at the point \((2, 1, -1) \).
 (a) Determine the slope you would encounter if you headed due West from your position. What angle of inclination does that correspond to?
 (b) Determine the slope you would encounter if you headed due Northwest from your position. What angle of inclination does that correspond to?
 (c) Determine the slope you would encounter if you headed due Southeast from your position. What angle of inclination does that correspond to?
(d) Determine the steepest slope you could encounter from your position, and the compass direction measured in degrees from East that you would head to realize this steepest slope.

36. The temperature at location \((x, y) \) is \(T(x, y) = 20 + 0.1(x^2 - xy) \) (degrees Celsius). Beginning at \((200, 0) \) at time \(t = 0 \) (seconds), a bug travels counterclockwise along a circle of radius 200 cm centered at the origin, at a speed of 3 cm/s. How fast is the temperature changing when the bug is at a position on the circle corresponding to an angle of \(\theta = \pi/3 \)?

37. Suppose that \(\nabla f_P = (2, -4, 4) \). Is \(f \) increasing or decreasing at \(P \) in the direction \(v = (2, 1, 3) \)?

38. Let \(f(x, y) = xe^{x^2-y} \) and \(P = (1, 1) \).
 (a) Calculate \(\| \nabla f_P \| \).
 (b) Find the rate of change of \(f \) in the direction \(\nabla f_P \).
 (c) Find the rate of change of \(f \) in the direction of a vector making an angle of 45° with \(\nabla f_P \).

39. Let \(f(x, y, z) = \sin(xy + z) \) and \(P = (0, -1, \pi) \). Calculate \(D_u f(P) \), where \(u \) is a unit vector making an angle \(\theta = 30^\circ \) with \(\nabla f_P \).

40. Let \(T(x, y) \) be the temperature at location \((x, y) \) on a thin sheet of metal. Assume that \(\nabla T = (y - 4, x + 2y) \). Let \(r(t) = \left(t^2, t\right) \) be a path on the sheet. Find the values of \(t \) such that \(\frac{d}{dt} T(r(t)) = 0 \).

41. Find a vector normal to the surface \(x^2 + y^2 - z^2 = 6 \) at \(P = (3, 1, 2) \).

42. Find a vector normal to the surface \(3z^3 + x^2y - y^2x = 1 \) at \(P = (1, -1, 1) \).

43. Find the two points on the ellipsoid \(\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{1} \) where the tangent plane is normal to \(v = (1, 1, -2) \).

In Exercises 44–47, find an equation of the tangent plane to the surface at the given point.

44. \(x^2 + 3y^2 + 4z^2 = 20 \), \(P = (2, 2, 1) \)

45. \(xz + 2x^2y + y^2z^3 = 11 \), \(P = (2, 1, 1) \)

46. \(x^2 + z^2e^{x-y} = 13 \), \(P = \left(2, 3, \frac{3}{\sqrt{e}}\right) \)

47. \(\ln[1 + 4x^2 + 9y^4] - 0.1z^2 = 0 \), \(P = (3, 1, 6.1876) \)

48. Verify what is clear from Figure 16: Every tangent plane to the cone \(x^2 + y^2 - z^2 = 0 \) passes through the origin.

Figure 16 Graph of \(x^2 + y^2 - z^2 = 0 \).
Further Insights and Challenges

67. Let \(\mathbf{u} \) be a unit vector. Show that the directional derivative \(D_\mathbf{u} f \) is equal to the component of \(\nabla f \) along \(\mathbf{u} \).

68. Let \(f(x, y) = (xy)^{1/3} \).
(a) Use the limit definition to show that \(f_x(0, 0) = f_y(0, 0) = 0 \).
(b) Use the limit definition to show that the directional derivative \(D_\mathbf{u} f(0, 0) \) does not exist for any unit vector \(\mathbf{u} \) other than \(\mathbf{i} \) and \(\mathbf{j} \).
(c) Is \(f \) differentiable at \((0, 0)\)?

69. Use the definition of differentiability to show that if \(f(x, y) \) is differentiable at \((0, 0)\) and
\[
f(0, 0) = f_x(0, 0) = f_y(0, 0) = 0
\]
then
\[
\lim_{(x,y)\to(0,0)} \frac{f(x, y)}{\sqrt{x^2 + y^2}} = 0
\]

70. This exercise shows that there exists a function that is not differentiable at \((0, 0)\) even though all directional derivatives at \((0, 0)\) exist. Define \(f(x, y) = x^2 y/(x^2 + y^2) \) for \((x, y) \neq 0\) and \(f(0, 0) = 0 \).
(a) Use the limit definition to show that \(D_\mathbf{v} f(0, 0) \) exists for all vectors \(\mathbf{v} \). Show that \(f_x(0, 0) = f_y(0, 0) = 0 \).
(b) Prove that \(f \) is not differentiable at \((0, 0)\) by showing that Eq. (8) does not hold.

71. Prove that if \(f(x, y) \) is differentiable and \(\nabla f(x, y) = \mathbf{0} \) for all \((x, y)\), then \(f \) is constant.

72. Prove the following Quotient Rule, where \(f, g \) are differentiable:
\[
\nabla \left(\frac{f}{g} \right) = \frac{g \nabla f - f \nabla g}{g^2}
\]

In Exercises 73–75, a path \(\mathbf{r}(t) = (x(t), y(t)) \) follows the gradient of a function \(f(x, y) \) if the tangent vector \(\mathbf{r}'(t) \) points in the direction of \(\nabla f \) for all \(t \). In other words, \(\mathbf{r}'(t) = k(t) \nabla f(\mathbf{r}(t)) \) for some positive function \(k(t) \). Note that in this case, \(\mathbf{r}(t) \) crosses each level curve of \(f(x, y) \) at a right angle.

73. Show that if the path \(\mathbf{r}(t) = (x(t), y(t)) \) follows the gradient of \(f(x, y) \), then
\[
y'(t) = \frac{f_x}{f_y}
\]

74. Find a path of the form \(\mathbf{r}(t) = (t, g(t)) \) passing through \((1, 2)\) that follows the gradient of \(f(x, y) = 2x^2 + 8y^2 \) (Figure 17). Hint: Use Separation of Variables.

75. CAS Find the curve \(y = g(x) \) passing through \((0, 1)\) that crosses each level curve of \(f(x, y) = y \) at a right angle. If you have a computer algebra system, graph \(y = g(x) \) together with the level curves of \(f \).

15.6 The Chain Rule

The Chain Rule for Paths that we derived in the previous section can be extended to general composite functions. Suppose, for example, that \(x, y, z \) are differentiable functions of \(s \) and \(t \)—say, \(x = x(s, t), y = y(s, t), \) and \(z = z(s, t) \). The composition
\[
f(x(s, t), y(s, t), z(s, t))
\]
is then a function of \(s \) and \(t \). We refer to \(s \) and \(t \) as the independent variables.

EXAMPLE 1 Find the composite function where \(f(x, y, z) = xy + z \) and \(x = s^2, y = st, z = t^2 \).

Solution We can keep track of which variable depends on which other variable by using a chart as in Figure 1. The composite function is given by
\[
f(x(s, t), y(s, t), z(s, t)) = xy + z = (s^2)(st) + t^2 = s^3 t + t^2
\]

The Chain Rule expresses the derivatives of \(f \) with respect to the independent variables. For example, the partial derivatives of \(f(x(s, t), y(s, t), z(s, t)) \) are
\[
\begin{align*}
\frac{\partial f}{\partial s} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \\
\frac{\partial f}{\partial t} &= \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t}
\end{align*}
\]
Note that we can recover the formula for \(\frac{\partial f}{\partial s} \) by labeling each edge in Figure 2 with the partial derivative of the top variable with respect to the bottom variable as in Figure 2. Then to obtain the formula for \(\frac{\partial f}{\partial t} \), we consider each of the paths along the edges down from \(f \) to \(s \): the first through \(x \), the second through \(y \), and the third through \(z \). Each path contributes a term to the formula. The first is the product of the partial derivatives labeling its edges, giving \(\frac{\partial f}{\partial x} \frac{\partial x}{\partial s} \). The second yields \(\frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \). And the third yields \(\frac{\partial f}{\partial z} \frac{\partial z}{\partial s} \). Thus, we obtain the formula

\[
\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s}
\]

We recover the formula for \(\frac{\partial f}{\partial t} \) in a similar manner. To prove these formulas, we observe that \(\frac{\partial f}{\partial s} \), when evaluated at a point \((s_0, t_0)\), is equal to the derivative with respect to the path

\[
r(s) = (x(s, t_0), y(s, t_0), z(s, t_0))
\]

In other words, we fix \(t = t_0 \) and take the derivative with respect to \(s \):

\[
\frac{\partial f}{\partial s}(s_0, t_0) = \frac{d}{ds} f(r(s)) \bigg|_{s=s_0}
\]

The tangent vector is

\[
r'(s) = \left(\frac{\partial x}{\partial s}(s, t_0), \frac{\partial y}{\partial s}(s, t_0), \frac{\partial z}{\partial s}(s, t_0) \right)
\]

Therefore, by the Chain Rule for Paths,

\[
\left. \frac{\partial f}{\partial s} \right|_{(s_0, t_0)} = \left. \frac{d}{ds} f(r(s)) \right|_{s=s_0} = \nabla f \cdot r'(s_0) = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s}
\]

The derivatives on the right are evaluated at \((s_0, t_0)\). This proves Eq. (2). A similar argument proves Eq. (3), as well as the general case of a function \(f(x_1, \ldots, x_n) \), where the variables \(x_i \) depend on independent variables \(t_1, \ldots, t_m \).

THEOREM 1 General Version of the Chain Rule Let \(f(x_1, \ldots, x_n) \) be a differentiable function of \(n \) variables. Suppose that each of the variables \(x_1, \ldots, x_n \) is a differentiable function of \(m \) independent variables \(t_1, \ldots, t_m \). Then, for \(k = 1, \ldots, m \),

\[
\frac{\partial f}{\partial t_k} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_k} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t_k} + \cdots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_k}
\]

We keep track of the dependencies between the variables as in Figure 3. As an aid to remembering the Chain Rule, we will refer to

\[
\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}
\]

as the primary derivatives. They are the components of the gradient \(\nabla f \). By Eq. (4), the derivative of \(f \) with respect to the independent variable \(t_k \) is equal to a sum of \(n \) terms:

\[
\text{\(j \)th term: } \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial t_k} \text{ for } j = 1, 2, \ldots, n
\]
Note that we can write Eq. (4) as a dot product:

$$\frac{\partial f}{\partial t_k} = \left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right] \cdot \left[\frac{\partial x_1}{\partial t_k}, \frac{\partial x_2}{\partial t_k}, \ldots, \frac{\partial x_n}{\partial t_k} \right]$$

\[
\frac{\partial f}{\partial t_k} = \nabla f \cdot \left[\frac{\partial x_1}{\partial t_k}, \frac{\partial x_2}{\partial t_k}, \ldots, \frac{\partial x_n}{\partial t_k} \right]
\]

EXAMPLE 2 Using the Chain Rule Let \(f(x, y, z) = xy + z \). Calculate \(\frac{\partial f}{\partial s} \), where \(x = s^2, \ y = st, \ z = t^2 \)

Solution

We keep track of the dependencies of the variables as in Figure 2.

Step 1. Compute the primary derivatives.

\[
\frac{\partial f}{\partial x} = y, \quad \frac{\partial f}{\partial y} = x, \quad \frac{\partial f}{\partial z} = 1
\]

Step 2. Apply the Chain Rule.

\[
\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial s} = y \frac{\partial}{\partial s} (s^2) + x \frac{\partial}{\partial s} (s) + \frac{\partial}{\partial s} (t^2)
\]

\[
= (y)(2s) + (x)(1) + 0
\]

\[
= 2ys + xt
\]

This expresses the derivative in terms of both sets of variables. If desired, we can substitute \(x = s^2 \) and \(y = st \) to write the derivative in terms of \(s \) and \(t \):

\[
\frac{\partial f}{\partial s} = 2ys + xt = 2(st)s + (s^2)t = 3s^2t
\]

To check this result, recall that in Example 1, we computed the composite function:

\[
f(x(s, t), y(s, t), z(s, t)) = f(s^2, st, t^2) = s^3t + t^2
\]

From this, we see directly that \(\frac{\partial f}{\partial s} = 3s^2t \), confirming our result.

EXAMPLE 3 Evaluating the Derivative Let \(f(x, y) = e^{xy} \). Evaluate \(\frac{\partial f}{\partial t} \) at \((s, t, u) = (2, 3, -1) \), where \(x = st, \ y = s - ut^2 \).

Solution We keep track of the dependencies of the variables as in Figure 4. We can use either Eq. (4) or Eq. (5). We’ll use the dot product form in Eq. (5). We have

\[
\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] = \langle ye^{xy}, xe^{xy} \rangle, \quad \left[\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t} \right] = \langle s, -2ut \rangle
\]

and the Chain Rule gives us

\[
\frac{\partial f}{\partial t} = \nabla f \cdot \left[\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t} \right] = \langle ye^{xy}, xe^{xy} \rangle \cdot \langle s, -2ut \rangle
\]

\[
= ye^{xy}(s) + xe^{xy}(-2ut)
\]

\[
= (ys - 2xut)e^{xy}
\]

To finish the problem, we do not have to rewrite \(\frac{\partial f}{\partial t} \) in terms of \(s, t, u \). For \((s, t, u) = (2, 3, -1) \), we obtain

\[
x = st = 2(3) = 6, \quad y = s - ut^2 = 2 - (-1)(3^2) = 11
\]

With \((s, t, u) = (2, 3, -1) \) and \((x, y) = (6, 11)\), we obtain

\[
\frac{\partial f}{\partial t} \bigg|_{(2,3,-1)} = (ys - 2xut)e^{xy} \bigg|_{(2,3,-1)} = \left[(11)(2) - 2(6)(-1)(3) \right]e^{6(11)} = 58e^{66}
\]
EXAMPLE 4 Polar Coordinates Let $f(x, y)$ be a function of two variables, and let (r, θ) be polar coordinates.

(a) Express $\frac{\partial f}{\partial \theta}$ in terms of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

(b) Evaluate $\frac{\partial f}{\partial \theta}$ at $(x, y) = (1, 1)$ for $f(x, y) = x^2 y$.

Solution

(a) Since $x = r \cos \theta$ and $y = r \sin \theta$,

$$\frac{\partial x}{\partial \theta} = -r \sin \theta, \quad \frac{\partial y}{\partial \theta} = r \cos \theta$$

By the Chain Rule,

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta} = -r \sin \theta \frac{\partial f}{\partial x} + r \cos \theta \frac{\partial f}{\partial y}$$

(b) Apply Eq. (6) to $f(x, y) = x^2 y$:

$$\frac{\partial f}{\partial \theta} = x \frac{\partial}{\partial y} (x^2 y) - y \frac{\partial}{\partial x} (x^2 y) = x^3 - 2xy^2$$

$$\left. \frac{\partial f}{\partial \theta} \right|_{(x,y)=(1,1)} = 1^3 - 2(1)(1^2) = -1$$

Notice that the General Version of the Chain Rule encompasses the Chain Rule for Paths, which appeared as Theorem 2 in Section 15.5. In the Chain Rule for Paths, there is just one independent variable, which is the parameter for the path.

Implicit Differentiation

In single-variable calculus, we used implicit differentiation to compute dy/dx when y is defined implicitly as a function of x through an equation $f(x, y) = 0$. This method also works for functions of several variables. Suppose that z is defined implicitly by an equation

$$F(x, y, z) = 0$$

Thus, $z = z(x, y)$ is a function of x and y. We may not be able to solve explicitly for $z(x, y)$, but we can treat $F(x, y, z)$ as a composite function with x and y as independent variables, and use the Chain Rule to differentiate with respect to x:

$$\frac{\partial F}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = 0$$

We have $\frac{\partial x}{\partial x} = 1$ and also $\frac{\partial y}{\partial x} = 0$, since y does not depend on x. Thus,

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x} = F_z \frac{\partial z}{\partial x} = 0$$

If $F_z \neq 0$, we may solve for $\frac{\partial z}{\partial x}$ (we compute $\frac{\partial z}{\partial y}$ similarly):

$$\frac{\partial z}{\partial x} = -\frac{F_z}{F_x}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

EXAMPLE 5 Calculate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $P = (1, 1, 1)$, where

$$F(x, y, z) = x^2 + y^2 - 2z^2 + 12x - 8z - 4 = 0$$

What is the graphical interpretation of these partial derivatives?
As a helpful assistant, I'll transcribe the text from the image into a plain text format for you:

Solution We have

\[F_x = 2x + 12, \quad F_y = 2y, \quad F_z = -4z - 8 \]

Hence,

\[\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{2x + 12}{-4z - 8}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{2y}{-4z - 8} \]

The derivatives at \(P = (1, 1, 1) \) are

\[\frac{\partial z}{\partial x}\bigg|_{(1,1,1)} = \frac{2(1) + 12}{4(1) + 8} = \frac{14}{12} = \frac{7}{6}, \quad \frac{\partial z}{\partial y}\bigg|_{(1,1,1)} = \frac{2(1) + 8}{4(1) + 8} = \frac{10}{12} = \frac{5}{6} \]

Figure 5 shows the surface \(F(x, y, z) = 0 \). The surface as a whole is not the graph of a function because it fails the Vertical Line Test. However, a small patch near \(P \) may be represented as a graph of a function \(z = f(x, y) \), and the partial derivatives \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) are equal to \(f_x \) and \(f_y \). Implicit differentiation has enabled us to compute these partial derivatives without finding \(f(x, y) \) explicitly.

Assumptions Matter Implicit differentiation is based on the assumption that we can solve the equation \(F(x, y, z) = 0 \) for \(z \) in the form \(z = f(x, y) \). Otherwise, the partial derivatives \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) would have no meaning. The Implicit Function Theorem of advanced calculus guarantees that this can be done (at least near a point \(P \)) if \(F \) has continuous partial derivatives and \(F_z(P) \neq 0 \). Why is this condition necessary? Recall that the gradient vector \(\nabla F_P = \{F_x(P), F_y(P), F_z(P)\} \) is normal to the surface at \(P \), so \(F_z(P) = 0 \) means that the tangent plane at \(P \) is vertical. To see what can go wrong, consider the cylinder (shown in Figure 6):

\[F(x, y, z) = x^2 + y^2 - 1 = 0 \]

In this extreme case, \(F_z \) is always 0. The \(z \)-coordinate on the cylinder does not depend on \(x \) or \(y \), so it is impossible to represent the cylinder as a graph \(z = f(x, y) \) and the derivatives \(\frac{\partial z}{\partial x} \) and \(\frac{\partial z}{\partial y} \) do not exist.

15.6 SUMMARY

- If \(f(x, y, z) \) is a function of \(x, y, z \), and if \(x, y, z \) depend on two other variables, say, \(s \) and \(t \), then

\[f(x, y, z) = f(x(s, t), y(s, t), z(s, t)) \]

is a composite function of \(s \) and \(t \). We refer to \(s \) and \(t \) as the independent variables.

- The Chain Rule expresses the partial derivatives with respect to the independent variables \(s \) and \(t \) in terms of the primary derivatives:

\[\frac{\partial f}{\partial x}, \quad \frac{\partial f}{\partial y}, \quad \frac{\partial f}{\partial z} \]

Namely,

\[\frac{\partial f}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial s}, \quad \frac{\partial f}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial t} \]

- In general, if \(f(x_1, \ldots, x_n) \) is a function of \(n \) variables and if \(x_1, \ldots, x_n \) depend on the independent variables \(t_1, \ldots, t_m \), then

\[\frac{\partial f}{\partial t_k} = \frac{\partial f}{\partial x_1} \frac{\partial x_1}{\partial t_k} + \frac{\partial f}{\partial x_2} \frac{\partial x_2}{\partial t_k} + \cdots + \frac{\partial f}{\partial x_n} \frac{\partial x_n}{\partial t_k} \]

- The Chain Rule can be expressed as a dot product:

\[\frac{\partial f}{\partial t_k} = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \ldots, \frac{\partial f}{\partial x_n} \right) \cdot \left(\frac{\partial x_1}{\partial t_k}, \frac{\partial x_2}{\partial t_k}, \ldots, \frac{\partial x_n}{\partial t_k} \right) \]
In Exercises 3–10, use the Chain Rule to calculate the partial derivatives $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ when z is defined implicitly by an equation $F(x, y, z) = 0$:

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}, \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$$

15.6 EXERCISES

Preliminary Questions

1. Let $f(x, y) = xy$, where $x = uv$ and $y = u + v$.
 (a) What are the primary derivatives of f?
 (b) What are the independent variables?

In Questions 2 and 3, suppose that $f(u, v) = ue^v$, where $u = rs$ and $v = r + s$.

2. The composite function $f(u, v)$ is equal to:
 (a) $rs e^{r+s}$
 (b) e^v
 (c) $rs e^{r+s}$

3. What is the value of $f(u, v)$ at $(r, s) = (1, 1)$?

4. According to the Chain Rule, $\frac{\partial f}{\partial r}$ is equal to (choose the correct answer):
 (a) $\frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r}$
 (b) $\frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r}$
 (c) $\frac{\partial f}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial r}$

5. Suppose that x, y, z are functions of the independent variables u, v, w. Which of the following terms appear in the Chain Rule expression for $\frac{\partial f}{\partial u}$?
 (a) $\frac{\partial f}{\partial v} \frac{\partial v}{\partial u}$
 (b) $\frac{\partial f}{\partial w} \frac{\partial w}{\partial u}$
 (c) $\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}$

6. With notation as in the previous question, does $\frac{\partial x}{\partial v}$ appear in the Chain Rule expression for $\frac{\partial f}{\partial u}$?

7. $\frac{\partial F}{\partial y} : F(u, v) = e^u + v, u = x^2, v = xy$

8. $\frac{\partial f}{\partial u} : f(x, y) = x^2 + y^2, x = e^{u+v}, y = u + v$

9. $\frac{\partial h}{\partial t_2} : h(x, y) = \frac{x}{y}, x = t_1 t_2, y = \frac{1}{t_1 t_2}$

10. $\frac{\partial f}{\partial \theta} : f(x, y, z) = xy - z^2, x = r \cos \theta, y = \cos \theta, z = r$

In Exercises 11–16, use the Chain Rule to evaluate the partial derivative at the point specified.

11. $\frac{\partial f}{\partial u}$ and $\frac{\partial f}{\partial v}$ at $(u, v) = (-1, -1)$, where $f(x, y, z) = x^3 + yz^2, x = u^2 + v, y = u + v^2, z = uv$

12. $\frac{\partial f}{\partial s}$ at $(r, s) = (1, 0)$, where $f(x, y) = \ln(xy), x = 3r + 2s, y = 5r + 3s$

13. $\frac{\partial g}{\partial \theta}$ at $(r, \theta) = (2\sqrt{2}, \frac{\pi}{4})$, where $g(x, y) = 1/(x + y^2), x = r \cos \theta, y = r \sin \theta$

14. $\frac{\partial g}{\partial s}$ at $s = 4$, where $g(x, y) = x^2 - y^2, x = s^2 + 1, y = 1 - 2s$

15. $\frac{\partial g}{\partial u}$ at $(u, v) = (0, 1)$, where $g(x, y) = x^2 - y^2, x = e^u \cos v, y = e^u \sin v$

16. $\frac{\partial h}{\partial q}$ at $(q, r) = (3, 2)$, where $h(u, v) = u e^{q u}, u = q^2, v = q r^2$

17. A baseball player hits the ball and then runs down the first base line at 20 ft/s. The first baseman fields the ball and then runs toward first base along the second base line at 18 ft/s as in Figure 7.
21. Let $x = s + t$ and $y = s - t$. Show that for any differentiable function $f(x, y)$,
\[
\left(\frac{\partial f}{\partial x} \right)^2 - \left(\frac{\partial f}{\partial y} \right)^2 = \frac{\partial f}{\partial s} \frac{\partial f}{\partial t}
\]

24. Express the derivatives
\[
\frac{\partial f}{\partial \rho}, \frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}
\]
in terms of
\[
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}
\]
where (ρ, θ, ϕ) are spherical coordinates.

25. Suppose that z is defined implicitly as a function of x and y by the equation $F(x, y, z) = x^2 y + y^2 z + xy - 1 = 0$.
(a) Calculate F_x, F_y, F_z.
(b) Use Eq. (7) to calculate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.

26. Calculate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at the points $(3, 2, 1)$ and $(3, 2, -1)$, where z is defined implicitly by the equation $z^2 + 2x^2 - y = 8 = 0$.

In Exercises 27–32, calculate the partial derivative using implicit differentiation.

27. \[\frac{\partial z}{\partial x} = x^2 y + y^2 z + x \cdot z^2 = 10\]

28. \[\frac{\partial w}{\partial z} = x^2 w + w^3 + w z^2 + 3 y z = 0\]

29. \[\frac{\partial z}{\partial y} = e^{xy} + \sin(x z) + y = 0\]

30. \[\frac{\partial r}{\partial t} \text{ and } \frac{\partial t}{\partial r}, r^2 = e^y/r\]

31. \[\frac{\partial w}{\partial y} = \frac{1}{u^2 + x^2} + \frac{1}{w^2 + y^2} = 1 \text{ at } (x, y, w) = (1, 1, 1)\]

32. \[\frac{\partial U}{\partial T} \text{ and } \frac{\partial T}{\partial U}, (T U - V)^2 \ln(W - U V) = 1 \text{ at } (T, U, V, W) = (1, 1, 2, 4)\]

33. Let \(r = (x, y, z) \) and \(e_r = r/\|r\| \). Show that if a function \(f(x, y, z) = F(r) \) depends only on the distance from the origin \(r \), then \(\nabla f = F'(r)e_r \)

34. Let \(f(x, y, z) = e^{-x^2 - y^2 - z^2} = e^{-r^2} \), with r as in Exercise 33. Compute \(\nabla f \) directly and using Eq. (9).

35. Use Eq. (9) to compute \(\nabla \left(\frac{1}{r} \right) \).

36. Use Eq. (9) to compute \(\nabla \ln(r) \).

37. Figure 9 shows the graph of the equation
\[F(x, y, z) = x^2 + y^2 - z^2 - 12x - 8z - 4 = 0\]
(a) Use the quadratic formula to solve for z as a function of x and y.
This gives two formulas, depending on the choice of sign.
(b) Which formula defines the portion of the surface satisfying $z \geq -4$? Which formula defines the portion satisfying $z \leq -4$?
(e) Calculate $\partial z/\partial x$ using the formula $z = f(x, y)$ (for both choices of sign) and again via implicit differentiation. Verify that the two answers agree.

\[z = x^2 + y^2 - 2z - 12x - 8z - 4 = 0. \]

38. For all $x > 0$, there is a unique value $y = r(x)$ that solves the equation $y^3 + 4xy = 16$.
(a) Show that $dy/dx = -4y/(3y^2 + 4x)$.
(b) Let $g(x) = f(x, r(x))$, where $f(x, y)$ is a function satisfying $f_x(1, 2) = 8$, $f_y(1, 2) = 10$.
Use the Chain Rule to calculate $g'(1)$. Note that $r(1) = 2$ because $(x, y) = (1, 2)$ satisfies $y^3 + 4xy = 16$.

Further Insights and Challenges

In Exercises 42–45, a function $f(x, y, z)$ is called **homogeneous of degree** n if $f(\lambda x, \lambda y, \lambda z) = \lambda^n f(x, y, z)$ for all $\lambda \in \mathbb{R}$.

42. Show that the following functions are homogeneous and determine their degree:
(a) $f(x, y, z) = x^2y + yz$
(b) $f(x, y, z) = 3x + 2y - 8z$
(c) $f(x, y, z) = \ln\left(\frac{xyz}{z^2}\right)$
(d) $f(x, y, z) = z^4$

43. Prove that if $f(x, y, z)$ is homogeneous of degree n, then $f_x(x, y, z)$ is homogeneous of degree $n - 1$. Hint: Either use the limit definition or apply the Chain Rule to $f(x\lambda, y\lambda, z\lambda)$.

44. Prove that if $f(x, y, z)$ is homogeneous of degree n, then
\[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = nf. \]
Hint: Let $F(t) = f(tx, ty, tz)$ and calculate $F'(1)$ using the Chain Rule.

45. Verify Eq. (11) for the functions in Exercise 42.

46. Suppose that f is a function of x and y, where $x = g(t, s)$, $y = h(t, s)$. Show that f_{ss} is equal to
\[f_{xx} \left(\frac{\partial x}{\partial t}\right)^2 + 2f_{xy} \left(\frac{\partial x}{\partial t}\right) \left(\frac{\partial y}{\partial t}\right) + f_{yy} \left(\frac{\partial y}{\partial t}\right)^2 \]
\[+ f_x \frac{\partial^2 x}{\partial t^2} + f_y \frac{\partial^2 y}{\partial t^2} \]

47. Let $r = \sqrt{x_1^2 + \cdots + x_n^2}$ and let $g(r)$ be a function of r. Prove the formulas
\[\frac{\partial g}{\partial x_i} = \frac{x_i}{r} g_r, \quad \frac{\partial^2 g}{\partial x_i^2} = \frac{x_i^2}{r^2} g_r + \frac{r^2 - x_i^2}{r^3} g_r \]

48. Prove that if $g(r)$ is a function of r as in Exercise 47, then
\[\frac{\partial^2 g}{\partial x_1^2} + \cdots + \frac{\partial^2 g}{\partial x_n^2} = g_rr + \frac{n-1}{r} g_r \]

In Exercises 49–53, the **Laplace operator** is defined by $\Delta f = f_{xx} + f_{yy}$. A function $f(x, y)$ satisfying the Laplace equation $\Delta f = 0$ is called **harmonic**. A function $f(x, y)$ is called **radial** if $f(x, y) = g(r)$, where $r = \sqrt{x^2 + y^2}$.

49. Use Eq. (12) to prove that in polar coordinates (r, θ),
\[\Delta f = f_{rr} + \frac{1}{r} f_{\theta\theta} + \frac{1}{r^2} f_r \]

50. Use Eq. (13) to show that $f(x, y) = \ln r$ is harmonic.

51. Verify that $f(x, y) = x$ and $f(x, y) = y$ are harmonic using both the rectangular and polar expressions for Δf.

52. Verify that $f(x, y) = \tan^{-1} \frac{x}{y}$ is harmonic using both the rectangular and polar expressions for Δf.

53. Use the Product Rule to show that
\[f_{rr} + \frac{1}{r} f_r = r^{-1} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) \]
Use this formula to show that if f is a radial harmonic function, then $rf_r = C$ for some constant C. Conclude that $f(x, y) = C \ln r + b$ for some constant b.

39. The pressure P, volume V, and temperature T of a van der Waals gas with n molecules (constant n) are related by the equation
\[\left(P + \frac{a \lambda^2}{V^2} \right) (V - nb) = nRT \]
where a, b, and R are constant. Calculate $\partial P/\partial T$ and $\partial V/\partial P$.

40. When x, y, and z are related by an equation $F(x, y, z) = 0$, we sometimes write $(\partial z/\partial x)_y$ in place of $\partial z/\partial x$ to indicate that in the differentiation, z is treated as a function of x with y held constant (and similarly for the other variables).
(a) Use Eq. (7) to prove the cyclic relation
\[\left(\frac{\partial z}{\partial x} \right)_y \left(\frac{\partial x}{\partial y} \right)_z \left(\frac{\partial y}{\partial z} \right)_x = -1 \]
(b) Verify Eq. (10) for $F(x, y, z) = x + y + z = 0$.
(c) Verify the cyclic relation for the variables P, V, T in the Ideal Gas Law $PV - nRT = 0$ (n and R are constants).

41. Show that if $f(x)$ is differentiable and $c \neq 0$ is a constant, then $u(x, t) = f(x - ct)$ satisfies the so-called **advection equation**
\[\frac{\partial u}{\partial t} + cu \frac{\partial u}{\partial x} = 0 \]
Recall that optimization is the process of finding the extreme values of a function. This amounts to finding the highest and lowest points on the graph over a given domain. As we saw in the one-variable case, it is important to distinguish between local and global extreme values. A local extreme value is a value \(f(a, b) \) that is a maximum or minimum in some small open disk around \((a, b)\) (Figure 1).

DEFINITION Local Extreme Values A function \(f(x, y) \) has a local extremum at \(P = (a, b) \) if there exists an open disk \(D(P, r) \) such that

- **Local maximum:** \(f(x, y) \leq f(a, b) \) for all \((x, y)\) \(\in \) \(D(P, r) \)
- **Local minimum:** \(f(x, y) \geq f(a, b) \) for all \((x, y)\) \(\in \) \(D(P, r) \)

Fermat’s Theorem for functions of one variable states that if \(f(a) \) is a local extreme value, then \(a \) is a critical point and thus the tangent line (if it exists) is horizontal at \(x = a \).

A similar result holds for functions of two variables, but in this case, it is the tangent plane that must be horizontal (Figure 2). The tangent plane to \(z = f(x, y) \) at \(P = (a, b) \) has equation

\[
z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)
\]

Thus, the tangent plane is horizontal if \(f_x(a, b) = f_y(a, b) = 0 \)—that is, if the equation reduces to \(z = f(a, b) \). This leads to the following definition of a critical point, where we take into account the possibility that one or both partial derivatives do not exist.

DEFINITION Critical Point A point \(P = (a, b) \) in the domain of \(f(x, y) \) is called a critical point if:

- \(f_x(a, b) = 0 \) or \(f_x(a, b) \) does not exist, and
- \(f_y(a, b) = 0 \) or \(f_y(a, b) \) does not exist.

As in the single-variable case, we have the following:

THEOREM 1 Fermat’s Theorem If \(f(x, y) \) has a local minimum or maximum at \(P = (a, b) \), then \((a, b)\) is a critical point of \(f(x, y) \).

Proof If \(f(x, y) \) has a local minimum at \(P = (a, b) \), then \(f(x, y) \geq f(a, b) \) for all \((x, y)\) near \((a, b)\). In particular, there exists \(r > 0 \) such that \(f(x, b) \geq f(a, b) \) if \(|x - a| < r\). In other words, \(g(x) = f(x, b) \) has a local minimum at \(x = a \). By Fermat’s Theorem for functions of one variable, either \(g'(a) = 0 \) or \(g'(a) \) does not exist. Since \(g'(a) = f_x(a, b) \), we conclude that either \(f_x(a, b) = 0 \) or \(f_x(a, b) \) does not exist. Similarly, \(f_y(a, b) = 0 \) or \(f_y(a, b) \) does not exist. Therefore, \(P = (a, b) \) is a critical point. The case of a local maximum is similar.
Usually, we deal with functions whose partial derivatives exist. In this case, finding the critical points amounts to solving the simultaneous equations \(f_x(x, y) = 0 \) and \(f_y(x, y) = 0 \).

Example 1 Show that \(f(x, y) = 11x^2 - 2xy + 2y^2 + 3y \) has one critical point. Use Figure 3 to determine whether it corresponds to a local minimum or maximum.

Solution Set the partial derivatives equal to zero and solve:

\[
\begin{align*}
f_x(x, y) &= 22x - 2y = 0 \\
f_y(x, y) &= -2x + 4y + 3 = 0
\end{align*}
\]

By the first equation, \(y = 11x \). Substituting \(y = 11x \) in the second equation gives

\[
-2x + 4(11x) + 3 = 42x + 3 = 0
\]

Thus, \(x = -\frac{1}{14} \) and \(y = -\frac{11}{14} \). There is just one critical point, \(P = \left(-\frac{1}{14}, -\frac{11}{14}\right) \). Figure 3 shows that \(f(x, y) \) has a local minimum at \(P \).

It is not always possible to find the solutions exactly, but we can use a computer to find numerical approximations.

Example 2 Use a computer algebra system to approximate the critical points of

\[
f(x, y) = \frac{x - y}{2x^2 + 8y^2 + 3}
\]

Are they local minima or maxima? Refer to Figure 4.

Solution We use a CAS to compute the partial derivatives and solve

\[
\begin{align*}
f_x(x, y) &= \frac{-2x^2 + 8y^2 + 4xy + 3}{(2x^2 + 8y^2 + 3)^2} = 0 \\
f_y(x, y) &= \frac{-2x^2 + 8y^2 - 16xy - 3}{(2x^2 + 8y^2 + 3)^2} = 0
\end{align*}
\]

To solve these equations, set the numerators equal to zero. Figure 4 suggests that \(f(x, y) \) has a local max with \(x > 0 \) and a local min with \(x < 0 \). The following Mathematica command searches for a solution near \((1, 0)\):

\[
\text{FindRoot}\left[\{x - 0 = 0, -2x^2 + 8y^2 - 2 - 16xy - 3 == 0\}, \{\{x, 1\}, \{y, 0\}\}\right]
\]

The result is

\(\{x -> 1.095, y -> -0.274\}\)

Thus, \((1.095, -0.274)\) is an approximate critical point where, by Figure 4, \(f \) takes on a local maximum. A second search near \((-1, 0)\) yields \((-1.095, 0.274)\), which approximates the critical point where \(f(x, y) \) takes on a local minimum.

We know that in one variable, a function \(f(x) \) may have a point of inflection rather than a local extremum at a critical point. A similar phenomenon occurs in several variables. Each of the functions in Figure 5 has a critical point at \((0, 0)\). However, the function in Figure 5(C) has a saddle point, which is neither a local minimum nor a local maximum. If you stand at the saddle point and begin walking, some directions such as the \(+i\) or \(-j\) directions take you uphill and other directions such as the \(+i\) or \(-i\) directions take you downhill.

As in the one-variable case, there is a Second Derivative Test determining the type of a critical point \((a, b)\) of a function \(f(x, y) \) in two variables. This test relies on the sign of the **discriminant** \(D = D(a, b) \), defined as follows:

The discriminant is also referred to as the "Hessian determinant."
D = D(a, b) = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}^2(a, b)

We can remember the formula for the discriminant by recognizing it as a determinant:

\[
D = \begin{vmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{vmatrix}
\]

THEOREM 2 Second Derivative Test for \(f(x, y) \) Let \(P = (a, b) \) be a critical point of \(f(x, y) \). Assume that \(f_{xx}, f_{yy}, f_{xy} \) are continuous near \(P \). Then:

(i) If \(D > 0 \) and \(f_{xx}(a, b) > 0 \), then \(f(a, b) \) is a local minimum.
(ii) If \(D > 0 \) and \(f_{xx}(a, b) < 0 \), then \(f(a, b) \) is a local maximum.
(iii) If \(D < 0 \), then \(f \) has a saddle point at \((a, b) \).
(iv) If \(D = 0 \), the test is inconclusive.

A proof of this theorem is discussed at the end of this section.

EXAMPLE 3 Applying the Second Derivative Test Find the critical points of

\[f(x, y) = (x^2 + y^2)e^{-x} \]

and analyze them using the Second Derivative Test.

Solution

Step 1. Find the critical points.

Set the partial derivatives equal to zero and solve:

\[f_x(x, y) = -(x^2 + y^2)e^{-x} + 2xe^{-x} = (2x - x^2 - y^2)e^{-x} = 0 \]
\[f_y(x, y) = 2ye^{-x} = 0 \Rightarrow y = 0 \]

Substituting \(y = 0 \) in the first equation then gives

\[(2x - x^2 - y^2)e^{-x} = (2x - x^2)e^{-x} = 0 \Rightarrow x = 0, 2 \]

The critical points are \((0, 0)\) and \((2, 0)\) (Figure 6).

Step 2. Compute the second-order partials.

\[f_{xx}(x, y) = \frac{\partial}{\partial x}((2x - x^2 - y^2)e^{-x}) = (2 - 4x + x^2 + y^2)e^{-x} \]
\[f_{yy}(x, y) = \frac{\partial}{\partial y}(2ye^{-x}) = 2e^{-x} \]
\[f_{xy}(x, y) = f_{yx}(x, y) = \frac{\partial}{\partial x}(2ye^{-x}) = -2ye^{-x} \]
Step 3. Apply the Second Derivative Test.

<table>
<thead>
<tr>
<th>Critical Point</th>
<th>(f_{xx})</th>
<th>(f_{yy})</th>
<th>(f_{xy})</th>
<th>Discriminant (D = f_{xx} f_{yy} - f_{xy}^2)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>(2(2) - 0^2 = 4)</td>
<td>Local minimum since (D > 0) and (f_{xx} > 0)</td>
</tr>
<tr>
<td>((2, 0))</td>
<td>(-2e^{-2})</td>
<td>(2e^{-2})</td>
<td>0</td>
<td>(-2e^{-2}(2e^{-2}) - 0^2 = -4e^{-4})</td>
<td>Saddle since (D < 0)</td>
</tr>
</tbody>
</table>

GRAPHICAL INSIGHT We can also read off the type of critical point from the contour map. Notice that the level curves in Figure 7 encircle the local minimum at \(P\), with \(f\) increasing in all directions emanating from \(P\). By contrast, \(f\) has a saddle point at \(Q\): The neighborhood near \(Q\) is divided into four regions in which \(f(x, y)\) alternately increases and decreases.

EXAMPLE 4 Analyze the critical points of \(f(x, y) = x^3 + y^3 - 12xy\).

Solution Again, we set the partial derivatives equal to zero and solve:

\[
\begin{align*}
\frac{\partial f}{\partial x}(x, y) &= 3x^2 - 12y = 0 \quad \Rightarrow \quad y = \frac{1}{4}x^2 \\
\frac{\partial f}{\partial y}(x, y) &= 3y^2 - 12x = 0
\end{align*}
\]

Substituting \(y = \frac{1}{4}x^2\) in the second equation yields

\[
3y^2 - 12x = 3\left(\frac{1}{4}x^2\right)^2 - 12x = \frac{3}{16}x(x^3 - 64) = 0 \quad \Rightarrow \quad x = 0, 4
\]

Since \(y = \frac{1}{4}x^2\), the critical points are \((0, 0)\) and \((4, 4)\).

We have

\[
\begin{align*}
\frac{\partial^2 f}{\partial x^2}(x, y) &= 6x, \quad \frac{\partial^2 f}{\partial y^2}(x, y) = 6y, \quad \frac{\partial^2 f}{\partial x \partial y}(x, y) = -12
\end{align*}
\]

The Second Derivative Test confirms what we see in Figure 7: \(f\) has a local min at \((4, 4)\) and a saddle at \((0, 0)\).

<table>
<thead>
<tr>
<th>Critical Point</th>
<th>(f_{xx})</th>
<th>(f_{yy})</th>
<th>(f_{xy})</th>
<th>Discriminant (D = f_{xx} f_{yy} - f_{xy}^2)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>0</td>
<td>0</td>
<td>-12</td>
<td>(0(0) - 12^2 = -144)</td>
<td>Saddle since (D < 0)</td>
</tr>
<tr>
<td>((4, 4))</td>
<td>24</td>
<td>24</td>
<td>-12</td>
<td>(24(24) - 12^2 = 432)</td>
<td>Local minimum since (D > 0) and (f_{xx} > 0)</td>
</tr>
</tbody>
</table>

EXAMPLE 5 When the Second Derivative Test Fails Analyze the critical points of \(f(x, y) = 3xy^2 - x^3\).
Solution We set the partial derivatives equal to zero and solve:

\[f_x(x, y) = 3y^2 - 3x^2 = 0 \]
\[f_y(x, y) = 6xy = 0 \]

From the second equation, either \(x = 0 \) or \(y = 0 \). From the first equation, we find that the only critical point is \((0, 0)\). We have

\[f_{xx}(x, y) = -6x, \quad f_{yy}(x, y) = 6x, \quad f_{xy}(x, y) = 6y \]

Applying the Second Derivative Test, we obtain

<table>
<thead>
<tr>
<th>Critical Point</th>
<th>(f_{xx})</th>
<th>(f_{yy})</th>
<th>(f_{xy})</th>
<th>(D = f_{xx}f_{yy} - f_{xy}^2)</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0, 0))</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No information since (D = 0)</td>
</tr>
</tbody>
</table>

Thus, we need to analyze this critical point by examining the graph more carefully. We will slice the graph with the \(xz \)-plane by setting \(y = 0 \). Then \(f(x, 0) = -x^3 \). A graph of this function appears as in Figure 8. When it passes through \((0, 0)\), it has neither a local maximum nor local minimum, so the critical point \((0, 0)\) is not an extreme point. It is a saddle point.

However, graphs can take on a variety of different shapes at a saddle point. The graph of \(f(x, y) \) appears in Figure 9. The curve \(f(x, 0) = -x^3 \) is shown in blue. This surface is called a “monkey saddle” because a monkey can sit on this saddle with room for its tail in the back.

Global Extrema

Often we are interested in finding the minimum or maximum value of a function \(f \) on a given domain \(D \). These are called **global** or **absolute extreme values**. However, global extrema do not always exist. The function \(f(x, y) = x + y \) has a maximum value on the unit square \(D_1 \) in Figure 10 [the max is \(f(1, 1) = 2 \)], but it has no maximum value on the entire plane \(\mathbb{R}^2 \).

To state conditions that guarantee the existence of global extrema, we need a few definitions. First, we say that a domain \(D \) is **bounded** if there is a number \(M > 0 \) such that \(D \) is contained in a disk of radius \(M \) centered at the origin. In other words, no point of \(D \) is more than a distance \(M \) from the origin [Figures 12(A) and 12(B)]. Next, a point \(P \) is called:

- An **interior point** of \(D \) if \(D \) contains some open disk \(D(P, r) \) centered at \(P \).
- A **boundary point** of \(D \) if every disk centered at \(P \) contains points that are in \(D \) and points that are not in \(D \).
CHAPTER 15 DIFFERENTIATION IN SEVERAL VARIABLES

CONCEPTUAL INSIGHT To understand the concept of interior and boundary points, think of the familiar case of an interval \(I = [a, b] \) in the real line \(\mathbb{R} \) (Figure 11). Every point \(x \) in the open interval \((a, b)\) is an interior point of \(I \) (because there exists a small open interval around \(x \) entirely contained in \(I \)). The two endpoints \(a \) and \(b \) are boundary points (because every open interval containing \(a \) or \(b \) also contains points not in \(I \)).

The interior of \(D \) is the set of all interior points, and the boundary of \(D \) is the set of all boundary points. In Figure 12(C), the boundary is the curve surrounding the domain. The interior consists of all points in the domain not lying on the boundary curve. A domain \(D \) is called closed if \(D \) contains all its boundary points (like a closed interval in \(\mathbb{R} \)). A domain \(D \) is called open if every point of \(D \) is an interior point (like an open interval in \(\mathbb{R} \)). The domain in Figure 12(A) is closed because the domain includes its boundary curve. In Figure 12(C), some boundary points are included and some are excluded, so the domain is neither open nor closed.

In Section 4.2, we stated two basic results. First, a continuous function \(f(x) \) on a closed, bounded interval \([a, b] \) takes on both a minimum and a maximum value on \([a, b] \). Second, these extreme values occur either at critical points in the interior \((a, b) \) or at the endpoints. Analogous results are valid in several variables.

THEOREM 3 Existence and Location of Global Extrema Let \(f(x, y) \) be a continuous function on a closed, bounded domain \(D \) in \(\mathbb{R}^2 \). Then:

(i) \(f(x, y) \) takes on both a minimum and a maximum value on \(D \).

(ii) The extreme values occur either at critical points in the interior of \(D \) or at points on the boundary of \(D \).

EXAMPLE 6 Find the maximum value of \(f(x, y) = 2x + y - 3xy \) on the unit square \(D = \{(x, y) : 0 \leq x, y \leq 1 \} \).

Solution By Theorem 3, the maximum occurs either at a critical point or on the boundary of the square (Figure 13).

Step 1. Examine the critical points.

Set the partial derivatives equal to zero and solve:

\[
f_x(x, y) = 2 - 3y = 0 \quad \Rightarrow \quad y = \frac{2}{3}, \quad f_y(x, y) = 1 - 3x = 0 \quad \Rightarrow \quad x = \frac{1}{3}
\]

There is a unique critical point \(P = \left(\frac{1}{3}, \frac{2}{3} \right) \) and

\[
f(P) = f \left(\frac{1}{3}, \frac{2}{3} \right) = 2 \left(\frac{1}{3} \right) + \left(\frac{2}{3} \right) - 3 \left(\frac{1}{3} \right) \left(\frac{2}{3} \right) = \frac{2}{3}
\]
Step 2. Check the boundary.

We do this by checking each of the four edges of the square separately. The bottom edge is described by \(y = 0, 0 \leq x \leq 1 \). On this edge, \(f(x, 0) = 2x \), and the maximum value occurs at \(x = 1 \), where \(f(1, 0) = 2 \). Proceeding in a similar fashion with the other edges, we obtain

<table>
<thead>
<tr>
<th>Edge</th>
<th>Restriction of (f(x, y)) to Edge</th>
<th>Maximum of (f(x, y)) on Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower: (y = 0, 0 \leq x \leq 1)</td>
<td>(f(x, 0) = 2x)</td>
<td>(f(1, 0) = 2)</td>
</tr>
<tr>
<td>Upper: (y = 1, 0 \leq x \leq 1)</td>
<td>(f(x, 1) = 1 - x)</td>
<td>(f(0, 1) = 1)</td>
</tr>
<tr>
<td>Left: (x = 0, 0 \leq y \leq 1)</td>
<td>(f(0, y) = y)</td>
<td>(f(0, 1) = 1)</td>
</tr>
<tr>
<td>Right: (x = 1, 0 \leq y \leq 1)</td>
<td>(f(1, y) = 2 - 2y)</td>
<td>(f(1, 0) = 2)</td>
</tr>
</tbody>
</table>

Step 3. Compare.

The maximum of \(f \) on the boundary is \(f(1, 0) = 2 \). This is larger than the value \(f(P) = \frac{1}{2} \) at the critical point, so the maximum of \(f \) on the unit square is 2. ■

EXAMPLE 7 Find the maximum and minimum values of the function \(f(x, y) = xy \) on the disk \(D = \{(x, y) : x^2 + y^2 \leq 1 \} \).

Solution

Step 1. Examine the critical points.

\[
\begin{align*}
 f_x(x, y) &= y = 0, \quad f_y(x, y) = x = 0
\end{align*}
\]

There is a unique critical point \(P = (0, 0) \) in the interior of the disk, and \(f(0, 0) = 0 \).

Step 2. Check the boundary.

As in Figure 14, we subdivide the boundary into two arcs labeled I and II. The first is given by \(y = +\sqrt{1-x^2}, -1 \leq x \leq 1 \). Restricting \(f \) to this part of the boundary, we have \(f(x, \sqrt{1-x^2}) = x\sqrt{1-x^2} \). Thus,

\[
\begin{align*}
 f'(x) &= \sqrt{1-x^2} - x \frac{x}{\sqrt{1-x^2}} = 0 \\
 &\quad 1 - 2x^2 = 0 \\
 &\quad x = \pm \frac{1}{\sqrt{2}}
\end{align*}
\]

Since \(y = \sqrt{1-x^2} \), we have the two critical points on Arc I given by \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \) and \(\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \).

Restricting \(f \) to Arc II, which is given by \(y = -\sqrt{1-x^2}, -1 \leq x \leq 1 \), our function becomes \(f(x, -\sqrt{1-x^2}) = -x\sqrt{1-x^2} \). Since this only differs by a sign from the restriction of our function to Arc I, we know that the critical points along this arc are \(\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \) and \(\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \).

Step 3. Compare.

Evaluating \(f \) at the interior critical point, each of these four critical points and at the endpoints of the arcs, we find

\[
\begin{align*}
 f(0, 0) &= 0, \\
 f \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) &= \frac{1}{2}, \\
 f \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) &= -\frac{1}{2}, \\
 f \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) &= -\frac{1}{2}, \\
 f \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) &= \frac{1}{2}, \\
 f(1, 0) &= 0, \\
 f(-1, 0) &= 0
\end{align*}
\]

Comparing these values, we see that the maximum value of \(\frac{1}{2} \) over the disk occurs at the two boundary points \(\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \) and \(\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \), and the minimum value of \(-\frac{1}{2} \) occurs at the two boundary points \(\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \) and \(\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right) \). ■

FIGURE 14 Dividing the boundary of the domain into arcs.
EXAMPLE 8 Box of Maximum Volume Find the maximum volume of a box inscribed in the tetrahedron bounded by the coordinate planes and the plane \(\frac{1}{3}x + y + z = 1 \).

Solution

Step 1. Find a function to be maximized.
Let \(P = (x, y, z) \) be the corner of the box lying on the front face of the tetrahedron (Figure 15). Then the box has sides of lengths \(x, y, z \) and volume \(V = xyz \). Using \(\frac{1}{3}x + y + z = 1 \), we express \(V \) in terms of \(x \) and \(y \):

\[
V(x, y) = xyz = xy \left(1 - \frac{1}{3}x - y \right) = xy - \frac{1}{3}x^2y - xy^2
\]

Our problem is to maximize \(V \), but which domain \(D \) should we choose? We let \(D \) be the shaded triangle \(\triangle OAB \) in the \(xy \)-plane in Figure 15. Then the corner point \(P = (x, y, z) \) of each possible box lies above a point \((x, y) \) in \(D \). Because \(D \) is closed and bounded, the maximum occurs at a critical point inside \(D \) or on the boundary of \(D \).

Step 2. Examine the critical points.
First, set the partial derivatives equal to zero and solve:

\[
\frac{\partial V}{\partial x} = y - \frac{2}{3}xy - y^2 = y \left(1 - \frac{2}{3}x - y \right) = 0
\]

\[
\frac{\partial V}{\partial y} = x - \frac{1}{3}x^2 - 2xy = x \left(1 - \frac{1}{3}x - 2y \right) = 0
\]

If \(x = 0 \) or \(y = 0 \), then \((x, y) \) lies on the boundary of \(D \), so assume that \(x \) and \(y \) are both nonzero. Then the first equation gives us

\[
1 - \frac{2}{3}x - y = 0 \quad \Rightarrow \quad y = 1 - \frac{2}{3}x
\]

The second equation yields

\[
1 - \frac{1}{3}x - 2y = 1 - \frac{1}{3}x - 2 \left(1 - \frac{2}{3}x \right) = 0 \quad \Rightarrow \quad x - 1 = 0 \quad \Rightarrow \quad x = 1
\]

For \(x = 1 \), we have \(y = 1 - \frac{2}{3}x = \frac{1}{3} \). Therefore, \((1, \frac{1}{3}) \) is a critical point, and

\[
V \left(1, \frac{1}{3} \right) = \left(1 \right) \left(\frac{1}{3} \right) - \frac{1}{3} \left(\frac{1}{3} \right)^2 - \left(\frac{1}{3} \right) \left(\frac{1}{3} \right)^2 = \frac{1}{9}
\]

Step 3. Check the boundary.
We have \(V(x, y) = 0 \) for all points on the boundary of \(D \) (because the three edges of the boundary are defined by \(x = 0 \), \(y = 0 \), and \(1 - \frac{1}{3}x - y = 0 \)). Clearly, then, the maximum occurs at the critical point, and the maximum volume is \(\frac{1}{9} \).

Proof of the Second Derivative Test The proof is based on “completing the square” for quadratic forms. A quadratic form is a function

\[
Q(h, k) = ah^2 + 2bhk + ck^2
\]

where \(a, b, c \) are constants (not all zero). The discriminant of \(Q \) is the quantity

\[
D = ac - b^2
\]

Some quadratic forms take on only positive values for \((h, k) \neq (0, 0) \), and others take on both positive and negative values. According to the next theorem, the sign of the discriminant determines which of these two possibilities occurs.
To illustrate Theorem 4, consider

\[Q(h, k) = h^2 + 2hk + 2k^2 \]

It has a positive discriminant

\[D = (1)(2) - 1 = 1 \]

We can see directly that \(Q(h, k) \) takes on only positive values for \((h, k) \neq (0, 0)\) by writing \(Q(h, k) \) as

\[Q(h, k) = (h + k)^2 + k^2 \]

\[\text{FIGURE 16} \quad \text{Line through} \quad P \quad \text{in the direction of} \quad (h, k). \]

THEOREM 4 With \(Q(h, k) \) and \(D \) as above:

(i) If \(D > 0 \) and \(a > 0 \), then \(Q(h, k) > 0 \) for \((h, k) \neq (0, 0)\).

(ii) If \(D > 0 \) and \(a < 0 \), then \(Q(h, k) < 0 \) for \((h, k) \neq (0, 0)\).

(iii) If \(D < 0 \), then \(Q(h, k) \) takes on both positive and negative values.

Proof Assume first that \(a \neq 0 \) and rewrite \(Q(h, k) \) by “completing the square”:

\[Q(h, k) = ah^2 + 2bhk + ck^2 = a \left(h + \frac{b}{a} k \right)^2 + \left(c - \frac{b^2}{a} \right) k^2 \]

\[= a \left(h + \frac{b}{a} k \right)^2 + \frac{D}{a} k^2 \]

If \(D > 0 \) and \(a > 0 \), then \(D/|a| > 0 \) and both terms in Eq. (1) are nonnegative. Furthermore, if \(Q(h, k) = 0 \), then each term in Eq. (1) must equal zero. Thus, \(k = 0 \) and \(h + \frac{b}{a} k = 0 \), and then, necessarily, \(h = 0 \). This shows that \(Q(h, k) > 0 \) if \((h, k) \neq (0, 0)\), and (i) is proved. Part (ii) follows similarly. To prove (iii), note that if \(a \neq 0 \) and \(D < 0 \), then the coefficients of the squared terms in Eq. (1) have opposite signs and \(Q(h, k) \) takes on both positive and negative values. Finally, if \(a = 0 \) and \(D < 0 \), then \(Q(h, k) = 2bhk + ck^2 \) with \(b \neq 0 \). In this case, \(Q(h, k) \) again takes on both positive and negative values.

Now assume that \(f(x, y) \) has a critical point at \(P = (a, b) \). We shall analyze \(f \) by considering the restriction of \(f(x, y) \) to the line (Figure 16) through \(P = (a, b) \) in the direction of a unit vector \((h, k) \):

\[F(t) = f(a + th, b + tk) \]

Then \(F(0) = f(a, b) \). By the Chain Rule,

\[F'(t) = f_x(a + th, b + tk)h + f_y(a + th, b + tk)k \]

Because \(P \) is a critical point, we have \(f_x(a, b) = f_y(a, b) = 0 \), and therefore,

\[F'(0) = f_x(a, b)h + f_y(a, b)k = 0 \]

Thus, \(t = 0 \) is a critical point of \(F(t) \).

Now apply the Chain Rule again:

\[F''(t) = \frac{d}{dt} \left(f_x(a + th, b + tk)h + f_y(a + th, b + tk)k \right) \]

\[= \left(f_{xx}(a + th, b + tk)h^2 + f_{xy}(a + th, b + tk)hk \right) \]

\[+ \left(f_{yx}(a + th, b + tk)kh + f_{yy}(a + th, b + tk)k^2 \right) \]

\[= f_{xx}(a + th, b + tk)h^2 + 2f_{xy}(a + th, b + tk)hk + f_{yy}(a + th, b + tk)k^2 \]

We see that \(F''(t) \) is the value at \((h, k)\) of a quadratic form whose discriminant is equal to \(D(a + th, b + tk) \). Here, we set

\[D(r, s) = f_{xx}(r, s)f_{yy}(r, s) - f_{xy}(r, s)^2 \]

Note that the discriminant of \(f(x, y) \) at the critical point \(P = (a, b) \) is \(D = D(a, b) \).

Case 1: \(D(a, b) > 0 \) and \(f_{xx}(a, b) > 0 \). We must prove that \(f(a, b) \) is a local minimum. Consider a small disk of radius \(r \) around \(P \) (Figure 16). Because the second derivatives are continuous near \(P \), we can choose \(r > 0 \) so that for every unit vector \((h, k) \),

\[D(a + th, b + tk) > 0 \quad \text{for} \ |t| < r \]

\[f_{xx}(a + th, b + tk) > 0 \quad \text{for} \ |t| < r \]
Then $F''(t)$ is positive for $|t| < r$ by Theorem 4(i). This tells us that $F(t)$ is concave up, and hence, $F(0) < F(t)$ if $0 < |t| < |r|$ (see Exercise 58 in Section 4.4). Because $F(0) = f(a, b)$, we may conclude that $f(a, b)$ is the minimum value of f along each segment of radius r through (a, b). Therefore, $f(a, b)$ is a local minimum value of f as claimed. The case that $D(a, b) > 0$ and $f_{xx}(a, b) < 0$ is similar.

Case 2: $D(a, b) < 0$. For $t = 0$, Eq. (2) yields
\[
F''(0) = f_{xx}(a, b)h^2 + 2f_{xy}(a, b)hk + f_{yy}(a, b)k^2
\]

Since $D(a, b) < 0$, this quadratic form takes on both positive and negative values by Theorem 4(iii). Choose $\langle h, k \rangle$ for which $F''(0) > 0$. By the Second Derivative Test in one variable, $F(0)$ is a local minimum of $F(t)$, and hence, there is a value $r > 0$ such that $F(0) < F(t)$ for $0 < |t| < r$. However, we can also choose $\langle h, k \rangle$ so that $F''(0) < 0$, in which case $F(0) > F(t)$ for $0 < |t| < r$ for some $r > 0$. Because $F(0) = f(a, b)$, we conclude that $f(a, b)$ is a local min in some directions and a local max in other directions. Therefore, f has a saddle point at $P = (a, b)$.

15.7 SUMMARY

- We say that $P = (a, b)$ is a **critical point** of $f(x, y)$ if
 - $f_x(a, b) = 0$ or $f_x(a, b)$ does not exist, and
 - $f_y(a, b) = 0$ or $f_y(a, b)$ does not exist.

- In n-variables, $P = (a_1, \ldots, a_n)$ is a critical point of $f(x_1, \ldots, x_n)$ if each partial derivative $f_{x_j}(a_1, \ldots, a_n)$ either is zero or does not exist.

- The local minimum or maximum values of f occur at critical points.

- The **discriminant** of $f(x, y)$ at $P = (a, b)$ is the quantity
 \[
 D(a, b) = f_{xx}(a, b)f_{yy}(a, b) - f_{xy}(a, b)^2
 \]

- Second Derivative Test: If $P = (a, b)$ is a critical point of $f(x, y)$, then
 - $D(a, b) > 0$, $f_{xx}(a, b) > 0 \Rightarrow f(a, b)$ is a local minimum
 - $D(a, b) > 0$, $f_{xx}(a, b) < 0 \Rightarrow f(a, b)$ is a local maximum
 - $D(a, b) < 0 \Rightarrow$ saddle point
 - $D(a, b) = 0 \Rightarrow$ test inconclusive

- A point P is an **interior** point of a domain \mathcal{D} if \mathcal{D} contains some open disk $D(P, r)$ centered at P. A point P is a **boundary point** of \mathcal{D} if every open disk $D(P, r)$ contains points in \mathcal{D} and points not in \mathcal{D}. The **interior** of \mathcal{D} is the set of all interior points, and the **boundary** is the set of all boundary points. A domain is **closed** if it contains all of its boundary points and **open** if it is equal to its interior.

- Existence and location of global extrema: If f is continuous and \mathcal{D} is closed and bounded, then
 - f takes on both a minimum and a maximum value on \mathcal{D}.
 - The extreme values occur either at critical points in the interior of \mathcal{D} or at points on the boundary of \mathcal{D}.

To determine the extreme values, first find the critical points in the interior of \mathcal{D}. Then compare the values of f at the critical points with the minimum and maximum values of f on the boundary.
15.7 Exercises

Preliminary Questions

1. The functions \(f(x, y) = x^2 + y^2 \) and \(g(x, y) = x^2 - y^2 \) both have a critical point at \((0, 0)\). How is the behavior of the two functions at the critical point different?

2. Identify the points indicated in the contour maps as local minima, local maxima, saddle points, or neither (Figure 17).

![Contour Maps](image)

FIGURE 17

3. Let \(f(x, y) \) be a continuous function on a domain \(D \) in \(\mathbb{R}^2 \). Determine which of the following statements are true:

 (a) If \(D \) is closed and bounded, then \(f \) takes on a maximum value on \(D \).

 (b) If \(D \) is neither closed nor bounded, then \(f \) does not take on a maximum value of \(D \).

 (c) \(f(x, y) \) need not have a maximum value on the domain \(D \) defined by \(0 \leq x \leq 1, \ 0 \leq y \leq 1 \).

 (d) A continuous function takes on neither a minimum nor a maximum value on the open quadrant \(\{(x, y) : x > 0, y > 0\} \)

Exercises

1. Let \(P = (a, b) \) be a critical point of \(f(x, y) = x^2 + y^2 - 4xy \).

 (a) First use \(f_x(x, y) = 0 \) to show that \(a = 2b \). Then use \(f_y(x, y) = 0 \) to show that \(P = (0, 0), (2\sqrt{2}, \sqrt{2}), \) or \((-2\sqrt{2}, -\sqrt{2}) \).

 (b) Referring to Figure 18, determine the local minima and saddle points of \(f(x, y) \) and find the absolute minimum value of \(f(x, y) \).

![Graph](image)

FIGURE 18

2. Find the critical points of the functions

 \[f(x, y) = x^2 + 2y^2 - 4y + 6x, \quad g(x, y) = x^2 - 12xy + y \]

 Use the Second Derivative Test to determine the local minimum, local maximum, and saddle points. Match \(f(x, y) \) and \(g(x, y) \) with their graphs in Figure 19.

![Graphs](image)

FIGURE 19

3. Find the critical points of

 \[f(x, y) = 8y^4 + x^2 + xy - 3y^2 - y^3 \]

 Use the contour map in Figure 20 to determine their nature (local minimum, local maximum, or saddle point).

![Contour Map](image)

FIGURE 20 Contour map of \(f(x, y) = 8y^4 + x^2 + xy - 3y^2 - y^3 \).

4. Use the contour map in Figure 21 to determine whether the critical points \(A, B, C, D \) are local minima, local maxima, or saddle points.

![Graph](image)

FIGURE 21

5. Let \(f(x, y) = y^2x - xy^2 + xy \).

 (a) Show that the critical points \((x, y)\) satisfy the equations

 \[y(y - 2x + 1) = 0, \quad x(2y - x + 1) = 0 \]
(b) Show that \(f \) has three critical points where \(x = 0 \) or \(y = 0 \) (or both) and one critical point where \(x \) and \(y \) are nonzero.
(c) Use the Second Derivative Test to determine the nature of the critical points.

6. Show that \(f(x, y) = \sqrt{x^2 + y^2} \) has one critical point \(P \) and that \(f \) is non-differentiable at \(P \) and that the Second Derivative Test fails for \(P \).

In Exercises 7–25, find the critical points of the function. Then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points (or state that the test fails).

7. \(f(x, y) = x^2 + y^2 - xy + x \)
8. \(f(x, y) = x^3 - xy + y^3 \)
9. \(f(x, y) = x^3 + 2xy - 2y^2 - 10x \)
10. \(f(x, y) = x^3 + 4x - 3x^2 - 8x \)
11. \(f(x, y) = 4x - 3x^3 - 2xy \)
12. \(f(x, y) = x^3 + y^4 - 6x - 2y^2 \)
13. \(f(x, y) = x^4 + y^4 - 4xy \)
14. \(f(x, y) = e^{x^2 - y^2 + 4y} \)
15. \(f(x, y) = xy e^{-x^2 - y^2} \)
16. \(f(x, y) = e^x - x e^y \)
17. \(f(x, y) = \sin(x + y) - \cos x \)
18. \(f(x, y) = x \ln(x + y) \)
19. \(f(x, y) = \ln x + 2 \ln y - x - 4y \)
20. \(f(x, y) = (x + y) \ln(x^2 + y^2) \)
21. \(f(x, y) = x - y^2 - \ln(x + y) \)
22. \(f(x, y) = (x - y)e^{x^2 - y^2} \)
23. \(f(x, y) = (x + 3y)e^{x^2 - y^2} \)
24. Show that \(f(x, y) = x^2 \) has infinitely many critical points (as a function of two variables) and that the Second Derivative Test fails for all of them. What is the minimum value of \(f \)? Does \(f(x, y) \) have any local maxima?
25. Prove that the function \(f(x, y) = \frac{1}{2}x^2 + \frac{3}{2}y^{3/2} - xy \) satisfies \(f(x, y) \geq 0 \) for \(x \geq 0 \) and \(y \geq 0 \).
(a) First, verify that the set of critical points of \(f \) is the parabola \(y = x^2 \) and that the Second Derivative Test fails for these points.
(b) Show that for fixed \(b \), the function \(g(x) = f(b, x) \) is concave up for \(x > 0 \) with a critical point at \(x = b \).
(c) Conclude that \(f(a, b) \geq f(b, a) \) for all \(a, b \geq 0 \).
26. Let \(f(x, y) = (x^2 + y^2)e^{-x^2 - y^2} \).
(a) Where does \(f \) take on its minimum value? Do not use calculus to answer this question.
(b) Verify that the set of critical points of \(f \) consists of the origin \((0, 0)\) and the unit circle \(x^2 + y^2 = 1 \).
(c) The Second Derivative Test fails for points on the unit circle (this can be checked by some lengthy algebra). Prove, however, that \(f \) takes on its maximum value on the unit circle by analyzing the function \(g(t) = te^{-t} \) for \(t > 0 \).
27. Use a computer algebra system to find a numerical approximation to the critical point of
\[
 f(x, y) = (1 - x + x^2)e^{x^2} + (1 - y + y^2)e^{y^2}
\]
Apply the Second Derivative Test to confirm that it corresponds to a local minimum as in Figure 22.

28. Which of the following domains are closed and which are bounded?
(a) \(\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1 \} \)
(b) \(\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1 \} \)
(c) \(\{(x, y) \in \mathbb{R}^2 : x \geq 0 \} \)
(d) \(\{(x, y) \in \mathbb{R}^2 : x > 0, y > 0 \} \)
(e) \(\{(x, y) \in \mathbb{R}^2 : 1 \leq x \leq 4, 5 \leq y \leq 10 \} \)
(f) \(\{(x, y) \in \mathbb{R}^2 : x > 0, x^2 + y^2 \leq 10 \} \)

In Exercises 29–32, determine the global extreme values of the function on the given set without using calculus.
29. \(f(x, y) = x + y, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \)
30. \(f(x, y) = 2x - y, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 3 \)
31. \(f(x, y) = (x^2 + y^2 + 1)^{-1}, \quad 0 \leq x \leq 3, \quad 0 \leq y \leq 5 \)
32. \(f(x, y) = e^{-x^2 - y^2}, \quad x^2 + y^2 \leq 1 \)
33. Assumptions Matter Show that \(f(x, y) = xy \) does not have a global minimum or a global maximum on the domain
\[
 D = \{(x, y) : 0 < x < 1, 0 < y < 1 \}
\]
Explain why this does not contradict Theorem 3.
34. Find a continuous function that does not have a global maximum on the domain \(D = \{(x, y) : x + y \geq 0, x + y \leq 1 \} \). Explain why this does not contradict Theorem 3.
35. Find the maximum of
\[
 f(x, y) = x + y - x^2 - y^2 - xy
\]
on the square, \(0 \leq x \leq 2, 0 \leq y \leq 2 \) (Figure 23).
(a) First, locate the critical point of \(f \) in the square, and evaluate \(f \) at this point.
(b) On the bottom edge of the square, \(y = 0 \) and \(f(x, 0) = x - x^2 \). Find the extreme values of \(f \) on the bottom edge.
(c) Find the extreme values of \(f \) on the remaining edges.
(d) Find the largest among the values computed in (a), (b), and (c).

FIGURE 22 Plot of \(f(x, y) = (1 - x + x^2)e^{x^2} + (1 - y + y^2)e^{y^2} \).

36. Find the maximum of \(f(x, y) = y^2 + xy - x^2 \) on the square \(0 \leq x \leq 2, 0 \leq y \leq 2 \).

In Exercises 37–45, determine the global extreme values of the function on the given domain.

37. \(f(x, y) = x^3 - 2y, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \)

38. \(f(x, y) = 5x - 3y, \quad y \geq x - 2, \quad y \geq -x - 2, \quad y \leq 3 \)

39. \(f(x, y) = x^2 + 2y^2, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \)

40. \(f(x, y) = x^3 + x^2 y + 2y^2, \quad x, y \geq 0, \quad x + y \leq 1 \)

41. \(f(x, y) = x^2 + xy^3 + y^2, \quad x, y \geq 0, \quad x + y \leq 1 \)

42. \(f(x, y) = x^3 + y^3 - 3xy, \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \)

43. \(f(x, y) = x^2 + y^2 - 2x - 4y, \quad x \geq 0, \quad 0 \leq y \leq 3, \quad y \geq x \)

44. \(f(x, y) = (4y^2 - x^2)e^{-x^2-y^2}, \quad x^2 + y^2 \leq 2 \)

45. \(f(x, y) = x^2 + 2xy^2, \quad x^2 + y^2 \leq 1 \)

46. Find the maximum volume of a box inscribed in the tetrahedron bounded by the coordinate planes and the plane \(x + \frac{1}{2}y + \frac{1}{6}z = 1 \)

47. Find the maximum volume of the largest box of the type shown in Figure 24, with one corner at the origin and the opposite corner at a point \(P = (x, y, z) \) on the paraboloid

\[
z = 1 - \frac{x^2}{4} - \frac{y^2}{9}\]

with \(x, y, z \geq 0 \)

48. Find the point on the plane

\[
z = x + y + 1\]

closest to the point \(P = (1, 0, 0) \). Hint: Minimize the square of the distance.

49. Show that the sum of the squares of the distances from a point \(P = (c, d) \) to \(n \) fixed points \((a_1, b_1), \ldots, (a_n, b_n)\) is minimized when \(c \) is the average of the \(x \)-coordinates \(a_i \) and \(d \) is the average of the \(y \)-coordinates \(b_j \).

50. Show that the rectangular box (including the top and bottom) with fixed volume \(V = 27 \text{ m}^3 \) and smallest possible surface area is a cube (Figure 25).

51. Consider a rectangular box \(B \) that has a bottom and sides but no top and has minimal surface area among all boxes with fixed volume \(V \).

(a) Do you think \(B \) is a cube as in the solution to Exercise 50? If not, how would its shape differ from a cube?

(b) Find the dimensions of \(B \) and compare with your response to (a).

52. Find three positive numbers that sum to 150 with the largest possible product of the three.

53. A 120-m long fence is to be cut into pieces to make three enclosures, each of which is square. How should the fence be cut up in order to minimize the total area enclosed by the fence?

54. A box with a volume of \(8 \text{ m}^3 \) is to be constructed with a gold-plated top, silver-plated bottom, and copper-plated sides. If gold plate costs $120 per square meter, silver plate costs $40 per square meter, and copper plate costs $10 per square meter, find the dimensions that will minimize the cost of the materials for the box.

55. Find the maximum volume of a cylindrical soda can such that the sum of its height and its circumference is 120 cm.

56. Given \(n \) data points \((x_1, y_1), \ldots, (x_n, y_n) \), the linear least-squares fit is the linear function

\[
f(x) = mx + b\]

that minimizes the sum of the squares (Figure 26):

\[
E(m, b) = \sum_{j=1}^{n} (y_j - f(x_j))^2
\]

Show that the minimum value of \(E \) occurs for \(m \) and \(b \) satisfying the two equations

\[
m \left(\sum_{j=1}^{n} x_j \right) + bn = \sum_{j=1}^{n} y_j
\]

\[
m \sum_{j=1}^{n} x_j^2 + b \sum_{j=1}^{n} x_j = \sum_{j=1}^{n} x_j y_j
\]
What is the value of the unit vector pointing from \(A \) to \(B \) for the data points. Find the linear least-squares fit (Exercise 56) for the data points.

![Figure 26](image)

Figure 26 The linear least-squares fit minimizes the sum of the squares of the vertical distances from the data points to the line.

57. The power (in microwatts) of a laser is measured as a function of current (in milliamps). Find the linear least-squares fit (Exercise 56) for the data points.

<table>
<thead>
<tr>
<th>Current (milliamps)</th>
<th>1.0</th>
<th>1.1</th>
<th>1.2</th>
<th>1.3</th>
<th>1.4</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laser power (microwatts)</td>
<td>0.52</td>
<td>0.56</td>
<td>0.82</td>
<td>0.78</td>
<td>1.23</td>
<td>1.50</td>
</tr>
</tbody>
</table>

58. Let \(A = (a, b) \) be a fixed point in the plane, and let \(f_A(P) \) be the distance from \(A \) to the point \(P = (x, y) \). For \(P \neq A \), let \(e_{AP} \) be the unit vector pointing from \(A \) to \(P \) (Figure 27):

\[
e_{AP} = \frac{AP}{||AP||}
\]

Further Insights and Challenges

59. In this exercise, we prove that for all \(x, y \geq 0 \):

\[
\frac{1}{\alpha} x^\alpha + \frac{1}{\beta} y^\beta \geq xy
\]

where \(\alpha \geq 1 \) and \(\beta \geq 1 \) are numbers such that \(\alpha^{-1} + \beta^{-1} = 1 \). To do this, we prove that the function

\[
f(x, y) = \alpha^{-1} x^\alpha + \beta^{-1} y^\beta - xy
\]

satisfies \(f(x, y) \geq 0 \) for all \(x, y \geq 0 \).

(a) Show that the set of critical points of \(f(x, y) \) is the curve \(y = x^{\alpha-1} \) (Figure 28). Note that this curve can also be described as \(x = y^{\beta-1} \). What is the value of \(f(x, y) \) at points on this curve?

(b) Verify that the Second Derivative Test fails. Show, however, that for fixed \(b > 0 \), the function \(g(x) = f(x, b) \) is concave up with a critical point at \(x = b^{\beta-1} \).

(c) Conclude that for all \(x > 0 \), \(f(x, b) \geq f(b^{\beta-1}, b) = 0 \).

![Figure 28](image)

Figure 28 The critical points of \(\frac{1}{\alpha} x^\alpha + \frac{1}{\beta} y^\beta - xy \) form a curve \(y = x^{\alpha-1} \).

60. The following problem was posed by Pierre de Fermat: Given three points \(A = (a_1, a_2), B = (b_1, b_2), \) and \(C = (c_1, c_2) \) in the plane, find the point \(P = (x, y) \) that minimizes the sum of the distances

\[
f(x, y) = AP + BP + CP
\]

Let \(e, f, g \) be the unit vectors pointing from \(P \) to the points \(A, B, C \) as in Figure 29.

(a) Use Exercise 58 to show that the condition \(\nabla f(P) = 0 \) is equivalent to

\[
e + f + g = 0
\]

(b) Show that \(f(x, y) \) is differentiable except at points \(A, B, C \). Conclude that the minimum of \(f(x, y) \) occurs either at a point \(P \) satisfying Eq. (3) or at one of the points \(A, B, C \).

(c) Prove that Eq. (3) holds if and only if \(P \) is the Fermat point, defined as the point \(P \) for which the angles between the segments \(AP, BP, CP \) are all \(120^\circ \) (Figure 29).

(d) Show that the Fermat point does not exist if one of the angles in \(\triangle ABC \) is greater than \(120^\circ \). Where does the minimum occur in this case?

![Figure 29](image)

(A) \(P \) is the Fermat point (the angles between \(e, f, \) and \(g \) are all \(120^\circ \)).

(B) Fermat point does not exist.
15.8 Lagrange Multipliers: Optimizing with a Constraint

Some optimization problems involve finding the extreme values of a function \(f(x, y) \) subject to a constraint \(g(x, y) = 0 \). Suppose that we want to find the point on the line \(2x + 3y = 6 \) closest to the origin (Figure 1). The distance from \((x, y)\) to the origin is \(f(x, y) = \sqrt{x^2 + y^2} \), so our problem is

Minimize \(f(x, y) = \sqrt{x^2 + y^2} \) subject to \(g(x, y) = 2x + 3y - 6 = 0 \)

We are not seeking the minimum value of \(f(x, y) \) (which is 0), but rather the minimum among all points \((x, y)\) that lie on the line.

The method of Lagrange multipliers is a general procedure for solving optimization problems with a constraint. Here is a description of the main idea.

GRAPHICAL INSIGHT Imagine standing at point \(Q \) in Figure 2(A). We want to increase the value of \(f \) while remaining on the constraint curve. The gradient vector \(\nabla f_Q \) points in the direction of maximum increase, but we cannot move in the gradient direction because that would take us off the constraint curve. However, the gradient points to the right, so we can still increase \(f \) somewhat by moving to the right along the constraint curve.

We keep moving to the right until we arrive at the point \(P \), where \(\nabla f_P \) is orthogonal to the constraint curve [Figure 2(B)]. Once at \(P \), we cannot increase \(f \) further by moving either to the right or to the left along the constraint curve. Thus, \(f(P) \) is a local maximum subject to the constraint.

Now, the vector \(\nabla g_P \) is also orthogonal to the constraint curve, so \(\nabla f_P \) and \(\nabla g_P \) must point in the same or opposite directions. In other words, \(\nabla f_P = \lambda \nabla g_P \) for some scalar \(\lambda \) (called a Lagrange multiplier). Graphically, this means that a local max subject to the constraint occurs at points \(P \) where the level curves of \(f \) and \(g \) are tangent.

(A) \(f \) increases as we move to the right along the constraint curve.

(B) The local maximum of \(f \) on the constraint curve occurs where \(\nabla f_P \) and \(\nabla g_P \) are parallel.

THEOREM 1 Lagrange Multipliers Assume that \(f(x, y) \) and \(g(x, y) \) are differentiable functions. If \(f(x, y) \) has a local minimum or a local maximum on the constraint curve \(g(x, y) = 0 \) at \(P = (a, b) \), and if \(\nabla g_P \neq \mathbf{0} \), then there is a scalar \(\lambda \) such that

\[
\nabla f_P = \lambda \nabla g_P
\]

Proof Let \(\mathbf{r}(t) \) be a parametrization of the constraint curve \(g(x, y) = 0 \) near \(P \), chosen so that \(\mathbf{r}(0) = P \) and \(\mathbf{r}'(0) \neq \mathbf{0} \). Then \(f(\mathbf{r}(0)) = f(P) \), and by assumption, \(f(\mathbf{r}(t)) \) has a local min or max at \(t = 0 \). Thus, \(t = 0 \) is a critical point of \(f(\mathbf{r}(t)) \) and

\[
\frac{d}{dt} f(\mathbf{r}(t)) \bigg|_{t=0} = \nabla f_P \cdot \mathbf{r}'(0) = 0
\]

(by the Chain Rule)
This shows that \(\nabla f_P \) is orthogonal to the tangent vector \(r'(0) \) to the curve \(g(x, y) = 0 \). The gradient \(\nabla g_P \) is also orthogonal to \(r'(0) \) [because \(\nabla g_P \) is orthogonal to the level curve \(g(x, y) = 0 \) at \(P \)]. We conclude that \(\nabla f_P \) and \(\nabla g_P \) are parallel, and hence, \(\nabla f_P \) is a multiple of \(\nabla g_P \) as claimed.

We refer to Eq. (1) as the Lagrange condition. When we write this condition in terms of components, we obtain the Lagrange equations:

\[
\begin{align*}
 f_x(a, b) &= \lambda g_x(a, b) \\
 f_y(a, b) &= \lambda g_y(a, b)
\end{align*}
\]

A point \(P = (a, b) \) satisfying these equations is called a critical point for the optimization problem with constraint and \(f(a, b) \) is called a critical value.

EXAMPLE 1 Find the extreme values of \(f(x, y) = 2x + 5y \) on the ellipse

\[
\left(\frac{x}{4}\right)^2 + \left(\frac{y}{3}\right)^2 = 1
\]

Solution

Step 1. Write out the Lagrange equations.

The constraint curve is \(g(x, y) = 0 \), where \(g(x, y) = (x/4)^2 + (y/3)^2 - 1 \). We have

\[
\begin{align*}
 \nabla f &= (2, 5) \\
 \nabla g &= \left(\frac{x}{8}, \frac{2y}{9}\right)
\end{align*}
\]

The Lagrange equations \(\nabla f_P = \lambda \nabla g_P \) are

\[
(2, 5) = \lambda \left(\frac{x}{8}, \frac{2y}{9}\right) \quad \Rightarrow \quad 2 = \frac{\lambda x}{8}, \quad 5 = \frac{\lambda (2y)}{9}
\]

Step 2. Solve for \(\lambda \) in terms of \(x \) and \(y \).

Eq. (2) gives us two equations for \(\lambda \):

\[
\lambda = \frac{16}{x}, \quad \lambda = \frac{45}{2y}
\]

To justify dividing by \(x \) and \(y \), note that \(x \) and \(y \) must be nonzero, because \(x = 0 \) or \(y = 0 \) would violate Eq. (2).

Step 3. Solve for \(x \) and \(y \) using the constraint.

The two expressions for \(\lambda \) must be equal, so we obtain \(\frac{16}{x} = \frac{45}{2y} \) or \(y = \frac{45}{32}x \). Now substitute this in the constraint equation and solve for \(x \):

\[
\left(\frac{x}{4}\right)^2 + \left(\frac{\frac{45}{32}x}{3}\right)^2 = 1
\]

\[
x^2 \left(\frac{1}{16} + \frac{225}{1024}\right) = \frac{289}{1024}
\]

Thus, \(x = \pm\sqrt{\frac{1024}{289}} = \pm\frac{32}{17} \) and since \(y = \frac{45}{32}x \), the critical points are \(P = \left(\frac{32}{17}, \frac{45}{17}\right) \) and \(Q = \left(-\frac{32}{17}, -\frac{45}{17}\right) \).

Step 4. Calculate the critical values.

\[
f(P) = f \left(\frac{32}{17}, \frac{45}{17}\right) = 2 \left(\frac{32}{17}\right) + 5 \left(\frac{45}{17}\right) = 17
\]

and \(f(Q) = -17 \). We conclude that the maximum of \(f(x, y) \) on the ellipse is 17 and the minimum is \(-17 \) (Figure 3).
Assumptions Matter According to Theorem 3 in Section 15.7, a continuous function on a closed, bounded domain takes on extreme values. This tells us that if the constraint curve is bounded (as in the previous example, where the constraint curve is an ellipse), then every continuous function \(f(x, y) \) takes on both a minimum and a maximum value subject to the constraint. Be aware, however, that extreme values need not exist if the constraint curve is not bounded. For example, the constraint \(x - y = 0 \) is an unbounded line. The function \(f(x, y) = x \) has neither a minimum nor a maximum subject to \(x - y = 0 \) because \(f(a, a) \) satisfies the constraint, yet \(f(a, a) = a \) can be arbitrarily large or small.

EXAMPLE 2 Cobb–Douglas Production Function By investing \(x \) units of labor and \(y \) units of capital, a watch manufacturer can produce \(P(x, y) = 50x^{0.4}y^{0.6} \) watches. (See Figure 4.) Find the maximum number of watches that can be produced on a budget of $20,000 if labor costs $100 per unit and capital costs $200 per unit.

Solution The total cost of \(x \) units of labor and \(y \) units of capital is \(100x + 200y \). Our task is to maximize the function \(P(x, y) = 50x^{0.4}y^{0.6} \) subject to the following budget constraint (Figure 5):

\[
g(x, y) = 100x + 200y - 20,000 = 0
\]

Step 1. Write out the Lagrange equations.

\[
P_x(x, y) = \lambda g_x(x, y) : \quad 20x^{-0.6}y^{0.6} = 100\lambda.
\]

\[
P_y(x, y) = \lambda g_y(x, y) : \quad 30x^{0.4}y^{-0.4} = 200\lambda.
\]

Step 2. Solve for \(\lambda \) in terms of \(x \) and \(y \).

These equations yield two expressions for \(\lambda \) that must be equal:

\[
\lambda = \frac{1}{3} \left(\frac{y}{x} \right)^{0.6} = \frac{5}{20} \left(\frac{y}{x} \right)^{-0.4}
\]

Step 3. Solve for \(x \) and \(y \) using the constraint.

Multiply Eq. (5) by \(S(y/x)^{0.4} \) to obtain \(y/x = 15/20 \), or \(y = \frac{3}{4}x \). Then substitute in Eq. (4):

\[
100x + 200y = 100x + 200 \left(\frac{3}{4} x \right) = 20,000 \quad \Rightarrow \quad 250x = 20,000
\]

We obtain \(x = \frac{20,000}{250} = 80 \) and \(y = \frac{3}{4}x = 60 \). The critical point is \(A = (80, 60) \).

Step 4. Calculate the critical values.

Since \(P(x, y) \) is increasing as a function of \(x \) and \(y \), \(\nabla P \) points to the northeast, and it is clear that \(P(x, y) \) takes on a maximum value at \(A \) (Figure 5). The maximum is \(P(80, 60) = 50(80)^{0.4}(60)^{0.6} = 3365.87 \), or roughly 3365 watches, with a cost per watch of \(\frac{20,000}{3365} \) or about $5.94.
maximum value is the height of the highest point on the surface occurring when the last isotherm intersects the surface in just a single point. Hence, in order for the left-pointing gradient vectors to become right-pointing gradient vectors in a continuous manner, they must be parallel, and one must be a multiple of the other. Thus, at that point, \(\nabla f_P = \lambda \nabla g_P \). A similar argument holds for the minimum temperature on the surface.

There is one other situation to consider. Imagine that as we move left to right across our surface, temperature first increases to \(f = 4 \) and then it decreases again, as in Figure 8. There are a whole collection of points with the maximal temperature of \(f = 4 \). In this case, \(\nabla f \) must point to the right on isotherms to the left of \(f = 4 \) since this is the direction of increasing temperature, and they must point to the left on isotherms to the right of \(f = 4 \) since this is the direction of increasing temperature. Hence, in order for the left-pointing gradient vectors to become right-pointing gradient vectors in a continuous manner, they must be equal to \(\mathbf{0} \) on the \(f = 4 \) isotherm. This makes sense as on that isotherm, there is no direction of increasing temperature. So for all of the points on the surface with maximal temperature, of which there are now many, the equation \(\nabla f = \lambda \nabla g \) is still satisfied, but by taking \(\lambda = 0 \).

In the next example, we consider a problem in three variables.

Example 3 Lagrange Multipliers in Three Variables
Find the point on the plane \(\frac{x}{2} + \frac{y}{4} + \frac{z}{4} = 1 \) closest to the origin in \(\mathbb{R}^3 \).

Solution
Our task is to minimize the distance \(d = \sqrt{x^2 + y^2 + z^2} \) subject to the constraint \(\frac{x}{2} + \frac{y}{4} + \frac{z}{4} = 1 \). But, finding the minimum distance \(d \) is the same as finding the minimum square of the distance \(d^2 \), so our problem can be stated:
Minimize \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to \(g(x, y, z) = \frac{x}{2} + \frac{y}{4} + \frac{z}{4} - 1 = 0 \)

The Lagrange condition is

\[
\begin{align*}
\langle 2x, 2y, 2z \rangle &= \lambda \left(\begin{array}{c}
\frac{1}{2} \\
\frac{1}{4} \\
\frac{1}{4}
\end{array} \right) \\
\nabla f &= \lambda \nabla g
\end{align*}
\]

This yields

\[
\lambda = 4x = 8y = 8z \quad \Rightarrow \quad z = y = \frac{x}{2}
\]

Substituting in the constraint equation, we obtain

\[
\frac{x}{2} + \frac{y}{4} + \frac{z}{4} = \frac{2z}{2} + \frac{z}{4} + \frac{3z}{2} = 1 \quad \Rightarrow \quad z = \frac{2}{3}
\]

Thus, \(x = 2z = \frac{4}{3} \) and \(y = z = \frac{2}{3} \). This critical point must correspond to the minimum of \(f \). There is no maximum of \(f \) on the plane since there are points on the plane that are arbitrarily far from the origin. Hence, the point on the plane closest to the origin is \(P = \left(\frac{4}{3}, \frac{2}{3}, \frac{2}{3} \right) \) (Figure 9).

The method of Lagrange multipliers can be used when there is more than one constraint equation, but we must add another multiplier for each additional constraint. For example, if the problem is to minimize \(f(x, y, z) \) subject to constraints \(g(x, y, z) = 0 \) and \(h(x, y, z) = 0 \), then the Lagrange condition is

\[
\nabla f = \lambda \nabla g + \mu \nabla h
\]

EXAMPLE 4 Lagrange Multipliers with Multiple Constraints

The intersection of the plane \(x + \frac{1}{2} y + \frac{1}{2} z = 0 \) with the unit sphere \(x^2 + y^2 + z^2 = 1 \) is a great circle (Figure 10). Find the point on this great circle with the largest \(x \)-coordinate.

Solution Our task is to maximize the function \(f(x, y, z) = x \) subject to the two constraint equations

\[
g(x, y, z) = x + \frac{1}{2} y + \frac{1}{3} z = 0, \quad h(x, y, z) = x^2 + y^2 + z^2 - 1 = 0
\]

The Lagrange condition is

\[
\nabla f = \lambda \nabla g + \mu \nabla h
\]

\[
(1, 0, 0) = \lambda \left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{3}
\end{array} \right) + \mu \left(\begin{array}{c}
2x \\
2y \\
2z
\end{array} \right)
\]

Note that \(\mu \) cannot be zero, since, if it were, the Lagrange condition would become \((1, 0, 0) = \lambda \left(\begin{array}{c}1/2 \\ 0 \\ 1/3 \end{array} \right) \), and this equation is not satisfied for any value of \(\lambda \). Now, the Lagrange condition gives us three equations:

\[
\begin{align*}
\lambda + 2\mu x &= 1, \\
\frac{1}{2} \lambda + 2\mu y &= 0, \\
\frac{1}{3} \lambda + 2\mu z &= 0
\end{align*}
\]

The last two equations yield \(\lambda = -4\mu y \) and \(\lambda = -6\mu z \). Because \(\mu \neq 0 \),

\[
-4\mu y = -6\mu z \quad \Rightarrow \quad y = \frac{3}{2} z
\]
Now use this relation in the first constraint equation:
\[x + \frac{1}{2} y + \frac{1}{3} z = x + \frac{1}{2} \left(\frac{3}{2} z \right) + \frac{1}{3} z = 0 \Rightarrow x = -\frac{13}{12} z \]

Finally, we can substitute in the second constraint equation:
\[x^2 + y^2 + z^2 - 1 = \left(\frac{13}{12} z \right)^2 + \left(\frac{3}{2} z \right)^2 + z^2 - 1 = 0 \]
to obtain
\[\frac{637}{144} z^2 = 1 \text{ or } z = \pm \frac{12}{13} \sqrt{13}. \]
Since \(x = -\frac{13}{12} z \) and \(y = \frac{3}{2} z \), the critical points are
\[P = \left(-\frac{\sqrt{13}}{7}, \frac{18}{7\sqrt{13}}, \frac{12}{7\sqrt{13}} \right), \quad Q = \left(\frac{\sqrt{13}}{7}, -\frac{18}{7\sqrt{13}}, -\frac{12}{7\sqrt{13}} \right) \]
The critical point with the largest \(x \)-coordinate [the maximum value of \(f(x, y, z) \)] is \(Q \) with \(x \)-coordinate \(\frac{\sqrt{13}}{7} \approx 0.515 \).

15.8 SUMMARY

- Method of Lagrange multipliers: The local extreme values of \(f(x, y) \) subject to a constraint \(g(x,y) = 0 \) occur at points \(P \) (called critical points) satisfying the Lagrange condition \(\nabla f_P = \lambda \nabla g_P \). This condition is equivalent to the Lagrange equations:
 \[f_x(x, y) = \lambda g_x(x, y), \quad f_y(x, y) = \lambda g_y(x, y) \]
- If the constraint curve \(g(x, y) = 0 \) is bounded [e.g., if \(g(x, y) = 0 \) is a circle or ellipse], then global minimum and maximum values of \(f(x, y) \) subject to the constraint exist.
- Lagrange condition for a function of three variables \(f(x, y, z) \) subject to two constraints \(g(x,y,z) = 0 \) and \(h(x, y, z) = 0 \):
 \[\nabla f = \lambda \nabla g + \mu \nabla h \]

15.8 EXERCISES

Preliminary Questions

1. Suppose that the maximum of \(f(x, y) \) subject to the constraint \(g(x, y) = 0 \) occurs at a point \(P = (a, b) \) such that \(\nabla f_P \neq 0 \). Which of the following statements is true?
 (a) \(\nabla f_P \) is tangent to \(g(x, y) = 0 \) at \(P \).
 (b) \(\nabla f_P \) is orthogonal to \(g(x, y) = 0 \) at \(P \).

2. Figure 11 shows a constraint \(g(x, y) = 0 \) and the level curves of a function \(f \). In each case, determine whether \(f \) has a local minimum, a local maximum, or neither at the labeled point.

3. On the contour map in Figure 12:
 (a) Identify the points where \(\nabla f = \lambda \nabla g \) for some scalar \(\lambda \).
 (b) Identify the minimum and maximum values of \(f(x, y) \) subject to \(g(x, y) = 0 \).

FIGURE 11

FIGURE 12 Contour map of \(f(x,y) \); contour interval 2.
Exercises

In this exercise set, use the method of Lagrange multipliers unless otherwise stated.

1. Find the extreme values of the function \(f(x, y) = 2x + 4y \) subject to the constraint \(g(x, y) = x^2 + y^2 - 5 = 0 \).
 (a) Show that the Lagrange equation \(\nabla f = \lambda \nabla g \) gives \(\lambda = 1 \) and \(\lambda = 2 \).
 (b) Show that these equations imply \(\lambda = 0 \) and \(y = 2x \).
 (c) Use the constraint equation to determine the possible critical points \((x, y)\).
 (d) Evaluate \(f(x, y) \) at the critical points and determine the minimum and maximum values.

2. Find the extreme values of \(f(x, y) = x^2 + 2y^2 \) subject to the constraint \(g(x, y) = 4x - 6y = 25 \).
 (a) Show that the Lagrange equations yield \(2x = 4\lambda, 4y = -6\lambda \).
 (b) Show that if \(x = 0 \) or \(y = 0 \), then the Lagrange equations give \(x = y = 0 \). Since \((0,0) \) does not satisfy the constraint, you may assume that \(x \) and \(y \) are nonzero.
 (c) Use the Lagrange equations to show that \(y = -\frac{3}{2}x \).
 (d) Substitute in the constraint equation to show that there is a unique critical point \(P \).
 (e) Does \(P \) correspond to a minimum or maximum value of \(f \)? Refer to Figure 13 to justify your answer. Hint: Do the values of \(f(x, y) \) increase or decrease as \((x, y)\) moves away from \(P \) along the line \(g(x, y) = 0 \)?

3. Apply the method of Lagrange multipliers to the function \(f(x, y) = (x^2 + 1)y \) subject to the constraint \(x^2 + y^2 = 5 \). Hint: First show that \(y \neq 0 \); then treat the cases \(x = 0 \) and \(x \neq 0 \) separately.

In Exercises 4–15, find the minimum and maximum values of the function subject to the given constraint.

4. \(f(x, y) = 2x + 3y, \quad x^2 + y^2 = 4 \)
5. \(f(x, y) = x^2 + y^2, \quad 2x + 3y = 6 \)
6. \(f(x, y) = 4x^2 + 9y^2, \quad xy = 4 \)
7. \(f(x, y) = xy, \quad 4x^2 + 9y^2 = 32 \)
8. \(f(x, y) = x^2y + x + y, \quad xy = 4 \)
9. \(f(x, y) = x^2 + y^2, \quad x^4 + y^4 = 1 \)
10. \(f(x, y) = x^2y^4, \quad x^2 + 2y^2 = 6 \)
11. \(f(x, y, z) = 3x + 2y + 4z, \quad x^2 + 2y^2 + 6z^2 = 1 \)
12. \(f(x, y, z) = x^2 - y - z, \quad x^2 - y^2 + z = 0 \)
13. \(f(x, y, z) = xy + 2z, \quad x^2 + y^2 + z^2 = 36 \)
14. \(f(x, y, z) = x^2 + y^2 + z^2, \quad x + 3y + 2z = 36 \)
15. \(f(x, y, z) = xy + xz, \quad x^2 + y^2 + z^2 = 4 \)

16. Let
 \[f(x, y) = x^3 + xy + y^3, \quad g(x, y) = x^3 - xy + y^3 \]
 (a) Show that there is a unique point \(P = (a, b) \) on \(g(x, y) = 1 \) where \(\nabla f_P = \lambda \nabla g_P \) for some scalar \(\lambda \).
 (b) Refer to Figure 14 to determine whether \(f(P) \) is a local minimum or a local maximum of \(f \) subject to the constraint.
 (c) Does Figure 14 suggest that \(f(P) \) is a global extremum subject to the constraint?

17. Find the point \((a, b)\) on the graph of \(y = e^x \) where the value \(ab \) is as small as possible.

18. Find the rectangular box of maximum volume if the sum of the lengths of the edges is 300 cm.

19. The surface area of a right-circular cone of radius \(r \) and height \(h \) is \(S = \pi r \sqrt{r^2 + h^2} \), and its volume is \(V = \frac{1}{3} \pi r^2 h \).
 (a) Determine the ratio \(h/r \) for the cone with given surface area \(S \) and maximum volume \(V \).
 (b) What is the ratio \(h/r \) for a cone with given volume \(V \) and minimum surface area \(S \)?
 (c) Does a cone with given volume \(V \) and maximum surface area exist?

20. In Example 1, we found the maximum of \(f(x, y) = 2x + 5y \) on the ellipse \((x/4)^2 + (y/3)^2 = 1 \). Solve this problem again without using Lagrange multipliers. First, show that the ellipse is parametrized by \(x = 4 \cos t, \quad y = 3 \sin t \). Then find the maximum value of \(f(4 \cos t, 3 \sin t) \) using single-variable calculus. Is one method easier than the other?

21. Find the point on the ellipse \(x^2 + 6y^2 = 3xy = 40 \) with the largest \(x \)-coordinate (Figure 15).

FIGURE 13 Level curves of \(f(x, y) = x^2 + 2y^2 \) and graph of the constraint \(g(x, y) = 4x - 6y = 25 \).

FIGURE 14 Contour map of \(f(x, y) = x^3 + xy + y^3 \) and graph of the constraint \(g(x, y) = x^3 - xy + y^3 = 1 \).

FIGURE 15 Graph of \(x^2 + 6y^2 + 3xy = 40 \).
22. Use Lagrange multipliers to find the maximum area of a rectangle inscribed in the ellipse (Figure 16):
\[
\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
\]

![Figure 16](image)

In Exercises 33 and 34, let \(V \) be the volume of a can of radius \(r \) and height \(h \), and let \(S \) be its surface area (including the top and bottom).

23. Find the point \((x_0, y_0)\) on the line \(4x + 9y = 12\) that is closest to the origin.

24. Show that the point \((x_0, y_0)\) closest to the origin on the line \(ax + by = c\) has coordinates
\[
x_0 = \frac{ac}{a^2 + b^2}, \quad y_0 = \frac{bc}{a^2 + b^2}
\]

25. Find the maximum value of \(f(x, y) = x^a y^b\) for \(x \geq 0, y \geq 0\) on the line \(x + y = 1\), where \(a, b > 0\) are constants.

26. Show that the maximum value of \(f(x, y) = x^a y^b\) on the unit circle is
\[
\frac{6}{25} \sqrt{\frac{5}{5}}
\]

27. Find the maximum value of \(f(x, y) = x^a y^b\) for \(x \geq 0, y \geq 0\) on the unit circle, where \(a, b > 0\) are constants.

28. Find the maximum value of \(f(x, y, z) = x^a y^b z^c\) for \(x, y, z \geq 0\) on the unit sphere, where \(a, b, c > 0\) are constants.

29. Show that the minimum distance from the origin to a point on the plane \(ax + by + cz = d\) is
\[
|d| \sqrt{\frac{1}{a^2 + b^2 + c^2}}
\]

30. Antonio has $5.00 to spend on a lunch consisting of hamburgers ($1.50 each) and french fries ($1.00 per order). Antonio’s satisfaction from eating \(x_1\) hamburgers and \(x_2\) orders of french fries is measured by a function \(U(x_1, x_2) = \sqrt{x_1 x_2}\). How much of each type of food should he purchase to maximize his satisfaction? (Assume that fractional amounts of each food can be purchased.)

31. Let \(Q\) be the point on an ellipse closest to a given point \(P\) outside the ellipse. It was known to the Greek mathematician Apollonius (third century BCE) that \(\overrightarrow{PQ}\) is perpendicular to the tangent to the ellipse at \(Q\) (Figure 17). Explain in words why this conclusion is a consequence of the method of Lagrange multipliers. Hint: The circles centered at \(P\) are level curves of the function to be minimized.

![Figure 17](image)

32. In a contest, a runner starting at \(A\) must touch a point \(P\) along a river and then run to \(B\) in the shortest time possible (Figure 18). The runner should choose the point \(P\) that minimizes the total length of the path.

(a) Define a function
\[
f(x, y) = AP + PB, \quad \text{where } P = (x, y)
\]

Rephrase the runner’s problem as a constrained optimization problem, assuming that the river is given by an equation \(g(x, y) = 0\).

(b) Explain why the level curves of \(f(x, y)\) are ellipses.

(c) Use Lagrange multipliers to justify the following statement: The ellipse through the point \(P\) minimizing the length of the path is tangent to the river.

(d) Identify the point on the river in Figure 18 for which the length is minimal.

![Figure 18](image)

33. Find \(r\) and \(h\) that minimize \(S\) subject to the constraint \(V = 54\pi\).

34. Show that for both of the following two problems, \(P = (r, h)\) is a Lagrange critical point if \(h = 2r\):

- Minimize surface area \(S\) for fixed volume \(V\).
- Maximize volume \(V\) for fixed surface area \(S\).

Then use the contour plots in Figure 19 to explain why \(S\) has a minimum for fixed \(V\) but no maximum and, similarly, \(V\) has a maximum for fixed \(S\) but no minimum.

![Figure 19](image)

35. A plane with equation \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\) (\(a, b, c > 0\)) together with the positive coordinate planes forms a tetrahedron of volume \(V = \frac{1}{6}abc\) (Figure 20). Find the minimum value of \(V\) among all planes passing through the point \(P = (1, 1, 1)\).
36. With the same set-up as in the previous problem, find the plane that minimizes \(V \) if the plane is constrained to pass through a point \(P = (a, \beta, \gamma) \) with \(a, \beta, \gamma > 0 \).

37. Show that the Lagrange equations for \(f(x, y) = x + y \) subject to the constraint \(g(x, y) = x + 2y = 0 \) have no solution. What can you conclude about the minimum and maximum values of \(f(x, y) \)?

38. Show that the Lagrange equations for \(f(x, y) = 2x + y \) subject to the constraint \(g(x, y) = x^2 - y^2 = 1 \) have a solution but that \(f \) has no min or max on the constraint curve. Does this contradict Theorem 1?

39. Let \(L \) be the minimum length of a ladder that can reach over a fence of height \(h \) to a wall located a distance \(b \) behind the wall.
(a) Use Lagrange multipliers to show that \(L = \left(h^{2/3} + b^{2/3}\right)^{3/2} \) (Figure 21). Hint: Show that the problem amounts to minimizing \(f(x, y) = (x + b)^2 + (y + b)^2 \) subject to \(y/b = h/x \) or \(xy = bh \).
(b) Show that the value of \(L \) is also equal to the radius of the circle with center \((-b, -h)\) that is tangent to the graph of \(xy = bh \).

Further Insights and Challenges

40. Find the maximum value of \(f(x, y, z) = xy + xz + yz - xyz \) subject to the constraint \(x + y + z = 1 \), for \(x \geq 0, y \geq 0, z \geq 0 \).

41. Find the minimum of \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to the two constraints \(x + y + z = 1 \) and \(x + 2y + 3z = 6 \).

42. Find the maximum of \(f(x, y, z) = z \) subject to the two constraints \(x^2 + y^2 = 1 \) and \(x + y + z = 1 \).

43. Find the point lying on the intersection of the plane \(x + {1/2}y + {1/4}z = 0 \) and the sphere \(x^2 + y^2 + z^2 = 9 \) with the largest \(z \)-coordinate.

44. Find the maximum of \(f(x, y, z) = x + y + z \) subject to the two constraints \(x^2 + y^2 + z^2 = 9 \) and \(1/42x^2 + 1/8y^2 + 4z^2 = 9 \).

45. The cylinder \(x^2 + y^2 = 1 \) intersects the plane \(x + z = 1 \) in an ellipse. Find the point on such an ellipse that is farthest from the origin.

46. Find the minimum and maximum of \(f(x, y, z) = y + 2z \) subject to two constraints, \(2x + z = 4 \) and \(x^2 + y^2 = 1 \).

47. Find the minimum value of \(f(x, y, z) = x^2 + y^2 + z^2 \) subject to two constraints, \(x + 2y + z = 3 \) and \(x - y = 4 \).

(a) Show that the maximum of \(U(x_1, x_2) \) subject to the budget constraint is equal to \(c^2/(4p_1 p_2) \).

(b) Calculate the value of the Lagrange multiplier \(\lambda \) occurring in (a).

(c) Prove the following interpretation: \(\lambda \) is the rate of increase in utility per unit increase in total budget \(c \).

52. This exercise shows that the multiplier \(\lambda \) may be interpreted as a rate of change in general. Assume that the maximum of \(f(x, y) \) subject to \(g(x, y) = c \) occurs at a point \(P \). Then \(P \) depends on the value of \(c \), so we may write \(P = (x(c), y(c)) \) and we have \(g(x(c), y(c)) = c \).

(a) Show that
\[\nabla g(x(c), y(c)) \cdot \langle x'(c), y'(c) \rangle = 1 \]

Hint: Differentiate the equation \(g(x(c), y(c)) = c \) with respect to \(c \) using the Chain Rule.

(b) Use the Chain Rule and the Lagrange condition \(\nabla f_P = \lambda \nabla g_P \) to show that
\[\frac{d}{dc} f(x(c), y(c)) = \lambda \]

(c) Conclude that \(\lambda \) is the rate of increase in \(f \) per unit increase in the “budget level” \(c \).

53. Let \(B > 0 \). Show that the maximum of
\[f(x_1, \ldots, x_n) = x_1 x_2 \cdots x_n \]
subject to the constraints $x_1 + \cdots + x_n = B$ and $x_j \geq 0$ for $j = 1, \ldots, n$ occurs for $x_1 = \cdots = x_n = B/n$. Use this to conclude that

$$\left(\frac{a_1a_2\cdots a_n}{n}\right)^{1/n} \leq \frac{a_1 + \cdots + a_n}{n}$$

for all positive numbers a_1, \ldots, a_n.

54. Let $B > 0$. Show that the maximum of $f(x_1, \ldots, x_n) = x_1 + \cdots + x_n$ subject to $x_1^2 + \cdots + x_n^2 = B^2/n$ occurs for $x_1 = \cdots = x_n = B/n$. Conclude that

$$|a_1| + \cdots + |a_n| \leq \sqrt{n}(a_1^2 + \cdots + a_n^2)^{1/2}$$

for all numbers a_1, \ldots, a_n.

55. Given constants E, E_1, E_2, E_3, consider the maximum of

$$S(x_1, x_2, x_3) = x_1 \ln x_1 + x_2 \ln x_2 + x_3 \ln x_3$$

subject to two constraints:

$$x_1 + x_2 + x_3 = N, \quad E_1x_1 + E_2x_2 + E_3x_3 = E$$

Show that there is a constant μ such that $x_i = A^{-1}e^{\mu E_i}$ for $i = 1, 2, 3$, where $A = N^{-1}(e^{\mu E_1} + e^{\mu E_2} + e^{\mu E_3})$.

56. Boltzmann Distribution Generalize Exercise 55 to n variables: Show that there is a constant μ such that the maximum of

$$S = x_1 \ln x_1 + \cdots + x_n \ln x_n$$

subject to the constraints

$$x_1 + \cdots + x_n = N, \quad E_1x_1 + \cdots + E_nx_n = E$$

occurs for $x_i = A^{-1}e^{\mu E_i}$, where

$$A = N^{-1}(e^{\mu E_1} + \cdots + e^{\mu E_n})$$

This result lies at the heart of statistical mechanics. It is used to determine the distribution of velocities of gas molecules at temperature T; x_i is the number of molecules with kinetic energy E_i; $\mu = -(kT)^{-1}$, where k is Boltzmann’s constant. The quantity S is called the entropy.

CHAPTER REVIEW EXERCISES

1. Given $f(x, y) = \frac{\sqrt{x^2 - y^2}}{x + 3}$.
 (a) Sketch the domain of f.
 (b) Calculate $f(3, 1)$ and $f(-5, -3)$.
 (c) Find a point satisfying $f(x, y) = 1$.

2. Find the domain and range of:
 (a) $f(x, y, z) = \sqrt{x - y} + \sqrt{y - z}$
 (b) $f(x, y) = \ln(4x^2 - y)$

3. Sketch the graph $f(x, y) = x^2 - y + 1$ and describe its vertical and horizontal traces.

4. **CAS** Use a graphing utility to draw the graph of the function $\cos(x^2 + y^2)e^{x-y}$ in the domains $[-1, 1] \times [-1, 1], [-2, 2] \times [-2, 2],$ and $[-3, 3] \times [-3, 3]$, and explain its behavior.

5. Match the functions (a)–(d) with their graphs in Figure 1.
 (a) $f(x, y) = x^2 + y$
 (b) $f(x, y) = x^2 + 4y^2$
 (c) $f(x, y) = \sin(4xy)e^{-x^2-y^2}$
 (d) $f(x, y) = \sin(4x)e^{-x^2-y^2}$

6. Referring to the contour map in Figure 2:
 (a) Estimate the average rate of change of elevation from A to B and from A to D.
 (b) Estimate the directional derivative at A in the direction of v.
 (c) What are the signs of f_x and f_y at D?
 (d) At which of the labeled points are both f_x and f_y negative?

7. Describe the level curves of:
 (a) $f(x, y) = e^{4x-y}$
 (b) $f(x, y) = \ln(4x - y)$
 (c) $f(x, y) = 3x^2 - 4y^2$
 (d) $f(x, y) = x + y^2$
8. Match each function (a)–(c) with its contour graph (i)–(iii) in Figure 3:
(a) \(f(x, y) = xy \)
(b) \(f(x, y) = e^{xy} \)
(c) \(f(x, y) = \sin(xy) \)

![Figure 3](image)

In Exercises 9–14, evaluate the limit or state that it does not exist.

9. \(\lim_{(x,y) \to (1,-3)} (xy + y^2) \)
10. \(\lim_{(x,y) \to (1,1)} \ln(x + y) \)
11. \(\lim_{(x,y) \to (0,0)} \frac{xy + xy^2}{x^2 + y^2} \)
12. \(\lim_{(x,y) \to (0,0)} \frac{x^3 y^2 + x^2 y^3}{x^4 + y^4} \)
13. \(\lim_{(x,y) \to (1,-3)} (2x + y)e^{-x+y} \)
14. \(\lim_{(x,y) \to (0,2)} \frac{(e^x - 1)(e^y - 1)}{x} \)
15. Let \(f(x, y) = \begin{cases} \frac{(xy)^p}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases} \)

Use polar coordinates to show that \(f(x, y) \) is continuous at all \((x, y)\) if \(p > 2 \) but is discontinuous at \((0, 0)\) if \(p \leq 2 \).

16. Calculate \(f_x(1, 3) \) and \(f_y(1, 3) \) for \(f(x, y) = \sqrt{x^2 + y^2} \).
17. \(f(x, y) = 2x + y^2 \)
18. \(f(x, y) = 4xy^3 \)
19. \(f(x, y) = \sin(xy)e^{-x-y} \)
20. \(f(x, y) = \ln(x^2 + xy^2) \)
21. Calculate \(f_{xyz} \) for \(f(x, y, z) = y\sin(x + z) \).
22. Fix \(c > 0 \). Show that for any constants \(a, \beta \), the function \(u(t, x) = \sin(a\beta t + \beta \sin(ax)) \) satisfies the wave equation \(\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \).

23. Find an equation of the tangent plane to the graph of \(f(x, y) = xy^2 - xy + 3x^2y \) at \(P = (1, 3) \).
24. Suppose that \(f(4, 4) = 3 \) and \(f_x(4, 4) = f_y(4, 4) = -1 \). Use the linear approximation to estimate \(f(4.1, 4) \) and \(f(3.88, 4.03) \).
25. Use a linear approximation of \(f(x, y, z) = \sqrt{x^2 + y^2 + z} \) to estimate \(\sqrt{7.1^2 + 4.92^2 + 69.5} \). Compare with a calculator value.
26. The plane \(z = 2x - y - 1 \) is tangent to the graph of \(z = f(x, y) \) at \(P = (5, 3) \).
(a) Determine \(f(5, 3), f_x(5, 3), \) and \(f_y(5, 3) \).
(b) Approximate \(f(5.2, 2.9) \).

27. Figure 4 shows the contour map of a function \(f(x, y) \) together with a path \(r(t) \) in the counterclockwise direction. The points \(r(1), r(2), \) and \(r(3) \) are indicated on the path. Let \(g(t) = f(r(t)) \). Which of statements (i)–(iv) are true? Explain.
(i) \(g'(1) > 0 \).
(ii) \(g(t) \) has a local minimum for some \(1 \leq t \leq 2 \).
(iii) \(g'(2) = 0 \).
(iv) \(g'(3) = 0 \).

28. Jason earns \(S(h, c) = 20h(1 + \frac{c}{100})^{1.5} \) dollars per month at a used car lot, where \(h \) is the number of hours worked and \(c \) is the number of cars sold. He has already worked 160 hours and sold 69 cars. Right now Jason wants to go home but wonders how much more he might earn if he stays another 10 minutes with a customer who is considering buying a car. Use the linear approximation to estimate how much extra money Jason will earn if he sells his 70th car during these 10 minutes.

In Exercises 29–32, compute \(\frac{d}{dt} f(r(t)) \) at the given value of \(t \).
29. \(f(x, y) = x + e^y, \quad r(t) = (3t - 1, t^2) \) at \(t = 2 \)
30. \(f(x, y, z) = xz - y^2, \quad r(t) = (t, t^3, 1 - t) \) at \(t = -2 \)
31. \(f(x, y) = xe^{3y} - ye^{3x}, \quad r(t) = (e^t, \ln t) \) at \(t = 1 \)
32. \(f(x, y) = \tan^{-1} \frac{7}{y}, \quad r(t) = (\cos t, \sin t), t = \frac{\pi}{3} \)

In Exercises 33–36, compute the directional derivative at \(P \) in the direction of \(v \).
33. \(f(x, y, z) = x^3y^4, \quad P = (3, -1, 1), \quad v = 2i + j \)
34. \(f(x, y, z) = zx - xy^2, \quad P = (1, 1, 1), \quad v = (2, -1, 2) \)
35. \(f(x, y) = e^{x^2 + y^2}, \quad P = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right), \quad v = (3, -4) \)
36. \(f(x, y) = \sin(xy + z), \quad P = (0, 0, 0), \quad v = j + k \)
37. Find the unit vector \(e \) at \(P = (0, 0, 1) \) pointing in the direction along which \(f(x, y, z) = xz + e^{-x^2+y} \) increases most rapidly.
38. Find an equation of the tangent plane at \(P = (0, 3, -1) \) to the surface with equation \(z = e^x + e^{-1} = xy + y - 3 \)
39. Let \(n \) be an integer and \(r \) an arbitrary constant. Show that the tangent plane to the surface \(x^n + y^n + z^n = r \) at \(P = (a, b, c) \) has equation \(a^{n-1}x + b^{n-1}y + c^{n-1}z = r \)
40. Let \(f(x, y) = (x - y)e^x \). Use the Chain Rule to calculate \(\frac{\partial f}{\partial u} \) and \(\frac{\partial f}{\partial v} \) (in terms of \(u \) and \(v \)), where \(u = x - v \) and \(v = u + v \).

41. Let \(f(x, y, z) = x^2 + y^2 + z \). Use the Chain Rule to calculate \(\frac{\partial f}{\partial s} \) and \(\frac{\partial f}{\partial t} \) (in terms of \(s \) and \(t \)), where
\[
x = s + t, \quad y = st, \quad z = 2s - t
\]

42. Let \(P \) have spherical coordinates \((\rho, \theta, \phi) = \left(\frac{\sqrt{2}}{2}, \frac{\pi}{4}, \frac{\pi}{4} \right) \). Calculate \(\frac{\partial f}{\partial \rho} \bigg|_P \), assuming that
\[
f_x(P) = 4, \quad f_y(P) = -3, \quad f_z(P) = 8
\]
Recall that \(x = \rho \cos \theta \sin \phi, \ y = \rho \sin \theta \sin \phi, \ z = \rho \cos \phi \).

43. Let \(g(u, v) = f(u^3 - v^3, v^3 - u^3) \). Prove that
\[
\rho^2 \frac{\partial \rho}{\partial u} - u^2 \frac{\partial \rho}{\partial v} = 0
\]

44. Let \(f(x, y) = g(u) \), where \(u = x^2 + y^2 \) and \(g(u) \) is differentiable. Prove that
\[
\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 = 4u \left(\frac{\partial g}{\partial u} \right)^2
\]

45. Calculate \(\frac{\partial z}{\partial x} \), where \(xe^x + ze^y = x + y \).

46. Let \(f(x, y) = x^4 - 2x^2 + y^2 - 6y \).
(a) Find the critical points of \(f \) and use the Second Derivative Test to determine whether they are a local minima or a local maxima.
(b) Find the minimum value of \(f \) without calculus by completing the square.

In Exercises 47–50, find the critical points of the function and analyze them using the Second Derivative Test.

47. \(f(x, y) = x^4 - 4xy + 2y^2 \)

48. \(f(x, y) = x^3 + 2y^3 - xy \)

49. \(f(x, y) = e^{x+y} - xe^{2y} \)

50. \(f(x, y) = \sin(x + y) - \frac{1}{2}(x + y)^2 \)

51. Prove that \(f(x, y) = (x + 2y)e^{x+y} \) has no critical points.

52. Find the global extrema of \(f(x, y) = x^3 - xy - y^2 + y \) on the square \([0, 1] \times [0, 1] \).

53. Find the global extrema of \(f(x, y) = 2xy - x - y \) on the domain \(\{ y \leq 4, \ y \geq x^2 \} \).

54. Find the maximum of \(f(x, y, z) = xyz \) subject to the constraint \(g(x, y, z) = 2x + y + 4z = 1 \).

55. Use Lagrange multipliers to find the minimum and maximum values of \(f(x, y) = 3x^2 - 2y \) on the circle \(x^2 + y^2 = 4 \).

56. Find the minimum value of \(f(x, y) = xy \) subject to the constraint \(5x - y = 4 \) in two ways: using Lagrange multipliers and setting \(y = 5x - 4 \) in \(f(x, y) \).

57. Find the minimum and maximum values of \(f(x, y) = x^2y \) on the ellipse \(4x^2 + 9y^2 = 36 \).

58. Find the point in the first quadrant on the curve \(y = x + x^{-1} \) closest to the origin.

59. Find the extreme values of \(f(x, y, z) = x + 2y + 3z \) subject to the two constraints \(x + y + z = 1 \) and \(x^2 + y^2 + z^2 = 1 \).

60. Find the minimum and maximum values of \(f(x, y, z) = x - z \) on the intersection of the cylinders \(x^2 + y^2 = 1 \) and \(x^2 + z^2 = 1 \) (Figure 5).

61. Use Lagrange multipliers to find the dimensions of a cylindrical can with a bottom but no top, of fixed volume \(V \) with minimum surface area.

62. Find the dimensions of the box of maximum volume with its sides parallel to the coordinate planes that can be inscribed in the ellipsoid (Figure 6)
\[
\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{z}{c} \right)^2 = 1
\]

63. Given \(n \) nonzero numbers \(\sigma_1, \ldots, \sigma_n \), show that the minimum value of
\[
f(x_1, \ldots, x_n) = x_1^2 \sigma_1^2 + \cdots + x_n^2 \sigma_n^2
\]
subject to \(x_1 + \cdots + x_n = 1 \) is \(c \), where \(c = \left(\sum_{j=1}^{n} \sigma_j^2 \right)^{-1} \).
These terraced fields illustrate how volume under a graph can be computed using iterated integration.

16 MULTIPLE INTEGRATION

Integrals of functions of several variables, called **multiple integrals**, are a natural extension of the single-variable integrals studied in the first part of the text. They are used to compute many quantities that appear in applications, such as volumes, surface areas, centers of mass, probabilities, and average values.

16.1 Integration in Two Variables

The integral of a function of two variables $f(x, y)$, called a **double integral**, is denoted

$$\int \int_D f(x, y) \, dA$$

It represents the **signed volume** of the solid region between the graph of $f(x, y)$ and a domain D in the xy-plane (Figure 1), where the volume is positive for regions above the xy-plane and negative for regions below.

There are many similarities between double integrals and the single integrals:

- Double integrals are defined as limits of sums.
- Double integrals are evaluated using the Fundamental Theorem of Calculus (but we have to use it twice—see the discussion of iterated integrals below).

An important difference, however, is that the domain of integration is potentially substantially more complicated in the multivariable case. In one variable, the domain of integration is simply an interval $[a, b]$. In two variables, the domain D is a plane region whose boundary may be curved (Figure 1).

In this section, we focus on the simplest case where the domain is a rectangle, leaving more general domains for Section 16.2. Let

$$\mathcal{R} = [a, b] \times [c, d]$$

denote the rectangle in the plane (Figure 2) consisting of all points (x, y) such that

$$\mathcal{R}: \quad a \leq x \leq b, \quad c \leq y \leq d$$

Like integrals in one variable, double integrals are defined through a three-step process: subdivision, summation, and passage to the limit. Figure 3 illustrates how the rectangle \mathcal{R} is subdivided:

1. **Subdivide** $[a, b]$ and $[c, d]$ by choosing partitions:

$$a = x_0 < x_1 < \cdots < x_N = b, \quad c = y_0 < y_1 < \cdots < y_M = d$$

where N and M are positive integers.

2. **Create an** $N \times M$ **grid of subrectangles** \mathcal{R}_{ij}.

3. **Choose a sample point** P_{ij} in each \mathcal{R}_{ij}.

Note that $\mathcal{R}_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j]$, so \mathcal{R}_{ij} has area

$$\Delta A_{ij} = \Delta x_i \Delta y_j$$

where $\Delta x_i = x_i - x_{i-1}$ and $\Delta y_j = y_j - y_{j-1}$. #
(A) Rectangle $R = [a, b] \times [c, d]$

Next, we form the Riemann sum with the function values $f(P_{ij})$:

$$S_{N,M} = \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \, \Delta A_{ij} = \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \, \Delta x_i \, \Delta y_j$$

The double summation runs over all i and j in the ranges $1 \leq i \leq N$ and $1 \leq j \leq M$, a total of NM terms.

The geometric interpretation of $S_{N,M}$ is shown in Figure 4. Each individual term $f(P_{ij}) \, \Delta A_{ij}$ of the sum is equal to the signed volume of the narrow box of height $f(P_{ij})$ above R_{ij}:

$$f(P_{ij}) \, \Delta A_{ij} = f(P_{ij}) \, \Delta x_i \, \Delta y_j = \text{height} \times \text{area} = \text{Signed volume of box}$$

When $f(P_{ij})$ is negative, the box lies below the xy-plane and has negative signed volume. The sum $S_{N,M}$ of the signed volumes of these narrow boxes approximates volume in the same way that Riemann sums in one variable approximate area by rectangles [Figure 4(A)].

The final step in defining the double integral is passing to the limit. We write $P = \{\{x_i\}, \{y_j\}\}$ for the partition and $\|P\|$ for the maximum of the widths Δx_i, Δy_j. As $\|P\|$ tends to zero (and both M and N tend to infinity), the boxes approximate the solid region under the graph more and more closely (Figure 5). Here is the precise definition of the limit:

Limit of Riemann Sums The Riemann sum $S_{N,M}$ approaches a limit L as $\|P\| \to 0$ if, for all $\epsilon > 0$, there exists $\delta > 0$ such that

$$|L - S_{N,M}| < \epsilon$$

for all partitions satisfying $\|P\| < \delta$ and all choices of sample points.
SECTION 16.1 Integration in Two Variables

In this case, we write

\[\lim_{\|P\| \to 0} S_{N,M} = \lim_{\|P\| \to 0} \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \Delta A_{ij} = L \]

This limit \(L \), if it exists, is the double integral \(\iint_{R} f(x, y) \, dA \).

DEFINITION Double Integral Over a Rectangle The double integral of \(f(x, y) \) over a rectangle \(R \) is defined as the limit

\[\iint_{R} f(x, y) \, dA = \lim_{\|P\| \to 0} \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \Delta A_{ij} \]

If this limit exists, we say that \(f(x, y) \) is integrable over \(R \).

The double integral enables us to define the volume \(V \) of the solid region between the graph of a positive function \(f(x, y) \) and the rectangle \(R \) by

\[V = \iint_{R} f(x, y) \, dA \]

If \(f(x, y) \) takes on both positive and negative values, the double integral defines the signed volume. So in Figure 6, \(\iint_{R} f(x, y) \, dA = V_1 + V_2 - V_3 - V_4 \).

In computations, we often assume that the partition \(P \) is regular, meaning that the intervals \([a, b]\) and \([c, d]\) are each divided into subintervals of equal length. In other words, the partition is regular if \(\Delta x_i = \Delta x \) and \(\Delta y_j = \Delta y \), where

\[\Delta x = \frac{b - a}{N}, \quad \Delta y = \frac{d - c}{M} \]

For a regular partition, \(\|P\| \) tends to zero as \(N \) and \(M \) tend to \(\infty \).

EXAMPLE 1 Estimating a Double Integral Let \(R = [1, 2.5] \times [1, 2] \). Calculate \(S_{3,2} \) for the integral (Figure 7)

\[\iint_{R} xy \, dA \]

using the following two choices of sample points:

(a) Lower-left vertex (b) Midpoint of rectangle

Solution Since we use the regular partition to compute \(S_{3,2} \), each subrectangle (in this case they are squares) has sides of length

\[\Delta x = \frac{2.5 - 1}{3} = \frac{1}{2}, \quad \Delta y = \frac{2 - 1}{2} = \frac{1}{2} \]
and area $\Delta A = \Delta x \Delta y = \frac{1}{4}$. The corresponding Riemann sum is

$$S_{3,2} = \sum_{i=1}^{3} \sum_{j=1}^{2} f(P_{ij}) \Delta A = \frac{1}{4} \sum_{i=1}^{3} \sum_{j=1}^{2} f(P_{ij})$$

where $f(x, y) = xy$.

(a) If we use the lower-left vertices shown in Figure 8(A), the Riemann sum is

$$S_{3,2} = \frac{1}{4} \left(f(1, 1) + f(1, \frac{3}{2}) + f(\frac{3}{2}, 1) + f(\frac{3}{2}, \frac{3}{2}) + f(2, 1) + f(2, \frac{3}{2}) \right)$$

$$= \frac{1}{4} \left(1 + \frac{3}{2} + \frac{3}{2} + \frac{9}{4} + 3 + 3 \right) = \frac{1}{4} \left(\frac{45}{4}\right) = 2.8125$$

(b) Using the midpoints of the rectangles shown in Figure 8(B), we obtain

$$S_{3,2} = \frac{1}{4} \left(f\left(\frac{5}{4}, \frac{5}{4}\right) + f\left(\frac{5}{4}, \frac{3}{2}\right) + f\left(\frac{3}{2}, \frac{5}{4}\right) + f\left(\frac{3}{2}, \frac{3}{2}\right) + f\left(\frac{7}{4}, \frac{5}{4}\right) + f\left(\frac{7}{4}, \frac{3}{2}\right) \right)$$

$$= \frac{1}{4} \left(\frac{25}{16} + \frac{35}{16} + \frac{35}{16} + \frac{49}{16} + \frac{45}{16} + \frac{53}{16} \right) = \frac{1}{4} \left(\frac{252}{16}\right) = 3.9375$$

FIGURE 8

EXAMPLE 2 Use geometry to evaluate $\iint_{R} (8 - 2y) \, dA$, where $R = [0, 3] \times [0, 4]$.

Solution Figure 9 shows the graph of $z = 8 - 2y$. The double integral is equal to the volume V of the solid wedge underneath the graph. The triangular face of the wedge has area $A = \frac{1}{2}(8)(4) = 16$. The volume of the wedge is equal to the area A times the length $\ell = 3$; that is, $V = \ell A = 3(16) = 48$. Therefore,

$$\iint_{R} (8 - 2y) \, dA = 48$$

The next theorem assures us that continuous functions are integrable. Since we have not yet defined continuity at boundary points of a domain, for the purposes of the next theorem, we define continuity on R to mean that f is defined and continuous on some open set containing R. We omit the proof, which is similar to the single-variable case.

THEOREM 1 **Continuous Functions Are Integrable** If a function f of two variables is continuous on a rectangle R, then $f(x, y)$ is integrable over R.

As in the single-variable case, we often make use of the linearity properties of the double integral. They follow from the definition of the double integral as a limit of Riemann sums.

THEOREM 2 **Linearity of the Double Integral** Assume that $f(x, y)$ and $g(x, y)$ are integrable over a rectangle R. Then:

(i) $\iint_{R} (f(x, y) + g(x, y)) \, dA = \iint_{R} f(x, y) \, dA + \iint_{R} g(x, y) \, dA$

(ii) For any constant C, $\iint_{R} C f(x, y) \, dA = C \iint_{R} f(x, y) \, dA$
If \(f(x, y) = C \) is a constant function, then

\[
\iint_{\mathcal{R}} C \, dA = C \cdot \text{Area}(\mathcal{R})
\]

The double integral is the signed volume of the box of base \(\mathcal{R} \) and height \(C \) (Figure 10). If \(C < 0 \), then the rectangle lies below the \(xy \)-plane, and the integral is equal to the signed volume, which is negative.

![Figure 10](image)

EXAMPLE 3 Arguing by Symmetry Use symmetry to show that \(\iint_{\mathcal{R}} xy^2 \, dA = 0 \), where \(\mathcal{R} = [-1, 1] \times [-1, 1] \).

Solution The double integral is the signed volume of the region between the graph of \(f(x, y) = xy^2 \) and the \(xy \)-plane (Figure 11). However, \(f(x, y) \) takes opposite values at \((x, y) \) and \((-x, y) \):

\[
f(-x, y) = -xy^2 = -f(x, y)
\]

Because of symmetry, the (negative) signed volume of the region below the \(xy \)-plane where \(-1 \leq x \leq 0 \) cancels with the (positive) signed volume of the region above the \(xy \)-plane where \(0 \leq x \leq 1 \). The net result is \(\iint_{\mathcal{R}} xy^2 \, dA = 0 \).

Iterated Integrals

Our main tool for evaluating double integrals is the Fundamental Theorem of Calculus (FTC), as in the single-variable case. To use the FTC, we express the double integral as an *iterated integral*, which is an expression of the form

\[
\int_a^b \left(\int_c^d f(x, y) \, dy \right) \, dx
\]

Iterated integrals are evaluated in two steps.

Step 1. Hold \(x \) constant and evaluate the inner integral with respect to \(y \). This gives us a function of \(x \) alone:

\[
S(x) = \int_c^d f(x, y) \, dy
\]

Step 2. Integrate the resulting function \(S(x) \) with respect to \(x \).
Example 4 Evaluate \(\int_2^4 \left(\int_1^9 ye^x \, dy \right) \, dx \).

Solution First evaluate the inner integral, treating \(x \) as a constant:

\[
S(x) = \int_1^9 ye^x \, dy = e^x \int_1^9 y \, dy = e^x \left(\frac{1}{2} y^2 \right) \bigg|_1^9 = e^x \left(\frac{81 - 1}{2} \right) = 40e^x
\]

Then integrate \(S(x) \) with respect to \(x \):

\[
\int_2^4 \left(\int_1^9 ye^x \, dy \right) \, dx = \int_2^4 40e^x \, dx = 40e^x \bigg|_2^4 = 40(e^4 - e^2)
\]

In an iterated integral where \(dx \) precedes \(dy \), integrate first with respect to \(x \):

\[
\int_b^a \int_c^d f(x, y) \, dx \, dy = \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy
\]

Sometimes for clarity, as on the right-hand side here, we include the variables in the limits of integration.

Example 5 Evaluate \(\int_0^3 \int_0^4 dx \, dy \sqrt{3x + 4y} \).

Solution We evaluate the inner integral first, treating \(y \) as a constant. Since we are integrating with respect to \(x \), we need an antiderivative of \(1/\sqrt{3x + 4y} \) as a function of \(x \). We can use \(\frac{3}{2} \sqrt{3x + 4y} \) because

\[
\frac{\partial}{\partial x} \left(\frac{2}{3} \sqrt{3x + 4y} \right) = \frac{1}{\sqrt{3x + 4y}}
\]

Thus, we have

\[
\int_0^3 \frac{dx}{\sqrt{3x + 4y}} = \frac{2}{3} \sqrt{3x + 4y} \bigg|_0^3 = \frac{2}{3} \left(\sqrt{4y + 9} - \sqrt{4y} \right)
\]

\[
\int_0^4 \int_0^3 \frac{dx \, dy}{\sqrt{3x + 4y}} = \frac{2}{3} \int_0^4 \left(\sqrt{4y + 9} - \sqrt{4y} \right) \, dy
\]

Therefore, we obtain

\[
\int_0^4 \int_0^3 \frac{dx \, dy}{\sqrt{3x + 4y}} = \frac{2}{3} \left(\frac{1}{6} (4y + 9)^{3/2} - \frac{1}{6} (4y)^{3/2} \right) \bigg|_y^4 = \frac{1}{9} \left(25^{3/2} - 16^{3/2} - 9^{3/2} \right) = \frac{34}{9}
\]

Example 6 Reversing the Order of Integration Verify that

\[
\int_0^4 \int_0^3 \frac{dx \, dy}{\sqrt{3x + 4y}} = \int_0^3 \int_0^4 \frac{dy \, dx}{\sqrt{3x + 4y}}
\]
Solution We evaluated the iterated integral on the left in the previous example. We compute the integral on the right and verify that the result is also $\frac{34}{9}$:

\[
\int_{y=0}^{4} \frac{dy}{\sqrt{3x + 4y}} = \left. \frac{1}{2} \sqrt{3x + 4y} \right|_{y=0}^{4} = \frac{1}{2} \left(\sqrt{3x + 16} - \sqrt{3x} \right)
\]

\[
\int_{x=0}^{3} \int_{y=0}^{4} \frac{dy}{\sqrt{3x + 4y}} = \frac{1}{2} \int_{x=0}^{3} \left(\sqrt{3x + 16} - \sqrt{3x} \right) dy = \frac{1}{2} \left. \left(\frac{7}{9} (3x + 16)^{3/2} - \frac{7}{9} (3x)^{3/2} \right) \right|_{x=0}^{3} = \frac{1}{9} \left(25^{3/2} - 9^{3/2} - 16^{3/2} \right) = \frac{34}{9}
\]

The previous example illustrates a general fact: The value of an iterated integral does not depend on the order in which the integration is performed. This is part of Fubini’s Theorem. Even more important, Fubini’s Theorem states that a double integral over a rectangle can be evaluated as an iterated integral.

THEOREM 3 Fubini’s Theorem The double integral of a continuous function $f(x, y)$ over a rectangle $R = [a, b] \times [c, d]$ is equal to the iterated integral (in either order):

\[
\iint_{R} f(x, y) \, dA = \int_{x=a}^{b} \int_{y=c}^{d} f(x, y) \, dy \, dx = \int_{y=c}^{d} \int_{x=a}^{b} f(x, y) \, dx \, dy
\]

Proof We sketch the proof. We can compute the double integral as a limit of Riemann sums that use a regular partition of R and sample points $P_{ij} = (x_i, y_j)$, where $\{x_i\}$ are sample points for a regular partition on $[a, b]$, and $\{y_j\}$ are sample points for a regular partition of $[c, d]$:

\[
\iint_{R} f(x, y) \, dA = \lim_{N,M \to \infty} \sum_{i=1}^{N} \sum_{j=1}^{M} f(x_i, y_j) \Delta y \Delta x
\]

Here, $\Delta x = (b - a)/N$ and $\Delta y = (d - c)/M$. Fubini’s Theorem stems from the elementary fact that we can add up the values in the sum in any order. So if we list the values $f(P_{ij})$ in an $N \times M$ array as shown in the margin, we can add up the columns first and then add up the column sums. This yields

\[
\iint_{R} f(x, y) \, dA = \lim_{N,M \to \infty} \sum_{i=1}^{N} \left(\sum_{j=1}^{M} f(x_i, y_j) \Delta y \right) \Delta x
\]

First sum the columns; then add up the column sums.

For fixed i, $f(x_i, y)$ is a continuous function of y and the inner sum on the right is a Riemann sum that approaches the single integral $\int_{c}^{d} f(x_i, y) \, dy$. In other words, setting $S(x) = \int_{c}^{d} f(x, y) \, dy$, we have

\[
\lim_{M \to \infty} \sum_{j=1}^{M} f(x_i, y_j) = \int_{c}^{d} f(x_i, y) \, dy = S(x_i)
\]
To complete the proof, we take two facts for granted. First, \(S(x) \) is a continuous function for \(a \leq x \leq b \). Second, the limit as \(N, M \to \infty \) may be computed by taking the limit first with respect to \(M \) and then with respect to \(N \). Granting this, we get

\[
\iint_{\mathcal{R}} f(x, y) \, dA = \lim_{N \to \infty} \sum_{i=1}^{N} \left(\lim_{M \to \infty} \sum_{j=1}^{M} f(x_i, y_j) \Delta y \right) \Delta x = \lim_{N \to \infty} \sum_{i=1}^{N} S(x_i) \Delta x
\]

Note that the sums on the right in the first line are Riemann sums for \(S(x) \) that converge to the integral of \(S(x) \) in the second line. This proves Fubini’s Theorem for the order \(dy \, dx \).

A similar argument applies to the order \(dx \, dy \).

GRAPHICAL INSIGHT When we write a double integral as an iterated integral in the order \(dy \, dx \), then for each fixed value \(x = x_0 \), the inner integral is the area of the cross section of \(S \) in the vertical plane \(x = x_0 \) perpendicular to the \(x \)-axis [Figure 12(A)]:

\[
S(x_0) = \int_c^d f(x_0, y) \, dy = \text{area of cross section in vertical plane } x = x_0 \text{ perpendicular to the } x \text{-axis}
\]

What Fubini’s Theorem says is that the volume \(V \) of \(S \) can be calculated as the integral of cross-sectional area \(S(x) \):

\[
V = \int_a^b \int_c^d f(x, y) \, dy \, dx = \int_a^b S(x) \, dx = \text{integral of cross-sectional area}
\]

Similarly, the iterated integral in the order \(dx \, dy \) calculates \(V \) as the integral of cross sections perpendicular to the \(y \)-axis [Figure 12(B)].

EXAMPLE 7 Find the volume \(V \) between the graph of \(f(x, y) = 16 - x^2 - 3y^2 \) and the rectangle \(\mathcal{R} = [0, 3] \times [0, 1] \) (Figure 13).

Solution The volume \(V \) is equal to the double integral of \(f(x, y) \), which we write as an iterated integral:

\[
V = \iint_{\mathcal{R}} (16 - x^2 - 3y^2) \, dA = \int_{x=0}^{3} \int_{y=0}^{1} (16 - x^2 - 3y^2) \, dy \, dx
\]

We evaluate the inner integral first and then compute \(V \):

\[
\int_{y=0}^{1} (16 - x^2 - 3y^2) \, dy = (16y - x^2y - y^3) \bigg|_{y=0}^{1} = 15 - x^2
\]

\[
V = \int_{x=0}^{3} (15 - x^2) \, dx = \left(15x - \frac{1}{3}x^3 \right) \bigg|_{x=0}^{3} = 36
\]
16.1 SUMMARY

- A Riemann sum for \(f(x, y) \) on a rectangle \(\mathcal{R} = [a, b] \times [c, d] \) is a sum of the form

\[
S_{N,M} = \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \Delta x_i \Delta y_j
\]

corresponding to partitions of \([a, b]\) and \([c, d]\), and choice of sample points \(P_{ij} \) in the subrectangle \(\mathcal{R}_{ij} \).

- The double integral of \(f(x, y) \) over \(\mathcal{R} \) is defined as the limit (if it exists):

\[
\iint_{\mathcal{R}} f(x, y) \, dA = \lim_{M,N \to \infty} \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \Delta x_i \Delta y_j
\]

We say that \(f(x, y) \) is integrable over \(\mathcal{R} \) if this limit exists.

- A continuous function on a rectangle \(\mathcal{R} \) is integrable.

- The double integral is equal to the signed volume of the region between the graph of \(z = f(x, y) \) and the rectangle \(\mathcal{R} \). The signed volume of a region is positive if it lies above the \(xy \)-plane and negative if it lies below the \(xy \)-plane.

- If \(f(x, y) = C \) is a constant function, then

\[
\iint_{\mathcal{R}} C \, dA = C \cdot \text{Area}(\mathcal{R})
\]

- Fubini’s Theorem: The double integral of a continuous function \(f(x, y) \) over a rectangle \(\mathcal{R} = [a, b] \times [c, d] \) can be evaluated as an iterated integral (in either order):

\[
\iint_{\mathcal{R}} f(x, y) \, dA = \int_{x=a}^{b} \int_{y=c}^{d} f(x, y) \, dy \, dx = \int_{y=c}^{d} \int_{x=a}^{b} f(x, y) \, dx \, dy
\]

16.1 EXERCISES

Preliminary Questions

1. If \(S_{8,4} \) is a Riemann sum for a double integral over \(\mathcal{R} = [1, 5] \times [2, 10] \) using a regular partition, what is the area of each subrectangle? How many subrectangles are there?

2. Estimate the double integral of a continuous function \(f \) over the small rectangle \(\mathcal{R} = [0.9, 1.1] \times [1.9, 2.1] \) if \(f(1, 2) = 4 \).

3. What is the integral of the constant function \(f(x, y) = 5 \) over the rectangle \([-2, 3] \times [2, 4] \)?

4. What is the interpretation of \(\iint_{\mathcal{R}} f(x, y) \, dA \) if \(f(x, y) \) takes on both positive and negative values on \(\mathcal{R} \)?

5. Which of (a) or (b) is equal to \(\int_{1}^{2} \int_{4}^{5} f(x, y) \, dy \, dx \)?

(a) \(\int_{1}^{2} \int_{4}^{5} f(x, y) \, dy \, dx \)
(b) \(\int_{4}^{5} \int_{1}^{2} f(x, y) \, dx \, dy \)
6. For which of the following functions is the double integral over the rectangle in Figure 15 equal to zero? Explain your reasoning.
(a) $f(x, y) = x^2 y$
(b) $f(x, y) = xy^2$
(c) $f(x, y) = \sin x$
(d) $f(x, y) = e^x$

Exercises
1. Compute the Riemann sum $S_{4,3}$ to estimate the double integral of $f(x, y) = xy$ over $R = [1, 3] \times [1, 2.5]$. Use the regular partition and upper-right vertices of the subrectangles as sample points.

2. Compute the Riemann sum with $N = M = 2$ to estimate the integral of $\sqrt{x + y}$ over $R = [0, 1] \times [0, 1]$. Use the regular partition and midpoints of the subrectangles as sample points.

In Exercises 3–6, compute the Riemann sums for the double integral $\int\int_R f(x, y) \, dA$, where $R = [1, 4] \times [1, 3]$, for the grid and two choices of sample points shown in Figure 16.

3. $f(x, y) = 2x + y$
4. $f(x, y) = 7$
5. $f(x, y) = 4x$
6. $f(x, y) = x - 2y$

7. Let $R = [0, 1] \times [0, 1]$. Estimate $\int\int_R (x + y) \, dA$ by computing two different Riemann sums, each with at least six rectangles.

9. Evaluate $\int\int_R (15 - 3x) \, dA$, where $R = [0, 5] \times [0, 3]$, and sketch the corresponding solid region (see Example 2).

10. Evaluate $\int\int_R (-5) \, dA$, where $R = [2, 5] \times [4, 7]$.

11. The following table gives the approximate height at quarter-meter intervals of a mound of gravel. Estimate the volume of the mound by computing the average of the two Riemann sums $S_{4,3}$ with lower-left and upper-right vertices of the subrectangles as sample points.

<table>
<thead>
<tr>
<th>y</th>
<th>0.75</th>
<th>0.5</th>
<th>0.25</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0.1</td>
<td>0.2</td>
<td>0.15</td>
<td>0.1</td>
</tr>
<tr>
<td>x</td>
<td>0.2</td>
<td>0.3</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>x</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>x</td>
<td>0.1</td>
<td>0.15</td>
<td>0.2</td>
<td>0.15</td>
</tr>
</tbody>
</table>

12. Use the following table to compute a Riemann sum $S_{4,3}$ for $f(x, y)$ on the square $R = [0, 1.5] \times [0.5, 2]$. Use the regular partition and sample points of your choosing.

<table>
<thead>
<tr>
<th>Values of $f(x, y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
</tr>
<tr>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

13. **CAS** Let $S_{N,N}$ be the Riemann sum for $\int_0^1 \int_0^1 e^{x^3 - y^3} \, dy \, dx$ using the regular partition and the lower left-hand vertex of each subrectangle as sample points. Use a computer algebra system to calculate $S_{N,N}$ for $N = 25, 50, 100$.

14. **CAS** Let $S_{N,M}$ be the Riemann sum for

$$\int_0^4 \int_0^2 \ln(1 + x^2 + y^2) \, dy \, dx$$

using the regular partition and the upper right-hand vertex of each subrectangle as sample points. Use a computer algebra system to calculate $S_{N,M}$ for $N = 25, 50, 100$.

In Exercises 15–18, use symmetry to evaluate the double integral.

15. $\int\int_R x^3 \, dA$, $R = [-4, 4] \times [0, 5]$

16. $\int\int_R 1 \, dA$, $R = [2, 4] \times [-7, 7]$

17. $\int\int_R \sin x \, dA$, $R = [0, 2\pi] \times [0, 2\pi]$

18. $\int\int_R (2 + x^2y) \, dA$, $R = [0, 1] \times [-1, 1]$

In Exercises 19–36, evaluate the iterated integral.

19. $\int_0^3 \int_0^2 x^3y \, dy \, dx$

20. $\int_0^2 \int_0^1 x^3 \, dy \, dx$

21. $\int_4^9 \int_{-3}^8 1 \, dx \, dy$

22. $\int_{-4}^4 \int_0^{-8} (5) \, dy \, dx$

23. $\int_{-1}^1 \int_0^\pi x^2 \sin y \, dy \, dx$

24. $\int_{-1}^{-\pi} \int_0^\pi x^2 \sin y \, dy \, dx$

25. $\int_2^6 \int_1^4 x^2 \, dy \, dx$

26. $\int_2^4 \int_1^4 y^2 \, dy \, dx$

27. $\int_0^1 \int_0^2 (x + 4y^3) \, dy \, dx$

28. $\int_0^2 \int_0^2 (x^2 - y^2) \, dy \, dx$

29. $\int_0^4 \int_0^9 \sqrt{x + 4y} \, dy \, dx$
In Exercises 37–42, evaluate the integral.

37. \[\int_0^8 \frac{x}{y} \, dA, \quad R = [-2, 4] \times [1, 3] \]

38. \[\int_R x^2 y \, dA, \quad R = [-1, 1] \times [0, 2] \]

39. \[\int_R \cos x \sin 2y \, dA, \quad R = [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}] \]

40. \[\int_R \frac{y}{x+1} \, dA, \quad R = [0, 2] \times [0, 4] \]

41. \[\int_R e^y \sin y \, dA, \quad R = [0, 2] \times [0, \frac{\pi}{4}] \]

42. \[\int_R e^{3x+4y} \, dA, \quad R = [0, 1] \times [1, 2] \]

43. Let \(f(x, y) = mxy^2 \), where \(m \) is a constant. Find a value for \(m \) such that \(\int_R f(x, y) \, dA = 1 \), where \(R = [0, 1] \times [0, 2] \).

44. Evaluate \(I = \int_1^3 \int_0^1 y e^{xy} \, dy \, dx \). You will need Integration by Parts and the formula

\[\int e^x (x^-1 - x^-2) \, dx = x^-1 e^x + C \]

Then evaluate \(I \) again using Fubini’s Theorem to change the order of integration (i.e., integrate first with respect to \(y \)). Which method is easier?

Further Insights and Challenges

50. Prove the following extension of the Fundamental Theorem of Calculus to two variables: If \(\frac{\partial^2 F}{\partial x \partial y} = f(x, y) \), then

\[\int_R f(x, y) \, dA = F(b, d) - F(a, d) - F(b, c) + F(a, c) \]

where \(R = [a, b] \times [c, d] \).

51. Let \(F(x, y) = x^{-1} e^{xy} \). Show that \(\frac{\partial^2 F}{\partial x \partial y} = ye^{xy} \) and use the result of Exercise 50 to evaluate \(\int_R ye^{xy} \, dA \) for the rectangle \(R = [1, 3] \times [0, 1] \).

52. Find a function \(F(x, y) \) satisfying \(\frac{\partial^2 F}{\partial x \partial y} = 6x^2 y \) and use the result of Exercise 50 to evaluate \(\int_R 6x^2 y \, dA \) for the rectangle \(R = [0, 1] \times [0, 4] \).

53. In this exercise, we use double integration to evaluate the following improper integral for \(a > 0 \) a positive constant:

\[I(a) = \int_0^\infty e^-x - e^-ax \, dx \]

(a) Use L’Hôpital’s Rule to show that \(f(x) = \frac{e^-x - e^-ax}{x} \), though not defined at \(x = 0 \), can be made continuous by assigning the value \(f(0) = a - 1 \).

(b) Prove that \(|f(x)| \leq e^-x + e^-ax \) for \(x > 0 \) (use the triangle inequality), and apply the Comparison Theorem to show that \(I(a) \) converges.

(e) Show that \(I(a) = \int_0^\infty \int_1^a e^-xy \, dy \, dx \).
(d) Prove, by interchanging the order of integration, that
\[I(a) = \ln a - \lim_{T \to \infty} \int_1^a \frac{e^{-ty}}{y} \, dy \]

(e) Use the Comparison Theorem to show that the limit in Eq. (1) is zero. Hint: If \(a \geq 1 \), show that \(e^{-Ty}/y \leq e^{-T} \) for \(y \geq 1 \), and if \(a < 1 \), show that \(e^{-Ty}/y \leq e^{-aT}/a \) for \(a \leq y \leq 1 \). Conclude that \(I(a) = \ln a \) (Figure 19).

16.2 Double Integrals over More General Regions

In the previous section, we restricted our attention to rectangular domains. Now we shall treat the more general case of domains \(D \) whose boundaries are simple closed curves (a curve is simple if it does not intersect itself). We assume that the boundary of \(D \) is smooth as in Figure 1(A) or consists of finitely many smooth curves, joined together with possible corners, as in Figure 1(B). A boundary curve of this type is called piecewise smooth. We also assume that \(D \) is a closed domain; that is, \(D \) contains its boundary.

![Figure 1](image1.png)

(A) \(D \) has a smooth boundary. (B) \(D \) has a piecewise smooth boundary, consisting of three smooth curves joined at the corners.

Fortunately, we do not need to start from the beginning to define the double integral over a domain \(D \) of this type. Given a function \(f(x, y) \) on \(D \), we choose a rectangle \(R = [a, b] \times [c, d] \) containing \(D \) and define a new function \(\bar{f}(x, y) \) that agrees with \(f(x, y) \) on \(D \) and is zero outside of \(D \) (Figure 2):

\[\bar{f}(x, y) = \begin{cases} f(x, y) & \text{if } (x, y) \in D \\ 0 & \text{if } (x, y) \notin D \end{cases} \]

The double integral of \(f \) over \(D \) is defined as the integral of \(\bar{f} \) over \(R \):

\[\int_D f(x, y) \, dA = \int_R \bar{f}(x, y) \, dA \]

We say that \(f \) is integrable over \(D \) if the integral of \(\bar{f} \) over \(R \) exists. The value of the integral does not depend on the particular choice of \(R \) because \(\bar{f} \) is zero outside of \(D \).

This definition seems reasonable because the integral of \(\bar{f} \) only "picks up" the values of \(f \) on \(D \). However, \(\bar{f} \) is likely to be discontinuous because its values jump suddenly to zero beyond the boundary. Despite this possible discontinuity, the next theorem guarantees that the integral of \(\bar{f} \) over \(R \) exists if our original function \(f \) is continuous.
In Theorem 1, we define continuity on \(D \) to mean that \(f \) is defined and continuous on some open set containing \(D \).

Theorem 1 If \(f(x, y) \) is continuous on a closed domain \(D \) whose boundary is a closed, simple, piecewise smooth curve, then \(\iint_D f(x, y) \, dA \) exists.

As in the previous section, the double integral defines the signed volume between the graph of \(f(x, y) \) and the \(xy \)-plane, where regions below the \(xy \)-plane are assigned negative volume.

We can approximate the double integral by Riemann sums for the function \(\tilde{f} \) on a rectangle \(R \) containing \(D \). Because \(\tilde{f}(P) = 0 \) for points \(P \) in \(R \) that do not belong to \(D \), any such Riemann sum reduces to a sum over those sample points that lie in \(D \):

\[
\iint_D f(x, y) \, dA \approx \sum_{i=1}^{N} \sum_{j=1}^{M} \tilde{f}(P_{ij}) \Delta x_i \Delta y_j
\]

where \(\sum \) is over points \(P_{ij} \) that lie in \(D \).

Example 1 Compute \(S_{4,4} \) for the integral \(\iint_D (x+y) \, dA \), where \(D \) is the shaded domain in Figure 3. Use the upper right-hand corners of the squares as sample points.

Solution Let \(f(x, y) = x + y \). The subrectangles in Figure 3 have sides of length \(\Delta x = \Delta y = \frac{1}{2} \) and area \(\Delta A = \frac{1}{4} \). Only 7 of the 16 sample points lie in \(D \), so

\[
S_{4,4} = \sum_{i=1}^{4} \sum_{j=1}^{4} \tilde{f}(P_{ij}) \Delta x \Delta y = \frac{1}{4} \left(f(0.5, 0.5) + f(1, 0.5) + f(0.5, 1) + f(1, 1)
+ f(1.5, 1) + f(1.5, 1) + f(1.5, 1.5) \right)
\]

\[
= \frac{1}{4} (1 + 1.5 + 1.5 + 2 + 2.5 + 2.5 + 3) = \frac{7}{2}
\]

The linearity properties of the double integral carry over to general domains: If \(f(x, y) \) and \(g(x, y) \) are integrable and \(C \) is a constant, then

\[
\iint_D (f(x, y) + g(x, y)) \, dA = \iint_D f(x, y) \, dA + \iint_D g(x, y) \, dA
\]

\[
\iint_D Cf(x, y) \, dA = C \iint_D f(x, y) \, dA
\]

Although we usually think of double integrals as representing volumes, it is worth noting that we can express the area of a domain \(D \) in the plane as the double integral of the constant function \(f(x, y) = 1 \):

\[
\text{Area}(D) = \iint_D 1 \, dA
\]

Indeed, as we see in Figure 4, the the area of \(D \) is equal to the volume of the “cylinder” of height 1 with \(D \) as base. More generally, for any constant \(C \),

\[
\iint_D C \, dA = C \text{Area}(D)
\]

Conceptual Insight Eq. (3) tells us that we can approximate the area of a domain \(D \) by a Riemann sum for \(\iint_D 1 \, dA \). In this case, \(f(x, y) = 1 \), and we obtain a Riemann sum by adding up the areas \(\Delta x_i \Delta y_j \) of those rectangles in a grid that are contained in \(D \) or that intersect the boundary of \(D \) (Figure 5). The finer the grid, the better the approximation. The exact area is the limit as the sides of the rectangles tend to zero.
Regions Between Two Graphs

When \(D \) is a region between two graphs in the \(xy \)-plane, we can evaluate double integrals over \(D \) as iterated integrals. We say that \(D \) is **vertically simple** if it is the region between the graphs of two continuous functions \(y = g_1(x) \) and \(y = g_2(x) \) (Figure 6):

\[
D = \{(x, y) : a \leq x \leq b, \quad g_1(x) \leq y \leq g_2(x)\}
\]

Similarly, \(D \) is **horizontally simple** if

\[
D = \{(x, y) : c \leq y \leq d, \quad g_1(y) \leq x \leq g_2(y)\}
\]

Theorem 2

If \(D \) is vertically simple with description

\[
a \leq x \leq b, \quad g_1(x) \leq y \leq g_2(x)
\]

then

\[
\iint_D f(x, y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx
\]

If \(D \) is a horizontally simple region with description

\[
c \leq y \leq d, \quad g_1(y) \leq x \leq g_2(y)
\]

then

\[
\iint_D f(x, y) \, dA = \int_c^d \int_{g_1(y)}^{g_2(y)} f(x, y) \, dx \, dy
\]

Proof

We sketch the proof, assuming that \(D \) is vertically simple (the horizontally simple case is similar). Choose a rectangle \(R = [a, b] \times [c, d] \) containing \(D \). Then

\[
\iint_D f(x, y) \, dA = \int_a^b \int_c^d \tilde{f}(x, y) \, dy \, dx
\]

Although \(\tilde{f} \) is defined to be \(f \) inside \(D \) and 0 outside \(D \), need not be continuous, the use of Fubini's Theorem in Eq. (5) can be justified. In particular, the integral \(\int_c^d \tilde{f}(x, y) \, dy \) exists and is a continuous function of \(x \).

By definition, \(\tilde{f}(x, y) \) is zero outside \(D \), so for fixed \(x \), \(\tilde{f}(x, y) \) is zero unless \(y \) satisfies \(g_1(x) \leq y \leq g_2(x) \). Therefore,

\[
\int_c^d \tilde{f}(x, y) \, dy = \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy
\]

Substituting in Eq. (5), we obtain the desired equality:

\[
\iint_D f(x, y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx
\]
Integration over a simple region is similar to integration over a rectangle with one difference: The limits of the inner integral may be functions instead of constants.

EXAMPLE 2 Evaluate \(\iint_D x^2 \, y \, dA \), where \(D \) is the region in Figure 7.

Solution

Step 1. Describe \(D \) as a vertically simple region.

\[
\begin{align*}
1 & \leq x \leq 3, \\
\frac{1}{x} & \leq y \leq \sqrt{x}
\end{align*}
\]

In this case, \(g_1(x) = 1/x \) and \(g_2(x) = \sqrt{x} \).

Step 2. Set up the iterated integral.

\[
\int_1^3 \int_{1/x}^{\sqrt{x}} x^2 \, y \, dy \, dx
\]

Notice that the inner integral is an integral over a vertical segment between the graphs of \(y = 1/x \) and \(y = \sqrt{x} \).

Step 3. Compute the iterated integral.

As usual, we evaluate the inner integral by treating \(x \) as a constant, but now the upper and lower limits depend on \(x \):

\[
\int_{1/x}^{\sqrt{x}} x^2 \, y \, dy = \frac{1}{2} x^2 \left[y^2 \right]_{1/x}^{\sqrt{x}} = \frac{1}{2} x^2 (\sqrt{x})^2 - \frac{1}{2} x^2 \left(\frac{1}{x} \right)^2 = \frac{1}{2} x^3 - \frac{1}{2}
\]

We complete the calculation by integrating with respect to \(x \):

\[
\int_1^3 \left(\frac{1}{2} x^3 - \frac{1}{2} \right) \, dx = \left[\frac{1}{8} x^4 - \frac{1}{2} x \right]_1^3 = 69 - \left(-\frac{3}{8} \right) = 9
\]

EXAMPLE 3 Horizontally Simple Description Better Find the volume \(V \) of the region between the plane \(z = 2x + 3y \) and the triangle \(D \) in Figure 8.

Solution The triangle \(D \) is bounded by the lines \(y = x/2 \), \(y = x \), and \(y = 2 \). We see in Figure 9 that \(D \) is vertically simple, but the upper curve is not given by a single formula: The formula switches from \(y = x \) to \(y = 2 \). Therefore, it is more convenient to describe \(D \) as a horizontally simple region (Figure 9):

\[
D : 0 \leq y \leq 2, \quad y \leq x \leq 2y
\]
The volume is equal to the double integral of \(f(x, y) = 2x + 3y \) over \(D \):

\[
V = \iint_D f(x, y) \, dA = \int_0^2 \int_{x=y}^{2y} (2x + 3y) \, dx \, dy
\]

\[
= \int_0^2 \left(x^2 + 3yx \right)_{x=y}^{2y} \, dy = \int_0^2 \left((4y^2 + 6y^2) - (y^2 + 3y^2) \right) \, dy
\]

\[
= \int_0^2 6y^2 \, dy = 2y^3 \bigg|_0^2 = 16
\]

The next example shows that in some cases, one iterated integral is easier to evaluate than the other.

Example 4 Choosing the Best Iterated Integral Evaluate \(\iint_D e^{y^2} \, dA \) for \(D \) in Figure 10.

Solution First, let’s try describing \(D \) as a vertically simple domain. Referring to Figure 10(A), we have

\[
D : 0 \leq x \leq 4, \quad \frac{1}{2} x \leq y \leq 2 \quad \Rightarrow \quad \iint_D e^{y^2} \, dA = \int_{x=0}^{4} \int_{y=x/2}^{2y} e^{y^2} \, dx \, dy
\]

The inner integral cannot be evaluated because we have no explicit antiderivative for \(e^{y^2} \). Therefore, we try describing \(D \) as horizontally simple [Figure 10(B)],

\[
D : 0 \leq y \leq 2, \quad 0 \leq x \leq 2y
\]

This leads to an iterated integral that can be evaluated:

\[
\int_0^2 \int_{x=0}^{2y} e^{y^2} \, dx \, dy = \int_0^2 \left(xe^{y^2} \bigg|_{x=0}^{2y} \right) \, dy = \int_0^2 2y e^{y^2} \, dy
\]

\[
= e^{y^2} \bigg|_0^2 = e^4 - 1
\]

Example 5 Changing the Order of Integration Sketch the domain of integration \(D \) corresponding to

\[
\int_1^3 \int_{\sqrt[3]{y}}^9 x e^y \, dx \, dy
\]

Then change the order of integration and evaluate.

Solution The limits of integration give us inequalities that describe the domain \(D \) (as a horizontally simple region since \(dx \) precedes \(dy \)):

\[
1 \leq y \leq 9, \quad \sqrt[3]{y} \leq x \leq 3
\]
We sketch the region in Figure 11. Now observe that D is also vertically simple:

$$1 \leq x \leq 3, \quad 1 \leq y \leq x^2$$

so we can rewrite our integral and evaluate:

$$\int_1^3 \int_{x=\sqrt{y}} x e^y \, dy \, dx = \int_1^3 \int_{y=1}^{x^2} x e^y \, dy \, dx = \int_1^3 \left(\int_{y=1}^{x^2} x e^y \, dy \right) \, dx$$

$$= \int_1^3 \left(xe^y \right|_{y=1}^{x^2} \, dx = \int_1^3 (xe^{x^2} - ex) \, dx = \frac{1}{2}(e^{x^2} - ex^3) \bigg|_1^3$$

$$= \frac{1}{2}(e^9 - 9e) - 0 = \frac{1}{2}(e^9 - 9e)$$

If we want to compute the volume of a solid region in space that is sandwiched between two surfaces and that lies above a domain D in the x-y-plane, we can use the linearity of the double integral to find a formula.

Theorem 3 Suppose $z_1(x, y)$ and $z_2(x, y)$ are integrable functions on D and $z_1(x, y) \leq z_2(x, y)$ for all points in D. Then the volume V of the solid region between the surfaces given by $z = z_1(x, y)$ and $z = z_2(x, y)$ is given by

$$V = \int\int_D (z_2(x, y) - z_1(x, y)) \, dA$$

Proof First assume that $0 \leq z_1(x, y) \leq z_2(x, y)$ for all (x, y) in D, as in Figure 12. Then, letting Q be the region sandwiched between the two surfaces and T the region between the bottom surface and the xy-plane, we have

$$\text{Vol}(Q) = \text{Vol}(Q \cup T) - \text{Vol}(T)$$

$$= \int\int_D z_2(x, y) \, dA - \int\int_D z_1(x, y) \, dA = \int\int_D (z_2(x, y) - z_1(x, y)) \, dA$$

A similar argument applies even when the two surfaces are not above the xy-plane.

Example 6 Find the volume V of the solid bounded above and below by the paraboloids corresponding to $z = 8 - x^2 - y^2$ and $z = x^2 + y^2$ and lying over the domain $D = \{(x, y) : -1 \leq x \leq 1, -1 \leq y \leq 1\}$.

Solution The solid region appears as in Figure 13. Since it is true that over the domain D, the paraboloid given by $z = 8 - x^2 - y^2$ is always above the paraboloid given by $z = x^2 + y^2$, Theorem 3 applies.

$$V = \int\int_D (h_2(x, y) - h_1(x, y)) \, dA = \int_{-1}^{1} \int_{-1}^{1} ((8 - x^2 - y^2) - (x^2 + y^2)) \, dy \, dx$$

$$= \int_{-1}^{1} \int_{-1}^{1} (8 - 2x^2 - 2y^2) \, dy \, dx = \int_{-1}^{1} \left(8y - 2x^2y - \frac{2y^3}{3} \right) \bigg|_{-1}^{1} \, dx$$

$$= \int_{-1}^{1} \left(8 - 2x^2 - \frac{2}{3} \right) - \left(-8 + 2x^2 + \frac{2}{3} \right) \, dx = \int_{-1}^{1} \left(16 - 4x^2 - \frac{4}{3} \right) \, dx$$

$$= 16x - \frac{4x^3}{3} - \frac{4x}{3} \bigg|_{-1}^{1} = \left(16 - \frac{4}{3} - \frac{4}{3} \right) - \left(-16 + \frac{4}{3} + \frac{4}{3} \right) = 26 \frac{2}{3}$$

In the next theorem, part (a) is a formal statement of the fact that larger functions have larger integrals, a fact that we also noted in the single-variable case. Part (b) is useful for estimating integrals.
THEOREM 4 Let $f(x, y)$ and $g(x, y)$ be integrable functions on D.

(a) If $f(x, y) \leq g(x, y)$ for all $(x, y) \in D$, then

$$\iint_D f(x, y) \, dA \leq \iint_D g(x, y) \, dA$$

(b) If $m \leq f(x, y) \leq M$ for all $(x, y) \in D$, then

$$m \cdot \text{Area}(D) \leq \iint_D f(x, y) \, dA \leq M \cdot \text{Area}(D)$$

Proof If $f(x, y) \leq g(x, y)$, then every Riemann sum for $f(x, y)$ is less than or equal to the corresponding Riemann sum for g:

$$\sum f(P_{ij}) \Delta x_i \Delta y_j \leq \sum g(P_{ij}) \Delta x_i \Delta y_j$$

We obtain (6) by taking the limit. Now suppose that $f(x, y) \leq M$ and apply (6) with $g(x, y) = M$:

$$\iint_D f(x, y) \, dA \leq \iint_D M \, dA = M \cdot \text{Area}(D)$$

This proves half of (7). The other half follows similarly.

EXAMPLE 7 Estimate $\iint_D \frac{dA}{\sqrt{x^2 + (y-2)^2}}$, where D is the disk of radius 1 centered at the origin.

Solution The quantity $\sqrt{x^2 + (y-2)^2}$ is the distance d from (x, y) to $(0, 2)$, and we see from Figure 14 that $1 \leq d \leq 3$. Taking reciprocals, we have

$$\frac{1}{3} \leq \frac{1}{\sqrt{x^2 + (y-2)^2}} \leq 1$$

We apply (7) with $m = \frac{1}{3}$ and $M = 1$, using the fact that $\text{Area}(D) = \pi$, to obtain

$$\frac{\pi}{3} \leq \iint_D \frac{dA}{\sqrt{x^2 + (y-2)^2}} \leq \pi$$

Average Value

The average value (or mean value) of a function $f(x, y)$ on a domain D, which we denote by \overline{f}, is the quantity

$$\overline{f} = \frac{1}{\text{Area}(D)} \iint_D f(x, y) \, dA = \frac{\iint_D f(x, y) \, dA}{\iint_D 1 \, dA}$$

Equivalently, \overline{f} is the value satisfying the relation

$$\iint_D f(x, y) \, dA = \overline{f} \cdot \text{Area}(D)$$
GRAPHICAL INSIGHT The solid region under the graph has the same (signed) volume as the cylinder with base D of height f (Figure 15).

EXAMPLE 8 An architect needs to know the average height \overline{H} of the ceiling of a pagoda whose base D is the square $[-4, 4] \times [-4, 4]$ and roof is the graph of
\[H(x, y) = 32 - x^2 - y^2 \]
where distances are in feet (Figure 16). Calculate \overline{H}.

Solution First, we compute the integral of $H(x, y)$ over D:
\[
\iint_D (32 - x^2 - y^2) \, dA = \int_{-4}^{4} \int_{-4}^{4} (32 - x^2 - y^2) \, dy \, dx
\]
\[
= \int_{-4}^{4} \left(32y - x^2y - \frac{1}{3}y^3 \right) \bigg|_{-4}^{4} \, dx = \int_{-4}^{4} \left(\frac{640}{3} - 8x^2 \right) \, dx
\]
\[
= \left(\frac{640}{3}x - \frac{8}{3}x^3 \right) \bigg|_{-4}^{4} = \frac{4096}{3}
\]
The area of D is $8 \times 8 = 64$, so the average height of the pagoda’s ceiling is
\[
\overline{H} = \frac{1}{\text{Area}(D)} \iint_D H(x, y) \, dA = \frac{1}{64} \left(\frac{4096}{3} \right) = \frac{64}{3} \approx 21.3 \text{ ft}
\]

The Mean Value Theorem states that a continuous function on a domain D must take on its average value at some point P in D, provided that D is closed, bounded, and also connected (see Exercise 67 for a proof). By definition, D is connected if any two points in D can be joined by a curve in D (Figure 17).

THEOREM 5 Mean Value Theorem for Double Integrals If $f(x, y)$ is continuous and D is closed, bounded, and connected, then there exists a point $P \in D$ such that
\[
\iint_D f(x, y) \, dA = f(P) \text{Area}(D)
\]
Equivalently, $f(P) = \overline{f}$, where \overline{f} is the average value of f on D.

Decomposing the Domain into Smaller Domains

Double integrals are additive with respect to the domain: If D is the union of domains D_1, D_2, \ldots, D_N that do not overlap except possibly on boundary curves (Figure 18), then
\[
\iint_D f(x, y) \, dA = \iint_{D_1} f(x, y) \, dA + \cdots + \iint_{D_N} f(x, y) \, dA.
\]
Additivity may be used to evaluate double integrals over domains \(\mathcal{D} \) that are not simple but can be decomposed into finitely many simple domains.

We close this section with a simple but useful remark. If \(f(x, y) \) is a continuous function on a small domain \(\mathcal{D} \), then

\[
\iint_{\mathcal{D}} f(x, y) \, dA \approx \frac{f(P) \cdot \text{Area}(\mathcal{D})}{\text{Function value} \times \text{area}}
\]

where \(P \) is any sample point in \(\mathcal{D} \). In fact, we can choose \(P \) so that (10) is an equality by Theorem 5. But if \(\mathcal{D} \) is small enough, then \(f \) is nearly constant on \(\mathcal{D} \), and (10) holds as a good approximation for all \(P \in \mathcal{D} \).

If the domain \(\mathcal{D} \) is not small, we may partition it into \(N \) smaller subdomains \(\mathcal{D}_1, \ldots, \mathcal{D}_N \) and choose sample points \(P_j \) in \(\mathcal{D}_j \). By additivity,

\[
\iint_{\mathcal{D}} f(x, y) \, dA = \sum_{j=1}^{N} \iint_{\mathcal{D}_j} f(x, y) \, dA \approx \sum_{j=1}^{N} f(P_j) \cdot \text{Area}(\mathcal{D}_j)
\]

and thus we have the approximation

\[
\iint_{\mathcal{D}} f(x, y) \, dA \approx \sum_{j=1}^{N} f(P_j) \cdot \text{Area}(\mathcal{D}_j)
\]

We can think of Eq. (11) as a generalization of the Riemann sum approximation. In a Riemann sum, \(\mathcal{D} \) is partitioned by rectangles \(\mathcal{R}_{ij} \) of area \(\Delta A_{ij} = \Delta x_i \Delta y_j \).

EXAMPLE 9 Estimate \(\iint_{\mathcal{D}} f(x, y) \, dA \) for the domain \(\mathcal{D} \) in Figure 19, using the areas and function values given there and the accompanying table.

<table>
<thead>
<tr>
<th>(j)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area((\mathcal{D}_j))</td>
<td>1</td>
<td>1</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>(f(P_j))</td>
<td>1.8</td>
<td>2.2</td>
<td>2.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Solution

\[
\iint_{\mathcal{D}} f(x, y) \, dA \approx \sum_{j=1}^{4} f(P_j) \cdot \text{Area}(\mathcal{D}_j)
\]

\[
= (1.8)(1) + (2.2)(1) + (2.1)(0.9) + (2.4)(1.2) \approx 8.8
\]

16.2 SUMMARY

- We assume that \(\mathcal{D} \) is a closed, bounded domain whose boundary is a simple closed curve that either is smooth or has a finite number of corners. The double integral is defined by

\[
\iint_{\mathcal{D}} f(x, y) \, dA = \iint_{\mathcal{R}} \tilde{f}(x, y) \, dA
\]

where \(\mathcal{R} \) is a rectangle containing \(\mathcal{D} \) and \(\tilde{f}(x, y) = f(x, y) \) if \((x, y) \in \mathcal{D} \), and \(\tilde{f}(x, y) = 0 \) otherwise. The value of the integral does not depend on the choice of \(\mathcal{R} \).
- The double integral defines the signed volume between the graph of \(f(x, y) \) and the \(xy \)-plane, where regions below the \(xy \)-plane are assigned negative volume.
- For any constant \(C \), \(\iint_{\mathcal{D}} C \, dA = C \cdot \text{Area}(\mathcal{D}) \).
- If \(\mathcal{D} \) is vertically or horizontally simple, \(\iint_{\mathcal{D}} f(x, y) \, dA \) can be evaluated as an iterated integral:
Vertically simple domain
\[a \leq x \leq b, \quad g_1(x) \leq y \leq g_2(x) \]
\[\int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \, dx \]

Horizontally simple domain
\[c \leq y \leq d, \quad g_1(y) \leq x \leq g_2(y) \]
\[\int_c^d \int_{g_1(y)}^{g_2(y)} f(x, y) \, dx \, dy \]

- If \(f(x, y) \leq g(x, y) \) on \(D \), then \(\int\int_D f(x, y) \, dA \leq \int\int_D g(x, y) \, dA \).
- If \(m \) is the minimum value and \(M \) the maximum value of \(f \) on \(D \), then
 \[m \cdot \text{Area}(D) \leq \int\int_D f(x, y) \, dA \leq M \cdot \text{Area}(D) \]
- If \(z_1(x, y) \leq z_2(x, y) \) for all points in \(D \), then the volume \(V \) of the solid region between the surfaces given by \(z = z_1(x, y) \) and \(z = z_2(x, y) \) over \(D \) is given by
 \[V = \int\int_D (z_2(x, y) - z_1(x, y)) \, dA \]
- The average value of \(f \) on \(D \) is
 \[\overline{f} = \frac{1}{\text{Area}(D)} \int\int_D f(x, y) \, dA = \frac{\int\int_D f(x, y) \, dA}{\int\int_D 1 \, dA} \]
- Mean Value Theorem for Integrals: If \(f(x, y) \) is continuous and \(D \) is closed, bounded, and connected, then there exists a point \(P \in D \) such that
 \[\int\int_D f(x, y) \, dA = f(P) \cdot \text{Area}(D) \]
 Equivalently, \(f(P) = \overline{f} \), where \(\overline{f} \) is the average value of \(f \) on \(D \).
- Additivity with respect to the domain: If \(D \) is a union of nonoverlapping (except possibly on their boundaries) domains \(D_1, \ldots, D_N \), then
 \[\int\int_D f(x, y) \, dA = \sum_{j=1}^N \int\int_{D_j} f(x, y) \, dA \]
- If the domains \(D_1, \ldots, D_N \) are small and \(P_j \) is a sample point in \(D_j \), then
 \[\int\int_D f(x, y) \, dA \approx \sum_{j=1}^N f(P_j) \cdot \text{Area}(D_j) \]

16.2 EXERCISES

Preliminary Questions

1. Which of the following expressions do not make sense?

 (a) \[\int_0^1 \int_1^x f(x, y) \, dy \, dx \]
 (b) \[\int_0^1 \int_1^y f(x, y) \, dy \, dx \]
 (c) \[\int_0^1 \int_y^x f(x, y) \, dy \, dx \]
 (d) \[\int_0^1 \int_x^1 f(x, y) \, dy \, dx \]

2. Draw a domain in the plane that is neither vertically nor horizontally simple.

3. Which of the four regions in Figure 20 is the domain of integration for \(\int_{-\sqrt{2}/2}^0 \int_{-x}^{\sqrt{1-x^2}} f(x, y) \, dy \, dx \)?

4. Let \(D \) be the unit disk. If the maximum value of \(f(x, y) \) on \(D \) is 4, then the largest possible value of \(\int\int_D f(x, y) \, dA \) is (choose the correct answer):

 (a) 4
 (b) 4\pi
 (c) \(\frac{4}{\pi} \)
Exercises

1. Calculate the Riemann sum for \(f(x, y) = x - y \) and the shaded domain \(D \) in Figure 21 with two choices of sample points, \(\bullet \) and \(o \). Which do you think is a better approximation to the integral of \(f \) over \(D \)? Why?

![Figure 21](image)

2. Approximate values of \(f(x, y) \) at sample points on a grid are given in Figure 22. Estimate \(\iint_D f(x, y) \, dx \, dy \) for the shaded domain by computing the Riemann sum with the given sample points.

![Figure 22](image)

3. Express the domain \(D \) in Figure 23 as both a vertically simple region and a horizontally simple region, and evaluate the integral of \(f(x, y) = xy \) over \(D \) as an iterated integral in two ways.

![Figure 23](image)

4. Sketch the domain
 \[D: 0 \leq x \leq 1, \quad x^2 \leq y \leq 4 - x^2 \]
 and evaluate \(\iint_D y \, dA \) as an iterated integral.

In Exercises 5–7, compute the double integral of \(f(x, y) = x^2y \) over the given shaded domain in Figure 24.

5. (A)
6. (B)
7. (C)

![Figure 24](image)

8. Sketch the domain \(D \) defined by \(x + y \leq 12, \ x \geq 4, \ y \geq 4 \) and compute \(\iint_D e^{x+y} \, dA \).

9. Integrate \(f(x, y) = x \) over the region bounded by \(y = x^2 \) and \(y = x + 2 \).

10. Sketch the region \(D \) between \(y = x^2 \) and \(y = x(1 - x) \). Express \(D \) as a simple region and calculate the integral of \(f(x, y) = 2y \) over \(D \).

11. Evaluate \(\iint_D \frac{y}{x} \, dA \), where \(D \) is the shaded part of the semicircle of radius 2 in Figure 25.

12. Calculate the double integral of \(f(x, y) = y^2 \) over the rhombus \(R \) in Figure 26.

![Figure 25](image)

13. Calculate the double integral of \(f(x, y) = x + y \) over the domain \(D = \{(x, y) : x^2 + y^2 \leq 4, y \geq 0 \} \).

14. Integrate \(f(x, y) = (x + y + 1)^{-2} \) over the triangle with vertices \((0, 0), (4, 0), \) and \((0, 8)\).

15. Calculate the integral of \(f(x, y) = x \) over the region \(D \) bounded above by \(y = x(2 - x) \) and below by \(y = y(2 - y) \). Hint: Apply the quadratic formula to the lower boundary curve to solve for \(y \) as a function of \(x \).

16. Integrate \(f(x, y) = x \) over the region bounded by \(y = x, \ y = 4x - x^2, \) and \(y = 0 \) in two ways: as a vertically simple region and as a horizontally simple region.

In Exercises 17–24, compute the double integral of \(f(x, y) \) over the domain \(D \) indicated.

17. \(f(x, y) = x^2y; \ 1 \leq x \leq 3, \ x \leq y \leq 2x + 1 \)

18. \(f(x, y) = 1; \ 0 \leq x \leq 1, \ 1 \leq y \leq e^x \)

19. \(f(x, y) = x; \ 0 \leq x \leq 1, \ 1 \leq y \leq e^{-x} \)

20. \(f(x, y) = \cos(2x + y); \ \frac{1}{2} \leq x \leq \frac{\pi}{2}, \ 1 \leq y \leq 2x \)

21. \(f(x, y) = 2xy; \) bounded by \(y = x, \ x = y^2 \)

22. \(f(x, y) = \sin x; \) bounded by \(x = 0, \ x = 1, \ y = \cos x \)

23. \(f(x, y) = e^{x+y}; \) bounded by \(y = x - 1, \ y = 12 - x \) for \(2 \leq y \leq 4 \)

24. \(f(x, y) = (x + y)^{-1}; \) bounded by \(y = x, \ y = 1, \ y = e, \ x = 0 \)
In Exercises 25–28, sketch the domain of integration and express as an iterated integral in the opposite order:

25. \(\int_{0}^{4} \int_{x}^{4} f(x, y) \, dy \, dx \)
26. \(\int_{0}^{4} \int_{x}^{3} f(x, y) \, dy \, dx \)
27. \(\int_{y}^{7} \int_{2}^{y} f(x, y) \, dx \, dy \)
28. \(\int_{0}^{1} \int_{x}^{e} f(x, y) \, dy \, dx \)

29. Sketch the domain \(D \) corresponding to
\[\int_{0}^{4} \int_{\sqrt{4y^2+5y}}^{2} \, dx \, dy \]
Then change the order of integration and evaluate.

30. Change the order of integration and evaluate
\[\int_{1}^{2} \int_{\pi /2}^{\pi} x \cos(xy) \, dx \, dy \]
Explain the simplification achieved by changing the order.

31. Compute the integral of \(f(x, y) = (\ln y)^{-1} \) over the domain \(D \) bounded by \(y = e^x \) and \(y = e^\sqrt{x} \). Hint: Choose the order of integration that enables you to evaluate the integral.

32. Evaluate by changing the order of integration:
\[\int_{0}^{\pi /2} \int_{0}^{2} \sin y^2 \, dx \, dy \]

In Exercises 33–36, sketch the domain of integration. Then change the order of integration and evaluate. Explain the simplification achieved by changing the order.

33. \(\int_{0}^{1} \int_{0}^{\sin x / x} \, dx \, dy \)
34. \(\int_{0}^{4} \int_{y}^{\sqrt{1+x}} \, dx \, dy \)
35. \(\int_{0}^{1} \int_{y=x/2}^{x} \, dy \, dx \)
36. \(\int_{0}^{1} \int_{y=x^2/3}^{x} \, dy \, dx \)

37. Sketch the domain \(D \) where \(0 \leq x \leq 2, 0 \leq y \leq 2, \) and \(x \) or \(y \) is greater than 1. Then compute \(\int_{D} e^{x+y} \, dA \).

38. Calculate \(\int_{D} e^x \, dA \), where \(D \) is bounded by the lines \(y = x + 1, y = x, x = 0, \) and \(x = 1. \)

In Exercises 39–42, calculate the double integral of \(f(x, y) \) over the triangle indicated in Figure 27.

39. \(f(x, y) = e^{x^2}, \) (A)
40. \(f(x, y) = 1 - 2x, \) (B)
41. \(f(x, y) = \frac{x}{y^2}, \) (C)
42. \(f(x, y) = x + 1, \) (D)

43. Calculate the double integral of \(f(x, y) = \frac{\sin y}{y} \) over the region \(D \) in Figure 28.

44. Evaluate \(\int_{D} x \, dA \) for \(D \) in Figure 29.

45. Find the volume of the region bounded by \(z = 40 - 10y, z = 0, y = 0, \) and \(y = 4 - x^2. \)
46. Find the volume of the region enclosed by \(z = 1 - y^2 \) and \(z = y^2 - 1 \) for \(0 \leq x \leq 2. \)
47. Find the volume of the region bounded by \(z = 16 - y, z = y, y = x^2, \) and \(y = 8 - x^2. \)
48. Find the volume of the region bounded by \(y = 1 - x^2, z = 1, y = 0, \) and \(z + y = 2. \)
49. Set up a double integral that gives the volume of the region bounded by the two paraboloids \(z = x^2 + y^2 \) and \(z = 8 - x^2 - y^2. \) (Do not evaluate the double integral.)
50. Set up a double integral that gives the volume of the region bounded by \(z = 1 - y^2, z = y, x = 0, y = 0, \) and \(x + y = 1. \) (Do not evaluate the double integral.)
51. Calculate the average value of \(f(x, y) = e^{x+y} \) on the square \([0, 1] \times [0, 1]. \)
52. Calculate the average height above the x-axis of a point in the region \(0 \leq x \leq 1, 0 \leq y \leq x^2. \)
53. Find the average height of the "ceiling" in Figure 30 defined by $z = y^2 \sin x$ for $0 \leq x \leq \pi$, $0 \leq y \leq 1$.

54. Calculate the average value of the x-coordinate of a point on the semicircle $x^2 + y^2 \leq R^2$, $x \geq 0$. What is the average value of the y-coordinate?

55. What is the average value of the linear function $f(x, y) = mx + ny + p$ on the ellipse $(\frac{x}{a})^2 + (\frac{y}{b})^2 \leq 1$? Argue by symmetry rather than calculation.

56. Find the average square distance from the origin to a point in the domain D in Figure 31.

57. Let D be the rectangle $0 \leq x \leq 2$, $-\frac{1}{2} \leq y \leq \frac{1}{2}$, and let $f(x, y) = \sqrt{x^3 + 1}$. Prove that

$$\iint_D f(x, y) \, dA \leq \frac{3}{2}$$

58. (a) Use the inequality $0 \leq \sin x \leq x$ for $x \geq 0$ to show that

$$\int_0^1 \int_0^1 \sin(xy) \, dx \, dy \leq \frac{1}{4}$$

(b) Use a computer algebra system to evaluate the double integral to three decimal places.

59. Prove the inequality $\iint_D \frac{dA}{4 + x^2 + y^2} \leq \pi$, where D is the disk $x^2 + y^2 \leq 4$.

60. Let D be the domain bounded by $y = x^2 + 1$ and $y = 2$. Prove the inequality

$$\frac{4}{3} \leq \iiint_D (x^2 + y^2) \, dA \leq \frac{20}{3}$$

61. Let \mathcal{J} be the average of $f(x, y) = xy^2$ on $D = [0, 1] \times [0, 4]$. Find a point $P \in D$ such that $f(P) = \mathcal{J}$ (the existence of such a point is guaranteed by the Mean Value Theorem for Double Integrals).

62. Verify the Mean Value Theorem for Double Integrals for $f(x, y) = e^x - y$ on the triangle bounded by $y = 0$, $x = 1$, and $y = x$.

In Exercises 63 and 64, use (11) to estimate the double integral.

63. The following table lists the areas of the subdomains D_j of the domain D in Figure 32 and the values of a function $f(x, y)$ at sample points $P_j \in D_j$. Estimate $\iint_D f(x, y) \, dA$.

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area(D_j)</td>
<td>1.2</td>
<td>1.1</td>
<td>1.4</td>
<td>0.6</td>
<td>1.2</td>
<td>0.8</td>
</tr>
<tr>
<td>$f(P_j)$</td>
<td>9</td>
<td>9.1</td>
<td>9.3</td>
<td>9.1</td>
<td>8.9</td>
<td>8.8</td>
</tr>
</tbody>
</table>

64. The domain D between the circles of radii 5 and 5.2 in the first quadrant in Figure 33 is divided into six subdomains of angular width $\Delta \theta = \frac{\pi}{12}$, and the values of a function $f(x, y)$ at sample points are given. Compute the area of the subdomains and estimate $\iint_D f(x, y) \, dA$.

65. According to Eq. (3), the area of a domain D is equal to $\iint_D 1 \, dA$. Prove that if D is the region between two curves $y = g_1(x)$ and $y = g_2(x)$ with $g_2(x) \leq g_1(x)$ for $a \leq x \leq b$, then

$$\iint_D 1 \, dA = \int_a^b (g_1(x) - g_2(x)) \, dx$$
Further Insights and Challenges

66. Let \(D \) be a closed connected domain and let \(P, Q \in D \). The Intermediate Value Theorem (IVT) states that if \(f \) is continuous on \(D \), then \(f(x, y) \) takes on every value between \(f(P) \) and \(f(Q) \) at some point in \(D \).
(a) Show, by constructing a counterexample, that the IVT is false if \(D \) is not connected.
(b) Prove the IVT as follows: Let \(c(t) \) be a path such that \(c(0) = P \) and \(c(1) = Q \) (such a path exists because \(D \) is connected). Apply the IVT in one variable to the composite function \(f(c(t)) \).

67. Use the fact that a continuous function on a closed domain \(D \) attains both a minimum value \(m \) and a maximum value \(M \), together with Theorem 3, to prove that the average value \(\frac{1}{|D|} \int_D f \) lies between \(m \) and \(M \).

Then use the IVT in Exercise 62 to prove the Mean Value Theorem for Double Integrals.

68. Let \(f(y) \) be a function of \(y \) alone and set \(G(t) = \int_0^t f(y) \, dy \).
(a) Use the Fundamental Theorem of Calculus to prove that \(G''(t) = f(t) \).
(b) Show, by changing the order in the double integral, that \(G(t) = \int_0^t (t - y) f(y) \, dy \). This illustrates that the “second antiderivative” of \(f(y) \) can be expressed as a single integral.

16.3 Triple Integrals

Triple integrals of functions \(f(x, y, z) \) of three variables are a fairly straightforward generalization of double integrals. Instead of a rectangle in the plane, our domain is a box (Figure 1)

\[B = [a, b] \times [c, d] \times [p, q] \]

consisting of all points \((x, y, z)\) in \(\mathbb{R}^3 \) such that

\[a \leq x \leq b, \quad c \leq y \leq d, \quad p \leq z \leq q \]

To integrate over this box, we subdivide the box (as usual) into “sub”-boxes

\[B_{ijk} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] \times [z_{k-1}, z_k] \]

by choosing partitions of the three intervals

\[a = x_0 < x_1 < \cdots < x_N = b \]
\[c = y_0 < y_1 < \cdots < y_M = d \]
\[p = z_0 < z_1 < \cdots < z_L = q \]

Here \(N, M, \) and \(L \) are positive integers. The volume of \(B_{ijk} \) is \(\Delta V_{ijk} = \Delta x_i \Delta y_j \Delta z_k \), where

\[\Delta x_i = x_i - x_{i-1}, \quad \Delta y_j = y_j - y_{j-1}, \quad \Delta z_k = z_k - z_{k-1} \]

Then we choose a sample point \(P_{ijk} \) in each box \(B_{ijk} \) and form the Riemann sum:

\[S_{N,M,L} = \sum_{i=1}^{N} \sum_{j=1}^{M} \sum_{k=1}^{L} f(P_{ijk}) \Delta V_{ijk} \]

As in the previous section, we write \(P = \{x_i\}, \{y_j\}, \{z_k\} \) for the partition and let \(\|P\| \) be the maximum of the widths \(\Delta x_i, \Delta y_j, \Delta z_k \). If the sums \(S_{N,M,L} \) approach a limit as \(\|P\| \to 0 \) for arbitrary choices of sample points, we say that \(f \) is integrable over \(B \). The limit value is denoted

\[\iiint_B f(x, y, z) \, dV = \lim_{\|P\| \to 0} S_{N,M,L} \]

Triple integrals have many of the same properties as double and single integrals. The linear properties are satisfied, and continuous functions are integrable over a box \(B \). Furthermore, triple integrals can be evaluated as iterated integrals.
The notation \(dA \), used in the previous section, suggests area and occurs in double integrals over domains in the plane. Similarly, \(dV \) suggests volume and is used in the notation for triple integrals.

THEOREM 1 Fubini’s Theorem for Triple Integrals

The triple integral of a continuous function \(f(x, y, z) \) over a box \(B = [a, b] \times [c, d] \times [p, q] \) is equal to the iterated integral:

\[
\iiint_B f(x, y, z) \, dV = \int_a^b \int_c^d \int_p^q f(x, y, z) \, dz \, dy \, dx
\]

Furthermore, the iterated integral may be evaluated in any order.

As noted in the theorem, we are free to evaluate the iterated integral in any order (there are six different orders). For instance,

\[
\int_a^b \int_y^c \int_z^p f(x, y, z) \, dz \, dy \, dx = \int_z^p \int_y^c \int_x^a f(x, y, z) \, dx \, dy \, dz
\]

EXAMPLE 1 Integration over a Box

Calculate the integral \(\iiint_B x^2 e^{y+3z} \, dV \), where \(B = [1, 4] \times [0, 3] \times [2, 6] \).

Solution

We write this triple integral as an iterated integral:

\[
\iiint_B x^2 e^{y+3z} \, dV = \int_1^4 \int_0^3 \int_2^6 x^2 e^{y+3z} \, dz \, dy \, dx
\]

Step 1. Evaluate the inner integral with respect to \(z \), holding \(x \) and \(y \) constant.

\[
\int_2^6 x^2 e^{y+3z} \, dz = \frac{1}{3} x^2 e^{y+3z} \left| _2 ^6 \right. = \frac{1}{3} x^2 e^{y+18} - \frac{1}{3} x^2 e^{y+6} = \frac{1}{3} (e^{18} - e^6) x^2 e^y
\]

Step 2. Evaluate the middle integral with respect to \(y \), holding \(x \) constant.

\[
\int_0^3 \frac{1}{3} (e^{18} - e^6) x^2 e^y \, dy = \frac{1}{3} (e^{18} - e^6) x^2 \int_0^3 e^y \, dy = \frac{1}{3} (e^{18} - e^6)(e^3 - 1)x^2
\]

Step 3. Evaluate the outer integral with respect to \(x \).

\[
\iiint_B x^2 e^{y+3z} \, dV = \frac{1}{3} (e^{18} - e^6)(e^3 - 1) \int_1^4 x^2 \, dx = 7(e^{18} - e^6)(e^3 - 1) \tag*{\blacksquare}
\]

Note that in the previous example, the integrand factors as a product of three functions \(f(x, y, z) = g(x)h(y)k(z) \)—namely,

\[
f(x, y, z) = x^2 e^{y+3z} = x^2 e^y e^{3z}
\]

Because of this, the triple integral can be evaluated simply as the product of three single integrals:

\[
\iiint_B x^2 e^{y+3z} \, dV = \left(\int_1^4 x^2 \, dx \right) \left(\int_0^3 e^y \, dy \right) \left(\int_2^6 e^{3z} \, dz \right) = (21)(e^3 - 1) \left(\frac{e^{18} - e^6}{3} \right) = 7(e^{18} - e^6)(e^3 - 1)
\]

Next, instead of a box, we integrate over a solid region \(W \) that is \(z \)-simple as in Figure 2. In other words, \(W \) is the region between two surfaces \(z = z_1(x, y) \) and \(z = z_2(x, y) \) over a domain \(D \) in the \(xy \)-plane. In this case,

\[
W = \{(x, y, z) : (x, y) \in D \text{ and } z_1(x, y) \leq z \leq z_2(x, y) \}
\]

The domain \(D \) is the projection of \(W \) onto the \(xy \)-plane.

FIGURE 2 The point \(P = (x, y, z) \) in the \(z \)-simple region \(W \) if \((x, y) \in D \) and \(z_1(x, y) \leq z \leq z_2(x, y) \).
As a formal matter, as in the case of double integrals, we define the triple integral of $f(x, y, z)$ over W by

$$
\iiint_W f(x, y, z) \, dV = \iiint_B \tilde{f}(x, y, z) \, dV
$$

where B is a box containing W, and \tilde{f} is the function that is equal to f on W and equal to zero outside of W. The triple integral exists, assuming that $z_1(x, y), z_2(x, y)$, and the integrand f are continuous. In practice, however, we evaluate triple integrals as iterated integrals. This is justified by the following theorem, whose proof is similar to that of Theorem 2 in Section 16.2.

Theorem 2 The triple integral of a continuous function f over the region

$$W: (x, y) \in D, \quad z_1(x, y) \leq z \leq z_2(x, y)$$

is equal to the iterated integral

$$\iiint_W f(x, y, z) \, dV = \iint_D \left(\int_{z_1(x, y)}^{z_2(x, y)} f(x, y, z) \, dz \right) \, dA$$

One thing missing from our discussion so far is a geometric interpretation of triple integrals. A double integral represents the signed volume of the three-dimensional region between a graph $z = f(x, y)$ and the xy-plane. The graph of a function $f(x, y, z)$ of three variables lives in four-dimensional space, and thus, a triple integral represents a four-dimensional volume. This volume is hard or impossible to visualize. On the other hand, triple integrals represent many other types of quantities. Some examples are total mass, average value, probabilities, and centers of mass (see Section 16.5).

Furthermore, the volume V of a region W is defined as the triple integral of the constant function $f(x, y, z) = 1$:

$$V = \iiint_W 1 \, dV$$

In particular, if W is a z-simple region between $z = h_1(x, y)$ and $z = h_2(x, y)$, then

$$\iiint_W 1 \, dV = \iint_D \left(\int_{z=h_1(x, y)}^{h_2(x, y)} 1 \, dz \right) \, dA = \iint_D (h_2(x, y) - h_1(x, y)) \, dA$$

Thus, the triple integral is equal to the double integral defining the volume of the region between the two surfaces.

Example 2 Solid Region with a Rectangular Base Evaluate $\iiint_W z \, dV$, where W is the region between the planes $z = x + y$ and $z = 3x + 5y$ lying over the rectangle $D = [0, 3] \times [0, 2]$ (Figure 3).

Solution Apply Theorem 2 with $z_1(x, y) = x + y$ and $z_2(x, y) = 3x + 5y$:

$$\iiint_W z \, dV = \iint_D \left(\int_{z=x+y}^{3x+5y} z \, dz \right) \, dA = \int_0^3 \int_0^2 \int_{x+y}^{3x+5y} z \, dz \, dy \, dx$$

Step 1. Evaluate the inner integral with respect to z.

$$\int_{x+y}^{3x+5y} z \, dz = \frac{1}{2} z^2 \bigg|_{x+y}^{3x+5y} = \frac{1}{2} (3x + 5y)^2 - \frac{1}{2} (x + y)^2 = 4x^2 + 14xy + 12y^2$$
Step 2. Evaluate the result with respect to y.

$$\int_{y=0}^{2} (4x^2 + 14xy + 12y^2) \, dy = (4x^2y + 7xy^2 + 4y^3) \bigg|_{y=0}^{2} = 8x^2 + 28x + 32$$

Step 3. Evaluate the result with respect to x.

$$\iiint_W z \, dV = \int_{x=0}^{3} (8x^2 + 28x + 32) \, dx = \left(\frac{8}{3}x^3 + 14x^2 + 32x \right) \bigg|_{0}^{3}$$

$$= 72 + 126 + 96 = 294$$

Example 3
Solid Region with a Triangular Base
Evaluate $\iiint_W z \, dV$, where W is the region in Figure 4.

Solution
This is similar to the previous example, but now W lies over the triangle D in the xy-plane defined by

$$0 \leq x \leq 1, \quad 0 \leq y \leq 1 - x$$

Thus, the triple integral is equal to the iterated integral:

$$\iiint_W z \, dV = \iint_D \left(\int_{z=x+y}^{3x+5y} z \, dz \right) \, dA = \int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=x+y}^{3x+5y} z \, dz \, dy \, dx$$

We computed the inner integral in the previous example [see Eq. (3)]:

$$\int_{z=x+y}^{3x+5y} z \, dz = \frac{1}{2}z^2 \bigg|_{z=x+y}^{3x+5y} = 4x^2 + 14xy + 12y^2$$

Next, we integrate with respect to y:

$$\int_{y=0}^{1-x} (4x^2 + 14xy + 12y^2) \, dy = (4x^2y + 7xy^2 + 4y^3) \bigg|_{y=0}^{1-x}$$

$$= 4x^2(1-x) + 7x(1-x)^2 + 4(1-x)^3$$

$$= 4 - 5x + 2x^2 - x^3$$

And finally,

$$\iiint_W z \, dV = \int_{x=0}^{1} (4 - 5x + 2x^2 - x^3) \, dx$$

$$= 4 - \frac{5}{2} + \frac{2}{3} - \frac{1}{4} = \frac{23}{12}$$

Example 4
Region Between Intersecting Surfaces
Integrate $f(x, y, z) = x$ over the region W bounded above by $z = 4 - x^2 - y^2$ and below by $z = x^2 + 3y^2$ in the octant $x \geq 0, y \geq 0, z \geq 0$.

Solution
The region W is z-simple, so

$$\iiint_W x \, dV = \iint_D \int_{z=x^2+3y^2}^{4-x^2-y^2} x \, dz \, dA$$

where D is the projection of W onto the xy-plane. To evaluate the integral over D, we must find the equation of the curved part of the boundary of D.

![Figure 4](image-url)
Step 1. Find the boundary of \(D \).

The upper and lower surfaces intersect where they have the same height:

\[4 - x^2 - y^2 = z = x^2 + 3y^2 \quad \text{or} \quad x^2 + 2y^2 = 2 \]

Therefore, as we see in Figure 5, \(W \) projects onto the domain \(D \) consisting of the quarter of the ellipse \(x^2 + 2y^2 = 2 \) in the first quadrant. This ellipse hits the axes at \((\sqrt{2}, 0)\) and \((0, 1)\).

Step 2. Express \(D \) as a simple domain.

Since \(D \) is both vertically and horizontally simple, we can integrate in either the order \(dy \, dx \) or \(dx \, dy \). If we choose \(dx \, dy \), then \(y \) varies from 0 to 1 and the domain is described by

\[D : 0 \leq y \leq 1, \quad 0 \leq x \leq \sqrt{2 - 2y^2} \]

Step 3. Write the triple integral as an iterated integral.

\[
\iiint_W x \, dV = \int_{y=0}^{1} \int_{x=0}^{\sqrt{2-2y^2}} \int_{z=x^2+3y^2}^{4-x^2-y^2} x \, dz \, dx \, dy
\]

Step 4. Evaluate.

Here are the results of evaluating the integrals in order:

Inner integral:

\[
\int_{z=x^2+3y^2}^{4-x^2-y^2} x \, dz = xz \bigg|_{z=x^2+3y^2}^{4-x^2-y^2} = 4x - 2x^3 - 4y^2x
\]

Middle integral:

\[
\int_{x=0}^{\sqrt{2-2y^2}} (4x - 2x^3 - 4y^2x) \, dx = \left(2x^2 - \frac{1}{2}x^4 - 2x^2y^2\right) \bigg|_{x=0}^{\sqrt{2-2y^2}} = 2 - 4y^2 + 2y^4
\]

Triple integral:

\[
\iiint_W x \, dV = \int_{0}^{1} \int_{0}^{2} (2 - 4y^2 + 2y^4) \, dy = 2 - \frac{4}{3} + \frac{2}{5} = \frac{16}{15}
\]

So far, we have evaluated triple integrals by projecting the region \(W \) onto a domain \(D \) in the \(xy \)-plane. We can integrate equally well by projecting onto domains in the \(xz \)- or \(yz \)-plane. For example, if \(W \) is the \(x \)-simple region between the graphs of \(x = x_1(y, z) \) and \(x = x_2(y, z) \) lying over a domain \(D \) in the \(yz \)-plane (Figure 6), then

\[
\iiint_W f(x, y, z) \, dV = \iiint_D \left(\int_{z=x_1(y, z)}^{x_2(y, z)} f(x, y, z) \, dx \right) \, dA
\]
EXAMPLE 5 Writing a Triple Integral in Three Ways The region \(\mathcal{W} \) in Figure 7 is bounded by
\[
z = 4 - y^2, \quad y = 2x, \quad z = 0, \quad x = 0
\]

Express \(\iiint_{\mathcal{W}} xyz \, dV \) as an iterated integral in three ways, by projecting onto each of the three coordinate planes (but do not evaluate).

![Figure 7](image)

(A) Projection to \(xy \)-plane

(B) Projection to \(yz \)-plane

(C) Projection to \(xz \)-plane

(D) The \(y \)-coordinates of points in the solid satisfy \(2x \leq y \leq \sqrt{4 - z} \).

Solution We consider each coordinate plane separately.

Step 1. The \(xy \)-plane.

This is a \(z \)-simple region. The upper face \(z = 4 - y^2 \) intersects the first quadrant of the \(xy \)-plane \((z = 0) \) in the line \(y = 2 \) [Figure 7(A)]. Therefore, the projection of \(\mathcal{W} \) onto the \(xy \)-plane is a triangle \(\mathcal{D} \) defined by \(0 \leq x \leq 1, \ 2x \leq y \leq 2, \ 0 \leq z \leq 4 - y^2 \), and
\[
\mathcal{W} : 0 \leq x \leq 1, \quad 2x \leq y \leq 2, \quad 0 \leq z \leq 4 - y^2
\]

\[
\iiint_{\mathcal{W}} xyz \, dV = \int_{x=0}^{1} \int_{y=2x}^{2} \int_{z=0}^{4-y^2} xyz \, dz \, dy \, dx
\]

Step 2. The \(yz \)-plane.

This is also an \(x \)-simple region. The projection of \(\mathcal{W} \) onto the \(yz \)-plane is the domain \(\mathcal{T} \) [Figure 7(B)]:
\[
\mathcal{T} : 0 \leq y \leq 2, \quad 0 \leq z \leq 4 - y^2
\]

The region \(\mathcal{W} \) consists of all points lying between \(\mathcal{T} \) and the “left face” \(x = \frac{1}{2}y \). In other words, the \(x \)-coordinate must satisfy \(0 \leq x \leq \frac{1}{2}y \). Thus,
\[
\mathcal{W} : 0 \leq y \leq 2, \quad 0 \leq z \leq 4 - y^2, \quad 0 \leq x \leq \frac{1}{2}y
\]

\[
\iiint_{\mathcal{W}} xyz \, dV = \int_{y=0}^{2} \int_{x=0}^{\frac{1}{2}y} \int_{z=0}^{4-y^2} xyz \, dz \, dx \, dy
\]

Step 3. The \(xz \)-plane.

This is a \(y \)-simple region. The challenge in this case is to determine the projection of \(\mathcal{W} \) onto the \(xz \)-plane, that is, the region \(\mathcal{S} \) in Figure 7(C). We need to find the equation of the boundary curve of \(\mathcal{S} \). A point \(P \) on this curve is the projection of a point \(Q = (x, y, z) \) on the boundary of the left face. Since \(Q \) lies on both the plane \(y = 2x \) and the surface \(z = 4 - y^2 \), \(Q = (x, 2x, 4 - 4x^2) \). The projection of \(Q \) is \(P = (x, 0, 4 - 4x^2) \). We see that the projection of \(\mathcal{W} \) onto the \(xz \)-plane is the domain
\[
\mathcal{S} : 0 \leq x \leq 1, \quad 0 \leq z \leq 4 - 4x^2
\]
FIGURE 8 Finding the average temperature of a crystal.

This gives us limits for x and z variables, so the triple integral can be written

$$\iiint_{W} xyz \, dV = \int_{x=0}^{1} \int_{z=0}^{1-x} \int_{y=0}^{3-x-z} xyz \, dy \, dz \, dx$$

What are the limits for y? The equation of the upper face $z = 4 - y^2$ can be written $y = \sqrt{4 - z}$. Referring to Figure 7(D), we see that W is bounded by the left face $y = 2x$ and the upper face $y = \sqrt{4 - z}$. In other words, the y-coordinate of a point in W satisfies

$$2x \leq y \leq \sqrt{4 - z}$$

Now we can write the triple integral as the following iterated integral:

$$\iiint_{W} xyz \, dV = \int_{x=0}^{1} \int_{z=0}^{1-x} \int_{y=2x}^{\sqrt{4-z}} xyz \, dy \, dz \, dx$$

The average value of a function of three variables is defined as in the case of two variables:

$$\bar{T} = \frac{1}{\text{Volume}(W)} \iiint_{W} f(x, y, z) \, dV$$

where $\text{Volume}(W) = \iiint_{W} 1 \, dV$. And, as in the case of two variables, \bar{T} lies between the minimum and maximum values of f on D, and the Mean Value Theorem holds: If W is connected and f is continuous on W, then there exists a point $P \in W$ such that $f(P) = \bar{T}$.

EXAMPLE 6 A solid piece of crystal W in the first octant of space is bounded by the five planes given by $z = 0, y = 0, x = 0, x + z = 1,$ and $x + y + z = 3$. The temperature at every point in the crystal is given by $T(x, y, z) = x$ in degrees centigrade. Find the average temperature for all points in the crystal.

Solution To find the average temperature, we first need to find the volume. The region W, which appears in Figure 8, is not z-simple since there is no single top surface defining the region. Neither is it x-simple, since there is no single leftmost surface defining the region. However, it is y-simple, since it lies between the planes given by $x + y + z = 3$ and $y = 0$, and projects onto the triangle in the xz-plane given by $0 \leq x \leq 1, 0 \leq z \leq 1 - x$. Then W is described by

$$0 \leq x \leq 1, \quad 0 \leq z \leq 1 - x, \quad 0 \leq y \leq 3 - x - z$$

$$\text{Volume}(W) = \iiint_{W} dV = \int_{x=0}^{1} \int_{z=0}^{1-x} \int_{y=0}^{3-x-z} \, dy \, dz \, dx$$

$$= \int_{x=0}^{1} \int_{z=0}^{1-x} z \int_{y=0}^{3-x-z} \, dy \, dz \, dx$$

$$= \int_{x=0}^{1} \int_{z=0}^{1-x} (3 - x - z) \, dz \, dx$$

$$= \int_{x=0}^{1} \left(3z - xz - \frac{z^2}{2} \right) \bigg|_{z=0}^{3-x-z} \, dx$$

$$= \int_{x=0}^{1} \left(3(1-x) - x(1-x) - \frac{(1-x)^2}{2} \right) \, dx$$

$$= 3x - \frac{3x^2}{2} + \frac{x^3}{3} + \frac{(1-x)^3}{6} \bigg|_{x=0}^{1} = \frac{7}{6}$$
To obtain the average temperature, we must next compute \(\iiint_{W} T(x, y, z) \, dV \). The only difference from our previous calculation is that we now insert \(T(x, y, z) \) into the triple integral:

\[
\iiint_{W} T(x, y, z) \, dV = \int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=0}^{3-x-z} x \, dy \, dz \, dx
\]

\[
= \int_{x=0}^{1} \int_{y=0}^{1-x} |_{y=0}^{3-x-z} dz \, dx
\]

\[
= \int_{x=0}^{1} \int_{y=0}^{1-x} 3x-x^2-zx \, dz \, dx
\]

\[
= \int_{x=0}^{1} \left(3xz-x^2z-\frac{xz^2}{2} \right) \bigg|_{z=0}^{1-x} dx
\]

\[
= \int_{x=0}^{1} \left(3x(1-x) - x^2(1-x) - \frac{x(1-x)^2}{2} \right) dx
\]

\[
= \frac{3x^2}{2} - x^3 - \frac{x^3}{3} + \frac{x^4}{4} - \frac{x^2}{3} + \frac{x^3}{8} \bigg|_{x=0}^{1} = \frac{3}{8}
\]

Therefore,

\[
\bar{T} = \frac{1}{\text{Volume}(W)} \iiint_{W} T(x, y, z) \, dV = \left(\frac{6}{7} \right) \left(\frac{3}{8} \right) = \frac{9}{28} \degree C
\]

Note that the mean value theorem implies that there is some point in the crystal where the temperature is exactly \(9/28 \degree C \). \(\blacksquare \)

Excursion: Volume of the Sphere in Higher Dimensions

Archimedes (287–212 BCE) proved the beautiful formula \(V = \frac{4}{3}\pi r^3 \) for the volume of a sphere nearly 2000 years before calculus was invented, by means of a brilliant geometric argument showing that the volume of a sphere is equal to two-thirds the volume of the circumscribed cylinder. According to Plutarch (ca. 45–120 CE), Archimedes valued this achievement so highly that he requested that a sphere with a circumscribed cylinder be engraved on his tomb.

We can use integration to generalize Archimedes’s formula to \(n \) dimensions. The ball of radius \(r \) in \(\mathbb{R}^n \), denoted \(B_n(r) \), is the set of points \((x_1, \ldots, x_n) \) in \(\mathbb{R}^n \) such that

\[
x_1^2 + x_2^2 + \cdots + x_n^2 \leq r^2
\]

The balls \(B_n(r) \) in dimensions 1, 2, and 3 are the interval, disk, and ball shown in Figure 9. In dimensions \(n \geq 4 \), the ball \(B_n(r) \) is difficult, if not impossible, to visualize, but we can compute its volume. Denote this volume by \(V_n(r) \). For \(n = 1 \), the “volume” \(V_1(r) \) is the length of the interval \(B_1(r) \), and for \(n = 2 \), \(V_2(r) \) is the area of the disk \(B_2(r) \). We know that

\[
V_1(r) = 2r, \quad V_2(r) = \pi r^2, \quad V_3(r) = \frac{4}{3}\pi r^3
\]

For \(n \geq 4 \), \(V_n(r) \) is sometimes called the **hypervolume**.

The key idea is to determine \(V_n(r) \) from the formula for \(V_{n-1}(r) \) by integrating cross-sectional area. Consider the case \(n = 3 \), where the horizontal slice at height \(z = c \) is a two-dimensional ball (a disk) of radius \(\sqrt{r^2 - c^2} \) (Figure 10). The volume \(V_3(r) \) is equal to the integral of the areas of these horizontal slices:

\[
V_3(r) = \int_{z=0}^{r} V_2 \left(\sqrt{r^2 - z^2} \right) \, dz = \int_{z=0}^{r} \pi (r^2 - z^2) \, dz = \frac{4}{3}\pi r^3
\]
Next, we show by induction that for all $n \geq 1$, there is a constant A_n (equal to the volume of the n-dimensional unit ball) such that

$$V_n(r) = A_n r^n$$

The slice of $B_n(r)$ at height $x_n = c$ has equation

$$x_1^2 + x_2^2 + \cdots + x_{n-1}^2 + c^2 = r^2$$

This slice is the ball $B_{n-1}(\sqrt{r^2 - c^2})$ of radius $\sqrt{r^2 - c^2}$, and $V_n(r)$ is obtained by integrating the volume of these slices:

$$V_n(r) = \int_{x_n=-r}^{x_n=r} V_{n-1} \left(\sqrt{r^2 - x_n^2} \right) \, dx_n = A_{n-1} \int_{x_n=-r}^{x_n=r} \left(\sqrt{r^2 - x_n^2} \right)^{n-1} \, dx_n$$

Using the substitution $x_n = r \sin \theta$ and $dx_n = r \cos \theta \, d\theta$, we have

$$V_n(r) = A_{n-1} r^n \int_{-\pi/2}^{\pi/2} \cos^n \theta \, d\theta = A_{n-1} C_n r^n$$

where $C_n = \int_{-\pi/2}^{\pi/2} \cos^n \theta \, d\theta$. This proves Eq. (6) with

$$A_n = A_{n-1} C_n$$

In Exercise 43, you are asked to use Integration by Parts to verify the relation

$$C_n = \left(\frac{n-1}{n} \right) C_{n-2}$$

It is easy to check directly that $C_0 = \pi$ and $C_1 = 2$. By Eq. (8), $C_2 = \frac{1}{2} \pi = \frac{\pi}{2}$, $C_3 = \frac{2}{3}(2) = \frac{4}{3}$, and so on. Here are the first few values of C_n:

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_n</td>
<td>π</td>
<td>2</td>
<td>$\frac{\pi}{2}$</td>
<td>$\frac{4\pi}{3}$</td>
<td>$\frac{3\pi}{8}$</td>
<td>$\frac{3\pi}{16}$</td>
<td>$\frac{5\pi}{16}$</td>
<td>$\frac{5\pi}{32}$</td>
</tr>
</tbody>
</table>

We also have $A_1 = 2$ and $A_2 = \pi$, so we can use the values of C_n together with Eq. (7) to obtain the values of A_n in Table 1. We see, for example, that the ball of radius r in four dimensions has volume $V_4(r) = \frac{1}{2} \pi^2 r^4$. The general formula depends on whether n is even or odd. Using induction and formulas (7) and (8), we can prove that

$$A_{2m} = \frac{\pi^m}{m!}, \quad A_{2m+1} = \frac{2^{m+1} \pi^m}{1 \cdot 3 \cdot 5 \cdots (2m + 1)}$$

This sequence of numbers A_n has a curious property. Setting $r = 1$ in Eq. (6), we see that A_n is the volume of the unit ball in n dimensions. From Table 1, it appears that the volumes increase up to dimension 5 and then begin to decrease. In Exercise 44, you are asked to verify that the five-dimensional unit ball has the largest volume. Furthermore, the volumes A_n tend to 0 as $n \to \infty$.

16.3 SUMMARY

- The triple integral over a box $B = [a, b] \times [c, d] \times [p, q]$ is equal to the iterated integral

$$\iiint_B f(x, y, z) \, dV = \int_{x=a}^{b} \int_{y=c}^{d} \int_{z=p}^{q} f(x, y, z) \, dz \, dy \, dx$$
The iterated integral may be written in any one of six possible orders—for example, \[
\int_{z=p}^{q} \int_{y=a}^{b} \int_{x=c}^{d} f(x, y, z) \, dx \, dy \, dz
\]

- A z-simple region \(W \) in \(\mathbb{R}^3 \) is a region consisting of the points \((x, y, z)\) between two surfaces \(z = z_1(x, y) \) and \(z = z_2(x, y) \), where \(z_1(x, y) \leq z_2(x, y) \), lying over a domain \(\mathcal{D} \) in the \(xy \)-plane. In other words, \(W \) is defined by \((x, y) \in \mathcal{D}, z_1(x, y) \leq z \leq z_2(x, y)\)

Similarly, we have \(x \)-simple regions and \(y \)-simple regions.

- The triple integral over \(W \) is equal to an iterated integral:
 \[
 \iiint_{W} f(x, y, z) \, dV = \int_{\mathcal{D}} \left(\int_{z_1(x,y)}^{z_2(x,y)} f(x, y, z) \, dz \right) \, dA
 \]

- The average value of \(f(x, y, z) \) on a region \(W \) of volume \(V \) is the quantity
 \[
 \bar{f} = \frac{1}{V} \iiint_{W} f(x, y, z) \, dV, \quad V = \iiint_{W} 1 \, dV
 \]

16.3 EXERCISES

Preliminary Questions

1. Which of (a)–(c) is not equal to \(\int_{0}^{1} \int_{3}^{4} \int_{5}^{6} f(x, y, z) \, dz \, dy \, dx \)?

 (a) \(\int_{0}^{1} \int_{3}^{4} \int_{6}^{5} f(x, y, z) \, dy \, dx \, dz \)

 (b) \(\int_{3}^{4} \int_{6}^{5} \int_{0}^{1} f(x, y, z) \, dy \, dx \, dz \)

 (c) \(\int_{1}^{6} \int_{0}^{3} \int_{1}^{4} f(x, y, z) \, dz \, dy \, dx \)

2. Which of the following is not a meaningful triple integral?

Exercises

In Exercises 1–8, evaluate \(\iiint_{B} f(x, y, z) \, dV \) for the specified function \(f \) and box \(B \):

1. \(f(x, y, z) = z^2; 2 \leq x \leq 8, 0 \leq y \leq 5, 0 \leq z \leq 1 \)

2. \(f(x, y, z) = xz^2; \quad [-2, 3] \times [1, 3] \times [1, 4] \)

3. \(f(x, y, z) = xe^{x-2z}; 0 \leq x \leq 2, 0 \leq y \leq 1, 0 \leq z \leq 1 \)

4. \(f(x, y, z) = \frac{x}{(y + z)^2}; [0, 2] \times [2, 4] \times [-1, 1] \)

5. \(f(x, y, z) = (x-y)(y-z); [0, 1] \times [0, 3] \times [0, 3] \)

6. \(f(x, y, z) = \frac{z}{x}; 1 \leq x \leq 3, 0 \leq y \leq 2, 0 \leq z \leq 4 \)

7. \(f(x, y, z) = (x+y)^3; [0, a] \times [0, b] \times [0, c] \)

8. \(f(x, y, z) = (x+y-z)^2; [0, a] \times [0, b] \times [0, c] \)

In Exercises 9–14, evaluate \(\iiint_{W} f(x, y, z) \, dV \) for the function \(f \) and region \(W \) specified:

9. \(f(x, y, z) = x + y; \quad W: y \leq z \leq x, 0 \leq y \leq x, 0 \leq x \leq 1 \)

10. \(f(x, y, z) = e^{x+y+z}; \quad W: 0 \leq z \leq 1, 0 \leq y \leq x, 0 \leq x \leq 1 \)

11. \(f(x, y, z) = xyz; \quad W: 0 \leq z \leq 1, 0 \leq y \leq \sqrt{1-x^2}, 0 \leq x \leq 1 \)

12. \(f(x, y, z) = x; \quad W: x^2 + y^2 \leq z \leq 4 \)

13. \(f(x, y, z) = e^z; \quad W: x + y + z \leq 1, x \geq 0, y \geq 0, z \geq 0 \)

14. \(f(x, y, z) = z; \quad W: x^2 \leq y \leq 2, 0 \leq x \leq 1, x - y \leq z \leq x + y \)

15. Calculate the integral of \(f(x, y, z) = z \) over the region \(W \) in Figure 11 below the hemisphere of radius 3 and lying over the triangle \(\mathcal{D} \) in the \(xy \)-plane bounded by \(x = 1, y = 0, \) and \(x = y \).
16. Calculate the integral of \(f(x, y, z) = e^z \) over the tetrahedron \(W \) in Figure 12.

17. Integrate \(f(x, y, z) = x \) over the region in the first octant \(x \geq 0, y \geq 0, z \geq 0 \) above \(z = y^2 \) and below \(z = 8 - 2x^2 - y^2 \).

18. Compute the integral of \(f(x, y, z) = y^2 \) over the region within the cylinder \(x^2 + y^2 = 4 \), where \(0 \leq z \leq y \).

19. Find the triple integral of the function \(z \) over the ramp in Figure 13. Here, \(z \) is the height above the ground.

20. Find the volume of the solid in \(\mathbb{R}^3 \) bounded by \(y = x^2, x = y^2, z = x + y + 5 \), and \(z = 0 \).

21. Find the volume of the solid in the octant \(x \geq 0, y \geq 0, z \geq 0 \) bounded by \(x + y + z = 1 \) and \(x + y + 2z = 1 \).

22. Calculate \(\iiint_W y \, dV \), where \(W \) is the region above \(z = x^2 + y^2 \) and below \(z = 5 \), and bounded by \(y = 0 \) and \(y = 1 \).

23. Evaluate \(\iiint_W xz \, dV \), where \(W \) is the domain bounded by the elliptic cylinder \(\frac{x^2}{4} + \frac{y^2}{9} = 1 \) and the sphere \(x^2 + y^2 + z^2 = 16 \) in the first octant \(x \geq 0, y \geq 0, z \geq 0 \) (Figure 14).

24. Describe the domain of integration and evaluate:
\[
\int_0^3 \int_0^{\sqrt{9-x^2}} \int_0^{\sqrt{9-x^2-y^2}} xy \, dz \, dy \, dx
\]

25. Describe the domain of integration of the following integral:
\[
\int_{-2}^{2} \int_{-\sqrt{4-z^2}}^{\sqrt{4-z^2}} \int_{\sqrt{z^2-x^2}}^{\sqrt{z^2+y^2}} f(x, y, z) \, dy \, dz
\]

26. Let \(W \) be the region below the paraboloid \(x^2 + y^2 = z - 2 \) that lies above the part of the plane \(x + y + z = 1 \) in the first octant \((x \geq 0, y \geq 0, z \geq 0) \). Express
\[
\iiint_W f(x, y, z) \, dV
\]
as an iterated integral (for an arbitrary function \(f \)).

27. In Example 5, we expressed a triple integral as an iterated integral in the three orders
\[
dz \, dy \, dx, \quad dx \, dz \, dy, \quad \text{and} \quad dy \, dz \, dx
\]
Write this integral in the three other orders:
\[
dz \, dx \, dy, \quad dx \, dy \, dz, \quad \text{and} \quad dy \, dx \, dz
\]

28. Let \(W \) be the region bounded by
\[
y + z = 2, \quad 2x = y, \quad x = 0, \quad \text{and} \quad z = 0
\]
(Figure 15). Express and evaluate the triple integral of \(f(x, y, z) = z \) by projecting \(W \) onto the:
(a) \(xy \)-plane. (b) \(yz \)-plane. (c) \(xz \)-plane.
29. Let
\[W = \{ (x, y, z) : \sqrt{x^2 + y^2} \leq z \leq 1 \} \]
(see Figure 16). Express \(\iiint_W f(x, y, z) \, dV \) as an iterated integral in the order \(dz \, dy \, dx \) (for an arbitrary function \(f \)).

30. Repeat Exercise 29 for the order \(dx \, dy \, dz \).

31. Let \(W \) be the region bounded by \(z = 1 - y^2, y = x^2, \) and the plane \(z = 0 \). Calculate the volume of \(W \) as a triple integral in the order \(dz \, dy \, dx \).

32. Calculate the volume of the region \(W \) in Exercise 31 as a triple integral in the following orders:
 (a) \(dx \, dz \, dy \)
 (b) \(dy \, dz \, dx \)

 In Exercises 33–36, draw the region \(W \) and then set up but do NOT compute a single triple integral that yields the volume of \(W \).

33. The region \(W \) is bounded by the surfaces given by \(z = 1 - y^2, x = 0 \) and \(z = 0, z + x = 3 \).

34. The region \(W \) is bounded by the surfaces given by \(z = x^2, z + y = 1, \) and \(z - y = 1 \).

35. The region \(W \) is bounded by the surfaces given by \(z = y^2, y = z^2 \) and \(x = 0, x + y + z = 4 \).

36. The region \(W \) is bounded by the surfaces given by \(z = 1 - x^2, z = 0, \) and \(y = 3 - x^2 - z^2 \).

In Exercises 37–40, compute the average value of \(f(x, y, z) \) over the region \(W \):
37. \(f(x, y, z) = xy \sin(\pi z); \quad W = [0, 1] \times [0, 1] \times [0, 1] \)
38. \(f(x, y, z) = xyz; \quad W : 0 \leq z \leq y \leq x \leq 1 \)
39. \(f(x, y, z) = e^z; \quad W : 0 \leq y \leq 1 - x^2, \quad 0 \leq z \leq x \)
40. \(f(x, y, z) = x^2 + y^2 + z^2; \quad W \) bounded by the planes \(2y + z = 1, x = 0, x = 1, z = 0, \) and \(y = 0 \)

In Exercises 41 and 42, let \(I = \int_0^1 \int_0^1 \int_0^1 f(x, y, z) \, dV \) and let \(S_{N,N,N} \) be the Riemann sum approximation
\[S_{N,N,N} = \frac{1}{N^3} \sum_{i=1}^N \sum_{j=1}^N \sum_{k=1}^N \left(\frac{i}{N}, \frac{j}{N}, \frac{k}{N} \right) \]

41. \textbf{CAS} Calculate \(S_{N,N,N} \) for \(f(x, y, z) = e^{x^2+y^2+z^2} \) for \(N = 10, 20, 30 \). Then evaluate \(I \) and find an \(N \) such that \(S_{N,N,N} \) approximates \(I \) to two decimal places.

42. \textbf{CAS} Calculate \(S_{N,N,N} \) for \(f(x, y, z) = \sin(xyz) \) for \(N = 10, 20, 30 \). Then use a computer algebra system to calculate \(I \) numerically and estimate the error \(|I - S_{N,N,N}| \).

Show that \(C_n \leq 1 \) for \(n \geq 6 \) and use this to prove that of all unit balls, the five-dimensional ball has the largest volume. Can you explain why \(A_n \) tends to 0 as \(n \to \infty \)?

Further Insights and Challenges

43. Use Integration by Parts to verify Eq. (8).

44. Compute the volume \(A_n \) of the unit ball in \(\mathbb{R}^n \) for \(n = 8, 9, 10 \).

16.4 Integration in Polar, Cylindrical, and Spherical Coordinates

In single-variable calculus, a well-chosen substitution (also called a change of variables) often transforms a complicated integral into a simpler one. Change of variables is also useful in multivariable calculus, but the emphasis is different. In the multivariable case, we are usually interested in simplifying not just the integrand, but also the domain of integration.

This section treats three of the most useful changes of variables, in which an integral is expressed in polar, cylindrical, or spherical coordinates. As in Figure 1, certain physical systems are much more easily modeled with the right coordinate system. The general Change of Variables Formula is discussed in Section 16.6.

Double Integrals in Polar Coordinates

Polar coordinates are convenient when the domain of integration is an angular sector or a polar rectangle (Figure 2):
\[R : \theta_1 \leq \theta \leq \theta_2, \quad r_1 \leq r \leq r_2 \]
Eq. (2) expresses the integral of $f(x, y)$ over the polar rectangle in Figure 2 as the integral of a new function $rf(r \cos \theta, r \sin \theta)$ over the ordinary rectangle $[\theta_1, \theta_2] \times [r_1, r_2]$. In this sense, the change of variables “simplifies” the domain of integration.

REMINDER In Figure 4, the length β of the arc subtended by the angle θ is the fraction of the entire circumference that θ is of the entire angle 2π. Hence, $\beta = \frac{\theta}{2\pi} 2\pi r = r \theta$. Similarly, the area of the sector subtended by θ is $\frac{1}{2} r^2 \theta$.

REMINDER In Eq. (3) we use the approximation (10) in Section 16.2: If f is continuous and D is a small domain,

$$\int \int_{D} f(x, y) \, dA \approx f(P) \text{Area}(D)$$

where P is any sample point in D.

We assume throughout that $r_1 \geq 0$ and that all radial coordinates are nonnegative. Recall that rectangular and polar coordinates are related by

$$x = r \cos \theta, \quad y = r \sin \theta$$

Thus, we write a function $f(x, y)$ in polar coordinates as $f(r \cos \theta, r \sin \theta)$. The Change of Variables Formula for a polar rectangle R is

$$\int \int_{R} f(x, y) \, dA = \int_{\theta_1}^{\theta_2} \int_{r_1}^{r_2} f(r \cos \theta, r \sin \theta) r \, dr \, d\theta$$

Notice the extra factor r in the integrand on the right.

To derive Eq. (2), the key step is to estimate the area ΔA of the small polar rectangle shown in Figure 3. If Δr and $\Delta \theta$ are small, then this polar rectangle is very nearly an ordinary rectangle of sides Δr and $r \Delta \theta$, as in the Reminder at left, and therefore, $\Delta A \approx r \Delta r \Delta \theta$. In fact, ΔA is the difference of areas of two sectors:

$$\Delta A = \frac{1}{2} (r + \Delta r)^2 \Delta \theta - \frac{1}{2} r^2 \Delta \theta = r(\Delta r \Delta \theta) + \frac{1}{2} (\Delta r)^2 \Delta \theta \approx r \Delta r \Delta \theta$$

The error in our approximation is the term $\frac{1}{2} (\Delta r)^2 \Delta \theta$, which has a smaller order of magnitude than $\Delta r \Delta \theta$ when Δr and $\Delta \theta$ are both small.

Now, decompose \mathcal{R} into an $N \times M$ grid of small polar subrectangles \mathcal{R}_{ij} as in Figure 5, and choose a sample point P_{ij} in \mathcal{R}_{ij}. If \mathcal{R}_{ij} is small and $f(x, y)$ is continuous, then

$$\int \int_{\mathcal{R}_{ij}} f(x, y) \, dx \, dy \approx f(P_{ij}) \text{Area}(\mathcal{R}_{ij}) \approx f(P_{ij}) r_{ij} \Delta r \Delta \theta$$
Note that each polar rectangle \mathcal{R}_{ij} has angular width $\Delta \theta = (\theta_2 - \theta_1)/N$ and radial width $\Delta r = (r_2 - r_1)/M$. The integral over \mathcal{R} is the sum

$$
\iint_{\mathcal{R}} f(x, y) \, dx \, dy = \sum_{i=1}^{N} \sum_{j=1}^{M} \int_{\mathcal{R}_{ij}} f(x, y) \, dx \, dy
$$

$$
\approx \sum_{i=1}^{N} \sum_{j=1}^{M} f(P_{ij}) \text{Area(}\mathcal{R}_{ij}\text{)}
$$

$$
\approx \sum_{i=1}^{N} \sum_{j=1}^{M} f(r_{ij} \cos \theta_{ij}, r_{ij} \sin \theta_{ij}) r_{ij} \Delta r \Delta \theta
$$

This is a Riemann sum for the double integral of $rf(r \cos \theta, r \sin \theta)$ over the region $r_1 \leq r \leq r_2, \theta_1 \leq \theta \leq \theta_2$, and we can prove that it approaches the double integral as $N, M \to \infty$. A similar derivation is valid for domains (Figure 6) that can be described as the region between two polar curves $r = r_1(\theta)$ and $r = r_2(\theta)$ for θ between the values θ_1 and θ_2. This gives us Theorem 1.

THEOREM 1 Double Integral in Polar Coordinates For a continuous function f on the domain

$$
\mathcal{D} : \theta_1 \leq \theta \leq \theta_2, \quad r_1(\theta) \leq r \leq r_2(\theta)
$$

$$
\iint_{\mathcal{D}} f(x, y) \, dA = \int_{\theta_1}^{\theta_2} \int_{r_1(\theta)}^{r_2(\theta)} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta
$$

We call such a region \mathcal{D} **radially simple**. It has the property that every ray from the origin intersects the region in a single point or line segment such that the line segment begins on $r = r_1(\theta)$ and ends on $r = r_2(\theta)$.

EXAMPLE 1 Compute $\iint_{\mathcal{D}} (x + y) \, dA$, where \mathcal{D} is the quarter annulus in Figure 7.

Solution The quarter annulus is an example of a domain that is radially simple.

Step 1. Describe \mathcal{D} and f in polar coordinates.

The quarter annulus \mathcal{D} is defined by the inequalities (Figure 7)

$$
\mathcal{D} : 0 \leq \theta \leq \frac{\pi}{2}, \quad 2 \leq r \leq 4
$$

In polar coordinates,

$$
f(x, y) = x + y = r \cos \theta + r \sin \theta = r(\cos \theta + \sin \theta)
$$

Step 2. Change variables and evaluate.

To write the integral in polar coordinates, we replace dA by $r \, dr \, d\theta$:

$$
\iint_{\mathcal{D}} (x + y) \, dA = \int_{0}^{\pi/2} \int_{2}^{4} r(\cos \theta + \sin \theta) \, r \, dr \, d\theta
$$

The inner integral is

$$
\int_{2}^{4} (\cos \theta + \sin \theta) \, r^2 \, dr = (\cos \theta + \sin \theta) \left(\frac{4^3}{3} - \frac{2^3}{3} \right) = \frac{56}{3}(\cos \theta + \sin \theta)
$$

and

$$
\iint_{\mathcal{D}} (x + y) \, dA = \frac{56}{3} \int_{0}^{\pi/2} (\cos \theta + \sin \theta) \, d\theta = \frac{56}{3}(\sin \theta - \cos \theta) \bigg|_{0}^{\pi/2} = \frac{112}{3}
$$

Example 2 Calculate \(\iiint_D (x^2 + y^2)^{-2} \, dA \) for the shaded domain \(D \) in Figure 8.

Solution

Step 1. Describe \(D \) and \(f \) in polar coordinates.

The quarter circle lies in the angular sector \(0 \leq \theta \leq \frac{\pi}{4} \) because the line through \(P = (1, 1) \) makes an angle of \(\frac{\pi}{4} \) with the \(x \)-axis (Figure 8).

To determine the limits on \(r \), recall from Section 12.3 (Examples 6 and 8) that:

- The vertical line \(x = 1 \) has polar equation \(r \cos \theta = 1 \) or \(r = \sec \theta \).
- The circle of radius 1 and center \((1,0)\) has polar equation \(r = 2 \cos \theta \).

Therefore, a ray of angle \(\theta \) intersects \(D \) in the segment where \(r \) ranges from \(\sec \theta \) to \(2 \cos \theta \). In other words, our domain has polar description

\[
D : 0 \leq \theta \leq \frac{\pi}{4}, \quad \sec \theta \leq r \leq 2 \cos \theta
\]

The function in polar coordinates is

\[
f(r, \theta) = (r^2 + \theta^2)^{-2} = (r^2)^{-1} = r^{-4}
\]

Step 2. Change variables and evaluate.

\[
\iiint_D (x^2 + y^2)^{-2} \, dA = \int_0^{\pi/4} \int_{\sec \theta}^{2 \cos \theta} r^{-4} \, r \, dr \, d\theta = \int_0^{\pi/4} \int_{\sec \theta}^{2 \cos \theta} r^{-3} \, dr \, d\theta
\]

The inner integral is

\[
\int_{\sec \theta}^{2 \cos \theta} r^{-3} \, dr = -\frac{1}{2} r^{-2} \bigg|_{\sec \theta}^{2 \cos \theta} = -\frac{1}{2} \sec^2 \theta + \frac{1}{2} \cos^2 \theta
\]

Therefore,

\[
\iiint_D (x^2 + y^2)^{-2} \, dA = \int_0^{\pi/4} \left(\frac{1}{4} \cos^2 \theta - \frac{1}{8} \sec^2 \theta \right) d\theta = \left[\frac{1}{4} \left(\frac{\pi}{4} + \frac{1}{2} \sin \frac{\pi}{2} \right) - \frac{1}{8} \tan \frac{\pi}{4} \right]_0^{\pi/4} = \frac{\pi}{16}
\]

Triple Integrals in Cylindrical Coordinates

Cylindrical coordinates, introduced in Section 13.7, are useful when the domain has axial symmetry—that is, symmetry with respect to an axis. In cylindrical coordinates \((r, \theta, z)\), the axis of symmetry is the \(z \)-axis. Recall the relations (Figure 9)

\[
x = r \cos \theta, \quad y = r \sin \theta, \quad z = z
\]

To set up a triple integral in cylindrical coordinates, we assume that the domain of integration \(W \) can be described as the region between two surfaces (Figure 10)

\[
z_1(r, \theta) \leq z \leq z_2(r, \theta)
\]

lying over a domain \(D \) in the \(xy \)-plane with polar description

\[
D : \theta_1 \leq \theta \leq \theta_2, \quad r_1(\theta) \leq r \leq r_2(\theta)
\]

A triple integral over \(W \) can be written as an iterated integral (Theorem 2 of Section 16.3):

\[
\iiint_W f(x, y, z) \, dV = \iiint_D \left(\int_{z_1(r, \theta)}^{z_2(r, \theta)} f(x, y, z) \, dz \right) \, dA
\]
By expressing the integral over D in polar coordinates, we obtain the following Change of Variables Formula.

Theorem 2: Triple Integrals in Cylindrical Coordinates For a continuous function f on the region

\[\theta_1 \leq \theta \leq \theta_2, \quad r_1(\theta) \leq r \leq r_2(\theta), \quad z_1(r, \theta) \leq z \leq z_2(r, \theta), \]

the triple integral $\iiint_W f(x, y, z) \, dV$ is equal to

\[\int_{\theta_1}^{\theta_2} \int_{r_1(\theta)}^{r_2(\theta)} \int_{z_1(r, \theta)}^{z_2(r, \theta)} f(r \cos \theta, r \sin \theta, z) \, r \, dz \, dr \, d\theta \]

Example 3 Integrate $f(x, y, z) = z \sqrt{x^2 + y^2}$ over the cylinder $x^2 + y^2 \leq 4$ for $1 \leq z \leq 5$ (Figure 11).

Solution The domain of integration W lies above the disk of radius 2, so in cylindrical coordinates,

\[W : 0 \leq \theta \leq 2\pi, \quad 0 \leq r \leq 2, \quad 1 \leq z \leq 5 \]

We write the function in cylindrical coordinates:

\[f(x, y, z) = z \sqrt{x^2 + y^2} = zr \]

and integrate with respect to $dV = r \, dz \, dr \, d\theta$. The function f is a product zr, so the resulting triple integral is a product of single integrals:

\[\iiint_W z \sqrt{x^2 + y^2} \, dV = \int_0^{2\pi} \int_{r=0}^2 \int_{z=1}^5 (zr) \, r \, dz \, dr \, d\theta \]

\[= \left(\int_0^{2\pi} d\theta \right) \left(\int_{r=0}^2 r^2 \, dr \right) \left(\int_{z=1}^5 z \, dz \right) \]

\[= (2\pi) \left(\frac{3}{2} \right) \left(\frac{5^2 - 1^2}{2} \right) = 64\pi \]

Example 4 Compute the integral of $f(x, y, z) = z$ over the region W within the cylinder $x^2 + y^2 \leq 4$, where $0 \leq z \leq y$.

Solution

Step 1. Express W in cylindrical coordinates.

The condition $0 \leq z \leq y$ tells us that $y \geq 0$, so W projects onto the semicircle D in the xy-plane of radius 2, where $y \geq 0$, shown in Figure 12. In polar coordinates,

\[D : 0 \leq \theta \leq \pi, \quad 0 \leq r \leq 2 \]

The z-coordinate in W varies from $z = 0$ to $z = y$, and in polar coordinates $y = r \sin \theta$, so the region has the description

\[W : 0 \leq \theta \leq \pi, \quad 0 \leq r \leq 2, \quad 0 \leq z \leq r \sin \theta \]
Step 2. Change variables and evaluate.

$$\iiint_V f(x, y, z) \, dV = \int_0^\pi \int_{r=0}^2 \int_{z=0}^r r \, dz \, dr \, d\theta$$

$$= \int_0^\pi \int_{r=0}^2 \frac{1}{2} (r \sin \theta)^2 \, r \, dr \, d\theta$$

$$= \frac{1}{2} \left(\frac{\pi}{2} \right) \frac{2^4}{4} = \pi$$

Triple Integrals in Spherical Coordinates

We noted that the Change of Variables Formula in cylindrical coordinates is summarized by the symbolic equation

$$dV = r \, dr \, d\theta \, dz.$$

In spherical coordinates \((\rho, \theta, \phi)\) (introduced in Section 13.7), the analog is the formula

$$dV = \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

Recall (Figure 13) that

$$x = \rho \sin \phi \cos \theta, \quad y = \rho \sin \phi \sin \theta, \quad z = \rho \cos \phi, \quad r = \rho \sin \phi$$

The key step in deriving this formula is estimating the volume of a small **spherical wedge** \(W\). Suppose it is defined by fixing values for \(\rho, \phi, \text{ and } \theta\), and varying each coordinate by a small amount given by \(\Delta \rho, \Delta \phi, \text{ and } \Delta \theta\) as in Figure 14.

The spherical wedge is nearly a box with sides \(\Delta \rho, \rho \Delta \phi, \text{ and } r \Delta \theta\) by projecting up from the corresponding length in the \(xy\)-plane. Converting \(r \Delta \theta\) to spherical coordinates, we obtain \(\rho \sin \phi \Delta \theta\) for this third dimension of the box.

Therefore, the volume of the spherical wedge is approximately given by the product of these three dimensions, the accuracy of which improves the smaller we take our changes in the variables:

$$\text{Volume}(W) \approx \rho^2 \sin \phi \, \Delta \rho \, \Delta \phi \, \Delta \theta$$

For small increments, the wedge is nearly a rectangular box with dimensions

$$\rho \sin \phi \Delta \theta \times \rho \Delta \phi \times \Delta \rho$$
and choose a sample point \(P_i = (\rho_i, \theta_i, \phi_i) \) in each \(W_i \). Assuming \(f \) is continuous, the following approximation holds for large \(N \) (small \(W_i \)):

\[
\iint_W f(x, y, z) dV \approx f(P_i) \text{Volume}(W_i)
\]

\[
\approx f(P_i) \rho_i^2 \sin \phi_i \Delta \rho \Delta \theta \Delta \phi
\]

Taking the sum over \(i \), we obtain

\[
\iint_W f(x, y, z) dV \approx \sum_i f(P_i) \rho_i^2 \sin \phi_i \Delta \rho \Delta \theta \Delta \phi
\]

The sum on the right is a Riemann sum for the function

\[
f(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi) \rho^2 \sin \phi
\]

on the domain \(W \). Eq. (8) below follows by passing to the limit an \(N \to \infty \) [and showing that the error in Eq. (7) tends to zero]. This argument applies more generally to regions defined by an inequality \(\rho_1(\theta, \phi) \leq \rho \leq \rho_2(\theta, \phi) \).

THEOREM 3 Triple Integrals in Spherical Coordinates For a region \(W \) defined by

\[
\theta_1 \leq \theta \leq \theta_2, \quad \phi_1 \leq \phi \leq \phi_2, \quad \rho_1(\theta, \phi) \leq \rho \leq \rho_2(\theta, \phi)
\]

the triple integral

\[
\iiint_W f(x, y, z) dV
\]

is equal to

\[
\int_{\theta_1}^{\theta_2} \int_{\phi_1}^{\phi_2} \int_{\rho_1(\theta, \phi)}^{\rho_2(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
\]

We call such a region \(W \) **centrally simple** in that every ray from the origin intersects the solid in a single line segment or point such that the first endpoint of the segment lies on the surface \(\rho = \rho_1(\theta, \phi) \) and the second endpoint lies on the surface \(\rho = \rho_2(\theta, \phi) \).

EXAMPLE 5 Compute the integral of

\[
f(x, y, z) = x^2 + y^2
\]

over the sphere \(S \) of radius 4 centered at the origin (Figure 16).

Solution First, write \(f(x, y, z) \) in spherical coordinates:

\[
f(x, y, z) = x^2 + y^2 = (\rho \sin \phi \cos \theta)^2 + (\rho \sin \phi \sin \theta)^2
\]

\[
= \rho^2 \sin^2 \phi (\cos^2 \theta + \sin^2 \theta) = \rho^2 \sin^2 \phi
\]

Since we are integrating over the entire sphere \(S \) of radius 4, this is a centrally simple region, with each ray beginning at the origin and ending on the sphere. So, \(\rho \) varies from 0 to 4, \(\theta \) from 0 to \(2\pi \), and \(\phi \) from 0 to \(\pi \). In the following computation, we integrate first with respect to \(\theta \):

\[
\iiint_S (x^2 + y^2) \, dV = \int_0^{2\pi} \int_0^\pi \int_0^4 (\rho^2 \sin^2 \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
\]

\[
= 2\pi \int_0^\pi \int_0^4 \rho^4 \sin^3 \phi \, d\rho \, d\phi = 2\pi \int_0^\pi \left(\left. \frac{\rho^5}{5} \right|_0^4 \right) \sin^3 \phi \, d\phi
\]

\[
= \frac{2048\pi}{5} \int_0^\pi \sin^3 \phi \, d\phi
\]

\[
= \frac{2048\pi}{5} \left(\left. -\frac{1}{3} \cos^3 \phi - \cos \phi \right|_0^\pi \right) = \frac{8192\pi}{15}
\]
EXAMPLE 6 Integrate \(f(x, y, z) = z \) over the ice cream cone–shaped region \(W \) in Figure 17, lying above the cone and below the sphere.

Solution

The cone has equation \(x^2 + y^2 = z^2 \), which in spherical coordinates is

\[
(\rho \sin \phi \cos \theta)^2 + (\rho \sin \phi \sin \theta)^2 = (\rho \cos \phi)^2
\]

\[
\rho^2 \sin^2 \phi (\cos^2 \theta + \sin^2 \theta) = \rho^2 \cos^2 \phi
\]

\[
\sin^2 \phi = \cos^2 \phi
\]

\[
\sin \phi = \pm \cos \phi \quad \Rightarrow \quad \phi = \frac{\pi}{4}, \frac{3\pi}{4}
\]

The upper branch of the cone has the simple equation \(\phi = \frac{\pi}{4} \). On the other hand, the sphere has equation \(\rho = R \), so the ice cream cone has the description

\[
W : 0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \frac{\pi}{4}, \quad 0 \leq \rho \leq R
\]

We have

\[
\iiint_W z \, dV = \int_0^{2\pi} \int_{\phi=0}^{\pi/4} \int_{\rho=0}^{R} (\rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
\]

\[
= 2\pi \int_{\phi=0}^{\pi/4} \int_{\rho=0}^{R} \rho^3 \cos \phi \sin \phi \, d\rho \, d\phi
= \frac{\pi R^4}{2} \int_0^{\pi/4} \sin \phi \cos \phi \, d\phi
= \frac{\pi R^4}{8}
\]

16.4 SUMMARY

- Double integral in polar coordinates:

\[
\iint_D f(x, y) \, dA = \int_{\theta_1}^{\theta_2} \int_{r_1}^{r_2(\theta)} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta
\]

- Triple integral \(\iiint_R f(x, y, z) \, dV \)
 - In cylindrical coordinates:

\[
\iiint_R f(r, \theta, z) \, r \, dz \, dr \, d\theta
\]

- In spherical coordinates:

\[
\iiint_{W} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
\]

16.4 EXERCISES

Preliminary Questions

1. Which of the following represent the integral of \(f(x, y) = x^2 + y^2 \) over the unit circle?
 (a) \(\int_0^{2\pi} \int_0^1 r^2 \, dr \, d\theta \)
 (b) \(\int_0^{2\pi} \int_0^1 r^2 \, d\theta \, dr \)
 (c) \(\int_0^1 \int_0^{2\pi} \rho^2 \, d\theta \, d\rho \)
 (d) \(\int_0^1 \int_0^{2\pi} \rho^3 \, d\theta \, d\rho \)

2. What are the limits of integration in \(\iiint f(r, \theta, z) \, r \, dr \, d\theta \, dz \) if the integration extends over the following regions?
 (a) \(x^2 + y^2 \leq 4, \quad -1 \leq z \leq 2 \)
 (b) Lower hemisphere of the sphere of radius 2, center at origin

3. What are the limits of integration in

\[
\iiint f(\rho, \phi, \theta) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta
\]

if the integration extends over the following spherical regions centered at the origin?
 (a) Sphere of radius 4
 (b) Region between the spheres of radii 4 and 5
 (c) Lower hemisphere of the sphere of radius 2
4. An ordinary rectangle of sides Δx and Δy has area $\Delta x \Delta y$, no matter where it is located in the plane. However, the area of a polar rectangle of sides Δr and $\Delta \theta$ depends on its distance from the origin.

Exercises

In Exercises 1–6, sketch the region D indicated and integrate $f(x, y)$ over D using polar coordinates.

1. $f(x, y) = \sqrt{x^2 + y^2}$; $x^2 + y^2 \leq 2$
2. $f(x, y) = x^2 + y^2$; $1 \leq x^2 + y^2 \leq 4$
3. $f(x, y) = xy$; $x \geq 0$, $y \geq 0$, $x^2 + y^2 \leq 4$
4. $f(x, y) = y(x^2 + y^2)^3$; $y \geq 0$, $x^2 + y^2 \leq 1$
5. $f(x, y) = (x^2 + y^2)^{-1}$; $y \geq \frac{1}{2}$, $x^2 + y^2 \leq 1$
6. $f(x, y) = e^{x^2+y^2}$; $x^2 + y^2 \leq R$

In Exercises 7–14, sketch the region of integration and evaluate by changing to polar coordinates.

7. $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (x^2 + y^2) \, dy \, dx$
8. $\int_{0}^{3} \int_{0}^{\sqrt{9-y^2}} \sqrt{x^2 + y^2} \, dx \, dy$
9. $\int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{1-x^2}} x \, dy \, dx$
10. $\int_{0}^{\sqrt{2}} \int_{0}^{\sqrt{2-y^2}} \tan^{-1} \frac{y}{x} \, dy \, dx$
11. $\int_{0}^{2} \int_{0}^{\sqrt{4-x^2}} x \, dx \, dy$
12. $\int_{0}^{2} \int_{0}^{\sqrt{2x}} y \, dx \, dy$
13. $\int_{-1}^{2} \int_{0}^{\sqrt{4-x^2}} (x^2 + y^2) \, dy \, dx$
14. $\int_{1}^{2} \int_{0}^{\sqrt{2x-x^2}} \frac{1}{\sqrt{x^2 + y^2}} \, dy \, dx$

In Exercises 15–20, calculate the integral over the given region by changing to polar coordinates.

15. $f(x, y) = (x^2 + y^2)^{-2}$; $x^2 + y^2 \leq 2$, $x \geq 1$
16. $f(x, y) = x$; $2 \leq x^2 + y^2 \leq 4$
17. $f(x, y) = |xy|$; $x^2 + y^2 \leq 1$
18. $f(x, y) = (x^2 + y^2)^{-3/2}$; $x^2 + y^2 \leq 1$, $x + y \geq 1$
19. $f(x, y) = x - y$; $x^2 + y^2 \leq 1$, $x + y \geq 1$
20. $f(x, y) = y$; $x^2 + y^2 \leq 1$, $(x - 1)^2 + y^2 \leq 1$

21. Find the volume of the wedge-shaped region (Figure 18) contained in the cylinder $x^2 + y^2 = 9$, bounded above by the plane $z = x$ and below by the xy-plane.

22. Let W be the region above the sphere $x^2 + y^2 + z^2 = 6$ and below the paraboloid $z = 4 - x^2 - y^2$.
 (a) Show that the projection of W on the xy-plane is the disk $x^2 + y^2 \leq 2$ (Figure 19).
 (b) Compute the volume of W using polar coordinates.

23. Evaluate $\iiint_D \sqrt{x^2 + y^2} \, dA$, where D is the domain in Figure 20.
 Hint: Find the equation of the inner circle in polar coordinates and treat the right and left parts of the region separately.

24. Evaluate $\iiint_D x \sqrt{x^2 + y^2} \, dA$, where D is the shaded region enclosed by the limniscate curve $r^2 = \sin 2\theta$ in Figure 21.
25. Let \(W \) be the region above the plane \(z = 2 \) and below the paraboloid \(z = 6 - (x^2 + y^2) \).

(a) Describe \(W \) in cylindrical coordinates.

(b) Use cylindrical coordinates to compute the volume of \(W \).

26. Use cylindrical coordinates to calculate the integral of the function \(f(x, y, z) = z \) over the region above the disk \(x^2 + y^2 \leq 1 \) in the \(xy \)-plane and below the surface \(z = 4 + x^2 + y^2 \).

In Exercises 27–32, use cylindrical coordinates to calculate the integral of the function \(f(x, y, z) \) over the given region.

27. \(f(x, y, z) = x^2 + y^2; \quad x^2 + y^2 \leq 9, \quad 0 \leq z \leq 5 \)

28. \(f(x, y, z) = xz; \quad x^2 + y^2 \leq 1, \quad x \geq 0, \quad 0 \leq z \leq 2 \)

29. \(f(x, y, z) = y; \quad x^2 + y^2 \leq 1, \quad x \geq 0, \quad y \geq 0, \quad 0 \leq z \leq 2 \)

30. \(f(x, y, z) = \sqrt{x^2 + y^2}; \quad x^2 + y^2 \leq z \leq 8 - (x^2 + y^2) \)

31. \(f(x, y, z) = z; \quad x^2 + y^2 \leq 9 \)

32. \(f(x, y, z) = z; \quad 0 \leq z \leq x^2 + y^2 \leq 9 \)

In Exercises 33–36, express the triple integral in cylindrical coordinates.

33. \(\int_{-1}^{1} \int_{y=-\sqrt{1-x^2}}^{y=\sqrt{1-x^2}} \int_{z=0}^{4} f(x, y, z) \, dz \, dy \, dx \)

34. \(\int_{0}^{1} \int_{y=-\sqrt{1-x^2}}^{y=\sqrt{1-x^2}} \int_{z=0}^{4} f(x, y, z) \, dz \, dy \, dx \)

35. \(\int_{-1}^{1} \int_{y=0}^{y=\sqrt{1-x^2}} \int_{z=0}^{z=\sqrt{x^2+y^2}} f(x, y, z) \, dz \, dx \)

36. \(\int_{0}^{2} \int_{y=0}^{y=\sqrt{2x-x^2}} \int_{z=0}^{z=\sqrt{1-x^2+y^2}} f(x, y, z) \, dz \, dx \)

37. Find the equation of the right-circular cone in Figure 22 in cylindrical coordinates and compute its volume.

38. Use cylindrical coordinates to integrate \(f(x, y, z) = z \) over the intersection of the solid hemisphere \(x^2 + y^2 + z^2 \leq 4, \quad z \geq 0 \), and the cylinder \(x^2 + y^2 = \leq 1 \).

39. Find the volume of the region appearing between the two surfaces in Figure 23.

40. Use cylindrical coordinates to find the volume of a sphere of radius \(a \) from which a central cylinder of radius \(b \) has been removed, where \(0 < b < a \).

41. Use cylindrical coordinates to show that the volume of a sphere of radius \(a \) from which a central cylinder of radius \(b \) has been removed, where \(0 < b < a \), only depends on the height of the band that results. In particular, this implies that such a band of radius 2 m and height 1 m has the same volume as such a band of radius 6,400 km (the radius of the earth) and height 1 m.

42. Use cylindrical coordinates to find the volume of the region bounded below by the plane \(z = 1 \) and above by the sphere \(x^2 + y^2 + z^2 = 4 \).

43. Use spherical coordinates to find the volume of the region bounded below by the plane \(z = 1 \) and above by the sphere \(x^2 + y^2 + z^2 = 4 \).

44. Use spherical coordinates to find the volume of a sphere of radius 2 from which a central cylinder of radius 1 has been removed.

In Exercises 45–50, use spherical coordinates to calculate the triple integral of \(f(x, y, z) \) over the given region.

45. \(f(x, y, z) = y; \quad x^2 + y^2 + z^2 \leq 1, \quad x, y, z \leq 0 \)

46. \(f(x, y, z) = \rho^{-3}; \quad 2 \leq x^2 + y^2 + z^2 \leq 4 \)

47. \(f(x, y, z) = x^2 + y^2; \quad \rho \leq 1 \)

48. \(f(x, y, z) = 1; \quad x^2 + y^2 + z^2 \leq 4z, \quad z \geq \sqrt{x^2 + y^2} \)

49. \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2}; \quad x^2 + y^2 + z^2 \leq 2z \)

50. \(f(x, y, z) = \rho; \quad x^2 + y^2 + z^2 \leq 4, \quad z \leq 1, \quad x \geq 0 \)
Use spherical coordinates to evaluate the triple integral of $f(x, y, z) = z$ over the region

$$0 \leq \theta \leq \frac{\pi}{3}, \quad 0 \leq \phi \leq \frac{\pi}{2}, \quad 1 \leq \rho \leq 2$$

Find the volume of the region lying above the cone $\phi = \phi_0$ and below the sphere $\rho = R$.

Calculate the integral of

$$f(x, y, z) = z(x^2 + y^2 + z^2)^{-3/2}$$

over the part of the ball $x^2 + y^2 + z^2 \leq 16$ defined by $z \geq 2$.

Calculate the volume of the cone in Figure 22, using spherical coordinates.

Calculate the volume of the sphere $x^2 + y^2 + z^2 = a^2$, using both spherical and cylindrical coordinates.

Let W be the region within the cylinder $x^2 + y^2 = 2$ between $z = 0$ and the cone $z = \sqrt{x^2 + y^2}$. Calculate the integral of $f(x, y, z) = x^2 + y^2$ over W, using both spherical and cylindrical coordinates.

One of the key results in calculus is the computation of the area under the bell-shaped curve (Figure 24):

$$I = \int_{-\infty}^{\infty} e^{-x^2} \, dx$$

This integral appears throughout engineering, physics, and statistics, and although e^{-x^2} does not have an elementary antiderivative, we can compute I using multiple integration.

(a) Show that $I^2 = J$, where J is the improper double integral

$$J = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} \, dx \, dy$$

Hint: Use Fubini’s Theorem and $e^{-x^2 - y^2} = e^{-x^2} e^{-y^2}$.

(b) Evaluate J in polar coordinates.

(c) Prove that $I = \sqrt{\pi}$.

Further Insights and Challenges

Show that a triple integral of $(x^2 + y^2 + z^2 + 1)^{-2}$ over all of \mathbb{R}^3 is equal to π^2. This is an improper integral, so integrate first over $\rho \leq R$ and let $R \to \infty$.

Prove the formula

$$\iiint_D \ln r \, dA = -\frac{\pi}{2}$$

where $r = \sqrt{x^2 + y^2}$ and D is the unit disk $x^2 + y^2 \leq 1$. This is an improper integral since $\ln r$ is not defined at $(0, 0)$, so integrate first over the annulus $a \leq r \leq 1$, where $0 < a < 1$, and let $a \to 0$.

Recall that the improper integral $\int_0^1 x^{-a} \, dx$ converges if and only if $a < 1$. For which values of a does $\iint_D r^{-a} \, dA$ converge, where $r = \sqrt{x^2 + y^2}$ and D is the unit disk $x^2 + y^2 \leq 1$?

16.5 Applications of Multiple Integrals

This section discusses some applications of multiple integrals. First, we consider quantities (such as mass, charge, and population) that are distributed with a given density δ in \mathbb{R}^2 or \mathbb{R}^3. In single-variable calculus, we saw that the “total amount” is defined as the integral of density. Similarly, the total amount of a quantity distributed in \mathbb{R}^2 or \mathbb{R}^3 is defined as the double or triple integral:

$$\text{Total amount} = \iint_D \delta(x, y) \, dA \quad \text{or} \quad \iiint_W \delta(x, y, z) \, dV$$

The density function δ has units of “amount per unit area” (or per unit volume).

The intuition behind Eq. (1) is similar to that of the single-variable case. Suppose, for example, that $\delta(x, y)$ is population density (Figure 1). When density is constant, the total population is simply density times area:

$$\text{Population} = \text{density} \times \text{area}$$

To treat variable density in the case, say, of a rectangle R, we divide R into smaller rectangles R_{ij} of area $\Delta x \Delta y$ on which δ is nearly constant (assuming that δ is continuous on R). The population in R_{ij} is approximately $\delta(P_{ij}) \Delta x \Delta y$ for any sample point P_{ij} in
The mass of a small box is approximately \(\delta(P_{ijk}) \Delta V \).

\[\int \int \int_{V} \delta(x, y, z) \, dV \approx \sum_{i} \sum_{j} \sum_{k} \delta(P_{ijk}) \Delta V \]

When \(\delta \) is constant, we say that the solid has a uniform mass density. In this case, the triple integral has the value \(\delta V \) and the mass is simply \(M = \delta V \).

\[\int \int \int_{W} \delta(x, y, z) \, dV \approx \sum_{i} \sum_{j} \sum_{k} \frac{\delta(P_{ijk}) \Delta V}{\text{Approximate mass of } B_{ijk}} \]

Example 1 Population Density

The population in a rural area near a river has density

\[\delta(x, y) = 40x e^{0.1y} \text{ people per km}^2 \]

How many people live in the region \(R \): \(2 \leq x \leq 6, 1 \leq y \leq 3 \) (Figure 1)?

Solution The total population is the integral of population density:

\[
\int_{R} \int_{2}^{6} \int_{1}^{3} 40x e^{0.1y} \, dx \, dy \\
= \left(\int_{2}^{6} 40x \, dx \right) \left(\int_{1}^{3} e^{0.1y} \, dy \right) \\
= \left(20x^2 \bigg|_{x=2}^{6} \right) \left(10e^{0.1y} \bigg|_{y=1}^{3} \right) \approx (640)(2.447) \approx 1566 \text{ people} \]

In the next example, we compute the mass of an object as the integral of mass density.

In three dimensions, we justify this computation by dividing \(W \) into boxes \(B_{ijk} \) of volume \(\Delta V \) that are so small that the mass density is nearly constant on \(B_{ijk} \) (Figure 2). The mass of \(B_{ijk} \) is approximately \(\delta(P_{ijk}) \Delta V \), where \(P_{ijk} \) is any sample point in \(B_{ijk} \), and the sum of these approximations is a Riemann sum that converges to the triple integral:

\[
\int \int \int_{W} \delta(x, y, z) \, dV \approx \sum_{i} \sum_{j} \sum_{k} \frac{\delta(P_{ijk}) \Delta V}{\text{Approximate mass of } B_{ijk}} \]

Example 2 Let \(a > 0 \). Find the mass of the “solid bowl” \(W \) consisting of points inside the paraboloid \(z = a(x^2 + y^2) \) for \(0 \leq z \leq H \) (Figure 3). Assume a mass density of \(\delta(x, y, z) = z \).

Solution Because the bowl is symmetric with respect to the \(z \)-axis, we use cylindrical coordinates \((r, \theta, z)\). Recall that \(r^2 = x^2 + y^2 \), so the polar equation of the paraboloid is \(z = ar^2 \). A point \((r, \theta, z)\) lies above the paraboloid if \(z \geq ar^2 \), so it lies in the bowl if \(ar^2 \leq z \leq H \). In other words, the bowl is described by

\[0 \leq \theta \leq 2\pi, \quad 0 \leq r \leq \sqrt{\frac{H}{a}}, \quad ar^2 \leq z \leq H \]

The mass of the bowl is the integral of mass density:

\[
M = \int \int \int_{W} \delta(x, y, z) \, dV = \int_{\theta=0}^{2\pi} \int_{r=0}^{\sqrt{H/a}} \int_{z=ar^2}^{H} (z) \, r \, dz \, dr \, d\theta \\
= 2\pi \int_{r=0}^{\sqrt{H/a}} \left(\frac{1}{2} H^2 - \frac{1}{2} a^2 r^4 \right) r \, dr \\
= 2\pi \left(\frac{H^2}{4} - \frac{a^2}{12} \right) \frac{\sqrt{H/a}}{r=0} \\
= 2\pi \frac{H^3}{4a} - \frac{H^3}{12a} = \frac{\pi H^3}{3a} \]

In \mathbb{R}^2, we denote the integral of $x\delta(x, y)$ by M_x and call it the moment with respect to the y-axis because x is the signed distance from (x, y) to the y-axis.

In \mathbb{R}^3, we denote the integral of $x\delta(x, y, z)$ by M_x and call it the moment with respect to the yz-plane because x is the signed distance from (x, y, z) to the yz-plane.

Next, we compute centers of mass. In Section 9.3, we computed centers of mass of laminas (thin plates in the plane), but we had to assume that the mass density is constant. Multiple integration enables us to treat variable mass density. We define the moments of a lamina D with respect to the coordinate axes:

$$M_y = \int\int_D x\delta(x, y)\, dA, \quad M_x = \int\int_D y\delta(x, y)\, dA$$

The center of mass (COM) is the point $P_{CM} = (x_{CM}, y_{CM})$, where

$$x_{CM} = \frac{M_y}{M}, \quad y_{CM} = \frac{M_x}{M}$$

You can think of the coordinates x_{CM} and y_{CM} as weighted averages—they are the averages of x and y in which the factor δ assigns a larger coefficient to points with larger mass density.

If D has uniform mass density (δ constant), then the factors of δ in the numerator and denominator in Eq. (2) cancel, and the center of mass coincides with the centroid, defined as the point whose coordinates are the averages of the coordinates over the domain:

$$\bar{x} = \frac{1}{A} \int\int_D x\, dA, \quad \bar{y} = \frac{1}{A} \int\int_D y\, dA$$

where $A = \int\int_D 1\, dA$ is the area of D.

In \mathbb{R}^3, the moments of a solid region W are defined not with respect to the axes as in \mathbb{R}^2, but with respect to the coordinate planes:

$$M_{yz} = \iiint_W x\delta(x, y, z)\, dV \quad M_{xz} = \iiint_W y\delta(x, y, z)\, dV \quad M_{xy} = \iiint_W z\delta(x, y, z)\, dV$$

The center of mass is the point $P_{CM} = (x_{CM}, y_{CM}, z_{CM})$ with coordinates

$$x_{CM} = \frac{M_{yz}}{M}, \quad y_{CM} = \frac{M_{xz}}{M}, \quad z_{CM} = \frac{M_{xy}}{M}$$

The centroid of W is the point $P = (\bar{x}, \bar{y}, \bar{z})$, which, as before, coincides with the center of mass when δ is constant:

$$\bar{x} = \frac{1}{V} \iiint_W x\, dV, \quad \bar{y} = \frac{1}{V} \iiint_W y\, dV, \quad \bar{z} = \frac{1}{V} \iiint_W z\, dV$$

where $V = \iiint_W 1\, dV$ is the volume of W.

Symmetry can often be used to simplify COM calculations. We say that a region W in \mathbb{R}^3 is symmetric with respect to the xy-plane if $(x, y, -z)$ lies in W whenever (x, y, z) lies in W. The density δ is symmetric with respect to the xy-plane if

$$\delta(x, y, -z) = \delta(x, y, z)$$

In other words, the mass density is the same at points located symmetrically with respect to the xy-plane. If both W and δ have this symmetry, then $M_{xy} = 0$ and the COM lies on the xy-plane—that is, $z_{CM} = 0$. Similar remarks apply to the other coordinate axes and to domains in the plane.
Center of Mass

Find the center of mass of the domain \mathcal{D} bounded by $y = 1 - x^2$ and the x-axis, assuming a mass density of $\delta(x, y) = y$ (Figure 4).

Solution The domain \mathcal{D} is symmetric with respect to the y-axis, and so too is the mass density because $\delta(x, y) = \delta(-x, y) = y$. Therefore, $x_{\text{CM}} = 0$. We need only compute y_{CM}:

$$M_x = \int \int_D y \delta(x, y) \, dA = \int_{x=-1}^{1} \int_{y=0}^{1-x^2} y^2 \, dy \, dx = \int_{x=-1}^{1} \left(\frac{1}{3}x^3 \right)_{y=0} \, dx$$

$$= \frac{1}{3} \int_{x=-1}^{1} (1 - 3x^2 + 3x^4 - x^6) \, dx = \frac{1}{3} \left(2 - 2 + \frac{6}{5} - \frac{2}{7} \right) = \frac{32}{105}$$

$$M = \int \int_D \delta(x, y) \, dA = \int_{x=-1}^{1} \int_{y=0}^{1-x^2} y \, dy \, dx = \int_{x=-1}^{1} \left(\frac{1}{2}x^2 \right)_{y=0} \, dx$$

$$= \frac{1}{2} \int_{x=-1}^{1} (1 - 2x^2 + x^4) \, dx = \frac{1}{2} \left(\frac{4}{3} + \frac{2}{5} \right) = \frac{8}{15}$$

Therefore, $y_{\text{CM}} = \frac{M_x}{M} = \frac{32}{105} \left(\frac{8}{15} \right)^{-1} = \frac{4}{7}$.

Example 4 Find the center of mass of the solid bowl \mathcal{W} in Example 2 consisting of points inside the paraboloid $z = a(x^2 + y^2)$ for $0 \leq z \leq H$, assuming a mass density of $\delta(x, y, z) = z$.

Solution The domain is shown in Figure 3 above.

Step 1. Use symmetry.

The bowl \mathcal{W} and the mass density are both symmetric with respect to the z-axis, so we can expect the COM to lie on the z-axis. In fact, the density satisfies both $\delta(-x, y, z) = \delta(x, y, z)$ and $\delta(x, -y, z) = \delta(x, y, z)$, and thus, we have $M_{xz} = M_{yz} = 0$. It remains to compute the moment M_{xy}.

Step 2. Compute the moment.

In Example 2, we described the bowl in cylindrical coordinates as

$$0 \leq \theta \leq 2\pi, \quad 0 \leq r \leq \frac{H}{\sqrt{a}}, \quad a r^2 \leq z \leq H$$

and we computed the bowl’s mass as $M = \frac{\pi H^3}{3a}$. The moment is

$$M_{xy} = \iiint_{\mathcal{W}} z \delta(x, y, z) \, dV = \iiint_{\mathcal{W}} z^2 \, dV = \int_{\theta=0}^{2\pi} \int_{r=0}^{\sqrt{H/a}} \int_{z=ar^2}^{H} z^2 r \, dz \, dr \, d\theta$$

$$= 2\pi \int_{r=0}^{\sqrt{H/a}} \left(\frac{1}{6}H^3 r^3 - \frac{1}{3}a^3 r^6 \right) r \, dr$$

$$= 2\pi \left(\frac{1}{6}H^3 r^2 - \frac{1}{24}a^3 r^5 \right) \bigg|_{r=0}^{\sqrt{H/a}}$$

$$= 2\pi \left(\frac{H^4}{6a} - \frac{a^3 H^4}{24a^3} \right) = \frac{\pi H^4}{4a}$$

The z-coordinate of the center of mass is

$$z_{CM} = \frac{M_{xy}}{V} = \frac{\pi H^4/(4a)}{\pi H^3/(3a)} = \frac{3}{4} H$$

and the center of mass itself is $(0, 0, \frac{3}{4} H)$.
Moments of inertia are used to analyze rotation about an axis. For example, the spinning yo-yo in Figure 5 rotates about its center as it falls downward, and according to physics, it has a rotational kinetic energy equal to

$$\text{Rotational KE} = \frac{1}{2} I \omega^2$$

Here, ω is the angular velocity (in radians per second) about this axis and I is the moment of inertia with respect to the axis of rotation. The quantity I is a rotational analog of the mass m, which appears in the expression $\frac{1}{2} m v^2$ for translational kinetic energy.

By definition, the moment of inertia with respect to an axis L is the integral of “distance squared from the axis,” weighted by mass density. We confine our attention to the coordinate axes. Thus, for a lamina in the plane \mathbb{R}^2, we define the moments of inertia

$$I_x = \int\int_D y^2 \delta(x, y) \, dA$$
$$I_y = \int\int_D x^2 \delta(x, y) \, dA$$
$$I_0 = \int\int_D (x^2 + y^2) \delta(x, y) \, dA$$

The quantity I_0 is called the polar moment of inertia. It is the moment of inertia relative to the z-axis, because $x^2 + y^2$ is the square of the distance from a point in the xy-plane to the z-axis. Notice that $I_0 = I_x + I_y$.

For a solid object occupying the region V in \mathbb{R}^3,

$$I_x = \iiint_V (y^2 + z^2) \delta(x, y, z) \, dV$$
$$I_y = \iiint_V (x^2 + z^2) \delta(x, y, z) \, dV$$
$$I_z = \iiint_V (x^2 + y^2) \delta(x, y, z) \, dV$$

Moments of inertia have units of mass times length squared.

EXAMPLE 5 A lamina D of uniform mass density and total mass M kilograms occupies the region between $y = 1 - x^2$ and the x-axis (in meters). Calculate the rotational KE if D rotates with angular velocity $\omega = 4$ radians per second (rad/s) about:

(a) the x-axis.

(b) the z-axis.

Solution The lamina is shown in Figure 6. To find the rotational kinetic energy about the x- and z-axes, we need to compute I_x and I_0, respectively.

Step 1. Find the mass density.

The mass density is uniform (i.e., δ is constant), but this does not mean that $\delta = 1$. In fact, the area of D is $\int_{-1}^{1} (1 - x^2) \, dx = \frac{4}{3}$, so the mass density (mass per unit area) is

$$\delta = \frac{\text{mass}}{\text{area}} = \frac{M}{\frac{4}{3}} = \frac{3M}{4} \text{ kg/m}^2$$

Step 2. Calculate the moments.

$$I_x = \int_{-1}^{1} \int_{y=0}^{1-x^2} y^2 \delta \, dy \, dx = \int_{-1}^{1} \frac{1}{3} (1 - x^2)^3 \left(\frac{3M}{4} \right) \, dx$$

$$= \frac{M}{4} \int_{-1}^{1} (1 - 3x^2 + 3x^4 - x^6) \, dx = \frac{8M}{35} \text{ kg-m}^2$$
To calculate I_0, we use the relation $I_0 = I_x + I_y$. We have

$$I_y = \int_{-1}^{1} \left(\int_{0}^{1-x^2} x^2 \, dy \right) \, dx = \left(\frac{3M}{4} \right) \int_{-1}^{1} x^2 \, dx = \frac{M}{5} \text{ kg-m}^2$$

and thus,

$$I_0 = I_x + I_y = \frac{8M}{35} + \frac{M}{5} = \frac{3M}{7} \text{ kg-m}^2$$

Step 3. Calculate kinetic energy.

Assuming an angular velocity of $\omega = 4 \text{ rad/s}$,

- Rotational KE about x-axis $= \frac{1}{2} I_x \omega^2 = \frac{1}{2} \left(\frac{8M}{35} \right) 4^2 \approx 1.8M \text{ joules}$
- Rotational KE about z-axis $= \frac{1}{2} I_z \omega^2 = \frac{1}{2} \left(\frac{3M}{7} \right) 4^2 \approx 3.4M \text{ joules}$

The unit of energy is the joule (J), equal to 1 kg-m2/s2.

A point mass m located a distance r from an axis has moment of inertia $I = mr^2$ with respect to that axis. Given an extended object of total mass M (not necessarily a point mass) whose moment of inertia with respect to the axis is I, we define the radius of gyration by $r_g = (I/M)^{1/2}$. With this definition, the moment of inertia would not change if all of the mass of the object were concentrated at a point located a distance r_g from the axis.

Example 6 Radius of Gyration of a Hemisphere Find the radius of gyration about the z-axis of the solid hemisphere W defined by $x^2 + y^2 + z^2 = R^2$, $0 \leq z \leq 1$, assuming a mass density of $\delta(x, y, z) = z \text{ kg/m}^3$.

Solution To compute the radius of gyration about the z-axis, we must compute I_z and the total mass M. We use spherical coordinates:

$$x^2 + y^2 = (\rho \cos \theta \sin \phi)^2 + (\rho \sin \theta \sin \phi)^2 = \rho^2 \sin^2 \phi, \quad z = \rho \cos \phi$$

$$I_z = \iiint_{W} (x^2 + y^2)z \, dV = \int_{\theta=0}^{\pi/2} \int_{\phi=0}^{\pi/2} \int_{\rho=0}^{R} (\rho^2 \sin^2 \phi)(\rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

$$= 2\pi \left(\int_{0}^{R} \rho^5 \, d\rho \right) \left(\int_{0}^{\pi/2} \sin^3 \phi \cos \phi \, d\phi \right)$$

$$= 2\pi \left(\frac{R^6}{6} \right) \left(\frac{\sin^2 \phi}{4} \right)_{\phi=0}^{\pi/2} = \frac{\pi R^6}{12} \text{ kg-m}^2$$

$$M = \iiint_{W} z \, dV = \int_{\theta=0}^{\pi/2} \int_{\phi=0}^{\pi/2} \int_{\rho=0}^{R} (\rho \cos \phi) \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta$$

$$= \left(\int_{0}^{R} \rho^3 \, d\rho \right) \left(\int_{0}^{\pi/2} \cos \phi \sin \phi \, d\phi \right) \left(\int_{\theta=0}^{\pi/2} \, d\theta \right) = \frac{\pi R^4}{4} \text{ kg}$$

The radius of gyration is $r_g = (I_z/M)^{1/2} = (R^2/3)^{1/2} = R/\sqrt{3} \text{ m}$.

Probability Theory

In Section 8.8, we discussed how probabilities can be represented as areas under curves (Figure 7). Recall that a random variable X is defined as the outcome of an experiment or measurement whose value is not known in advance. The probability that the value of X lies between a and b is denoted $P(a \leq X \leq b)$. Furthermore, X is a continuous random
variable if there is a continuous function \(p \) of one variable, called the probability density function, such that (Figure 7)

\[
P(a \leq X \leq b) = \int_a^b p(x) \, dx
\]

Double integration enters the picture when we compute “joint probabilities” of two random variables \(X \) and \(Y \). We let

\[
P(a \leq X \leq b; \ c \leq Y \leq d)
\]
denote the probability that \(X \) and \(Y \) satisfy

\[
a \leq X \leq b, \ c \leq Y \leq d
\]

For example, if \(X \) is the height (in centimeters) and \(Y \) is the weight (in kilograms) in a certain population, then

\[
P(160 \leq X \leq 170; \ 52 \leq Y \leq 63)
\]
is the probability that a person chosen at random has height between 160 and 170 cm and weight between 52 and 63 kg.

We say that \(X \) and \(Y \) are jointly continuous if there is a continuous function \(p(x, y) \), called the joint probability density function (or simply the joint density), such that for all intervals \([a, b]\) and \([c, d]\) (Figure 8),

\[
P(a \leq X \leq b; \ c \leq Y \leq d) = \int_x^b \int_y^d p(x, y) \, dy \, dx
\]

In the margin, we recall two conditions that a probability density function must satisfy. Joint density functions must satisfy similar conditions: First, \(p(x, y) \geq 0 \) for all \(x \) and \(y \) (because probabilities cannot be negative), and second,

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p(x, y) \, dy \, dx = 1
\]

This is often called the normalization condition. It holds because it is certain (the probability is 1) that \(X \) and \(Y \) each take on some value between \(-\infty\) and \(\infty \).

Example 7 Without proper maintenance, the time to failure (in months) of two sensors in an aircraft are random variables \(X \) and \(Y \) with joint density

\[
p(x, y) = \begin{cases}
\frac{1}{864} e^{-x/24 - y/36} & \text{for } x \geq 0, \ y \geq 0 \\
0 & \text{otherwise}
\end{cases}
\]

What is the probability that neither sensor functions after 2 years?

Solution The problem asks for the probability \(P(0 \leq X \leq 24; \ 0 \leq Y \leq 24) \):

\[
\int_{x=0}^{24} \int_{y=0}^{24} p(x, y) \, dy \, dx = \frac{1}{864} \int_{x=0}^{24} \int_{y=0}^{24} e^{-x/24 - y/36} \, dy \, dx
\]

\[
= \frac{1}{864} \left(\int_{x=0}^{24} e^{-x/24} \, dx \right) \left(\int_{y=0}^{24} e^{-y/36} \, dy \right)
\]

\[
= \frac{1}{864} \left(-24e^{-x/24}\big|_0^{24} \right) \left(-36e^{-y/36}\big|_0^{24} \right)
\]

\[
= \left(1 - e^{-1} \right) \left(1 - e^{-24/36} \right) \approx 0.31
\]

There is a 31% chance that neither sensor will function after 2 years.
More generally, we can compute the probability that X and Y satisfy conditions of various types. For example, $P(X + Y \leq M)$ denotes the probability that the sum $X + Y$ is at most M. This probability is equal to the integral

$$P(X + Y \leq M) = \int_D p(x, y) \, dy \, dx$$

where $D = \{(x, y) : x + y \leq M\}$.

Example 8 Calculate the probability that $X + Y \leq 3$, where X and Y have joint probability density

$$p(x, y) = \begin{cases} \frac{1}{81} (2xy + 2x + y) & \text{for } 0 \leq x \leq 3, \ 0 \leq y \leq 3 \\ 0 & \text{otherwise} \end{cases}$$

Solution The probability density function $p(x, y)$ is nonzero only on the square in Figure 9. Within that square, the inequality $x + y \leq 3$ holds only on the shaded triangle, so the probability that $X + Y \leq 3$ is equal to the integral of $p(x, y)$ over the triangle:

$$\int_{x=0}^{3} \int_{y=0}^{3-x} p(x, y) \, dy \, dx = \frac{1}{81} \int_{x=0}^{3} \left(x y^2 + \frac{1}{2} y^3 + 2xy \right)_{y=0}^{3-x} \, dx$$

$$= \frac{1}{81} \int_{x=0}^{3} \left(x^3 - \frac{15}{2} x^2 + 12x + \frac{9}{2} \right) \, dx$$

$$= \frac{1}{81} \left(\frac{1}{4} x^4 - \frac{5}{2} x^3 + 6(3^2) + \frac{9}{2} (3) \right) = \frac{1}{4}.$$

16.5 Summary

- If the mass density is constant, then the center of mass coincides with the centroid, whose coordinates \overline{x}, \overline{y} (and \overline{z} in three dimensions) are the average values of x, y, and z over the domain. For a domain in \mathbb{R}^2,

$$\overline{x} = \frac{1}{A} \int_D x \, dA, \quad \overline{y} = \frac{1}{A} \int_D y \, dA, \quad A = \int_D 1 \, dA$$

<table>
<thead>
<tr>
<th>In \mathbb{R}^2</th>
<th>In \mathbb{R}^3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total mass</td>
<td>$M = \int_D \delta(x, y) , dA$</td>
</tr>
<tr>
<td>Moments</td>
<td>$M_x = \int_D y \delta(x, y) , dA$</td>
</tr>
<tr>
<td></td>
<td>$M_y = \int_D x \delta(x, y) , dA$</td>
</tr>
<tr>
<td></td>
<td>$M_{xy} = \iiint_W z \delta(x, y, z) , dV$</td>
</tr>
<tr>
<td>Center of mass</td>
<td>$x_{CM} = \frac{M_y}{M}, \quad y_{CM} = \frac{M_x}{M}$</td>
</tr>
<tr>
<td>Moments of inertia</td>
<td>$I_x = \int_D y^2 \delta(x, y) , dA$</td>
</tr>
<tr>
<td></td>
<td>$I_y = \int_D x^2 \delta(x, y) , dA$</td>
</tr>
<tr>
<td></td>
<td>$I_0 = \int_D (x^2 + y^2) \delta(x, y) , dA$</td>
</tr>
</tbody>
</table>
| | $(I_0 = I_x + I_y)$ | }
16.5 Exercises

Preliminary Questions

1. What is the mass density \(\delta(x, y, z) \) of a solid of volume 5 m\(^3\) with uniform mass density and total mass 25 kg?

2. A domain \(D \) in \(\mathbb{R}^2 \) with uniform mass density is symmetric with respect to the \(y \)-axis. Which of the following are true?
 (a) \(x_{\text{CM}} = 0 \) (b) \(y_{\text{CM}} = 0 \) (c) \(I_x = 0 \) (d) \(I_y = 0 \)

Exercises

1. Find the total mass of the square \(0 \leq x \leq 1, 0 \leq y \leq 1 \) assuming a mass density of \(\delta(x, y) = x^2 + y^2 \)

2. Calculate the total mass of a plate bounded by \(y = 0 \) and \(y = x^{-1} \) for \(1 \leq x \leq 4 \) (in meters) assuming a mass density of \(\delta(x, y) = \frac{y}{x} \) kg/m\(^2\).

3. Find the total charge in the region under the graph of \(y = 4e^{-x^2/2} \) for \(0 \leq x \leq 10 \) (in centimeters) assuming a charge density of \(\delta(x, y) = 10^{-6}xy \) coulombs per square centimeter (C/cm\(^2\)).

4. Find the total population within a 4-km radius of the city center (located at the origin) assuming a population density of \(\delta(x, y) = 2000(x^2 + y^2)^{-0.2} \) people per square kilometer.

5. Find the total population within the sector \(2|x| \leq y \leq 8 \) assuming a population density of \(\delta(x, y) = 100e^{-0.1y} \) people per square kilometer.

6. Find the total mass of the solid region \(\mathcal{W} \) defined by \(x \geq 0, y \geq 0, x^2 + y^2 \leq 4, \) and \(x \leq z \leq 32 - x \) (in centimeters) assuming a mass density of \(\delta(x, y, z) = 6y \) g/cm\(^3\).

7. Calculate the total charge of the solid ball \(x^2 + y^2 + z^2 \leq 5 \) (in centimeters) assuming a charge density (in coulombs per cubic centimeter) of \(\delta(x, y, z) = (3 \cdot 10^{-8})(x^2 + y^2 + z^2)^{1/2} \)

8. Compute the total mass of the plate in Figure 10 assuming a mass density of \(f(x, y) = x^2/(x^2 + y^2) \) g/cm\(^2\).

9. Assume that the density of the atmosphere as a function of altitude \(h \) (in kilometers) above sea level is \(\delta(h) = ae^{-bh} \) kg/km\(^3\), where \(a = 1.225 \times 10^9 \) and \(b = 0.13 \). Calculate the total mass of the atmosphere contained in the cone-shaped region \(\sqrt{x^2 + y^2} \leq h \leq 3 \).

10. Calculate the total charge on a plate \(D \) in the shape of the ellipse with the polar equation

\[
r^2 = \left(\frac{1}{6} \sin^2 \theta + \frac{1}{9} \cos^2 \theta \right)^{-1}
\]

with the disk \(x^2 + y^2 \leq 1 \) removed (Figure 11) assuming a charge density of \(\rho(r, \theta) = 3r^{-4} \) C/cm\(^2\).

11. In Exercises 11–14, find the centroid of the given region assuming the density \(\delta(x, y) = 1 \).

12. Region bounded by \(y = 1 - x^2 \) and \(y = 0 \)

13. Region bounded by \(y^2 = x + 4 \) and \(x = 4 \)

14. Infinite lamina bounded by the \(x \)- and \(y \)-axes and the graph of \(y = e^{-x} \)

15. \text{CAS} Use a computer algebra system to compute numerically the centroid of the shaded region in Figure 12 bounded by \(r^2 = 2 \cos 2\theta \) for \(r \geq 0 \).
16. Show that the centroid of the sector in Figure 13 has y-coordinate
\[
y = \left(\frac{2R}{3}\right) \left(\frac{\sin \alpha}{\alpha}\right).
\]

In Exercises 17–19, find the centroid of the given solid region assuming a density of $\delta(x, y) = 1$.

17. Hemisphere $x^2 + y^2 + z^2 \leq R^2, z \geq 0$

18. Region bounded by the xy-plane, the cylinder $x^2 + y^2 = R^2$, and the plane $x/R + z/H = 1$, where $R > 0$ and $H > 0$

19. The “ice cream cone” region W bounded, in spherical coordinates, by the cone $\phi = \pi/3$ and the sphere $\rho = 2$

20. Show that the z-coordinate of the centroid of the tetrahedron bounded by the coordinate planes and the plane
\[
\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1
\]
in Figure 14 is $\tau = c/4$. Conclude by symmetry that the centroid is $(a/4, b/4, c/4)$.

21. Find the centroid of the region W lying above the unit sphere $x^2 + y^2 + z^2 = 6$ and below the paraboloid $z = 4 - x^2 - y^2$ (Figure 15).

22. Let $R > 0$ and $H > 0$, and let W be the upper half of the ellipsoid $x^2 + y^2 + (Rz/H)^2 = R^2$, where $z \geq 0$ (Figure 16). Find the centroid of W and show that it depends on the height H but not on the radius R.

In Exercises 23–26, find the center of mass of the region with the given mass density δ.

23. Region bounded by $y = 4 - x$, $x = 0$, $y = 0$; $\delta(x, y) = x$

24. Region bounded by $y^2 = x + 4$ and $x = 0$; $\delta(x, y) = |y|$

25. Region $|x| + |y| \leq 1$; $\delta(x, y) = (x + 1)(y + 1)$

26. Semicircle $x^2 + y^2 \leq R^2, y \geq 0$; $\delta(x, y) = y$

27. Find the z-coordinate of the center of mass of the first octant of the unit sphere with mass density $\delta(x, y, z) = y$ (Figure 17).

28. Find the center of mass of a cylinder of radius 2 and height 4 and mass density e^{-z}, where z is the height above the base.
29. Let \(R \) be the rectangle \([-a, a] \times [b, -b]\) with uniform density and total mass \(M \). Calculate:
 (a) The mass density \(\delta \) of \(R \)
 (b) \(I_x \) and \(I_y \)
 (c) The radius of gyration about the \(x \)-axis

30. Calculate \(I_x \) and \(I_y \) for the rectangle in Exercise 29 assuming a mass density of \(\delta(x, y) = x \).

31. Calculate \(I_0 \) and \(I_z \) for the disk \(D \) defined by \(x^2 + y^2 < 16 \) (in meters), with total mass 1000 kg and uniform mass density. Hint: Calculate \(I_0 \) first and observe that \(I_0 = 2I_x \). Express your answer in the correct units.

32. Calculate \(I_x \) and \(I_z \) for the half-disk \(x^2 + y^2 \leq R^2 \), \(x \geq 0 \) (in meters), with total mass \(M \) kilograms and uniform mass density.

In Exercises 33–36, let \(D \) be the triangular domain bounded by the coordinate axes and the line \(y = 3 - x \), with mass density \(\delta(x, y) = y \). Compute the given quantities.

33. Total mass

34. Center of mass

35. \(I_x \)

36. \(I_0 \)

In Exercises 37–40, let \(D \) be the domain between the line \(y = bx/a \) and the parabola \(y = bx^2/a^2 \), where \(a, b > 0 \). Assume the mass density is \(\delta(x, y) = 1 \) for Exercise 37 and \(\delta(x, y) = xy \) for Exercises 38–40. Compute the given quantities.

37. Centroid

38. Center of mass

39. \(I_x \)

40. \(I_0 \)

41. Calculate the moment of inertia \(I_x \) of the disk \(D \) defined by \(x^2 + y^2 < R^2 \) (in meters), with total mass \(M \) kg. How much kinetic energy (in joules) is required to rotate the disk about the \(x \)-axis with angular velocity \(10 \) rad/s?

42. Calculate the moment of inertia \(I_z \) of the box \(W = [-a, a] \times [-a, a] \times [0, H] \) assuming that \(W \) has total mass \(M \).

43. Show that the moment of inertia of a sphere of radius \(R \) of total mass \(M \) with uniform mass density about any axis passing through the center of the sphere is \(\frac{2}{3} MR^2 \). Note that the mass density of the sphere is \(\delta = M/(\frac{4}{3} \pi R^3) \).

44. Use the result of Exercise 43 to calculate the radius of gyration of a uniform sphere of radius \(R \) about any axis through the center of the sphere.

In Exercises 45 and 46, prove the formula for the right circular cylinder in Figure 18.

45. \(I_z = \frac{1}{2} MR^2 \)

46. \(I_x = \frac{1}{3} MR^2 + \frac{1}{12} MH^2 \)

47. The yo-yo in Figure 19 is made up of two disks of radius \(r = 3 \) cm and an axle of radius \(b = 1 \) cm. Each disk has mass \(M_1 = 20 \) g, and the axle has mass \(M_2 = 5 \) g.

(a) Use the result of Exercise 45 to calculate the moment of inertia \(I \) of the yo-yo with respect to the axis of symmetry. Note that \(I \) is the sum of the moments of the three components of the yo-yo.

(b) The yo-yo is released and falls to the end of a 100-cm string, where it spins with angular velocity \(\omega \). The total mass of the yo-yo is \(m = 45 \) g, so the potential energy lost is \(PE = mgh = (45)(980)100 \) g-cm\(^2\)/s\(^2\). Find \(\omega \) using the fact that the potential energy is the sum of the rotational kinetic energy and the translational kinetic energy and that the velocity \(v = \omega r \) since the string unravels at this rate.

48. Calculate \(I_z \) for the solid region \(W \) inside the hyperboloid \(x^2 + y^2 = z^2 + 1 \) between \(z = 0 \) and \(z = 1 \).

49. Calculate \(P(0 \leq X \leq 2; 1 \leq Y \leq 2) \), where \(X \) and \(Y \) have joint probability density function
 \[
 p(x, y) = \begin{cases}
 \frac{1}{12} (2xy + 2x + y) & \text{if } 0 \leq x \leq 4 \text{ and } 0 \leq y \leq 2 \\
 0 & \text{otherwise}
 \end{cases}
 \]

50. Calculate the probability that \(X + Y \leq 2 \) for random variables with joint probability density function as in Exercise 49.

51. The lifetime (in months) of two components in a certain device are random variables \(X \) and \(Y \) with joint probability distribution function
 \[
 p(x, y) = \begin{cases}
 \frac{1}{12} (48 - 2x - y) & \text{if } x \geq 0, \ y \geq 0, \ 2x + y \leq 48 \\
 0 & \text{otherwise}
 \end{cases}
 \]

Calculate the probability that both components function for at least 12 months without failing. Note that \(p(x, y) \) is nonzero only within the triangle bounded by the coordinate axes and the line \(2x + y = 48 \) shown in Figure 20.

52. Find a constant \(C \) such that
 \[
 p(x, y) = \begin{cases}
 Cxy & \text{if } 0 \leq x \text{ and } 0 \leq y \leq 1 - x \\
 0 & \text{otherwise}
 \end{cases}
 \]

is a joint probability density function. Then calculate:
 (a) \(P(X \leq \frac{1}{2}; Y \leq \frac{1}{3}) \)
 (b) \(P(X \geq Y) \)
53. Find a constant C such that
\[p(x, y) = \begin{cases} \frac{C}{\sqrt{x}} & \text{if } 0 \leq x \leq 1 \text{ and } x^2 \leq y \leq x \\ 0 & \text{otherwise} \end{cases} \]
is a joint probability density function. Then calculate the probability that
\[Y \geq X^{1/2}. \]

54. Numbers X and Y between 0 and 1 are chosen randomly. The joint probability density is
\[p(x, y) = \begin{cases} 1 & \text{if } 0 \leq x \leq 1 \text{ and } 0 \leq y \leq 1 \\ 0 & \text{otherwise} \end{cases} \]
and \(p(x, y) = 0 \) otherwise. Calculate the probability \(P \) that the product \(XY \) is at least \(\frac{1}{2}. \)

55. According to quantum mechanics, the \(x \)- and \(y \)-coordinates of a particle confined to the region \(R = [0, 1] \times [0, 1] \) are random variables with joint probability density function
\[p(x, y) = \begin{cases} \frac{C}{\sin(\pi xy)} & \text{if } (x, y) \in R \\ 0 & \text{otherwise} \end{cases} \]
The integers \(\ell \) and \(n \) determine the energy of the particle, and \(C \) is a constant.
(a) Find the constant \(C \).
(b) Calculate the probability that a particle with \(\ell = 2 \) and \(n = 3 \) lies in the region \([0, \frac{1}{2}] \times [0, \frac{1}{2}]\).

56. The wave function for the \(1s \) state of an electron in the hydrogen atom is
\[\psi_{1s}(\rho) = \frac{1}{\sqrt{\pi a_0}} e^{-\rho/a_0} \]
where \(a_0 \) is the Bohr radius. The probability of finding the electron in a region \(\mathcal{W} \) of \(\mathbb{R}^3 \) is equal to
\[\iiint_{\mathcal{W}} p(x, y, z) \, dV \]
where, in spherical coordinates,
\[p(\rho) = |\psi_{1s}(\rho)|^2 \]
Use integration in spherical coordinates to show that the probability of finding the electron at a distance greater than the Bohr radius is equal to
\[\frac{5}{4} e^2 \approx 0.677. \] (The Bohr radius is \(a_0 = 5.3 \times 10^{-11} \) m, but this value is not needed.)

57. According to Coulomb’s Law, the attractive force between two electric charges of magnitude \(q_1 \) and \(q_2 \) separated by a distance \(r \) is
\[kq_1q_2/r^2 \] (\(k \) is a constant). Let \(F \) be the net force on a charged particle \(P \) of charge \(Q \) coulombs located \(d \) centimeters above the center of a circular disk of radius \(R \), with a uniform charge distribution of density \(\rho \) coulombs per square meter (Figure 21). By symmetry, \(F \) acts in the vertical direction.
(a) Let \(R \) be a small polar rectangle of size \(\Delta r \times \Delta \theta \) located at distance \(r \). Show that \(R \) exerts a force on \(P \) whose vertical component is
\[F = \frac{kqQd}{(r^2 + d^2)^{3/2}} r \, \Delta r \, \Delta \theta. \]
(b) Explain why \(F \) is equal to the following double integral, and evaluate:
\[F = kqQd \int_0^{2\pi} \int_0^R r \, dr \, d\theta \]

58. Let \(\mathcal{D} \) be the annular region
\[\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \quad a \leq r \leq b \]
where \(b > a > 0 \). Assume that \(\mathcal{D} \) has a uniform charge distribution of \(\rho \) coulombs per square meter. Let \(F \) be the net force on a charged particle of charge \(Q \) coulombs located at the origin (by symmetry, \(F \) acts along the \(x \)-axis).
(a) Argue as in Exercise 57 to show that
\[F = kqQ \int_{\theta = -\pi/2}^{\pi/2} \int_r^b \left(\frac{\cos \theta}{r^2} \right) r \, dr \, d\theta \]
(b) Compute \(F \).

59. Let \(\mathcal{D} \) be the domain in Figure 22. Assume that \(\mathcal{D} \) is symmetric with respect to the \(y \)-axis; that is, both \(g_1(x) \) and \(g_2(x) \) are even functions.
(a) Prove that the centroid lies on the \(y \)-axis—that is, that \(\bar{x} = 0 \).
(b) Show that if the mass density satisfies \(\delta(-x, y) = \delta(x, y) \), then \(M_y = 0 \) and \(x_{\text{CM}} = 0 \).

60. Pappus’s Theorem Let \(A \) be the area of the region \(\mathcal{D} \) between two graphs \(y = g_1(x) \) and \(y = g_2(x) \) over the interval \([a, b]\), where \(g_2(x) \geq g_1(x) \geq 0 \). Prove Pappus’s Theorem: The volume of the solid obtained by revolving \(\mathcal{D} \) about the \(x \)-axis is \(V = 2\pi A \bar{y} \), where \(\bar{y} \) is the \(y \)-coordinate of the centroid of \(\mathcal{D} \) (the average of the \(y \)-coordinate). Hint: Show that
\[A \bar{y} = \int_{x=a}^{b} \left(\int_{y=g_1(x)}^{g_2(x)} y \, dy \right) dx \]

61. Use Pappus’s Theorem in Exercise 60 to show that the torus obtained by revolving a circle of radius \(b \) centered at \((0, a)\) about the \(x \)-axis (where \(b < a \)) has volume \(V = 2\pi a^2 b^2 \).

62. Use Pappus’s Theorem to compute \(\bar{y} \) for the upper half of the disk \(x^2 + y^2 \leq a^2 \), \(y \geq 0 \). Hint: The disk revolved about the \(x \)-axis is a sphere.
63. Parallel-Axis Theorem Let \(W \) be a region in \(\mathbb{R}^3 \) with center of mass at the origin. Let \(I_z \) be the moment of inertia of \(W \) about the \(z \)-axis, and let \(I_h \) be the moment of inertia about the vertical axis through a point \(P = (a, b, 0) \), where \(h = \sqrt{a^2 + b^2} \). By definition,\[
I_h = \iiint_W (x - a)^2 + (y - b)^2 \delta(x, y, z) \, dV
\]Prove the Parallel-Axis Theorem: \(I_h = I_z + Mh^2 \).

64. Let \(W \) be a cylinder of radius 10 cm and height 20 cm, with total mass \(M = 500 \text{ g} \). Use the Parallel-Axis Theorem (Exercise 63) and the result of Exercise 45 to calculate the moment of inertia of \(W \) about an axis that is parallel to and at a distance of 30 cm from the cylinder’s axis of symmetry.

16.6 Change of Variables

The formulas for integration in polar, cylindrical, and spherical coordinates are important special cases of the general Change of Variables Formula for multiple integrals. In this section, we discuss the general formula.

Maps from \(\mathbb{R}^2 \) to \(\mathbb{R}^2 \)

A function \(G : X \rightarrow Y \) from a set \(X \) (the domain) to another set \(Y \) is often called a map or a mapping. For \(x \in X \), the element \(G(x) \) belongs to \(Y \) and is called the image of \(x \). The set of all images \(G(x) \) is called the image or range of \(G \). We denote the image by \(G(X) \).

In this section, we consider maps \(G : D \rightarrow \mathbb{R}^2 \) defined on a domain \(D \) in \(\mathbb{R}^2 \) (Figure 1). To prevent confusion, we’ll often use \(u, v \) as our domain variables and \(x, y \) for the range. Thus, we will write \(G(u, v) = (x(u, v), y(u, v)) \), where the components \(x \) and \(y \) are functions of \(u \) and \(v \):

\[
x = x(u, v), \quad y = y(u, v)
\]

One map we are familiar with is the map defining polar coordinates. For this map, we use variables \(r, \theta \) instead of \(u, v \). The polar coordinates map \(G : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is defined by\[
G(r, \theta) = (r \cos \theta, r \sin \theta)
\]

Example 1 Polar Coordinates Map Describe the image of a polar rectangle \(\mathcal{R} = [r_1, r_2] \times [\theta_1, \theta_2] \) under the polar coordinates map.

Solution Referring to Figure 2, we see that:

- A vertical line \(r = r_1 \) (shown in red) is mapped to the set of points with radial coordinate \(r_1 \) and arbitrary angle. This is the circle of radius \(r_1 \).

\[\text{FIGURE 2} \quad \text{The polar coordinates map} \quad G(r, \theta) = (r \cos \theta, r \sin \theta).\]
• A horizontal line \(\theta = \theta_1 \) (dashed line in the figure) is mapped to the set of points with polar angle \(\theta \) and arbitrary \(r \)-coordinate. This is the line through the origin of angle \(\theta_1 \).

The image of \(\mathcal{R} = [r_1, r_2] \times [\theta_1, \theta_2] \) under the polar coordinates map \(G(r, \theta) = (r \cos \theta, r \sin \theta) \) is the polar rectangle in the \(xy \)-plane defined by \(r_1 \leq r \leq r_2, \theta_1 \leq \theta \leq \theta_2 \).

General mappings can be quite complicated, so it is useful to study the simplest case—linear maps—in detail. A map \(G(u, v) \) is linear if it has the form
\[
G(u, v) = (Au + Cv, Bu + Dv) \quad (A, B, C, D \text{ are constants})
\]
We can get a clear picture of this linear map by thinking of \(G \) as a map from vectors in the \(uv \)-plane to vectors in the \(xy \)-plane. Then \(G \) has the following linearity properties (see Exercise 46):
\[
G(u_1 + u_2, v_1 + v_2) = G(u_1, v_1) + G(u_2, v_2) \quad \text{(1)}
\]
\[
G(cu, cv) = cG(u, v) \quad (c \text{ any constant}) \quad \text{(2)}
\]
A consequence of these properties is that \(G \) maps the parallelogram spanned by any two vectors \(\mathbf{a} \) and \(\mathbf{b} \) in the \(uv \)-plane to the parallelogram spanned by the images \(G(\mathbf{a}) \) and \(G(\mathbf{b}) \), as shown in Figure 3.

More generally, \(G \) maps the segment joining any two points \(P \) and \(Q \) to the segment joining \(G(P) \) and \(G(Q) \) (see Exercise 47). The grid generated by basis vectors \(\mathbf{i} = (1, 0) \) and \(\mathbf{j} = (0, 1) \) is mapped to the grid generated by the image vectors (Figure 3)
\[
\mathbf{r} = G(1, 0) = (A, B) \quad \text{and} \quad \mathbf{s} = G(0, 1) = (C, D)
\]

To understand a nonlinear map, it is usually helpful to determine the images of horizontal and vertical lines, as we did for the polar coordinate mapping.
EXAMPLE 3 Let \(G(u, v) = (uv^{-1}, uv) \) for \(u > 0, v > 0 \). Determine the images of:

(a) The lines \(u = c \) and \(v = c \)
(b) \([1, 2] \times [1, 2]\)

Find the inverse map \(G^{-1} \).

Solution In this map, we have
\[
xy = u^2, \quad \frac{y}{x} = v^2
\]

(a) By the first part of Eq. (3), \(G \) maps a point \((c, v)\) to a point in the \(xy\)-plane with \(xy = c^2\). In other words, \(G \) maps the vertical line \(u = c \) to the hyperbola \(xy = c^2\). Similarly, by the second part of Eq. (3), the horizontal line \(v = c \) is mapped to the set of points where \(x/y = c^2 \), or \(y = c^2x \), which is the line through the origin of slope \(c^2 \). See Figure 5.

(b) The image of \([1, 2] \times [1, 2]\) is the curvilinear rectangle bounded by the four curves that are the images of the lines \(u = 1, u = 2, \) and \(v = 1, v = 2 \). By Eq. (3) this region is defined by the inequalities
\[
1 \leq xy \leq 4, \quad 1 \leq \frac{y}{x} \leq 4
\]
To find \(G^{-1} \), we use Eq. (3) to write \(u = \sqrt{xy} \) and \(v = \sqrt{y/x} \). Therefore, the inverse map is
\[
G^{-1}(x, y) = (\sqrt{xy}, \sqrt{y/x})
\]
We take positive square roots because \(u > 0 \) and \(v > 0 \) on the domain we are considering.

How Area Changes Under a Mapping: The Jacobian Determinant

The Jacobian determinant (or simply the Jacobian) of a map
\[
G(u, v) = (x(u, v), y(u, v))
\]
is the determinant
\[
\text{Jac}(G) = \begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}
\]
The Jacobian \(\text{Jac}(G) \) is also denoted \(\frac{\partial (x, y)}{\partial (u, v)} \). Note that \(\text{Jac}(G) \) is a function of \(u \) and \(v \).
EXAMPLE 4 Evaluate the Jacobian of \(G(u, v) = (u^3 + v, uv) \) at \((u, v) = (2, 1)\).

Solution We have \(x = u^3 + v \) and \(y = uv \), so

\[
\text{Jac}(G) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \begin{vmatrix} 3u^2 & 1 \\ v & u \end{vmatrix} = 3u^3 - v
\]

The value of the Jacobian at \((2, 1)\) is \(\text{Jac}(G)(2, 1) = 3(2)^3 - 1 = 23\).

The Jacobian tells us how area changes under a map \(G \). We can see this most directly in the case of a linear map \(G(u, v) = (Au + Cv, Bu + Dv) \).

THEOREM 1 Jacobian of a Linear Map The Jacobian of a linear map

\(G(u, v) = (Au + Cv, Bu + Dv) \)

is constant with value

\[
\text{Jac}(G) = \begin{vmatrix} A & C \\ B & D \end{vmatrix} = AD - BC \tag{5}
\]

Under \(G \), the area of a region \(D \) is multiplied by the factor \(|\text{Jac}(G)|\); that is,

\[
\text{Area}(G(D)) = |\text{Jac}(G)|\text{Area}(D) \tag{6}
\]

Proof Eq. (5) is verified by direct calculation: Because

\[x = Au + Cv \quad \text{and} \quad y = Bu + Dv \]

the partial derivatives in the Jacobian are the constants \(A, B, C, D \).

We sketch a proof of Eq. (6). It certainly holds for the unit rectangle \(D = [1, 0] \times [0, 1] \) because \(G(D) \) is the parallelogram spanned by the vectors \(\langle A, B \rangle \) and \(\langle C, D \rangle \) (Figure 6) and this parallelogram has area

\[|\text{Jac}(G)| = |AD - BC| \]

by Eq. (10) in Section 13.4. Similarly, we can check directly that Eq. (6) holds for arbitrary parallelograms (see Exercise 48). To verify Eq. (6) for a general domain \(D \), we use the fact that \(D \) can be approximated as closely as desired by a union of rectangles in a fine grid of lines parallel to the \(u \)- and \(v \)-axes.

![Figure 6](image_url) A linear map \(G \) expands (or shrinks) area by the factor \(|\text{Jac}(G)|\).
We cannot expect Eq. (6) to hold for a nonlinear map. In fact, it would not make sense as stated because the value $\text{Jac}(G)(P)$ may vary from point to point. However, it is approximately true if the domain D is small and P is a sample point in D:

\[
\text{Area}(G(D)) \approx |\text{Jac}(G)(P)| \text{Area}(D)
\]

This result may be stated more precisely as the limit relation:

\[
|\text{Jac}(G)(P)| = \lim_{|D| \to 0} \frac{\text{Area}(G(D))}{\text{Area}(D)}
\]

Here, we write $|D| \to 0$ to indicate the limit as the diameter of D (the maximum distance between two points in D) tends to zero.

CONCEPTUAL INSIGHT Although a rigorous proof of Eq. (8) is too technical to include here, we can understand Eq. (7) as an application of linear approximation. Consider a rectangle \mathcal{R} with vertex at $P = (u, v)$ and sides of lengths Δu and Δv, assumed to be small as in Figure 7. The image $G(\mathcal{R})$ is not a parallelogram, but it is approximated well by the parallelogram spanned by the vectors \mathbf{A} and \mathbf{B} in the figure:

\[
\mathbf{A} = G(u + \Delta u, v) - G(u, v) = (x(u + \Delta u, v) - x(u, v), y(u + \Delta u, v) - y(u, v))
\]

\[
\mathbf{B} = G(u, v + \Delta v) - G(u, v) = (x(u, v + \Delta v) - x(u, v), y(u, v + \Delta v) - y(u, v))
\]

The linear approximation applied to the components of G yields

\[
\mathbf{A} \approx \begin{pmatrix} \frac{\partial x}{\partial u} \Delta u & \frac{\partial y}{\partial u} \Delta u \\ \frac{\partial x}{\partial v} \Delta u & \frac{\partial y}{\partial v} \Delta u \end{pmatrix}
\]

\[
\mathbf{B} \approx \begin{pmatrix} \frac{\partial x}{\partial v} \Delta v & \frac{\partial y}{\partial v} \Delta v \\ \frac{\partial x}{\partial v} \Delta v & \frac{\partial y}{\partial v} \Delta v \end{pmatrix}
\]

This yields the desired approximation:

\[
\text{Area}(G(\mathcal{R})) \approx \left| \det \begin{pmatrix} \mathbf{A} \\ \mathbf{B} \end{pmatrix} \right| = \left| \det \begin{pmatrix} \frac{\partial x}{\partial u} \Delta u & \frac{\partial y}{\partial u} \Delta u \\ \frac{\partial x}{\partial v} \Delta v & \frac{\partial y}{\partial v} \Delta v \end{pmatrix} \right|
\]

\[
= \left| \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v} \right| \Delta u \Delta v
\]

\[
= |\text{Jac}(G)(P)| \text{Area}(\mathcal{R})
\]

since the area of \mathcal{R} is $\Delta u \Delta v$.

FIGURE 7 The image of a small rectangle under a nonlinear map can be approximated by a parallelogram whose sides are determined by the linear approximation.

\[\text{The Change of Variables Formula}\]

Recall the formula for integration in polar coordinates:

\[
\int \int_{\mathcal{D}} f(x, y) \, dx \, dy = \int_{\theta_1}^{\theta_2} \int_{r_1}^{r_2} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta
\]
Here, \(D \) is the polar rectangle consisting of points \((x, y) = (r \cos \theta, r \sin \theta)\) in the \(xy \)-plane (see Figure 2 above). The domain of integration on the right is the rectangle \(R = [\theta_1, \theta_2] \times [r_1, r_2] \) in the \(r\theta \)-plane. Thus, \(D \) is the image of the domain on the right under the polar coordinates map.

The general Change of Variables Formula has a similar form. Given a map

\[
G : D \to \mathbb{R}^2
\]

from a domain in the \(uv \)-plane to a domain in the \(xy \)-plane (Figure 8), our formula expresses an integral over \(D \) as an integral over \(D_0 \). The Jacobian plays the role of the factor \(r \) on the right-hand side of Eq. (11).

A few technical assumptions are necessary. First, we assume that \(G \) is one-to-one, at least on the interior of \(D_0 \), because we want \(G \) to cover the target domain \(D \) just once. We also assume that \(G \) is a \(C^1 \) map, by which we mean that the component functions \(x \) and \(y \) have continuous partial derivatives. Under these conditions, if \(f(x, y) \) is continuous, we have the following result.

THEOREM 2 Change of Variables Formula

Let \(G : D_0 \to D \) be a \(C^1 \) mapping that is one-to-one on the interior of \(D_0 \). If \(f(x, y) \) is continuous, then

\[
\iint_D f(x, y) \, dx \, dy = \iint_{D_0} f(x(u, v), y(u, v)) |\frac{\partial(x, y)}{\partial(u, v)}| \, du \, dv
\]

Proof We sketch the proof. Observe first that Eq. (12) is approximately true if the domains \(D_0 \) and \(D \) are small. Let \(P = G(P_0) \), where \(P_0 \) is any sample point in \(D_0 \). Since \(f(x, y) \) is continuous, the approximation recalled in the margin together with Eq. (7) yields

\[
\iint_D f(x, y) \, dx \, dy \approx f(P) \text{Area}(D)
\]

\[
\approx f(G(P_0)) |\text{Jac}(G)(P_0)| \text{Area}(D_0)
\]

\[
\approx \iint_{D_0} f(G(u, v)) |\text{Jac}(G)(u, v)| \, du \, dv
\]

If \(D \) is not small, divide it into small subdomains \(D_j = G(D_0_j) \) (Figure 9 shows a rectangle divided into smaller rectangles), apply the approximation to each subdomain, and sum:

\[
\iint_D f(x, y) \, dx \, dy = \sum_j \iint_{D_j} f(x, y) \, dx \, dy
\]

\[
\approx \sum_j \iint_{D_0_j} f(G(u, v)) |\text{Jac}(G)(u, v)| \, du \, dv
\]

\[
= \iint_{D_0} f(G(u, v)) |\text{Jac}(G)(u, v)| \, du \, dv
\]

Careful estimates show that the error tends to zero as the maximum of the diameters of the subdomains \(D_j \) tends to zero. This yields the Change of Variables Formula.
CHAPTER 16 MULTIPLE INTEGRATION

EXAMPLE 5 Polar Coordinates Revisited Use the Change of Variables Formula to derive the formula for integration in polar coordinates.

Solution The Jacobian of the polar coordinate map \(G(r, \theta) = (r \cos \theta, r \sin \theta) \) is

\[
\text{Jac}(G) = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{vmatrix} = r (\cos^2 \theta + \sin^2 \theta) = r
\]

Let \(\mathcal{D} = G(\mathcal{R}) \) be the image under the polar coordinates map \(G \) of the rectangle \(\mathcal{R} \) defined by \(r_0 \leq r \leq r_1, \theta_0 \leq \theta \leq \theta_1 \) (see Figure 2). Then Eq. (12) yields the expected formula for polar coordinates:

\[
\int_{\mathcal{D}} f(x, y) \, dx \, dy = \int_{\theta_0}^{\theta_1} \int_{r_0}^{r_1} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta
\]

Assumptions Matter In the Change of Variables Formula, we assume that \(G \) is one-to-one on the interior but not necessarily on the boundary of the domain. Thus, we can apply Eq. (12) to the polar coordinates map \(G \) on the rectangle \(\mathcal{D}_0 = [0, 1] \times [0, 2\pi] \). In this case, \(G \) is one-to-one on the interior but not on the boundary of \(\mathcal{D}_0 \) since \(G(0, \theta) = (0, 0) \) for all \(\theta \) and \(G(r, 0) = G(r, 2\pi) \) for all \(r \). On the other hand, Eq. (12) cannot be applied to \(G \) on the rectangle \([0, 1] \times [0, 4\pi] \) because it is not one-to-one on the interior.

EXAMPLE 6 Use the Change of Variables Formula to calculate \(\int_{\mathcal{P}} e^{4x-y} \, dx \, dy \), where \(\mathcal{P} \) is the parallelogram spanned by the vectors \(\langle 4, 1 \rangle, \langle 3, 3 \rangle \) in Figure 10.

Solution

Step 1. Define a map.

We can convert our double integral to an integral over the unit square \(\mathcal{R} = [0, 1] \times [0, 1] \) if we can find a map that sends \(\mathcal{R} \) to \(\mathcal{P} \). The following linear map does the job:

\[
G(u, v) = (4u + 3v, u + 3v)
\]

Indeed, \(G(1, 0) = (4, 1) \) and \(G(0, 1) = (3, 3) \), so it maps \(\mathcal{R} \) to \(\mathcal{P} \) because linear maps map parallelograms to parallelograms.
Step 2. Compute the Jacobian.

\[
\text{Jac}(G) = \begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{vmatrix} = \begin{vmatrix}
4 & 3 \\
1 & 3
\end{vmatrix} = 9
\]

Step 3. Express } f(x, y) \text{ in terms of the new variables.

Since } x = 4u + 3v \text{ and } y = u + 3v, \text{ we have }

\[
e^{4x-y} = e^{4(4u+3v)-(u+3v)} = e^{15u+9v}
\]

Step 4. Apply the Change of Variables Formula.

The Change of Variables Formula tells us that

\[
\int_{D} e^{4x-y} \, dx \, dy = \int_{R} e^{15u+9v} |\text{Jac}(G)| \, du \, dv = \int_{0}^{1} \int_{0}^{1} e^{15u+9v} (9 \, du \, dv)
\]

\[
= 9 \left(\int_{0}^{1} e^{15u} \, du \right) \left(\int_{0}^{1} e^{9v} \, dv \right) = \frac{1}{15} (e^{15} - 1)(e^{9} - 1)
\]

Example 7 Use the Change of Variables Formula to compute

\[
\int_{D} (x^2 + y^2) \, dx \, dy
\]

where } D \text{ is the domain } 1 \leq xy \leq 4, 1 \leq y/x \leq 4 \text{ (Figure 11).}

Solution In Example 3, we studied the map } G(u, v) = (uv^{-1}, uv), \text{ which can be written

\[x = uv^{-1}, \quad y = uv\]

We showed (Figure 11) that } G \text{ maps the rectangle } D_0 = [1, 2] \times [1, 2] \text{ to our domain } D. \text{ Indeed, because } xy = u^2 \text{ and } xy^{-1} = v^2, \text{ the two conditions } 1 \leq xy \leq 4 \text{ and } 1 \leq y/x \leq 4 \text{ that define } D \text{ become } 1 \leq u \leq 2 \text{ and } 1 \leq v \leq 2.

The Jacobian is

\[
\text{Jac}(G) = \begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{vmatrix} = \begin{vmatrix}
v^{-1} & -uv^{-2} \\
1 & v
\end{vmatrix} = \frac{2u}{v}
\]

To apply the Change of Variables Formula, we write } f(x, y) \text{ in terms of } u \text{ and } v:

\[
f(x, y) = x^2 + y^2 = \left(\frac{u}{v}\right)^2 + (uv)^2 = u^2(v^{-2} + v^2)
\]
By the Change of Variables Formula,
\[
\int_{D} (x^2 + y^2) \, dx \, dy = \int_{\Delta} u^2 (v^{-2} + v^2) \, \left| \frac{2u}{v} \right| \, du \, dv \\
= 2 \int_{v=1}^{2} \int_{u=1}^{2} u^3 (v^{-3} + v) \, du \, dv \\
= 2 \left(\int_{u=1}^{2} u^3 \, du \right) \left(\int_{v=1}^{2} (v^{-3} + v) \, dv \right) \\
= 2 \left(\frac{1}{4} u^4 \right) \left(-\frac{1}{2} v^{-2} + \frac{1}{2} v^2 \right)_{1}^{2} = \frac{225}{16}.
\]

Keep in mind that the Change of Variables Formula turns an \(xy \)-integral into a \(uv \)-integral, but the map \(G \) goes from the \(uv \)-domain to the \(xy \)-domain. Sometimes, it is easier to find a map \(F \) going in the wrong direction, from the \(xy \)-domain to the \(uv \)-domain. The desired map \(G \) is then the inverse \(G = F^{-1} \). The next example shows that in some cases, we can evaluate the integral without solving for \(G \). The key fact is that the Jacobian of \(F \) is the reciprocal of \(\text{Jac}(G) \) (see Exercises 49–51):

\[
\text{Jac}(G) = \text{Jac}(F)^{-1}, \quad \text{where } F = G^{-1}
\]

Example 8 Using the Inverse Map
Integrate \(f(x, y) = xy(x^2 + y^2) \) over
\[D : -3 \leq x^2 - y^2 \leq 3, \quad 1 \leq xy \leq 4 \]

Solution
There is a simple map \(F \) that goes in the wrong direction. Let \(u = x^2 - y^2 \) and \(v = xy \). Then our domain is defined by the inequalities \(-3 \leq u \leq 3\) and \(1 \leq v \leq 4\), and we can define a map from \(D \) to the rectangle \(\mathcal{R} = [-3, 3] \times [1, 4] \) in the \(uv \)-plane (Figure 12):

\[
F : D \rightarrow \mathcal{R} \\
(x, y) \rightarrow (x^2 - y^2, xy)
\]

To convert the integral over \(D \) into an integral over the rectangle \(\mathcal{R} \), we have to apply the Change of Variables Formula to the inverse mapping:

\(G = F^{-1} : \mathcal{R} \rightarrow D \)

We will see that it is not necessary to find \(G \) explicitly. Since \(u = x^2 - y^2 \) and \(v = xy \), the Jacobian of \(F \) is

\[
\text{Jac}(F) = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 2x & -2y \\ y & x \end{vmatrix} = 2(x^2 + y^2)
\]
By Eq. (14),
\[\text{Jac}(G) = \text{Jac}(F)^{-1} = \frac{1}{2(x^2 + y^2)} \]

Normally, the next step would be to express \(f(x, y) \) in terms of \(u \) and \(v \). We can avoid doing this in our case by observing that the Jacobian cancels with one factor of \(f(x, y) \):
\[
\int_D xy(x^2 + y^2) \, dx \, dy = \int_R f(x(u, v), y(u, v)) |\text{Jac}(G)| \, du \, dv \\
= \frac{1}{2} \int_R xy(x^2 + y^2) \, du \, dv \\
= \frac{1}{2} \int_R xy \, du \, dv \\
= \frac{1}{2} \int_R v \, du \, dv \\
= \frac{1}{2} \int^3_{-3} v \, du \, dv \\
= \frac{1}{2} \left(\int^4_{-4} \left(\frac{1}{2} t^2 - \frac{1}{2} t^2 \right) \right) = \frac{45}{2} \]

Change of Variables in Three Variables

The Change of Variables Formula has the same form in three (or more) variables as in two variables. Let

\[G : W_0 \rightarrow W \]

be a mapping from a three-dimensional region \(W_0 \) in \((u, v, w)\)-space to a region \(W \) in \((x, y, z)\)-space, say,

\[x = x(u, v, w), \quad y = y(u, v, w), \quad z = z(u, v, w) \]

The Jacobian \(\text{Jac}(G) \) is the \(3 \times 3 \) determinant:
\[
\text{Jac}(G) = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{vmatrix}
\]

The Change of Variables Formula states
\[
dx \, dy \, dz = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, du \, dv \, dw
\]

More precisely, if \(G \) is \(C^1 \) and one-to-one on the interior of \(W_0 \), and if \(f \) is continuous, then
\[
\int_W \int_W f(x, y, z) \, dx \, dy \, dz \\
= \int_{W_0} \int_{W_0} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, du \, dv \, dw
\]

In Exercises 42 and 43, you are asked to use the general Change of Variables Formula to derive the formulas for integration in cylindrical and spherical coordinates developed in Section 16.4.
16.6 SUMMARY

- Let \(G(u, v) = (x(u, v), y(u, v)) \) be a mapping. We write \(x = x(u, v) \) or \(x = x(u, v) \) and, similarly, \(y = y(u, v) \) or \(y = y(u, v) \). The Jacobian of \(G \) is the determinant

\[
\text{Jac}(G) = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}.
\]

- \(\text{Jac}(G) = \text{Jac}(F)^{-1} \), where \(F = G^{-1} \).
- Change of Variables Formula: If \(G : \mathcal{D} \to \mathcal{D} \) has component functions with continuous partial derivatives and one-to-one on the interior of \(\mathcal{D} \), and if \(f \) is continuous, then

\[
\int \int_{\mathcal{D}} f(x, y) \, dx \, dy = \int \int_{\mathcal{D}} f(x(u, v), y(u, v)) \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv
\]

- The Change of Variables Formula is written symbolically in two and three variables as

\[
dx \, dy = \left| \frac{\partial(x, y)}{\partial(u, v)} \right| \, du \, dv, \quad dx \, dy \, dz = \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| \, du \, dv \, dw
\]

16.6 EXERCISES

Preliminary Questions

1. Which of the following maps is linear?
 (a) \((uv, v)\) \quad (b) \((u + v, u)\) \quad (c) \((3, e^u)\)

2. Suppose that \(G \) is a linear map such that \(G(2, 0) = (4, 0) \) and \(G(0, 3) = (-3, 9) \). Find the images of:
 (a) \(G(1, 0) \) \quad (b) \(G(1, 1) \) \quad (c) \(G(2, 1) \)

Exercises

1. Determine the image under \(G(u, v) = (2u, u + v) \) of the following sets:
 (a) The \(u \)- and \(v \)-axes
 (b) The rectangle \(\mathcal{R} = [0, 5] \times [0, 7] \)
 (c) The line segment joining \((1, 2)\) and \((5, 3)\)
 (d) The triangle with vertices \((0, 1), (1, 0), \) and \((1, 1)\)

2. Describe [in the form \(y = f(x) \)] the images of the lines \(u = c \) and \(v = c \) under the mapping \(G(u, v) = (u/v, u^2 - v^2) \).

3. Let \(G(u, v) = (u^2, v) \). Is \(G \) one-to-one? If not, determine a domain on which \(G \) is one-to-one. Find the image under \(G \) of:
 (a) The \(u \)- and \(v \)-axes
 (b) The rectangle \(\mathcal{R} = [-1, 1] \times [-1, 1] \)
 (c) The line segment joining \((0, 0)\) and \((1, 1)\)
 (d) The triangle with vertices \((0, 0), (0, 1), \) and \((1, 1)\)

4. Let \(G(u, v) = (e^u, e^{u+v}) \).
 (a) Is \(G \) one-to-one? What is the image of \(G \)?
 (b) Describe the images of the vertical lines \(u = c \) and the horizontal lines \(v = c \).

In Exercises 5–12, let \(G(u, v) = (2u + v, 5u + 3v) \) be a map from the \(uv \)-plane to the \(xy \)-plane.

5. Show that the image of the horizontal line \(v = c \) is the line \(y = \frac{5}{2}x + \frac{1}{2}c \). What is the image (in slope-intercept form) of the vertical line \(u = c \)?

6. Describe the image of the line through the points \((u, v) = (1, 1)\) and \((u, v) = (1, -1)\) under \(G \) in slope-intercept form.

7. Describe the image of the line \(v = 4u \) under \(G \) in slope-intercept form.

8. Show that \(G \) maps the line \(v = mu \) to the line of slope \((5 + 3m)/(2 + m)\) through the origin in the \(xy \)-plane.

9. Show that the inverse of \(G \) is

\[
G^{-1}(x, y) = (3x - y, -5x + 2y)
\]

Hint: Show that \(G(G^{-1}(x, y)) = (x, y) \) and \(G^{-1}(G(u, v)) = (u, v) \).

10. Use the inverse in Exercise 9 to find:
 (a) A point in the \(uv \)-plane mapping to \((2, 1)\)
 (b) A segment in the \(uv \)-plane mapping to the segment joining \((-2, 1)\) and \((3, 4)\)

11. Calculate \(\text{Jac}(G) = \frac{\partial(x, y)}{\partial(u, v)} \).

12. Calculate \(\text{Jac}(G^{-1}) = \frac{\partial(u, v)}{\partial(x, y)} \).

In Exercises 13–18, compute the Jacobian (at the point, if indicated).

13. \(G(u, v) = (3u + 4v, u - 2v) \)

14. \(G(r, s) = (rs, r + s) \)
15. \(G(r, t) = (r \sin t, r - \cos t) \), \((r, t) = (1, \pi) \)
16. \(G(u, v) = (v \ln u, u^2 v^{-1}) \), \((u, v) = (1, 2) \)
17. \(G(r, \theta) = (r \cos \theta, r \sin \theta) \), \((r, \theta) = (4, \frac{\pi}{3}) \)
18. \(G(u, v) = (ue^v, e^u) \)

19. Find a linear mapping \(G \) that maps \([0, 1] \times [0, 1] \) to the parallelogram in the \(xy \)-plane spanned by the vectors \((2, 3) \) and \((4, 1) \).
20. Find a linear mapping \(G \) that maps \([0, 1] \times [0, 1] \) to the parallelogram in the \(xy \)-plane spanned by the vectors \((-2, 5) \) and \((1, 7) \).
21. Let \(D \) be the parallelogram in Figure 13. Apply the Change of Variables Formula to the map \(G(u, v) = (5u + 3v, u + 4v) \) to evaluate \(\int \int_D xy \, dx \, dy \) as an integral over \(D_0 = [0, 1] \times [0, 1] \).

22. Let \(G(u, v) = (u - uv, u v) \).
 (a) Show that the image of the horizontal line \(v = c \) is \(y = \frac{c}{1 - c} x \) if \(c \neq 1 \), and is the \(y \)-axis if \(c = 1 \).
 (b) Determine the images of vertical lines in the \(uv \)-plane.
 (c) Compute the Jacobian of \(G \).
 (d) Observe that by the formula for the area of a triangle, the region \(D \) in Figure 14 has area \(\frac{1}{2} (b^2 - a^2) \). Compute this area again, using the Change of Variables Formula applied to \(G \).
 (e) Calculate \(\int \int_D xy \, dx \, dy \).

23. Let \(G(u, v) = (3u + v, u - 2v) \). Use the Jacobian to determine the area of \(G(D) \) for:
 (a) \(D = [0, 3] \times [0, 5] \)
 (b) \(D = [2, 5] \times [1, 7] \)
24. Find a linear map \(T \) that maps \([0, 1] \times [0, 1] \) to the parallelogram \(P \) in the \(xy \)-plane with vertices \((0, 0), (2, 2), (1, 4), (3, 6) \). Then calculate the double integral of \(e^{x+y} \) over \(P \) via change of variables.
25. With \(G \) as in Example 3, use the Change of Variables Formula to compute the area of the image of \([1, 4] \times [1, 4] \).

In Exercises 26–28, let \(R_0 = [0, 1] \times [0, 1] \) be the unit square. The translate of a map \(G_0(u, v) = (\phi(u, v), \psi(u, v)) \) is a map
\(G_0(u, v) = (a + \phi(u, v), b + \psi(u, v)) \)
where \(a, b \) are constants. Observe that the map \(G_0 \) in Figure 15 maps \(R_0 \) to the parallelogram \(P_0 \) and that the translate
\(G_1(u, v) = (2 + 4u + 2v, 1 + u + 3v) \)
maps \(R_0 \) to \(P_1 \).
26. Find translates \(G_2 \) and \(G_3 \) of the mapping \(G_0 \) in Figure 15 that map the unit square \(R_0 \) to the parallelograms \(P_2 \) and \(P_3 \).
27. Sketch the parallelogram \(P \) with vertices \((1, 1), (2, 4), (3, 6), (4, 9) \) and find the translate of a linear mapping that maps \(R_0 \) to \(P \).
28. Find the translate of a linear mapping that maps \(R_0 \) to the parallelogram spanned by the vectors \((3, 9) \) and \((-4, 6) \) based at \((4, 2) \).

29. Let \(D = G(R) \), where \(G(u, v) = (u^2, u + v) \) and \(R = [1, 2] \times [0, 6] \). Calculate \(\int \int_D y \, dx \, dy \). Note: It is not necessary to describe \(D \).
30. Let \(D \) be the image of \(R = [1, 4] \times [1, 4] \) under the map \(G(u, v) = (u^2/v, v^2/u) \).
 (a) Compute \(\text{Jac}(G) \).
 (b) Sketch \(D \).
 (c) Use the Change of Variables Formula to compute \(\text{Area}(D) \) and \(\int \int_D f(x, y) \, dx \, dy \), where \(f(x, y) = x + y \).
31. Compute \(\int \int_D (x + 3y) \, dx \, dy \), where \(D \) is the shaded region in Figure 16. Hint: Use the map \(G(u, v) = (u - 2v, v) \).

FIGURE 13

FIGURE 14

FIGURE 15

FIGURE 16
32. Use the map \(G(u, v) = \left(\frac{u}{v}, \frac{uv}{v+1} \right) \) to compute
\[
\iint_D (x + y) \, dx \, dy
\]
where \(D \) is the shaded region in Figure 17.

33. Show that \(T(u, v) = \left(u^2 - v^2, 2uv \right) \) maps the triangle \(\mathcal{D}_0 = \{(u, v) : 0 \leq v \leq u \leq 1\} \) to the domain \(\mathcal{D} \) bounded by \(x = 0, \, y = 0, \) and \(y^2 = 4 - 4x \). Use \(T \) to evaluate
\[
\iint_D \sqrt{x^2 + y^2} \, dx \, dy
\]

34. Find a mapping \(G \) that maps the disk \(x^2 + y^2 \leq 1 \) onto the interior of the ellipse \(\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 \leq 1 \). Then use the Change of Variables Formula to prove that the area of the ellipse is \(\pi ab \).

35. Calculate \(\iint_D e^{9x^2+4y^2} \, dx \, dy \), where \(D \) is the interior of the ellipse \(\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 \leq 1 \).

36. Compute the area of the region enclosed by the ellipse \(x^2 + 2xy + 2y^2 - 4y = 8 \) as an integral in the variables \(u = x + y, \, v = y - 2 \).

37. Sketch the domain \(D \) bounded by \(y = x^2, \, y = \frac{1}{3}x^2, \) and \(y = x \). Use a change of variables with the map \(x = uv, \, y = u^2 \) to calculate
\[
\iint_D y^{-1} \, dx \, dy
\]
This is an improper integral since \(f(x, y) = y^{-1} \) is undefined at \((0, 0) \), but it becomes proper after changing variables.

38. Find an appropriate change of variables to evaluate
\[
\iint_R (x + y)^2 e^{x^2-y^2} \, dx \, dy
\]
where \(R \) is the square with vertices \((1, 0), (0, 1), (-1, 0), (0, -1) \).

39. Let \(G \) be the inverse of the map \(F(x, y) = (xy, x^2y) \) from the \(xy \)-plane to the \(uv \)-plane. Let \(D \) be the domain in Figure 18. Show, by applying the Change of Variables Formula to the inverse \(G = F^{-1} \), that
\[
\iint_D e^{xy} \, dx \, dy = \int_{10}^{20} \int_{20}^{40} e^{uv} \, dv \, du
\]
and evaluate this result. \(\text{Hint: See Example 8.} \)

40. Sketch the domain
\[
\mathcal{D} = \{(x, y) : 1 \leq x + y \leq 4, \,-4 \leq y - 2x \leq 1\}
\]
(a) Let \(F \) be the map \(u = x + y, \, v = y - 2x \) from the \(xy \)-plane to the \(uv \)-plane, and let \(G \) be its inverse. Use Eq. (14) to compute \(\text{Jac}(G) \).

(b) Compute \(\iint_D e^{x+y} \, dx \, dy \) using the Change of Variables Formula with the map \(G \). \(\text{Hint: It is not necessary to solve for } G \) explicitly.

41. Let \(I = \iint_D (x^2 - y^2) \, dx \, dy \), where
\[
\mathcal{D} = \{(x, y) : 2 \leq xy \leq 4, \, 0 \leq x - y \leq 3, \, x \geq 0, \, y \geq 0\}
\]
(a) Show that the mapping \(u = xy, \, v = x - y \) maps \(\mathcal{D} \) to the rectangle \(\mathcal{R} = [2, 4] \times [0, 3] \).

(b) Compute \(\partial(x, y) / \partial(u, v) \) by first computing \(\partial(u, v) / \partial(x, y) \).

(c) Use the Change of Variables Formula to show that \(I \) is equal to the integral of \(f(u, v) \) over \(\mathcal{R} \) and evaluate.

42. Derive formula (5) in Section 16.4 for integration in cylindrical coordinates from the general Change of Variables Formula.

43. Derive formula (8) in Section 16.4 for integration in spherical coordinates from the general Change of Variables Formula.

44. Use the Change of Variables Formula in three variables to prove that the volume of the ellipsoid \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{z}{c} \right)^2 = 1 \) is equal to \(abc \) times the volume of the unit sphere.

45. Use the map
\[
x = \sin u \cos v, \quad y = \sin v \cos u
\]
to evaluate the integral
\[
\int_0^1 \int_0^1 (x + y) \, dx \, dy
\]
This is an improper integral since the integrand is infinite if \(x = \pm 1, \, y = \pm 1 \), but applying the Change of Variables Formula shows that the result is finite.

46. Verify properties (1) and (2) for linear functions and show that any map satisfying these two properties is linear.

47. Let \(P \) and \(Q \) be points in \(\mathbb{R}^2 \). Show that a linear map \(G(u, v) = (Au + Cv, Bu + Dv) \) maps the segment joining \(P \) and \(Q \) to the segment joining \(G(P) \) to \(G(Q) \). \(\text{Hint: The segment joining } P \) and \(Q \) has parametrization
\[
(1 - t)\overrightarrow{P} + t\overrightarrow{Q} \quad \text{for} \quad 0 \leq t \leq 1
\]

48. Let \(G \) be a linear map. Prove Eq. (6) in the following steps.
(a) For any set \(\mathcal{D} \) in the \(uv \)-plane and any vector \(\mathbf{u} \), let \(\mathcal{D} + \mathbf{u} \) be the set obtained by translating all points in \(\mathcal{D} \) by \(\mathbf{u} \). By linearity, \(G \) maps \(\mathcal{D} + \mathbf{u} \)
to the translate $G(D) + G(u)$ [Figure 19(C)]. Therefore, if Eq. (6) holds for D, it also holds for $D + u$.

(b) In the text, we verified Eq. (6) for the unit rectangle. Use linearity to show that Eq. (6) also holds for all rectangles with vertex at the origin and sides parallel to the axes. Then argue that it also holds for each triangular half of such a rectangle, as in Figure 19(A).

(e) Figure 19(B) shows that the area of a parallelogram is a difference of the areas of rectangles and triangles covered by steps (a) and (b). Use this to prove Eq. (6) for arbitrary parallelograms.

CHAPTER REVIEW EXERCISES

1. Calculate the Riemann sum $S_{2,3}$ for $\int_1^2 \int_2^6 x^2 y \, dx \, dy$ using two choices of sample points:
 (a) Lower-left vertex
 (b) Midpoint of rectangle

Then calculate the exact value of the double integral.

2. Let $S_{N,N}$ be the Riemann sum for $\int_0^1 \int_0^1 \cos(xy) \, dx \, dy$ using midpoints as sample points.
 (a) Calculate $S_{4,4}$.
 (b) CAS Use a computer algebra system to calculate $S_{N,N}$ for $N = 10, 50, 100$.

3. Let D be the shaded domain in Figure 1.

Estimate $\int_D xy \, dA$ by the Riemann sum whose sample points are the midpoints of the squares in the grid.

4. Explain the following:
 (a) $\int_{-1}^{1} \int_{-1}^{1} \sin(xy) \, dx \, dy = 0$
 (b) $\int_{-1}^{1} \int_{-1}^{1} \cos(xy) \, dx \, dy > 0$

In Exercises 5–8, evaluate the iterated integral.

5. $\int_0^2 \int_0^5 y(x - y) \, dx \, dy$

6. $\int_0^{\pi/6} \int_0^{\pi/6} \sin(3x) \, dx \, dy$

7. $\int_0^{\pi/3} \int_0^{\pi/3} \sin(x + y) \, dx \, dy$

8. $\int_1^2 \int_1^2 \frac{y \, dx \, dy}{x + y^2}$

In Exercises 9–14, sketch the domain D and calculate $\int_D f(x, y) \, dA$.

9. $D = \{0 \leq x \leq 4, \ 0 \leq y \leq x\}$, $f(x, y) = \cos y$

10. $D = \{0 \leq x \leq 2, \ 0 \leq y \leq 2x - x^2\}$, $f(x, y) = \sqrt{x}$

11. $D = \{0 \leq x \leq 1, \ 1 - x \leq y \leq 2 - x\}$, $f(x, y) = e^{x+2y}$

12. $D = \{1 \leq x \leq 2, \ 0 \leq y \leq 1/x\}$, $f(x, y) = \cos(3y)$

13. $D = \{0 \leq y \leq 1, \ 0.5y^2 \leq x \leq y^2\}$, $f(x, y) = ye^{x+y}$

14. $D = \{1 \leq y \leq e, \ 0 \leq x \leq 2\}$, $f(x, y) = \ln(x + y)$

49. The product of 2×2 matrices A and B is the matrix AB defined by

$$AB = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + db' & cb' + dd' \end{pmatrix}$$

The (i, j)-entry of A is the dot product of the ith row of A and the jth column of B. Prove that $\det(AB) = \det(A) \det(B)$.

50. Let $G_1 : D_1 \to D_2$ and $G_2 : D_2 \to D_3$ be C^1 maps, and let $G_2 \circ G_1 : D_1 \to D_3$ be the composite map. Use the Multivariable Chain Rule and Exercise 49 to show that

$$\text{Jac}(G_2 \circ G_1) = \text{Jac}(G_2) \text{Jac}(G_1)$$

51. Use Exercise 50 to prove that

$$\text{Jac}(G^{-1}) = \frac{1}{\text{Jac}(G)}$$

Hint: Verify that $\text{Jac}(I) = 1$, where I is the identity map $I(u, v) = (u, v)$.

52. Let $(\overline{x}, \overline{y})$ be the centroid of a domain D. For $\lambda > 0$, let λD be the dilation of D, defined by

$$\lambda D = \{(\lambda x, \lambda y) \in D \}$$

Use the Change of Variables Formula to prove that the centroid of λD is $(\lambda \overline{x}, \lambda \overline{y})$.

15. Express \(\int_{-3}^{3} \int_{0}^{9-x^2} f(x, y) \, dy \, dx \) as an iterated integral in the order \(dx \, dy \).

16. Let \(W \) be the region bounded by the planes \(y = z, \, 2y + z = 3, \) and \(z = 0 \) for \(0 \leq x \leq 4 \).
 (a) Express the triple integral \(\iiint_W f(x, y, z) \, dV \) as an iterated integral in the order \(dy \, dx \, dz \) (project \(W \) onto the \(xz \)-plane).
 (b) Evaluate the triple integral for \(f(x, y, z) = 1 \).
 (c) Compute the volume of \(W \) using geometry and check that the result coincides with the answer to (b).

17. Let \(D \) be the domain between \(y = x \) and \(y = \sqrt{x} \). Calculate \(\iint_D xy \, dA \) as an iterated integral in the order \(dx \, dy \) and \(dy \, dx \).

18. Find the double integral of \(f(x, y) = x^3y \) over the region between the curves \(y = x \) and \(y = x(1 - x) \).

19. Change the order of integration and evaluate \(\int_0^9 \int_{\sqrt{y}}^{y} \frac{x}{(x^2 + y)^{1/2}} \, dx \, dy \).

20. Verify directly that
\[
\int_2^3 \int_0^2 \frac{dy \, dx}{1 + x - y} = \int_2^3 \int_0^2 \frac{dx \, dy}{1 + x - y}
\]

21. Prove the formula
\[
\int_0^1 \int_0^y f(x) \, dx \, dy = \int_0^1 (1 - y) f(x) \, dx
\]
Then use it to calculate \(\int_0^1 \int_0^y \sin \frac{x}{1 - y} \, dx \, dy \).

22. Rewrite \(\int_0^1 \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} y \, dx \, dy \) by interchanging the order of integration, and evaluate.

23. Use cylindrical coordinates to compute the volume of the region defined by \(4 - x^2 - y^2 \leq z \leq 10 - 4x^2 - 4y^2 \).

24. Evaluate \(\iiint_D x \, dA \), where \(D \) is the shaded domain in Figure 2.

25. Find the volume of the region between the graph of the function \(f(x, y) = 1 - (x^2 + y^2) \) and the \(xy \)-plane.

26. Evaluate \(\iiint_B (x^3 + y^2 + z) \, dx \, dy \, dz \), where
\(B = \{0 \leq x \leq 2, \, 0 \leq y \leq 1, \, 1 \leq z \leq 3\} \)
as an iterated integral in two different ways.

27. Calculate \(\iiint_W (xy + z) \, dV \), where
\(W = \{0 \leq x \leq 1, \, x \leq y \leq 1, \, x \leq z \leq x + y\} \)
as an iterated integral in two different ways.

28. Calculate \(\iiint_W xyz \, dV \), where
\(W = \{0 \leq x \leq 1, \, x \leq y \leq 1, \, x \leq z \leq x + y\} \)
as an iterated integral in two different ways.

29. Evaluate \(I = \int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{(x+y+z)} f(x, y, z) \, dz \, dy \, dx \).

30. Describe a region whose volume is equal to:
 (a) \(\int_0^{2\pi} \int_0^{\pi/2} \int_0^9 \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \)
 (b) \(\int_0^{\pi/3} \int_0^{\pi/2} \int_2^1 r \, dr \, d\theta \, dz \)
 (c) \(\int_0^{2\pi} \int_0^3 \int_0^\rho \rho \, d\rho \, d\phi \, dr \)

31. Find the volume of the solid contained in the cylinder \(x^2 + y^2 = 1 \) below the surface \(z = (x+y)^2 \) and above the surface \(z = -(x-y)^2 \).

32. Use polar coordinates to evaluate \(\iiint_D x \, dA \), where \(D \) is the shaded region between the two circles of radius 1 in Figure 3.

33. Use polar coordinates to calculate \(\iiint_D \sqrt{x^2 + y^2} \, dA \), where \(D \) is the region in the first quadrant bounded by the spiral \(r = \theta \), the circle \(r = 1 \), and the \(x \)-axis.

34. Calculate \(\iiint_D \sin(x^2 + y^2) \, dA \), where
\(D = \left\{ \frac{\pi}{2} \leq x^2 + y^2 \leq \pi \right\} \)

35. Express in cylindrical coordinates and evaluate:
\(\int_0^1 \int_{\sqrt{1-x^2}}^{\sqrt{1-x^2}} x \, dz \, dy \)

36. Use spherical coordinates to calculate the triple integral of \(f(x, y, z) = x^2 + y^2 + z^2 \) over the region
\(1 \leq x^2 + y^2 + z^2 \leq 4 \)

37. Convert to spherical coordinates and evaluate:
\(\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{\sqrt[3]{4-x^2-y^2}}^{\sqrt[3]{4-x^2-y^2}} e^{-(x^2+y^2+z^2)} \, dz \, dy \, dx \)

38. Find the average value of \(f(x, y, z) = x y^2 z^3 \) on the box \([0, 1] \times [0, 2] \times [0, 3] \).

39. Let \(W \) be the ball of radius \(R \) in \(\mathbb{R}^3 \) centered at the origin, and let \(P = (0, 0, R) \) be the North Pole. Let \(d_P(x, y, z) \) be the distance from \(P \) to \((x, y, z) \). Show that the average value of \(d_P \) over the sphere \(W \) is equal to \(\frac{6R}{5} \). Hint: Show that
\(\overline{d} = \frac{1}{\frac{4}{3} \pi R^3} \int_0^{2\pi} \int_0^{\pi} \int_0^R \rho^2 \sin \phi \sqrt{R^2 + \rho^2 - 2\rho R \cos \phi} \, d\rho \, d\phi \, d\theta \)
and evaluate.
40. Express the average value of \(f(x, y) = e^{3y} \) over the ellipse \(\frac{x^2}{2} + y^2 = 1 \) as an iterated integral, and evaluate numerically using a computer algebra system.

41. Use cylindrical coordinates to find the mass of the solid bounded by \(z = 8 - x^2 - y^2 \) and \(z = x^2 + y^2 \), assuming a mass density of \(f(x, y, z) = (x^2 + y^2)^{1/2} \).

42. Let \(W \) be the portion of the half-cylinder \(x^2 + y^2 \leq 4, x \geq 0 \) such that \(0 \leq z \leq 3 \). Use cylindrical coordinates to compute the mass of \(W \) if the mass density is \(\rho(x, y, z) = z^2 \).

43. Use cylindrical coordinates to find the mass of a cylinder of radius 4 and height 10 if the mass density at a point is equal to the square of the distance from the cylinder’s central axis.

44. Find the centroid of the region \(W \) bounded, in spherical coordinates, by \(\phi = \phi_0 \) and the sphere \(\rho = R \).

45. Find the centroid of the solid bounded by the \(xy \)-plane, the cylinder \(x^2 + y^2 = R^2 \), and the plane \(x/R + z/H = 1 \).

46. Using cylindrical coordinates, prove that the centroid of a right circular cone of height \(h \) and radius \(R \) is located at height \(\frac{b}{4} \) on the central axis.

47. Find the centroid of solid (A) in Figure 4 defined by \(x^2 + y^2 \leq R^2 \), \(0 \leq z \leq H \), and \(\frac{\pi}{6} \leq \theta \leq 2\pi \), where \(\theta \) is the polar angle of \((x, y)\).

48. Calculate the coordinate \(y_{CM} \) of the centroid of solid (B) in Figure 4 defined by \(x^2 + y^2 \leq 1 \) and \(0 \leq z \leq \frac{1}{2}y + \frac{1}{2} \).

49. Find the center of mass of the cylinder \(x^2 + y^2 = 1 \) for \(0 \leq z \leq 1 \), assuming a mass density of \(\delta(x, y, z) = z \).

50. Find the center of mass of the sector of central angle \(2\theta_0 \) (symmetric with respect to the \(y \)-axis) in Figure 5, assuming that the mass density is \(\delta(x, y) = x^2 \).

51. Find the center of mass of the first octant of the ball \(x^2 + y^2 + z^2 = 1 \), assuming a mass density of \(\rho(x, y, z) = x \).

52. Find a constant \(C \) such that
 \[
 p(x, y) = \begin{cases}
 C(4x - y + 3) & \text{if } 0 \leq x \leq 2 \text{ and } 0 \leq y \leq 3 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 is a probability distribution and calculate \(P(X \leq 1; Y \leq 2) \).

53. Calculate \(P(3X + 2Y \geq 6) \) for the probability density in Exercise 52.

54. The lifetimes \(X \) and \(Y \) (in years) of two machine components have joint probability density
 \[
 p(x, y) = \begin{cases}
 6 \exp(5 - x - y) & \text{if } 0 \leq x \leq 5 - y \text{ and } 0 \leq y \leq 5 \\
 0 & \text{otherwise}
 \end{cases}
 \]
 Find the probability that \(X \leq Y \).

55. An insurance company issues two kinds of policies: \(A \) and \(B \). Let \(X \) be the time until the next claim of type \(A \) is filed, and let \(Y \) be the time (in days) until the next claim of type \(B \) is filed. The random variables have joint probability density
 \[
 p(x, y) = 12e^{-4x-3y}
 \]
 What is the probability that both components are still functioning after 2 years?

56. Compute the Jacobian of the map
 \[
 G(r, s) = (e^s \cosh(s), e^s \sinh(s))
 \]

57. Find a linear mapping \(G(u, v) \) that maps the unit square to the parallelogram in the \(xy \)-plane spanned by the vectors \((3, -1)\) and \((1, 4)\). Then use the Jacobian to find the area of the image of the rectangle \(R = [0, 4] \times [0, 3] \) under \(G \).

58. Use the map
 \[
 G(u, v) = \left(\frac{u + v}{2}, \frac{u - v}{2} \right)
 \]
 to compute \(\int_R (x - y) \sin(x + y) \, dx \, dy \), where \(R \) is the square with vertices \((\pi, 0), (2\pi, \pi), (\pi, 2\pi), \) and \((0, \pi)\).

59. Let \(D \) be the shaded region in Figure 6, and let \(F \) be the map
 \[
 u = y + x^2, \quad v = y - x^3
 \]
 (a) Show that \(F \) maps \(D \) to a rectangle \(R \) in the \(uv \)-plane.
 (b) Apply Eq. (7) in Section 16.6 with \(P = (1, 7) \) to estimate \(\text{Area}(\bar{D}) \).
60. Calculate the integral of \(f(x, y) = e^{3x - 2y} \) over the parallelogram in Figure 7.

![Diagram](image)

61. Sketch the region \(D \) bounded by the curves \(y = 2/x, y = 1/(2x), y = 2x, y = x/2 \) in the first quadrant. Let \(F \) be the map \(u = xy, v = y/x \) from the \(xy \)-plane to the \(uv \)-plane.

(a) Find the image of \(D \) under \(F \).

(b) Let \(G = F^{-1} \). Show that \(|\text{Jac}(G)| = \frac{1}{2|v|} \).

(c) Apply the Change of Variables Formula to prove the formula
\[
\int \int_D f\left(\frac{y}{x}\right) \, dx \, dy = \frac{3}{4} \int_{1/2}^{2} f(v) \, dv.
\]

(d) Apply (c) to evaluate \(\int \int_D \frac{y e^{y/x}}{x} \, dx \, dy \).
17 LINE AND SURFACE INTEGRALS

In the previous chapter, we generalized integration from one variable to several variables. In this chapter, we generalize still further to include integration over curves and surfaces, and we will integrate not just functions but also vector fields. Integrals of vector fields are used in the study of phenomena such as electromagnetism, fluid dynamics, and heat transfer. To lay the groundwork, the chapter begins with a discussion of vector fields.

17.1 Vector Fields

How can we describe a physical object such as the wind, which consists of a large number of molecules moving in a region of space? What we need is a new type of function called a vector field. In this case, a vector field \(\mathbf{F} \) assigns to each point \(P = (x, y, z) \) a vector \(\mathbf{F}(x, y, z) \) that represents the velocity (speed and direction) of the wind at that point (Figure 1). Another velocity field is shown in Figure 2. However, vector fields describe many other types of quantities, such as forces, and electric and magnetic fields.

Mathematically, a vector field in \(\mathbb{R}^3 \) is represented by a vector whose components are functions:

\[
\mathbf{F}(x, y, z) = (F_1(x, y, z), F_2(x, y, z), F_3(x, y, z))
\]

To each point \(P = (a, b, c) \) is associated the vector \(\mathbf{F}(a, b, c) \), which we also denote by \(\mathbf{F}(P) \). Alternatively,

\[
\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k}
\]

When drawing a vector field, we draw \(\mathbf{F}(P) \) as a vector based at \(P \) (rather than the origin). The domain of \(\mathbf{F} \) is the set of points \(P \) for which \(\mathbf{F}(P) \) is defined. Vector fields in the plane are written in a similar fashion:

\[
\mathbf{F}(x, y) = (F_1(x, y), F_2(x, y)) = F_1 \mathbf{i} + F_2 \mathbf{j}
\]

Throughout this chapter, we assume that the component functions \(F_j \) are smooth—that is, they have partial derivatives of all orders on their domains.
EXAMPLE 1 Which vector corresponds to the point \(P = (2, 4, 2) \) for the vector field \(\mathbf{F}(x, y, z) = (y - z, x, z - \sqrt{y}) \)?

Solution The vector attached to \(P \) is
\[
\mathbf{F}(2, 4, 2) = \left(4 - 2, 2, 2 - \sqrt{4} \right) = (2, 2, 0)
\]
This is the red vector in Figure 3.

Although it is not practical to sketch complicated vector fields in three dimensions by hand, computer algebra systems can produce useful visual representations (Figure 4). The vector field in Figure 4(B) is an example of a constant vector field. It assigns the same vector \(\langle 1, -1, 3 \rangle \) to every point in \(\mathbb{R}^3 \).

EXAMPLE 2 Describe the following vector fields:
(a) \(\mathbf{G} = \mathbf{i} + x \mathbf{j} \)
(b) \(\mathbf{F} = \langle -y, x \rangle \)

Solution (a) The vector field \(\mathbf{G} = \mathbf{i} + x \mathbf{j} \) assigns the vector \(\langle 1, a \rangle \) to the point \((a, b) \). In particular, it assigns the same vector to all points with the same \(x \)-coordinate [Figure 5(A)]. Notice that \(\langle 1, a \rangle \) has slope \(a \) and length \(\sqrt{1 + a^2} \). We may describe \(\mathbf{G} \) as follows: \(\mathbf{G} \) assigns a vector of slope \(a \) and length \(\sqrt{1 + a^2} \) to all points with \(x = a \).
(b) To visualize \(\mathbf{F} \), observe that \(\mathbf{F}(a, b) = \langle -b, a \rangle \) has length \(r = \sqrt{a^2 + b^2} \). It is perpendicular to the radial vector \(\langle a, b \rangle \) and points counterclockwise. Thus, \(\mathbf{F} \) has the following description: The vectors along the circle of radius \(r \) all have length \(r \) and they are tangent to the circle, pointing counterclockwise [Figure 5(B)].

A unit vector field is a vector field \(\mathbf{F} \) such that \(\| \mathbf{F}(P) \| = 1 \) for all points \(P \). A vector field \(\mathbf{F} \) is called a radial vector field if \(\mathbf{F}(P) \) depends only on the distance \(r \) from \(P \) to the origin and is parallel to \(\overrightarrow{OP} \). Here, we use the notation \(r = (x^2 + y^2)^{1/2} \) for \(n = 2 \).
and \(r = (x^2 + y^2 + z^2)^{1/2} \) for \(n = 3 \). Two important examples are the unit radial vector fields in two and three dimensions [Figures 6(A) and (B)]:

1. \(\mathbf{e}_r = \left(\frac{x}{r}, \frac{y}{r} \right) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle \)

2. \(\mathbf{e}_r = \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right) = \left\langle \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\rangle \)

Observe that \(\mathbf{e}_r(P) \) is a unit vector pointing away from the origin at \(P \). Note, however, that \(\mathbf{e}_r \) is not defined at the origin where \(r = 0 \).

Operations on Vector Fields

There are several operations that can be applied to a vector field that are particularly useful in a variety of contexts. The first is the **divergence** of a vector field \(\mathbf{F} = (F_1, F_2, F_3) \), defined by

\[
\text{div}(\mathbf{F}) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}
\]

We often write the divergence as a symbolic dot product of the so-called *del* operator (also called “nabla”) given by

\[
\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right\rangle
\]

and the vector field \(\mathbf{F} \):

\[
\nabla \cdot \mathbf{F} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \cdot (F_1, F_2, F_3) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}
\]

Note that rather than outputting a vector, \(\text{div}(\mathbf{F}) \) is a scalar function. Divergence obeys the **linearity** rules:

\[
\text{div}(\mathbf{F} + \mathbf{G}) = \text{div}(\mathbf{F}) + \text{div}(\mathbf{G})
\]

\[
\text{div}(c\mathbf{F}) = c \text{div}(\mathbf{F}) \quad (c \text{ any constant})
\]

In Section 18.3, we will consider what the divergence tells us about a vector field.

Example 3 Evaluate the divergence of \(\mathbf{F} = (e^{xy}, xy, z^4) \) at \(P = (1, 0, 2) \).

Solution

\[
\text{div}(\mathbf{F}) = \frac{\partial}{\partial x} e^{xy} + \frac{\partial}{\partial y} xy + \frac{\partial}{\partial z} z^4 = ye^{xy} + x + 4z^3
\]

\[
\text{div}(\mathbf{F})(P) = \text{div}(\mathbf{F})(1, 0, 2) = 0 \cdot e^0 + 1 + 4 \cdot 2^3 = 33
\]
Although we will wait until Section 18.3 for the tools to justify this interpretation, we give here a physical significance for divergence. Consider a gas with velocity vector field given by \(\mathbf{F} \). When \(\text{div}(\mathbf{F}) > 0 \) at a point \(P \), an outflow of gas occurs near this point. In other words, the gas is expanding around the point, as might occur when the gas is heated. When \(\text{div}(\mathbf{F}) < 0 \) at a point \(P \), the gas is compressing toward \(P \), as might occur when the gas is cooled. When \(\text{div}(\mathbf{F}) = 0 \), the gas is neither compressing nor expanding near \(P \).

For example, the vector field \(\mathbf{F} = \langle x, y, z \rangle \), appearing as in Figure 7(A), has \(\text{div}(\mathbf{F}) = 3 \) everywhere. Thinking of this as the velocity vector field for a gas, at every point, the gas is expanding. This is most obvious at the origin, but even at other points, the gas is expanding in the sense that more gas atoms are moving away from any given point than are moving toward it. We say that each of these points is a source.

For the vector field \(\mathbf{F} = \langle -x, -y, -z \rangle \) appearing in Figure 7(B), the divergence is given by \(\text{div}(\mathbf{F}) = -3 \) for all points \(P \) and the gas is compressing at every point. We say that every point is a sink.

For the vector field \(\mathbf{F} = \langle 0, 1, 0 \rangle \), appearing in Figure 7(C), the divergence is given by \(\text{div}(\mathbf{F}) = 0 \). The gas is neither expanding nor compressing at any point. Rather, it is simply shifting to the right. In this case, no points are sources or sinks and we say that the vector field is incompressible. For other vector fields, there can be points that are sources, points that are sinks, and points that are neither.

![FIGURE 7](image)

The second operation we consider on a vector field produces another vector field. The curl of the vector field \(\mathbf{F} = (F_1, F_2, F_3) \) is the vector field defined by the symbolic determinant

\[
\text{curl}(\mathbf{F}) = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_1 & F_2 & F_3
\end{vmatrix}
\]

\[
= \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \mathbf{i} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}
\]

In more compact form, the curl is the symbolic cross product

\[
\text{curl}(\mathbf{F}) = \nabla \times \mathbf{F}
\]

where \(\nabla \) is again the del "operator" \(\nabla = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z} \right) \). In terms of components, \(\text{curl}(\mathbf{F}) \) is the vector field

\[
\text{curl}(\mathbf{F}) = \left\{ \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial z}, \frac{\partial F_1}{\partial y} - \frac{\partial F_3}{\partial x} \right\}
\]

It is straightforward to check that curl also obeys the linearity rules:

\[
\text{curl}(\mathbf{F} + \mathbf{G}) = \text{curl}(\mathbf{F}) + \text{curl}(\mathbf{G})
\]

\[
\text{curl}(c\mathbf{F}) = c \text{curl}(\mathbf{F}) \quad (c \text{ any constant})
\]
A conservative vector field

Conservative Vector Fields

Given a differentiable function \(f(x, y, z) \), its gradient vector field

\[
\mathbf{F} = \nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right)
\]

is called a **conservative vector field**, and the function \(f \) is called a **potential function** (or scalar potential function) for \(\mathbf{F} \).

The same terms apply in two variables and, more generally, in \(n \) variables. Recall that the gradient vectors are orthogonal to the level curves, and thus in a conservative vector field, the vector at every point \(P \) is orthogonal to the level curve through \(P \) (Figure 9). Conservative vector fields have critically important properties. For instance, in Section 17.3 we will see that the work done by a conservative vector field as a particle travels from point \(A \) to point \(B \) is independent of the path taken. In physics, conservative vector fields appear naturally as the forces corresponding to physical systems in which energy is conserved.

EXAMPLE 5 Verify that \(f(x, y, z) = xy + yz^2 \) is a potential function for the vector field \(\mathbf{F} = (y, x + z^2, 2yz) \).

Solution We compute the gradient of \(f \):

\[
\frac{\partial f}{\partial x} = y, \quad \frac{\partial f}{\partial y} = x + z^2, \quad \frac{\partial f}{\partial z} = 2yz
\]

Thus, \(\nabla f = (y, x + z^2, 2yz) = \mathbf{F} \) as claimed.

A conservative vector field always has the property that its curl is the trivial vector field \(\mathbf{0} \).
THEOREM 1 Curl of a Conservative Vector Field

1. In dimension 2, if the vector field \(\mathbf{F} = (F_1, F_2) \) is conservative, then
 \[
 \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}
 \]

2. In dimension 3, if the vector field \(\mathbf{F} = (F_1, F_2, F_3) \) is conservative, then
 \[
 \text{curl}(\mathbf{F}) = 0, \quad \text{or equivalently, } \quad \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}, \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}
 \]

Note that we could also write this result as \(\text{curl}(\nabla f) = 0 \) or \(\nabla \times \nabla f = 0 \).

Proof We provide the proof for a vector field in dimension 3, but the same idea works for a vector field in dimension 2. If \(\mathbf{F} = \nabla f \), then
 \[
 F_1 = \frac{\partial f}{\partial x}, \quad F_2 = \frac{\partial f}{\partial y}, \quad F_3 = \frac{\partial f}{\partial z}
 \]

Now compare the “cross”-partial derivatives:
 \[
 \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}, \quad \frac{\partial F_2}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}
 \]

Clairaut’s Theorem (Section 15.3) tells us that \(\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} \), and thus,
 \[
 \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}
 \]

Similarly, \(\frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y} \) and \(\frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z} \). It follows that \(\text{curl}(\mathbf{F}) = 0 \).

From Theorem 1, we can see that most vector fields are not conservative. Indeed, an arbitrary triple of functions \((F_1, F_2, F_3) \) does not satisfy the cross-partials condition. Here is an example.

EXAMPLE 6 Show that \(\mathbf{F} = \left(xy, \frac{x^2}{2}, zy \right) \) is not conservative.

Solution We have
 \[
 \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial y} (xy) = x, \quad \frac{\partial F_2}{\partial x} = \frac{\partial}{\partial x} \left(\frac{x^2}{2} \right) = x
 \]

Thus, \(\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \). However,
 \[
 \frac{\partial F_2}{\partial z} = \frac{\partial}{\partial z} \left(\frac{x^2}{2} \right) = 0, \quad \frac{\partial F_3}{\partial y} = \frac{\partial}{\partial y} (zy) = z
 \]

Thus, \(\frac{\partial F_2}{\partial z} \neq \frac{\partial F_3}{\partial y} \). By Theorem 1, \(\mathbf{F} \) is not conservative, even though the last pair of cross partials also agree:
 \[
 \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z} = 0
 \]
Potential functions, like antiderivatives in one variable, are unique to within an additive constant. To state this precisely, we must assume that the domain D of the vector field is open and connected (Figure 10). “Connected” means that any two points can be joined by a path within the domain.

THEOREM 2 Uniqueness of Potential Functions If F is conservative on an open connected domain, then any two potential functions of F differ by a constant.

Proof If both f_1 and f_2 are potential functions of F, then

$$\nabla (f_1 - f_2) = \nabla f_1 - \nabla f_2 = F - F = 0$$

However, a function whose gradient is zero on an open connected domain is a constant function (this generalizes the fact from single-variable calculus that a function on an interval with zero derivative is a constant function—see Exercise 55). Thus, $f_1 - f_2 = C$ for some constant C, and hence, $f_1 = f_2 + C$.

The next two examples consider two important radial vector fields.

EXAMPLE 7 Unit Radial Vector Fields Show that

$$f(x, y, z) = r = \sqrt{x^2 + y^2 + z^2}$$

is a potential function for the unit radial vector field $e_r = (x/r, y/r, z/r)$.

Solution We have

$$\frac{\partial r}{\partial x} = \frac{\partial}{\partial x} \sqrt{x^2 + y^2 + z^2} = \frac{x}{\sqrt{x^2 + y^2 + z^2}} = \frac{x}{r}$$

Similarly, $\frac{\partial r}{\partial y} = \frac{y}{r}$ and $\frac{\partial r}{\partial z} = \frac{z}{r}$. Therefore, $\nabla r = (\frac{x}{r}, \frac{y}{r}, \frac{z}{r}) = e_r$.

The gravitational force exerted by a point mass m is described by an inverse-square force field (Figure 11). A point mass located at the origin exerts a gravitational force F on a unit mass located at (x, y, z) equal to

$$F = -\frac{Gm}{r^2}e_r = -\frac{Gm}{r^3} \left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right)$$

where G is the universal gravitation constant. The minus sign indicates that the force is attractive (it pulls in the direction of the origin). The electrostatic force field due to a charged particle is also an inverse-square vector field. The next example shows that these vector fields are conservative.

EXAMPLE 8 Inverse-Square Vector Field Show that

$$e_r = \nabla \left(-\frac{1}{r} \right)$$

Solution Use the Chain Rule for gradients (Theorem 1 in Section 15.5) and Example 7:

$$\nabla \left(-r^{-1} \right) = -r^{-2} \nabla r = -r^{-2} e_r$$

17.1 SUMMARY

- A vector field assigns a vector to each point in a domain. A vector field in \mathbb{R}^3 is represented by a triple of functions

$$F = (F_1, F_2, F_3)$$
A vector field in \(\mathbf{R}^2 \) is represented by a pair of functions \(\mathbf{F} = (F_1, F_2) \). We always assume that the components \(F_j \) are smooth functions on their domains.

- The divergence of a vector field \(\mathbf{F} = (F_1, F_2) \) is the scalar function given by
 \[
 \text{div}(\mathbf{F}) = \nabla \cdot \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}
 \]

- The curl of a vector field \(\mathbf{F} = (F_1, F_2) \) is the vector field given by
 \[
 \text{curl}(\mathbf{F}) = \nabla \times \mathbf{F} = \left(\frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z} \right) \mathbf{i} - \left(\frac{\partial F_3}{\partial x} - \frac{\partial F_1}{\partial z} \right) \mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}
 \]

- If \(\mathbf{F} = \nabla f \), then \(f \) is called a potential function for \(\mathbf{F} \).

- \(\mathbf{F} \) is called conservative if it has a potential function.

- Any two potential functions for a conservative vector field differ by a constant (on an open, connected domain).

A conservative vector field \(\mathbf{F} = (F_1, F_2) \) satisfies the condition:

\[
\text{curl}(\mathbf{F}) = 0, \quad \text{or equivalently,} \quad \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}, \quad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}, \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}
\]

We define

\[
r = \sqrt{x^2 + y^2 + z^2}
\]

- The radial unit vector field and the inverse-square vector field are conservative:

\[
\mathbf{e}_r = \left\{ \frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right\} = \nabla r, \quad \frac{\mathbf{e}_r}{r} = \left\{ \frac{x}{r^2}, \frac{y}{r^2}, \frac{z}{r^2} \right\} = \nabla \left(-\frac{1}{r} \right)
\]

17.1 EXERCISES

Preliminary Questions

1. Which of the following is a unit vector field in the plane?
 (a) \(\mathbf{F} = (y, x) \)
 (b) \(\mathbf{F} = \left\{ \frac{y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}} \right\} \)
 (c) \(\mathbf{F} = \left\{ \frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\} \)

2. Sketch an example of a nonconstant vector field in the plane in which each vector is parallel to \((1, 1) \).

3. Show that the vector field \(\mathbf{F} = (-z, 0, x) \) is orthogonal to the position vector \(\mathbf{OP} \) at each point \(P \). Give an example of another vector field with this property.

4. Give an example of a potential function for \((yz, xz, xy) \) other than \(f(x, y, z) = xyz \).

Exercises

1. Compute and sketch the vector assigned to the points \(P = (1, 2) \) and \(Q = (-1, -1) \) by the vector field \(\mathbf{F} = (x^2, x) \).

2. Compute and sketch the vector assigned to the points \(P = (1, 2) \) and \(Q = (-1, -1) \) by the vector field \(\mathbf{F} = (-y, x) \).

3. Compute and sketch the vector assigned to the points \(P = (0, 1, 1) \) and \(Q = (2, 1, 0) \) by the vector field \(\mathbf{F} = (xy, z^2, x) \).

4. Compute the vector assigned to the points \(P = (1, 1, 0) \) and \(Q = (2, 1, 2) \) by the vector fields \(\mathbf{e}_r \frac{\mathbf{e}_r}{r^2} \) and \(\mathbf{e}_r \frac{\mathbf{e}_r}{r^2} \).

In Exercises 5–12, sketch the following planar vector fields by drawing the vectors attached to points with integer coordinates in the rectangle \(-3 \leq x \leq 3, -3 \leq y \leq 3\). Instead of drawing the vectors with their true lengths, scale them if necessary to avoid overlap.

5. \(\mathbf{F} = (1, 0) \) \hspace{1cm} 6. \(\mathbf{F} = (1, 1) \) \hspace{1cm} 7. \(\mathbf{F} = xi \)

8. \(\mathbf{F} = yi \) \hspace{1cm} 9. \(\mathbf{F} = (0, x) \) \hspace{1cm} 10. \(\mathbf{F} = x^2i + yj \)

11. \(\mathbf{F} = \left\{ \frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right\} \)

12. \(\mathbf{F} = \left\{ \frac{-y}{\sqrt{x^2 + y^2}}, \frac{x}{\sqrt{x^2 + y^2}} \right\} \)
In Exercises 13–16, match each of the following planar vector fields with the corresponding plot in Figure 12.

13. \(\mathbf{F} = (2, x) \)
14. \(\mathbf{F} = (2x, y) \)
15. \(\mathbf{F} = (y, \cos x) \)
16. \(\mathbf{F} = (x + y, x - y) \)

![Figure 12](image)

In Exercises 17–20, match each three-dimensional vector field with the corresponding plot in Figure 13.

17. \(\mathbf{F} = (1, 1, 1) \)
18. \(\mathbf{F} = (x, 0, z) \)
19. \(\mathbf{F} = (x, y, z) \)
20. \(\mathbf{F} = \mathbf{e}_r \)

![Figure 13](image)

21. A river 200 meters wide is modeled by the region in the \(xy \)-plane given by \(-100 \leq x \leq 100\). The velocity vector field on the surface of the river is given by \(\mathbf{F} = \left(-\frac{x}{20}, 20 - \frac{x^2}{1000} \right) \) in meters per second (m/s). Determine the coordinates of those points that have the maximum speed.

22. The velocity vectors in kilometers per hour for the wind speed of a tornado near the ground are given by the vector field \(\mathbf{F} = \left(\frac{-y}{e^{(x^2+y^2-1)^2}}, \frac{x}{e^{(x^2+y^2-1)^2}} \right) \). Determine the coordinates of those points where the wind speed is the highest.

In Exercises 23–30, calculate \(\text{div}(\mathbf{F}) \) and \(\text{curl}(\mathbf{F}) \).

23. \(\mathbf{F} = (xy, yz, y^2 - x^3) \)
24. \(\mathbf{F} = (x^2 - 2xy, z - xy, 2x^2z^2) \)
25. \(\mathbf{F} = (z - y^2, x + z^3, y + x^2) \)
26. \(\mathbf{F} = \left(\frac{y}{x}, \frac{y}{z}, \frac{z}{x} \right) \)
27. \(\mathbf{F} = (e^y, \sin x, \cos x) \)
28. \(\mathbf{F} = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}, 0 \right) \)

In Exercises 31–37, prove the identities assuming that the appropriate partial derivatives exist and are continuous.

31. \(\text{div}(\mathbf{F} + \mathbf{G}) = \text{div}(\mathbf{F}) + \text{div}(\mathbf{G}) \)
32. \(\text{curl}(\mathbf{F} + \mathbf{G}) = \text{curl}(\mathbf{F}) + \text{curl}(\mathbf{G}) \)
33. \(\text{div} \text{curl} \mathbf{F} = 0 \)
34. \(\text{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \text{curl} \mathbf{F} - \mathbf{F} \cdot \text{curl} \mathbf{G} \)
35. If \(f \) is a scalar function, then \(\text{div}(f \mathbf{F}) = f \text{div} \mathbf{F} + \mathbf{F} \cdot \nabla f \).
36. \(\text{curl}(f \mathbf{F}) = f \text{curl} \mathbf{F} + \mathbf{F} \times \nabla f \)
37. \(\text{div}(\nabla f \times \nabla g) = 0 \)

38. Find (by inspection) a potential function for \(\mathbf{F} = (x, 0) \) and prove that \(\mathbf{G} = (y, 0) \) is not conservative.

In Exercises 39–45, find a potential function for the vector field \(\mathbf{F} \) by inspection or show that one does not exist.

39. \(\mathbf{F} = (x, y) \)
40. \(\mathbf{F} = (yz, xz, y) \)
41. \(\mathbf{F} = (ye^{xy}, xe^{xy}) \)
42. \(\mathbf{F} = (2xyz, x^2z, x^2yz) \)
43. \(\mathbf{F} = (yz^2, x^2z, 2xyz) \)
44. \(\mathbf{F} = (2xze^{x^2}, 0, e^x) \)
45. \(\mathbf{F} = (yz \cos(xy), xz \cos(xy), xy \cos(xy)) \)

46. Find potential functions for \(\mathbf{F} = \frac{\partial \psi}{\partial r} \) and \(\mathbf{G} = \frac{\partial \psi}{\partial \theta} \) in \(\mathbb{R}^3 \). Hint: See Example 8.

47. Show that \(\mathbf{F} = (3, 1, 2) \) is conservative. Then prove more generally that any constant vector field \(\mathbf{F} = (a, b, c) \) is conservative.

48. Let \(\varphi = \ln r \), where \(r = \sqrt{x^2 + y^2} \). Express \(\nabla \varphi \) in terms of the unit radial vector \(\mathbf{e}_r \) in \(\mathbb{R}^2 \).

49. For \(P = (a, b) \), we define the unit radial vector field based at \(P \):

\[
\mathbf{e}_P = \frac{(x - a, y - b)}{\sqrt{(x - a)^2 + (y - b)^2}}
\]

(a) Verify that \(\mathbf{e}_P \) is a unit vector field.
(b) Calculate \(\mathbf{e}_P(1, 1) \) for \(P = (3, 2) \).
(c) Find a potential function for \(\mathbf{e}_P \).
50. Which of (A) or (B) in Figure 14 is the contour plot of a potential function for the vector field \mathbf{F}? Recall that the gradient vectors are perpendicular to the level curves.

![Figure 14](image)

51. Which of (A) or (B) in Figure 15 is the contour plot of a potential function for the vector field \mathbf{F}?

![Figure 15](image)

52. Match each of these descriptions with a vector field in Figure 16:
(a) The gravitational field created by two planets of equal mass located at P and Q
(b) The electrostatic field created by two equal and opposite charges located at P and Q (representing the force on a negative test charge; opposite charges attract and like charges repel)

![Figure 16](image)

53. In this exercise, we show that the vector field \mathbf{F} in Figure 17 is not conservative. Explain the following statements:
(a) If a potential function f for \mathbf{F} exists, then the level curves of f must be vertical lines.
(b) If a potential function f for \mathbf{F} exists, then the level curves of f must grow farther apart as y increases.
(c) Explain why (a) and (b) are incompatible, and hence f cannot exist.

![Figure 17](image)

Further Insights and Challenges
54. Show that any vector field of the form
$$\mathbf{F} = (f(x), g(y), h(z))$$
has a potential function. Assume that f, g, and h are continuous.

55. Let \mathcal{D} be a disk in \mathbb{R}^2. This exercise shows that if
$$\nabla f(x, y) = 0$$
for all (x, y) in \mathcal{D}, then f is constant. Consider points $P = (a, b)$, $Q = (c, d)$, and $R = (c, b)$ as in Figure 18.
(a) Use single-variable calculus to show that f is constant along the segments PR and RQ.
(b) Conclude that $f(P) = f(Q)$ for any two points $P, Q \in \mathcal{D}$.

![Figure 18](image)
17.2 Line Integrals

In this section, we introduce two types of integrals over curves: integrals of functions and integrals of vector fields. These are traditionally called line integrals, although it would be more appropriate to call them “curve” or “path” integrals.

Scalar Line Integrals

We begin by defining the scalar line integral $\int_C f(x, y, z) \, ds$ of a function f over a curve C. We will see how integrals of this type represent total mass and charge, and how they can be used to find electric potentials.

Like all integrals, this line integral is defined through a process of subdivision, summation, and passage to the limit. We divide C into N consecutive arcs C_1, \ldots, C_N, choose as a sample point P_i in each arc C_i, and form the Riemann sum (Figure 1)

$$\sum_{i=1}^{N} f(P_i) \text{length}(C_i) = \sum_{i=1}^{N} f(P_i) \Delta s_i$$

where Δs_i is the length of C_i.

In Eq. (1), we write $[\Delta s_i] \to 0$ to indicate that the limit is taken over all Riemann sums as the maximum of the lengths Δs_i tends to zero.

This definition also applies to functions $f(x, y)$ of two variables.

The scalar line integral of the function $f(x, y, z) = 1$ is simply the length of C. In this case, all the Riemann sums have the same value:

$$\sum_{i=1}^{N} 1 \Delta s_i = \sum_{i=1}^{N} \text{length}(C_i) = \text{length}(C)$$

and thus, $\int_C 1 \, ds = \text{length}(C)$

In practice, line integrals are computed using parametrizations. Suppose that C has a parametrization $r(t)$ for $a \leq t \leq b$ with continuous derivative $r'(t)$. Recall that the derivative is the tangent vector

$$r'(t) = \langle x'(t), y'(t), z'(t) \rangle$$

We divide C into N consecutive arcs C_1, \ldots, C_N corresponding to a partition of the interval $[a, b]$:

$$a = t_0 < t_1 < \cdots < t_{N-1} < t_N = b$$
Theorem of Calculus says that
so that \(C_i \) is parametrized by \(\mathbf{r}(t) \) for \(t_{i-1} \leq t \leq t_i \) (Figure 2), and choose sample points \(P_i = \mathbf{r}(t_i^*) \) with \(t_i^* \) in \([t_{i-1}, t_i] \). According to the arc length formula (Section 14.3),

\[
\text{Length}(C_i) = \Delta s_i = \int_{t_{i-1}}^{t_i} \| \mathbf{r}'(t) \| \, dt
\]

Because \(\mathbf{r}'(t) \) is continuous, the function \(\| \mathbf{r}'(t) \| \) is nearly constant on \([t_{i-1}, t_i] \) if the length \(\Delta t_i = t_i - t_{i-1} \) is small, and thus,

\[
\int_{t_{i-1}}^{t_i} \| \mathbf{r}'(t) \| \, dt \approx \| \mathbf{r}'(t_i^*) \| \Delta t_i
\]

The sum on the right is a Riemann sum that converges to the integral

\[
\int_a^b f(\mathbf{r}(t)) \| \mathbf{r}'(t) \| \, dt
\]

as the maximum of the lengths \(\Delta t_i \) tends to zero. By estimating the errors in this approximation, we can show that the sums on the left-hand side of (2) also approach (3). This gives us the following formula for the scalar line integral.

THEOREM 1 Computing a Scalar Line Integral Let \(\mathbf{r}(t) \) be a parametrization of a curve \(C \) for \(a \leq t \leq b \). If \(f(x, y, z) \) and \(\mathbf{r}'(t) \) are continuous, then

\[
\int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) \| \mathbf{r}'(t) \| \, dt
\]

The symbol \(ds \) is intended to suggest arc length \(s \) and is often referred to as the line element or arc length differential. In terms of a parametrization, we have the symbolic equation

\[
ds = \| \mathbf{r}'(t) \| \, dt
\]

where

\[
\| \mathbf{r}'(t) \| = \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2}
\]

Eq. (4) tells us that to evaluate a scalar line integral, we replace the integrand \(f(x, y, z) \, ds \) with \(f(\mathbf{r}(t)) \| \mathbf{r}'(t) \| \, dt \).

EXAMPLE 1 Integrating Along a Helix Calculate

\[
\int_C (x + y + z) \, ds
\]

where \(C \) is the helix \(\mathbf{r}(t) = (\cos t, \sin t, t) \) for \(0 \leq t \leq \pi \) (Figure 3).

Solution

Step 1. Compute \(ds \).

\[
\mathbf{r}'(t) = (-\sin t, \cos t, 1)
\]

\[
\| \mathbf{r}'(t) \| = \sqrt{(-\sin t)^2 + \cos^2 t + 1} = \sqrt{2}
\]

\[
ds = \| \mathbf{r}'(t) \| \, dt = \sqrt{2} \, dt
\]
Step 2. Write out the integrand and evaluate.
We have \(f(x, y, z) = x + y + z \), and so,
\[
f(\mathbf{r}(t)) = f(\cos t, \sin t, t) = \cos t + \sin t + t
\]
\(f(x, y, z) \, ds = f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| \, dt = (\cos t + \sin t + t)\sqrt{2} \, dt
\]

By Eq. (4),
\[
\int_C f(x, y, z) \, ds = \int_0^\pi f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| \, dt = \int_0^\pi (\cos t + \sin t + t)\sqrt{2} \, dt
\]
\[
= \sqrt{2} \left(\sin t - \cos t + \frac{1}{2} t^2 \right) \biggr|_0^\pi
\]
\[
= \sqrt{2} \left(0 + 1 + \frac{1}{2} \pi^2 \right) - \sqrt{2} (0 - 1 + 0) = 2\sqrt{2} + \frac{\sqrt{2}}{2} \pi^2
\]

EXAMPLE 2 Arc Length
Calculate \(\int_C 1 \, ds \) for the helix in the previous example:
\(\mathbf{r}(t) = (\cos t, \sin t, t) \) for \(0 \leq t \leq \pi \). What does this integral represent?

Solution In the previous example, we showed that \(ds = \sqrt{2} \, dt \) and thus,
\[
\int_C 1 \, ds = \int_0^\pi \sqrt{2} \, dt = \pi \sqrt{2}
\]
This is the length of the helix for \(0 \leq t \leq \pi \).

Applications of the Scalar Line Integral

In Section 16.5, we discussed the general principle that “the integral of a density is the total quantity.” This applies to scalar line integrals. For example, we can view the curve \(C \) as a wire with continuous mass density \(\delta(x, y, z) \), given in units of mass per unit length.

The total mass is defined as the integral of mass density:

\[
\text{Total mass of } C = \int_C \delta(x, y, z) \, ds
\]

A similar formula for total charge is valid if \(\delta(x, y, z) \) is the charge density along the curve.

As in Section 16.5, we justify this interpretation by dividing \(C \) into \(N \) arcs \(C_i \) of length \(\Delta s_i \) with \(N \) large. The mass density is nearly constant on \(C_i \), and therefore, the mass of \(C_i \) is approximately \(\delta(P_i) \Delta s_i \), where \(P_i \) is any sample point on \(C_i \) (Figure 4). The total mass is the sum

\[
\text{Total mass of } C = \sum_{i=1}^N \text{mass of } C_i \approx \sum_{i=1}^N \delta(P_i) \Delta s_i
\]

As the maximum of the lengths \(\Delta s_i \) tends to zero, the sums on the right approach the line integral in Eq. (5).

EXAMPLE 3 Scalar Line Integral as Total Mass
Find the total mass of a wire in the shape of the parabola \(y = x^2 \) for \(1 \leq x \leq 4 \) (in centimeters) with mass density given by \(\delta(x, y) = y/x \) g/cm.

Solution The arc of the parabola is parametrized by \(\mathbf{r}(t) = (t, t^2) \) for \(1 \leq t \leq 4 \).

Step 1. Compute \(ds \).
\[
\mathbf{r}'(t) = (1, 2t)
\]
\[
ds = \|\mathbf{r}'(t)\| \, dt = \sqrt{1 + 4t^2} \, dt
\]
Step 2. Write out the integrand and evaluate.

We have \(\delta(r(t)) = \rho(t, t^2) = t^2/t = t \), and thus,

\[
\delta(x, y) \, ds = \rho(r(t)) \sqrt{1 + 4t^2} \, dt = t\sqrt{1 + 4t^2} \, dt
\]

We evaluate the line integral of mass density using the substitution \(u = 1 + 4t^2 \), \(du = 8t \, dt \):

\[
\int_C \delta(x, y) \, ds = \int_1^4 \delta(r(t)) \|r'(t)\| \, dt = \int_1^4 t\sqrt{1 + 4t^2} \, dt = \frac{1}{8} \int_5^{65} \sqrt{u} \, du = \frac{1}{12} u^{3/2} \bigg|_5^{65} = \frac{1}{12} (65^{3/2} - 5^{3/2}) \approx 42.74
\]

Note that after the substitution, the limits of integration become \(u(1) = 5 \) and \(u(4) = 65 \). The total mass of the wire is approximately 42.7 g.

Scalar line integrals are also used to compute electric potentials. When an electric charge is distributed continuously along a curve \(C \), with charge density \(\delta(x, y, z) \), the charge distribution sets up an electrostatic field \(\mathbf{E} \) that is a conservative vector field. Coulomb’s Law tells us that \(\mathbf{E} = -\nabla V \), where

\[
V(P) = k \int_C \frac{\delta(x, y, z) \, ds}{d_P}
\]

In this integral, \(d_P = d_P(x, y, z) \) denotes the distance from \((x, y, z) \) to \(P \). The constant \(k \) has the value \(k = 8.99 \times 10^9 \) N·m²/C². In a situation like this, we use \(V \) to denote the function and call it the electric potential. It is defined for all points \(P \) that do not lie on \(C \) and has units of volts [1 volt (or V) is 1 N·m/C].

Example 4 Electric Potential A charged semicircle of radius \(R \) centered at the origin in the \(xy \)-plane (Figure 5) has charge density

\[
\delta(x, y, 0) = 10^{-8} \left(2 - \frac{x}{R} \right) \text{ C/m}
\]

Find the electric potential at a point \(P = (0, 0, a) \) if \(R = 0.1 \) m.

Solution Parametrize the semicircle by \(r(t) = (R \cos t, R \sin t, 0) \) for \(-\pi/2 \leq t \leq \pi/2 \):

\[
\|r'(t)\| = \|(-R \sin t, R \cos t, 0)\| = \sqrt{R^2 \sin^2 t + R^2 \cos^2 t + 0} = R \\
ds = \|r'(t)\| \, dt = R \, dt \\
\delta(r(t)) = \rho(R \cos t, R \sin t, 0) = 10^{-8} \left(2 - \frac{R \cos t}{R} \right) = 10^{-8} (2 - \cos t)
\]

In our case, the distance \(d_P \) from \(P \) to a point \((x, y, 0) \) on the semicircle has the constant value \(d_P = \sqrt{R^2 + a^2} \) (Figure 5). Thus,

\[
V(P) = k \int_C \frac{\delta(x, y, z) \, ds}{d_P} = k \int_C \frac{10^{-8} (2 - \cos t) R \, dt}{\sqrt{R^2 + a^2}} \\
= \frac{10^{-8} k R}{\sqrt{R^2 + a^2}} \int_{-\pi/2}^{\pi/2} (2 - \cos t) \, dt = \frac{10^{-8} k R}{\sqrt{R^2 + a^2}} (2\pi - 2)
\]

With \(R = 0.1 \) m and \(k = 8.99 \times 10^9 \), we then obtain \(10^{-8} k R (2\pi - 2) \approx 38.5 \) and \(V(P) \approx \frac{38.5}{\sqrt{0.01 + a^2}} \) volts.
Vector Line Integrals

When you carry a backpack up a mountain, you do work against the earth’s gravitational field. The work, or energy expended, is one example of a quantity represented by a vector line integral.

An important difference between vector and scalar line integrals is that vector line integrals depend on the direction along the curve. This is reasonable if you think of the vector line integral as work, because the work performed going down the mountain is the negative of the work performed going up.

A specified direction along a curve \(C \) is called an orientation (Figure 6). We refer to this direction as the positive direction along \(C \), the opposite direction is the negative direction, and \(C \) itself is called an oriented curve. In Figure 6(A), if we reversed the orientation, the positive direction would become the direction from \(Q \) to \(P \).

The line integral of a vector field \(\mathbf{F} \) over a curve \(C \) is defined as the scalar line integral of the tangential component of \(\mathbf{F} \). More precisely, let \(\mathbf{T} = \mathbf{T}(P) \) denote the unit tangent vector at a point \(P \) on \(C \) pointing in the positive direction. The tangential component of \(\mathbf{F} \) at \(P \) is the dot product (Figure 7)

\[
\mathbf{F}(P) \cdot \mathbf{T} = \|\mathbf{F}(P)\| \|\mathbf{T}(P)\| \cos \theta = \|\mathbf{F}(P)\| \cos \theta
\]

where \(\theta \) is the angle between \(\mathbf{F}(P) \) and \(\mathbf{T}(P) \). The vector line integral of \(\mathbf{F} \) is the scalar line integral of the scalar function \(\mathbf{F} \cdot \mathbf{T} \). We make the standing assumption that \(C \) is piecewise smooth (it consists of finitely many smooth curves joined together with possible corners).

Definition: Vector Line Integral

The line integral of a vector field \(\mathbf{F} \) along an oriented curve \(C \) is the integral of the tangential component of \(\mathbf{F} \):

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C (\mathbf{F} \cdot \mathbf{T}) \, ds
\]

We use parametrizations to evaluate vector line integrals, but there is one important difference with the scalar case: The parametrization \(\mathbf{r}(t) \) must be positively oriented; that is, \(\mathbf{r}(t) \) must trace \(C \) in the positive direction. We assume also that \(\mathbf{r}(t) \) is regular (see Section 14.4); that is, \(\mathbf{r}'(t) \neq \mathbf{0} \) for \(a \leq t \leq b \). Then \(\mathbf{r}'(t) \) is a nonzero tangent vector pointing in the positive direction, and

\[
\mathbf{T} = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|}
\]

In terms of the arc length differential \(ds = \|\mathbf{r}'(t)\| \, dt \), we have

\[
(\mathbf{F} \cdot \mathbf{T}) \, ds = \left(\mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} \right) \|\mathbf{r}'(t)\| \, dt = \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt
\]

Therefore, the integral on the right-hand side of Eq. (7) is equal to the right-hand side of Eq. (8) in the next theorem.
THEOREM 2 Computing a Vector Line Integral If \(\mathbf{r}(t) \) is a regular parametrization of an oriented curve \(\mathcal{C} \) for \(a \leq t \leq b \), then
\[
\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt
\]

It is useful to think of \(d\mathbf{r} \) as a “vector line element” or “vector differential” that is related to the parametrization by the symbolic equation
\[
d\mathbf{r} = \mathbf{r}'(t) \, dt = \langle x'(t), y'(t), z'(t) \rangle \, dt
\]

Eq. (8) tells us that to evaluate a vector line integral, we replace the integrand \(\mathbf{F} \cdot d\mathbf{r} \) with \(\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt \).

EXAMPLE 5 Evaluate \(\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{F} = \langle z, y^2, x \rangle \) and \(\mathcal{C} \) is parametrized (in the positive direction) by \(\mathbf{r}(t) = (t+1, e^t, t^2) \) for \(0 \leq t \leq 2 \).

Solution There are two steps in evaluating a line integral.

Step 1. Calculate the integrand.
\[
\mathbf{r}(t) = (t+1, e^t, t^2)
\]
\[
\mathbf{F}(\mathbf{r}(t)) = \langle z, y^2, x \rangle = \langle t^2, e^{2t}, t+1 \rangle
\]
\[
\mathbf{r}'(t) = \langle 1, e^t, 2t \rangle
\]
The integrand (as a differential) is the dot product:
\[
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \langle t^2, e^{2t}, t+1 \rangle \cdot \langle 1, e^t, 2t \rangle \, dt = (e^{3t} + 3t^2 + 2t) \, dt
\]

Step 2. Evaluate the line integral.
\[
\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{0}^{2} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt
\]
\[
= \int_{0}^{2} (e^{3t} + 3t^2 + 2t) \, dt = \left. \left(\frac{1}{3} e^{3t} + t^3 + t^2 \right) \right|_{0}^{2}
\]
\[
= \left(\frac{1}{3} e^6 + 8 + 4 \right) - \frac{1}{3} = \frac{1}{3} (e^6 + 35)
\]

Another standard notation for the line integral \(\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \) is
\[
\int_{\mathcal{C}} F_1 \, dx + F_2 \, dy + F_3 \, dz
\]
In this notation, we write \(d\mathbf{r} \) as a vector differential
\[
d\mathbf{r} = \langle dx, dy, dz \rangle
\]
so that
\[
\mathbf{F} \cdot d\mathbf{r} = \langle F_1, F_2, F_3 \rangle \cdot \langle dx, dy, dz \rangle = F_1 \, dx + F_2 \, dy + F_3 \, dz
\]
In terms of a parametrization \(\mathbf{r}(t) = (x(t), y(t), z(t)) \),
\[
d\mathbf{r} = \left\langle \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \right\rangle \, dt
\]
\[
\mathbf{F} \cdot d\mathbf{r} = \left(F_1(\mathbf{r}(t)) \frac{dx}{dt} + F_2(\mathbf{r}(t)) \frac{dy}{dt} + F_3(\mathbf{r}(t)) \frac{dz}{dt} \right) \, dt
\]
So, we have the following formula:

\[
\int_C F_1 \, dx + F_2 \, dy + F_3 \, dz = \int_a^b \left(F_1(r(t)) \frac{dx}{dt} + F_2(r(t)) \frac{dy}{dt} + F_3(r(t)) \frac{dz}{dt} \right) \, dt
\]

GRAPHICAL INSIGHT The magnitude of a vector line integral (or even whether it is positive or negative) depends on the angles between \(\mathbf{F} \) and \(\mathbf{T} \) along the path. Consider the line integral of \(\mathbf{F} = \langle 2y, -3 \rangle \) around the ellipse in Figure 8.

- In Figure 8(A), the angles \(\theta \) between \(\mathbf{F} \) and \(\mathbf{T} \) appear to be mostly obtuse along the top part of the ellipse. Consequently, \(\mathbf{F} \cdot \mathbf{T} \leq 0 \) and the line integral is negative. We are working against the vector field as we travel along the curve.
- In Figure 8(B), the angles \(\theta \) appear to be mostly acute along the bottom part of the ellipse. Consequently, \(\mathbf{F} \cdot \mathbf{T} \geq 0 \) and the line integral is positive. We are working with the vector field as we travel along the curve.
- We can guess that the line integral around the entire ellipse is negative because \(||\mathbf{F}|| \) is larger in the top half, so the negative contribution of \(\mathbf{F} \cdot \mathbf{T} \) from the top half appears to dominate the positive contribution of the bottom half. We verify this in Example 6.

EXAMPLE 6 The ellipse \(\mathcal{C} \) in Figure 8(C) with counterclockwise orientation is parametrized by \(\mathbf{r}(\theta) = (5 + 4 \cos \theta, 3 + 2 \sin \theta) \) for \(0 \leq \theta < 2\pi \). Calculate

\[
\int_{\mathcal{C}} 2y \, dx - 3 \, dy
\]

Solution We have \(x(\theta) = 5 + 4 \cos \theta \) and \(y(\theta) = 3 + 2 \sin \theta \), and

\[
\frac{dx}{d\theta} = -4 \sin \theta, \quad \frac{dy}{d\theta} = 2 \cos \theta
\]

The integrand of the line integral is

\[
2y \, dx - 3 \, dy = \left(2y \frac{dx}{d\theta} - 3 \frac{dy}{d\theta} \right) \, d\theta
\]

\[
= \left(2(3 + 2 \sin \theta)(-4 \sin \theta) - 3(2 \cos \theta) \right) \, d\theta
\]

\[
= -(24 \sin \theta + 16 \sin^2 \theta + 6 \cos \theta) \, d\theta
\]
Since the integrals of \(\cos \theta \) and \(\sin \theta \) over \([0, 2\pi]\) are zero,

\[
\int_0^{2\pi} 2y \, dx - 3 \, dy = -\int_0^{2\pi} \left(24 \sin \theta + 16 \sin^2 \theta + 6 \cos \theta\right) \, d\theta
\]

\[
= -16 \int_0^{2\pi} \sin^2 \theta \, d\theta = -16\pi
\]

We now state some basic properties of vector line integrals. First, given an oriented curve \(C \), we write \(-C\) to denote the curve \(C \) with the opposite orientation (Figure 9). The unit tangent vector changes sign from \(T \) to \(-T\) when we change orientation, so the tangential component of \(F \) and the line integral also change sign:

\[
\int_{-C} F \cdot dr = -\int_C F \cdot dr
\]

Next, if we are given \(n \) oriented curves \(C_1, \ldots, C_n \), we write

\[
C = C_1 + \cdots + C_n
\]

to indicate the union of the curves, and we define the line integral over \(C \) as the sum

\[
\int_C F \cdot dr = \int_{C_1} F \cdot dr + \cdots + \int_{C_n} F \cdot dr
\]

We use this formula to define the line integral when \(C \) is piecewise smooth, meaning that \(C \) is a union of smooth curves \(C_1, \ldots, C_n \). For example, the triangle in Figure 10 is piecewise smooth but not smooth. The next theorem summarizes the main properties of vector line integrals.

Theorem 3 Properties of Vector Line Integrals

Let \(C \) be a smooth oriented curve, and let \(F \) and \(G \) be vector fields.

(i) Linearity:

\[
\int_C (F + G) \cdot dr = \int_C F \cdot dr + \int_C G \cdot dr
\]

\[
\int_C kF \cdot dr = k \int_C F \cdot dr \quad (k \text{ a constant})
\]

(ii) Reversing orientation:

\[
\int_{-C} F \cdot dr = -\int_C F \cdot dr
\]

(iii) Additivity: If \(C \) is a union of \(n \) smooth curves \(C_1 + \cdots + C_n \), then

\[
\int_C F \cdot dr = \int_{C_1} F \cdot dr + \cdots + \int_{C_n} F \cdot dr
\]

Example 7 Compute \(\int_C F \cdot dr \), where \(F = (e^x, e^y, x + y) \) and \(C \) is the triangle joining \((1, 0, 0), (0, 1, 0), \) and \((0, 0, 1)\) oriented in the counterclockwise direction when viewed from above (Figure 10).
Solution The line integral is the sum of the line integrals over the edges of the triangle:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_{AB} \mathbf{F} \cdot d\mathbf{r} + \int_{BC} \mathbf{F} \cdot d\mathbf{r} + \int_{CA} \mathbf{F} \cdot d\mathbf{r}$$

Segment AB is parametrized by $\mathbf{r}(t) = (1 - t, t, 0)$ for $0 \leq t \leq 1$. We have

$$\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \mathbf{F}(1 - t, t, 0) \cdot (-1, 1, 0) = \langle e^0, e^t, 1 \rangle \cdot \langle -1, 1, 0 \rangle = -1 + e^t$$

$$\int_{AB} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (e^t - 1) \, dt = \left[(e^t - t) \right]_0^1 = (e - 1) - 1 = e - 2$$

Similarly, BC is parametrized by $\mathbf{r}(t) = (0, 1 - t, t)$ for $0 \leq t \leq 1$, and

$$\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \langle e^t, e^{1-t}, 1 \rangle \cdot \langle 0, 1, -1 \rangle = -e^{1-t} + 1 - t$$

$$\int_{BC} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (-e^{1-t} + 1 - t) \, dt = \left[-e^{1-t} + t - \frac{1}{2} t^2 \right]_0^1 = \frac{3}{2} - e$$

Finally, CA is parametrized by $\mathbf{r}(t) = (t, 0, 1-t)$ for $0 \leq t \leq 1$, and

$$\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \langle e^{1-t}, 1, t \rangle \cdot \langle 1, 0, 1 \rangle = e^{1-t} - t$$

$$\int_{CA} \mathbf{F} \cdot d\mathbf{r} = \int_0^1 (e^{1-t} - t) \, dt = \left[-e^{1-t} - \frac{1}{2} t^2 \right]_0^1 = -\frac{3}{2} + e$$

The total line integral is the sum

$$\int_C \mathbf{F} \cdot d\mathbf{r} = (e - 2) + \left(\frac{3}{2} - e \right) + \left(-\frac{3}{2} + e \right) = e - 2$$

Applications of the Vector Line Integral

Recall that in physics, “work” refers to the energy expended when a force is applied to an object as it moves along a path. By definition, the work W performed along the straight segment from P to Q by applying a constant force \mathbf{F} at an angle θ [Figure 11(A)] is

$$W = (\text{tangential component of } \mathbf{F}) \times \text{distance} = (\|\mathbf{F}\| \cos \theta) \times PQ$$

When the force acts on the object moving along a curve C, it makes sense to define the work W performed as the line integral [Figure 11(B)]:

$$W = \int_C \mathbf{F} \cdot d\mathbf{r}$$

This is the work “performed by the field \mathbf{F}.” The idea is that we can divide C into a large number of short consecutive arcs C_1, \ldots, C_N, where C_i has length Δs_i. The work W_i performed along C_i is approximately equal to the tangential component $\mathbf{F}(P_i) \cdot \mathbf{T}(P_i)$ times the length Δs_i, where P_i is a sample point in C_i. Thus, we have

$$W = \sum_{i=1}^N W_i \approx \sum_{i=1}^N (\mathbf{F}(P_i) \cdot \mathbf{T}(P_i)) \Delta s_i$$

The right-hand side approaches $\int_C \mathbf{F} \cdot d\mathbf{r}$ as the lengths Δs_i tend to zero.
Often, we are interested in calculating the work required to move an object along a path in the presence of a force field \(\mathbf{F} \) (such as an electrical or gravitational field). In this case, \(\mathbf{F} \) acts on the object and we must work against the force field to move the object. The work required is the negative of the line integral in Eq. (9):

\[
W = - \int_C \mathbf{F} \cdot d\mathbf{r}
\]

Example 8 Calculating Work

Calculate the work performed against \(\mathbf{F} \) in moving a particle from \(P = (0, 0, 0) \) to \(Q = (4, 8, 1) \) along the path

\[
\mathbf{r}(t) = (t^2, t^3, t) \quad (\text{in meters}) \quad \text{for} \quad 1 \leq t \leq 2
\]

in the presence of a force field \(\mathbf{F} = (x^2, -z, -yz^{-1}) \) in newtons.

Solution

We have

\[
\mathbf{F}(\mathbf{r}(t)) = \mathbf{F}(t^2, t^3, t) = \left(t^4, -t, -t^2\right)
\]

\[
\mathbf{r}'(t) = \left(2t, 3t^2, 1\right)
\]

\[
\mathbf{F} \cdot d\mathbf{r} = \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \left(t^4, -t, -t^2\right) \cdot \left(2t, 3t^2, 1\right) \, dt = (2t^5 - 3t^3 - t^2) \, dt
\]

The work performed against the force field in joules is

\[
W = - \int_C \mathbf{F} \cdot d\mathbf{r} = - \int_1^2 (2t^5 - 3t^3 - t^2) \, dt = \frac{89}{12}
\]

Line integrals are also used to compute the flux across a plane curve, defined as the integral of the normal component of a vector field, rather than the tangential component (Figure 12). Suppose that a plane curve \(C \) is parametrized by \(\mathbf{r}(t) \) for \(a \leq t \leq b \), and let

\[
\mathbf{N} = \mathbf{N}(t) = \left\{ y'(t), -x'(t) \right\}, \quad \mathbf{n}(t) = \frac{\mathbf{N}(t)}{\Vert \mathbf{N}(t) \Vert} = \frac{\mathbf{N}(t)}{\Vert \mathbf{r}'(t) \Vert}
\]

These vectors are normal to \(C \) since the dot product of \(\mathbf{N} \) with the tangent vector \(\mathbf{r}'(t) = \left\{ x'(t), y'(t) \right\} \) is 0. Both \(\mathbf{N} \) and \(\mathbf{n} \) also point to the right as you follow the curve in the direction of \(\mathbf{r} \). The flux across \(C \) is the integral of the normal component \(\mathbf{F} \cdot \mathbf{n} \), which can be obtained by integrating \(\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \) with respect to \(t \):

\[
\text{Flux across } C = \int_C (\mathbf{F} \cdot \mathbf{n}) \, ds = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \frac{\mathbf{N}(t)}{\Vert \mathbf{r}'(t) \Vert} \Vert \mathbf{r}'(t) \Vert \, dt = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \, dt
\]

If \(\mathbf{F} \) is the velocity field of a fluid (modeled as a two-dimensional fluid), then the flux is the quantity of fluid flowing across the curve per unit time.

Example 9 Flux Across a Curve

Calculate the flux of the velocity vector field \(\mathbf{v} = (3 + 2y - y^2/3, 0) \) (in centimeters per second) across the quarter ellipse \(\mathbf{r}(t) = (3 \cos t, 6 \sin t) \) for \(0 \leq t \leq \pi/2 \) (Figure 13).

Solution

The vector field along the path is

\[
\mathbf{v}(\mathbf{r}(t)) = \left(3 + 2(6 \sin t) - (6 \sin t)^2/3, 0\right) = \left(3 + 12 \sin t - 12 \sin^2 t, 0\right)
\]

The tangent vector is \(\mathbf{r}'(t) = (-3 \sin t, 6 \cos t) \), and thus, \(\mathbf{N}(t) = (6 \cos t, 3 \sin t) \). We integrate the dot product

\[
\mathbf{v}(\mathbf{r}(t)) \cdot \mathbf{N}(t) = \left(3 + 12 \sin t - 12 \sin^2 t, 0\right) \cdot (6 \cos t, 3 \sin t)
\]

\[
= (3 + 12 \sin t - 12 \sin^2 t)(6 \cos t)
\]

\[
= 18 \cos t + 72 \sin t \cos t - 72 \sin^2 t \cos t
\]
to obtain the flux:
\[
\int_a^b \mathbf{v}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \, dt = \int_0^{\pi/2} (18 \cos t + 72 \sin t \cos t - 72 \sin^2 t \cos t) \, dt \\
= 18 + 36 - 24 = 30 \text{ cm}^2/\text{s}
\]

17.2 SUMMARY

- Line integral over a curve with parametrization \(\mathbf{r}(t) \) for \(a \leq t \leq b \):

 Scalar line integral:
 \[
 \int_C f(x, y, z) \, ds = \int_a^b f(\mathbf{r}(t)) \| \mathbf{r}'(t) \| \, dt
 \]

 Vector line integral:
 \[
 \int_C \mathbf{F} \cdot d\mathbf{r} = \int_C (\mathbf{F} \cdot \mathbf{T}) \, ds = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt \\
 = \int_C F_1 \, dx + F_2 \, dy + F_3 \, dz
 \]

- Arc length differential: \(ds = \| \mathbf{r}'(t) \| \, dt \). To evaluate a scalar line integral, replace \(f(x, y, z) \, d\mathbf{r} \) with \(f(\mathbf{r}(t)) \| \mathbf{r}'(t) \| \, dt \).

- Vector differential: \(d\mathbf{r} = \mathbf{r}'(t) \, dt \). To evaluate a vector line integral, replace \(\mathbf{F} \cdot d\mathbf{r} \) with \(\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt \).

- An oriented curve \(C \) is a curve in which one of the two possible directions along \(C \) (called the positive direction) is chosen.

- The vector line integral depends on the orientation of the curve \(C \). The parametrization \(\mathbf{r}(t) \) must be regular (that is, \(\mathbf{r}'(t) \neq 0 \)), and it must trace \(C \) in the positive direction.

- We write \(-C\) for the curve \(C \) with the opposite orientation. Then
 \[
 \int_{-C} \mathbf{F} \cdot d\mathbf{r} = -\int_C \mathbf{F} \cdot d\mathbf{r}
 \]

- If \(\delta(x, y, z) \) is the mass or charge density along \(C \), then the total mass or charge is equal to the scalar line integral \(\int_C \delta(x, y, z) \, ds \).

- The vector line integral is used to compute the work \(W \) exerted on an object along a curve \(C \):
 \[
 W = \int_C \mathbf{F} \cdot d\mathbf{r}
 \]

 The work performed against \(\mathbf{F} \) is the quantity \(-\int_C \mathbf{F} \cdot d\mathbf{r}\).

- Flux across \(C \) = \(\int_C (\mathbf{F} \cdot \mathbf{n}) \, ds = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \, dt \), where \(\mathbf{N}(t) = (y'(t), -x'(t)) \).

17.2 EXERCISES

Preliminary Questions

1. What is the line integral of the constant function \(f(x, y, z) = 10 \) over a curve \(C \) of length 5?

2. Which of the following have a zero line integral over the vertical segment from (0, 0) to (0, 1)?

 (a) \(f(x, y) = x \)
 (b) \(f(x, y) = y \)
 (c) \(\mathbf{F} = (x, 0) \)
 (d) \(\mathbf{F} = (y, 0) \)
 (e) \(\mathbf{F} = (0, x) \)
 (f) \(\mathbf{F} = (0, y) \)

3. State whether each statement is true or false. If the statement is false, give the correct statement.

 (a) The scalar line integral does not depend on how you parametrize the curve.
 (b) If you reverse the orientation of the curve, neither the vector line integral nor the scalar line integral changes sign.

4. Suppose that \(C \) has length 5. What is the value of \(\int_C \mathbf{F} \cdot d\mathbf{r} \) if:

 (a) \(\mathbf{F}(P) \) is normal to \(C \) at all points \(P \) on \(C \)?
 (b) \(\mathbf{F}(P) \) is a unit vector pointing in the negative direction along the curve?
Exercises

1. Let $f(x,y,z) = x + yz$, and let C be the line segment from $P = (0,0,0)$ to $(6,2,2)$.
 (a) Calculate $\mathbf{f}(\mathbf{r}(t))$ and $ds = \|\mathbf{r}'(t)\| \, dt$ for the parametrization $\mathbf{r}(t) = (6t, 2t, 2t)$ for $0 \leq t \leq 1$.
 (b) Evaluate $\int_C f(x,y,z) \, ds$.

2. Repeat Exercise 1 with the parametrization $\mathbf{r}(t) = (3t^2, t^3, t^4)$ for $0 \leq t \leq \sqrt{2}$.

3. Let $\mathbf{F} = (x^2, x^3)$, and let C be the curve $y = x^{-1}$ for $1 \leq x \leq 2$, oriented from left to right.
 (a) Calculate $\mathbf{F}(\mathbf{r}(t))$ and $d\mathbf{r} = \mathbf{r}'(t) \, dt$ for the parametrization of C given by $\mathbf{r}(t) = (t, t^{-1})$.
 (b) Calculate the dot product $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt$ and evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

4. Let $\mathbf{F}(x,y,z) = (z^2, x, y)$, and let C be the curve that is given by $\mathbf{r}(t) = (3 + 5t^2, 3 - t^2, t)$ for $0 \leq t \leq 2$.
 (a) Calculate $\mathbf{F}(\mathbf{r}(t))$ and $d\mathbf{r} = \mathbf{r}'(t) \, dt$.
 (b) Calculate the dot product $\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt$ and evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$.

In Exercises 5–8, compute the integral of the scalar function or vector field over $\mathbf{r}(t) = (\cos t, \sin t, t)$ for $0 \leq t \leq \pi$.

5. $f(x,y,z) = x^2 + y^2 + z^2$ \hspace{1cm} 6. $f(x,y,z) = xy + z$

7. $\mathbf{F}(x,y,z) = (x,y,z)$ \hspace{1cm} 8. $\mathbf{F}(x,y,z) = (xy, 2, z^3)$

In Exercises 9–16, compute $\int_C f \, ds$ for the curve specified.

9. $f(x,y) = \sqrt{1+9xy}$, $y = x^3$ for $0 \leq x \leq 1$
10. $f(x,y) = \frac{y^3}{x^4}$, $y = \frac{1}{4}x^4$ for $1 \leq x \leq 2$
11. $f(x,y,z) = z^2$, $\mathbf{r}(t) = (2t, 3t, 4t)$ for $0 \leq t \leq 2$
12. $f(x,y,z) = 3x - 2y + z$, $\mathbf{r}(t) = (2 + t, 2 - t, 2t)$ for $-2 \leq t \leq 1$
13. $f(x,y,z) = xe^{z}$, piecewise linear path from $(0,0,1)$ to $(0,2,0)$ to $(1,1,1)$
14. $f(x,y,z) = x^2z$, $\mathbf{r}(t) = (e^t, \sqrt{2}t, e^{-t})$ for $0 \leq t \leq 1$
15. $f(x,y,z) = 2x^2 + 8z$, $\mathbf{r}(t) = (e^t, t^2, t^3)$, $0 \leq t \leq 1$
16. $f(x,y,z) = 6xz - 2y^2$, $\mathbf{r}(t) = \left(t, \frac{t^2}{\sqrt{2}}, \frac{t^3}{3} \right)$, $0 \leq t \leq 2$
17. Calculate $\int_C \, ds$, where the curve C is parametrized by $\mathbf{r}(t) = (4t, -3t, 12t)$ for $2 \leq t \leq 5$. What does this integral represent?
18. Calculate $\int_C \, ds$, where the curve C is parametrized by $\mathbf{r}(t) = (e^t, \sqrt{2}t, e^{-t})$ for $0 \leq t \leq 2$.

In Exercises 19–26, compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ for the oriented curve specified.

19. $\mathbf{F}(x,y) = (x^2, xy)$, line segment from $(0,0)$ to $(2,2)$
20. $\mathbf{F}(x,y) = (4,y)$, quarter circle $x^2 + y^2 = 1$ with $x \leq 0$, $y \leq 0$, oriented counterclockwise

21. $\mathbf{F}(x,y) = (x^2, xy)$, part of circle $x^2 + y^2 = 9$ with $x \leq 0$, $y \geq 0$, oriented clockwise
22. $\mathbf{F}(x,y) = (e^{3x}, e^{2y})$, piecewise linear path from $(1,1)$ to $(2,2)$ to $(0,0)$
23. $\mathbf{F}(x,y) = (3y^2, 4x, -y)$, $\mathbf{r}(t) = (e^t, e^t, t)$ for $-1 \leq t \leq 1$
24. $\mathbf{F}(x,y) = \left(\frac{-y}{(x^2 + y^2)^{3/2}}, \frac{x}{(x^2 + y^2)^{3/2}} \right)$, circle of radius R with center at the origin oriented counterclockwise
25. $\mathbf{F}(x,y,z) = \left(\frac{1}{y^2 + 1}, \frac{1}{z^2 + 1}, 1 \right)$, $\mathbf{r}(t) = (t^3, 2, t^2)$ for $0 \leq t \leq 1$
26. $\mathbf{F}(x,y,z) = (z^3, yz, x)$, quarter of the circle of radius 2 in the yz-plane with center at the origin where $y \geq 0$ and $z \geq 0$, oriented clockwise when viewed from the positive x-axis

In Exercises 27–32, evaluate the line integral.

27. $\int_C y \, dx - x \, dy$, parabola $y = x^2$ for $0 \leq x \leq 2$
28. $\int_C y \, dx + z \, dy + x \, dz$, $\mathbf{r}(t) = (2 + t^{-1}, t^3, t^2)$ for $0 \leq t \leq 1$
29. $\int_C (x-y) \, dx + (y-z) \, dy + z \, dz$, line segment from $(0,0,0)$ to $(1,4,4)$
30. $\int_C z \, dx + x^2 \, dy + y \, dz$, $\mathbf{r}(t) = (\cos t, \tan t, t)$ for $0 \leq t \leq \frac{\pi}{4}$
31. $\int_C -y \, dx + x \, dy$, segment from $(1,0)$ to $(0,1)$
32. $\int_C y^2 \, ds + z^2 \, dy + (1-x^2) \, dz$, quarter of the circle of radius 1 in the xz-plane with center at the origin in the quadrant $x \geq 0, z \leq 0$, oriented counterclockwise when viewed from the positive y-axis

33. CAS Let $f(x,y,z) = x^{-1}yz$, and let C be the curve parametrized by $\mathbf{r}(t) = (\ln t, t^2, t)$ for $2 \leq t \leq 4$. Use a computer algebra system to calculate $\int_C f(x,y,z) \, ds$ to four decimal places.

34. CAS Use a CAS to calculate $\int_C \mathbf{F} = (e^{x-y}, e^{x+y}) \cdot d\mathbf{r}$ to four decimal places, where C is the curve $y = \sin x$ for $0 \leq x \leq \pi$, oriented from left to right.

In Exercises 35 and 36, calculate the line integral of $\mathbf{F}(x,y,z) = (e^x, e^{z-y}, e^y)$ over the given path.

35. The blue path from P to Q in Figure 14
36. The closed path ABCA in Figure 15

\[A = (2, 0, 0) \]
\[B = (0, 4, 0) \]
\[C = (0, 0, 6) \]

37. Determine:
(a) \(\int_{-C_3} \mathbf{F} \cdot d\mathbf{r} \)
(b) \(\int_{C_2} \mathbf{F} \cdot d\mathbf{r} \)
(c) \(\int_{-C_1-C_3} \mathbf{F} \cdot d\mathbf{r} \)

38. Find the value of \(\int_{C'} \mathbf{F} \cdot d\mathbf{r} \), where \(C' \) is the path that traverses the loop \(C_2 \) four times in the clockwise direction.

39. The values of a function \(f(x, y, z) \) and vector field \(\mathbf{F}(x, y, z) \) are given at six sample points along the path ABC in Figure 17. Estimate the line integrals of \(f \) and \(\mathbf{F} \) along ABC.

<table>
<thead>
<tr>
<th>Point</th>
<th>(f(x, y, z))</th>
<th>(\mathbf{F}(x, y, z))</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, \frac{1}{6}, 0))</td>
<td>3</td>
<td>((1, 0, 0))</td>
</tr>
<tr>
<td>((1, \frac{1}{2}, 0))</td>
<td>3.3</td>
<td>((1, 1, 0))</td>
</tr>
<tr>
<td>((1, \frac{5}{8}, 0))</td>
<td>3.6</td>
<td>((2, 1, 0))</td>
</tr>
<tr>
<td>((1, 1, \frac{1}{2}))</td>
<td>4.2</td>
<td>((3, 2, 0))</td>
</tr>
<tr>
<td>((1, 1, \frac{3}{2}))</td>
<td>4.5</td>
<td>((3, 3, 0))</td>
</tr>
<tr>
<td>((1, 1, \frac{5}{2}))</td>
<td>4.2</td>
<td>((5, 3, 0))</td>
</tr>
</tbody>
</table>

40. Estimate the line integrals of \(f(x, y) \) and \(\mathbf{F}(x, y) \) along the quarter circle (oriented counterclockwise) in Figure 18 using the values at the three sample points along each path.

<table>
<thead>
<tr>
<th>Point</th>
<th>(f(x, y))</th>
<th>(\mathbf{F}(x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>1</td>
<td>((1, 2))</td>
</tr>
<tr>
<td>(B)</td>
<td>-2</td>
<td>((1, 3))</td>
</tr>
<tr>
<td>(C)</td>
<td>4</td>
<td>((-2, 4))</td>
</tr>
</tbody>
</table>

41. Determine whether the line integrals of the vector fields around the circle (oriented counterclockwise) in Figure 19 are positive, negative, or zero.

42. Determine whether the line integrals of the vector fields along the oriented curves in Figure 20 are positive or negative.

43. Calculate the total mass of a circular piece of wire of radius 4 cm centered at the origin whose mass density is \(\delta(x, y) = x^2 \) g/cm.
44. Calculate the total mass of a metal tube in the helical shape
\(\mathbf{r}(t) = (\cos t, \sin t, t^3) \) (distance in centimeters) for \(0 \leq t \leq 2\pi \) if the mass density is \(\delta(x, y, z) = \sqrt{x^2 + y^2} \) g/cm.

45. Find the total charge on the curve \(y = x^{4/3} \) for \(1 \leq x \leq 8 \) (in centimeters) assuming a charge density of \(\delta(x, y) = x/y \) (in units of \(10^{-6} \) C/cm).

46. Find the total charge on the curve \(\mathbf{r}(t) = (\sin t, \cos t, \sin^2 t) \) in centimeters for \(0 \leq t \leq \pi/8 \) assuming a charge density of \(\delta(x, y, z) = xy(y^2 - z) \) (in units of \(10^{-6} \) C/cm).

In Exercises 47–50, use Eq. (6) to compute the electric potential \(V(\mathbf{P}) \) at the point \(\mathbf{P} \) for the given charge density (in units of \(10^{-6} \) C).

47. Calculate \(V(\mathbf{P}) \) at \(\mathbf{P} = (0, 0, 12) \) if the electric charge is distributed along the quarter circle of radius 4 centered at the origin with charge density \(\delta(x, y, z) = xy \).

48. Calculate \(V(\mathbf{P}) \) at the origin \(\mathbf{P} = (0, 0) \) if the negative charge is distributed along \(y = x^2 \) for \(1 \leq x \leq 2 \) with charge density \(\delta(x, y) = -y\sqrt{x^2 + 1} \).

49. Calculate \(V(\mathbf{P}) \) at \(\mathbf{P} = (2, 0, 2) \) if the negative charge is distributed along the \(y \)-axis for \(1 \leq y \leq 3 \) with charge density \(\delta(x, y, z) = -y \).

50. Calculate \(V(\mathbf{P}) \) at the origin \(\mathbf{P} = (0, 0) \) if the electric charge is distributed along \(y = x^{-1} \) for \(1/2 \leq x \leq 2 \) with charge density \(\delta(x, y) = x^3y \).

51. Calculate the work done by a field \(\mathbf{F} = (x + y, x - y) \) when an object moves from \((0, 0)\) to \((1, 1)\) along each of the paths \(y = x^2 \) and \(x = y^2 \).

In Exercises 52–54, calculate the work done by the field \(\mathbf{F} \) when the object moves along the given path from the initial point to the final point.

52. \(\mathbf{F}(x, y, z) = (x, y, z), \mathbf{r} = (\cos t, \sin t, t) \) for \(0 \leq t \leq 3\pi \).

53. \(\mathbf{F}(x, y, z) = (xy, yz, xz), \mathbf{r} = (t, t^2, t^3) \) for \(0 \leq t \leq 1 \).

54. \(\mathbf{F}(x, y, z) = (x^2, xy, x), \mathbf{r} = (t^2, t, 2t) \) for \(0 \leq t \leq 1 \).

55. Figure 21 shows a force field \(\mathbf{F} \).
(a) Over which of the two paths, \(ABC \) or \(A \), \(B \), \(C \), \(D \), does \(\mathbf{F} \) perform less work?
(b) If you have to work against \(\mathbf{F} \) to move an object from \(C \) to \(A \), which of the paths, \(CBA \) or \(CDA \), requires less work?

56. Verify that the work performed along the segment \(\overline{PQ} \) by the constant vector field \(\mathbf{F} = (2, -1, 4) \) is equal to \(\mathbf{F} \cdot \overline{PQ} \) in these cases:
(a) \(P = (0, 0, 0), Q = (4, 3, 5) \)
(b) \(P = (3, 2, 3), Q = (4, 8, 12) \)

57. Show that work performed by a constant force field \(\mathbf{F} \) over any path \(\mathcal{C} \) from \(P \) to \(Q \) is equal to \(\mathbf{F} \cdot \overline{PQ} \).

58. Note that a curve \(\mathcal{C} \) in polar form \(r = f(\theta) \) is parametrized by \(\mathbf{r}(\theta) = (f(\theta) \cos \theta, f(\theta) \sin \theta) \) because the \(x \)- and \(y \)-coordinates are given by \(x = r \cos \theta \) and \(y = r \sin \theta \).
(a) Show that \(||\mathbf{r}'(\theta)|| = \sqrt{f'(\theta)^2 + f'(\theta)^2} \).
(b) Evaluate \(\int_{\mathcal{C}} (x - y)^2 \, ds \), where \(\mathcal{C} \) is the semicircle in Figure 22 with polar equation \(r = 2 \cos \theta \), \(0 \leq \theta \leq \pi/2 \).

![Figure 22](image)

59. Charge is distributed along the spiral with polar equation \(r = \theta \) for \(0 \leq \theta \leq 2\pi \). The charge density is \(\delta(r, \theta) = r \) (assume distance is in centimeters and charge in units of \(10^{-6} \) C/cm). Use the result of Exercise 58(a) to compute the total charge.

In Exercises 60–63, let \(\mathbf{F} \) be the vortex field (so-called because it swirls around the origin as in Figure 23):
\[
\mathbf{F}(x, y) = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right)
\]

60. Calculate \(I = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \), where \(\mathcal{C} \) is the circle of radius 2 centered at the origin. Verify that \(I \) changes sign when \(\mathcal{C} \) is oriented in the clockwise direction.

61. Show that the value of \(\int_{\mathcal{C}_R} \mathbf{F} \cdot d\mathbf{r} \), where \(\mathcal{C}_R \) is the circle of radius \(R \) centered at the origin and oriented counterclockwise, does not depend on \(R \).

![Figure 23](image)

62. Let \(a > 0, b < c \). Show that the integral of \(\mathbf{F} \) along the segment [Figure 24(A)] from \(P = (a, b) \) to \(Q = (a, c) \) is equal to the angle \(\angle P O Q \).

63. Let \(\mathcal{C} \) be a curve in polar form \(r = f(\theta) \) for \(\theta_1 \leq \theta \leq \theta_2 \) [Figure 24(B)], parametrized by \(\mathbf{r}(\theta) = (f(\theta) \cos \theta, f(\theta) \sin \theta) \) as in Exercise 58.
(a) Show that the vortex field in polar coordinates is written \(\mathbf{F}(r, \theta) = r^{-1}(-\sin \theta, \cos \theta) \).
(b) Show that \(\mathbf{F} \cdot r'(\theta) \, d\theta = d\theta \).

(c) Show that \(\int_{C} \mathbf{F} \cdot d\mathbf{r} = \theta_{2} - \theta_{1} \).

Figure 24

In Exercises 64–67, use Eq. (10) to calculate the flux of the vector field across the curve specified.

Further Insights and Challenges

69. Let \(\mathbf{F}(x, y) = (x, 0) \). Prove that if \(C \) is any path from \((a, b)\) to \((c, d)\), then

\[
\int_{C} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{2}(c^{2} - a^{2})
\]

70. Let \(\mathbf{F}(x, y) = (y, x) \). Prove that if \(C \) is any path from \((a, b)\) to \((c, d)\), then

\[
\int_{C} \mathbf{F} \cdot d\mathbf{r} = cd - ab
\]

71. We wish to define the **average value** \(\text{Av}(f) \) of a continuous function \(f \) along a curve \(C \) of length \(L \). Divide \(C \) into \(N \) consecutive arcs \(C_{1}, \ldots, C_{N} \), each of length \(L/N \), and let \(P_{i} \) be a sample point in \(C_{i} \) (Figure 25). The sum

\[
\frac{1}{N} \sum_{i=1}^{N} f(P_{i})
\]

may be considered an approximation to \(\text{Av}(f) \), so we define

\[
\text{Av}(f) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} f(P_{i})
\]

Prove that

\[
\text{Av}(f) = \frac{1}{L} \int_{C} f(x, y, z) \, ds
\]

Hint: Show that \(\frac{L}{N} \sum_{i=1}^{N} f(P_{i}) \) is a Riemann sum approximation to the line integral of \(f \) along \(C \).

72. Use Eq. (11) to calculate the average value of \(f(x, y) = x - y \) along the segment from \(P = (2, 1) \) to \(Q = (5, 5) \).

73. Use Eq. (11) to calculate the average value of \(f(x, y) = x \) along the curve \(y = x^{2} \) for \(0 \leq x \leq 1 \).

74. The temperature (in degrees centigrade) at a point \(P \) on a circular wire of radius 2 cm centered at the origin is equal to the square of the distance from \(P \) to \(P_{0} = (2, 0) \). Compute the average temperature along the wire.

75. The value of a scalar line integral does not depend on the choice of parametrization (because it is defined without reference to a parametrization). Prove this directly. That is, suppose that \(r_{1}(t) \) and \(r_{2}(t) \) are two parametrizations such that \(r_{1}(t) = r_{2}(\phi(t)) \), where \(\phi(t) \) is an increasing function. Use the Change of Variables Formula to verify that

\[
\int_{c}^{d} f(r_{1}(t)) \|r'_{1}(t)\| \, dt = \int_{a}^{b} f(r_{2}(t)) \|r'_{2}(t)\| \, dt
\]

where \(a = \phi(c) \) and \(b = \phi(d) \).

17.3 Conservative Vector Fields

In this section, we study conservative vector fields in greater depth. When the curve \(C \) is closed, we often refer to the line integral as the **circulation** of \(\mathbf{F} \) around \(C \) (Figure 1) and denote it with the symbol \(\oint \):

\[
\oint_{C} \mathbf{F} \cdot d\mathbf{r}
\]
It actually does not matter what point we take as the starting point when we have a closed curve. If we start at point A, the circulation as we travel around the curve back to A is the sum of the line integral as we travel from A to B and the line integral as we travel from B back to A, but switching the order of these two, that is, the circulation starting at B and returning to B.

Our first result establishes the fundamental path independence of conservative vector fields, which means that the line integral of \mathbf{F} along a path from P to Q depends only on the endpoints P and Q, not on the particular path followed (Figure 2).

Theorem 1 Fundamentals Theorem for Conservative Vector Fields

Assume that $\mathbf{F} = \nabla f$ on a domain D.

1. If \mathbf{r} is a path along a curve C from P to Q in D, then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = f(Q) - f(P)$$

In particular, \mathbf{F} is path-independent.

2. The circulation around a closed curve C (i.e., $P = Q$) is zero:

$$\oint_C \mathbf{F} \cdot d\mathbf{r} = 0$$

Proof Let $\mathbf{r}(t)$ be a path along the curve C in D for $a \leq t \leq b$ with $\mathbf{r}(a) = P$ and $\mathbf{r}(b) = Q$. Then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C \nabla f \cdot d\mathbf{r} = \int_a^b \nabla f(\mathbf{r}(t)) \cdot r'(t) \, dt$$

However, by the Chain Rule for Paths (Theorem 2 in Section 15.5),

$$\frac{d}{dt} f(\mathbf{r}(t)) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)$$

Thus, we can apply the Fundamental Theorem of Calculus:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \frac{d}{dt} f(\mathbf{r}(t)) \, dt = f(\mathbf{r}(b)) - f(\mathbf{r}(a)) = f(Q) - f(P)$$

This proves Eq. (1). It also proves path independence, because the quantity $f(Q) - f(P)$ depends on the endpoints but not on the path \mathbf{r}. If \mathbf{r} is a closed path, then $P = Q$ and $f(Q) = f(P) = 0$.

Example 1 Let $\mathbf{F}(x, y, z) = \{2xy + z, x^2, x\}$.

(a) Verify that $f(x, y, z) = x^2y + xz$ is a potential function.

(b) Evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is a curve from $P = (1, -1, 2)$ to $Q = (2, 2, 3)$.

Solution (a) The partial derivatives of $f(x, y, z) = x^2y + xz$ are the components of \mathbf{F}:

$$\frac{\partial f}{\partial x} = 2xy + z, \quad \frac{\partial f}{\partial y} = x^2, \quad \frac{\partial f}{\partial z} = x$$

Therefore, $\nabla f = (2xy + z, x^2, x) = \mathbf{F}$.

(b) By Theorem 1, the line integral over any path $\mathbf{r}(t)$ from $P = (1, -1, 2)$ to $Q = (2, 2, 3)$ (Figure 3) has the value
\[\int_C \mathbf{F} \cdot d\mathbf{r} = f(Q) - f(P) \]
\[= f(2, 2, 3) - f(1, -1, 2) \]
\[= \left(2^2(2) + 2(3)\right) - \left(1^2(-1) + 1(2)\right) = 13 \]

\[\textbf{Example 2} \] Find a potential function for \(\mathbf{F} = (2x + y, x) \) and use it to evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{r} \) is any path (Figure 4) from \((1, 2)\) to \((5, 7)\).

\textbf{Solution} \quad \text{We will develop a general method for finding potential functions. At this point, we can see that} \(f(x, y) = x^2 + xy \) \text{ satisfies} \(\nabla f = \mathbf{F} : \)
\[\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^2 + xy) = 2x + y, \quad \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}(x^2 + xy) = x \]

Therefore, for any path \(\mathbf{r} \) from \((1, 2)\) to \((5, 7)\),
\[\int_C \mathbf{F} \cdot d\mathbf{r} = f(5, 7) - f(1, 2) = (5^2 + 5(7)) - (1^2 + 1(2)) = 57 \]

\[\textbf{Example 3} \quad \text{Integral Around a Closed Path} \]

Let \(f(x, y, z) = xy \sin(yz) \). Evaluate \(\int_C \nabla f \cdot d\mathbf{r} \), where \(C \) is the closed curve in Figure 5.

\textbf{Solution} \quad \text{By Theorem 1, the integral of a gradient vector around any closed path is zero. In other words,} \(\int_C \nabla f \cdot d\mathbf{r} = 0 \).

\[\textbf{Conceptual Insight} \quad \text{A good way to think about path independence is in terms of the contour map of the potential function.} \]

Consider a vector field \(\mathbf{F} = \nabla f \) in the plane (Figure 6). The level curves of \(f \) are called \textit{equipotential curves}, and the value \(f(P) \) is called the potential at \(P \).

When we integrate \(\mathbf{F} \) along a path \(\mathbf{r}(t) \) from \(P \) to \(Q \), the integrand is
\[\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \]

Now recall that by the Chain Rule for paths,
\[\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t)) = \frac{d}{dt}f(\mathbf{r}(t)) \]

In other words, the integrand is the rate at which the potential changes along the path, and thus, the integral itself is the net change in potential:
\[\int_C \mathbf{F} \cdot d\mathbf{r} = \frac{f(Q) - f(P)}{\text{Net change in potential}} \]

So, informally speaking, what the line integral does is count the net number of equipotential curves crossed as you move along any path \(P \) to \(Q \). By “net number” we mean that crossings in the opposite direction are counted with a minus sign. This net number is independent of the particular path.

We can also interpret the line integral in terms of the graph of the potential function \(z = f(x, y) \). The line integral computes the change in height as we move up the surface (Figure 7). Again, this change in height does not depend on the path from \(P \) to \(Q \). Of course, these interpretations apply only to conservative vector fields—otherwise, there is no potential function.
You might wonder whether there exist any path-independent vector fields other than the conservative ones. The answer is no. By the next theorem, a path-independent vector field is necessarily conservative.

THEOREM 2 A vector field \mathbf{F} on an open connected domain \mathcal{D} is path-independent if and only if it is conservative.

Proof We have already shown that conservative vector fields are path-independent. So, we assume that \mathbf{F} is path-independent and prove that \mathbf{F} has a potential function.

To simplify the notation, we treat the case of a planar vector field $\mathbf{F} = (F_1, F_2)$. The proof for vector fields in \mathbb{R}^3 is similar. Choose a point P_0 in \mathcal{D}, and for any point $P = (x, y) \in \mathcal{D}$, define

$$f(P) = f(x, y) = \int_C \mathbf{F} \cdot d\mathbf{r}$$

where \mathbf{r} is any path in \mathcal{D} from P_0 to P (Figure 8). Note that this definition of $f(P)$ is meaningful only because we assume that the line integral does not depend on the path \mathbf{r}.

We will prove that $\mathbf{F} = \nabla f$, which involves showing that $\frac{\partial f}{\partial x} = F_1$ and $\frac{\partial f}{\partial y} = F_2$.

We will only verify the first equation, as the second can be checked in a similar manner. Let \mathbf{r}_1 be the horizontal path $\mathbf{r}_1(t) = (x + t, y)$ for $0 \leq t \leq h$. For $|h|$ small enough, \mathbf{r}_1 lies inside \mathcal{D}. Let $\mathbf{r} + \mathbf{r}_1$ denote the path \mathbf{r} followed by \mathbf{r}_1. It begins at P_0 and ends at $(x + h, y)$, so

$$f(x + h, y) - f(x, y) = \int_{\mathbf{r} + \mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} - \int_{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r}$$

$$= \left(\int_{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} + \int_{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} \right) - \int_{\mathbf{r}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r}$$

The path \mathbf{r}_1 has tangent vector $\mathbf{r}_1'(t) = (1, 0)$, so

$$\mathbf{F}(\mathbf{r}_1(t)) \cdot \mathbf{r}_1'(t) = (F_1(x + t, y), F_2(x + t, y)) \cdot (1, 0) = F_1(x + t, y)$$

$$f(x + h, y) - f(x, y) = \int_{\mathbf{r}_1} \mathbf{F} \cdot d\mathbf{r} = \int_0^h F_1(x + t, y) \, dt$$

Using the substitution $u = x + t$, we have

$$\frac{f(x + h, y) - f(x, y)}{h} = \frac{1}{h} \int_0^h F_1(x + t, y) \, dt = \frac{1}{h} \int_x^{x + h} F_1(u, y) \, du$$

The integral on the right is the average value of $F_1(u, y)$ over the interval $[x, x + h]$. It converges to the value $F_1(x, y)$ as $h \to 0$, and this yields the desired result:

$$\frac{\partial f}{\partial x} = \lim_{h \to 0} \frac{f(x + h, y) - f(x, y)}{h} = \lim_{h \to 0} \frac{1}{h} \int_x^{x + h} F_1(u, y) \, du = F_1(x, y)$$

Conservative Fields in Physics

The Conservation of Energy principle says that the sum $KE + PE$ of kinetic and potential energy remains constant in an isolated system. For example, a falling object picks up kinetic energy as it falls to Earth, but this gain in kinetic energy is offset by a loss in gravitational potential energy (g times the change in height), such that the sum $KE + PE$ remains unchanged.

We show now that conservation of energy is valid for the motion of a particle of mass m under a force field \mathbf{F} if \mathbf{F} has a potential function. This explains why the term “conservative” is used to describe vector fields that have a potential function.

We follow the convention in physics of writing the potential function with a minus sign and using V rather than f:

$$\mathbf{F} = -\nabla V$$
Potential functions first appeared in 1774 in the writings of Jean-Louis Lagrange (1736–1813). One of the greatest mathematicians of his time, Lagrange made fundamental contributions to physics, analysis, algebra, and number theory. He was born in Turin, Italy, to a family of French origin but spent most of his career first in Berlin and then in Paris. After the French Revolution, Lagrange was required to teach courses in elementary mathematics, but apparently he spoke above the heads of his audience. A contemporary wrote, “Whatever this great man says deserves the highest degree of consideration, but he is too abstract for youth.”

When the particle is located at \(P = (x, y, z) \), it is said to have potential energy \(V(P) \). Suppose that the particle moves along a path \(r(t) \). The particle’s velocity is \(v = r'(t) \), and its kinetic energy is \(KE = \frac{1}{2}m \| v \|^2 = \frac{1}{2}m v \cdot v \). By definition, the total energy at time \(t \) is the sum

\[
E = KE + PE = \frac{1}{2}m v \cdot v + V(r(t))
\]

Theorem 3 Conservation of Energy
The total energy \(E \) of a particle moving under the influence of a conservative force field \(F = -\nabla V \) is constant in time. That is, \(\frac{dE}{dt} = 0 \).

Proof Let \(a = v'(t) \) be the particle’s acceleration and \(m \) its mass. According to Newton’s Second Law of Motion, \(F(r(t)) = ma(t) \), and thus,

\[
\frac{dE}{dt} = \frac{d}{dt} \left(\frac{1}{2}m v \cdot v + V(r(t)) \right)
\]

\[
= \frac{1}{2} m \left(\frac{dv}{dt} \cdot v + v \cdot \frac{dv}{dt} \right) + \nabla V(r(t)) \cdot r'(t) \quad \text{(Product and Chain Rules)}
\]

\[
= mv \cdot a + \nabla V(r(t)) \cdot r'(t)
\]

\[
= v \cdot ma - F \cdot v \quad \text{(since } F = -\nabla V \text{ and } r'(t) = v) \]

\[
= v \cdot (ma - F) = 0 \quad \text{(since } F = ma) \]

In Example 8 of Section 17.1, we verified that inverse-square vector fields are conservative:

\[
F = k \frac{e_r}{r^2} = -\nabla f \quad \text{with} \quad f = \frac{k}{r}
\]

Basic examples of inverse-square vector fields are the gravitational and electrostatic forces due to a point mass or charge. By convention, these fields have units of force per unit mass or unit charge. Thus, if \(F \) is a gravitational field, the force on a particle of mass \(m \) is \(mF \) and its potential energy is \(mf \), where \(F = -\nabla f \).

Example 4 Work Against Gravity
Compute the work \(W \) against the earth’s gravitational field required to move a satellite of mass \(m = 600 \text{ kg} \) along any path from an orbit of altitude 2000 km to an orbit of altitude 4000 km.

Solution The earth’s gravitational field is the inverse-square field

\[
F = -k \frac{e_r}{r^2} = -\nabla f, \quad f = -\frac{k}{r}
\]

where \(r \) is the distance from the center of the earth and \(k = 4 \cdot 10^{14} \) (see marginal note). The radius of the earth is approximately \(6.4 \cdot 10^6 \) meters, so the satellite must be moved from \(r = 8.4 \cdot 10^6 \) meters to \(r = 10.4 \cdot 10^6 \) meters. The force on the satellite is \(mF = 600F \), and the work \(W \) required to move the satellite along a path \(r \) is

\[
W = -\int_{r_1}^{r_2} mF \cdot dr = 600 \int_{r_1}^{r_2} \nabla f \cdot dr
\]

\[
= -600k \left[\frac{10.4 \times 10^6}{8.4 \times 10^6} \right] \]

\[
\approx -2.4 \cdot 10^{17} + 2.4 \cdot 10^{17} \approx 5.5 \cdot 10^9 \text{ joules}
\]
An electron moving in an electric field.

\[E = \frac{1}{2} m_e v_0^2 + q_e V(0) = \frac{1}{2} m_e v^2 + q_e V(2) \]

Since \(V(0) = 0 \), we obtain
\[\frac{1}{2} m_e v_0^2 = \frac{1}{2} m_e v^2 + q_e V(2) \Rightarrow v = \sqrt{v_0^2 - 2(q_e/m_e)V(2)} \]

Using the numerical value of \(q_e/m_e \), we have
\[v \approx \sqrt{10^{14} - 2(-1.76 \cdot 10^{11})(-50(2)^2)} \approx \sqrt{2.96 \cdot 10^{13}} \approx 5.4 \cdot 10^6 \text{ m/s} \]

Note that the velocity has decreased. This is because \(E \) exerts a force in the negative \(x \)-direction on a negative charge.

Finding Potential Functions

We do not yet have an effective way of telling whether a given vector field is conservative. By Theorem 1 in Section 17.1, every conservative vector field satisfies the condition

\[\text{curl}(\mathbf{F}) = 0, \quad \text{or equivalently,} \quad \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial z}, \quad \frac{\partial F_2}{\partial x} = \frac{\partial F_3}{\partial y}, \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z} \]

But does this condition guarantee that \(\mathbf{F} \) is conservative? The answer is a qualified yes; the cross-partial condition does guarantee that \(\mathbf{F} \) is conservative, but only on domains \(D \) with a property called simple connectedness.

Roughly speaking, a domain \(D \) in the plane is simply connected if it is connected and it does not have any “holes” (Figure 10). More precisely, \(D \) is simply connected if every loop in \(D \) can be drawn down, or “contracted,” to a point while staying within \(D \) as in Figure 11(A). Examples of simply connected regions in \(\mathbb{R}^2 \) are disks, rectangles, and the entire plane \(\mathbb{R}^2 \). By contrast, the disk with a point removed in Figure 11(B) is not simply connected: The loop cannot be drawn down to a point without passing through the point that was removed. In \(\mathbb{R}^3 \), the interiors of balls and boxes are simply connected, as is the entire space \(\mathbb{R}^3 \).
THEOREM 4 Existence of a Potential Function

Let F be a vector field on a simply connected domain D. If F satisfies the cross-partial condition (2), then F is conservative.

Rather than prove Theorem 4, we illustrate a practical procedure for finding a potential function when the cross-partial condition is satisfied. The proof itself involves Stokes’ Theorem and is somewhat technical because of the role played by the simply-connected property of the domain.

EXAMPLE 6 Finding a Potential Function

Show that

$$F = \langle 2xy + y^3, x^2 + 3xy^2 + 2y \rangle$$

is conservative and find a potential function.

Solution First we observe that the cross-partial derivatives are equal:

$$\frac{\partial F_1}{\partial y} = \frac{\partial}{\partial y}(2xy + y^3) = 2x + 3y^2$$

$$\frac{\partial F_2}{\partial x} = \frac{\partial}{\partial x}(x^2 + 3xy^2 + 2y) = 2x + 3y^2$$

Furthermore, F is defined on all of \mathbb{R}^2, which is a simply connected domain. Therefore, a potential function exists by Theorem 4.

Now, the potential function f satisfies

$$\frac{\partial f}{\partial x} = F_1(x, y) = 2xy + y^3$$

This tells us that f is an antiderivative of $F_1(x, y)$, regarded as a function of x alone:

$$f(x, y) = \int F_1(x, y) \, dx$$

$$= \int (2xy + y^3) \, dx$$

$$= x^2y + xy^3 + g(y)$$

Note that to obtain the general antiderivative of $F_1(x, y)$ with respect to x, we must add on an arbitrary function $g(y)$ depending on y alone, rather than the usual constant of integration. Similarly, we have

$$f(x, y) = \int F_2(x, y) \, dy$$

$$= \int (x^2 + 3xy^2 + 2y) \, dy$$

$$= x^2y + xy^3 + y^2 + h(x)$$

The two expressions for $f(x, y)$ must be equal:

$$x^2y + xy^3 + g(y) = x^2y + xy^3 + y^2 + h(x)$$

This tells us that $g(y) = y^2$ and $h(x) = 0$, up to the addition of an arbitrary numerical constant C. Thus, we obtain the general potential function

$$f(x, y) = x^2y + xy^3 + y^2 + C$$

The same method works for vector fields in 3-space.
Example 7 Find a potential function for
\[\mathbf{F} = (2xyz^{-1}, z + x^2z^{-1}, y - x^2yz^{-2}) \]

Solution If a potential function exists, then it satisfies
\[f(x, y, z) = \int 2xyz^{-1} \, dx = x^2yz^{-1} + f(y, z) \]
\[f(x, y, z) = \int (z + x^2z^{-1}) \, dy = zy + x^2z^{-1}y + g(x, z) \]
\[f(x, y, z) = \int (y - x^2yz^{-2}) \, dz = yz + x^2yz^{-1} + h(x, y) \]

These three ways of writing \(f(x, y, z) \) must be equal:
\[x^2yz^{-1} + f(y, z) = zy + x^2z^{-1}y + g(x, z) = yz + x^2yz^{-1} + h(x, y) \]

These equalities hold if \(f(y, z) = zy, g(x, z) = 0, \) and \(h(x, y) = 0. \) Thus, \(\mathbf{F} \) is conservative and, for any constant \(C, \) a potential function is
\[f(x, y, z) = x^2yz^{-1} + yz + C \]

Assumptions Matter We cannot expect the method for finding a potential function to work if \(\mathbf{F} \) does not satisfy the cross-partial condition (because in this case, no potential function exists). What goes wrong? Consider \(\mathbf{F} = (y, 0). \) If we attempted to find a potential function, we would calculate
\[f(x, y) = \int y \, dx = xy + g(y) \]
\[f(x, y) = \int 0 \, dy = 0 + h(x) \]

However, there is no choice of \(g(y) \) and \(h(x) \) for which \(xy + g(y) = h(x) \). If there were, we could differentiate this equation twice, once with respect to \(x \) and once with respect to \(y. \) This would yield \(1 = 0, \) which is a contradiction. The method fails in this case because \(\mathbf{F} \) does not satisfy the cross-partial condition and thus is not conservative.

The Vortex Field

Why does Theorem 4 require that the domain is simply connected? This is an interesting question that we can answer by examining the vortex field (Figure 12):
\[\mathbf{F} = \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}, \frac{1}{x^2 + y^2} \right) \]

Example 8 Show that the vortex field satisfies the cross-partial condition but is not conservative. Does this contradict Theorem 4?

Solution We check the cross-partial condition directly:
\[\frac{\partial}{\partial x} \left(\frac{x}{x^2 + y^2} \right) = \frac{(x^2 + y^2) - x(\partial/\partial x)(x^2 + y^2)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \]
\[\frac{\partial}{\partial y} \left(\frac{-y}{x^2 + y^2} \right) = \frac{-x^2 + y^2 + y(\partial/\partial y)(x^2 + y^2)}{(x^2 + y^2)^2} = \frac{y^2 - x^2}{(x^2 + y^2)^2} \]
The potential function \(f(x, y) \) takes the value \(\theta \) at \((x, y)\).

Using the Chain Rule and the formula
\[
\frac{d}{dt} \tan^{-1} t = \frac{1}{1 + t^2}
\]
we can check that when \(x \neq 0 \), \(\mathbf{F} = \nabla f \):
\[
\frac{\partial \theta}{\partial x} = \frac{\partial}{\partial x} \tan^{-1} \frac{y}{x} = -\frac{y/x^2}{1 + (y/x)^2} = -\frac{y}{x^2 + y^2}
\]
\[
\frac{\partial \theta}{\partial y} = \frac{\partial}{\partial y} \tan^{-1} \frac{y}{x} = \frac{1/x}{1 + (y/x)^2} = \frac{x}{x^2 + y^2}
\]

Now consider the line integral of \(\mathbf{F} \) around the unit circle \(C \) parametrized by \(\mathbf{r}(t) = (\cos t, \sin t) \):
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_0^{2\pi} f(x, y) \, dt = 2\pi \neq 0 \tag{3}
\]

If \(\mathbf{F} \) were conservative, its circulation around every closed curve would be zero by Theorem 1. Thus, \(\mathbf{F} \) cannot be conservative, even though it satisfies the cross-partial condition.

This result does not contradict Theorem 4 because the domain of \(\mathbf{F} \) does not satisfy the simply connected condition of the theorem. Because \(\mathbf{F} \) is not defined at \((x, y) = (0, 0)\), its domain is \(D = \{(x, y) \neq (0, 0)\} \), and this domain is not simply connected (Figure 13).

CONCEPTUAL INSIGHT Although the vortex field \(\mathbf{F} \) is not conservative on its domain, it is conservative on any smaller, simply connected domain, such as the upper half-plane \((x, y) : y > 0\). In fact, we can show (see the marginal note) that \(\mathbf{F} = \nabla f \), where
\[
f(x, y) = \theta = \tan^{-1} \frac{y}{x} \quad \text{when} \quad x \neq 0
\]

Since \(\tan^{-1} \frac{y}{x} \) yields the angle \(\theta \) of the point \((x, y)\) in polar coordinates, we can extend the definition of \(f(x, y) \) to be \(f(x, y) = \theta \), which even holds for points with \(x = 0 \), with the origin being the only exception (Figure 14). (But keep in mind that \(\theta \) is only defined up to \(2\pi \).)

The line integral of \(\mathbf{F} \) along a path \(\mathbf{r} \) is equal to the change in potential \(\theta \) along the path [Figures 15(A) and (B)]:
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \theta_2 - \theta_1 = \text{the change in angle } \theta \text{ along } \mathbf{r}
\]

Now we can see what is preventing \(\mathbf{F} \) from being conservative on all of its domain. As we just mentioned, the angle \(\theta \) is defined only up to integer multiples of \(2\pi \). The angle along a path that goes all the way around the origin does not return to its original value but rather increases by \(2\pi \). This explains why the line integral around the unit circle (Eq. 3) is \(2\pi \) rather than 0. And it shows that \(\mathbf{F} \) cannot be defined as a continuous function on the entire domain \(D \). However, \(\theta \) is continuous on any domain that does not enclose the origin, and on such domains we have \(\mathbf{F} = \nabla \theta \).

In general, if a closed path \(\mathbf{r} \) winds around the origin \(n \) times (where \(n \) is negative if the curve winds in the clockwise direction), then [Figures 15(C) and (D)]
\[
\int_C \mathbf{F} \cdot d\mathbf{r} = 2\pi n
\]

The number \(n \) is called the *winding number* of the path. It plays an important role in the mathematical field of topology.
17.3 SUMMARY

- A vector field \(\mathbf{F} \) on a domain \(D \) is conservative if there exists a function \(f \) such that \(\nabla f = \mathbf{F} \) on \(D \). The function \(f \) is called a potential function of \(\mathbf{F} \).
- A vector field \(\mathbf{F} \) on a domain \(D \) is called path-independent if for any two points \(P, Q \in D \), we have
 \[
 \int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}
 \]
 for any two paths \(C_1 \) and \(C_2 \) in \(D \) from \(P \) to \(Q \).
- The Fundamental Theorem for Conservative Vector Fields: If \(\mathbf{F} = \nabla f \), then
 \[
 \int \mathbf{F} \cdot d\mathbf{r} = f(Q) - f(P)
 \]
 for any path \(\mathbf{r} \) from \(P \) to \(Q \) in the domain of \(\mathbf{F} \). This shows that conservative vector fields are path-independent. In particular, if \(\mathbf{r} \) is a closed path \((P = Q) \), then
 \[
 \oint \mathbf{F} \cdot d\mathbf{r} = 0
 \]
- The converse is also true: On an open, connected domain, a path-independent vector field is conservative.
- Conservative vector fields satisfy the cross-partial condition
 \[
 \frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial z}, \quad \frac{\partial F_2}{\partial x} = \frac{\partial F_1}{\partial y}, \quad \frac{\partial F_3}{\partial x} = \frac{\partial F_1}{\partial z}
 \]
 \[\text{4}\]
- Equality of the cross partials guarantees that \(\mathbf{F} \) is conservative if the domain \(D \) is simply connected—that is, if any loop in \(D \) can be drawn down to a point within \(D \).

17.3 EXERCISES

Preliminary Questions

1. The following statement is false. If \(\mathbf{F} \) is a gradient vector field, then the line integral of \(\mathbf{F} \) along every curve is zero. Which single word must be added to make it true?
2. Which of the following statements are true for all vector fields, and which are true only for conservative vector fields?
 (a) The line integral along a path from \(P \) to \(Q \) does not depend on which path is chosen.
 (b) The line integral over an oriented curve \(\mathcal{C} \) does not depend on how \(\mathcal{C} \) is parametrized.
 (c) The line integral around a closed curve is zero.
 (d) The line integral changes sign if the orientation is reversed.
 (e) The line integral is equal to the difference of a potential function at the two endpoints.
 (f) The line integral is equal to the integral of the tangential component along the curve.
 (g) The cross partials of the components are equal.
3. Let \(\mathbf{F} \) be a vector field on an open, connected domain \(D \) with continuous second partial derivatives. Which of the following statements are always true, and which are true under additional hypotheses on \(D \)?
 (a) If \(\mathbf{F} \) has a potential function, then \(\mathbf{F} \) is conservative.
 (b) If \(\mathbf{F} \) is conservative, then the cross partials of \(\mathbf{F} \) are equal.
 (c) If the cross partials of \(\mathbf{F} \) are equal, then \(\mathbf{F} \) is conservative.
4. Let \(\mathcal{C} \), \(\mathcal{D} \), and \(\mathcal{E} \) be the oriented curves in Figure 16, and let \(\mathbf{F} = \nabla f \) be a gradient vector field such that \(\int \mathbf{F} \cdot d\mathbf{r} = 4 \). What are the values of the following integrals?
 (a) \(\int_{\mathcal{D}} \mathbf{F} \cdot d\mathbf{r} \)
 (b) \(\int_{\mathcal{E}} \mathbf{F} \cdot d\mathbf{r} \)

![Figure 16](https://via.placeholder.com/150)

Exercises

1. Let \(f(x, y, z) = xy \sin(yz) \) and \(\mathbf{F} = \nabla f \). Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) is any path from \((0, 0, 0)\) to \((1, 1, \pi)\).

2. Let \(\mathbf{F}(x, y, z) = \{x^{-1}, y^{-1}, \ln(xy)\} \).
 (a) Verify that \(\mathbf{F} = \nabla f \), where \(f(x, y, z) = z \ln(xy) \).
 (b) Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(\mathbf{r}(t) = \{e^t, e^{2t}, t^2\} \) for \(1 \leq t \leq 3 \).
 (c) Evaluate \(\int_C \mathbf{F} \cdot d\mathbf{r} \) for any path \(C \) from \(P = (1, 2, 2) \) to \(Q = (2, 2, 3) \) contained in the region \(x > 0, y > 0 \).
 (d) Why is it necessary to specify that the path lies in the region where \(x \) and \(y \) are positive?

3. In Exercises 3–6, verify that \(\mathbf{F} = \nabla f \) and evaluate the line integral of \(\mathbf{F} \) over the given path.

 3. \(\mathbf{F}(x, y) = (3, 6y) \), \(f(x, y) = 3x + 3y^2 \); \(\mathbf{r}(t) = (t, 2t^{-1}) \) for \(1 \leq t \leq 4 \)

 4. \(\mathbf{F}(x, y) = (\cos y - x \sin y) \), \(f(x, y) = x \cos y \); upper half of the unit circle centered at the origin, oriented counterclockwise

 5. \(\mathbf{F}(x, y, z) = ye^x i + xe^y j + xy e^z k \); \(f(x, y, z) = xye^z \); \(\mathbf{r}(t) = (t^2, t^3, t - 1) \) for \(1 \leq t \leq 2 \)

 6. \(\mathbf{F}(x, y, z) = \frac{z}{x} i + j + \ln(x) k \); \(f(x, y, z) = y + z \ln x \); circle \((x - 4)^2 + y^2 = 1\) in the clockwise direction

4. In Exercises 7–16, find a potential function for \(\mathbf{F} \) or determine that \(\mathbf{F} \) is not conservative.

 7. \(\mathbf{F} = (z, 1, x) \)

 8. \(\mathbf{F} = xj + yk \)

 9. \(\mathbf{F} = y^2 i + (2xy + e^z) j + ye^z k \)

 10. \(\mathbf{F} = (y, x, z^3) \)

 11. \(\mathbf{F} = (\cos(xz), \sin(y), x \sin z) \)

 12. \(\mathbf{F} = (\cos z, 2y, -x \sin z) \)

 13. \(\mathbf{F} = (ze^{x^2}, z, y + \tan x) \)

 14. \(\mathbf{F} = (e^x (z + 1), -\cos y, e^x) \)

 15. \(\mathbf{F} = (2xy + 5, x^2 - 4z, -4y) \)

 16. \(\mathbf{F} = (ye^{x^2}, xz e^{xy} - z, e^{xy} - y) \)

5. Evaluate \(\int_C 2xyz \, dx + x^2z \, dy + xy^2 \, dz \)

6. Evaluate \(\int_C \sin x \, dx + z \cos y \, dy + \sin y \, dz \)

7. where \(C \) is the ellipse \(4x^2 + 9y^2 = 36 \), oriented clockwise.

8. In Exercises 19–20, let \(\mathbf{F} = \nabla f \), and determine directly \(\int_C \mathbf{F} \cdot d\mathbf{r} \) for each of the two paths given, showing that they both give the same answer, which is \(f(Q) - f(P) \).

9. \(f = x^2 y - z \); \(r_1 = (t, t, 0) \) for \(0 \leq t \leq 1 \), and \(r_2 = \left(t, t^2, 0\right) \) for \(0 \leq t \leq 1 \)

10. \(f = yz + xy + xz \); \(r_1 = (t, t, t) \) for \(0 \leq t \leq 1 \); \(r_2 = \left(t, t^2, t^3\right) \) for \(0 \leq t \leq 1 \)

11. A vector field \(\mathbf{F} \) and contour lines of a potential function for \(\mathbf{F} \) are shown in Figure 17. Calculate the common value of \(\int_C \mathbf{F} \cdot d\mathbf{r} \) for the curves shown in Figure 17 oriented in the direction from \(P \) to \(Q \).

![FIGURE 17](image)

12. Give a reason why the vector field \(\mathbf{F} \) in Figure 18 is not conservative.

![FIGURE 18](image)

13. Calculate the work expended when a particle is moved from \(O \) to \(Q \) along segments \(OF \) and \(PQ \) in Figure 19 in the presence of the force field \(\mathbf{F} = (x^2, y^2) \). How much work is expended moving in a complete circuit around the square?

![FIGURE 19](image)

14. Let \(\mathbf{F}(x, y) = \left(\frac{1}{x}, \frac{-1}{y}\right) \). Calculate the work against \(\mathbf{F} \) required to move an object from \((1, 1)\) to \((3, 4)\) along any path in the first quadrant.

15. Compute the work \(W \) against the earth’s gravitational field required to move a satellite of mass \(m = 1000 \) kg along any path from an orbit of altitude \(4000 \) km to an orbit of altitude \(6000 \) km.
26. An electric dipole with dipole moment \(\mathbf{p} = 4 \times 10^{-5} \text{ C-m} \) sets up an electric field (in newtons per coulomb)

\[
\mathbf{F}(x, y, z) = \frac{k \mathbf{p}}{r^3} = \frac{k}{3} y z \mathbf{e}_x + \frac{k}{3} x z \mathbf{e}_y + \frac{k}{3} x y \mathbf{e}_z
\]

where \(r = (x^2 + y^2 + z^2)^{1/2} \) with distance in meters and \(k = 8.99 \times 10^9 \text{ N-m}^2/\text{C}^2 \). Calculate the work against \(\mathbf{F} \) required to move a particle of charge \(q = 0.01 \text{ C} \) from \((1, -5, 0)\) to \((3, 4, 4)\). Note: The force on \(q \) is \(q \mathbf{F} \) newtons.

27. On the surface of the earth, the gravitational field (with \(z \) as vertical coordinate measured in meters) is \(\mathbf{F} = (0, 0, -g) \).

(a) Find a potential function for \(\mathbf{F} \).

(b) Beginning at rest, a ball of mass \(m = 2 \text{ kg} \) moves under the influence of gravity (without friction) along a path from \(\mathbf{P} = (3, 2, 400) \) to \(\mathbf{Q} = (-21, 40, 50) \). Find the ball’s velocity when it reaches \(\mathbf{Q} \).

28. An electron at rest at \(\mathbf{P} = (5, 3, 7) \) moves along a path ending at \(\mathbf{Q} = (1, 1, 1) \) under the influence of the electric field (in newtons per coulomb)

\[
\mathbf{F}(x, y, z) = 400(x^2 + z^2)^{-1} \mathbf{e}_x
\]

(a) Find a potential function for \(\mathbf{F} \).

(b) What is the electron’s speed at point \(\mathbf{Q} \)? Use Conservation of Energy and the value \(q_e/m_e = 1.76 \times 10^{11} \text{ C/kg} \), where \(q_e \) and \(m_e \) are the charge and mass on the electron, respectively.

29. Let \(\mathbf{F} = \left(\frac{y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right) \) be the vortex field. Determine \(\int_C \mathbf{F} \cdot d\mathbf{r} \) for each of the paths in Figure 20.

30. The vector field \(\mathbf{F}(x, y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right) \) is defined on the domain \(\mathcal{D} = \{(x, y) \neq (0, 0)\} \).

(a) Is \(\mathcal{D} \) simply connected?

(b) Show that \(\mathbf{F} \) satisfies the cross-partial condition. Does this guarantee that \(\mathbf{F} \) is conservative?

(c) Show that \(\mathbf{F} \) is conservative on \(\mathcal{D} \) by finding a potential function.

(d) Do these results contradict Theorem 4?

Further Insights and Challenges

31. Suppose that \(\mathbf{F} \) is defined on \(\mathbb{R}^3 \) and that \(\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \) for all closed paths \(C \) in \(\mathbb{R}^3 \). Prove:

(a) \(\mathbf{F} \) is path-independent; that is, for any two paths \(C_1 \) and \(C_2 \) in \(\mathcal{D} \) with the same initial and terminal points,

\[
\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} = \oint_{C_2} \mathbf{F} \cdot d\mathbf{r}
\]

(b) \(\mathbf{F} \) is conservative.

17.4 Parametrized Surfaces and Surface Integrals

The basic idea of an integral appears in several guises. So far, we have defined single, double, and triple integrals and, in the previous section, line integrals over curves. Now we consider one last type on integral: integrals over surfaces. We treat scalar surface integrals in this section and vector surface integrals in the following section.

Just as parametrized curves are a key ingredient in the discussion of line integrals, surface integrals require the notion of a parametrized surface—that is, a surface \(\mathcal{S} \) whose points are described in the form

\[
G(u, v) = (x(u, v), y(u, v), z(u, v))
\]

The variables \(u, v \) (called parameters) vary in a region \(\mathcal{D} \) called the parameter domain. Two parameters \(u \) and \(v \) are needed to parametrize a surface because the surface is two-dimensional.

Figure 1 shows a plot of the surface \(\mathcal{S} \) with the parametrization

\[
G(u, v) = (u + v, u^3 - v, v^3 - u)
\]

This surface consists of all points \((x, y, z)\) in \(\mathbb{R}^3 \) such that

\[
x = u + v, \quad y = u^3 - v, \quad z = v^3 - u
\]

for \((u, v)\) in \(\mathcal{D} = \mathbb{R}^2 \).
EXAMPLE 1 Find a parametrization for the cylinder \(x^2 + y^2 = 1 \).

Solution The cylinder of radius 1 with equation \(x^2 + y^2 = 1 \) is conveniently parametrized in cylindrical coordinates (Figure 2). Points on the cylinder have cylindrical coordinates \((1, \theta, z)\), so we use \(\theta \) and \(z \) as parameters.

We obtain
\[
G(\theta, z) = (\cos \theta, \sin \theta, z), \quad 0 \leq \theta < 2\pi, \quad -\infty < z < \infty
\]

Similarly, we obtain the parametrization for any vertical cylinder of radius \(R \), given by \(x^2 + y^2 = R^2 \):

Parametrization of a Cylinder:

\[
G(\theta, z) = (R \cos \theta, R \sin \theta, z), \quad 0 \leq \theta < 2\pi, \quad -\infty < z < \infty
\]

EXAMPLE 2 Find a parametrization for the sphere of radius 2.

Solution The sphere of radius 2 with its center at the origin is parametrized conveniently using spherical coordinates \((\rho, \theta, \phi)\) with \(\rho = 2 \) and each of the \(x, y, \) and \(z \) coordinates given in terms of the equations for them in terms of spherical coordinates (Figure 3).

\[
G(\theta, \phi) = (2 \cos \theta \sin \phi, 2 \sin \theta \sin \phi, 2 \cos \phi), \quad 0 \leq \theta < 2\pi, \quad 0 \leq \phi \leq \pi
\]

More generally, we can parametrize a sphere of radius \(R \) as follows:

Parametrization of a Sphere:

\[
G(\theta, \phi) = (R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi), \quad 0 \leq \theta < 2\pi, \quad 0 \leq \phi \leq \pi
\]

The North and South Poles correspond to \(\phi = 0 \) and \(\phi = \pi \) with any value of \(\theta \) (the function \(G \) fails to be one-to-one at the poles):

North Pole: \(G(\theta, 0) = (0, 0, R) \), \quad South Pole: \(G(\theta, \pi) = (0, 0, -R) \)
CHAPTER 17 LINE AND SURFACE INTEGRALS

As shown in Figure 4, G sends each horizontal segment $\phi = c$ ($0 < c < \pi$) to a latitude (a circle parallel to the equator) and each vertical segment $\theta = c$ to a longitudinal arc from the North Pole to the South Pole.

The simplest situation for generating a parametrization of a surface occurs when the surface is the graph of a function $z = f(x, y)$, as in Figure 5.

Parametrization of a Graph:

$G(x, y) = (x, y, f(x, y))$

In this case, the parameters are x and y.

EXAMPLE 3 Find a parametrization of the paraboloid given by $f(x, y) = x^2 + y^2$.

Solution We can immediately define $G(x, y) = (x, y, x^2 + y^2)$. Then G sends the xy-plane onto the paraboloid.

Most surfaces in which we are interested do not appear as graphs of functions. In this case, we need to find some other parametrization.

EXAMPLE 4 Parametrization of a Cone

Find a parametrization of the portion S of the cone with equation $x^2 + y^2 = z^2$ lying above and below the disk $x^2 + y^2 \leq 4$. Specify the domain D of the parametrization.

Solution Notice as in Figure 6 that this portion of the cone is not the graph of a function since it includes that part of the cone that is above the xy-plane with that part that lies below the xy-plane. However, each point on the cone is uniquely determined by its cylindrical coordinates. Because the cone is given by $z^2 = r^2$, the r-coordinate at any point is determined by the z-coordinate, so it is enough to keep track of its z-coordinate and its θ-coordinate. Letting the parameter u correspond to the z-coordinate, and v correspond to the θ-coordinate, a point on the cone at height u has coordinates $(u \cos v, u \sin v, u)$ for some angle v. Thus, the cone has the parametrization

$G(u, v) = (u \cos v, u \sin v, u)$

Since we are interested in the portion of the cone where $x^2 + y^2 = u^2 \leq 4$, the height variable u satisfies $-2 \leq u \leq 2$. The angular variable v varies in the interval $[0, 2\pi)$, and therefore, the parameter domain is $D = [-2, 2] \times [0, 2\pi)$.

Grid Curves, Normal Vectors, and the Tangent Plane

Suppose that a surface S has a parametrization

$G(u, v) = (x(u, v), y(u, v), z(u, v))$

that is one-to-one on a domain D. We shall always assume that G is continuously differentiable, meaning that the functions $x(u, v)$, $y(u, v)$, and $z(u, v)$ have continuous partial derivatives.
In essence, a parametrization labels each point \(P \) on \(S \) by a unique pair \((u_0, v_0)\) in the parameter domain. We can think of \((u_0, v_0)\) as the “coordinates” of \(P \) determined by the parametrization. They are sometimes called curvilinear coordinates.

FIGURE 7 Grid curves.

In the \(uv\)-plane, we can form a grid of lines parallel to the coordinates axes. These grid lines correspond under \(G \) to a system of grid curves on the surface (Figure 7). More precisely, the horizontal and vertical lines through \((u_0, v_0)\) in the domain correspond to the grid curves \(G(u, v_0) \) and \(G(u_0, v) \) that intersect at the point \(P = G(u_0, v_0) \).

In the \(uv\)-plane, we can form a grid of lines parallel to the coordinates axes. These grid lines correspond under \(G \) to a system of grid curves on the surface (Figure 7). More precisely, the horizontal and vertical lines through \((u_0, v_0)\) in the domain correspond to the grid curves \(G(u, v_0) \) and \(G(u_0, v) \) that intersect at the point \(P = G(u_0, v_0) \).

Now consider the tangent vectors to these grid curves (Figure 8):

For \(G(u, v_0) \): \(\mathbf{T}_u(P) = \frac{\partial G}{\partial u}(u_0, v_0) = \left(\frac{\partial x}{\partial u}(u_0, v_0), \frac{\partial y}{\partial u}(u_0, v_0), \frac{\partial z}{\partial u}(u_0, v_0) \right) \)

For \(G(u_0, v) \): \(\mathbf{T}_v(P) = \frac{\partial G}{\partial v}(u_0, v_0) = \left(\frac{\partial x}{\partial v}(u_0, v_0), \frac{\partial y}{\partial v}(u_0, v_0), \frac{\partial z}{\partial v}(u_0, v_0) \right) \)

The parametrization \(G \) is called regular at \(P \) if the following cross product is nonzero:

\[\mathbf{N}(P) = \mathbf{N}(u_0, v_0) = \mathbf{T}_u(P) \times \mathbf{T}_v(P) \]

In this case, \(\mathbf{T}_u \) and \(\mathbf{T}_v \) span the tangent plane to \(S \) at \(P \) and \(\mathbf{N}(P) \) is a normal vector to the tangent plane. We call \(\mathbf{N}(P) \) a normal to the surface \(S \).

We often write \(\mathbf{N} \) instead of \(\mathbf{N}(P) \) or \(\mathbf{N}(u, v) \), but it is understood that the vector \(\mathbf{N} \) varies from point to point on the surface. Similarly, we often denote the tangent vectors by \(\mathbf{T}_u \) and \(\mathbf{T}_v \). Note that \(\mathbf{T}_u \), \(\mathbf{T}_v \), and \(\mathbf{N} \) need not be unit vectors (thus, the notation here differs from that in Sections 14.4 and 14.5, where \(\mathbf{N} \) denotes a unit vector).

EXAMPLE 5 Consider the parametrization \(G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z) \) of the cylinder \(x^2 + y^2 = 4 \):

(a) Describe the grid curves.
(b) Compute \(\mathbf{T}_\theta, \mathbf{T}_z \), and \(\mathbf{N}(\theta, z) \).
(c) Find an equation of the tangent plane at \(P = G(\frac{\pi}{4}, 5) \).

Solution

(a) The grid curves on the cylinder through \(P = (\theta_0, z_0) \) are (Figure 9)

\(\theta \)-grid curve: \(G(\theta, z_0) = (2 \cos \theta, 2 \sin \theta, z_0) \) (circle of radius 2 at height \(z = z_0 \))

\(z \)-grid curve: \(G(\theta_0, z) = (2 \cos \theta_0, 2 \sin \theta_0, z) \) (vertical line through \(P \) with \(\theta = \theta_0 \))
(b) The partial derivatives of \(G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z) \) give us the tangent vectors at \(P \):

\[
\theta\text{-grid curve: } T_\theta = \frac{\partial G}{\partial \theta} = \frac{\partial}{\partial \theta} (2 \cos \theta, 2 \sin \theta, z) = (-2 \sin \theta, 2 \cos \theta, 0) \\
z\text{-grid curve: } T_z = \frac{\partial G}{\partial z} = \frac{\partial}{\partial z} (2 \cos \theta, 2 \sin \theta, z) = (0, 0, 1)
\]

Observe in Figure 9 that \(T_\theta \) is tangent to the \(\theta \)-grid curve and \(T_z \) is tangent to the \(z \)-grid curve. The normal vector is

\[
N(\theta, z) = T_\theta \times T_z = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -2 \sin \theta & 2 \cos \theta & 0 \\ 0 & 0 & 1 \end{vmatrix} = 2 \cos \theta \mathbf{i} + 2 \sin \theta \mathbf{j}
\]

The coefficient of \(\mathbf{k} \) is zero, so \(N \) points directly out of the cylinder.

(c) For \(\theta = \frac{\pi}{4}, z = 5 \),

\[
P = G \left(\frac{\pi}{4}, 5 \right) = (\sqrt{2}, \sqrt{2}, 5), \quad N = N \left(\frac{\pi}{4}, 5 \right) = (\sqrt{2}, \sqrt{2}, 0)
\]

The tangent plane through \(P \) has normal vector \(N \) and thus has equation

\[
\langle x - \sqrt{2}, y - \sqrt{2}, z - 5 \rangle \cdot \langle \sqrt{2}, \sqrt{2}, 0 \rangle = 0
\]

This can be written

\[
\sqrt{2}(x - \sqrt{2}) + \sqrt{2}(y - \sqrt{2}) = 0 \quad \text{or} \quad x + y = 2\sqrt{2}
\]

The tangent plane is vertical (because \(z \) does not appear in the equation).

\[\text{\textbf{EXAMPLE 6 CRS Helicoid Surface}}\]

Describe the surface \(\mathcal{S} \) with parametrization \(G(u, v) = (u \cos v, u \sin v, v), \quad -1 \leq u \leq 1, \quad 0 \leq v < 2\pi \)

(a) Use a computer algebra system to plot \(\mathcal{S} \).

(b) Compute \(N(u, v) \) at \(u = \frac{1}{2}, v = \frac{\pi}{2} \).

\[\text{\textbf{Solution}}\]

For each fixed value \(u = a \), the curve \(G(a, v) = (a \cos v, a \sin v, v) \) is a helix of radius \(a \). Therefore, as \(u \) varies from \(-1\) to \(1 \), \(G(u, v) \) describes a family of helices of radius \(u \). The resulting surface is a “helical ramp.”

(a) Here is a typical command for a computer algebra system that generates the helicoid surface shown on the right-hand side of Figure 10:

\[
\text{ParametricPlot3D}\{[u*\text{Cos}[v],u*\text{Sin}[v],v],\{u,-1,1\},\{v,0,2\pi\}\}
\]
(b) The tangent and normal vectors are
\[
T_u = \frac{\partial G}{\partial u} = (\cos v, \sin v, 0)
\]
\[
T_v = \frac{\partial G}{\partial v} = (-u \sin v, u \cos v, 1)
\]
\[
N(u, v) = T_u \times T_v = \begin{vmatrix} i & j & k \\ \cos v & \sin v & 0 \\ -u \sin v & u \cos v & 1 \end{vmatrix} = (\sin v)i - (\cos v)j + uk
\]
At \(u = \frac{1}{2}, \ v = \frac{\pi}{2}, \) we have \(N = i + \frac{1}{2}k. \)

For future reference, we compute the outward-pointing normal vector in the standard parametrization of the sphere of radius \(R \) centered at the origin (Figure 11):
\[
G(\theta, \phi) = (R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi)
\]
Note first that since the distance from \(G(\theta, \phi) \) to the origin is \(R \), the unit radial vector at \(G(\theta, \phi) \) is obtained by dividing by \(R \):
\[
e_r = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
\]
Furthermore,
\[
T_\theta = (-R \sin \theta \sin \phi, R \cos \theta \sin \phi, 0)
\]
\[
T_\phi = (R \cos \theta \cos \phi, R \sin \theta \cos \phi, -R \sin \phi)
\]
\[
N = T_\theta \times T_\phi = \begin{vmatrix} i & j & k \\ -R \sin \theta \sin \phi & R \cos \theta \sin \phi & 0 \\ R \cos \theta \cos \phi & R \sin \theta \cos \phi & -R \sin \phi \end{vmatrix} = -R^2 \cos \theta \sin^2 \phi i - R^2 \sin \theta \sin^2 \phi j - R^2 \cos \phi \sin \phi k
\]
\[
= -(R^2 \sin \phi) e_r
\]
This is an inward-pointing normal vector. However, in most computations it is standard to use the outward-pointing normal vector:
\[
N = T_\phi \times T_\theta = (R^2 \sin \phi) e_r, \quad \|N\| = R^2 \sin \phi \tag{2}
\]

Surface Area

The length \(\|N\| \) of the normal vector in a parametrization has an important interpretation in terms of area. Assume, for simplicity, that \(D \) is a rectangle (the argument also applies to more general domains). Divide \(D \) into a grid of small rectangles \(R_{ij} \) of size \(\Delta u \times \Delta v \), as in Figure 12, and compare the area of \(R_{ij} \) with the area of its image under \(G \). This image is a “curved” parallelogram \(S_{ij} = G(R_{ij}) \).

First, we note that if \(\Delta u \) and \(\Delta v \) in Figure 12 are small, then the curved parallelogram \(S_{ij} \) has approximately the same area as the “genuine” parallelogram with sides \(\vec{PQ} \) and \(\vec{PS} \). Recall that the area of the parallelogram spanned by two vectors is the length of their cross product, so
\[
\text{Area}(S_{ij}) \approx \|\vec{PQ} \times \vec{PS}\|
\]
Next, we use the linear approximation to estimate the vectors \(\vec{PQ} \) and \(\vec{PS} \):
\[
\vec{PQ} = G(u_{ij} + \Delta u, v_{ij}) - G(u_{ij}, v_{ij}) \approx \frac{\partial G}{\partial u}(u_{ij}, v_{ij}) \Delta u = T_u \Delta u
\]
\[
\vec{PS} = G(u_{ij}, v_{ij} + \Delta v) - G(u_{ij}, v_{ij}) \approx \frac{\partial G}{\partial v}(u_{ij}, v_{ij}) \Delta v = T_v \Delta v
\]
Thus, we have
\[\text{Area}(S) \approx \| N(u_{ij}, v_{ij}) \| \text{Area}(R_{ij}) \]
Since \(N(u_{ij}, v_{ij}) = T_u \times T_v \) and \(\text{Area}(R_{ij}) = \Delta u \Delta v \), we obtain
\[\text{Area}(S) \approx \| N(u_{ij}, v_{ij}) \| \text{Area}(R_{ij}) \]

Our conclusion: \(\| N \| \) is a distortion factor that measures how the area of a small rectangle \(R_{ij} \) is altered under the map \(G \).

To compute the surface area of \(S \), we assume that \(G \) is one-to-one, except possibly on the boundary of \(D \). We also assume that \(G \) is regular, except possibly on the boundary of \(D \). Recall that “regular” means \(N(u, v) \) is nonzero.

The entire surface \(S \) is the union of the small patches \(S_{ij} \), so we can apply the approximation on each patch to obtain
\[\text{Area}(S) = \sum_{i,j} \text{Area}(S_{ij}) \approx \sum_{i,j} \| N(u_{ij}, v_{ij}) \| \Delta u \Delta v \]

The sum on the right is a Riemann sum for the double integral of \(\| N(u, v) \| \) over the parameter domain \(D \). As \(\Delta u \) and \(\Delta v \) tend to zero, these Riemann sums converge to a double integral, which we take as the definition of surface area:
\[\text{Area}(S) = \iint_D \| N(u, v) \| \, du \, dv \]

Surface Integral

Now we can define the surface integral of a function \(f(x, y, z) \):
\[\iint_S f(x, y, z) \, dS \]

This is similar to the definition of the line integral of a function over a curve. Choose a sample point \(P_{ij} = G(u_{ij}, v_{ij}) \) in each small patch \(S_{ij} \) and form the sum:
\[\sum_{i,j} f(P_{ij}) \text{Area}(S_{ij}) \]
The limit of these sums as Δu and Δv tend to zero (if it exists) is the surface integral:

\[
\iint_S f(x, y, z) \, dS = \lim_{\Delta u, \Delta v \to 0} \sum_{i,j} f(P_{ij}) \text{Area}(S_{ij})
\]

To evaluate the surface integral, we use Eq. (3) to write

\[
\sum_{i,j} f(P_{ij}) \text{Area}(S_{ij}) \approx \sum_{i,j} f(G(u_{ij}, v_{ij})) \|N(u_{ij}, v_{ij})\| \Delta u \Delta v
\]

On the right, we have a Riemann sum for the double integral of

\[
f(G(u, v))\|N(u, v)\|
\]

over the parameter domain D. Under the assumption that G is continuously differentiable, we can show these sums in Eq. (6) approach the same limit. This yields the next theorem.

THEOREM 1 Surface Integrals and Surface Area Let G(u, v) be a parametrization of a surface S with parameter domain D. Assume that G is continuously differentiable, one-to-one, and regular (except possibly at the boundary of D). Then

\[
\iint_S f(x, y, z) \, dS = \iint_D f(G(u, v))\|N(u, v)\| \, du \, dv
\]

For \(f(x, y, z) = 1 \), we obtain the surface area of S:

\[
\text{Area}(S) = \iint_D \|N(u, v)\| \, du \, dv
\]

Eq. (7) is summarized by the symbolic expression for the “surface element”:

\[
dS = \|N(u, v)\| \, du \, dv
\]
STEP 3. Calculate the surface integral.

We express \(f(x, y, z) = x^2z \) in terms of the parameters \(t \) and \(\theta \) and evaluate:

\[
f(G(\theta, t)) = f(t \cos \theta, t \sin \theta, t) = (t \cos \theta)^2 t = t^3 \cos^2 \theta
\]

\[
\iint_S f(x, y, z) \, dS = \int_{t=0}^{2\pi} \int_{\theta=0}^{2\pi} f(G(\theta, t)) \|N(\theta, t)\| \, d\theta \, dt
\]

\[
= \int_{t=0}^{2\pi} \int_{\theta=0}^{2\pi} (t^3 \cos^2 \theta)(\sqrt{2}t) \, d\theta \, dt
\]

\[
= \sqrt{2} \left(\int_0^{2\pi} t^4 \, dt \right) \left(\int_0^{2\pi} \cos^2 \theta \, d\theta \right)
\]

\[
= \sqrt{2} \left(\frac{32}{5} \right) \left(\frac{\pi}{2} \right) = \frac{32\sqrt{2}\pi}{5}
\]

Reminder

\[
\int_0^{2\pi} \cos^2 \theta \, d\theta = \int_0^{2\pi} \frac{1 + \cos 2\theta}{2} \, d\theta = \pi
\]

In previous discussions of multiple and line integrals, we applied the principle that the integral of a density is the total quantity. This applies to surface integrals as well. For example, a surface with mass density \(\delta(x, y, z) \) (in units of mass per area) is the surface integral of the mass density:

\[
\text{Mass of } S = \iint_S \delta(x, y, z) \, dS
\]

Similarly, if an electric charge is distributed over \(S \) with charge density \(\delta(x, y, z) \), then the surface integral of \(\delta(x, y, z) \) is the total charge on \(S \).

EXAMPLE 8 Total Charge on a Surface Find the total charge (in coulombs) on a sphere \(S \) of radius 5 cm whose charge density in spherical coordinates is \(\delta(\theta, \phi) = 0.003 \cos^2 \phi \, \text{C/cm}^2 \).

Solution We parametrize \(S \) in spherical coordinates:

\[
G(\theta, \phi) = (5 \cos \theta \sin \phi, 5 \sin \theta \sin \phi, 5 \cos \phi)
\]

By Eq. (2), \(\|N\| = 5^2 \sin \phi \) and

\[
\text{Total charge} = \iint_S \delta(\theta, \phi) \, dS = \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} \delta(\theta, \phi) \|N\| \, d\phi \, d\theta
\]

\[
= \int_{\theta=0}^{2\pi} \int_{\phi=0}^{\pi} (0.003 \cos^2 \phi)(25 \sin \phi) \, d\phi \, d\theta
\]

\[
= (0.075)(2\pi) \int_{\theta=0}^{\pi} \cos^2 \phi \sin \phi \, d\phi
\]

\[
= 0.15\pi \left(-\frac{\cos^3 \phi}{3} \right) \bigg|_{0}^{\pi} = 0.15\pi \left(\frac{2}{3} \right) \approx 0.1\pi \text{ coulombs}
\]

When a graph \(z = g(x, y) \) is parametrized by \(G(x, y) = (x, y, g(x, y)) \), the tangent and normal vectors are

\[
T_x = (1, 0, g_x), \quad T_y = (0, 1, g_y)
\]

\[
N = T_x \times T_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & g_x \\ 0 & 1 & g_y \end{vmatrix} = -g_x \mathbf{i} - g_y \mathbf{j} + \mathbf{k}, \quad \|N\| = \sqrt{1 + g_x^2 + g_y^2}
\]

The surface integral over the portion of a graph lying over a domain \(D \) in the \(xy \)-plane is

\[
\text{Surface integral over a graph} = \iint_D f(x, y, g(x, y)) \sqrt{1 + g_x^2 + g_y^2} \, dx \, dy
\]
Laplace operator

This equation plays an important role in more advanced branches of math and physics.

\[\Delta V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} \]

This equation plays an important role in more advanced branches of math and physics.

Example 9 Calculate \(\iint_S (z - x) \, dS \), where \(S \) is the portion of the graph of \(z = x + y^2 \) where \(0 \leq x \leq y, 0 \leq y \leq 1 \) (Figure 14).

Solution Let \(z = g(x, y) = x + y^2 \). Then \(g_x = 1 \) and \(g_y = 2y \), and

\[dS = \sqrt{1 + g_x^2 + g_y^2} \, dx \, dy = \sqrt{1 + 1 + 4y^2} \, dx \, dy = \sqrt{2 + 4y^2} \, dx \, dy \]

On the surface \(S \), we have \(z = x + y^2 \), and thus,

\[f(x, y, z) = z - x = (x + y^2) - x = y^2 \]

By Eq. (9),

\[\iint_S f(x, y, z) \, dS = \int_{y=0}^{1} \int_{x=0}^{y} y^2 \sqrt{2 + 4y^2} \, dx \, dy \]

\[= \int_{y=0}^{1} \left(y^2 \sqrt{2 + 4y^2} \right) \bigg|_{x=0}^{y} \, dy = \int_{0}^{1} y^3 \sqrt{2 + 4y^2} \, dy \]

Now use the substitution \(u = 2 + 4y^2, du = 8y \, dy \). Then \(y^2 = \frac{1}{4}(u - 2) \), and

\[\int_{0}^{1} y^3 \sqrt{2 + 4y^2} \, dy = \frac{1}{8} \int_{2}^{6} \left(\frac{u - 2}{4} \right) \sqrt{u} \, du = \frac{1}{32} \int_{2}^{6} (u^{3/2} - 2u^{1/2}) \, du \]

\[= \frac{1}{32} \left(\frac{2}{5} u^{5/2} - \frac{4}{3} u^{3/2} \right) \bigg|_{2}^{6} = \frac{1}{30} (6\sqrt{6} + \sqrt{2}) \approx 0.54 \]

Excursion

In physics, it is an important fact that the gravitational field \(\mathbf{F} \) corresponding to any arrangement of masses is conservative; that is, \(\mathbf{F} = -\nabla V \) (recall that the minus sign is a convention of physics). The field at a point \(P \) due to a mass \(m \) located at point \(Q \) is

\[\mathbf{F} = -\frac{Gm}{r^2} \mathbf{e}_r \]

where \(\mathbf{e}_r \) is the unit vector pointing from \(Q \) to \(P \), and \(r \) is the distance from \(P \) to \(Q \), which we denote by \(|P - Q| \). As we saw in Example 4 of Section 17.3,

\[V(P) = -\frac{Gm}{r} = -\frac{Gm}{|P - Q|} \]

If, instead of a single mass, we have \(K \) point masses \(m_1, \ldots, m_K \) located at \(Q_1, \ldots, Q_K \), then the gravitational potential is the sum

\[V(P) = -G \sum_{i=1}^{K} \frac{m_i}{|P - Q_i|} \]

If mass is distributed continuously over a thin surface \(S \) with mass density function \(\delta(x, y, z) \), we replace the sum by the surface integral

\[V(P) = -G \iint_S \frac{\delta(x, y, z) \, dS}{|P - Q|} = -G \iint_S \frac{\delta(x, y, z) \, dS}{\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}} \]

where \(P = (a, b, c) \). However, this surface integral cannot usually be evaluated explicitly unless the surface and mass distribution are sufficiently symmetric, as in the case of a hollow sphere of uniform mass density (Figure 15).

Theorem 2 Gravitational Potential of a Uniform Hollow Sphere

The gravitational potential \(V \) due to a hollow sphere of radius \(R \) with uniform mass distribution of total mass \(m \) at a point \(P \) located at a distance \(r \) from the center of the sphere is

\[V(P) = \begin{cases} \frac{-Gm}{r} & \text{if } r > R \ (P \text{ outside the sphere}) \\ \frac{-Gm}{R} & \text{if } r < R \ (P \text{ inside the sphere}) \end{cases} \]
We leave this calculation as an exercise (Exercise 48), because we will derive it again with much less effort using Gauss’s Law in Section 18.3.

In his magnum opus, Principia Mathematica, Isaac Newton proved that a sphere of uniform mass density (whether hollow or solid) attracts a particle outside the sphere as if the entire mass were concentrated at the center. In other words, a uniform sphere behaves like a point mass as far as gravity is concerned. Furthermore, if the sphere is hollow, then the sphere exerts no gravitational force on a particle inside it. Newton’s result follows from Eq. (12). Outside the sphere, \(V \) has the same formula as the potential due to a point mass. Inside the sphere, the potential is constant with value \(-Gm/R\). But constant potential means zero force because the force is the (negative) gradient of the potential. This discussion applies equally well to the electrostatic force. In particular, a uniformly charged sphere behaves like a point charge (when viewed from outside the sphere).

17.4 SUMMARY

- A parametrized surface is a surface \(S \) whose points are described in the form
 \[
 G(u, v) = (x(u, v), y(u, v), z(u, v))
 \]
 where the parameters \(u \) and \(v \) vary in a domain \(D \) in the \(uv \)-plane.

- Tangent and normal vectors:
 \[
 T_u = \frac{\partial G}{\partial u} = \left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u} \right), \quad T_v = \frac{\partial G}{\partial v} = \left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v} \right)
 \]
 \[
 N = N(u, v) = T_u \times T_v
 \]
 The parametrization is regular at \((u, v)\) if \(N(u, v) \neq 0\).

- The quantity \(\|N\|\) is an “area distortion factor.” If \(D\) is a small region in the \(uv\)-plane and \(S = G(D)\), then
 \[
 \text{Area}(S) \approx \|N(u_0, v_0)\|\text{Area}(D)
 \]
 where \((u_0, v_0)\) is any sample point in \(D\).

- Surface integrals and surface area:
 \[
 \iint_S f(x, y, z) \, dS = \iint_D f(G(u, v)) \|N(u, v)\| \, du \, dv
 \]
 \[
 \text{Area}(S) = \iint_D \|N(u, v)\| \, du \, dv
 \]

- Some standard parametrizations:
 - Cylinder of radius \(R\) (\(z\)-axis as central axis):
 \[
 G(\theta, z) = (R \cos \theta, R \sin \theta, z)
 \]
 Outward normal: \(N = T_\theta \times T_z = R(\cos \theta, \sin \theta, 0)\)
 \[
 dS = \|N\| \, d\theta \, dz = R \, d\theta \, dz
 \]
 - Sphere of radius \(R\), centered at the origin:
 \[
 G(\theta, \phi) = (R \cos \theta \sin \phi, R \sin \theta \sin \phi, R \cos \phi)
 \]
 Unit radial vector: \(e_r = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)\)
 Outward normal: \(N = T_\phi \times T_\theta = (R^2 \sin \phi) \, e_r\)
 \[
 dS = \|N\| \, d\phi \, d\theta = R^2 \sin \phi \, d\phi \, d\theta
 \]
Graph of $z = g(x, y)$:

$G(x, y) = (x, y, g(x, y))$

$N = T_x \times T_y = (-g_x, -g_y, 1)$

d$S = \|N\| \, dx \, dy = \sqrt{1 + g_x^2 + g_y^2} \, dx \, dy$

17.4 Exercises

Preliminary Questions

1. What is the surface integral of the function $f(x, y, z) = 10$ over a surface of total area S?

2. What interpretation can we give to the length $\|N\|$ of the normal vector for a parametrization $G(u, v)$?

3. A parametrization maps a rectangle of size 0.01×0.02 in the uv-plane onto a small patch S of a surface. Estimate $\text{Area}(S)$ if $T_u \times T_v = (1, 2, 2)$ at a sample point in the rectangle.

4. A small surface S is divided into three small pieces, each of area 0.2. Estimate $\int \int \int_S f(x, y, z) \, dS$ if $f(x, y, z)$ takes the values 0.9, 1, and 1.1 at sample points in these three pieces.

5. A surface S has a parametrization whose domain is the square $0 \leq u, v \leq 2$ such that $\|N(u, v)\| = 5$ for all (u, v). What is $\text{Area}(S)$?

6. What is the outward-pointing unit normal to the sphere of radius 3 centered at the origin at $P = (2, 2, 1)$?

Exercises

1. Match each parametrization with the corresponding surface in Figure 16.

 (a) $(u, \cos v, \sin v)$
 (b) $(u, u + v, v)$
 (c) (u, v^3, v)
 (d) $(\cos u \sin v, 3 \cos u \sin v, \cos v)$
 (e) $(u, u(2 + \cos v), u(2 + \sin v))$

2. Show that $G(r, \theta) = (r \cos \theta, r \sin \theta, 1 - r^2)$ parametrizes the paraboloid $z = 1 - x^2 - y^2$. Describe the grid curves of this parametrization.

3. Show that $G(u, v) = (2u + 1, u - v, 3u + v)$ parametrizes the plane $2x - y - z = 2$. Then:

 (a) Calculate T_u, T_v, and $N(u, v)$.
 (b) Find the area of $S = G(D)$, where $D = \{(u, v) : 0 \leq u \leq 2, 0 \leq v \leq 1\}$.
 (c) Express $f(x, y, z) = yz$ in terms of u and v, and evaluate $\int \int_S f(x, y, z) \, dS$.

4. Let $S = G(D)$, where $D = \{(u, v) : u^2 + v^2 \leq 1, u \geq 0, v \geq 0\}$ and G is as defined in Exercise 3.

 (a) Calculate the surface area of S.
 (b) Evaluate $\int \int_S (x - y) \, dS$. Hint: Use polar coordinates.

5. Let $G(x, y) = (x, y, xy)$.

 (a) Calculate T_x, T_y, and $N(x, y)$.
 (b) Let S be the part of the surface with parameter domain $D = \{(x, y) : x^2 + y^2 \leq 1, x \geq 0, y \geq 0\}$. Verify the following formula and evaluate using polar coordinates:

 $$\int \int_S 1 \, dS = \int \int_D \sqrt{1 + x^2 + y^2} \, dx \, dy$$

 (c) Verify the following formula and evaluate:

 $$\int \int_S z \, dS = \int_0^{\pi/2} \int_0^2 (\sin \theta \cos \theta) r^2 \sqrt{1 + r^2} \, dr \, d\theta$$

6. A surface S has a parametrization $G(u, v)$ whose domain D is the square in Figure 17. Suppose that G has the following normal vectors:

 $N(A) = (2, 1, 0)$, $N(B) = (1, 3, 0)$
 $N(C) = (3, 0, 1)$, $N(D) = (2, 0, 1)$

 Estimate $\int \int_S f(x, y, z) \, dS$, where f is a function such that $f(G(u, v)) = u + v$.

 ![Figure 17](image)
In Exercises 7–10, calculate $T_u, T_v,$ and $N(u, v)$ for the parametrized surface at the given point. Then find the equation of the tangent plane to the surface at that point.

7. $G(u, v) = (2u + v, u - 4v, 3u); \quad u = 1, \quad v = 4$

8. $G(u, v) = (u^2 - v^2, u + v, u - v); \quad u = 2, \quad v = 3$

9. $G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi); \quad \theta = \frac{\pi}{2}, \quad \phi = \frac{\pi}{4}$

10. $G(r, \theta) = (r \cos \theta, r \sin \theta, 1 - r^2); \quad r = \frac{1}{2}, \quad \theta = \frac{\pi}{4}$

11. Use the normal vector computed in Exercise 8 to estimate the area of the small patch of the surface $G(u, v) = (u^2 - v^2, u + v, u - v)$ defined by

$$2 \leq u \leq 2.1, \quad 3 \leq v \leq 3.2$$

12. Sketch the small patch of the sphere whose spherical coordinates satisfy

$$\pi \over 2 - 0.15 \leq \theta \leq \pi \over 2 + 0.15, \quad \pi \over 4 - 0.1 \leq \phi \leq \pi \over 4 + 0.1$$

Use the normal vector computed in Exercise 9 to estimate its area.

In Exercises 13–26, calculate $\int \int_S f(x, y, z) \, dS$ for the given surface and function.

13. $G(u, v) = (u \cos v, v \sin u, u - 1); \quad 0 \leq u \leq 1, \quad 0 \leq v \leq 1$

14. $G(r, \theta) = (r \cos \theta, r \sin \theta, 0); \quad 0 \leq r \leq 1, \quad 0 \leq \theta \leq 2\pi$

15. $y = 9 - z^2, \quad 0 \leq x \leq 3, \quad 0 \leq z \leq 3; \quad f(x, y, z) = z$

16. $y = 9 - z^2, \quad 0 \leq x \leq 3, \quad 0 \leq z \leq 3; \quad f(x, y, z) = x$

17. $x^2 + y^2 + z^2 = 9, \quad x, y, z \geq 0; \quad f(x, y, z) = x^2$

18. $x^2 + y^2 + z^2 = 9, \quad 0 \leq z \leq 2; \quad f(x, y, z) = z^2$

19. $x^2 + y^2 = 4, \quad 0 \leq z \leq 4; \quad f(x, y, z) = e^{-z^2}$

20. $G(u, v) = (u, v^3, u + v); \quad 0 \leq u \leq 1, \quad 0 \leq v \leq 1$; $f(x, y, z) = y$

21. Part of the plane $x + y + z = 1$, where $x, y, z \geq 0$; $f(x, y, z) = z$

22. Part of the plane $x + y + z = 0$ contained in the cylinder $x^2 + y^2 = 1; \quad f(x, y, z) = z^2$

23. $x^2 + y^2 + z^2 = 4, \quad 1 \leq z \leq 2; \quad f(x, y, z) = z^2(x^2 + y^2 + z^2)^{-1}$

24. $x^2 + y^2 + z^2 = 4, \quad 0 \leq y \leq 1; \quad f(x, y, z) = y$

25. Part of the surface $z = x^3$, where $0 \leq x \leq 1, \quad 0 \leq y \leq 1$; $f(x, y, z) = z$

26. Part of the unit sphere centered at the origin, where $x \geq 0$ and $|y| \leq x$; $f(x, y, z) = x$

27. A surface S has a parametrization $G(u, v)$ with domain $0 \leq u \leq 2, \quad 0 \leq v \leq 4$ such that the following partial derivatives are constant:

$$\frac{\partial G}{\partial u} = (2, 0, 1), \quad \frac{\partial G}{\partial v} = (4, 0, 3)$$

What is the surface area of S?

28. Let S be the sphere of radius R centered at the origin. Explain using symmetry:

$$\int \int_S x^2 \, dS = \int \int_S y^2 \, dS = \int \int_S z^2 \, dS$$

Then show that $\int \int_S x^2 \, dS = \frac{4}{3} \pi R^4$ by adding the integrals.

29. Calculate $\int \int_S (x y + e^x) \, dS$, where S is the triangle in Figure 18 with vertices $(0, 0, 3), (1, 0, 2)$, and $(0, 4, 1)$.

30. Use spherical coordinates to compute the surface area of a sphere of radius R.

31. Use cylindrical coordinates to compute the surface area of a sphere of radius R.

32. **CAS** Let S be the surface with parametrization

$$G(u, v) = ((3 + \sin v) \cos u, (3 + \sin v) \sin u, v)$$

for $0 \leq u \leq 2\pi, \quad 0 \leq v \leq 2\pi$. Using a computer algebra system:

(a) plot S from several different viewpoints. Is S best described as a "vase that holds water" or a "bottomless vase"?

(b) calculate the normal vector $N(u, v)$.

(c) calculate the surface area of S to four decimal places.

33. **CAS** Let S be the surface $z = \ln(5 - x^2 - y^2)$ for $0 \leq x \leq 1, \quad 0 \leq y \leq 1$. Using a computer algebra system:

(a) calculate the surface area of S to four decimal places.

(b) calculate $\int \int_S 2y^3 \, dS$ to four decimal places.

34. Find the area of the portion of the plane $2x + 3y + 4z = 28$ lying above the rectangle $1 \leq x \leq 3, \quad 2 \leq y \leq 5$ in the x-y-plane.

35. What is the area of the portion of the plane $2x + 3y + 4z = 28$ lying above the domain D in the x-y-plane in Figure 19 if $\text{Area}(D) = 5$?

36. Find the surface area of the part of the cone $x^2 + y^2 = z^2$ between the planes $z = 2$ and $z = 5$.

FIGURE 18

FIGURE 19
37. Find the surface area of the portion S of the cone $z^2 = x^2 + y^2$, where $z \geq 0$, contained within the cylinder $y^2 + z^2 \leq 1$.

38. Calculate the integral of z^{2x+y} over the surface of the box in Figure 20.

39. Calculate $\iint_G x^2 \, z \, dS$, where G is the cylinder (including the top and bottom) $x^2 + y^2 = 4, 0 \leq z \leq 3$.

40. Let S be the portion of the sphere $x^2 + y^2 + z^2 = 9$ where $1 \leq x^2 + y^2 \leq 4$ and $z \geq 0$ (Figure 21). Find a parametrization of S in polar coordinates and use it to compute:
 (a) The area of S
 (b) $\iint_S z^{-1} \, dS$

Further Insights and Challenges

42. Surfaces of Revolution Let S be the surface formed by rotating the region under the graph $z = g(y)$ in the yz-plane for $c \leq y \leq d$ about the z-axis, where $c \geq 0$ (Figure 23).
 (a) Show that the circle generated by rotating a point $(0, a, b)$ about the z-axis is parametrized by
 $$ (a \cos \theta, a \sin \theta, b), \quad 0 \leq \theta \leq 2\pi $$
 (b) Show that S is parametrized by
 $$ G(y, \theta) = (y \cos \theta, y \sin \theta, g(y)) $$
 for $c \leq y \leq d$, $0 \leq \theta \leq 2\pi$.
 (c) Use Eq. (13) to prove the formula
 $$ \text{Area}(S) = 2\pi \int_c^d y \sqrt{1 + g'(y)^2} \, dy $$

43. Use Eq. (14) to compute the surface area of $z = 4 - y^2$ for $0 \leq y \leq 2$ rotated about the z-axis.

44. Describe the upper half of the cone $x^2 + y^2 = z^2$ for $0 \leq z \leq d$ as a surface of revolution (Figure 6) and use Eq. (14) to compute its surface area.

45. Area of a Torus Let T be the torus obtained by rotating the circle in the yz-plane of radius a centered at $(0, b, 0)$ about the z-axis (Figure 24). We assume that $b > a > 0$.
 (a) Use Eq. (14) to show that
 $$ \text{Area}(T) = 4\pi \int_{b-a}^{b+a} \frac{ay}{\sqrt{a^2 - (b - y)^2}} \, dy $$
 (b) Show that $\text{Area}(T) = 4\pi^2 ab$.

41. Prove a famous result of Archimedes: The surface area of the portion of the sphere of radius R between two horizontal planes $z = a$ and $z = b$ is equal to the surface area of the corresponding portion of the circumscribed cylinder (Figure 22).
46. **Pappus's Theorem** (also called **Guldin's Rule**), which we introduced in Section 9.3, states that the area of a surface of revolution \(S \) is equal to the length \(L \) of the generating curve times the distance traversed by the center of mass. Use Eq. (14) to prove Pappus’s Theorem. If \(C \) is the graph \(z = g(y) \) for \(c \leq y \leq d \), then the center of mass is defined as the point \((\bar{y}, \bar{z})\) with
\[
\bar{y} = \frac{1}{L} \int_C y \, ds, \quad \bar{z} = \frac{1}{L} \int_C z \, ds
\]

47. Compute the surface area of the torus in Exercise 45 using Pappus's Theorem.

48. **Potential Due to a Uniform Sphere** Let \(S \) be a hollow sphere of radius \(R \) with its center at the origin with a uniform mass distribution of total mass \(m \) [since \(S \) has surface area \(4\pi R^2 \), the mass density is \(\delta = m/(4\pi R^2) \)]. The gravitational potential \(V(P) \) due to \(S \) at a point \(P = (a, b, c) \) is equal to
\[
-V(P) = \frac{-Gm}{4\pi} \int_S \frac{\delta \, dS}{\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2}}
\]

(a) Use symmetry to conclude that the potential depends only on the distance \(r \) from \(P \) to the center of the sphere. Therefore, it suffices to compute \(V(P) \) for a point \(P = (0, 0, r) \) on the \(z \)-axis (with \(r \neq R \)).

(b) Use spherical coordinates to show that \(V(0, 0, r) \) is equal to
\[
\frac{-Gm}{4\pi} \int_0^\pi \int_0^{2\pi} \frac{\sin \phi \, d\theta \, d\phi}{\sqrt{R^2 + r^2 - 2Rr \cos \phi}}
\]

(c) Use the substitution \(u = R^2 + r^2 - 2Rr \cos \phi \) to show that
\[
V(0, 0, r) = \frac{-mG}{2Rr} (|R+r|-|R-r|)
\]

(d) Verify Eq. (12) for \(V \).

49. Calculate the gravitational potential \(V \) for a hemisphere of radius \(R \) with uniform mass distribution.

50. The surface of a cylinder of radius \(R \) and length \(L \) has a uniform mass distribution \(\delta \) (the top and bottom of the cylinder are excluded). Use Eq. (11) to find the gravitational potential at a point \(P \) located along the axis of the cylinder.

51. Let \(S \) be the part of the graph \(z = g(x, y) \) lying over a domain \(D \) in the \(xy \)-plane. Let \(\phi = \phi(x, y) \) be the angle between the normal to \(S \) and the vertical. Prove the formula
\[
\text{Area}(S) = \int \int_D \frac{dA}{|\cos \phi|}
\]

17.5 Surface Integrals of Vector Fields

The last integrals we will consider are surface integrals of vector fields. These integrals represent flux or rates of flow through a surface. One example is the flux of molecules across a cell membrane (number of molecules per unit time).

Because flux through a surface goes from one side of the surface to the other, we need to specify a **positive direction** of flow. This is done by means of an **orientation**, which is a choice of unit normal vector \(\mathbf{n}(P) \) at each point \(P \) of \(S \), chosen in a continuously varying manner (Figure 1). There are two normal directions at each point, so the orientation serves to specify one of the two “sides” of the surface in a consistent manner. The unit vectors \(-\mathbf{n}(P) \) define the opposite orientation. For example, if the \(\mathbf{n} \) vectors are outward-pointing unit normal vectors on a sphere, then a flow from the inside of the sphere to the outside is a positive flux.

FIGURE 1 The surface \(S \) has two possible orientations.

(A) One possible orientation of \(S \)
(B) The opposite orientation

The **normal component** of a vector field \(\mathbf{F} \) at a point \(P \) on an oriented surface \(S \) is the dot product
\[
\text{Normal component at } P = \mathbf{F}(P) \cdot \mathbf{n}(P) = \|\mathbf{F}(P)\| \cos \theta
\]
where \(\theta \) is the angle between \(\mathbf{F}(P) \) and \(\mathbf{n}(P) \) (Figure 2). Often, we write \(\mathbf{n} \) instead of \(\mathbf{n}(P) \), but it is understood that \(\mathbf{n} \) varies from point to point on the surface. The vector surface integral, denoted \(\iint_S \mathbf{F} \cdot d\mathbf{S} \), is defined as the integral of the normal component:

\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_S (\mathbf{F} \cdot \mathbf{n}) \, dS
\]

This quantity is also called the **flux** of \(\mathbf{F} \) across or through \(S \).

An oriented parametrization \(\mathbf{G}(u, v) \) is a regular parametrization [meaning that \(\mathbf{N}(u, v) \) is nonzero for all \(u, v \)] whose unit normal vector defines the orientation:

\[
\mathbf{n} = \mathbf{n}(u, v) = \frac{\mathbf{N}(u, v)}{\|\mathbf{N}(u, v)\|}
\]

Applying Eq. (1) in the margin to \(\mathbf{F} \cdot \mathbf{n} \), we obtain

\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F}(\mathbf{G}(u, v)) \cdot \left(\frac{\mathbf{N}(u, v)}{\|\mathbf{N}(u, v)\|} \right) \|\mathbf{N}(u, v)\| \, du \, dv
\]

\[
= \iint_D \mathbf{F}(\mathbf{G}(u, v)) \cdot \mathbf{N}(u, v) \, du \, dv
\]

This formula remains valid even if \(\mathbf{N}(u, v) \) is zero at points on the boundary of the parameter domain \(D \). If we reverse the orientation of \(S \) in a vector surface integral, \(\mathbf{N}(u, v) \) is replaced by \(-\mathbf{N}(u, v)\) and the integral changes sign.

We can think of \(d\mathbf{S} \) as a “vector surface element” that is related to a parametrization by the symbolic equation

\[
d\mathbf{S} = \mathbf{N}(u, v) \, du \, dv
\]

Thus, we obtain the following theorem.

Theorem 1 Vector Surface Integral Let \(\mathbf{G}(u, v) \) be an oriented parametrization of an oriented surface \(S \) with parameter domain \(D \). Assume that \(\mathbf{G} \) is one-to-one and regular, except possibly at points on the boundary of \(D \). Then

\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F}(\mathbf{G}(u, v)) \cdot \mathbf{N}(u, v) \, du \, dv
\]

If the orientation of \(S \) is reversed, the surface integral changes sign.

Example 1 Calculate \(\iint_S \mathbf{F} \cdot d\mathbf{S} \), where \(\mathbf{F} = \langle 0, 0, x \rangle \) and \(S \) is the surface with parametrization \(\mathbf{G}(u, v) = \langle u^2, v, u^3 - v^2 \rangle \) for \(0 \leq u \leq 1 \), \(0 \leq v \leq 1 \) and oriented by upward-pointing normal vectors.

Solution

Step 1. Compute the tangent and normal vectors.

\[
\mathbf{T}_u = \langle 2u, 0, 3u^2 \rangle, \quad \mathbf{T}_v = \langle 0, 1, -2v \rangle
\]

\[
\mathbf{N}(u, v) = \mathbf{T}_u \times \mathbf{T}_v = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2u & 0 & 3u^2 \\
0 & 1 & -2v
\end{vmatrix} = -3u^2 \mathbf{i} + 4uv \mathbf{j} + 2uk = \langle -3u^2, 4uv, 2u \rangle
\]

The \(z \)-component of \(\mathbf{N} \) is positive on the domain \(0 \leq u \leq 1 \), so \(\mathbf{N} \) is the upward-pointing normal (Figure 3).
Step 2. Evaluate $\mathbf{F} \cdot \mathbf{N}$.
Write \mathbf{F} in terms of the parameters u and v. Since $x = u^2$,

$$
\mathbf{F}(G(u, v)) = (0, 0, x) = (0, 0, u^2)
$$

and

$$
\mathbf{F}(G(u, v)) \cdot \mathbf{N}(u, v) = (0, 0, u^2) \cdot (-3u^2, 4uv, 2u) = 2u^3
$$

Step 3. Evaluate the surface integral.
The parameter domain is $0 \leq u \leq 1$, $0 \leq v \leq 1$, so

$$
\iint_S \mathbf{F} \cdot d\mathbf{S} = \int_{u=0}^{1} \int_{v=0}^{1} \mathbf{F}(G(u, v)) \cdot \mathbf{N}(u, v) \, dv \, du
$$

$$
= \int_{u=0}^{1} \int_{v=0}^{1} 2u^3 \, dv \, du = \int_{u=0}^{1} 2u^3 \, du = \frac{1}{2}
$$

EXAMPLE 2 Integral over a Hemisphere Calculate the flux of $\mathbf{F} = (z, x, 1)$ across the upper hemisphere S of the sphere $x^2 + y^2 + z^2 = 1$, oriented with outward-pointing normal vectors (Figure 4).

Solution Parametrize the hemisphere by spherical coordinates:

$$
G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi), \quad 0 \leq \phi \leq \frac{\pi}{2}, \quad 0 \leq \theta < 2\pi
$$

Step 1. Compute the normal vector.
According to Eq. (2) in Section 17.4, the outward-pointing normal vector is

$$
\mathbf{N} = T_\phi \times T_\theta = \sin \phi (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)
$$

Step 2. Evaluate $\mathbf{F} \cdot \mathbf{N}$.

$$
\mathbf{F}(G(\theta, \phi)) = (z, x, 1) = (\cos \phi, \cos \theta \sin \phi, 1)
$$

$$
\mathbf{F}(G(\theta, \phi)) \cdot \mathbf{N}(\theta, \phi) = (\cos \phi, \cos \theta \sin \phi, 1) \cdot (\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \cos \phi \sin \phi)
$$

$$
= \cos \theta \sin^2 \phi \cos \phi + \cos \theta \sin \theta \sin^3 \phi + \cos \phi \sin \phi
$$

Step 3. Evaluate the surface integral.

$$
\iint_S \mathbf{F} \cdot d\mathbf{S} = \int_{\phi=0}^{\pi/2} \int_{\theta=0}^{2\pi} \mathbf{F}(G(\theta, \phi)) \cdot \mathbf{N}(\theta, \phi) \, d\theta \, d\phi
$$

$$
= \int_{\phi=0}^{\pi/2} \int_{\theta=0}^{2\pi} (\cos \theta \sin^2 \phi \cos \phi + \cos \theta \sin \theta \sin^3 \phi + \cos \phi \sin \phi) \, d\theta \, d\phi
$$

Integral over θ is zero.

The integrals of $\cos \theta$ and $\cos \theta \sin \theta$ over $[0, 2\pi]$ are both zero, so we are left with

$$
\int_{\phi=0}^{\pi/2} \left[\int_{\theta=0}^{2\pi} \cos \theta \sin \phi \sin \phi \, d\phi \right] \, d\phi = 2\pi \int_{\phi=0}^{\pi/2} \cos \theta \sin \phi \, d\phi = -2\pi \cos^2 \phi \bigg|_{\phi=0}^{\pi/2} = \pi
$$

EXAMPLE 3 Surface Integral over a Graph Calculate the flux of $\mathbf{F} = x^2$ through the surface S defined by $y = 1 + x^2 + z^2$ for $1 \leq y \leq 5$. Orient S with normal pointing in the negative y-direction.

Solution This surface is the graph of the function $y = 1 + x^2 + z^2$, where x and z are the independent variables (Figure 5).

Step 1. Find a parametrization.
It is convenient to use x and z because y is given explicitly as a function of x and z. Thus, we define

$$
G(x, z) = (x, 1 + x^2 + z^2, z)
$$
What is the parameter domain? The condition $1 \leq y \leq 5$ is equivalent to $1 \leq 1 + x^2 + z^2 \leq 5$ or $0 \leq x^2 + z^2 \leq 4$. Therefore, the parameter domain is the disk of radius 2 in the xz-plane—that is, $D = \{(x, z) : x^2 + z^2 \leq 4\}$.

Because the parameter domain is a disk, it makes sense to use the polar variables r and θ in the xz-plane. In other words, we write $x = r \cos \theta$, $z = r \sin \theta$. Then

$$y = 1 + x^2 + z^2 = 1 + r^2$$

$$G(r, \theta) = (r \cos \theta, 1 + r^2, r \sin \theta), \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq r \leq 2$$

Step 2. Compute the tangent and normal vectors.

$$T_r = (\cos \theta, 2r, \sin \theta), \quad T_\theta = (-r \sin \theta, 0, r \cos \theta)$$

$$N = T_r \times T_\theta = \begin{vmatrix} i & j & k \\ \cos \theta & 2r & \sin \theta \\ -r \sin \theta & 0 & r \cos \theta \end{vmatrix} = 2r^2 \cos \theta i - r j + 2r^2 \sin \theta k$$

The coefficient of j is $-r$. Because it is negative, N points in the negative y-direction, as required.

Step 3. Evaluate $\mathbf{F} \cdot N$.

$$\mathbf{F}(G(r, \theta)) = x^2 \mathbf{j} = r^2 \cos^2 \theta \mathbf{j} = (0, r^2 \cos^2 \theta, 0)$$

$$\mathbf{F}(G(r, \theta)) \cdot N = \{0, r^2 \cos^2 \theta, 0\} \cdot (2r^2 \cos \theta, -r, 2r^2 \sin \theta) = -r^3 \cos^2 \theta$$

$$\int_S \mathbf{F} \cdot d\mathbf{S} = \int_D \mathbf{F}(G(r, \theta)) \cdot N \, d\theta \, dr = \int_0^{2\pi} \int_0^2 (-r^3 \cos^2 \theta) \, dr \, d\theta$$

$$= -\left(\int_0^{2\pi} \cos^2 \theta \, d\theta\right) \left(\int_0^2 r^3 \, dr\right)$$

$$= -\left(\pi \frac{2^4}{4}\right) = -4\pi$$

It is not surprising that the flux is negative since the outward-pointing normal points in the negative y-direction but the force field \mathbf{F} points in the positive y-direction.

CONCEPTUAL INSIGHT Since a vector surface integral depends on the orientation of the surface, this integral is defined only for surfaces that have two sides. However, some surfaces, such as the Möbius strip (discovered in 1858 independently by August Möbius and Johann Listing), cannot be oriented because they are one-sided. You can construct a Möbius strip M with a rectangular strip of paper: Join the two ends of the strip together with a 180° twist. Unlike an ordinary two-sided strip, the Möbius strip M has only one side, and it is impossible to specify an outward direction in a consistent manner (Figure 6). If you choose a unit normal vector at a point P and carry that unit vector continuously around M, when you return to P, the vector will point in the opposite direction. Therefore, we cannot integrate a vector field over a Möbius strip, and it is not meaningful to speak of the “flux” across M. On the other hand, it is possible to integrate a scalar function. For example, the integral of mass density would equal the total mass of the Möbius strip.

FIGURE 6 It is not possible to choose a continuously varying unit normal vector on a Möbius strip.
Fluid Flux

Imagine dipping a net into a stream of flowing water (Figure 7). The flow rate is the volume of water that flows through the net per unit time.

To compute the flow rate, let \(\mathbf{v} \) be the velocity vector field. At each point \(P \), \(\mathbf{v}(P) \) is the velocity vector of the fluid particle located at the point \(P \). We claim that the flow rate through a surface \(S \) is equal to the surface integral of \(\mathbf{v} \) over \(S \).

To explain why, suppose first that \(S \) is a rectangle of area \(A \) and that \(\mathbf{v} \) is a constant vector field with value \(\mathbf{v}_0 \) perpendicular to the rectangle. The particles travel at speed \(\|\mathbf{v}_0\| \), say, in meters per second, so a given particle flows through \(S \) within a 1-second time interval if its distance to \(S \) is at most \(\|\mathbf{v}_0\| \) meters—i.e., if its velocity vector passes through \(S \) (see Figure 8). Thus, the block of fluid passing through \(S \) in a 1-second interval is a box of volume \(\|\mathbf{v}_0\|A \) (Figure 9), and

\[
\text{Flow rate} = (\text{velocity})(\text{area}) = \|\mathbf{v}_0\|A
\]

If the fluid flows at an angle \(\theta \) relative to \(S \), then the block of water is a parallelepiped (rather than a box) of volume \(A\|\mathbf{v}_0\| \cos \theta \) (Figure 10). If \(\mathbf{N} \) is a vector normal to \(S \) of length equal to the area \(A \), then we can write the flow rate as a dot product:

\[
\text{Flow rate} = A\|\mathbf{v}_0\| \cos \theta = \mathbf{v}_0 \cdot \mathbf{N}
\]

In the general case, the velocity field \(\mathbf{v} \) is not constant, and the surface \(S \) may be curved. To compute the flow rate, we choose a parametrization \(G(u, v) \) and we consider a small rectangle of size \(\Delta u \times \Delta v \) that is mapped by \(G \) to a small patch \(S_0 \) of \(S \) (Figure 11). For any sample point \(G(\mathbf{u}_0, \mathbf{v}_0) \) in \(S_0 \), the vector \(\mathbf{N}(\mathbf{u}_0, \mathbf{v}_0) \Delta u \Delta v \) is a normal vector of length approximately equal to the area of \(S_0 \) [Eq. (3) in Section 17.4]. This patch is nearly rectangular, so we have the approximation

\[
\text{Flow rate through } S_0 \approx \mathbf{v}(\mathbf{u}_0, \mathbf{v}_0) \cdot \mathbf{N}(\mathbf{u}_0, \mathbf{v}_0) \Delta u \Delta v
\]

The total flow per second is the sum of the flows through the small patches. As usual, the limit of the sums as \(\Delta u \) and \(\Delta v \) tend to zero is the integral of \(\mathbf{v}(u, v) \cdot \mathbf{N}(u, v) \), which is the surface integral of \(\mathbf{v} \) over \(S \).
EXAMPLE 4 Let \(\mathbf{v} = (x^2 + y^2, 0, z^2) \) be the velocity field (in centimeters per second) of a fluid in \(\mathbb{R}^3 \). Compute the flow rate through the upper hemisphere \(S \) of the unit sphere centered at the origin.

Solution We use spherical coordinates:

\[
\begin{align*}
x &= \cos \theta \sin \phi, \quad y &= \sin \theta \sin \phi, \quad z = \cos \phi
\end{align*}
\]

The upper hemisphere corresponds to the ranges \(0 \leq \phi \leq \frac{\pi}{2} \) and \(0 \leq \theta \leq 2\pi \). By Eq. (2) in Section 17.4, the upward-pointing normal is

\[
\mathbf{N} = \mathbf{T}_\phi \times \mathbf{T}_\theta = \sin \phi \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle
\]

We have \(x^2 + y^2 = \sin^2 \phi \), so

\[
\begin{align*}
\mathbf{v} &= (x^2 + y^2, 0, z^2) = \langle \sin^2 \phi, 0, \cos^2 \phi \rangle \\
\mathbf{v} \cdot \mathbf{N} &= \sin \phi \langle \sin^2 \phi, 0, \cos^2 \phi \rangle \cdot \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle \\
&= \sin^3 \phi \cos \theta + \sin \phi \cos^3 \phi
\end{align*}
\]

The integral of \(\sin^4 \phi \cos \theta \) with respect to \(\theta \) is zero, so we are left with

\[
\begin{align*}
\int_{\phi=0}^{\pi/2} \int_{\theta=0}^{2\pi} \sin \phi \cos^3 \phi \, d\theta \, d\phi &= 2\pi \int_{\phi=0}^{\pi/2} \cos^3 \phi \sin \phi \, d\phi \\
&= -2\pi \left(-\frac{\cos^4 \phi}{4} \right) \bigg|_{\phi=0}^{\pi/2} = \frac{\pi}{2} \text{ cm}^3 / \text{s}
\end{align*}
\]

Since \(\mathbf{N} \) is an upward-pointing normal, this is the rate at which fluid flows across the hemisphere from below to above.

Electric and Magnetic Fields

The laws of electricity and magnetism are expressed in terms of two vector fields, the electric field \(\mathbf{E} \) and the magnetic field \(\mathbf{B} \), whose properties are summarized in Maxwell’s four equations. One of these equations is Faraday’s Law of Induction, which can be formulated either as a partial differential equation or in the following “integral form”:

\[
\int_C \mathbf{E} \cdot d\mathbf{r} = -\frac{d}{dt} \int_S \mathbf{B} \cdot dS
\]

In this equation, \(S \) is an oriented surface with boundary curve \(C \), oriented as indicated in Figure 12. The line integral of \(\mathbf{E} \) is equal to the voltage drop around the boundary curve (the work performed by \(\mathbf{E} \) moving a positive unit charge around \(C \)).

To illustrate Faraday’s Law, consider an electric current of \(i \) amperes flowing through a straight wire. According to the Biot-Savart Law, this current produces a magnetic field \(\mathbf{B} \) of magnitude

\[
B(r) = \frac{\mu_0 i}{2\pi r}
\]

where \(r \) is the distance (in meters) from the wire and \(\mu_0 = 4\pi \times 10^{-7} \text{T-m/A} \). At each point \(P \), \(\mathbf{B} \) is tangent to the circle through \(P \) perpendicular to the wire as in Figure 13(A), with the direction determined by the right-hand rule: If the thumb of your right hand points in the direction of the current, then your fingers curl in the direction of \(\mathbf{B} \).
EXAMPLE 5 A varying current of magnitude (i in seconds)

\[i = 28 \cos(400t) \text{ amperes} \]

flows through a straight wire [Figure 13(B)]. A rectangular wire loop \(C \) of length \(L = 1.2 \text{ m} \) and width \(H = 0.7 \text{ m} \) is located a distance \(d = 0.1 \text{ m} \) from the wire as in the figure. The loop encloses a rectangular surface \(\mathcal{R} \), which is oriented by normal vectors pointing out of the page.

(a) Calculate the flux \(\Phi(t) \) of \(B \) through \(\mathcal{R} \).

(b) Use Faraday’s Law to determine the voltage drop (in volts) around the loop \(C \).

Solution We choose coordinates \((x, y)\) on rectangle \(\mathcal{R} \) as in Figure 13, so that \(y \) is the distance from the wire and \(\mathcal{R} \) is the region

\[0 \leq x \leq L, \quad d \leq y \leq H + d \]

Our parametrization of \(\mathcal{R} \) is simply \(G(x, y) = (x, y) \), for which the normal vector \(\mathbf{N} \) is the unit vector perpendicular to \(\mathcal{R} \), pointing out of the page. The magnetic field \(\mathbf{B} \) at \(P = (x, y) \) has magnitude \(\mu_0 |i| \). It points out of the page in the direction of \(\mathbf{N} \) when \(i \) is positive and into the page when \(i \) is negative. Thus, \(\mathbf{B} = \frac{\mu_0|i|}{2\pi y} \mathbf{N} \) and \(\mathbf{B} \cdot \mathbf{N} = \frac{\mu_0|i|}{2\pi y} \)

(a) The flux \(\Phi(t) \) of \(B \) through \(\mathcal{R} \) at time \(t \) is

\[
\Phi(t) = \iint_{\mathcal{R}} B \cdot d\mathbf{S} = \int_{x=0}^{L} \int_{y=d}^{H+d} B \cdot \mathbf{N} \, dy \, dx
\]

\[
= \int_{x=0}^{L} \int_{y=d}^{H+d} \frac{\mu_0|i|}{2\pi y} \, dy \, dx = \frac{\mu_0 L i}{2\pi} \int_{y=d}^{H+d} \frac{dy}{y}
\]

\[
= \frac{\mu_0 L}{2\pi} \ln \left(\frac{H + d}{d} \right) i
\]

\[
= \frac{\mu_0 (1.2)}{2\pi} \ln \left(\frac{0.8}{0.1} \right) 28 \cos(400t)
\]

With \(\mu_0 = 4\pi \times 10^{-7} \), we obtain

\[\Phi(t) \approx 1.4 \times 10^{-5} \cos(400t) \text{ T-m}^2 \]

(b) By Faraday’s Law [Eq. (5)], the voltage drop around the rectangular loop \(C \), oriented in the counterclockwise direction, is

\[\int_C \mathbf{E} \cdot d\mathbf{s} = -\frac{d\Phi}{dt} \approx -(1.4 \times 10^{-5}) (400) \sin(400t) = -0.0056 \sin(400t) \text{ volts} \]
Types of Integrals

We end with a list of the types of integrals we have introduced in this chapter.

1. **Scalar line integral** along a curve C given by $\mathbf{r}(t)$ for $a \leq t \leq b$ (can be used to compute arc length, mass, electric potential):

$$\int_C f(x, y, z) \, d\mathbf{r} = \int_a^b f(\mathbf{r}(t)) \|\mathbf{r}'(t)\| \, dt$$

2. **Vector line integral** to calculate work along a curve C given by $\mathbf{r}(t)$ for $a \leq t \leq b$:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) \, dt = \int_C F_1 \, dx + F_2 \, dy + F_3 \, dz$$

3. **Vector line integral** to calculate flux across a curve C given by $\mathbf{r}(t)$ for $a \leq t \leq b$:

$$\int_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_a^b \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{N}(t) \, dt$$

4. **Surface integral** over a surface with parametrization $G(u, v)$ and parameter domain D (can be used to calculate surface area, total charge, gravitational potential):

$$\iint_S f(x, y, z) \, dS = \iint_D f(G(u, v)) \|\mathbf{N}(u, v)\| \, du \, dv$$

5. **Vector surface integral** to calculate flux of a vector field \mathbf{F} across a surface S with parametrization $G(u, v)$ and parameter domain D:

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F}(G(u, v)) \cdot \mathbf{N}(u, v) \, du \, dv$$

17.5 Summary

- A surface S is **oriented** if a continuously varying unit normal vector $\mathbf{n}(P)$ is specified at each point on S. This distinguishes an “outward” direction on the surface.
- The integral of a vector field \mathbf{F} over an oriented surface S is defined as the integral of the normal component $\mathbf{F} \cdot \mathbf{n}$ over S.
- Vector surface integrals are computed using the formula

$$\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \mathbf{F}(G(u, v)) \cdot \mathbf{N}(u, v) \, du \, dv$$

Here, $G(u, v)$ is a parametrization of S such that $\mathbf{N}(u, v) = \mathbf{T}_u \times \mathbf{T}_v$ points in the direction of the unit normal vector specified by the orientation.
- The surface integral of a vector field \mathbf{F} over S is also called the **flux** of \mathbf{F} through G. If \mathbf{F} is the velocity field of a fluid, then $\iint_S \mathbf{F} \cdot d\mathbf{S}$ is the rate at which fluid flows through S per unit time.

17.5 Exercises

Preliminary Questions

1. Let \mathbf{F} be a vector field and $G(u, v)$ a parametrization of a surface S, and set $\mathbf{N} = \mathbf{T}_u \times \mathbf{T}_v$. Which of the following is the normal component of \mathbf{F}?

 (a) $\mathbf{F} \cdot \mathbf{N}$
 (b) $\mathbf{F} \cdot \mathbf{n}$

2. The vector surface integral $\iint_S \mathbf{F} \cdot d\mathbf{S}$ is equal to the scalar surface integral of the function (choose the correct answer):

 (a) $\|\mathbf{F}\|$

3. $\iint_S \mathbf{F} \cdot d\mathbf{S}$ is zero if (choose the correct answer):

 (a) \mathbf{F} is tangent to S at every point.
 (b) \mathbf{F} is perpendicular to S at every point.

 (b) $\mathbf{F} \cdot \mathbf{N}$, where \mathbf{N} is a normal vector.
 (c) $\mathbf{F} \cdot \mathbf{n}$, where \mathbf{n} is the unit normal vector.
4. If $\mathbf{F}(P) = \mathbf{n}(P)$ at each point on S, then $\iint_S \mathbf{F} \cdot d\mathbf{S}$ is equal to which of the following?
 (a) Zero (b) Area(S) (c) Neither

5. Let S be the disk $x^2 + y^2 \leq 1$ in the xy-plane oriented with normal in the positive z-direction. Determine $\iint_S \mathbf{F} \cdot d\mathbf{S}$ for each of the following vector constant fields:
 (a) $\mathbf{F} = (1, 0, 0)$ (b) $\mathbf{F} = (0, 0, 1)$ (c) $\mathbf{F} = (1, 1, 1)$

Exercises

1. Let $\mathbf{F} = (z, 0, y)$, and let S be the oriented surface parametrized by $G(u, v) = (u^2 - v, u, v^2)$ for $0 \leq u \leq 2, -1 \leq v \leq 4$. Calculate:
 (a) \mathbf{N} and $\mathbf{F} \cdot \mathbf{N}$ as functions of u and v
 (b) The normal component of \mathbf{F} to the surface at $P = (3, 2, 1) = G(2, 1)$
 (c) $\iint_S \mathbf{F} \cdot d\mathbf{S}$

2. Let $\mathbf{F} = (y, -x, x^2 + y^2)$, and let S be the portion of the paraboloid $z = x^2 + y^2$ where $x^2 + y^2 \leq 3$.
 (a) Show that S is parametrized in polar variables $x = r \cos \theta$, $y = r \sin \theta$, then $\mathbf{F} \cdot \mathbf{N} = r^3$.
 (b) Show that $\iint_S \mathbf{F} \cdot d\mathbf{S} = \int_0^{2\pi} \int_0^3 r^3 \, dr \, d\theta$ and evaluate.

3. Let S be the unit square in the xy-plane shown in Figure 14, oriented with the normal pointing in the positive z-direction. Estimate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where \mathbf{F} is a vector field whose values at the labeled points are
 $\mathbf{F}(A) = (2, 6, 4)$, $\mathbf{F}(B) = (1, 1, 7)$
 $\mathbf{F}(C) = (3, 3, -3)$, $\mathbf{F}(D) = (0, 1, 8)$

4. Suppose that S is a surface in \mathbb{R}^3 with a parameterization G whose domain D is the square in Figure 14. The values of a function f, a vector field \mathbf{F}, and the normal vector $\mathbf{N} = \mathbf{T}_u \times \mathbf{T}_v$ at $G(P)$ are given for the four sample points in D in the following table. Estimate the surface integrals of f and \mathbf{F} over S.

 ![Figure 14](image)

<table>
<thead>
<tr>
<th>Point P in D</th>
<th>f</th>
<th>\mathbf{F}</th>
<th>\mathbf{N}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3</td>
<td>(2, 6, 4)</td>
<td>(1, 1, 1)</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>(1, 1, 7)</td>
<td>(1, 1, 0)</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>(3, 3, -3)</td>
<td>(1, 0, -1)</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>(0, 1, 8)</td>
<td>(2, 1, 0)</td>
</tr>
</tbody>
</table>

5. $\mathbf{F} = (y, z, x)$, plane $3x - 4y + z = 1$,
 $0 \leq x \leq 1, 0 \leq y \leq 1$, upward-pointing normal

6. $\mathbf{F} = [e^z, z, x]$, $G(r, s) = (rs, r + s, r)$,
 $0 \leq r \leq 1, 0 \leq s \leq 1$, oriented by $\mathbf{T}_r \times \mathbf{T}_x$

7. $\mathbf{F} = [0, 3, x]$, part of sphere $x^2 + y^2 + z^2 = 9$,
 where $x \geq 0, y \geq 0, z \geq 0$, outward-pointing normal

8. $\mathbf{F} = (x, y, z)$, part of sphere $x^2 + y^2 + z^2 = 1$,
 where $\frac{1}{2} \leq z \leq \frac{\sqrt{3}}{2}$, inward-pointing normal

9. $\mathbf{F} = (z, x, z)$, $z = 9 - x^2 - y^2, x \geq 0, y \geq 0, z \geq 0$, upward-pointing normal

10. $\mathbf{F} = (\sin y, \sin z, yz)$, rectangle $0 \leq y \leq 2$, $0 \leq z \leq 3$ in the (y, z)-plane, normal pointing in negative x-direction

11. $\mathbf{F} = y^2 \mathbf{i} + 2 \mathbf{j} - 3 \mathbf{k}$, portion of the plane $x + y + z = 1$ in the octant $x, y, z \geq 0$, upward-pointing normal

12. $\mathbf{F} = \{x, y, z\}^3$, cylinder $x^2 + y^2 = 4, 1 \leq z \leq 5$, outward-pointing normal

13. $\mathbf{F} = \{x, y, z, z^{-1}\}$, disk of radius 3 at height 4 parallel to the xy-plane, upward-pointing normal

14. $\mathbf{F} = (xy, y, 0)$, cone $z^2 = x^2 + y^2$, $x^2 + y^2 \leq 4$, $z \geq 0$, downward-pointing normal

15. $\mathbf{F} = [0, 0, e^{y+z}]$, boundary of unit cube $0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1$, outward-pointing normal

16. $\mathbf{F} = [0, 0, z^2]$, $G(u, v) = (u \cos v, u \sin v, v), 0 \leq u \leq 1, 0 \leq v \leq 2\pi$, upward-pointing normal

17. $\mathbf{F} = (y, z, 0)$, $G(u, v) = (u^3 - v, u + v, v^2), 0 \leq u \leq 2, 0 \leq v \leq 3$, downward-pointing normal

18. Let S be the oriented half-cylinder in Figure 15. In (a)–(f), determine whether $\iint_S \mathbf{F} \cdot d\mathbf{S}$ is positive, negative, or zero. Explain your reasoning.
 (a) $\mathbf{F} = \mathbf{i}$ (b) $\mathbf{F} = \mathbf{j}$ (c) $\mathbf{F} = \mathbf{k}$
 (d) $\mathbf{F} = yi$ (e) $\mathbf{F} = -yj$ (f) $\mathbf{F} = xj$
19. Let \(\mathbf{e}_r = \frac{x}{r} \mathbf{i} + \frac{y}{r} \mathbf{j} + \frac{z}{r} \mathbf{k} \) be the unit radial vector, where \(r = \sqrt{x^2 + y^2 + z^2} \). Calculate the integral of \(\mathbf{F} = e^{-r} \mathbf{e}_r \) over:
(a) the upper hemisphere of \(x^2 + y^2 + z^2 = 9 \), outward-pointing normal.
(b) the octant \(x \geq 0, y \geq 0, z \geq 0 \) of the unit sphere centered at the origin.

20. Show that the flux of \(\mathbf{F} = \frac{\mathbf{e}_r}{r^2} \) through a sphere centered at the origin does not depend on the radius of the sphere.

21. The electric field due to a point charge located at the origin in \(\mathbb{R}^3 \) is \(\mathbf{E} = k \frac{\mathbf{e}_r}{r^2} \), where \(r = \sqrt{x^2 + y^2 + z^2} \) and \(k \) is a constant. Calculate the flux of \(\mathbf{E} \) through the disk \(D \) of radius 2 parallel to the \(xy \)-plane with center \((0, 0, 0) \).

22. Let \(S \) be the ellipsoid \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 + \left(\frac{z}{c} \right)^2 = 1 \). Calculate the flux of \(\mathbf{F} = z \mathbf{k} \) over the portion of \(S \) where \(x, y, z \leq 0 \) with upward-pointing normal. Hint: Parametrize \(S \) using a modified form of spherical coordinates \((\theta, \phi) \).

23. Let \(\mathbf{v} = \mathbf{e}_r \) be the velocity field (in meters per second) of a fluid in \(\mathbb{R}^3 \). Calculate the flow rate (in cubic meters per second) through the upper hemisphere \(\{z \geq 0 \} \) of the sphere \(x^2 + y^2 + z^2 = 1 \).

24. Calculate the flow rate of a fluid with velocity field \(\mathbf{v} = (x, y, x^2 y) \) (in meters per second) through the portion of the ellipse \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \) in the \(xy \)-plane, where \(x, y \geq 0 \), oriented with the normal in the positive \(z \)-direction.

In Exercises 25–28, a net is dipped in a river. Determine the flow rate of water across the net if the velocity vector field for the river is given by \(\mathbf{v} \) and the net is described by the given equations.

25. \(\mathbf{v} = (x - y, z + y + 4, z^2) \), net given by \(x^2 + z^2 \leq 1 \), \(y = 0 \), oriented in the positive \(y \)-direction

26. \(\mathbf{v} = (x - y, z + y + 4, z^2) \), net given by \(y = 1 - x^2 - z^2 \), \(y \geq 0 \), oriented in the positive \(y \)-direction

27. \(\mathbf{v} = (x - y, z + y + 4, z^2) \), net given by \(y = \sqrt{1 - x^2 - z^2} \), \(y \geq 0 \), oriented in the positive \(y \)-direction

28. \(\mathbf{v} = (xy, xz, xy) \), net given by \(y = 1 - x - z \), for \(x, y, z \geq 0 \) oriented in the positive \(y \)-direction

29. A fluid flows with constant velocity field \(\mathbf{v} = 2\mathbf{k} \) (meters per second or m/s). Calculate:
(a) the flow rate through \(T \).
(b) the flow rate through the projection of \(T \) onto the \(xy \)-plane [the triangle with vertices \((0,0,0),(1,0,0)\), and \((0,1,0)\)].

30. Calculate the flow rate through \(T \) if \(\mathbf{v} = -\mathbf{j} \) m/s.

31. Prove that if \(S \) is the part of a graph \(z = g(x, y) \) lying over a domain \(D \) in the \(xy \)-plane, then
\[
\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_D \left(-F_1 \frac{\partial g}{\partial x} - F_2 \frac{\partial g}{\partial y} + F_3 \right) dx dy
\]

In Exercises 32–33, a varying current \(i(t) \) flows through a long straight wire in the \(xy \)-plane as in Example 5. The current produces a magnetic field \(\mathbf{B} \) whose magnitude at a distance \(r \) from the wire is \(B = \frac{\mu_0 i}{2\pi r} \), where \(\mu_0 = 4\pi \times 10^{-7} \text{ T-m/A} \). Furthermore, \(\mathbf{B} \) points into the page at points \(P \) in the \(xy \)-plane.

32. Assume that \(i(t) = t(12 - t) \) A (in seconds). Calculate the flux \(\Phi(t) \), at time \(t \), of \(\mathbf{B} \) through a rectangle of dimensions \(L \times H = 3 \times 2 \) m whose top and bottom edges are parallel to the wire and whose bottom edge is located \(d = 0.5 \) m above the wire, similar to Figure 13(B). Then use Faraday’s Law to determine the voltage drop around the rectangular loop (the boundary of the rectangle) at time \(t \).

33. Assume that \(i(t) = 10 e^{-0.1t} \) A (in seconds). Calculate the flux \(\Phi(t) \), at time \(t \), of \(\mathbf{B} \) through the isosceles triangle of base 12 cm and height 6 cm whose bottom edge is 3 cm from the wire, as in Figure 17. Assume the triangle is oriented with normal vector pointing out of the page. Use Faraday’s Law to determine the voltage drop around the triangular loop (the boundary of the triangle) at time \(t \).
In Exercises 34–35, a solid material that has thermal conductivity \(K \) in kilowatts per meter-kelvin and temperature given at each point by \(w(x, y, z) \) has heat flow given by the vector field \(\mathbf{F} = -K \nabla w \) and rate of heat flow across a surface \(S \) within the solid given by \(-K \int_S \nabla w \cdot d\mathbf{S} \).

34. Find the rate of heat flow out of a sphere of radius 1 meter inside a large cube of copper \((K = 400 \text{ kilowatts/m-k})\) with temperature function given by \(w(x, y, z) = 20 - 5(x^2 + y^2 + z^2) \text{°C} \).

35. A insulated cylinder of solid gold \((K = 310 \text{ kW/m-k})\) of radius \(\sqrt{2} \text{ m} \) and height 5 m is heated at one end until the temperature at each point in the cylinder is given by \(w(x, y, z) = (30 - z^2)(2 - (x^2 + y^2)) \). Determine the rate of heat flow across each horizontal disk given by \(z = 1, z = 2, \) and \(z = 3 \), identifying which has the greatest rate of heat flow across it.

Further Insights and Challenges

36. A point mass \(m \) is located at the origin. Let \(Q \) be the flux of the gravitational field \(\mathbf{F} = -\frac{Gm}{r^2} \) through the cylinder \(x^2 + y^2 = R^2 \) for \(a \leq z \leq b \), including the top and bottom (Figure 18). Show that \(Q = -4\pi Gm \) if \(a < 0 < b \) \((m \) lies inside the cylinder) and \(Q = 0 \) if \(0 < a < b \) \((m \) lies outside the cylinder).

Figure 18

In Exercises 37 and 38, let \(S \) be the surface with parametrization

\[
G(u, v) = \left(\left(1 + v \cos \frac{u}{2} \right) \cos u, \left(1 + v \cos \frac{u}{2} \right) \sin u, v \sin \frac{u}{2} \right)
\]

for \(0 \leq u \leq 2\pi, -\frac{1}{2} \leq v \leq \frac{1}{2} \).

37. **CAS** Use a computer algebra system.

(a) Plot \(S \) and confirm visually that \(S \) is a Möbius strip.

(b) The intersection of \(S \) with the \(xy \)-plane is the unit circle \(G(u, 0) = (\cos u, \sin u, 0) \). Verify that the normal vector along this circle is

\[
N(u, 0) = \left(\cos u \sin \frac{u}{2}, \sin u \sin \frac{u}{2}, -\cos \frac{u}{2} \right)
\]

(c) As \(u \) varies from 0 to \(2\pi \), the point \(G(u, 0) \) moves once around the unit circle, beginning and ending at \(G(0, 0) = G(2\pi, 0) = (1, 0, 0) \). Verify that \(N(2\pi, 0) = -N(0, 0) \). This shows that \(S \) is not orientable—that is, it is not possible to choose a nonzero normal vector at each point on \(S \) in a continuously varying manner (if it were possible, the unit normal vector would return to itself rather than to its negative when carried around the circle).

38. **CAS** We cannot integrate vector fields over \(S \) because \(S \) is not orientable, but it is possible to integrate functions over \(S \). Using a computer algebra system:

(a) Verify that

\[
\|N(u, v)\|^2 = 1 + \frac{3}{4} v^2 + 2 v \cos u + \frac{1}{4} v^2 \cos u
\]

(b) Compute the surface area of \(S \) to four decimal places.

(c) Compute \(\int_S (x^2 + y^2 + z^2) \, dS \) to four decimal places.

CHAPTER REVIEW EXERCISES

1. Compute the vector assigned to the point \(P = (-3, 5) \) by the vector field:
 (a) \(\mathbf{F}(x, y) = (xy, y - x) \)
 (b) \(\mathbf{F}(x, y) = (4, 8) \)
 (c) \(\mathbf{F}(x, y) = (3^x + y, \log_2(x + y)) \)

2. Find a vector field \(\mathbf{F} \) in the plane such that \(\|\mathbf{F}(x, y)\| = 1 \) and \(\mathbf{F}(x, y) \) is orthogonal to \(\mathbf{G}(x, y) = (x, y) \) for all \(x, y \).

In Exercises 3–6, sketch the vector field.

3. \(\mathbf{F}(x, y) = (y, 1) \)
4. \(\mathbf{F}(x, y) = (4, 1) \)
5. \(\nabla f \), where \(f(x, y) = x^2 - y \)
6. \(\mathbf{F}(x, y) = \left(\frac{4y}{\sqrt{x^2 + 4y^2}}, \frac{-x}{\sqrt{x^2 + 4y^2}} \right) \)

Hint: Show that \(\mathbf{F} \) is a unit vector field tangent to the family of ellipses \(x^2 + 4y^2 = c^2 \).

In Exercises 7–14, calculate \(\text{div}(\mathbf{F}) \) and \(\text{curl}(\mathbf{F}) \).

7. \(\mathbf{F} = (x^2, y^2, z^2) \)
8. \(\mathbf{F} = (yz, xz, xy) \)
9. \(\mathbf{F} = (x^3y, xz^2, y^2z) \)
10. \(\mathbf{F} = (\sin xy, \cos yz, \sin xz) \)
11. \(\mathbf{F} = yi - zk \)
12. \(\mathbf{F} = (e^{x+y}, e^{x+z}, xyz) \)
13. \(\mathbf{F} = \nabla (e^{-x^2-y^2-z^2}) \)
14. \(\mathbf{e}_r = \frac{1}{r}(x, y, z) \)
15. Show that if \(\mathbf{F}_1, \mathbf{F}_2, \) and \(\mathbf{F}_3 \) are differentiable functions of one variable, then

\[
\text{curl}\left((\mathbf{F}_1(x), \mathbf{F}_2(y), \mathbf{F}_3(z)) \right) = 0
\]

Use this to calculate the curl of

\[
\mathbf{F}(x, y, z) = (x^2 + y^2, \ln y + z^2, z^3 \sin(z^2)e^{x^2})
\]

16. Give an example of a nonzero vector field \(\mathbf{F} \) such that \(\text{curl}(\mathbf{F}) = 0 \) and \(\text{div}(\mathbf{F}) = 0 \).

17. Verify the identity \(\text{div}(\text{curl}\mathbf{F}) = 0 \) for the vector fields \(\mathbf{F} = (xz, ye^x, yz) \) and \(\mathbf{G} = (z^2, xy^3, x^2y) \).
In Exercises 18–26, determine whether the vector field is conservative, and if so, find a potential function.

18. \(\mathbf{F}(x, y) = (x^2, y^2, x^3) \)
19. \(\mathbf{F}(x, y) = (x + y, x^2 + y^2, x^2 - y^2) \)
20. \(\mathbf{F}(x, y, z) = (\sin x, e^z, 2) \)
21. \(\mathbf{F}(x, y, z) = (2, 4, e^z) \)
22. \(\mathbf{F}(x, y, z) = (xy, z^2, 2z^2) \)
23. \(\mathbf{F}(x, y) = (y^3, x^3, y^3) \)
24. \(\mathbf{F}(x, y, z) = \left(\frac{2xy}{x^2 + y}, \ln(x^2 + y), \frac{-y}{x^2 + y} \right) \)
25. \(\mathbf{F}(x, y, z) = (xe^{2x}, ye^{2z}, ze^{2y}) \)
26. \(\mathbf{F}(x, y, z) = (x + y, z^2, x^2 + y) \)

27. Find a conservative vector field of the form \(\mathbf{F} = (g(x), h(x)) \) such that \(\mathbf{F}(0, 0) = (1, 1) \), where \(g(x) \) and \(h(x) \) are differentiable functions. Determine all such vector fields.

In Exercises 28–31, compute the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) for the given function and path or curve.

28. \(\mathbf{F}(x, y) = xy \), the path \(\mathbf{r}(t) = (t, 2t - 1) \) for \(0 \leq t \leq 1 \)
29. \(\mathbf{F}(x, y) = x - y \), the unit semicircle \(x^2 + y^2 = 1, y \geq 0 \)
30. \(\mathbf{F}(x, y, z) = e^x - \frac{y}{\sqrt{2z}} \), the path \(\mathbf{r}(t) = \left(\ln t, \sqrt{2t}, \frac{1}{2}t^2 \right) \) for \(1 \leq t \leq 2 \)
31. \(\mathbf{F}(x, y, z) = x + 2y + z \), the helix \(\mathbf{r}(t) = (\cos t, \sin t, t) \) for \(0 \leq t \leq \frac{\pi}{2} \)
32. Find the total mass of an L-shaped rod consisting of the segments \((2, 2) \) and \((2, 2-2) \) for \(0 \leq t \leq 1 \) (length in centimeters) with mass density \(\rho(x, y) = x^2y \) g/cm.

33. Calculate \(\nabla f \), where \(f(x, y, z) = xye^z \), and compute \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where:
 (a) \(C \) is any curve from \((1, 1, 0)\) to \((3, e, -1)\).
 (b) \(C \) is the boundary of the square \(0 \leq x \leq 1, 0 \leq y \leq 1 \) oriented counterclockwise.
34. Calculate \(\int_C y \, dx + x^2 y \, dy \), where \(C_1 \) is the oriented curve in Figure 1(A).

35. Let \(\mathbf{F}(x, y) = (9y - y^3, e^{\sqrt{y}}(x^2 - 3x)) \), and let \(C_2 \) be the oriented curve in Figure 1(B).
 (a) Show that \(\mathbf{F} \) is not conservative.
 (b) Show that \(\int_C \mathbf{F} \cdot d\mathbf{r} = 0 \) without explicitly computing the integral. \(\text{Hint: Show that } \mathbf{F} \text{ is orthogonal to the edges along the square.} \)

In Exercises 36–39, compute the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) for the given vector field and path.

36. \(\mathbf{F}(x, y) = \left(\frac{2y}{x^2 + 4y^2}, \frac{-x}{x^2 + 4y^2} \right) \)
 the path \(\mathbf{r}(t) = \left(\cos t, \frac{1}{2} \sin t \right) \) for \(0 \leq t \leq 2\pi \)
37. \(\mathbf{F}(x, y) = (2xy, x^2 + y^2) \), the part of the unit circle in the first quadrant oriented counterclockwise
38. \(\mathbf{F}(x, y) = (x^2, y^2, z^2) \), the path \(\mathbf{r}(t) = (e^{-t}, e^{-2t}, e^{-3t}) \) for \(0 \leq t \leq \infty \)
39. \(\mathbf{F} = \nabla f \), where \(f(x, y, z) = 4x^2 \ln(1 + y^4 + z^2) \), the path \(\mathbf{r}(t) = \left(t^3, \ln(1 + t^2), e^t \right) \) for \(0 \leq t \leq 1 \)
40. Consider the line integrals \(\int_C \mathbf{F} \cdot d\mathbf{r} \) for the vector fields \(\mathbf{F} \) and paths \(\mathbf{r} \) in Figure 2. Which two of the line integrals appear to have a value of zero? Which of the other two appears to have a negative value?

In Exercises 41–43, calculate the work required to move an object from \(P = (1, 1, 1) \) to \(Q = (3, -4, -2) \) against the force field \(\mathbf{F}(x, y, z) = -12(\mathbf{r})^{-4} \), where \(\mathbf{r} = \sqrt{x^2 + y^2 + z^2} \). \(\text{Hint: } \) Find a potential function for \(\mathbf{F} \).

41. Calculate the work required to move an object from \(P = (1, 1, 1) \) to \(Q = (3, -4, -2) \) against the force field \(\mathbf{F}(x, y, z) = -12(\mathbf{r})^{-4} \), where \(\mathbf{r} = \sqrt{x^2 + y^2 + z^2} \). \(\text{Hint: } \) Find a potential function for \(\mathbf{F} \).
42. Find constants \(a, b, c \) such that \(G(u, v) = (u + av, bu + v, 2u - c) \) parametrizes the plane \(3x - 4y + z = 5 \). Calculate \(\mathbf{T}_u, \mathbf{T}_v, \) and \(\mathbf{N}(u, v) \).
43. Calculate the integral of \(f(x, y, z) = e^z \) over the portion of the plane \(x + 2y + 2z = 3 \), where \(x, y, z \geq 0 \).
44. Let \(S \) be the surface parametrized by
\[
G(u, v) = \left(2u \sin \frac{u}{2}, 2u \cos \frac{v}{2}, 3v \right)
\]
for \(0 \leq u \leq 1 \) and \(0 \leq v \leq 2\pi \).
(a) Calculate the tangent vectors \(T_u \) and \(T_v \) and the normal vector \(N(u, v) \) at \(P = G(1, \frac{\pi}{4}) \).
(b) Find the equation of the tangent plane at \(P \).
(c) Compute the surface area of \(S \).

45. CAS
Plot the surface with parametrization
\[
G(u, v) = (u + 4v, 2u - v, 5uv)
\]
for \(-1 \leq v \leq 1, -1 \leq u \leq 1 \). Express the surface area as a double integral and use a computer algebra system to compute the area numerically.

46. CAS
Express the surface area of the surface \(z = 10 - x^2 - y^2 \) for \(-1 \leq x \leq 1, -3 \leq y \leq 3 \) as a double integral. Evaluate the integral numerically using a CAS.

47. Evaluate \(\int \int_S x^2 y \, dS \), where \(S \) is the surface \(z = \sqrt{3x} + y^2 \), \(-1 \leq x \leq 1, 0 \leq y \leq 1 \).

48. Calculate \(\int \int_S \left(x^2 + y^2 \right) e^{-z} \, dS \), where \(S \) is the cylinder with equation \(x^2 + y^2 = 9 \) for \(0 \leq z \leq 10 \).

49. Let \(S \) be the upper hemisphere \(x^2 + y^2 + z^2 = 1, z \geq 0 \). For each of the functions (a)–(d), determine whether \(\int \int_S f \, dS \) is positive, zero, or negative (without evaluating the integral). Explain your reasoning.
(a) \(f(x, y, z) = y^3 \)
(b) \(f(x, y, z) = z^3 \)
(c) \(f(x, y, z) = xyz \)
(d) \(f(x, y, z) = z^2 - 2 \)

50. Let \(S \) be a small patch of surface with a parametrization \(G(u, v) \) for \(0 \leq u \leq 0.1, 0 \leq v \leq 0.1 \) such that the normal vector \(N(u, v) \) for \((u, v) = (0, 0) \) is \(N = (2, -2, 4) \). Use Eq. (3) in Section 17.4 to estimate the surface area of \(S \).

51. The upper half of the sphere \(x^2 + y^2 + z^2 = 9 \) has parametrization \(G(r, \theta) = (r \cos \theta, r \sin \theta, \sqrt{9-r^2}) \) in cylindrical coordinates (Figure 3).
(a) Calculate the normal vector \(N = T_r \times T_\theta \) at the point \(G(2, \frac{\pi}{3}) \).
(b) Use Eq. (3) in Section 17.4 to estimate the surface area of \(G(R) \), where \(R \) is the small domain defined by
\[
2 \leq r \leq 2.1, \quad \frac{\pi}{3} \leq \theta \leq \frac{\pi}{3} + 0.05
\]

52. F
Compute \(\int \int_S F \cdot dS \) for the given oriented surface or parametrized surface.
53. \(F(x, y, z) = (y, x, e^{xz}) \), \(x^2 + y^2 = 9, x \geq 0, y \geq 0, -3 \leq z \leq 3 \), upward-pointing normal
54. \(F(x, y, z) = (0, 0, x^2 + y^2), x^2 + y^2 + z^2 = 4, z \geq 0 \), upward-pointing normal
55. \(F(x, y, z) = (0, 0, e^{x^2}), x^2 + y^2 + z^2 = 4, 0 \leq u \leq 1, 0 \leq v \leq 1 \), upward-pointing normal
56. \(F(x, y, z) = (x, 0, z^2), 0 \leq x \leq 1, 0 \leq y \leq 1 \), upward-pointing normal
57. \(F(x, y, z) = (0, 0, z), 3x^2 + 2y^2 + z^2 = 1, z \geq 0 \), upward-pointing normal
58. Calculate the total charge on the cylinder
\[
x^2 + y^2 = R^2, \quad 0 \leq z \leq H
\]
if the charge density in cylindrical coordinates is \(\rho(\theta, z) = K z^2 \cos^2 \theta \), where \(K \) is a constant.
59. Find the flow rate of a fluid with velocity field \(v = (2x, y, xy) \) m/s across the part of the cylinder \(x^2 + y^2 = 9 \) where \(x \geq 0, y \geq 0, \) and \(0 \leq z \leq 4 \) (distance in meters).
60. With \(v \) as in Exercise 59, calculate the flow rate across the part of the elliptic cylinder \(\frac{x^2}{4} + y^2 = 1 \) where \(x \geq 0, y \geq 0, \) and \(0 \leq z \leq 4 \).
61. Calculate the flux of the vector field \(E(x, y, z) = (0, 0, x) \) through the part of the ellipsoid
\[
4x^2 + 9y^2 + z^2 = 36
\]
where \(z \geq 3, x \geq 0, y \geq 0 \). **Hint:** Use the parametrization
\[
G(r, \theta) = (3r \cos \theta, 2r \sin \theta, 6\sqrt{1-r^2})
\]
18 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS

In this final chapter, we study three generalizations of the Fundamental Theorem of Calculus, which we have seen is given by \(\int_a^b F'(x) \, dx = F(b) - F(a) \). If we think of the boundary of the interval \([a, b]\) as being given by the two points \([a, b]\), then the Fundamental Theorem says that we can find the integral of the derivative of a function over an interval just by evaluating that function on the boundary of the interval. The first of these new theorems, Green’s Theorem, says that we can find a double integral of a certain type of derivative over a region in the \(xy\)-plane by finding a line integral around the boundary of the region. The second theorem, Stokes’ Theorem, allows us to find a surface integral of a certain derivative over a surface with boundary curves in space by evaluating a line integral on the boundary curves. The third theorem, the Divergence Theorem, allows us to find the triple integral of another certain kind of derivative over a solid in space by evaluating a surface integral over the boundary surface of the solid.

This is a culmination of our efforts to extend the ideas of single-variable calculus to the multivariable setting. However, vector analysis is not so much an endpoint as a gateway to a host of applications, not only in the traditional domains of physics and engineering, but also in biological, earth, and environmental sciences, where an understanding of fluid and aerodynamics, and continuous matter is required.

18.1 Green’s Theorem

In Section 17.3, we showed that the circulation of a conservative vector field \(\mathbf{F} \) around every closed path is zero. For vector fields in the plane, Green’s Theorem tells us what happens when \(\mathbf{F} \) is not conservative.

To formulate Green’s Theorem, we need some notation. Consider a domain \(\mathcal{D} \) whose boundary \(\mathcal{C} \) is a simple closed curve—that is, a closed curve that does not intersect itself (Figure 1). We follow standard usage and denote the boundary curve \(\mathcal{C} \) by \(\partial \mathcal{D} \). The boundary orientation of \(\partial \mathcal{D} \) is the direction to traverse the boundary such that the region is always to your left, as in Figure 1. When there is a single boundary curve, the boundary orientation is the counterclockwise orientation.

Recall that we have two notations for the line integral of \(\mathbf{F} = \langle F_1, F_2 \rangle \):

\[
\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \quad \text{and} \quad \int_{\mathcal{C}} F_1 \, dx + F_2 \, dy
\]

If \(\mathcal{C} \) is parametrized by \(\mathbf{r}(t) = \langle x(t), y(t) \rangle \) for \(a \leq t \leq b \), then

\[
dx = x'(t) \, dt, \quad dy = y'(t) \, dt
\]

\[
\int_{\mathcal{C}} F_1 \, dx + F_2 \, dy = \int_a^b \left(F_1(x(t), y(t))x'(t) + F_2(x(t), y(t))y'(t) \right) \, dt \quad \text{(1)}
\]

Throughout this chapter, we assume that the components of all vector fields have continuous second-order partial derivatives, and also that \(C \) is smooth (\(C \) has a parametrization with derivatives of all orders) or piecewise smooth (a finite union of smooth curves joined together at endpoints).
THEOREM 1 Green’s Theorem Let D be a domain whose boundary ∂D is a simple closed curve, oriented counterclockwise. Then

$$\oint_{\partial D} F \cdot dr = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

Proof Because a complete proof is quite technical, we shall make the simplifying assumption that the boundary of D can be described as the union of two graphs $y = g(x)$ and $y = f(x)$ with $g(x) \leq f(x)$ as in Figure 2 and also as the union of two graphs $x = g_1(y)$ and $x = f_1(y)$, with $g_1(y) \leq f_1(y)$ as in Figure 3.

From the terms in Eq. (2), we construct two equations, one for F_1 and one for F_2:

$$\oint_{\partial D} F_1 \cdot dr = -\iint_D \frac{\partial F_1}{\partial y} \, dA$$

$$\oint_{\partial D} F_2 \cdot dr = \iint_D \frac{\partial F_2}{\partial x} \, dA$$

If we can show that both these equations hold, then we obtain a proof of Green’s Theorem by adding them together. To prove Eq. (3), we write

$$\oint_{\partial D} F_1 \cdot dr = \int_{C_1} F_1 \cdot dr + \int_{C_2} F_1 \cdot dr$$

where C_1 is the graph of $y = g(x)$ and C_2 is the graph of $y = f(x)$, oriented as in Figure 2. To compute these line integrals, we parameterize the graphs from left to right using $t = x$ as the parameter:

Graph of $y = g(x)$: $r_1(t) = (t, g(t))$, $a \leq t \leq b$

Graph of $y = f(x)$: $r_2(t) = (t, f(t))$, $a \leq t \leq b$

Since C_2 is oriented from right to left, the line integral over ∂D is the difference

$$\oint_{\partial D} F_1 \cdot dr = \int_{C_1} F_1 \cdot dr - \int_{C_2} F_1 \cdot dr$$

In both parametrizations, $x = t$, so $dx = dt$, and by Eq. (1)

$$\oint_{\partial D} F_1 \cdot dr = \int_{t=a}^b F_1(t, g(t)) \, dt - \int_{t=a}^b F_1(t, f(t)) \, dt$$

Now, the key step is to apply the Fundamental Theorem of Calculus to $\frac{\partial F_1}{\partial y}(t, y)$ as a function of y with t held constant:

$$F_1(t, f(t)) - F_1(t, g(t)) = \int_{y=g(t)}^{f(t)} \frac{\partial F_1}{\partial y}(t, y) \, dy$$

Substituting the integral on the right in Eq. (5), we obtain Eq. (3):

$$\oint_{\partial D} F_1 \cdot dr = -\int_{t=a}^b \int_{y=g(t)}^{f(t)} \frac{\partial F_1}{\partial y}(t, y) \, dy \, dt = -\iint_D \frac{\partial F_1}{\partial y} \, dA$$

Eq. (4) is proved in a similar fashion, by expressing ∂D as the union of the graphs of $x = f_1(y)$ and $x = g_1(y)$ (Figure 3).
Recall from Section 17.1 that if \(\mathbf{F} \) is a conservative vector field, i.e., \(\mathbf{F} = \nabla f \), then the cross-partial condition is satisfied:

\[
\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 0
\]

In this case, Green’s Theorem merely confirms what we already know: The line integral of a conservative vector field around any closed curve is zero.

EXAMPLE 1 Verifying Green’s Theorem Verify Green’s Theorem for the line integral along the unit circle \(C \), oriented counterclockwise (Figure 4):

\[
\oint_C xy^2 \, dx + x \, dy
\]

Solution

Step 1. Evaluate the line integral directly.

We use the standard parametrization of the unit circle:

\[
x = \cos \theta, \quad y = \sin \theta
\]

\[
dx = -\sin \theta \, d\theta, \quad dy = \cos \theta \, d\theta
\]

The integrand in the line integral is

\[
xy^2 \, dx + x \, dy = \cos \theta \sin^2 \theta (-\sin \theta \, d\theta) + \cos \theta (\cos \theta \, d\theta)
\]

and

\[
\oint_C xy^2 \, dx + x \, dy = \int_0^{2\pi} (-\cos \theta \sin^3 \theta + \cos^2 \theta) \, d\theta
\]

\[
= -\frac{\sin^4 \theta}{4} \bigg|_0^{2\pi} + \frac{1}{2} \left(\theta + \frac{1}{2} \sin 2\theta \right) \bigg|_0^{2\pi}
\]

\[
= 0 + \frac{1}{2} (2\pi + 0) = \pi
\]

Step 2. Evaluate the line integral using Green’s Theorem.

In this example, \(F_1 = xy^2 \) and \(F_2 = x \), so

\[
\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} x - \frac{\partial}{\partial y} xy^2 = 1 - 2xy
\]

According to Green’s Theorem,

\[
\oint_C xy^2 \, dx + x \, dy = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA = \iint_D (1 - 2xy) \, dA
\]

where \(D \) is the disk \(x^2 + y^2 \leq 1 \) enclosed by \(C \). The integral of \(2xy \) over \(D \) is zero by symmetry—the contributions for positive and negative \(x \) cancel. We can check this directly:

\[
\iint_D (-2xy) \, dA = -2 \int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} xy \, dy \, dx = -2 \int_{-1}^{1} xy \sqrt{1-x^2} \bigg|_{y=-\sqrt{1-x^2}}^{y=\sqrt{1-x^2}} \, dx = 0
\]

Therefore,

\[
\iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA = \iint_D 1 \, dA = \text{Area}(D) = \pi
\]

This agrees with the value in Step 1. So Green’s Theorem is verified in this case.
Example 2 Computing a Line Integral Using Green’s Theorem

Compute the circulation of \(\mathbf{F}(x, y) = (\sin x, x^2 y^3) \) around the triangular path \(C \) with the counterclockwise orientation shown in Figure 5.

Solution To compute the line integral directly, we would have to parametrize all three sides of the triangle. Instead, we apply Green’s Theorem to the domain \(D \) enclosed by the triangle. This domain is described by \(0 \leq x \leq 2, 0 \leq y \leq x \).

Applying Green’s Theorem, we obtain

\[
\left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) x^2 y^3 = \int_C \sin x \, dx + x^2 y^3 \, dy = \int_D 2xy^3 \, dA = \int_0^2 \int_{y=0}^x 2xy^3 \, dy \, dx
\]

\[
\quad = \int_0^2 \left(\frac{1}{x} y^4 \bigg|_0^1 \right) \, dx = \frac{1}{2} \int_0^2 x^2 \, dx = \frac{1}{12} x^6 \bigg|_0^1 = \frac{16}{3}
\]

Area via Green’s Theorem

We can use Green’s Theorem to obtain formulas for the area of the domain \(D \) enclosed by a simple closed curve \(C \) (Figure 6). The trick is to choose a vector field \(\mathbf{F} = (F_1, F_2) \) such that \(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 1 \).

If we choose \(\mathbf{F}(x, y) = (0, x) \), then

\[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} x - \frac{\partial}{\partial y} 0 = 1\]

If we choose \(\mathbf{F}(x, y) = (-y, 0) \), then

\[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} (-y) - \frac{\partial}{\partial y} 0 = 1\]

If we choose \(\mathbf{F}(x, y) = (-y/2, x/2) \), then

\[\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x} \left(\frac{x}{2} \right) - \frac{\partial}{\partial y} \left(\frac{-y}{2} \right) = \frac{1}{2} + \frac{1}{2} = 1\]

In all three cases, the expression on the right side of the equality in Green’s Theorem becomes

\[\int_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA = \int_D 1 \, dA = \text{area}(D)\]

By Green’s Theorem, this equals \(\int_C F_1 \, dx + F_2 \, dy \). Plugging in \(F_1 \) and \(F_2 \) for each of these three cases, we obtain the following three formulas for the area of the domain \(D \).

\[
\text{Area enclosed by } C = \int_C x \, dy = \int_C -y \, dx = \frac{1}{2} \int_C x \, dy - y \, dx
\]

These remarkable formulas tell us how to compute an enclosed area by making measurements only along the boundary. It is the mathematical basis of the planimeter, a device that computes the area of an irregular shape when you trace the boundary with a pointer at the end of a movable arm (Figure 7).
EXAMPLE 3 Computing Area via Green's Theorem Compute the area of the ellipse \(\left(\frac{x}{a} \right)^2 + \left(\frac{y}{b} \right)^2 = 1 \) using a line integral.

Solution We parametrize the boundary of the ellipse by

\[
x = a \cos \theta, \quad y = b \sin \theta, \quad 0 \leq \theta < 2\pi
\]

We calculate the area in each of the three possible ways. Using the first formula in Eq. (6):

\[
\text{Enclosed area} = \oint_C x \, dy = \int_0^{2\pi} (a \cos \theta)(b \cos \theta) \, d\theta
\]

\[
= ab \int_0^{2\pi} \cos^2 \theta \, d\theta
\]

\[
= \pi ab
\]

Using the second formula in Eq. (6), we get

\[
\text{Enclosed area} = \oint_C -y \, dx = \int_0^{2\pi} (-b \sin \theta)(-a \sin \theta) \, d\theta
\]

\[
= ab \int_0^{2\pi} \sin^2 \theta \, d\theta
\]

\[
= \pi ab
\]

And using the third formula in Eq. (6) yields

\[
\text{Enclosed area} = \frac{1}{2} \oint_C x \, dy - y \, dx
\]

\[
= \frac{1}{2} \int_0^{2\pi} [(a \cos \theta)(b \cos \theta) - (b \sin \theta)(-a \sin \theta)] \, d\theta
\]

\[
= \frac{ab}{2} \int_0^{2\pi} (\cos^2 \theta + \sin^2 \theta) \, d\theta
\]

\[
= \frac{ab}{2} \int_0^{2\pi} d\theta = \pi ab
\]

All three methods yield the standard formula for the area of an ellipse.

For convenience, we can think of a two-dimensional vector field \(\mathbf{F} = (F_1, F_2) \) as a three-dimensional vector field with third component 0. So, \(\mathbf{F} = (F_1, F_2, 0) \). Then when we take the curl, keeping in mind that \(F_1 \) and \(F_2 \) only depend on \(x \) and \(y \), we find

\[
\text{curl}(\mathbf{F}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & 0 \end{vmatrix}
\]

\[
= 0\mathbf{i} + 0\mathbf{j} + \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \mathbf{k}
\]

The \(z \)-component of the result is \(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \), which is the integrand that appears in Green's Theorem. Thus, we define

\[
\text{curl}_z(\mathbf{F}) = \text{curl}(\mathbf{F}) \cdot \mathbf{k} = \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}
\]
Then Green’s Theorem becomes
\[\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_D \text{curl}_z(F) \, dA \]

CONCEPTUAL INSIGHT What is the meaning of the integrand $\text{curl}_z(F)$ in Green’s Theorem? Apply Green’s Theorem to a small domain D with a simple closed boundary curve and let P be a point in D. Because $\text{curl}_z(F)$ is a continuous function, its value does not change much on D if C is sufficiently small, so to a first approximation, we can replace $\text{curl}_z(F)$ by the constant value $\text{curl}_z(F)(P)$ (Figure 8). Green’s Theorem yields the following approximation for the circulation:
\[\oint_C \mathbf{F} \cdot d\mathbf{r} \approx \text{curl}_z(F)(P) \cdot \text{Area}(D) \]

In other words, the circulation around a small, simple closed curve C is, to a first-order approximation, equal to the curl times the enclosed area. Thus, we can think of $\text{curl}_z(F)$ as the circulation per unit of enclosed area at each point P.

GRAPHICAL INSIGHT If we think of \mathbf{F} as the velocity field of a fluid, then we can measure the curl by placing a small paddle wheel in the stream at a point P and observing how fast it rotates (Figure 9). Because the fluid pushes each paddle to move with a velocity equal to the tangential component of \mathbf{F}, we can assume that the wheel itself rotates with an average velocity v_a equal to the average tangential component of \mathbf{F}. If the paddle is a circle C_r of radius r (and hence length $2\pi r$), then the average tangential component of velocity is
\[v_a = \frac{1}{2\pi r} \oint_{C_r} \mathbf{F} \cdot d\mathbf{r} \]

On the other hand, the paddle encloses an area of πr^2, and for small r, we can apply the approximation (8):
\[v_a \approx \frac{1}{2\pi r} (\pi r^2) \text{curl}_z(F)(P) = \left(\frac{1}{2} \right) \text{curl}_z(F)(P) \]

Now if an object moves along a circle of radius r with speed v_a, then its angular velocity (in radians per unit time) is $v_a/r \approx \frac{1}{2} \text{curl}_z(F)(P)$. Therefore, the angular velocity of the paddle wheel is approximately one-half the curl.

Figure 10 shows vector fields such that $\text{curl}_z(F)$ is constant. Field (A) describes a fluid rotating counterclockwise around the origin, and field (B) describes a fluid that spirals into the origin. In both these cases, a small paddle wheel placed anywhere in the fluid rotates counterclockwise. However, a nonzero curl does not mean that the fluid itself is necessarily rotating. It means only that a small paddle wheel rotates if placed in the fluid. Field (C) is
an example of shear flow (also known as a Couette flow). It has nonzero curl, but unlike cases (A) and (B), the fluid does not rotate about any point. However, the paddle wheel does rotate clockwise wherever it is placed. Compare with the fields in Figures (D) and (E), which have zero curl. In either case, a paddle wheel placed anywhere in the plane does not rotate. Unlike these examples, for most vector fields \(\mathbf{F} \), curl(\(\mathbf{F} \)) varies over the plane, having points where the paddle wheel turns counterclockwise, clockwise, or not at all.

![FIGURE 10](image)

Additivity of Circulation

Circulation around a closed curve has an important additivity property: If we decompose a domain \(\mathcal{D} \) into two (or more) nonoverlapping domains \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \) that intersect only on part of their boundaries as in Figure 11, then

\[
\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial \mathcal{D}_1} \mathbf{F} \cdot d\mathbf{r} + \oint_{\partial \mathcal{D}_2} \mathbf{F} \cdot d\mathbf{r}
\]

To verify this equation, note first that

\[
\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{\text{top}}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{\text{bot}}} \mathbf{F} \cdot d\mathbf{r}
\]

with \(C_{\text{top}} \) and \(C_{\text{bot}} \) as in Figure 11, with the orientations shown. Then observe that the dashed segment \(C_{\text{middle}} \) occurs in both \(\partial \mathcal{D}_1 \) and \(\partial \mathcal{D}_2 \) but with opposite orientations. If \(C_{\text{middle}} \) is oriented right to left, then

\[
\oint_{\partial \mathcal{D}_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{\text{top}}} \mathbf{F} \cdot d\mathbf{r} - \int_{C_{\text{middle}}} \mathbf{F} \cdot d\mathbf{r}
\]

\[
\oint_{\partial \mathcal{D}_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{\text{bot}}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{\text{middle}}} \mathbf{F} \cdot d\mathbf{r}
\]

We obtain Eq. (9) by adding these two equations:

\[
\int_{\partial \mathcal{D}_1} \mathbf{F} \cdot d\mathbf{r} + \int_{\partial \mathcal{D}_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{\text{top}}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{\text{bot}}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r}
\]

![FIGURE 11](image)

The domain \(\mathcal{D} \) is the union of \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \).
More General Form of Green’s Theorem

Consider a domain \mathcal{D} whose boundary consists of more than one simple closed curve as in Figure 12. As before, $\partial \mathcal{D}$ denotes the boundary of \mathcal{D} with its boundary orientation. In other words, the region lies to the left as the curve is traversed in the direction specified by the orientation. For the domains in Figure 12,

$$\partial \mathcal{D}_1 = C_1 + C_2, \quad \partial \mathcal{D}_2 = C_3 + C_4 - C_5$$

The curve C_5 occurs with a minus sign because it is oriented counterclockwise, but the boundary orientation requires a clockwise orientation.

![Figure 12](image1.png)

(A) Oriented boundary of \mathcal{D}_1 is $C_1 + C_2$.

(B) Oriented boundary of \mathcal{D}_2 is $C_3 + C_4 - C_5$.

FIGURE 12

Green’s Theorem remains valid for more general domains of this type:

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

This equality is proved by decomposing \mathcal{D} into smaller domains, each of which is bounded by a simple closed curve. To illustrate, consider the region \mathcal{D} in Figure 13. We decompose \mathcal{D} into domains \mathcal{D}_1 and \mathcal{D}_2. Then

$$\partial \mathcal{D} = \partial \mathcal{D}_1 + \partial \mathcal{D}_2$$

because the edges common to $\partial \mathcal{D}_1$ and $\partial \mathcal{D}_2$ occur with opposite orientation and therefore cancel. The previous version of Green’s Theorem applies to both \mathcal{D}_1 and \mathcal{D}_2, and thus,

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\partial \mathcal{D}_1} \mathbf{F} \cdot d\mathbf{r} + \oint_{\partial \mathcal{D}_2} \mathbf{F} \cdot d\mathbf{r}$$

$$= \iint_{\mathcal{D}_1} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA + \iint_{\mathcal{D}_2} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

$$= \iint_{\mathcal{D}} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

![Figure 13](image2.png)

The boundary of $\partial \mathcal{D}$ is the sum $\partial \mathcal{D}_1 + \partial \mathcal{D}_2$ because the straight edges cancel.

![Figure 13](image3.png)

EXAMPLE 4 Calculate $\oint_{C_1} \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = (x - y, x + y^3)$ and C_1 is the outer boundary curve oriented counterclockwise of the domain \mathcal{D} appearing in Figure 14. Assume that the area of \mathcal{D} is 8.
Solution We cannot compute the line integral over C_1 directly because the curve C_1 is not specified. However, $\partial D = C_1 - C_2$, so Green’s Theorem yields

$$\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} - \oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA \tag{11}$$

We have

$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = \frac{\partial}{\partial x}(x + y^3) - \frac{\partial}{\partial y}(x - y) = 1 - (-1) = 2$$

$$\iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA = \iint_D 2 dA = 2 \text{Area}(D) = 2(8) = 16$$

Thus, Eq. (11) gives us

$$\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} - \oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = 16 \tag{12}$$

To compute the second integral, parametrize the unit circle C_2 by $\mathbf{r}(\theta) = (\cos \theta, \sin \theta)$. Then

$$\mathbf{F} \cdot \mathbf{r}'(\theta) = (\cos \theta - \sin \theta, \cos \theta + \sin^3 \theta) \cdot (-\sin \theta, \cos \theta)$$

$$= -\sin \theta \cos \theta + \sin^2 \theta \cos \theta + \sin \theta \cos \theta$$

$$= 1 - \sin \theta \cos \theta + \sin^3 \theta \cos \theta$$

The integrals of $\sin \theta \cos \theta$ and $\sin^3 \theta \cos \theta$ over $[0, 2\pi]$ are both zero, so

$$\oint_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_0^{2\pi} (1 - \sin \theta \cos \theta + \sin^3 \theta \cos \theta) d\theta = \int_0^{2\pi} d\theta = 2\pi$$

Eq. (12) yields $\oint_{C_1} \mathbf{F} \cdot d\mathbf{r} = 16 + 2\pi$. ■

Vector Form of Green’s Theorem

As we have seen, we can write Green’s Theorem in the form

$$\oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_D \text{curl}(\mathbf{F}) \, dA$$

This allows us to calculate the integral of the tangential component of \mathbf{F} around the curve \mathcal{C}, which is the circulation, using a double integral rather than doing it directly. But what if instead, we would like to compute the flux of the vector field \mathbf{F} across the curve \mathbf{F}, as in Figure 15? That is, we want to integrate the normal component of \mathbf{F} around the curve \mathcal{C}, as we discussed at the end of Section 17.2.

There, we said that if the curve is parametrized by $\mathbf{r}(t) = (x(t), y(t))$ for $a \leq t \leq b$, such that $\mathbf{r}'(t) \neq \mathbf{0}$, the unit tangent vector is given by $\mathbf{T} = \frac{\mathbf{r}'(t)}{||\mathbf{r}'(t)||} = \left\{ \frac{x'(t)}{||\mathbf{r}'(t)||}, \frac{y'(t)}{||\mathbf{r}'(t)||} \right\}$

and the outward unit normal vector is given by $\mathbf{n}(t) = \left\{ \frac{y'(t)}{||\mathbf{r}'(t)||}, -\frac{x'(t)}{||\mathbf{r}'(t)||} \right\}$ since its dot product with \mathbf{T} is 0 and \mathbf{n} points to the right as we travel around the curve.
Thus, the flux of \(\mathbf{F} \) out of \(C \) is given by
\[
\oint_C \mathbf{F} \cdot \mathbf{n} \, ds = \int_a^b (\mathbf{F} \cdot \mathbf{n})(t) \| \mathbf{r}'(t) \| \, dt
\]
\[
= \int_a^b \left[\frac{F_1 y'(t)}{\| \mathbf{r}(t) \|} - \frac{F_2 x'(t)}{\| \mathbf{r}(t) \|} \right] \| \mathbf{r}(t) \| \, dt
\]
\[
= \int_a^b F_1 y'(t) \, dt - F_2 x'(t) \, dt
\]
\[
= \int_a^b F_1 \, dy - F_2 \, dx
\]

This is in a form to which we can apply Green’s Theorem, but we have switched the roles of \(F_1 \) and \(F_2 \) and added a negative sign to the second term. So, Green’s Theorem gives us
\[
\int_D F_1 \, dy - F_2 \, dx = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA = \iint_D \text{div} (\mathbf{F}) \, dA
\]

Thus, we obtain the Vector Form of Green’s Theorem for flux.
\[
\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \text{div} (\mathbf{F}) \, dA
\]

Note how both curl and divergence make appearances in the two different forms of Green’s Theorem.

EXAMPLE 5 Calculate the flux of \(\mathbf{F}(x, y) = (x^3, y^3 + y) \) out of the unit circle.

Solution We find \(\text{div} \mathbf{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} = 3x^2 + 3y^2 + 1 \). Therefore, the flux of \(\mathbf{F} \) out of the unit circle is given by
\[
\text{Flux} = \iint_D \text{div} (\mathbf{F}) \, dA = \iint_D (3x^2 + 3y^2 + 1) \, dA
\]

Converting to polar coordinates, we have
\[
\text{Flux} = \int_0^{2\pi} \int_0^1 (3r^2 + 1) r \, dr \, d\theta = \int_0^{2\pi} \int_0^1 (3r^3 + r) \, dr \, d\theta
\]
\[
= 2\pi \left(\frac{3r^4}{4} + \frac{r^2}{2} \right) \bigg|_0^1 = \frac{5\pi}{2}
\]

18.1 SUMMARY

- We have two notations for the line integral of a vector field on the plane
 \[
 \int_C \mathbf{F} \cdot d\mathbf{r} \quad \text{and} \quad \int_C F_1 \, dx + F_2 \, dy
 \]
- \(\partial D \) denotes the boundary of \(D \) with its boundary orientation (Figure 16).
- Green’s Theorem:
 \[
 \oint_{\partial D} F_1 \, dx + F_2 \, dy = \iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) \, dA
 \]
 or
 \[
 \oint_{\partial D} \mathbf{F} \cdot d\mathbf{r} = \iint_D \text{curl}_z (\mathbf{F}) \, dA
 \]
• Formulas for the area of the region D enclosed by C:

$$\text{Area}(D) = \oint_C x \, dy = \oint_C -y \, dx = \frac{1}{2} \oint_C x \, dy - y \, dx$$

• The quantity

$$\text{curl}_C(F) = \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y}$$

is interpreted as circulation per unit area. If D is a small domain with boundary C, then for any $P \in D$,

$$\oint_C F_1 \, dx + F_2 \, dy \approx \text{curl}_C(F)(P) \cdot \text{Area}(D)$$

• Vector Form of Green's Theorem:

$$\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_D \text{div}(\mathbf{F}) \, dA$$

18.1 EXERCISES

Preliminary Questions

1. Which vector field \mathbf{F} is being integrated in the line integral

$$\oint_C x^2 \, dy - e^y \, dx?$$

2. Draw a domain in the shape of an ellipse and indicate with an arrow the boundary orientation of the boundary curve. Do the same for the annulus (the region between two concentric circles).

3. The circulation of a conservative vector field around a closed curve is zero. Is this fact consistent with Green’s Theorem? Explain.

4. Indicate which of the following vector fields possess this property:

For every simple closed curve C, $\oint_C \mathbf{F} \cdot d\mathbf{r}$ is equal to the area enclosed by C.

(a) $\mathbf{F}(x, y) = (-y, 0)$

(b) $\mathbf{F}(x, y) = (x, y)$

(c) $\mathbf{F}(x, y) = (\sin(x^2), x + e^{y^2})$

Exercises

1. Verify Green’s Theorem for the line integral $\oint_C xy \, dx + y \, dy$, where C is the unit circle, oriented counterclockwise.

2. Let $I = \oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle y + \sin x^2, x^2 + e^y \rangle$ and C is the circle of radius 4 centered at the origin.

(a) Which is easier, evaluating I directly or using Green’s Theorem?

(b) Evaluate I using the easier method.

In Exercises 3–10, use Green’s Theorem to evaluate the line integral. Orient the curve counterclockwise unless otherwise indicated.

3. $\oint_C y^2 \, dx + x^2 \, dy$, where C is the boundary of the unit square $0 \leq x \leq 1, 0 \leq y \leq 1$

4. $\oint_C e^{x+y} \, dx + e^{-y} \, dy$, where C is the triangle with vertices $(0, 0)$, $(1, 0)$, and $(1, 1)$

5. $\oint_C x^2 \, dy$, where C is the unit circle centered at the origin

6. $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle x + y, x^2 - y \rangle$ and C is the boundary of the region enclosed by $y = x^2$ and $y = \sqrt{x}$ for $0 \leq x \leq 1$

7. $\oint_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y) = \langle x^2, x^2 \rangle$ and C consists of the arcs $y = x^2$ and $y = x$ for $0 \leq x \leq 1$

8. $\oint_C (\ln x + y) \, dx - x^2 \, dy$, where C is the rectangle with vertices $(1, 1), (3, 1), (1, 4)$, and $(3, 4)$

9. The line integral of $\mathbf{F}(x, y) = \langle e^{x+y}, e^{x-y} \rangle$ along the curve (oriented clockwise) consisting of the line segments by joining the points $(0, 0), (2, 2), (4, 2), (2, 0)$, and back to $(0, 0)$ (Note the orientation.)

10. $\oint_C xy \, dx + (x^2 + x) \, dy$, where C is the path in Figure 17
11. Let \(F(x, y) = (2xe^y, x^2e^y) \) and let \(C \) be the quarter-circle path from \(A \) to \(B \) in Figure 18. Evaluate \(I = \int_C F \cdot dr \) as follows:

(a) Find a function \(f(x, y) \) such that \(F = G + \nabla f \), where \(G = (0, x) \).

(b) Show that the line integrals of \(G \) along the segments \(OA \) and \(OB \) are zero.

(c) Evaluate \(I \).

12. Compute the line integral of \(F(x, y) = (x^3, 4x) \) along the path from \(A \) to \(B \) in Figure 19. To save work, use Green’s Theorem to relate this line integral to the line integral along the vertical path from \(B \) to \(A \).

13. Evaluate \(I = \int_C (\sin x + y)dx + (3x + y)dy \) for the nonclosed path \(ABCD \) in Figure 20. Use the method of Exercise 12.

14. Let the circle of radius 3 centered at the origin

15. The triangle with vertices \((0, 0), (1, 0), \) and \((1, 1)\)

16. The region between the \(x \)-axis and the cycloid parametrized by \(r(t) = (t - \sin t, 1 - \cos t) \) for \(0 \leq t \leq 2\pi \) (Figure 21)

17. The region between the graph of \(y = x^2 \) and the \(x \)-axis for \(0 \leq x \leq 2 \)

18. A square with vertices \((1, 1), (-1, 1), (-1, -1), \) and \((1, -1)\) has area 4. Calculate this area three times using the formulas in Eq. (6).

19. Let \(x^3 + y^3 = 3xy \) be the folium of Descartes (Figure 22).

(a) Show that the folium has a parametrization in terms of \(t = y/x \) given by

\[
\begin{align*}
x &= \frac{3t}{1 + t^3} \\
y &= \frac{3t^2}{1 + t^3} \quad (-\infty < t < \infty) \quad (t \neq -1)
\end{align*}
\]

(b) Show that

\[
x \, dy - y \, dx = \frac{9t^2}{(1 + t^3)^2} \, dt
\]

Hint: By the Quotient Rule,

\[
x^2 \, d \left(\frac{y}{x} \right) = x \, dy - y \, dx
\]

(c) Find the area of the loop of the folium. Hint: The limits of integration are 0 and \(\infty \).

20. Find a parametrization of the lemniscate \((x^2 + y^2)^2 = xy\) (see Figure 23) by using \(t = y/x \) as a parameter (see Exercise 19). Then use Eq. (6) to find the area of one loop of the lemniscate.
21. The Centroid via Boundary Measurements

The centroid (see Section 16.5) of a domain \(D \) enclosed by a simple closed curve \(C \) is the point with coordinates \((x_0, y_0) = (M_x / M, M_y / M)\), where \(M \) is the area of \(D \) and the moments are defined by

\[
M_x = \iint_D x \, dA, \quad M_y = \iint_D y \, dA
\]

Show that \(M_x = \oint_C xy \, dy \). Find a similar expression for \(M_y \).

22. Use the result of Exercise 21 to compute the moments of the semi-circle \(x^2 + y^2 = R^2, y \geq 0 \) as line integrals. Verify that the centroid is \((0, 4R/(3\pi))\).

23. Let \(C_R \) be the circle of radius \(R \) centered at the origin. Use the general form of Green’s Theorem to determine \(\oint_{C_R} F \cdot dr \), where \(F \) is a vector field such that \(\oint_{C_1} F \cdot dr = 9 \) and \(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = x^2 + y^2 \) for \((x, y)\) in the annulus \(1 \leq x^2 + y^2 \leq 4 \). Use Green’s Theorem to determine \(\oint_{C_1} F \cdot dr \), assuming that \(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = -3 \) in \(D \).

25. Let \(C_1 \) be the circle of radius \(R \) centered at the origin. Use Green’s Theorem to determine \(\oint_{C_1} F \cdot dr \), assuming that \(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 9 \) on the shaded region.

In Section 17.3, we verified that \(\oint_{C_R} F \cdot dr = 2\pi R \), where \(C_R \) is the circle of radius \(R \) centered at the origin. Prove that \(\oint_{C} F \cdot dr = 2\pi \) for any simple closed curve \(C \) whose interior contains the origin (Fig-26). Hint: Apply the general form of Green’s Theorem to the domain between \(C \) and \(C_R \), where \(R \) is so small that \(C_R \) is contained in \(C \).

27. For the vector fields (A)–(D) in Figure 27, state whether the curl \(\text{curl}_z(F) = \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \) at the origin appears to be positive, negative, or zero.

28. Estimate the circulation of a vector field \(F \) around a circle of radius \(R = 0.1 \), assuming that \(\text{curl}_z(F) \) takes the value 4 at the center of the circle.

29. Estimate \(\oint_{C} F \cdot dr \), where \(F(x, y) = \{x + 0.1x^2, y - 0.1x^2\} \) and \(C \) encloses a small region of area 0.25 containing the point \(P = (1, 1) \).

30. Let \(F \) be the velocity field. Estimate the circulation of \(F \) around a circle of radius \(R = 0.05 \) with center \(P \), assuming that \(\text{curl}_z(F)(P) = -3 \). In which direction would a small paddle placed at \(P \) rotate? How fast would it rotate (in radians per second) if \(F \) is expressed in meters per second?
31. Let \(C_R \) be the circle of radius \(R \) centered at the origin. Use Green’s Theorem to find the value of \(R \) that maximizes \(\int_{C_R} y^3 \, dx + x \, dy \).

32. Area of a Polygon
Green’s Theorem leads to a convenient formula for the area of a polygon.

(a) Let \(C \) be the line segment joining \((x_1, y_1)\) to \((x_2, y_2)\). Show that
\[
\frac{1}{2} \int_C -y \, dx + x \, dy = \frac{1}{2} (x_1 y_2 - x_2 y_1)
\]
(b) Prove that the area of the polygon with vertices \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\) is equal [where we set \((x_{n+1}, y_{n+1}) = (x_1, y_1)\)] to
\[
\frac{1}{2} \sum_{i=1}^{n} (x_i y_{i+1} - x_{i+1} y_i)
\]

33. Use the result of Exercise 32 to compute the areas of the polygons in Figure 28. Check your result for the area of the triangle in (A) using geometry.

![Figure 28](image)

In Exercises 34-39, compute the flux \(\int_C \mathbf{F} \cdot \mathbf{n} \, ds \) of \(\mathbf{F} \) across the curve \(C \) for the given vector field and curve using the vector form of Green’s Theorem.

34. \(\mathbf{F}(x, y) = (3x, 2y) \) across the circle given by \(x^2 + y^2 = 9 \)

35. \(\mathbf{F}(x, y) = (xy, x - y) \) across the boundary of the square \(-1 \leq x \leq 1, -1 \leq y \leq 1 \)

Further Insights and Challenges

In Exercises 42–45, the Laplace operator \(\Delta \) is defined by
\[
\Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2}
\]

For any vector field \(\mathbf{F} = (F_1, F_2) \), define the conjugate vector field \(\mathbf{F}^* = (-F_2, F_1) \).

42. Show that if \(\mathbf{F} = \nabla \varphi \), then \(\nabla \cdot (\mathbf{F}^*) = \Delta \varphi \).

43. Let \(\mathbf{n} \) be the outward-pointing unit normal vector to a simple closed curve \(C \). The normal derivative of a function \(\varphi \), denoted \(\frac{\partial \varphi}{\partial \mathbf{n}} \), is the directional derivative \(D_n \varphi = \nabla \varphi \cdot \mathbf{n} \). Prove that
\[
\int_C \frac{\partial \varphi}{\partial \mathbf{n}} \, ds = \int_D \Delta \varphi \, dA
\]
where \(D \) is the domain enclosed by a simple closed curve \(C \). Hint: Let \(\mathbf{F} = \nabla \varphi \). Show that \(\frac{\partial \varphi}{\partial \mathbf{n}} = \mathbf{F}^* \cdot \mathbf{T} \), where \(\mathbf{T} \) is the unit tangent vector, and apply Green’s Theorem.

44. Let \(P = (a, b) \) and let \(C_r \) be the circle of radius \(r \) centered at \(P \). The average value of a continuous function \(\varphi \) on \(C_r \) is defined as the integral
\[
I_r(\varphi) = \frac{1}{2\pi} \int_0^{2\pi} \varphi(a + r \cos \theta, b + r \sin \theta) \, d\theta
\]
(a) Show that
\[
\frac{\partial \varphi}{\partial r}(a + r \cos \theta, b + r \sin \theta) = \frac{\partial \varphi}{\partial r}(a + r \cos \theta, b + r \sin \theta)
\]
(b) Use differentiation under the integral sign to prove that
\[
\frac{d}{dr} I_r(\varphi) = \frac{1}{2\pi r} \int_{C_r} \frac{\partial \varphi}{\partial n} \, ds
\]
(c) Use Exercise 43 to conclude that
\[
\frac{d}{dr} I_r(\varphi) = \frac{1}{2\pi r} \int_D \Delta \varphi \, dA
\]
where \(D(r) \) is the interior of \(C_r \).
45. Prove that \(m(r) \leq I_\varphi(r) \leq M(r) \), where \(m(r) \) and \(M(r) \) are the minimum and maximum values of \(\varphi \) on \(C_r \). Then use the continuity of \(\varphi \) to prove that \(\lim_{r \to 0} I_\varphi(r) = \varphi(P) \).

In Exercises 46 and 47, let \(D \) be the region bounded by a simple closed curve \(C \). A function \(\varphi(x, y) \) on \(D \) (whose second-order partial derivatives exist and are continuous) is called harmonic if \(\Delta \varphi = 0 \), where \(\Delta \varphi \) is the Laplace operator defined in Eq. (14).

46. Use the results of Exercises 44 and 45 to prove the mean-value property of harmonic functions: If \(\varphi \) is harmonic, then \(I_\varphi(r) = \varphi(P) \) for all \(r \).

47. Show that \(f(x, y) = x^2 - y^2 \) is harmonic. Verify the mean-value property for \(f(x, y) \) directly [expand \(f(a + r \cos \theta, b + r \sin \theta) \) as a function of \(\theta \) and compute \(I_\varphi(r) \)]. Show that \(x^2 + y^2 \) is not harmonic and does not satisfy the mean-value property.

18.2 Stokes’ Theorem

Stokes’ Theorem is an extension of Green’s Theorem to three dimensions in which circulation is related to a surface integral over a surface in \(\mathbb{R}^3 \) (rather than to a double integral over a region in the plane). In order to state it, we introduce some definitions and terminology.

Figure 1 shows three surfaces with different types of boundaries. The boundary of a surface \(S \) is denoted \(\partial S \). Observe that the boundary in (A) is a single, simple closed curve and the boundary in (B) consists of three simple closed curves. The surface in (C) is called a closed surface because its boundary is empty. In this case, we write \(\partial S = \emptyset \).

Recall from Section 17.5 that an orientation of a surface is a continuously varying choice of unit normal vector at each point of a surface \(S \). When \(S \) is oriented, we can specify an orientation of \(\partial S \), called the boundary orientation. Imagine that you are a unit normal vector walking along the boundary curve with your head at the head end of the vector and your feet at the tail end. The boundary orientation is the direction for which the surface is on your left as you walk. For example, the boundary of the surface in Figure 2 consists of two curves, \(C_1 \) and \(C_2 \). In (A), the normal vector points to the outside. The woman (representing the normal vector) is walking along \(C_1 \) and has the surface to her left, so she is walking in the positive direction. The curve \(C_2 \) is oriented in the opposite direction because she would have to walk along \(C_2 \) in that direction to keep the surface on her left. The boundary orientations in (B) are reversed because the opposite normal has been selected to orient the surface.

In the next theorem, we assume that \(S \) is an oriented surface with parametrization \(G : D \to S \), where \(D \) is a domain in the plane bounded by smooth, simple closed curves, and \(G \) is one-to-one and regular, except possibly on the boundary of \(D \). More generally, \(S \) may be a finite union of surfaces of this type. The surfaces in applications we consider, such as spheres, cubes, and graphs of functions, satisfy these conditions.
The curl measures the extent to which \(\mathbf{F} \) fails to be conservative. If \(\mathbf{F} \) is conservative, then \(\text{curl}(\mathbf{F}) = 0 \) and Stokes’ Theorem merely confirms what we already know: The circulation of a conservative vector field around a closed path is zero.

Theorem 1: Stokes’ Theorem Let \(\mathcal{S} \) be a surface as described above, and let \(\mathbf{F} \) be a vector field whose components have continuous partial derivatives on an open region containing \(\mathcal{S} \).

\[
\oint_{\partial \mathcal{S}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{S}} \text{curl}(\mathbf{F}) \cdot d\mathbf{S}
\]

The integral on the left is defined relative to the boundary orientation of \(\partial \mathcal{S} \). If \(\mathcal{S} \) is closed (i.e., \(\partial \mathcal{S} \) is empty), then the surface integral on the right is zero.

Stokes’ Theorem is often written in the form

\[
\oint_{\partial \mathcal{S}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{S}} (\nabla \times \mathbf{F}) \cdot d\mathbf{S}
\]

Again, we see the analogy with the Fundamental Theorem of Calculus. A double integral over a surface of a derivative, in this case the curl, yields a single integral over the boundary of the surface.

Proof The left side of Eq. (1) is equal to a sum over the components of \(\mathbf{F} \):

\[
\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} F_1 \, dx + F_2 \, dy + F_3 \, dz
\]

Considering \(\mathbf{F} = F_1 \mathbf{i} + F_2 \mathbf{j} + F_3 \mathbf{k} \), and using the additivity property of the curl operator, we have \(\text{curl}(\mathbf{F}) = \text{curl}(F_1 \mathbf{i}) + \text{curl}(F_2 \mathbf{j}) + \text{curl}(F_3 \mathbf{k}) \) and therefore:

\[
\iint_{\mathcal{S}} \text{curl}(\mathbf{F}) \cdot d\mathbf{S} = \iint_{\mathcal{S}} \text{curl}(F_1 \mathbf{i}) \cdot d\mathbf{S} + \iint_{\mathcal{S}} \text{curl}(F_2 \mathbf{j}) \cdot d\mathbf{S} + \iint_{\mathcal{S}} \text{curl}(F_3 \mathbf{k}) \cdot d\mathbf{S}
\]

The proof consists of showing that the \(F_1 \), \(F_2 \), and \(F_3 \) terms in Eqs. (2) and (3) are separately equal.

Because a complete proof is quite technical, we will prove it under the simplifying assumption that \(\mathcal{S} \) is the graph of a function \(z = f(x, y) \) lying over a domain \(\mathcal{D} \) in the \(xy \)-plane. Furthermore, we will carry the details only for the \(F_1 \) terms. The calculation for \(F_2 \)-components is similar, and we leave as an exercise the equality of the \(F_3 \) terms (Exercise 35). Thus, we shall prove that

\[
\oint_{\mathcal{C}} F_1 \, dx = \iint_{\mathcal{S}} \text{curl}(F_1(x, y, z) \mathbf{i}) \cdot d\mathbf{S}
\]

Orient \(\mathcal{S} \) with an upward-pointing normal as in Figure 3, and let \(\mathcal{C} = \partial \mathcal{S} \) be the boundary curve with orientation determined by the orientation of \(\mathcal{S} \). Let \(\mathcal{C}_0 \) be the boundary of \(\mathcal{D} \) in the \(xy \)-plane, and let \(\mathbf{r}_0(t) = (x(t), y(t)) \) (for \(a \leq t \leq b \)) be a counterclockwise parametrization of \(\mathcal{C}_0 \) as in Figure 3. The boundary curve \(\mathcal{C} \) projects onto \(\mathcal{C}_0 \), so \(\mathcal{C} \) has parametrization

\[
\mathbf{r}(t) = (x(t), y(t), f(x(t), y(t)))
\]

and thus,

\[
\oint_{\mathcal{C}} F_1(x, y, z) \, dx = \int_{a}^{b} F_1(x(t), y(t), f(x(t), y(t))) \frac{dx}{dt} \, dt
\]

The integral on the right is precisely the integral we obtain by integrating \(F_1(x, y, f(x, y)) \) \(dx \) over the curve \(\mathcal{C}_0 \) in the plane \(\mathbb{R}^2 \). In other words,

\[
\oint_{\mathcal{C}} F_1(x, y, z) \, dx = \oint_{\mathcal{C}_0} F_1(x, y, f(x, y)) \, dx
\]

By Green’s Theorem applied to the integral on the right, we get

\[
\oint_{\mathcal{C}} F_1(x, y, z) \, dx = -\int_{\mathcal{D}} \frac{\partial}{\partial y} F_1(x, y, f(x, y)) \, dA
\]
By the Chain Rule,

\[\frac{\partial}{\partial y} F_1(x, y, f(x, y)) = F_{1y}(x, y, f(x, y)) + F_{1z}(x, y, f(x, y))f_y(x, y) \]

so finally we obtain

\[\oint_C F_1 \, dx = -\iint_D \left(F_{1y}(x, y, f(x, y)) + F_{1z}(x, y, f(x, y))f_y(x, y) \right) \, dA \]

To finish the proof, we compute the surface integral of curl \(F \) using the parametrization \(G(x, y) = (x, y, f(x, y)) \) of \(S \):

\[N = (-f_x(x, y), -f_y(x, y), 1) \quad \text{(upward-pointing normal)} \]

\[\text{curl}(F) \cdot N = \langle 0, F_{1z}, -F_{1y} \rangle \cdot (-f_x(x, y), -f_y(x, y), 1) \]

\[= -F_{1z}(x, y, f(x, y))f_y(x, y) + F_{1y}(x, y, f(x, y)) \]

\[\iint_S \text{curl}(F) \cdot dS = -\iint_D \left(F_{1z}(x, y, f(x, y))f_y(x, y) + F_{1y}(x, y, f(x, y)) \right) \, dA \]

The right-hand sides of Eq. (5) and Eq. (6) are equal. This proves Eq. (4).

Example 1 Verifying Stokes' Theorem Verify Stokes’ Theorem for

\[F(x, y, z) = (-y, 2x, x + z) \]

and the upper hemisphere with outward-pointing normal vectors (Figure 4):

\[S = \{(x, y, z) : x^2 + y^2 + z^2 = 1, z \geq 0 \} \]

Solution We will show that both the line integral and the surface integral in Stokes’ Theorem are equal to \(3\pi \).

Step 1. Compute the line integral around the boundary curve.

The boundary of \(S \) is the unit circle oriented in the counterclockwise direction with parametrization \(r(t) = (\cos t, \sin t, 0) \). Thus,

\[r'(t) = (-\sin t, \cos t, 0) \]

\[F(r(t)) = (-\sin t, 2 \cos t, \cos t) \]

\[F(r(t)) \cdot r'(t) = (-\sin t, 2 \cos t, \cos t) \cdot (-\sin t, \cos t, 0) \]

\[= \sin^2 t + 2 \cos^2 t = 1 + \cos^2 t \]

\[\oint_C F \cdot dr = \int_0^{2\pi} (1 + \cos^2 t) \, dt = 2\pi + \pi = 3\pi \]

Step 2. Compute the curl.

\[\text{curl}(F) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & 2x & x + z \end{vmatrix} \]

\[= \left(\frac{\partial}{\partial y}(x + z) - \frac{\partial}{\partial z}2x \right) \mathbf{i} - \left(\frac{\partial}{\partial x}(x + z) - \frac{\partial}{\partial z}(-y) \right) \mathbf{j} \]

\[+ \left(\frac{\partial}{\partial x}2x - \frac{\partial}{\partial y}(-y) \right) \mathbf{k} \]

\[= (0, -1, 3) \]
Step 3. Compute the surface integral of the curl.

We parametrize the hemisphere using spherical coordinates:

\[G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) \]

By Eq. (1) of Section 17.4, the outward-pointing normal vector is

\[\mathbf{N} = \sin \phi \mathbf{i} \times \mathbf{j} \times \mathbf{k} = (0, -1, 3) \cdot (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) \]

Therefore,

\[\text{curl}(\mathbf{F}) \cdot \mathbf{N} = \sin \phi (0, -1, 3) \cdot (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi) = -\sin \theta \sin^2 \phi + 3 \cos \phi \sin \phi \]

The upper hemisphere \(S \) corresponds to \(0 \leq \phi \leq \frac{\pi}{2} \), so

\[
\int_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S} = \int_{\phi=0}^{\pi/2} \int_{\theta=0}^{2\pi} (-\sin \theta \sin^2 \phi + 3 \cos \phi \sin \phi) \, d\theta \, d\phi
\]
\[
= 0 + 2\pi \int_{\phi=0}^{\pi/2} 3 \cos \phi \sin \phi \, d\phi = 2\pi \left(\frac{3}{2} \sin^2 \phi \right) \bigg|_{\phi=0}^{\pi/2}
\]
\[
= 3\pi
\]

Example 2 Use Stokes’ Theorem to show that \(\oint_C \mathbf{F} \cdot d\mathbf{r} = 0 \), where

\[\mathbf{F}(x, y, z) = (\sin(x^2), e^{x^2} + x^2, z^4 + 2x^2) \]

and \(C \) is the boundary of the triangle in Figure 5 with the indicated orientation.

Solution Note that if we wanted to evaluate \(\oint C \mathbf{F} \cdot d\mathbf{r} \) directly, we would need to parametrize each of the three edges of \(C \), and do three integrals. Instead, we apply Stokes’ Theorem:

\[\oint_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S} \]

and show that the integral on the right is zero. We first compute the curl:

\[
\text{curl} \left(\sin(x^2), e^{x^2} + x^2, z^4 + 2x^2 \right) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \sin x^2 & e^{x^2} + x^2 & z^4 + 2x^2 \end{vmatrix} = (0, -4x, 2x)
\]

Now, it turns out (by the author’s design) that we can show the surface integral is zero without actually computing it. Referring to Figure 5, we see that \(C \) is the boundary of the triangular surface \(S \) contained in the plane

\[\frac{x}{3} + \frac{y}{2} + z = 1 \]

Therefore, \(\mathbf{N} = \left\{ \frac{1}{3}, \frac{1}{2}, 1 \right\} \) is a normal vector to this plane. But \(\mathbf{N} \) and \(\text{curl}(\mathbf{F}) \) are orthogonal:

\[\text{curl}(\mathbf{F}) \cdot \mathbf{N} = (0, -4x, 2x) \cdot \left\{ \frac{1}{3}, \frac{1}{2}, 1 \right\} = -2x + 2x = 0 \]

In other words, the normal component of \(\text{curl}(\mathbf{F}) \) along \(S \) is zero. Since the surface integral of a vector field is equal to the surface integral of the normal component, we conclude that \(\int_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S} = 0 \).
CONCEPTUAL INSIGHT Recall that if \(\mathbf{F} \) is conservative—that is, \(\mathbf{F} = \nabla f \)—then for any two paths \(C_1 \) and \(C_2 \) from \(P \) to \(Q \) (Figure 6),

\[
\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = f(Q) - f(P)
\]

In other words, the line integral is path-independent. In particular, \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is zero if \(C \) is closed (\(P = Q \)).

Analogous facts are true for surface integrals when \(\mathbf{F} = \nabla \times \mathbf{A} \). The vector field \(\mathbf{A} \) is called a vector potential for \(\mathbf{F} \). Stokes’ Theorem tells us that for any two surfaces \(S_1 \) and \(S_2 \) with the same oriented boundary \(C \) (Figure 7),

\[
\int_{S_1} \mathbf{F} \cdot d\mathbf{S} = \int_{S_2} \mathbf{F} \cdot d\mathbf{S} = \oint_C \mathbf{A} \cdot d\mathbf{r}
\]

In other words, the surface integral of a vector field with vector potential \(\mathbf{A} \) is surface-independent, just as a vector field with a potential function \(f \) is path-independent.

If the surface is closed, then the boundary curve is empty and the surface integral is zero:

\[
\int_S \mathbf{F} \cdot d\mathbf{S} = 0 \quad \text{if} \quad \mathbf{F} = \nabla \times \mathbf{A} \quad \text{and} \quad S \quad \text{is closed}
\]

THEOREM 2 Surface Independence for Curl Vector Fields If \(\mathbf{F} = \nabla \times \mathbf{A} \), then the flux of \(\mathbf{F} \) through a surface \(S \) depends only on the oriented boundary \(\partial S \) and not on the surface itself:

\[
\int_S \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{A} \cdot d\mathbf{r}
\]

In particular, if \(S \) is closed (i.e., \(\partial S \) is empty), then \(\int_S \mathbf{F} \cdot d\mathbf{S} = 0 \).

We can write this theorem in our other notation as

\[
\int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \oint_{C} \mathbf{A} \cdot d\mathbf{r}
\]

EXAMPLE 3 Let \(\mathbf{F} = \nabla \times \mathbf{A}, \) where \(\mathbf{A}(x, y, z) = (y + z, \sin(xy), e^{3yz}) \). Find the flux of \(\mathbf{F} \) outward through the surfaces \(S_1 \) and \(S_2 \) in Figure 8 whose common boundary \(C \) is the unit circle in the \(xz \)-plane.

Solution With \(C \) oriented in the direction of the arrow, \(S_1 \) lies to the left, and by Eq. (8),

\[
\int_{S_1} \mathbf{F} \cdot d\mathbf{S} = \oint_C \mathbf{A} \cdot d\mathbf{r}
\]

We shall compute the line integral on the right. The parametrization \(\mathbf{r}(t) = (\cos t, 0, \sin t) \) traces \(C \) in the direction of the arrow because it begins at \(\mathbf{r}(0) = (1, 0, 0) \) and moves in the direction of \(\mathbf{r}'(\pi/2) = (0, 0, 1) \). We have

\[
\mathbf{A}(\mathbf{r}(t)) = (0 + \sin t, \sin(0), e^{3\pi/2}) = (\sin t, 0, 1)
\]

\[
\mathbf{A}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = (\sin t, 0, 1) \cdot (-\sin t, 0, \cos t) = -\sin^2 t + \cos t
\]

\[
\oint_C \mathbf{A} \cdot d\mathbf{r} = \int_0^{2\pi} (-\sin^2 t + \cos t) \, dt = -\pi
\]

We conclude that \(\int_{S_1} \mathbf{F} \cdot d\mathbf{S} = -\pi \). On the other hand, \(S_2 \) lies on the right as you traverse \(C \). Therefore, \(S_2 \) has oriented boundary \(-C\), and

\[
\int_{S_2} \mathbf{F} \cdot d\mathbf{S} = \oint_{-C} \mathbf{A} \cdot d\mathbf{r} = -\oint_C \mathbf{A} \cdot d\mathbf{r} = \pi
\]
Note that as Theorem 2 tells us it must, the total flux of \(\mathbf{F} = \text{curl}(\mathbf{A}) \) through the closed surface that is the union of \(S_1 \) and \(S_2 \) is \(\pi - \pi = 0 \). If instead, we had oriented \(S_2 \) with the inward pointing normal, then both \(S_1 \) and \(S_2 \) would have a boundary given by the curve \(C \) with the orientation shown. Therefore, by the Surface Independence of Curl Vector Fields, the two surfaces would generate the same flux, which in this case is \(-\pi \).

CONCEPTUAL INSIGHT Interpretation of the Curl

In Section 18.1, we showed that the quantity \(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \) in Green’s Theorem is the “circulation per unit of enclosed area.” A similar interpretation is valid in \(\mathbb{R}^3 \).

Consider a plane through a point \(P \) with unit normal vector \(\mathbf{n} \), and let \(D \) be a small domain containing \(P \) with boundary curve \(C \) (Figure 9). By Stokes’ Theorem,

\[
\oint_C \mathbf{F} \cdot d\mathbf{r} \approx \iint_D (\text{curl}(\mathbf{F}) \cdot \mathbf{n}) \, dS
\]

The vector field \(\text{curl}(\mathbf{F}) \) is continuous (its components are derivatives of the components of \(\mathbf{F} \)), so its value does not change much on \(D \) if \(D \) is sufficiently small.

To a first approximation, we can replace \(\text{curl}(\mathbf{F}) \) by the constant value \(\text{curl}(\mathbf{F})(P) \), giving us the approximation

\[
\iint_D (\text{curl}(\mathbf{F}) \cdot \mathbf{n}) \, dS \approx \iint_D (\text{curl}(\mathbf{F})(P) \cdot \mathbf{n}) \, dS
\]

Furthermore, \(\text{curl}(\mathbf{F})(P) \cdot \mathbf{n} = \|\text{curl}(\mathbf{F})(P)\| \cos \theta \), where \(\theta \) is the angle between \(\text{curl}(\mathbf{F}) \) and \(\mathbf{n} \). Together, Eqs. (9) and (10) give us

\[
\oint_C \mathbf{F} \cdot d\mathbf{r} \approx \|\text{curl}(\mathbf{F})(P)\| \cos \theta \, \text{Area}(D)
\]

This is a remarkable result. It tells us that \(\text{curl}(\mathbf{F}) \) encodes the the circulation per unit of enclosed area in every plane through \(P \) in a simple way—namely, as the dot product \(\text{curl}(\mathbf{F})(P) \cdot \mathbf{n} \). In particular, the circulation rate varies (to a first-order approximation) as the cosine of the angle \(\theta \) between \(\text{curl}(\mathbf{F})(P) \) and \(\mathbf{n} \).

We can also argue (as in Section 18.1 for vector fields in the plane) that if \(\mathbf{F} \) is the velocity field of a fluid, then a small paddle wheel with normal \(\mathbf{n} \) will rotate with an angular velocity of approximately \(\frac{1}{2} \|\text{curl}(\mathbf{F})(P)\| \cdot \mathbf{n} \) (see Figure 10). At any given point, the angular velocity is maximized when the normal vector to the paddle wheel \(\mathbf{n} \) points in the direction of \(\text{curl}(\mathbf{F}) \).

EXAMPLE 4 Vector Potential for a Solenoid

An electric current \(I \) flowing through a solenoid (a tightly wound spiral of wire; see Figure 11) creates a magnetic field \(\mathbf{B} \). If we assume that the solenoid is infinitely long, with radius \(R \) and the \(z \)-axis as the central axis, then

\[
\mathbf{B}(r) = \begin{cases}
0 & \text{if } r > R \\
B_k & \text{if } r < R
\end{cases}
\]

where \(r = (x^2 + y^2)^{1/2} \) is the distance to the \(z \)-axis, and \(B \) is a constant that depends on the current strength \(I \) and the spacing of the turns of wire.
(a) Show that a vector potential for B is

$$A(r) = \begin{cases} \frac{1}{2} R^2 B \left(-\frac{y}{r^2}, \frac{x}{r^2}, 0 \right) & \text{if } r > R \\ \frac{1}{2} B (-y, x, 0) & \text{if } r < R \end{cases}$$

(b) Calculate the flux of B through the surface S (with an upward-pointing normal) in Figure 11 whose boundary is a circle of radius r, where $r > R$.

Solution

(a) For any functions f and g,

$$\text{curl}((f, g, 0)) = (-g_z, f_z, g_x - f_y)$$

Applying this to A for $r < R$, we obtain

$$\text{curl}(A) = \frac{1}{2} B \left(-\frac{y}{r^2}, \frac{x}{r^2}, 0 \right) - \frac{1}{2} \frac{\partial}{\partial y} (-y) = (0, 0, B) = Bk = B$$

We leave it as an exercise (Exercise 33) to show that $\text{curl}(A) = B = 0$ for $r > R$.

(b) The boundary of S is a circle with counterclockwise parametrization $r(t) = (r \cos t, r \sin t, 0)$, so

$$r'(t) = (-r \sin t, r \cos t, 0)$$

$$A(r(t)) = \frac{1}{2} R^2 B \left(-\sin t, \cos t, 0 \right)$$

$$A(r(t)) \cdot r'(t) = \frac{1}{2} R^2 B \left((-\sin t)^2 + \cos^2 t \right) = \frac{1}{2} R^2 B$$

By Stokes' Theorem, the flux of B through S is equal to

$$\int_S B \cdot dS = \oint_{\partial S} A \cdot dr = \int_0^{2\pi} A(r(t)) \cdot r'(t) dt = \frac{1}{2} R^2 B \int_0^{2\pi} dt = \pi R^2 B$$
CHAPTER 18 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS

CONCEPTUAL INSIGHT There is an interesting difference between scalar and vector potentials. If \(F = \nabla f \), then the scalar potential \(f \) is constant in regions where the field \(F \) is zero (since a function with zero gradient is constant). This is not true for vector potentials. As we saw in Example 4, the magnetic field \(B \) produced by a solenoid is zero everywhere outside the solenoid, but the vector potential \(A \) is not constant outside the solenoid. In fact, \(A \) is proportional to \(-\frac{y}{r^2}, \frac{x}{r^2}, 0 \). This is related to an intriguing phenomenon in physics called the Aharonov–Bohm (AB) effect, first proposed on theoretical grounds in the 1940s.

According to electromagnetic theory, a magnetic field \(B \) exerts a force on a moving electron, causing a deflection in the electron’s path. We do not expect any deflection when an electron moves past a solenoid because \(B \) is zero outside the solenoid (in practice, the field is not actually zero for a solenoid of finite length, but it is very small—we ignore this difficulty). However, according to quantum mechanics, electrons have both particle and wave properties. In a double-slit experiment, a stream of electrons passing through two small slits creates a wavelike interference pattern on a detection screen (Figure 13).

The AB effect predicts that if we place a small solenoid between the slits as in the figure (the solenoid is so small that the electrons never pass through it), then the interference pattern will shift slightly. It is as if the electrons are “aware” of the magnetic field inside the solenoid, even though they never encounter the field directly.

The AB effect was hotly debated until it was confirmed definitively in 1985, in experiments carried out by a team of Japanese physicists led by Akira Tonomura. The AB effect appeared to contradict “classical” electromagnetic theory, according to which the trajectory of an electron is determined by \(B \) alone. There is no such contradiction in quantum mechanics, because the behavior of the electrons is governed not by \(B \) but by a “wave function” derived from the nonconstant vector potential \(A \).

FIGURE 13 A stream of electrons passing through a double slit produces an interference pattern on the detection screen. The pattern shifts slightly when an electric current flows through the solenoid.

18.2 SUMMARY

- The **boundary** of a surface \(S \) is denoted \(\partial S \). We say that \(S \) is **closed** if \(\partial S \) is empty.
- Suppose that \(S \) is oriented (a continuously varying unit normal is specified at each point of \(S \)). The **boundary orientation** of \(\partial S \) is defined as follows: If you walk along the boundary in the positive direction with your head pointing in the normal direction, then the surface is on your left.
- Stokes’ Theorem relates the circulation around the boundary to the surface integral of the curl:
 \[
 \oint_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S}
 \]
- Surface independence: If \(\mathbf{F} = \text{curl}(\mathbf{A}) \), then the flux of \(\mathbf{F} \) through a surface \(S \) depends only on the oriented boundary \(\partial S \) and not on the surface itself:
 \[
 \iint_S \mathbf{F} \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{A} \cdot d\mathbf{r}
 \]
 In particular, if \(S \) is closed (i.e., \(\partial S \) is empty) and \(\mathbf{F} = \text{curl}(\mathbf{A}) \), then \(\iint_S \mathbf{F} \cdot d\mathbf{S} = 0 \). If \(S_1 \) and \(S_2 \) are oriented surfaces that share an oriented boundary and \(\mathbf{F} = \text{curl}(\mathbf{A}) \), then
 \[
 \iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{S_2} \mathbf{F} \cdot d\mathbf{S}
 \]
- The **curl** is interpreted as a vector that encodes circulation per unit area: If \(P \) is any point and \(\mathbf{n} \) is a unit normal vector, then
 \[
 \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \approx (\text{curl}(\mathbf{F})(P) \cdot \mathbf{n}) \text{Area(}D]\)
 where \(\mathcal{C} \) is a small, simple closed curve around \(P \) in the plane through \(P \) with normal vector \(\mathbf{n} \), and \(D \) is the region enclosed by \(\mathcal{C} \).
18.2 Exercises

Preliminary Questions

1. Indicate with an arrow the boundary orientation of the boundary curves of the surfaces in Figure 14, oriented by the outward-pointing normal vectors.

2. Let \(F = \text{curl}(A) \). Which of the following are related by Stokes' Theorem?
 (a) The circulation of \(A \) and flux of \(F \)
 (b) The circulation of \(F \) and flux of \(A \)

3. What is the definition of a vector potential?

4. Which of the following statements is correct?
 (a) The flux of \(\text{curl}(A) \) through every oriented surface is zero.
 (b) The flux of \(\text{curl}(A) \) through every closed, oriented surface is zero.

5. Which condition on \(F \) guarantees that the flux through \(S_1 \) is equal to the flux through \(S_2 \) for any two oriented surfaces \(S_1 \) and \(S_2 \) with the same oriented boundary?

Exercises

In Exercises 1–4, verify Stokes' Theorem for the given vector field and surface, oriented with an upward-pointing normal.

1. \(F = (2xy, x, y + z) \), the surface \(z = 1 - x^2 - y^2 \) for \(x^2 + y^2 \leq 1 \)

2. \(F = (yz, 0, x) \), the portion of the plane \(x \frac{2}{3} + y \frac{2}{3} + z = 1 \) where \(x, y, z \geq 0 \)

3. \(F = (e^{x-z}, 0, 0) \), the square with vertices \((1, 0, 1), (1, 1, 1), (0, 1, 1), \) and \((0, 0, 1)\)

4. \(F = \left(y, x, x^2 + y^2 \right) \), the upper hemisphere \(x^2 + y^2 + z^2 = 1, z \geq 0 \)

In Exercises 5–10, calculate \(\text{curl}(F) \) and then apply Stokes' Theorem to compute the flux of \(\text{curl}(F) \) through the given surface using a line integral.

5. \(F = \left(e^{x^2} - y, e^{x^3} + x, \cos(xz) \right) \), the upper hemisphere \(x^2 + y^2 + z^2 = 1, z \geq 0 \) with outward-pointing normal

6. \(F = \left(x + y, z^2 - 4, x \sqrt{y^2 + 1} \right) \), surface of the wedge-shaped box in Figure 15 (bottom included, top excluded) with outward-pointing normal

7. \(F = (3z, 5x, -2y) \), that part of the paraboloid \(z = x^2 + y^2 \) that lies below the plane \(z = 4 \) with upward-pointing unit normal vector

8. \(F = \left(yz, -xz, z^3 \right) \), that part of the cone \(z = \sqrt{x^2 + y^2} \) that lies between the two planes \(z = 1 \) and \(z = 3 \) with upward-pointing unit normal vector

9. \(F = (yz, xz, xy) \), that part of the cylinder \(x^2 + y^2 = 1 \) that lies between the two planes \(z = 1 \) and \(z = 4 \) with outward-pointing unit normal vector

10. \(F = (2y, e^z, -\arctan x) \), that part of the paraboloid \(z = 4 - x^2 - y^2 \) cut off by the \(xy \)-plane with upward-pointing unit normal vector

In Exercises 11–14, apply Stokes' Theorem to evaluate \(\oint_C F \cdot dr \) by finding the flux of \(\text{curl}(F) \) across an appropriate surface.

11. \(F = (3y, -2x, 3y) \), \(C \) is the circle \(x^2 + y^2 = 9, z = 2 \), oriented counterclockwise as viewed from above.

12. \(F = (yz, xy, z) \), \(C \) is the square with vertices \((0, 0, 2), (1, 0, 2), (1, 1, 2), \) and \((0, 1, 2)\), oriented counterclockwise as viewed from above.

13. \(F = (y, z, x) \), \(C \) is the triangle with vertices \((0, 0, 0), (3, 0, 0), \) and \((0, 3, 3)\), oriented counterclockwise as viewed from above.

14. \(F = (y, -2z, 4x) \), \(C \) is the boundary of that portion of the plane \(x + 2y + 3z = 1 \) that is in the first octant of space, oriented counterclockwise as viewed from above.

15. Let \(S \) be the surface of the cylinder (not including the top and bottom) of radius 2 for \(1 \leq z \leq 6 \), oriented with outward-pointing normal (Figure 16).
 (a) Indicate with an arrow the orientation of \(\partial S \) (the top and bottom circles).
 (b) Verify Stokes' Theorem for \(S \) and \(F = (yz^2, 0, 0) \).
16. Let S be the portion of the plane $z = x$ contained in the half-cylinder of radius R depicted in Figure 17. Use Stokes’ Theorem to calculate the circulation of $F = (z^2, x, y + 2z)$ around the boundary of S (a half-ellipse) in the counterclockwise direction when viewed from above. *Hint:* Show that $\text{curl}(F)$ is orthogonal to the normal vector to the plane.

![FIGURE 17](image)

17. Let I be the flux of $F = (x^2, 2y, z^2)$ through the upper hemisphere S of the unit sphere.

(a) Let $G = (x^2, 2y^2, 0)$. Find a vector field A such that $\text{curl}(A) = G$.
(b) Use Stokes’ Theorem to show that the flux of G through S is zero. *Hint:* Calculate the circulation of A around ∂S.
(c) Calculate I. *Hint:* Use (b) to show that I is equal to the flux of $(0, 0, z^2)$ through S.

18. Let $F = (0, -z, 1)$. Let S be the spherical cap $x^2 + y^2 + z^2 \leq 1$, where $z \geq \frac{1}{2}$. Evaluate $\int_S F \cdot dS$ directly as a surface integral. Then verify that $F = \text{curl}(A)$, where $A = (0, x, xz)$ and evaluate the surface integral again using Stokes’ Theorem.

19. Let A be the vector potential and B the magnetic field of the infinite solenoid of radius R in Example 4. Use Stokes’ Theorem to compute:

(a) The flux of B through a circle in the xy-plane of radius $r < R$
(b) The circulation of A around the boundary C of a surface lying outside the solenoid

20. The magnetic field B due to a small current loop (which we place at the origin) is called a **magnetic dipole** (Figure 18). Let $\rho = (x^2 + y^2 + z^2)^{1/2}$. For ρ large, $B = \text{curl}(A)$, where

$$A = \left(\frac{-y}{\rho^2}, \frac{x}{\rho^2}, 0 \right)$$

(a) Let C be a horizontal circle of radius R with center $(0, 0, c)$, where c is large. Show that A is tangent to C.
(b) Use Stokes’ Theorem to calculate the flux of B through C.

![FIGURE 18](image)

21. A uniform magnetic field B has constant strength b in the z-direction [i.e., $B = (0, 0, b)$].

(a) Verify that $A = \frac{1}{2} B \times r$ is a vector potential for B, where $r = (x, y, 0)$.
(b) Calculate the flux of B through the rectangle with vertices A, B, C, and D in Figure 19.

![FIGURE 19](image)

22. Let $F = (-x^2 y, x, 0)$. Referring to Figure 19, let C be the closed path ABC D. Use Stokes’ Theorem to evaluate $\int_C F \cdot d\mathbf{r}$ in two ways. First, regard C as the boundary of the rectangle with vertices A, B, C, and D. Then treat C as the boundary of the wedge-shaped box with an open top.

23. Let $F = (y^2, 2z^2 + x, 2y^2)$. Use Stokes’ Theorem to find a plane with equation $ax + by + cz = 0$ (where a, b, c are not all zero) such that $\oint_C F \cdot d\mathbf{r} = 0$ for every closed C lying in the plane. *Hint:* Choose a, b, c so that $\text{curl}(F)$ lies in the plane.

24. Let $F = (-z^2, 2zx, 4y - x^2)$, and let C be a simple closed curve in the plane $x + y + z = 4$ that encloses a region of area 16 (Figure 20). Calculate $\oint_C F \cdot d\mathbf{r}$, where C is oriented in the counterclockwise direction (when viewed from above the plane).

![FIGURE 20](image)

25. Let $F = (y^2, x^2, z^2)$. Show that

$$\int_{C_1} F \cdot d\mathbf{r} = \int_{C_2} F \cdot d\mathbf{r}$$

for any two closed curves lying on a cylinder whose central axis is the z-axis (Figure 21).

![FIGURE 21](image)
The curl of a vector field \(\mathbf{F} \) at the origin is \(\mathbf{v}_0 = (3, 1, 4) \). Estimate the circulation around the small parallelogram spanned by the vectors \(\mathbf{A} = \{0, 1, 4\} \) and \(\mathbf{B} = \{0, 0, 1\} \).

You know two things about a vector field \(\mathbf{F} \):

(i) \(\mathbf{F} \) has a vector potential \(\mathbf{A} \) (but \(\mathbf{A} \) is unknown).

(ii) The circulation of \(\mathbf{A} \) around the unit circle (oriented counterclockwise) is 25.

Determine the flux of \(\mathbf{F} \) through the surface \(S \) in Figure 22, oriented with an upward-pointing normal.

Further Insights and Challenges

35. In this exercise, we use the notation of the proof of Theorem 1 and prove

\[
\oint_C F_3(x, y, z)k \cdot d\mathbf{r} = \iint_S \text{curl}(F_3(x, y, z)k) \cdot dS
\]

In particular, \(S \) is the graph of \(z = f(x, y) \) over a domain \(D \), and \(C \) is the boundary of \(S \) with parametrization \((x(t), y(t), f(x(t), y(t))) \).

(a) Use the Chain Rule to show that

\[
F_3(x, y, z)k \cdot d\mathbf{r} = F_3(x(t), y(t), f(x(t), y(t)))
\]

and verify that

\[
\oint_C F_3(x, y, z)k \cdot d\mathbf{r} = \int_{C_0} \left[F_3(x, y, z) f_x(x, y), F_3(x, y, z) f_y(x, y) \right] \cdot d\mathbf{r}
\]

where \(C_0 \) has parametrization \((x(t), y(t)) \).

36. Let \(\mathbf{F} \) be a continuously differentiable vector field in \(\mathbb{R}^3 \), \(Q \) a point, and \(S \) a plane containing \(Q \) with unit normal vector \(\mathbf{e} \). Let \(C_r \) be a circle of radius \(r \) centered at \(Q \) in \(S \), and let \(S_r \) be the disk enclosed by \(C_r \). Assume \(S_r \) is oriented with unit normal vector \(\mathbf{e} \).

(a) Let \(m(r) \) and \(M(r) \) be the minimum and maximum values of \(\text{curl}(\mathbf{F}(P)) \cdot \mathbf{e} \) for \(P \in S_r \). Prove that

\[
m(r) \leq \frac{1}{\pi r^2} \iint_{S_r} \text{curl}(\mathbf{F}) \cdot dS \leq M(r)
\]

(b) Prove that

\[
\text{curl}(\mathbf{F}(Q)) \cdot \mathbf{e} = \lim_{r \to 0} \frac{1}{\pi r^2} \int_{C_r} \mathbf{F} \cdot d\mathbf{r}
\]

This proves that \(\text{curl}(\mathbf{F}(Q)) \cdot \mathbf{e} \) is the circulation per unit area in the plane \(S \).

18.3 Divergence Theorem

We have studied several “Fundamental Theorems.” Each of these is a relation of the type:

Integral of a derivative on an oriented domain = Integral over the oriented boundary of the domain

Here are the examples we have seen so far:

- In single-variable calculus, the Fundamental Theorem of Calculus (FTC) relates the integral of \(f'(x) \) over an interval \([a, b] \) to the “integral” of \(f(x) \) over the boundary of \([a, b] \) consisting of two points \(a \) and \(b \):

\[
\int_a^b f'(x) \, dx = f(b) - f(a)
\]

Integral of derivative over \([a, b] \) = “Integral” over the boundary of \([a, b] \)
The boundary of \([a, b]\) is oriented by assigning a plus sign to \(b\) and a minus sign to \(a\).

- The Fundamental Theorem for Line Integrals generalizes the FTC: Instead of taking an integral over an interval \([a, b]\) (a path from \(a\) to \(b\) along the \(x\)-axis), we take an integral along any path from points \(P\) to \(Q\) in \(\mathbb{R}^3\) (Figure 1), and instead of \(f'(x)\), we use the gradient:

\[
\int_C \nabla f \cdot dr = f(Q) - f(P)
\]

- Green's Theorem is a two-dimensional version of the FTC that relates the integral of a certain derivative over a domain \(D\) in the plane to an integral over its boundary curve \(C = \partial D\) (Figure 2):

\[
\iint_D \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA = \int_C F \cdot dr
\]

- Stokes' Theorem extends Green's Theorem: Instead of a domain in the plane (a flat surface), we allow any surface in \(\mathbb{R}^3\) (Figure 3). The appropriate derivative is the curl:

\[
\iint_S \text{curl}(F) \cdot dS = \int_C F \cdot dr
\]

Our last theorem—the Divergence Theorem—also follows this pattern:

\[
\iiint_W \text{div}(F) dV = \iint_S F \cdot dS
\]

Here, \(S\) is a closed surface that encloses a three-dimensional (or 3D) region \(W\). In other words, \(S\) is the boundary of \(W\): \(S = \partial W\). Recall that a closed surface is a surface that "holds air." Figure 4 shows two examples of regions and boundary surfaces that we will consider.

We consider a piecewise smooth closed surface \(S\), which means \(S\) consists of one smooth surface or at most finitely many smooth surfaces that have been glued together along their boundaries, as in the example of the cube.

Theorem 1 Divergence Theorem Let \(S\) be a closed surface that encloses a region \(W\) in \(\mathbb{R}^3\). Assume that \(S\) is piecewise smooth and is oriented by normal vectors pointing to the outside of \(W\). Let \(F\) be a vector field whose domain contains \(W\). Then

\[
\iint_S F \cdot dS = \iiint_W \text{div}(F) dV
\]
FIGURE 5 A box \(W = [a,b] \times [c,d] \times [e,f]\).

This theorem often appears in the form
\[
\iiint_W \mathbf{F} \cdot dS = \iiint_W \nabla \cdot \mathbf{F} \, dV
\]

Proof We prove the Divergence Theorem in the special case that \(W\) is a box \([a,b] \times [c,d] \times [e,f]\) as in Figure 5. The proof can be modified to treat more general regions such as the interiors of spheres and cylinders.

As in the proofs of Green’s and Stokes’ Theorems, we show that corresponding terms are equal. It will suffice to carry out the argument for the \(i\)-component (the other two components are similar). Thus, we assume that \(\mathbf{F} = F_i \mathbf{i}\).

The surface integral over boundary \(S\) of the box is the sum of the integrals over the six faces. However, \(\mathbf{F} = F_i \mathbf{i}\) is orthogonal to the normal vectors to the top and bottom as well as the two side faces because \(\mathbf{F} \cdot \mathbf{j} = \mathbf{F} \cdot \mathbf{k} = 0\). Therefore, the surface integrals over these faces are zero. Nonzero contributions come only from the front and back faces, which we denote \(S_f\) and \(S_b\) (Figure 6):

\[
\iint_S \mathbf{F} \cdot dS = \iint_{S_f} \mathbf{F} \cdot dS + \iint_{S_b} \mathbf{F} \cdot dS
\]

To evaluate these integrals, we parametrize \(S_f\) and \(S_b\) by
\[
G_f(y,z) = (b,y,z), \quad c \leq y \leq d, \quad e \leq z \leq f
\]
\[
G_b(y,z) = (a,y,z), \quad c \leq y \leq d, \quad e \leq z \leq f
\]

The normal vectors for these parametrizations are
\[
\frac{\partial G_f}{\partial y} \times \frac{\partial G_f}{\partial z} = \mathbf{j} \times \mathbf{k} = \mathbf{i}
\]
\[
\frac{\partial G_b}{\partial y} \times \frac{\partial G_b}{\partial z} = \mathbf{j} \times \mathbf{k} = \mathbf{i}
\]

However, the outward-pointing normal for \(S_b\) is \(-\mathbf{i}\), so a minus sign is needed in the surface integral over \(S_b\) using the parametrization \(G_b\):

\[
\iint_{S_f} \mathbf{F} \cdot dS + \iint_{S_b} \mathbf{F} \cdot dS = \int_e^f \int_c^d F_1(b,y,z) \, dy \, dz - \int_e^f \int_c^d F_1(a,y,z) \, dy \, dz
\]

By the FTC in one variable,

\[
F_1(b,y,z) - F_1(a,y,z) = \int_a^b \frac{\partial F_1}{\partial x}(x,y,z) \, dx
\]

Since \(\text{div}(\mathbf{F}) = \text{div}(F_i \mathbf{i}) = \frac{\partial F_i}{\partial x}\), we obtain the desired result:

\[
\iiint_W \mathbf{F} \cdot dV = \int_e^f \int_c^d \int_a^b \frac{\partial F_1}{\partial x}(x,y,z) \, dx \, dy \, dz = \iiint_W \text{div}(\mathbf{F}) \, dV
\]
EXAMPLE 1 Verifying the Divergence Theorem Verify Theorem 1 for \(\mathbf{F}(x, y, z) = (x, y, z^2) \) and the cylinder in Figure 7.

Solution We must verify that the flux \(\iiint_S \mathbf{F} \cdot d\mathbf{S}, \) where \(S \) is the surface of the cylinder, is equal to the integral of \(\text{div}(\mathbf{F}) \) over the cylinder. We compute the flux through \(S \) first: It is the sum of three surface integrals over the side, the top, and the bottom.

Step 1. Integrate over the side of the cylinder.
We use the standard parametrization of the cylinder:
\[
G(\theta, z) = (2 \cos \theta, 2 \sin \theta, z), \quad 0 \leq \theta < 2\pi, \quad 0 \leq z \leq 5
\]
The normal vector is
\[
\mathbf{N} = \mathbf{T}_\theta \times \mathbf{T}_z = (-2 \sin \theta, 2 \cos \theta, 0) \times (0, 0, 1) = (2 \cos \theta, 2 \sin \theta, 0)
\]
and \(\mathbf{F}(G(\theta, z)) = (y, yz, z^2) = (2 \sin \theta, 2z \sin \theta, z^2). \) Thus,
\[
\mathbf{F} \cdot d\mathbf{S} = (2 \sin \theta, 2z \sin \theta, z^2) \cdot (2 \cos \theta, 2 \sin \theta, 0) \, d\theta \, dz
\]
\[
= 4 \cos \theta \sin \theta + 4z \sin^2 \theta \, d\theta \, dz
\]
\[
\int_0^{2\pi} \int_0^5 (4 \cos \theta \sin \theta + 4z \sin^2 \theta) \, d\theta \, dz
\]
\[
= 0 + 4\pi \int_0^5 z \, dz = 4\pi \left(\frac{25}{2} \right) = 50\pi \quad \boxed{2}
\]

Step 2. Integrate over the top and bottom of the cylinder.
The top of the cylinder is at height \(z = 5, \) so we can parametrize the top by \(G(x, y) = (x, y, 5) \) for \((x, y) \) in the disk \(D \) of radius 2:
\[
D = \{(x, y) : x^2 + y^2 \leq 4\}
\]
Then
\[
\mathbf{N} = \mathbf{T}_x \times \mathbf{T}_y = (1, 0, 0) \times (0, 1, 0) = (0, 0, 1)
\]
and since \(\mathbf{F}(G(x, y)) = \mathbf{F}(x, y, 5) = (y, 5y, 5^2), \) we have
\[
\mathbf{F}(G(x, y)) \cdot \mathbf{N} = (y, 5y, 5^2) \cdot (0, 0, 1) = 25
\]
\[
\int \int_D \mathbf{F} \cdot d\mathbf{S} = \iint_D 25 \, dA = 25 \text{Area}(D) = 25(4\pi) = 100\pi
\]
Along the bottom disk of the cylinder, we have \(z = 0 \) and \(\mathbf{F}(x, y, 0) = (y, 0, 0). \) Thus, \(\mathbf{F} \) is orthogonal to the vector \(-\mathbf{k}\) normal to the bottom disk, and the integral along the bottom is zero.

Step 3. Find the total flux.
\[
\iiint_S \mathbf{F} \cdot d\mathbf{S} = \text{sides} + \text{top} + \text{bottom} = 50\pi + 100\pi + 0 = \boxed{150\pi}
\]

Step 4. Compare with the integral of divergence.
\[
\text{div}(\mathbf{F}) = \text{div}(y, yz, z^2) = \frac{\partial}{\partial x} y + \frac{\partial}{\partial y} (yz) + \frac{\partial}{\partial z} z^2 = 0 + z + 2z = 3z
\]
The cylinder \(VW \) consists of all points \((x, y, z) \) for \(0 \leq z \leq 5 \) and \((x, y, z) \) in the disk \(D. \) We see that the integral of the divergence is equal to the total flux as required:
\[
\iiint_{VW} \text{div}(\mathbf{F}) \, dV = \iiint_D \int_{z=0}^5 3z \, dV = \int_{z=0}^5 \frac{75}{2} \, d\mathbf{A}
\]
\[
= \left(\frac{75}{2} \right) \text{(Area}(D)) = \left(\frac{75}{2} \right) (4\pi) = \boxed{150\pi}
\]

\[
\text{Figure 7} \text{ Cylinder of radius 2 and height 5.}
\]

\[
\text{Reminder} \text{ in Eq. (2), we use }
\int_0^{2\pi} \cos \theta \sin \theta \, d\theta = 0
\int_0^{2\pi} \sin^2 \theta \, d\theta = \pi
\]
In many applications, the Divergence Theorem is used to compute flux. In the next example, we reduce a flux computation (that would involve integrating over six sides of a box) to a more simple triple integral.

Example 2 Using the Divergence Theorem

Use the Divergence Theorem to evaluate
\[
\int_S \langle x^2, z^4, e^z \rangle \cdot dS,
\]
where \(S \) is the boundary of the box \(W \) in Figure 8.

Solution First, compute the divergence:
\[
\text{div}(\langle x^2, z^4, e^z \rangle) = \frac{\partial}{\partial x} x^2 + \frac{\partial}{\partial y} z^4 + \frac{\partial}{\partial z} e^z = 2x + e^z
\]
Then apply the Divergence Theorem and use Fubini’s Theorem (Section 16.1):
\[
\int_S \langle x^2, z^4, e^z \rangle \cdot dS = \int_W \int_{-1}^{1} (2x + e^z) \, dz \, dy \, dx
\]
\[
= 3 \int_{-1}^{1} 2x \, dx + 6 \int_{0}^{1} e^z \, dz = 12 + 6(e - 1) = 6e + 6
\]

Example 3 A Vector Field with Zero Divergence

Compute the flux of
\[
\mathbf{F} = \langle z^2 + xy^2, \cos(x + z), e^{-y} - zy^2 \rangle
\]
through the boundary of the surface \(S \) in Figure 9.

Solution Although \(\mathbf{F} \) is rather complicated, its divergence is zero:
\[
\text{div}(\mathbf{F}) = \frac{\partial}{\partial x}(z^2 + xy^2) + \frac{\partial}{\partial y} \cos(x + z) + \frac{\partial}{\partial z}(e^{-y} - zy^2) = y^2 - y^2 = 0
\]
The Divergence Theorem shows that the flux is zero. Letting \(W \) be the region enclosed by \(S \), we have
\[
\int_S \mathbf{F} \cdot dS = \int_W \int_{-1}^{1} \int_{0}^{1} \text{div}(\mathbf{F}) \, dV = \int_W \int_{-1}^{1} \int_{0}^{1} 0 \, dV = 0
\]

Graphical Insight Interpretation of Divergence

Let’s assume again that \(\mathbf{F} \) is the velocity field of a fluid (Figure 10). Then the flux of \(\mathbf{F} \) through a surface \(S \) is the flow rate (volume of fluid passing through \(S \) per unit time). If \(S \) encloses the region \(W \), then by the Divergence Theorem,
\[
\text{Flow rate across } S = \iiint_W \text{div}(\mathbf{F}) \, dV
\]

Now assume that \(S \) is a small surface containing a point \(P \). Because \(\text{div}(\mathbf{F}) \) is continuous (it is a sum of derivatives of the components of \(\mathbf{F} \)), its value does not change much on \(W \) if \(S \) is sufficiently small, and to a first approximation, we can replace \(\text{div}(\mathbf{F}) \) by the constant value \(\text{div}(\mathbf{F})(P) \). This gives us the approximation
\[
\text{Flow rate across } S = \iiint_W \text{div}(\mathbf{F}) \, dV \approx \text{div}(\mathbf{F})(P) \cdot \text{Vol}(W)
\]

In other words, the flow rate through a small closed surface containing \(P \) is approximately equal to the divergence at \(P \) times the enclosed volume, and thus, \(\text{div}(\mathbf{F})(P) \) has an interpretation as “flow rate (or flux) per unit volume”:

\[
\cdot \text{ If } \text{div}(\mathbf{F})(P) > 0, \text{ there is a net outflow of fluid across any small closed surface enclosing } P, \text{ or, in other words, a net “creation” of fluid near } P. \text{ In this case, we call } P \text{ a source.}
\]

Because of this, \(\text{div}(\mathbf{F}) \) is sometimes called the source density of the field.
• If \(\text{div}(\mathbf{F})(P) < 0 \), there is a net inflow of fluid across any small closed surface enclosing \(P \), or, in other words, a net “destruction” of fluid near \(P \). In this case, we call \(P \) a sink.
• If \(\text{div}(\mathbf{F})(P) = 0 \), then to a first-order approximation, the net flow across any small closed surface enclosing \(P \) is equal to zero. A vector field such that \(\text{div}(\mathbf{F}) = 0 \) everywhere is called incompressible.

To visualize these cases, consider the two-dimensional situation, where we define
\[
\text{div}((\mathbf{F}_1, \mathbf{F}_2)) = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y}
\]
In Figure 11, field (A) has positive divergence. There is a positive net flow of fluid across every circle per unit time. Similarly, field (B) has negative divergence. By contrast, field (C) is incompressible. The fluid flowing into every circle is balanced by the fluid flowing out.

(A) The field \(\mathbf{F} = (x, y) \) with \(\text{div}(\mathbf{F}) = 2 \). There is a net outflow through every circle.
(B) The field \(\mathbf{F} = (y-2x, x-2y) \) with \(\text{div}(\mathbf{F}) = -4 \). There is a net inflow into every circle.
(C) The field \(\mathbf{F} = (x, -y) \) with \(\text{div}(\mathbf{F}) = 0 \). The flux through every circle is zero.

FIGURE 11

Applications to Electrostatics

The Divergence Theorem is a powerful tool for computing the flux of electrostatic fields. This is due to the fact that the electrostatic field of a point charge is the inverse-square vector field, which has special properties. In this section, we denote the inverse-square vector field by \(\mathbf{F}_{IS} \):

\[
\mathbf{F}_{IS} = \frac{\mathbf{e}_r}{r^2} = \frac{r}{r^3}
\]

The unit radial vector field \(\mathbf{e}_r \) appears in Figure 12. Note that \(\mathbf{F}_{IS} \) is only defined for \(r \neq 0 \). The next example verifies the key property that \(\text{div}(\mathbf{F}_{IS}) = 0 \).

Example 4 The Inverse-Square Vector Field Verify that \(\mathbf{F}_{IS} = \frac{\mathbf{e}_r}{r^2} \) has zero divergence:

\[
\text{div} \left(\frac{\mathbf{e}_r}{r^2} \right) = 0
\]

Solution Write the field as

\[
\mathbf{F}_{IS} = (F_1, F_2, F_3) = \frac{1}{r^2} \left(\frac{x}{r}, \frac{y}{r}, \frac{z}{r} \right) = \left(\frac{x}{r^3}, \frac{y}{r^3}, \frac{z}{r^3} \right)
\]

We have

\[
\frac{\partial r}{\partial x} = \frac{\partial}{\partial x} (x^2 + y^2 + z^2)^{1/2} = \frac{1}{2} (x^2 + y^2 + z^2)^{-1/2} (2x) = \frac{x}{r} \\
\frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x} x r^{-3} = r^{-3} - 3x r^{-4} \frac{\partial r}{\partial x} = r^{-3} - (3x r^{-4}) \frac{x}{r} = \frac{r^2 - 3x^2}{r^5}
\]

FIGURE 12 Unit radial vector field \(\mathbf{e}_r \).
The derivatives \(\frac{\partial F_2}{\partial y} \) and \(\frac{\partial F_3}{\partial z} \) are similar, so
\[
\text{div}(\mathbf{F}_{\text{IS}}) = \frac{r^2 - 3x^2}{r^5} + \frac{r^2 - 3y^2}{r^5} + \frac{r^2 - 3z^2}{r^5} = \frac{3r^2 - 3(x^2 + y^2 + z^2)}{r^5} = 0
\]

The next theorem shows that the flux of \(\mathbf{F}_{\text{IS}} \) through a closed surface \(S \) depends only on whether \(S \) contains the origin.

Theorem 2 Flux of the Inverse-Square Field The flux of \(\mathbf{F}_{\text{IS}} = \frac{\mathbf{e}_r}{r^2} \) through closed surfaces has the following remarkable description:

\[
\int_S (\frac{\mathbf{e}_r}{r^2}) \cdot d\mathbf{S} = \begin{cases}
4\pi & \text{if } S \text{ encloses the origin} \\
0 & \text{if } S \text{ does not enclose the origin}
\end{cases}
\]

Proof First, assume that \(S \) does not contain the origin (Figure 13). Then the region \(W \) enclosed by \(S \) is contained in the domain of \(\mathbf{F}_{\text{IS}} \) and we can apply the Divergence Theorem. By Example 4, \(\text{div}(\mathbf{F}_{\text{IS}}) = 0 \), and therefore,
\[
\int_S (\frac{\mathbf{e}_r}{r^2}) \cdot d\mathbf{S} = \int_W \int \text{div}(\mathbf{F}_{\text{IS}}) dV = \int_W 0 \, dV = 0
\]

Next, let \(S_R \) be the sphere of radius \(R \) centered at the origin (Figure 14). We cannot use the Divergence Theorem because \(S_R \) contains a point (the origin) where \(\mathbf{F}_{\text{IS}} \) is not defined. However, we can compute the flux of \(\mathbf{F}_{\text{IS}} \) through \(S_R \) using spherical coordinates. Recall from Section 17.4 [Eq. (5)] that the outward-pointing normal vector to the sphere in spherical coordinates is
\[
\mathbf{N} = \mathbf{T}_\phi \times \mathbf{T}_\theta = (R^2 \sin \phi) \mathbf{e}_r
\]

The inverse-square field on \(S_R \) is simply \(\mathbf{F}_{\text{IS}} = R^{-2} \mathbf{e}_r \), and thus,
\[
\mathbf{F}_{\text{IS}} \cdot \mathbf{N} = (R^{-2} \mathbf{e}_r) \cdot (R^2 \sin \phi \mathbf{e}_r) = \sin \phi (\mathbf{e}_r \cdot \mathbf{e}_r) = \sin \phi
\]

\[
\int_{S_R} \mathbf{F}_{\text{IS}} \cdot d\mathbf{S} = \int_0^{2\pi} \int_0^\pi \mathbf{F}_{\text{IS}} \cdot \mathbf{N} \sin \phi \, d\phi \, d\theta
\]
\[
= \int_0^{2\pi} \sin \phi \, d\phi \int_0^\pi d\theta
\]
\[
= 2\pi \int_0^\pi \sin \phi \, d\phi = 4\pi
\]

To extend this result to any surface \(S \) containing the origin, choose a sphere \(S_R \) whose radius \(R > 0 \) is so small that \(S_R \) is contained inside \(S \). Let \(W \) be the region between \(S_R \) and \(S \) (Figure 15). The oriented boundary of \(W \) is the difference
\[
\partial W = S - S_R
\]

This means that \(S \) is oriented by outward-pointing normals and \(S_R \) by inward-pointing normals. By the Divergence Theorem,
\[
\int_{\partial W} \mathbf{F}_{\text{IS}} \cdot d\mathbf{S} = \int_S \mathbf{F}_{\text{IS}} \cdot d\mathbf{S} - \int_{S_R} \mathbf{F}_{\text{IS}} \cdot d\mathbf{S}
\]
\[
= \int_W \text{div}(\mathbf{F}_{\text{IS}}) dV \quad \text{(Divergence Theorem)}
\]
\[
= \int_W 0 \, dV = 0 \quad \text{[Because div}(\mathbf{F}_{\text{IS}}) = 0]\]

This proves that the fluxes through \(S \) and \(S_R \) are equal, and hence, both equal 4\pi.
Notice that we just applied the Divergence Theorem to a region \(W \) that lies between two surfaces, one contained in the other. This is a more general form of the theorem than the one we stated formally in Theorem 1 above. The marginal comment explains why this is justified.

This result applies directly to the electric field \(\mathbf{E} \) of a point charge, which is a multiple of the inverse-square vector field. For a charge of \(q \) coulombs at the origin,

\[
\mathbf{E} = \left(\frac{q}{4\pi \epsilon_0} \right) \frac{\mathbf{e}_r}{r^2}
\]

where \(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N}\cdot\text{m}^2 \) is the permittivity constant. Therefore,

\[
\text{Flux of } \mathbf{E} \text{ through } S = \begin{cases} \frac{q}{\epsilon_0} & \text{if } q \text{ is inside } S \\ 0 & \text{if } q \text{ is outside } S \end{cases}
\]

Now, instead of placing just one point charge at the origin, we may distribute a finite number \(M \) of point charges \(q_i \) at different points in space. The resulting electric field \(\mathbf{E} \) is the sum of the fields \(\mathbf{E}_i \) due to the individual charges, and

\[
\iint_S \mathbf{E} \cdot d\mathbf{S} = \iint_S \mathbf{E}_1 \cdot d\mathbf{S} + \cdots + \iint_S \mathbf{E}_M \cdot d\mathbf{S}
\]

Each integral on the right is either 0 or \(q_i/\epsilon_0 \), according to whether or not \(S \) contains \(q_i \), so we conclude that

\[
\iint_S \mathbf{E} \cdot d\mathbf{S} = \frac{\text{total charge enclosed by } S}{\epsilon_0} \tag{5}
\]

This fundamental relation is called Gauss’s Law. A limiting argument shows that Eq. (5) remains valid for the electric field due to a continuous distribution of charge.

The next theorem, describing the electric field due to a uniformly charged sphere, is a classic application of Gauss’s Law.

THEOREM 3 Uniformly Charged Sphere The electric field due to a uniformly charged hollow sphere \(S_R \) of radius \(R \), centered at the origin and of total charge \(Q \), is

\[
\mathbf{E} = \begin{cases} \left(\frac{Q}{4\pi \epsilon_0} \right) \frac{\mathbf{e}_r}{r^2} & \text{if } r > R \\ 0 & \text{if } r < R \end{cases} \tag{6}
\]

where \(\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2/\text{N}\cdot\text{m}^2 \).

Proof By symmetry (Figure 16), the electric field \(\mathbf{E} \) must be directed in the radial direction \(\mathbf{e}_r \) with magnitude depending only on the distance \(r \) to the origin. Thus, \(\mathbf{E} = E(r)\mathbf{e}_r \) for some function \(E(r) \). The flux of \(\mathbf{E} \) through the sphere \(S_r \) of radius \(r \) is

\[
\iint_{S_r} \mathbf{E} \cdot d\mathbf{S} = E(r) \iint_{S_r} \mathbf{e}_r \cdot d\mathbf{S} = 4\pi r^2 E(r)
\]

By Gauss’s Law, this flux is equal to \(C/\epsilon_0 \), where \(C \) is the charge enclosed by \(S_r \). If \(r < R \), then \(C = 0 \) and \(\mathbf{E} = \mathbf{0} \). If \(r > R \), then \(C = Q \) and \(4\pi r^2 E(r) = Q/\epsilon_0 \), or \(E(r) = Q/(\epsilon_0 4\pi r^2) \). This proves Eq. (6).
CONCEPTUAL INSIGHT Here is a summary of the basic operations on functions and vector fields:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>f function</td>
<td>∇ vector field</td>
</tr>
<tr>
<td>F vector field</td>
<td>curl vector field</td>
</tr>
<tr>
<td>G vector field</td>
<td>div function</td>
</tr>
</tbody>
</table>

One basic fact is that the result of two consecutive operations in this diagram is zero:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{curl}(\nabla(f))$</td>
<td>0</td>
</tr>
<tr>
<td>$\text{div}(\text{curl}(F))$</td>
<td>0</td>
</tr>
</tbody>
</table>

We saw that the first identity holds in Theorem 1 of Section 17.1. The second identity appeared as Exercise 33 in Section 17.1. An interesting question is whether every vector field satisfying $\text{curl}(F) = 0$ is necessarily conservative—that is, $F = \nabla f$ for some function f. The answer is yes, but only if the domain D is simply connected (every path can be shrunk to a point in D). We saw in Section 17.3 that the vortex vector satisfies $\text{curl}(F) = 0$ and yet cannot be conservative because its circulation around the unit circle is nonzero (the circulation of a conservative vector field is always zero). However, the domain of the vortex vector field is \mathbb{R}^2 with the origin removed, and this domain is not simply connected.

The situation for vector potentials is similar. Can every vector field G satisfying $\text{div}(G) = 0$ be written in the form $G = \text{curl}(A)$ for some vector potential A? Again, the answer is yes—provided that the domain is a region W in \mathbb{R}^3 that has “no holes,” like a ball, cube, or all of \mathbb{R}^3. The inverse-square field $F_{IS} = e_r/r^2$ plays the role of vortex field in this setting: Although $\text{div}(F_{IS}) = 0$, F_{IS} cannot have a vector potential because its flux through the unit sphere is nonzero as shown in Theorem 2 (the flux over a closed surface of a vector field with a vector potential is always zero by Theorem 2 of Section 18.2). In this case, the domain of $F_{IS} = e_r/r^2$ is \mathbb{R}^3 with the origin removed, which “has a hole.”

These properties of the vortex and inverse-square vector fields are significant because they relate line and surface integrals to “topological” properties of the domain, such as whether the domain is simply connected or has holes. They are a first hint of the important and fascinating connections between vector analysis and the area of mathematics called topology.

18.3 SUMMARY

- The Divergence Theorem: If W is a region in \mathbb{R}^3 whose boundary ∂W is a surface, oriented by normal vectors pointing outside W, then
 $$\int_{\partial W} F \cdot dS = \int_W \text{div}(F) \, dV$$

- Corollary: If $\text{div}(F) = 0$, then F has zero flux through the boundary ∂W of any W contained in the domain of F.

- The divergence $\text{div}(F)$ is interpreted as “flux per unit volume,” which means that the flux through a small closed surface containing a point P is approximately equal to $\text{div}(F)(P)$ times the enclosed volume.

- Basic operations on functions and vector fields:
<table>
<thead>
<tr>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>f function</td>
<td>∇ vector field</td>
</tr>
<tr>
<td>F vector field</td>
<td>curl vector field</td>
</tr>
<tr>
<td>G vector field</td>
<td>div function</td>
</tr>
</tbody>
</table>

- The result of two consecutive operations is zero:
 $$\text{curl}(\nabla(f)) = 0, \quad \text{div}(\text{curl}(F)) = 0$$

- The inverse-square field $F_{IS} = e_r/r^2$, defined for $r \neq 0$, satisfies $\text{div}(F_{IS}) = 0$. The flux of F_{IS} through a closed surface S is 4π if S contains the origin and is zero otherwise.
James Clerk Maxwell
(1831–1879)

Vector analysis was developed in the nineteenth century, in large part, to express the laws of electricity and magnetism. Electromagnetism was studied intensively in the period 1750–1890, culminating in the famous Maxwell Equations, which provide a unified understanding in terms of two vector fields: the electric field \(\mathbf{E} \) and the magnetic field \(\mathbf{B} \). In a region of empty space (where there are no charged particles), the Maxwell Equations are

\[
\text{div}(\mathbf{E}) = 0, \quad \text{div}(\mathbf{B}) = 0
\]

\[
\text{curl}(\mathbf{E}) = -\frac{\partial \mathbf{B}}{\partial t}, \quad \text{curl}(\mathbf{B}) = \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}
\]

where \(\mu_0 \) and \(\varepsilon_0 \) are experimentally determined constants. In SI units,

\[
\mu_0 = 4\pi \times 10^{-7} \text{ henries/m}
\]

\[
\varepsilon_0 \approx 8.85 \times 10^{-12} \text{ farads/m}
\]

These equations led Maxwell to make two predictions of fundamental importance: (1) that electromagnetic waves exist (this was confirmed by H. Hertz in 1887), and (2) that light is an electromagnetic wave.

How do the Maxwell Equations suggest that electromagnetic waves exist? And why did Maxwell conclude that light is an electromagnetic wave? It was known to mathematicians in the eighteenth century that waves traveling with velocity \(c \) may be described by functions \(\varphi(x, y, z, t) \) that satisfy the wave equation

\[
\Delta \varphi = \frac{1}{c^2} \frac{\partial^2 \varphi}{\partial t^2}
\]

where \(\Delta \) is the Laplace operator (or “Laplacian”)

\[
\Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2}
\]

We will show that the components of \(\mathbf{E} \) satisfy this wave equation. Take the curl of both sides of Maxwell’s third equation:

\[
\text{curl}(\text{curl}(\mathbf{E})) = \text{curl} \left(-\frac{\partial \mathbf{B}}{\partial t} \right) = -\frac{\partial}{\partial t} \text{curl}(\mathbf{B})
\]

Then apply Maxwell’s fourth equation to obtain

\[
\text{curl}(\text{curl}(\mathbf{E})) = -\frac{\partial}{\partial t} \left(\mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) = -\mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}
\]

Finally, let us define the Laplacian of a vector field

\[
\mathbf{F} = (F_1, F_2, F_3)
\]

by applying the Laplacian \(\Delta \) to each component, \(\Delta \mathbf{F} = (\Delta F_1, \Delta F_2, \Delta F_3) \). Then the following identity holds (see Exercise 34):

\[
\text{curl}(\text{curl}(\mathbf{F})) = \nabla(\text{div}(\mathbf{F})) - \Delta \mathbf{F}
\]

Applying this identity to \(\mathbf{E} \), we obtain \(\text{curl}(\text{curl}(\mathbf{E})) = -\Delta \mathbf{E} \) because \(\text{div}(\mathbf{E}) = 0 \) by Maxwell’s first equation. Thus, Eq. (8) yields

\[
\Delta \mathbf{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}
\]

In other words, each component of the electric field satisfies the wave equation (7), with

\[
c = (\mu_0 \varepsilon_0)^{-1/2} \approx 3 \times 10^8 \text{ m/s}
\]

and observed that the value is suspiciously close to the velocity of light (first measured by Olaf Römer in 1676). This had to be more than a coincidence, as Maxwell wrote in 1862: “We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena.” Needless to say, the wireless technologies that drive our modern society rely on the unseen electromagnetic radiation whose existence Maxwell first predicted on mathematical grounds.
18.3 EXERCISES

Preliminary Questions

1. What is the flux of \(F = (1, 0, 0) \) through a closed surface?
2. Justify the following statement: The flux of \(F = (x^2, y^3, z^3) \) through every closed surface is positive.
3. Which of the following expressions are meaningful (where \(F \) is a vector field and \(f \) is a function)? Of those that are meaningful, which are automatically zero?
 - \(\text{div}(\nabla f) \)
 - \(\text{curl}(\nabla f) \)
 - \(\text{Vcurl}(f) \)
 - \(\text{div(curl}(F)) \)
 - \(\text{curl(div}(F)) \)
4. Which of the following statements is correct (where \(F \) is a continuously differentiable vector field defined everywhere)?
 - (a) The flux of \(\text{curl}(F) \) through all surfaces is zero.
 - (b) If \(F = \nabla \phi \), then the flux of \(F \) through all surfaces is zero.
 - (c) The flux of \(\text{curl}(F) \) through all closed surfaces is zero.

Exercises

In Exercises 1–4, verify the Divergence Theorem for the vector field and region.

1. \(F(x, y, z) = (z, x, y) \), \(S \) is the box \([0, 4] \times [0, 2] \times [0, 3] \)
2. \(F(x, y, z) = (y, x, z) \), the region \(x^2 + y^2 + z^2 \leq 4 \)
3. \(F(x, y, z) = (2x, 3z, 3y) \), the region \(x^2 + y^2 \leq 1, 0 \leq z \leq 2 \)
4. \(F(x, y, z) = (0, 0, 0) \), the region \(x^2 + y^2 \geq z \leq 4 \)

In Exercises 5–16, use the Divergence Theorem to evaluate the flux

\[\int_S F \cdot dS. \]

5. \(F(x, y, z) = \left(0, 0, \frac{z^3}{3}\right) \), \(S \) is the sphere \(x^2 + y^2 + z^2 = 1 \).
6. \(F(x, y, z) = (y, z, x) \), \(S \) is the sphere \(x^2 + y^2 + z^2 = 1 \).
7. \(F(x, y, z) = (xy^2, yz^2, zx^2) \), \(S \) is the boundary of the cylinder given by \(x^2 + y^2 \leq 4, 0 \leq z \leq 3 \).
8. \(F(x, y, z) = (xz^2, yx, xzy) \), \(S \) is the boundary of the tetrahedron given by \(x + y + z \leq 1, 0 \leq x, 0 \leq y, 0 \leq z \).
9. \(F(x, y, z) = (x + z^2, x + y^2, zx - y) \), \(S \) is the surface that bounds the solid region with boundary given by the parabolic cylinder \(z = 1 - x^2 \), and the planes \(z = 0, y = 0 \) and \(z + y = 5 \).
10. \(F(x, y, z) = (2x, yx^3, x^2y^2) \), \(S \) is the surface that bounds the solid region with boundary given by \(y = 4 - x^2 + z^2 \) and \(y = 0 \).
11. \(F(x, y, z) = (x^3, 0, z^3) \), \(S \) is boundary of the region in the first octant of space given by \(x^2 + y^2 + z^2 \leq 4 \), and \(x \geq 0, y \geq 0, z \geq 0 \).
12. \(F(x, y, z) = (e^{x+y}, e^{x+z}, e^{x+y}) \), \(S \) is the boundary of the unit cube \(0 \leq x \leq 1, 0 \leq y \leq 1, 0 \leq z \leq 1 \).
13. \(F(x, y, z) = (x, y^2, z + y) \), \(S \) is the boundary of the region contained in the cylinder \(x^2 + y^2 = 4 \) between the planes \(z = x \) and \(z = 5 \).
14. \(F(x, y, z) = (x^2 - z^2, e^{x^2} - \cos y, x^3) \), \(S \) is the boundary of the region bounded by \(x + 2y + 4z = 12 \) and the coordinate planes in the first octant.
15. \(F(x, y, z) = (x + y, z, z - x) \), \(S \) is the boundary of the region between the paraboloid \(z = 9 - x^2 - y^2 \) and the \(xy \)-plane.
16. \(F(x, y, z) = (e^2, 2y + \sin(x^2z), 4z + \sqrt{x^2 + 9y^2}) \), \(S \) is the region \(x^2 + y^2 \leq z \leq 8 - x^2 - y^2 \).
17. Calculate the flux of the vector field \(F = 2xyi - y^2j + k \) through the surface \(S \) in Figure 18. Hint: Apply the Divergence Theorem to the closed surface consisting of \(S \) and the unit disk.
18. Let \(S_1 \) be the closed surface consisting of \(S \) in Figure 18 together with the unit disk. Find the volume enclosed by \(S_1 \), assuming that

\[\int_S (x, 2y, 3z) \cdot dS = 72 \]

![Figure 18](image)

19. Let \(S \) be the half-cylinder \(x^2 + y^2 = 1, x \geq 0, 0 \leq z \leq 1 \). Assume that \(F \) is a horizontal vector field (the \(z \)-component is zero) such that \(F(0, y, z) = zy^2i \). Let \(W \) be the solid region enclosed by \(S \), and assume that

\[\iiint_W \text{div}(F) \, dV = 4 \]

Find the flux of \(F \) through the curved side of \(S \).

20. **Volume as a Surface Integral** Let \(F(x, y, z) = (x, y, z) \). Prove that if \(W \) is a region in \(\mathbb{R}^3 \) with a smooth boundary \(S \), then

\[\text{Volume}(W) = \frac{1}{3} \iint_S F \cdot dS \]

21. Use Eq. (9) to calculate the volume of the unit ball as a surface integral over the unit sphere.

22. Verify that Eq. (9) applied to the box \([0, a] \times [0, b] \times [0, c] \) yields the volume \(V = abc \).
23. Let W be the region in Figure 19 bounded by the cylinder $x^2 + y^2 = 4$, the plane $z = x + 1$, and the xy-plane. Use the Divergence Theorem to compute the flux of $F(x, y, z) = \left(z, x, y + z^2\right)$ through the boundary of W.

\[\text{FIGURE 19} \]

24. Let $I = \int_S F \cdot dS$, where
\[F(x, y, z) = \left(\frac{2yz}{x^2 + y^2 + z^2}, \frac{xz}{x^2 + y^2 + z^2}, \frac{xy}{x^2 + y^2 + z^2}\right) \]
for $(r = \sqrt{x^2 + y^2 + z^2})$ and S is the boundary of a region W.

(a) Check that F is divergence-free.

(b) Show that $I = 0$ if S is a sphere centered at the origin. Explain, however, why the Divergence Theorem cannot be used to prove this.

25. The velocity field of a fluid v (in meters per second) has divergence $\text{div}(v)(P) = 3$ at the point $P = (2, 2, 2)$. Estimate the flow rate out of the sphere of radius 0.5 centered at P.

26. A hose feeds into a small screen box of volume 10 cm3 that is suspended in a swimming pool. Water flows across the surface of the box at a rate of 12 cm3/s. Estimate $\text{div}(v)(P)$, where v is the velocity field of the water in the pool and P is the center of the box. What are the units of $\text{div}(v)(P)$?

27. The electric field due to a unit electric dipole oriented in the k-direction is $E = \nabla (\delta/r^3)$, where $r = (x^2 + y^2 + z^2)^{1/2}$ (Figure 20). Let $e_r = r^{-1} (x, y, z)$.

(a) Show that $E = r^{-3}k - 3\delta r^{-4}e_r$.

(b) Calculate the flux of E through a sphere centered at the origin.

(c) Calculate $\text{div}(E)$.

(d) Can we use the Divergence Theorem to compute the flux of E through a sphere centered at the origin?

\[\text{FIGURE 20} \] The dipole vector field restricted to the xz-plane.

28. Let E be the electric field due to a long, uniformly charged rod of radius R with charge density δ per unit length (Figure 21). By symmetry, we may assume that E is everywhere perpendicular to the rod and its magnitude $E(d)$ depends only on the distance d to the rod (strictly speaking, this would hold only if the rod were infinite, but it is nearly true if the rod is long enough). Show that $E(d) = \delta/(2\pi \epsilon_0 d)$ for $d > R$.

\[\text{FIGURE 21} \] Charged rod

29. Let W be the region between the sphere of radius 4 and the cube of side 1, both centered at the origin. What is the flux through the boundary $S = \partial W$ of a vector field F whose divergence has the constant value $\text{div}(F) = -4$?

30. Let W be the region between the sphere of radius 3 and the sphere of radius 2, both centered at the origin. Use the Divergence Theorem to calculate the flux of $F = x\hat{i}$ through the boundary $S = \partial W$.

31. Find and prove a Product Rule expressing $\text{div}(f F)$ in terms of $\text{div}(F)$ and ∇f.

32. Prove the identity
\[\text{div}(F \times G) = \text{curl}(F) \cdot G - F \cdot \text{curl}(G) \]

Then prove that the cross product of two irrotational vector fields is incompressible [if F is called irrotational if $\text{curl}(F) = 0$ and incompressible if $\text{div}(F) = 0$].

33. Prove that $\text{div}(\nabla f \times \nabla g) = 0$.

In Exercises 34–36, Δ denotes the Laplace operator defined by
\[\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} \]

34. Prove the identity
\[\text{curl}(\text{curl}(F)) = \nabla(\text{div}(F)) - \Delta F \]

where ΔF denotes $\langle \Delta F_1, \Delta F_2, \Delta F_3 \rangle$.

35. A function ϕ satisfying $\Delta \phi = 0$ is called harmonic.

(a) Show that $\Delta \phi = \text{div}(\nabla \phi)$ for any function ϕ.

(b) Show that ϕ is harmonic if and only if $\text{div}(\nabla \phi) = 0$.

(c) Show that if F is the gradient of a harmonic function, then $\text{curl}(F) = 0$ and $\text{div}(F) = 0$.

(d) Show that $F(x, y, z) = \{x, -yz, \frac{1}{2}(x^2 - y^2)\}$ is the gradient of a harmonic function. What is the flux of F through a closed surface?

36. Let $F = r^n e_r$, where n is any number, $r = (x^2 + y^2 + z^2)^{1/2}$, and $e_r = r^{-1} (x, y, z)$ is the unit radial vector.

(a) Calculate $\text{div}(F)$.

(b) Calculate the flux of F through the surface of a sphere of radius R centered at the origin. For which values of n is this flux independent of R?
(e) Prove that \(\nabla (r^n) = n r^{n-1} \mathbf{e}_r \).

(d) Use (c) to show that \(\mathbf{F} \) is conservative for \(n \neq 1 \). Then show that \(\mathbf{F} = r^{-1} \mathbf{e}_r \) is also conservative by computing the gradient of \(\ln r \).

Further Insights and Challenges

37. Let \(S \) be the boundary surface of a region \(\mathbb{V} \) in \(\mathbb{R}^3 \), and let \(\partial_n \psi \) denote the directional derivative of \(\psi \), where \(\mathbf{n} \) is the outward unit normal vector. Let \(\Delta \) be the Laplace operator defined earlier.

(a) Use the Divergence Theorem to prove that
\[
\iint_S \partial_n \psi \, dS = \iiint_V \Delta \psi \, dV
\]

(b) Show that if \(\psi \) is a harmonic function (defined in Exercise 35), then
\[
\iint_S \partial_n \psi \, dS = 0
\]

38. Assume that \(\psi \) is harmonic. Show that \(\text{div}(\mathbf{\nabla} \psi) = \| \mathbf{\nabla} \psi \|^2 \) and conclude that
\[
\iint_S \psi \, \partial_n \psi \, dS = \iiint_V \| \mathbf{\nabla} \psi \|^2 \, dV
\]

39. Let \(\mathbf{F} = (P, Q, R) \) be a vector field defined on \(\mathbb{R}^3 \) such that \(\text{div}(\mathbf{F}) = 0 \). Use the following steps to show that \(\mathbf{F} \) has a vector potential.

(a) Let \(\mathbf{A} = (f, 0, g) \). Show that
\[
\text{curl}(\mathbf{A}) = \left(\frac{\partial g}{\partial y} - \frac{\partial f}{\partial z}, \frac{\partial f}{\partial x} - \frac{\partial g}{\partial x}, \frac{\partial y}{\partial x} - \frac{\partial x}{\partial y} \right)
\]

(b) Fix any value \(y_0 \) and show that if we define
\[
f(x, y, z) = -\int_{y_0}^y Q(x, t, z) \, dt + \alpha(x, z)
g(x, y, z) = \int_{y_0}^y P(x, t, z) \, dt + \beta(x, z)
\]

where \(\alpha \) and \(\beta \) are any functions of \(x \) and \(z \), then \(\partial g / \partial y = P \) and
\[
-\partial f / \partial y = R.
\]

CHAPTER REVIEW EXERCISES

1. Let \(\mathbf{F}(x, y) = (x + y^2, x^2 - y) \), and let \(\mathcal{C} \) be the unit circle, oriented counterclockwise. Evaluate \(\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} \) directly as a line integral and using Green’s Theorem.

2. Let \(\partial \mathcal{R} \) be the boundary of the rectangle in Figure 1, and let \(\partial \mathcal{R}_1 \) and \(\partial \mathcal{R}_2 \) be the boundaries of the two oriented counterclockwise.

(a) Determine \(\int_{\partial \mathcal{R}_1} \mathbf{F} \cdot d\mathbf{r} \) if \(\int_{\partial \mathcal{R}_2} \mathbf{F} \cdot d\mathbf{r} = 4 \) and \(\int_{\partial \mathcal{R}_2} \mathbf{F} \cdot d\mathbf{r} = -2 \).

(b) What is the value of \(\int_{\partial \mathcal{R}} \mathbf{F} \cdot d\mathbf{r} \) if \(\partial \mathcal{R} \) is oriented clockwise?

In Exercises 3–6, use Green’s Theorem to evaluate the line integral around the given closed curve.

3. \(\oint_{\mathcal{C}} x^3 \, dx + x^2 \, dy \), where \(\mathcal{C} \) is the rectangle \(-1 \leq x \leq 2, -2 \leq y \leq 3\), oriented counterclockwise

4. \(\oint_{\mathcal{C}} (3x + 5y - \cos y) \, dx + x \sin y \, dy \), where \(\mathcal{C} \) is any closed curve enclosing a region with area 4, oriented counterclockwise

5. \(\oint_{\mathcal{C}} y^2 \, dx - x^2 \, dy \), where \(\mathcal{C} \) consists of the arcs \(y = x^2 \) and \(y = \sqrt{x} \), \(0 \leq x \leq 1 \), oriented clockwise

6. \(\oint_{\mathcal{C}} ye^x \, dx + xe^y \, dy \), where \(\mathcal{C} \) is the triangle with vertices \((-1, 0), (0, 4), \) and \((0, 1)\), oriented counterclockwise
7. Let \(\mathbf{r}(t) = \left(t^2(1-t), t(t-1)^2\right) \).
(a) Plot the path \(\mathbf{r}(t) \) for \(0 \leq t \leq 1 \).
(b) Calculate the area \(A \) of the region enclosed by \(\mathbf{r}(t) \) for \(0 \leq t \leq 1 \) using the formula \(A = \frac{1}{2} \oint_C (x \, dy - y \, dx) \).

8. Calculate the area of the region bounded by the two curves \(y = x^2 \) and \(y = 4 \) using the formula \(A = \oint_C x \, dy \).

9. Calculate the area of the region bounded by the two curves \(y = x^2 \) and \(y = \sqrt{x} \) for \(x \geq 0 \) using the formula \(A = \oint_C x \, dy \).

10. Calculate the area of the region bounded by the two curves \(y = x^2 \) and \(y = 4 \) using the formula \(A = \oint_C x \, dy \).

11. Calculate the area of the region bounded by the two curves \(y = x^2 \) and \(y = \sqrt{x} \) for \(x \geq 0 \) using the formula \(A = \oint_C x \, dy \).

12. In (a)–(d), state whether the equation is an identity (valid for all \(\mathbf{F} \) or \(f \)). If it is not, provide an example in which the equation does not hold.
(a) \(\text{curl}(\nabla f) = 0 \)
(b) \(\text{div}(\nabla f) = 0 \)
(c) \(\text{div}(\text{curl}(\mathbf{F})) = 0 \)
(d) \(\nabla(\text{div}(\mathbf{F})) = 0 \)

13. Let \(\mathbf{F}(x, y) = \left(x^2, xy^2\right) \) be the velocity vector field for a fluid in the plane. Find all points where the angular velocity of a small paddle wheel inserted into the fluid would be 0.

14. Compute the flux \(\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds \) of \(\mathbf{F}(x, y) = \left(x^3, yx^2\right) \) across the unit square \(D \) using the vector form of Green’s Theorem.

15. Compute the flux \(\oint_{\partial D} \mathbf{F} \cdot \mathbf{n} \, ds \) of \(\mathbf{F}(x, y) = \left(x^3 + 2x, y^3 + y\right) \) across the circle \(D \) given by \(x^2 + y^2 = 4 \) using the vector form of Green’s Theorem.

16. Suppose that \(S_1 \) and \(S_2 \) are surfaces with the same oriented boundary curve \(C \). Which of the following conditions guarantees that the flux of \(\mathbf{F} \) through \(S_1 \) is equal to the flux of \(\mathbf{F} \) through \(S_2 \)?
(i) \(\mathbf{F} = \nabla f \) for some function \(f \)
(ii) \(\mathbf{F} = \text{curl}(\mathbf{G}) \) for some vector field \(\mathbf{G} \)

17. Prove that if \(\mathbf{F} \) is a gradient vector field, then the flux of \(\text{curl}(\mathbf{F}) \) through a smooth surface \(S \) (whether closed or not) is equal to zero.

18. Verify Stokes’ Theorem for \(\mathbf{F}(x, y, z) = (y, z - x, 0) \) and the surface \(z = 4 - x^2 - y^2, \ z \geq 0, \) oriented by outward-pointing normals.

19. Let \(\mathbf{F}(x, y, z) = \left(x^2, x + z, y^2\right) \), and let \(S \) be the upper half of the ellipsoid \(\frac{x^2}{4} + y^2 + z^2 = 1 \) oriented by outward-pointing normals. Use Stokes’ Theorem to compute \(\iint_S \text{curl}(\mathbf{F}) \cdot dS \).

20. Use Stokes’ Theorem to evaluate \(\int_C (y, z, x) \cdot d\mathbf{r} \), where \(C \) is the curve in Figure 2.

21. Let \(S \) be the side of the cylinder \(x^2 + y^2 = 4, 0 \leq z \leq 2 \) (not including the top and bottom of the cylinder). Use Stokes’ Theorem to compute the flux of \(\mathbf{F}(x, y, z) = (0, y, -z) \) through \(S \) (with outward-pointing normal) by finding a vector potential \(\mathbf{A} \) such that \(\text{curl}(\mathbf{A}) = \mathbf{F} \).

22. Verify the Divergence Theorem for \(\mathbf{F}(x, y, z) = (0, 0, z) \) and the region \(x^2 + y^2 + z^2 = 1 \).

In Exercises 23–26, use the Divergence Theorem to calculate \(\iiint_{\mathcal{V}} \mathbf{F} \cdot d\mathbf{S} \) for the given vector field and surface.

23. \(\mathbf{F}(x, y, z) = (xy, yz, x^2z + z^3) \), \(S \) is the boundary of the box \([0, 1] \times [2, 4] \times [1, 5] \).

24. \(\mathbf{F}(x, y, z) = (xy, yz, x^2z + z^3) \), \(S \) is the boundary of the unit sphere.

25. \(\mathbf{F}(x, y, z) = (xyz + xy, \frac{1}{2}y^2(1-z) + e^x, e^{x^2+y^2}) \), \(S \) is the boundary of the solid bounded by the cylinder \(x^2 + y^2 = 16 \) and the planes \(z = 0 \) and \(z = y - 4 \).

26. \(\mathbf{F}(x, y, z) = (\sin(yz), \sqrt{x^2 + z^4}, x \cos(x - y)) \), \(S \) is any smooth closed surface that is the boundary of a region in \(\mathbb{R}^3 \).

27. Find the volume of a region \(\mathcal{W} \) if \(\iiint_{\mathcal{W}} \left(x + xy + z, x + 3y - \frac{1}{2}x^2, 4z\right) \cdot d\mathbf{S} = 16 \).

28. Show that the circulation of \(\mathbf{F}(x, y, z) = (x^2, y^2, z(x^2 + y^2)) \) around any curve \(C \) on the surface of the cone \(z^2 = x^2 + y^2 \) is equal to zero (Figure 3).

In Exercises 29–32, let \(\mathbf{F} \) be a vector field whose curl and divergence at the origin are
\(\text{curl}(\mathbf{F})(0, 0, 0) = (2, -1, 4) \), \(\text{div}(\mathbf{F})(0, 0, 0) = -2 \).

29. Estimate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) is the circle of radius 0.03 in the xy-plane centered at the origin.
30. Estimate \(\int_C \mathbf{F} \cdot d\mathbf{r} \), where \(C \) is the boundary of the square of side 0.03 in the \(xy \)-plane centered at the origin. Does the estimate depend on how the square is oriented within the \(xy \)-plane? Might the actual circulation depend on how it is oriented?

31. Suppose that \(\mathbf{v} \) is the velocity field of a fluid and imagine placing a small paddle wheel at the origin. Find the equation of the plane in which the paddle wheel should be placed to make it rotate as quickly as possible.

32. Estimate the flux of \(\mathbf{F} \) through the box of side 0.5 in Figure 4. Does the result depend on how the box is oriented relative to the coordinate axes?

33. The velocity vector field of a fluid (in meters per second) is

\[
\mathbf{F}(x, y, z) = (x^2 + y^2, 0, z^2)
\]

Let \(W \) be the region between the hemisphere

\[
S = \{(x, y, z) : x^2 + y^2 + z^2 = 1, \quad x, y, z \geq 0\}
\]

and the disk \(D = \{(x, y, 0) : x^2 + y^2 \leq 1\} \) in the \(xy \)-plane. Recall that the flow rate of a fluid across a surface is equal to the flux of \(\mathbf{F} \) through the surface.

(a) Show that the flow rate across \(D \) is zero.

(b) Use the Divergence Theorem to show that the flow rate across \(S \), oriented with an outward-pointing normal, is equal to \(\iiint_W \text{div}(\mathbf{F}) \, dV \). Then compute this triple integral.

34. The velocity field of a fluid (in meters per second) is

\[
\mathbf{F} = (3y - 4)i + e^{-y(z+1)}j + (x^2 + y^2)k
\]

(a) Estimate the flow rate (in cubic meters per second) through a small surface \(S \) around the origin if \(S \) encloses a region of volume 0.01 m³.

(b) Estimate the circulation of \(\mathbf{F} \) about a circle in the \(xy \)-plane of radius \(r = 0.1 \) m centered at the origin (oriented counterclockwise when viewed from above).

(c) Estimate the circulation of \(\mathbf{F} \) about a circle in the \(yz \)-plane of radius \(r = 0.1 \) m centered at the origin (oriented counterclockwise when viewed from the positive \(x \)-axis).

35. Let \(f(x, y) = x + \frac{x}{x^2 + y^2} \). The vector field \(\mathbf{F} = \nabla f \) (Figure 5) provides a model in the plane of the velocity field of an incompressible, irrotational fluid flowing past a cylindrical obstacle (in this case, the obstacle is the unit circle \(x^2 + y^2 = 1 \)).

(a) Verify that \(\mathbf{F} \) is irrotational [by definition, \(\mathbf{F} \) is irrotational if \(\text{curl}(\mathbf{F}) = 0 \)].

(b) Verify that \(\mathbf{F} \) is tangent to the unit circle at each point along the unit circle except \((1, 0)\) and \((-1, 0)\) (where \(\mathbf{F} = 0 \)).

(c) What is the circulation of \(\mathbf{F} \) around the unit circle?

(d) Calculate the line integral of \(\mathbf{F} \) along the upper and lower halves of the unit circle separately.

36. Figure 6 shows the vector field \(\mathbf{F} = \nabla f \), where

\[
f(x, y) = \ln(x^2 + (y - 1)^2) + \ln(x^2 + (y + 1)^2)
\]

which is the velocity field for the flow of a fluid with sources of equal strength at \((0, \pm 1)\) (note that \(f \) is undefined at these two points). Show that \(\mathbf{F} \) is both irrotational and incompressible—that is, \(\text{curl}_x(\mathbf{F}) = 0 \) and \(\text{div}(\mathbf{F}) = 0 \) [in computing \(\text{div}(\mathbf{F}) \), treat \(\mathbf{F} \) as a vector field in \(\mathbb{R}^3 \) with a zero \(z \)-component]. Is it necessary to compute \(\text{curl}_z(\mathbf{F}) \) to conclude that it is zero?

37. In Section 18.1, we showed that if \(C \) is a simple closed curve, oriented counterclockwise, then the area enclosed by \(C \) is given by

\[
\text{Area enclosed by } C = \frac{1}{2} \oint_C x \, dy - y \, dx
\]

Suppose that \(C \) is a path from \(P \) to \(Q \) that is not closed but has the property that every line through the origin intersects \(C \) at most one point, as in Figure 7. Let \(R \) be the region enclosed by \(C \) and the two radial segments joining \(P \) and \(Q \) to the origin. Show that the line integral in Eq. (1) is equal to the area of \(R \). Hint: Show that the line integral of \(\mathbf{F} = (-y, x) \) along the two radial segments is zero and apply Green’s Theorem.
38. Suppose that the curve \(C \) in Figure 7 has the polar equation \(r = f(\theta) \).

(a) Show that \(r(\theta) = (f(\theta) \cos \theta, f(\theta) \sin \theta) \) is a counterclockwise parametrization of \(C \).

(b) In Section 12.4, we showed that the area of the region \(R \) is given by the formula

\[
\text{Area of } R = \frac{1}{2} \int_{\alpha}^{\beta} f(\theta)^2 d\theta
\]

Use the result of Exercise 37 to give a new proof of this formula. \textit{Hint:} Evaluate the line integral in Eq. (1) using \(r(\theta) \).

39. Prove the following generalization of Eq. (1). Let \(C \) be a simple closed curve in the plane (Figure 8)

\[
S : \quad ax + by + cz + d = 0
\]

Then the area of the region \(R \) enclosed by \(C \) is equal to

\[
\frac{1}{2\|N\|} \oint_{C} (bz - cy) \, dx + (cx - az) \, dy + (ay - bx) \, dz
\]

where \(N = (a, b, c) \) is the normal to \(S \), and \(C \) is oriented as the boundary of \(R \) (relative to the normal vector \(N \)). \textit{Hint:} Apply Stokes' Theorem to \(F = (bz - cy, cx - az, ay - bx) \).

40. Use the result of Exercise 39 to calculate the area of the triangle with vertices \((1, 0, 0), (0, 1, 0), \) and \((0, 0, 1)\) as a line integral. Verify your result using geometry.

41. Show that \(G(\theta, \phi) = (a \cos \theta \sin \phi, b \sin \theta \sin \phi, c \cos \phi) \) is a parameterization of the ellipsoid

\[
\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 + \left(\frac{z}{c}\right)^2 = 1
\]

Then calculate the volume of the ellipsoid as the surface integral of \(F = \frac{1}{3} (x, y, z) \) (this surface integral is equal to the volume by the Divergence Theorem).
One of the challenges in learning calculus is growing accustomed to its precise language and terminology, especially in the statements of theorems. In this section, we analyze a few details of logic that are helpful, and indeed essential, in understanding and applying theorems properly.

Many theorems in mathematics involve an implication. If \(A \) and \(B \) are statements, then the implication \(A \implies B \) is the assertion that \(A \) implies \(B \):

\[
A \implies B : \quad \text{If } A \text{ is true, then } B \text{ is true.}
\]

Statement \(A \) is called the hypothesis (or premise) and statement \(B \) the conclusion of the implication. Here is an example: If \(m \) and \(n \) are even integers, then \(m + n \) is an even integer. This statement may be divided into a hypothesis and conclusion:

\[
\frac{m \text{ and } n \text{ are even integers}}{A} \implies \frac{m + n \text{ is an even integer}}{B}.
\]

In everyday speech, implications are often used in a less precise way. An example is: If you work hard, then you will succeed. Furthermore, some statements that do not initially have the form \(A \implies B \) may be restated as implications. For example, the statement, "Cats are mammals," can be rephrased as follows:

Let \(X \) be an animal. \(X \) is a cat \(\implies X \) is a mammal.

When we say that an implication \(A \implies B \) is true, we do not claim that \(A \) or \(B \) is necessarily true. Rather, we are making the conditional statement that if \(A \) happens to be true, then \(B \) is also true. In the above, if \(X \) does not happen to be a cat, the implication tells us nothing.

The negation of a statement \(A \) is the assertion that \(A \) is false and is denoted \(\neg A \).

<table>
<thead>
<tr>
<th>Statement (A)</th>
<th>Negation (\neg A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X) lives in California.</td>
<td>(X) does not live in California.</td>
</tr>
<tr>
<td>(\triangle ABC) is a right triangle.</td>
<td>(\triangle ABC) is not a right triangle.</td>
</tr>
</tbody>
</table>

The negation of the negation is the original statement: \(\neg(\neg A) = A \). To say that \(X \) does not live in California is the same as saying that \(X \) lives in California.

EXAMPLE 1 State the negation of each statement.

(a) The door is open and the dog is barking.
(b) The door is open or the dog is barking (or both).

Solution

(a) The first statement is true if two conditions are satisfied (door open and dog barking), and it is false if at least one of these conditions is not satisfied. So the negation is

Either the door is not open OR the dog is not barking (or both).

(b) The second statement is true if at least one of the conditions (door open or dog barking) is satisfied, and it is false if neither condition is satisfied. So the negation is

The door is not open AND the dog is not barking.
Keep in mind that when we form the contrapositive, we reverse the order of \(A\) and \(B\). The contrapositive of \(A \implies B\) is \(\neg A \implies \neg B\).

The fact that \(A \implies B\) is equivalent to its contrapositive \(\neg B \implies \neg A\) is a general rule of logic that does not depend on what \(A\) and \(B\) happen to mean. This rule belongs to the subject of “formal logic,” which deals with logical relations between statements without concern for the actual content of these statements.

A counterexample is an example that satisfies the hypothesis but not the conclusion of a statement. If a single counterexample exists, then the statement is false. However, we cannot prove that a statement is true merely by giving an example.

Contrapositive and Converse

Two important operations are the formation of the contrapositive and the formation of the converse of a statement. The contrapositive of \(A \implies B\) is the statement “If \(B\) is false, then \(A\) is false”:

The contrapositive of \(A \implies B\) is \(\neg B \implies \neg A\).

Here are some examples:

<table>
<thead>
<tr>
<th>Statement</th>
<th>Contrapositive</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (X) is a cat, then (X) is a mammal.</td>
<td>If (X) is not a mammal, then (X) is not a cat.</td>
</tr>
<tr>
<td>If you work hard, then you will succeed.</td>
<td>If you did not succeed, then you did not work hard.</td>
</tr>
<tr>
<td>If (m) and (n) are both even, then (m + n) is even.</td>
<td>If (m + n) is not even, then (m) and (n) are not both even.</td>
</tr>
</tbody>
</table>

A key observation is this:

The contrapositive and the original implication are equivalent.

In other words, if an implication is true, then its contrapositive is automatically true, and vice versa. In essence, an implication and its contrapositive are two ways of saying the same thing. For example, the contrapositive, “If \(X\) is not a mammal, then \(X\) is not a cat,” is a roundabout way of saying that cats are mammals.

The converse of \(A \implies B\) is the reverse implication \(B \implies A\):

<table>
<thead>
<tr>
<th>Implication: (A \implies B)</th>
<th>Converse (B \implies A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (A) is true, then (B) is true.</td>
<td>If (B) is true, then (A) is true.</td>
</tr>
</tbody>
</table>

The converse plays a very different role than the contrapositive because the converse is NOT equivalent to the original implication. The converse may be true or false, even if the original implication is true. Here are some examples:

<table>
<thead>
<tr>
<th>True Statement</th>
<th>Converse</th>
<th>Converse True or False?</th>
</tr>
</thead>
<tbody>
<tr>
<td>If (X) is a cat, then (X) is a mammal.</td>
<td>If (X) is not a mammal, then (X) is not a cat.</td>
<td>False</td>
</tr>
<tr>
<td>If (m) is even, then (m^2) is even.</td>
<td>If (m^2) is even, then (m) is even.</td>
<td>True</td>
</tr>
</tbody>
</table>

EXAMPLE 2 An Example Where the Converse Is False

Show that the converse of, “If \(m\) and \(n\) are even, then \(m + n\) is even,” is false.

Solution The converse is, “If \(m + n\) is even, then \(m\) and \(n\) are even.” To show that the converse is false, we display a counterexample. Take \(m = 1\) and \(n = 3\) (or any other pair of odd numbers). The sum is even (since \(1 + 3 = 4\)) but neither 1 nor 3 is even. Therefore, the converse is false.

EXAMPLE 3 An Example Where the Converse Is True

State the contrapositive and converse of the Pythagorean Theorem. Are either or both of these true?

Solution Consider a triangle with sides \(a\), \(b\), and \(c\), and let \(\theta\) be the angle opposite the side of length \(c\), as in Figure 1. The Pythagorean Theorem states that if \(\theta = 90^\circ\), then \(a^2 + b^2 = c^2\). Here are the contrapositive and converse:
<table>
<thead>
<tr>
<th>Statement</th>
<th>Is Another Way of Saying</th>
</tr>
</thead>
<tbody>
<tr>
<td>A is true if B is true.</td>
<td>$B \implies A$</td>
</tr>
<tr>
<td>A is true only if B is true.</td>
<td>$A \implies B$ (A cannot be true unless B is also true.)</td>
</tr>
<tr>
<td>For A to be true, it is necessary that B be true.</td>
<td>$A \implies B$ (A cannot be true unless B is also true.)</td>
</tr>
<tr>
<td>For A to be true, it is sufficient that B be true.</td>
<td>$B \implies A$</td>
</tr>
<tr>
<td>For A to be true, it is necessary and sufficient that B be true.</td>
<td>$B \iff A$</td>
</tr>
</tbody>
</table>

The contrapositive is automatically true because it is just another way of stating the original theorem. The converse is not automatically true since there could conceivably exist a non-right triangle that satisfies $a^2 + b^2 = c^2$. However, the converse of the Pythagorean Theorem is, in fact, true. This follows from the Law of Cosines (see Exercise 38).

When both a statement $A \implies B$ and its converse $B \implies A$ are true, we write $A \iff B$. In this case, A and B are equivalent. We often express this with the phrase

$$A \iff B \quad A \text{ is true if and only if } B \text{ is true.}$$

For example,

$$a^2 + b^2 = c^2 \quad \text{if and only if} \quad \theta = 90^\circ$$

It is morning if and only if the sun is rising.

We mention the following variations of terminology involving implications that you may come across:

Analyzing a Theorem

To see how these rules of logic arise in calculus, consider the following result from Section 4.2:

THEOREM 1 Existence of Extrema on a Closed Interval
A continuous function f on a closed (bounded) interval $I = [a, b]$ takes on both a minimum and a maximum value on I (Figure 2).

To analyze this theorem, let’s write out the hypotheses and conclusion separately:

Hypotheses A: f is continuous and I is closed.

Conclusion B: f takes on a minimum and a maximum value on I.

A first question to ask is: “Are the hypotheses necessary?” Is the conclusion still true if we drop one or both assumptions? To show that both hypotheses are necessary, we provide counterexamples:
The technique of proof by contradiction is also known by its Latin name reductio ad absurdum or “reduction to the absurd.” The ancient Greek mathematicians used proof by contradiction as early as the fifth century BCE, and Euclid (325–265 BCE) employed it in his classic treatise on geometry entitled The Elements. A famous example is the proof that $\sqrt{2}$ is irrational in Example 4. The philosopher Plato (427–347 BCE) wrote: “He is unworthy of the name of man who is ignorant of the fact that the diagonal of a square is incommensurable with its side.”

Mathematicians have devised various general strategies and methods for proving theorems. The method of proof by induction is discussed in Appendix C. Another important method is proof by contradiction, also called indirect proof. Suppose our goal is to prove statement A. In a proof by contradiction, we start by assuming that A is false, and then show that this leads to a contradiction. Therefore, A must be true (to avoid the contradiction).

Example 4 Proof by Contradiction The number $\sqrt{2}$ is irrational (Figure 4).

Solution Assume that the theorem is false, namely that $\sqrt{2} = p/q$, where p and q are whole numbers. We may assume that p/q is in lowest terms, and therefore, at most one of p and q is even. Note that if the square m^2 of a whole number is even, then m itself must be even.

The relation $\sqrt{2} = p/q$ implies that $2 = p^2/q^2$ or $p^2 = 2q^2$. This shows that p must be even. But if p is even, then $p = 2m$ for some whole number m, and $p^2 = 4m^2$. Because $p^2 = 2q^2$, we obtain $4m^2 = 2q^2$, or $q^2 = 2m^2$. This shows that q is also even. But we chose p and q so that at most one of them is even. This contradiction shows that our original assumption, that $\sqrt{2} = p/q$, must be false. Therefore, $\sqrt{2}$ is irrational.
The hallmark of mathematics is precision and rigor. A theorem is established, not through observation or experimentation, but by a proof that consists of a chain of reasoning with no gaps.

This approach to mathematics comes down to us from the ancient Greek mathematicians, especially Euclid, and it remains the standard in contemporary research. In recent decades, the computer has become a powerful tool for mathematical experimentation and data analysis. Researchers may use experimental data to discover potential new mathematical facts, but the title “theorem” is not bestowed until someone writes down a proof.

This insistence on theorems and proofs distinguishes mathematics from the other sciences. In the natural sciences, facts are established through experiment and are subject to change or modification as more knowledge is acquired. In mathematics, theories are also developed and expanded, but previous results are not invalidated. The Pythagorean Theorem was discovered in antiquity and is a cornerstone of plane geometry. In the nineteenth century, mathematicians began to study more general types of geometry (of the type that eventually led to Einstein’s four-dimensional space-time geometry in the Theory of Relativity). The Pythagorean Theorem does not hold in these more general geometries, but its status in plane geometry is unchanged.

One of the most famous problems in mathematics is known as “Fermat’s Last Theorem.” It states that the equation

$$x^n + y^n = z^n$$

has no solutions in positive integers if \(n \geq 3 \). In a marginal note written around 1630, Fermat claimed to have a proof, and over the centuries, that assertion was verified for many values of the exponent \(n \). However, only in 1994 did the British-American mathematician Andrew Wiles, working at Princeton University, find a complete proof.

A. SUMMARY

- The implication \(A \implies B \) is the assertion, “If \(A \) is true, then \(B \) is true.”
- The contrapositive of \(A \implies B \) is the implication \(\neg B \implies \neg A \), which says, “If \(B \) is false, then \(A \) is false.” An implication and its contrapositive are equivalent (one is true if and only if the other is true).
- The converse of \(A \implies B \) is \(B \implies A \). An implication and its converse are not necessarily equivalent. One may be true and the other false.
- \(A \) and \(B \) are equivalent if \(A \implies B \) and \(B \implies A \) are both true.
- In a proof by contradiction (in which the goal is to prove statement \(A \)), we start by assuming that \(A \) is false and show that this assumption leads to a contradiction.

A. EXERCISES

Preliminary Questions

1. Which is the contrapositive of \(A \implies B \)?
 (a) \(B \implies A \)
 (b) \(\neg B \implies \neg A \)
 (c) \(\neg A \implies \neg B \)

2. Which of the choices in Question 1 is the converse of \(A \implies B \)?

3. Suppose that \(A \implies B \) is true. Which is then automatically true, the converse or the contrapositive?

4. Restate as an implication: “A triangle is a polygon.”

Exercises

1. Which is the negation of the statement, “The car and the shirt are both blue”?
 (a) Neither the car nor the shirt is blue.
 (b) The car is not blue and/or the shirt is not blue.

2. Which is the contrapositive of the implication, “If the car has gas, then it will run”?
 (a) If the car has no gas, then it will not run.
 (b) If the car will not run, then it has no gas.

3. The time is 4 o’clock.
4. \(\triangle ABC \) is an isosceles triangle.
5. \(m \) and \(n \) are odd integers.

6. Either \(m \) is odd or \(n \) is odd.
7. \(x \) is a real number and \(y \) is an integer.
8. \(f \) is a linear function.

In Exercises 9–14, state the contrapositive and converse.

9. If \(m \) and \(n \) are odd integers, then \(mn \) is odd.
10. If today is Tuesday, then we are in Belgium.
11. If today is Tuesday, then we are not in Belgium.
12. If \(x > 4 \), then \(x^2 > 16 \).
13. If \(m^2 \) is divisible by 3, then \(m \) is divisible by 3.
14. If $x^2 = 2$, then x is irrational.

In Exercise 15–18, give a counterexample to show that the converse of the statement is false.

15. If m is odd, then $2m + 1$ is also odd.

16. If $\triangle ABC$ is equilateral, then it is an isosceles triangle.

17. If m is divisible by 9 and 4, then m is divisible by 12.

18. If m is odd, then $m^3 - m$ is divisible by 3.

In Exercise 19–22, determine whether the converse of the statement is false.

19. If $x > 4$ and $y > 4$, then $x + y > 8$.

20. If $x > 4$, then $x^2 > 16$.

21. If $|x| > 4$, then $x^2 > 16$.

22. If m and n are even, then mn is even.

In Exercises 23 and 24, state the contrapositive and converse (it is not necessary to know what these statements mean).

23. If f and g are differentiable, then fg is differentiable.

24. If the force field is radial and decreases as the inverse square of the distance, then all closed orbits are ellipses.

In Exercises 25–28, the inverse of $A \implies B$ is the implication $\neg A \implies \neg B$.

25. Which of the following is the inverse of the implication, “If she jumped in the lake, then she got wet”?

(a) If she did not get wet, then she did not jump in the lake.

(b) If she did not jump in the lake, then she did not get wet.

Is the inverse true?

26. State the inverses of these implications:

(a) If X is a mouse, then X is a rodent.

(b) If you sleep late, you will miss class.

(c) If a star revolves around the sun, then it’s a planet.

27. Explain why the inverse is equivalent to the converse.

28. State the inverse of the Pythagorean Theorem. Is it true?

29. Theorem 1 in Section 2.4 states the following: “If f and g are continuous functions, then $f + g$ is continuous.” Does it follow logically that if f and g are not continuous, then $f + g$ is not continuous?

30. Write out a proof by contradiction for this fact: There is no smallest positive rational number. Base your proof on the fact that if $r > 0$, then $0 < r/2 < r$.

31. Use proof by contradiction to prove that if $x + y > 2$, then $x > 1$ or $y > 1$ (or both).

In Exercises 32–35, use proof by contradiction to show that the number is irrational.

32. $\sqrt{1/2}$

33. $\sqrt{3}$

34. $\sqrt{2}$

35. $\sqrt{11}$

36. An isosceles triangle is a triangle with two equal sides. The following theorem holds: If \triangle is a triangle with two equal angles, then \triangle is an isosceles triangle.

(a) What is the hypothesis?

(b) Show by providing a counterexample that the hypothesis is necessary.

(c) What is the contrapositive?

(d) What is the converse? Is it true?

37. Consider the following theorem: Let f be a quadratic polynomial with a positive leading coefficient. Then f has a minimum value.

(a) What are the hypotheses?

(b) What is the contrapositive?

(c) What is the converse? Is it true?

Further Insights and Challenges

38. Let a, b, and c be the sides of a triangle and let θ be the angle opposite c. Use the Law of Cosines (Theorem 1 in Section 1.4) to prove the converse of the Pythagorean Theorem.

39. Carry out the details of the following proof by contradiction that $\sqrt{2}$ is irrational (this proof is due to R. Palais). If $\sqrt{2}$ is rational, then $n\sqrt{2}$ is a whole number for some whole number n. Let n be the smallest such whole number and let $m = n\sqrt{2} - n$.

(a) Prove that $m < n$.

(b) Prove that $m\sqrt{2}$ is a whole number.

Explain why (a) and (b) imply that $\sqrt{2}$ is irrational.

40. Generalize the argument of Exercise 39 to prove that \sqrt{A} is irrational if A is a whole number but not a perfect square. Hint: Choose n as before and let $m = n\sqrt{A} - n\lfloor \sqrt{A} \rfloor$, where $\lfloor x \rfloor$ is the greatest integer function.

41. Generalize further and show that for any whole number r, the rth root $\sqrt[r]{A}$ is irrational unless A is an rth power. Hint: Let $x = \sqrt[r]{A}$. Show that if x is rational, then we may choose a smallest whole number n such that nx^j is a whole number for $j = 1, \ldots, r - 1$. Then consider $m = nx - n\lfloor x \rfloor$ as before.

42. Given a finite list of prime numbers p_1, \ldots, p_N, let $M = p_1 \cdot p_2 \cdot \ldots \cdot p_N + 1$. Show that M is not divisible by any of the primes p_1, \ldots, p_N. Use this and the fact that every number has a prime factorization to prove that there exist infinitely many prime numbers. This argument was advanced by Euclid in The Elements.
The ingenious method of expressing every possible number using a set of ten symbols (each symbol having a place value and an absolute value) emerged in India. The idea seems so simple nowadays that its significance and profound importance is no longer appreciated. Its simplicity lies in the way it facilitated calculation and placed arithmetic foremost amongst useful inventions. The importance of this invention is more readily appreciated when one considers that it was beyond the two greatest men of Antiquity, Archimedes and Apollonius.

—Pierre-Simon Laplace, one of the great French mathematicians of the eighteenth century

FIGURE 1 The real number line.

In this appendix, we discuss the basic properties of real numbers. First, let us recall that a real number is a number that may be represented by a finite or infinite decimal (also called a decimal expansion). The set of all real numbers is denoted \(\mathbb{R} \) and is often visualized as the “number line” (Figure 1).

Thus, a real number \(a \) is represented as

\[
a = \pm n.a_1a_2a_3a_4\ldots,
\]

where \(n \) is any whole number and each digit \(a_j \) is a whole number between 0 and 9. For example, \(10\pi = 31.41592\ldots \). Recall that \(a \) is rational if its expansion is finite or repeating, and is irrational if its expansion is nonrepeating. Furthermore, the decimal expansion is unique apart from the following exception: Every finite expansion is equal to an expansion in which the digit 9 repeats. For example, \(0.5 = 0.4999\ldots = 0.49 \).

We shall take for granted that the operations of addition and multiplication are defined on \(\mathbb{R} \)—that is, on the set of all decimals. Roughly speaking, addition and multiplication of infinite decimals are defined in terms of finite decimals. For \(d \geq 1 \), define the \(d \)th truncation of \(a = n.a_1a_2a_3a_4\ldots \) to be the finite decimal \(a(d) = a.a_1a_2\ldots a_d \) obtained by truncating at the \(d \)th place. To form the sum \(a + b \), assume that both \(a \) and \(b \) are infinite (possibly ending with repeated nines). This eliminates any possible ambiguity in the expansion. Then the \(n \)th digit of \(a + b \) is equal to the \(n \)th digit of \(a(d) + b(d) \) for \(d \) sufficiently large [from a certain point onward, the \(n \)th digit of \(a(d) + b(d) \) no longer changes, and this value is the \(n \)th digit of \(a + b \)]. Multiplication is defined similarly. Furthermore, the Commutative, Associative, and Distributive Laws hold (Table 1).

TABLE 1 Algebraic Laws

<table>
<thead>
<tr>
<th>Law Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative Laws</td>
<td>(a + b = b + a), (ab = ba)</td>
</tr>
<tr>
<td>Associative Laws</td>
<td>((a + b) + c = a + (b + c)), ((ab)c = a(bc))</td>
</tr>
<tr>
<td>Distributive Law</td>
<td>(a(b + c) = ab + ac)</td>
</tr>
</tbody>
</table>

Every real number \(x \) has an additive inverse \(-x\) such that \(x + (-x) = 0 \), and every nonzero real number \(x \) has a multiplicative inverse \(x^{-1} \) such that \(x(x^{-1}) = 1 \). We do not regard subtraction and division as separate algebraic operations because they are defined in terms of inverses. By definition, the difference \(x - y \) is equal to \(x + (-y) \), and the quotient \(x/y \) is equal to \(x(y^{-1}) \) for \(y \neq 0 \).

In addition to the algebraic operations, there is an **order relation** on \(\mathbb{R} \): For any two real numbers \(a \) and \(b \), precisely one of the following is true:

Either \(a = b \), or \(a < b \), or \(a > b \)

To distinguish between the conditions \(a \leq b \) and \(a < b \), we often refer to \(a < b \) as a **strict inequality**. Similar conventions hold for \(> \) and \(\geq \). The rules given in Table 2 allow us to manipulate inequalities. The last order property says that an inequality reverses direction when multiplied by a negative number \(c \). For example,

\[
-2 < 5 \quad \text{but} \quad (-3)(-2) > (-3)5
\]

The algebraic and order properties of real numbers are certainly familiar. We now discuss the less familiar **Least Upper Bound (LUB) Property** of the real numbers. This property is one way of expressing the so-called **completeness** of the real numbers. There are other ways of formulating completeness (such as the so-called nested interval property...
discussed in any book on analysis) that are equivalent to the LUB Property and serve the same purpose. Completeness is used in calculus to construct rigorous proofs of basic theorems about continuous functions, such as the Intermediate Value Theorem, (IVT) or the existence of extreme values on a closed interval. The underlying idea is that the real number line “has no holes.” We elaborate on this idea below. First, we introduce the necessary definitions.

Suppose that \(S \) is a nonempty set of real numbers. A number \(M \) is called an **upper bound** for \(S \) if

\[
x \leq M \quad \text{for all} \quad x \in S
\]

If \(S \) has an upper bound, we say that \(S \) is bounded above. A **least upper bound** \(L \) is an upper bound for \(S \) such that every other upper bound \(M \) satisfies \(M \geq L \). For example (Figure 2),

- \(M = 3 \) is an upper bound for the open interval \(S = (-2, 1) \).
- \(L = 1 \) is the LUB for \(S = (-2, 1) \).

We now state the LUB Property of the real numbers.

THEOREM 1 Existence of a Least Upper Bound Let \(S \) be a nonempty set of real numbers that is bounded above. Then \(S \) has an LUB.

In a similar fashion, we say that a number \(B \) is a lower bound for \(S \) if \(x \geq B \) for all \(x \in S \). We say that \(S \) is bounded below if \(S \) has a lower bound. A **greatest lower bound** (GLB) is a lower bound \(M \) such that every other lower bound \(B \) satisfies \(B \leq M \). The set of real numbers also has the GLB Property: If \(S \) is a nonempty set of real numbers that is bounded below, then \(S \) has a GLB. This may be deduced immediately from Theorem 1. For any nonempty set of real numbers \(S \), let \(-S\) be the set of numbers of the form \(-x\) for \(x \in S \). Then \(-S\) has an upper bound if \(S \) has a lower bound. Consequently, \(-S\) has an LUB \(L \) by Theorem 1, and \(-L\) is a GLB for \(S \).

CONCEPTUAL INSIGHT Theorem 1 may appear quite reasonable, but perhaps it is not clear why it is useful. We suggested above that the LUB Property expresses the idea that \(\mathbb{R} \) is “complete” or “has no holes.” To illustrate this idea, let’s compare \(\mathbb{R} \) to the set of rational numbers, denoted \(\mathbb{Q} \). Intuitively, \(\mathbb{Q} \) is not complete because the irrational numbers are missing. For example, \(\mathbb{Q} \) has a “hole” where the irrational number \(\sqrt{2} \) should be located (Figure 3). This hole divides \(\mathbb{Q} \) into two halves that are not connected to each other (the half to the left and the half to the right of \(\sqrt{2} \)). Furthermore, the half on the left is bounded above but no rational number is an LUB, and the half on the right is bounded below but no rational number is a GLB. The LUB and GLB are both equal to the irrational number \(\sqrt{2} \), which exists in only \(\mathbb{R} \) but not \(\mathbb{Q} \). So unlike \(\mathbb{R} \), the rational numbers \(\mathbb{Q} \) do not have the LUB property.

EXAMPLE 1 Show that 2 has a square root by applying the LUB Property to the set

\[
S = \{ x : x^2 < 2 \}
\]

Solution First, we note that \(S \) is bounded with the upper bound \(M = 2 \). Indeed, if \(x > 2 \), then \(x^2 > 4 \), and hence \(x \) does not belong to \(S \). By the LUB Property, \(S \) has a least upper bound. Call it \(L \). We claim that \(L = \sqrt{2} \), or, equivalently, that \(L^2 = 2 \). We prove this by showing that \(L^2 \geq 2 \) and \(L^2 \leq 2 \).

If \(L^2 < 2 \), let \(b = L + h \), where \(h > 0 \). Then

\[
b^2 = L^2 + 2Lh + h^2 = L^2 + h(2L + h)
\]

We can make the quantity \(h(2L + h) \) as small as desired by choosing \(h > 0 \) small enough. In particular, we may choose a positive \(h \) so that \(h(2L + h) < 2 - L^2 \). For this choice, \(b^2 < L^2 + (2 - L^2) = 2 \) by Eq. (1). Therefore, \(b \in S \). But \(b > L \) since \(h > 0 \), and thus
L is not an upper bound for S, in contradiction to our hypothesis on L. We conclude that $L^2 \geq 2$.

If $L^2 > 2$, let $b = L - h$, where $h > 0$. Then

\[b^2 = L^2 - 2Lh + h^2 = L^2 - h(2L - h) \]

Now choose h positive but small enough so that $0 < h(2L - h) < L^2 - 2$. Then $b^2 > L^2 - (L^2 - 2) = 2$. But $b < L$, so b is a smaller lower bound for S. Indeed, if $x \geq b$, then $x^2 \geq b^2 > 2$, and x does not belong to S. This contradicts our hypothesis that L is the LUB. We conclude that $L^2 \leq 2$, and since we have already shown that $L^2 \geq 2$, we have $L^2 = 2$ as claimed. \hfill \blacksquare

We now prove three important theorems, the third of which is used in the proof of the LUB Property below.

THEOREM 2 Bolzano–Weierstrass Theorem
Let S be a bounded, infinite set of real numbers. Then there exists a sequence of distinct elements $\{a_n\}$ in S such that the limit $L = \lim_{n \to \infty} a_n$ exists.

Proof
For simplicity of notation, we assume that S is contained in the unit interval $[0, 1]$ (a similar proof works in general). If k_1, k_2, \ldots, k_n is a sequence of n digits (i.e., each k_j is a whole number and $0 \leq k_j \leq 9$), let

\[S(k_1, k_2, \ldots, k_n) \]

be the set of $x \in S$ whose decimal expansion begins $0.k_1k_2\ldots k_n$. The set S is the union of the subsets $S(0), S(1), \ldots, S(9)$, and since S is infinite, at least one of these subsets must be infinite. Therefore, we may choose k_1 so that $S(k_1)$ is infinite. In a similar fashion, at least one of the set $S(k_1, 0), S(k_2, 1), \ldots, S(k_1, 9)$ must be infinite, so we may choose k_2 so that $S(k_1, k_2)$ is infinite. Continuing in this way, we obtain an infinite sequence $\{k_n\}$ such that $S(k_1, k_2, \ldots, k_n)$ is infinite for all n. We may choose a sequence of elements $a_n \in S(k_1, k_2, \ldots, k_n)$ with the property that a_n differs from a_1, \ldots, a_{n-1} for all n. Let L be the infinite decimal $0.k_1k_2k_3\ldots$. Then $\lim_{n \to \infty} a_n = L$ since $|L - a_n| < 10^{-n}$ for all n. \hfill \blacksquare

We use the Bolzano–Weierstrass Theorem to prove two important results about sequences $\{a_n\}$. Recall that an upper bound for $\{a_n\}$ is a number M such that $a_j \leq M$ for all j. If an upper bound exists, $\{a_n\}$ is said to be bounded from above. Lower bounds are defined similarly and $\{a_n\}$ is said to be bounded from below if a lower bound exists. A sequence is bounded if it is bounded from above and below. A **subsequence** of $\{a_n\}$ is a sequence of elements $a_{n_1}, a_{n_2}, a_{n_3}, \ldots$, where $n_1 < n_2 < n_3 < \ldots$.

Now consider a bounded sequence $\{a_n\}$. If infinitely many of the a_n are distinct, the Bolzano–Weierstrass Theorem implies that there exists a subsequence $\{a_{n_k}\}$ such that $\lim_{n \to \infty} a_{n_k}$ exists. Otherwise, infinitely many of the a_n must coincide, and these terms form a convergent subsequence. This proves the next result.

THEOREM 3 Every bounded sequence has a convergent subsequence.

THEOREM 4 Bounded Monotonic Sequences Converge

- If $\{a_n\}$ is increasing and $a_n \leq M$ for all n, then $\{a_n\}$ converges and $\lim_{n \to \infty} a_n \leq M$.
- If $\{a_n\}$ is decreasing and $a_n \geq M$ for all n, then $\{a_n\}$ converges and $\lim_{n \to \infty} a_n \geq M$.

Proof
Suppose that $\{a_n\}$ is increasing and bounded above by M. Then $\{a_n\}$ is automatically bounded below by $m = a_1$ since $a_1 \leq a_2 \leq a_3 \cdots$. Hence, $\{a_n\}$ is bounded, and by
Theorem 3, we may choose a convergent subsequence \(a_{n_1}, a_{n_2}, \ldots\). Let
\[
L = \lim_{k \to \infty} a_{n_k}
\]
Observe that \(a_{n_k} \leq L\) for all \(n\). For if not, then \(a_{n_k} > L\) for some \(n\) and then \(a_{n_k} \geq a_n > L\) for all \(k\) such that \(n_k \geq n\). But this contradicts that \(a_{n_k} \to L\). Now, by definition, for any \(\epsilon > 0\), there exists \(N_\epsilon > 0\) such that
\[
|a_{n_k} - L| < \epsilon \quad \text{if} \ n_k > N_\epsilon
\]
Choose \(m\) such that \(n_m > N_\epsilon\). If \(n \geq n_m\), then \(a_{n_m} \leq a_n \leq L\), and therefore,
\[
|a_n - L| \leq |a_{n_m} - L| < \epsilon \quad \text{for all} \ n \geq n_m
\]
This proves that \(\lim_{n \to \infty} a_n = L\), as desired. It remains to prove that \(L \leq M\). If \(L > M\), let \(\epsilon = (L - M)/2\) and choose \(N\) so that
\[
|a_n - L| < \epsilon \quad \text{if} \ k > N
\]
Then \(a_n > L - \epsilon = M + \epsilon\). This contradicts our assumption that \(M\) is an upper bound for \(\{a_n\}\). Therefore, \(L \leq M\) as claimed.

Proof of Theorem 1 We now use Theorem 4 to prove the LUB Property (Theorem 1). As above, if \(x\) is a real number, let \(x(d)\) be the truncation of \(x\) of length \(d\). For example,

If \(x = 1.41569\), then \(x(3) = 1.415\).

We say that \(x\) is a decimal of length \(d\) if \(x = x(d)\). Any two distinct decimals of length \(d\) differ by at least \(10^{-d}\). It follows that for any two real numbers \(A < B\), there are at most finitely many decimals of length \(d\) between \(A\) and \(B\).

Now let \(S\) be a nonempty set of real numbers with an upper bound \(M\). We shall prove that \(S\) has an LUB. Let \(S(d)\) be the set of truncations of length \(d\):
\[
S(d) = \{x(d) : x \in S\}
\]
We claim that \(S(d)\) has a maximum element. To verify this, choose any \(a \in S\). If \(x \in S\) and \(x(d) > a(d)\), then
\[
a(d) \leq x(d) \leq M
\]
Thus, by the remark of the previous paragraph, there are at most finitely many values of \(x(d)\) in \(S(d)\) larger than \(a(d)\). The largest of these is the maximum element in \(S(d)\).

For \(d = 1, 2, \ldots\), choose an element \(x_d\) such that \(x_d(d)\) is the maximum element in \(S(d)\). By construction, \(\{x_d(d)\}\) is an increasing sequence (since the largest \(d\)th truncation cannot get smaller as \(d\) increases). Furthermore, \(x_d(d) \leq M\) for all \(d\). We now apply Theorem 4 to conclude that \(\{x_d(d)\}\) converges to a limit \(L\). We claim that \(L\) is the LUB of \(S\). Observe first that \(L\) is an upper bound for \(S\). Indeed, if \(x \in S\), then \(x(d) \leq L\) for all \(d\) and thus \(x \leq L\). To show that \(L\) is the LUB, suppose that \(M\) is an upper bound such that \(M < L\). Then \(x_d \leq M\) for all \(d\) and hence \(x_d(d) \leq M\) for all \(d\). But then
\[
L = \lim_{d \to \infty} x_d(d) \leq M
\]
This is a contradiction since \(M < L\). Therefore, \(L\) is the LUB of \(S\).

As mentioned above, the LUB Property is used in calculus to establish certain basic theorems about continuous functions. As an example, we prove the IVT. Another example is the theorem on the existence of extrema on a closed interval (see Appendix D).

Theorem 5 Intermediate Value Theorem If \(f\) is continuous on a closed interval \([a, b]\) and \(f(a) \neq f(b)\), then for every value \(M\) between \(f(a)\) and \(f(b)\), there exists at least one value \(c \in (a, b)\) such that \(f(c) = M\).
Proof Assume first that $M = 0$. Replacing $f(x)$ by $-f(x)$ if necessary, we may assume that $f(a) < 0$ and $f(b) > 0$. Now let

$$S = \{x \in [a, b] : f(x) < 0\}$$

Then $a \in S$ since $f(a) < 0$ and thus S is nonempty. Clearly, b is an upper bound for S. Therefore, by the LUB Property, S has an LUB L. Assume first that $r > 0$.

Since f is continuous, there exists a number $\delta > 0$ such that

$$|x - L| < \delta, \text{ then } |f(x) - f(L)| = |f(x) - r| < \frac{1}{2}r.$$

Equivalently,

$$|x - L| < \delta, \text{ then } \frac{1}{2}r < f(x) < \frac{3}{2}r.$$

The number $\frac{1}{2}r$ is positive, so we conclude that

$$L - \delta < x < L + \delta, \text{ then } f(x) > 0.$$

By definition of L, $f(x) \geq 0$ for all $x \in [a, b]$ such that $x > L$, and thus $f(x) \geq 0$ for all $x \in [a, b]$ such that $x > L - \delta$. Thus, $L - \delta$ is an upper bound for S. This is a contradiction since L is the LUB of S, and it follows that $r = f(L)$ cannot satisfy $r > 0$. Similarly, r cannot satisfy $r < 0$. We conclude that $f(L) = 0$ as claimed.

Now, if M is nonzero, let $g(x) = f(x) - M$. Then 0 lies between $g(a)$ and $g(b)$, and by what we have proved, there exists $c \in (a, b)$ such that $g(c) = 0$. But then $f(c) = g(c) + M = M$, as desired. \qed
INDUCTION AND THE BINOMIAL THEOREM

The Principle of Induction is a method of proof that is widely used to prove that a given statement \(P(n) \) is valid for all natural numbers \(n = 1, 2, 3, \ldots \). Here are two statements of this kind:

- \(P(n) \): The sum of the first \(n \) odd numbers is equal to \(n^2 \).
- \(P(n) \): \(\frac{d}{dx} x^n = nx^{n-1} \).

The first statement claims that for all natural numbers \(n \),

\[
1 + 3 + \cdots + (2n - 1) = n^2
\]

We can check directly that \(P(n) \) is true for the first few values of \(n \):

- \(P(1) \) is the equality: \(1 = 1^2 \) (true)
- \(P(2) \) is the equality: \(1 + 3 = 2^2 \) (true)
- \(P(3) \) is the equality: \(1 + 3 + 5 = 3^2 \) (true)

The Principle of Induction may be used to establish \(P(n) \) for all \(n \).

THEOREM 1 Principle of Induction Let \(P(n) \) be an assertion that depends on a natural number \(n \). Assume that

- (i) Initial step: \(P(n_0) \) is true.
- (ii) Induction step: If \(P(n) \) is true for \(n = k \), then \(P(n) \) is also true for \(n = k + 1 \).

Then \(P(n) \) is true for all natural numbers \(n \).

EXAMPLE 1 Prove that \(1 + 3 + \cdots + (2n - 1) = n^2 \) for all natural numbers \(n \).

Solution As above, we let \(P(n) \) denote the equality

\[P(n) : 1 + 3 + \cdots + (2n - 1) = n^2 \]

Step 1. Initial step: Show that \(P(1) \) is true.
We checked this above. \(P(1) \) is the equality \(1 = 1^2 \).

Step 2. Induction step: Show that if \(P(n) \) is true for \(n = k \), then \(P(n) \) is also true for \(n = k + 1 \).
Assume that \(P(k) \) is true. Then

\[1 + 3 + \cdots + (2k - 1) = k^2 \]

Add \(2k + 1 \) to both sides:

\[
[1 + 3 + \cdots + (2k - 1)] + (2k + 1) = k^2 + 2k + 1 = (k + 1)^2
\]

\[1 + 3 + \cdots + (2k + 1) = (k + 1)^2 \]

This is precisely the statement \(P(k + 1) \). Thus, \(P(k + 1) \) is true whenever \(P(k) \) is true. By the Principle of Induction, \(P(k) \) is true for all \(k \).
The intuition behind the Principle of Induction is the following. If \(P(n) \) were not true for all \(n \), then there would exist a smallest natural number \(k \) such that \(P(k) \) is false. Furthermore, \(k > 1 \) since \(P(1) \) is true. Thus, \(P(k - 1) \) is true [otherwise, \(P(k) \) would not be the smallest “counterexample”]. On the other hand, if \(P(k - 1) \) is true, then \(P(k) \) is also true by the induction step. This is a contradiction. So \(P(k) \) must be true for all \(k \).

Example 2 Use Induction and the Product Rule to prove that for all whole numbers \(n \),

\[
\frac{d}{dx} x^n = nx^{n-1}
\]

Solution Let \(P(n) \) be the formula \(\frac{d}{dx} x^n = nx^{n-1} \).

Step 1. Initial step: Show that \(P(1) \) is true.

We use the limit definition to verify \(P(1) \):

\[
\frac{d}{dx} x = \lim_{h \to 0} \frac{(x + h) - x}{h} = \lim_{h \to 0} \frac{h}{h} = \lim_{h \to 0} 1 = 1
\]

Step 2. Induction step: Show that if \(P(n) \) is true for \(n = k \), then \(P(n) \) is also true for \(n = k + 1 \).

To carry out the induction step, assume that \(\frac{d}{dx} x^k = kx^{k-1} \), where \(k \geq 1 \). Then, by the Product Rule,

\[
\frac{d}{dx} x^{k+1} = \frac{d}{dx} (x \cdot x^k) = x \frac{d}{dx} x^k + x^k \frac{d}{dx} x = x(kx^{k-1}) + x^k
\]

\[
= kx^k + x^k = (k + 1)x^k
\]

This shows that \(P(k + 1) \) is true.

By the Principle of Induction, \(P(n) \) is true for all \(n \geq 1 \).

As another application of induction, we prove the Binomial Theorem, which describes the expansion of the binomial \((a + b)^n \). The first few expansions are familiar:

\[
(a + b)^1 = a + b
\]
\[
(a + b)^2 = a^2 + 2ab + b^2
\]
\[
(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
\]

In general, we have an expansion

\[
(a + b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \binom{n}{3}a^{n-3}b^3 + \cdots + \binom{n}{n-1}ab^{n-1} + b^n
\]

where the coefficient of \(x^{n-k} \), denoted \(\binom{n}{k} \), is called the **binomial coefficient**. Note that the first term in Eq. (2) corresponds to \(k = 0 \) and the last term to \(k = n \); thus,

\[
\binom{n}{0} = \binom{n}{n} = 1.
\]

In summation notation,

\[
(a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k}
\]
Pascal’s Triangle (described in the marginal note on page A13) can be used to compute binomial coefficients if \(n \) and \(k \) are not too large. The Binomial Theorem provides the following general formula:

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2) \cdots (n-k+1)}{k(k-1)(k-2) \cdots 2 \cdot 1}
\]

Before proving this formula, we prove a recursion relation for binomial coefficients. Note, however, that Eq. (3) is certainly correct for \(k = 0 \) and \(k = n \) (recall that by convention, \(0! = 1 \):

\[
\binom{n}{0} = \frac{n!}{(n-0)!0!} = \frac{n!}{n!} = 1, \quad \binom{n}{n} = \frac{n!}{(n-n)!n!} = \frac{n!}{n!} = 1
\]

Theorem 2 Recursion Relation for Binomial Coefficients

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{for } 1 \leq k \leq n - 1
\]

Proof We write \((a + b)^n\) as \((a + b)(a + b)^{n-1}\) and expand in terms of binomial coefficients:

\[
(a + b)^n = (a + b)(a + b)^{n-1} = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k = (a + b) \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-1-k} b^k
\]

\[
= a \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-1-k} b^k + b \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-1-k} b^k
\]

\[
= \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-k} b^k + \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-(k+1)} b^{k+1}
\]

Replacing \(k \) by \(k - 1 \) in the second sum, we obtain

\[
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k = \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-k} b^k + \sum_{k=1}^{n} \binom{n-1}{k-1} a^{n-k} b^k
\]

On the right-hand side, the first term in the first sum is \(a^n \) and the last term in the second sum is \(b^n \). Thus, we have

\[
\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k = a^n + \left(\sum_{k=1}^{n-1} \left(\binom{n-1}{k} + \binom{n-1}{k-1} \right) a^{n-k} b^k \right) + b^n
\]

The recursion relation follows because the coefficients of \(a^{n-k} b^k \) on the two sides of the equation must be equal.

We now use induction to prove Eq. (3). Let \(P(n) \) be the claim

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!} \quad \text{for } 0 \leq k \leq n
\]

We have \(\binom{1}{0} = \binom{1}{1} = 1 \) since \((a + b)^1 = a + b \), so \(P(1) \) is true. Furthermore, \(\binom{n}{n} = \binom{n}{0} = 1 \) as observed above, since \(a^n \) and \(b^n \) have coefficient 1 in the ex-
pansion of \((a + b)^n\). For the inductive step, assume that \(P(n)\) is true. By the recursion relation, for \(1 \leq k \leq n\), we have
\[
\binom{n + 1}{k} = \binom{n}{k} + \binom{n}{k - 1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k-1)!(n-k+1)!} = \frac{n!(n+1-k)}{k!(n+1-k)!} = \frac{n!(n+1)}{k!(n+1-k)!} = \frac{n+1}{(n+1)!}
\]
Thus, \(P(n+1)\) is also true and the Binomial Theorem follows by induction.

Example 3 Use the Binomial Theorem to expand \((x + y)^5\) and \((x + 2)^3\).

Solution The fifth row in Pascal’s Triangle yields
\[
(x + y)^5 = x^5 + 5x^4y + 10x^3y^2 + 10x^2y^3 + 5xy^4 + y^5
\]
The third row in Pascal’s Triangle yields
\[
(x + 2)^3 = x^3 + 3x^22 + 3x(2)^2 + 2^3 = x^3 + 6x^2 + 12x + 8
\]

C. Exercises

In Exercises 1–4, use the Principle of Induction to prove the formula for all natural numbers \(n\).

1. \(1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}\)
2. \(1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}\)
3. \(\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}\)
4. \(1 + x + x^2 + \cdots + x^n = \frac{1-x^{n+1}}{1-x}\) for any \(x \neq 1\)

5. Let \(P(n)\) be the statement \(2^n > n\).

(a) Show that \(P(1)\) is true.

(b) Observe that if \(2^n > n\), then \(2^{n+2} > 2n\). Use this to show that if \(P(n)\) is true for \(n = k\), then \(P(n)\) is true for \(n = k + 1\). Conclude that \(P(n)\) is true for all \(n\).

6. Use induction to prove that \(n! > 2^n\) for \(n \geq 4\).

Let \(\{F_n\}\) be the Fibonacci sequence, defined by the recursion formula
\[
F_n = F_{n-1} + F_{n-2}, \quad F_1 = F_2 = 1
\]
The first few terms are 1, 1, 2, 3, 5, 8, 13, …. In Exercises 7–10, use induction to prove the identity.

7. \(F_1 + F_2 + \cdots + F_n = F_{n+2} - 1\)
8. \(F_1^2 + F_2^2 + \cdots + F_n^2 = F_{n+1}F_n\)
9. \(F_n = \frac{R_n^+ - R_n^-}{\sqrt{5}}\), where \(R \pm = \frac{1 \pm \sqrt{5}}{2}\)
10. \(F_{n+1}F_{n+1} = F_n^2 + (-1)^n\). Hint: For the induction step, show that
\[
F_{n+2}F_n = F_{n+1}F_{n+1} + F_n^2
\]
\[
F_{n+1}^2 = F_{n+1}F_{n+1} + F_nF_{n+1}F_{n-1}
\]
11. Use induction to prove that \(f(n) = 8^n - 1\) is divisible by 7 for all natural numbers \(n\). Hint: For the induction step, show that \(8^{k+1} - 1 = 7 \cdot 8^k + (8^k - 1)\)
12. Use induction to prove that \(n^3 - n\) is divisible by 3 for all natural numbers \(n\).
13. Use induction to prove that \(5^{2n} - 4^n\) is divisible by 7 for all natural numbers \(n\).
14. Use Pascal’s Triangle to write out the expansions of \((a + b)^5\) and \((a - b)^5\).
15. Expand \((x + x^{-1})^4\).
16. What is the coefficient of \(x^9\) in \((x^3 + x)^5\)?
17. Let \(S(n) = \sum_{k=0}^{n} \binom{n}{k}\).

(a) Use Pascal’s Triangle to compute \(S(n)\) for \(n = 1, 2, 3, 4\).

(b) Prove that \(S(n) = 2^n\) for all \(n \geq 1\). Hint: Expand \((a + b)^n\) and evaluate at \(a = b = 1\).
18. Let \(T(n) = \sum_{k=0}^{n} (-1)^k \binom{n}{k}\).

(a) Use Pascal’s Triangle to compute \(T(n)\) for \(n = 1, 2, 3, 4\).

(b) Prove that \(T(n) = 0\) for all \(n \geq 1\). Hint: Expand \((a + b)^n\) and evaluate at \(a = 1, b = -1\).
In this appendix, we provide proofs of several theorems that were stated or used in the text.

Theorem 1 Basic Limit Laws Assume that \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) exist. Then:

(i) \(\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) \)

(ii) For any number \(k \), \(\lim_{x \to c} k f(x) = k \lim_{x \to c} f(x) \)

(iii) \(\lim_{x \to c} f(x) g(x) = \left(\lim_{x \to c} f(x) \right) \left(\lim_{x \to c} g(x) \right) \)

(iv) If \(\lim_{x \to c} g(x) \neq 0 \), then

\[
\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}
\]

Proof Let \(L = \lim_{x \to c} f(x) \) and \(M = \lim_{x \to c} g(x) \). The Sum Law (i) was proved in Section 2.9. Observe that (ii) is a special case of (iii), where \(g(x) = k \) is a constant function. Thus, it will suffice to prove the Product Law (iii). We write

\[
f(x)g(x) - LM = f(x)(g(x) - M) + M(f(x) - L)
\]

and apply the Triangle Inequality to obtain

\[
|f(x)g(x) - LM| \leq |f(x)(g(x) - M)| + |M(f(x) - L)|
\]

By the limit definition, we may choose \(\delta > 0 \) so that

if \(0 < |x - c| < \delta \), then \(|f(x) - L| < 1 \).

If follows that \(|f(x)| < |L| + 1 \) for \(0 < |x - c| < \delta \). Now choose any number \(\epsilon > 0 \). Applying the limit definition again, we see that by choosing a smaller \(\delta \) if necessary, we may also ensure that if \(0 < |x - c| < \delta \), then

\[
|f(x) - L| \leq \frac{\epsilon}{2(|L| + 1)} \quad \text{and} \quad |g(x) - M| \leq \frac{\epsilon}{2(|M| + 1)}
\]

Using Eq. (1), we see that if \(0 < |x - c| < \delta \), then

\[
|f(x)g(x) - LM| \leq |f(x)||g(x) - M| + |M||f(x) - L|
\]

\[
\leq (|L| + 1) \frac{\epsilon}{2(|L| + 1)} + |M| \frac{\epsilon}{2(|M| + 1)}
\]

\[
\leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon
\]

Since \(\epsilon \) is arbitrary, this proves that \(\lim_{x \to c} f(x)g(x) = LM \). To prove the Quotient Law (iv), it suffices to verify that if \(M \neq 0 \), then

\[
\lim_{x \to c} \frac{1}{g(x)} = \frac{1}{M}
\]

For if Eq. (2) holds, then we may apply the Product Law to \(f(x) \) and \(g(x)^{-1} \) to obtain the Quotient Law:

\[
\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} f(x) \frac{1}{g(x)} = \left(\lim_{x \to c} f(x) \right) \left(\lim_{x \to c} \frac{1}{g(x)} \right)
\]

\[
= L \left(\frac{1}{M} \right) = \frac{L}{M}
\]
We now verify Eq. (2). Since \(g(x) \) approaches \(M \) and \(M \neq 0 \), we may choose \(\delta > 0 \) so that if \(0 < |x - c| < \delta \), then \(|g(x)| \geq \frac{|M|}{2} \). Now choose any number \(\epsilon > 0 \). By choosing a smaller \(\delta \) if necessary, we may also ensure that

\[
\text{for } 0 < |x - c| < \delta, \text{ then } |M - g(x)| < \epsilon \left(\frac{|M|}{2} \right).
\]

Then

\[
\left| \frac{1}{g(x)} - \frac{1}{M} \right| = \left| \frac{M - g(x)}{Mg(x)} \right| \leq \frac{|M - g(x)|}{M(M/2)} \leq \frac{\epsilon |M|}{|M|/2} = \epsilon.
\]

Since \(\epsilon \) is arbitrary, the limit in Eq. (2) is proved.

The following result was used in the text.

Theorem 2 Limits Preserve Inequalities
Let \((a, b)\) be an open interval and let \(c \in (a, b) \). Suppose that \(f(x) \) and \(g(x) \) are defined on \((a, b)\), except possibly at \(c \). Assume that

\[
f(x) \leq g(x) \quad \text{for } x \in (a, b), \quad x \neq c
\]

and that the limits \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) exist. Then

\[
\lim_{x \to c} f(x) \leq \lim_{x \to c} g(x)
\]

Proof Let \(L = \lim_{x \to c} f(x) \) and \(M = \lim_{x \to c} g(x) \). To show that \(L \leq M \), we use proof by contradiction. If \(L > M \), let \(\epsilon = \frac{1}{2}(L - M) \). By the formal definition of limits, we may choose \(\delta > 0 \) so that the following two conditions are satisfied:

\[
\text{If } |x - c| < \delta, \text{ then } |M - g(x)| < \epsilon.
\]

\[
\text{If } |x - c| < \delta, \text{ then } |L - f(x)| < \epsilon.
\]

But then

\[
f(x) > L - \epsilon = M + \epsilon > g(x)
\]

This is a contradiction since \(f(x) \leq g(x) \). We conclude that \(L \leq M \).

Theorem 3 Limit of a Composite Function
Assume that the following limits exist:

\[
L = \lim_{x \to c} g(x) \quad \text{and} \quad M = \lim_{x \to L} f(x)
\]

Then \(\lim_{x \to c} f(g(x)) = M \).

Proof Let \(\epsilon > 0 \) be given. By the limit definition, there exists \(\delta_1 > 0 \) such that

\[
\text{if } 0 < |x - L| < \delta_1, \text{ then } |f(x) - M| < \epsilon.
\]

Similarly, there exists \(\delta > 0 \) such that

\[
\text{if } 0 < |x - c| < \delta, \text{ then } |g(x) - L| < \delta_1.
\]

We replace \(x \) by \(g(x) \) in Eq. (3) and apply Eq. (4) to obtain:

\[
\text{If } 0 < |x - c| < \delta, \text{ then } |f(g(x)) - M| < \epsilon.
\]

Since \(\epsilon \) is arbitrary, this proves that \(\lim_{x \to c} f(g(x)) = M \).
THEOREM 4 Continuity of Composite Functions Let \(F(x) = f(g(x)) \) be a composite function. If \(g \) is continuous at \(x = c \) and \(f \) is continuous at \(x = g(c) \), then \(F \) is continuous at \(x = c \).

Proof By definition of continuity,
\[
\lim_{x \to c} g(x) = g(c) \quad \text{and} \quad \lim_{x \to g(c)} f(x) = f(g(c))
\]
Therefore, we may apply Theorem 3 to obtain
\[
\lim_{x \to c} f(g(x)) = f(g(c))
\]
This proves that \(F(x) = f(g(x)) \) is continuous at \(x = c \).

THEOREM 5 Squeeze Theorem Assume that for \(x \neq c \) (in some open interval containing \(c \)),
\[
l(x) \leq f(x) \leq u(x) \quad \text{and} \quad \lim_{x \to c} l(x) = \lim_{x \to c} u(x) = L
\]
Then \(\lim_{x \to c} f(x) \) exists and
\[
\lim_{x \to c} f(x) = L
\]

Proof Let \(\epsilon > 0 \) be given. We may choose \(\delta > 0 \) such that
\[
\text{if } 0 < |x - c| < \delta, \text{ then } |l(x) - L| < \epsilon \text{ and } |u(x) - L| < \epsilon.
\]
In principle, a different \(\delta \) may be required to obtain the two inequalities for \(l(x) \) and \(u(x) \), but we may choose the smaller of the two deltas. Thus, if \(0 < |x - c| < \delta \), we have
\[
L - \epsilon < l(x) < L + \epsilon
\]
and
\[
L - \epsilon < u(x) < L + \epsilon
\]
Since \(f(x) \) lies between \(l(x) \) and \(u(x) \), it follows that
\[
L - \epsilon < l(x) \leq f(x) \leq u(x) < L + \epsilon
\]
and therefore \(|f(x) - L| < \epsilon \) if \(0 < |x - c| < \delta \). Since \(\epsilon \) is arbitrary, this proves that \(\lim_{x \to c} f(x) = L \), as desired.

THEOREM 6 Existence of Extrema on a Closed Interval A continuous function \(f \) on a closed (bounded) interval \(I = [a, b] \) takes on both a minimum and a maximum value on \(I \).

Proof We prove that \(f \) takes on a maximum value in two steps (the case of a minimum is similar).

Step 1. Prove that \(f \) is bounded from above.
We use proof by contradiction. If \(f \) is not bounded from above, then there exist points \(a_n \in [a, b] \) such that \(f(a_n) \geq n \) for \(n = 1, 2, \ldots \). By Theorem 3 in Appendix B, we may choose a subsequence of elements \(a_{n_1}, a_{n_2}, \ldots \) that converges to a limit in \([a, b] \)—say, \(\lim_{k \to \infty} a_{n_k} = L \). Since \(f \) is continuous, there exists \(\delta > 0 \) such that
\[
\text{if } x \in [a, b] \text{ and } |x - L| < \delta, \text{ then } |f(x) - f(L)| < 1.
\]
Therefore,

$$f(x) < f(L) + 1.$$ \[5\]

For k sufficiently large, a_{n_k} lies in $(L - \delta, L + \delta)$ because $\lim_{k \to \infty} a_{n_k} = L$. By Eq. (5), $f(a_{n_k})$ is bounded by $f(L) + 1$. However, $f(a_{n_k}) = n_k$ tends to infinity as $k \to \infty$. This is a contradiction. Hence, our assumption that f is not bounded from above is false.

Step 2. Prove that f takes on a maximum value.

The range of f on $I = [a, b]$ is the set

$$S = \{ f(x) : x \in [a, b] \}$$

By the previous step, S is bounded from above and therefore has a least upper bound M by the LUB Property. Thus, $f(x) \leq M$ for all $x \in [a, b]$. To complete the proof, we show that $f(c) = M$ for some $c \in [a, b]$. This will show that f attains the maximum value M on $[a, b]$.

By definition, $M - 1/n$ is not an upper bound for $n \geq 1$, and therefore, we may choose a point b_n in $[a, b]$ such that

$$M - \frac{1}{n} \leq f(b_n) \leq M$$

Again by Theorem 3 in Appendix B, there exists a subsequence of elements $\{b_{n_1}, b_{n_2}, \ldots \}$ in $[b_1, b_2, \ldots]$ that converges to a limit—say,

$$\lim_{k \to \infty} b_{n_k} = c$$

Furthermore, this limit c belongs to $[a, b]$ because $[a, b]$ is closed. Let $\epsilon > 0$. Since f is continuous, we may choose k so large that the following two conditions are satisfied:

$$|f(c) - f(b_{n_k})| < \epsilon/2 \text{ and } n_k > 2/\epsilon.$$ Then

$$|f(c) - M| \leq |f(c) - f(b_{n_k})| + |f(b_{n_k}) - M| \leq \frac{\epsilon}{2} + \frac{1}{n_k} \leq \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Thus, $|f(c) - M|$ is smaller than ϵ for all positive numbers ϵ. But this is not possible unless $|f(c) - M| = 0$. Thus, $f(c) = M$, as desired.

THEOREM 7 Continuous Functions Are Integrable If f is continuous on $[a, b]$, then f is integrable over $[a, b]$.

Proof We shall make the simplifying assumption that f is differentiable and that its derivative f' is bounded. In other words, we assume that $|f'(x)| \leq K$ for some constant K. This assumption is used to show that f cannot vary too much in a small interval. More precisely, let us prove that if $[a_0, b_0]$ is any closed interval contained in $[a, b]$ and if m and M are the minimum and maximum values of f' on $[a_0, b_0]$, then

$$|M - m| \leq K|b_0 - a_0|.$$ \[6\]

Figure 1 illustrates the idea behind this inequality. Suppose that $f(x_1) = m$ and $f(x_2) = M$, where x_1 and x_2 lie in $[a_0, b_0]$. If $x_1 \neq x_2$, then by the Mean Value Theorem (MVT), there is a point c between x_1 and x_2 such that

$$\frac{M - m}{x_2 - x_1} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c)$$

Since x_1, x_2 lie in $[a_0, b_0]$, we have $|x_2 - x_1| \leq |b_0 - a_0|$, and thus,

$$|M - m| = |f'(c)| |x_2 - x_1| \leq K|b_0 - a_0|$$

This proves Eq. (6).
We divide the rest of the proof into two steps. Consider a partition \(P \):

\[
P : \quad x_0 = a < x_1 < \cdots < x_N = b
\]

Let \(m_i \) be the minimum value of \(f \) on \([x_{i-1}, x_i]\) and \(M_i \) the maximum on \([x_{i-1}, x_i]\). We define the lower and upper Riemann sums

\[
L(f, P) = \sum_{i=1}^{N} m_i \Delta x_i, \quad U(f, P) = \sum_{i=1}^{N} M_i \Delta x_i
\]

These are the particular Riemann sums in which the intermediate point in \([x_{i-1}, x_i]\) is the point where \(f \) takes on its minimum or maximum on \([x_{i-1}, x_i]\). Figure 2 illustrates the case \(N = 4 \).

Step 1. Prove that the lower and upper sums approach a limit.

We observe that

\[
L(f, P_1) \leq U(f, P_2) \quad \text{for any two partitions } P_1 \text{ and } P_2
\]

Indeed, if a subinterval \(I_1 \) of \(P_1 \) overlaps with a subinterval \(I_2 \) of \(P_2 \), then the minimum of \(f \) on \(I_1 \) is less than or equal to the maximum of \(f \) on \(I_2 \) (Figure 3). In particular, the lower sums are bounded above by \(U(f, P) \) for all partitions \(P \). Let \(L \) be the least upper bound of the lower sums. Then for all partitions \(P \),

\[
L(f, P) \leq L \leq U(f, P)
\]

According to Eq. (6), \(|M_i - m_i| \leq K \Delta x_i\) for all \(i \). Since \(\|P\| \) is the largest of the widths \(\Delta x_i \), we see that \(|M_i - m_i| \leq K \|P\|\) and

\[
|U(f, P) - L(f, P)| \leq \sum_{i=1}^{N} |M_i - m_i| \Delta x_i
\]

\[
\leq K \|P\| \sum_{i=1}^{N} \Delta x_i = K \|P\| |b - a|
\]

Let \(c = K |b - a| \). Using Eq. (8) and Eq. (9), we obtain

\[
|L - U(f, P)| \leq |U(f, P) - L(f, P)| \leq c \|P\|
\]

We conclude that \(\lim_{\|P\| \to 0} |L - U(f, P)| = 0 \). Similarly,

\[
|L - L(f, P)| \leq c \|P\|
\]

and

\[
\lim_{\|P\| \to 0} |L - L(f, P)| = 0
\]

Thus, we have

\[
\lim_{\|P\| \to 0} U(f, P) = \lim_{\|P\| \to 0} L(f, P) = L
\]

Step 2. Prove that \(\int_{a}^{b} f(x) \, dx \) exists and has value \(L \).

Recall that for any choice \(C \) of intermediate points \(c_i \in [x_{i-1}, x_i] \), we define the Riemann sum

\[
R(f, P, C) = \sum_{i=1}^{N} f(c_i) \Delta x_i
\]

We have

\[
L(f, P) \leq R(f, P, C) \leq U(f, P)
\]
Indeed, since $c_i \in [x_{i-1}, x_i]$, we have $m_i \leq f(c_i) \leq M_i$ for all i and

$$\sum_{i=1}^{N} m_i \Delta x_i \leq \sum_{i=1}^{N} f(c_i) \Delta x_i \leq \sum_{i=1}^{N} M_i \Delta x_i$$

It follows that

$$|L - R(f, P, C)| \leq |U(f, P) - L(f, P)| \leq c \|P\|$$

This shows that $R(f, P, C)$ converges to L as $\|P\| \to 0$.

Theorem 8 If f is continuous and $\{a_n\}$ is a sequence such that the limit $\lim_{n \to \infty} a_n = L$ exists, then

$$\lim_{n \to \infty} f(a_n) = f(L)$$

Proof Choose any $\epsilon > 0$. Since f is continuous, there exists $\delta > 0$ such that

$$0 < |x - L| < \delta, \quad |f(x) - f(L)| < \epsilon$$

Since $\lim_{n \to \infty} a_n = L$, there exists $N > 0$ such that $|a_n - L| < \delta$ for $n > N$. Thus,

$$|f(a_n) - f(L)| < \epsilon \quad \text{for } n > N$$

It follows that $\lim_{n \to \infty} f(a_n) = f(L)$.

Theorem 9 Clairaut's Theorem If f_{xy} and f_{yx} are both continuous functions on a disk D, then $f_{xy}(a, b) = f_{yx}(a, b)$ for all $(a, b) \in D$.

Proof We prove that both $f_{xy}(a, b)$ and $f_{yx}(a, b)$ are equal to the limit

$$L = \lim_{h \to 0} \frac{f(a + h, b + h) - f(a + h, b) - f(a, b + h) + f(a, b)}{h^2}$$

Let $F(x) = f(x, b + h) - f(x, b)$. The numerator in the limit is equal to

$$F(a + h) - F(a)$$

and $F'(x) = f_x(x, b + h) - f_x(x, b)$. By the MVT, there exists a_1 between a and $a + h$ such that

$$F(a + h) - F(a) = hF'(a_1) = h(f_x(a_1, b + h) - f_x(a_1, b))$$

By the MVT applied to f_x, there exists b_1 between b and $b + h$ such that

$$f_x(a_1, b + h) - f_x(a_1, b) = h f_{xy}(a_1, b_1)$$

Thus,

$$F(a + h) - F(a) = h^2 f_{xy}(a_1, b_1)$$

and

$$L = \lim_{h \to 0} \frac{h^2 f_{xy}(a_1, b_1)}{h^2} = \lim_{h \to 0} f_{xy}(a_1, b_1) = f_{xy}(a, b)$$

The last equality follows from the continuity of f_{xy} since (a_1, b_1) approaches (a, b) as $h \to 0$. To prove that $L = f_{yx}(a, b)$, repeat the argument using the function $F(y) = f(a + h, y) - f(a, y)$, with the roles of x and y reversed.
THEOREM 10 Criterion for Differentiability If $f_x(x, y)$ and $f_y(x, y)$ exist and are continuous on an open disk D, then $f(x, y)$ is differentiable on D.

Proof Let $(a, b) \in D$ and set

$$L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

It is convenient to switch to the variables h and k, where $x = a + h$ and $y = b + k$. Set

$$\Delta f = f(a + h, b + k) - f(a, b)$$

Then

$$L(x, y) = f(a, b) + f_x(a, b)h + f_y(a, b)k$$

and we may define the function

$$e(h, k) = f(x, y) - L(x, y) = \Delta f - (f_x(a, b)h + f_y(a, b)k)$$

To prove that $f(x, y)$ is differentiable, we must show that

$$\lim_{(h, k) \to (0, 0)} \frac{e(h, k)}{\sqrt{h^2 + k^2}} = 0$$

To do this, we write Δf as a sum of two terms:

$$\Delta f = (f(a + h, b + k) - f(a, b + k)) + (f(a, b + k) - f(a, b))$$

and apply the MVT to each term separately. We find that there exist a_1 between a and $a + h$, and b_1 between b and $b + k$, such that

$$f(a + h, b + k) - f(a, b + k) = hf_x(a_1, b + k)$$

$$f(a, b + k) - f(a, b) = kf_y(a, b_1)$$

Therefore,

$$e(h, k) = h(f_x(a_1, b + k) - f_x(a, b)) + k(f_y(a, b_1) - f_y(a, b))$$

and for $(h, k) \neq (0, 0)$,

$$\frac{e(h, k)}{\sqrt{h^2 + k^2}} \leq \frac{|h(f_x(a_1, b + k) - f_x(a, b))|}{\sqrt{h^2 + k^2}} + \frac{|k(f_y(a, b_1) - f_y(a, b))|}{\sqrt{h^2 + k^2}}$$

$$= |f_x(a_1, b + k) - f_x(a, b)| + |f_y(a, b_1) - f_y(a, b)|$$

In the second line, we use the Triangle Inequality [see Eq. (1) in Section 1.1], and we may pass to the third line because $|h/\sqrt{h^2 + k^2}|$ and $|k/\sqrt{h^2 + k^2}|$ are both less than 1. Both terms in the last line tend to zero as $(h, k) \to (0, 0)$ because f_x and f_y are assumed to be continuous. This completes the proof that $f(x, y)$ is differentiable.

\square
Chapter 1

Section 1.1 Preliminary Questions

1. \(a = -3\) and \(b = 1\)
2. The numbers \(a \geq 0\) satisfy \(|a| = a\) and \(|a| = a\). The numbers \(a \leq 0\) satisfy \(|a| = -a\).
3. \(a = -3\) and \(b = 1\)
4. No \(\; 5. (9, -4)\)
6. (a) First quadrant. (b) Second quadrant. (c) Fourth quadrant. (d) Third quadrant.
7. 3 8. (b) 9. Symmetry with respect to the origin
10. The only function that is both even and odd is the constant function \(f(x) = 0\).

Section 1.1 Exercises

1. \(r = \frac{12337}{12500}\)
2. \(|x| \leq 2\)
3. \(|x - 2| < 2\)
4. \(|x - 3| \leq 2\)
5. \(-8 < x < 8\)
6. \(-3 < x < 2\)
7. \((-4, 4)\)
8. \((2, 6)\)
9. \([-\frac{2}{3}, \frac{2}{3}]\)
10. \((\infty, 2) \cup (6, \infty)\)
11. \((-\infty, -\sqrt{3}) \cup (\sqrt{3}, \infty)\)
12. (a) (i) (b) (iii) (c) (v) (d) (vi) (e) (ii) (f) (iv)
13. \((-3, 1)\)
14. \(|a + b - 13| = |(a - 5) + (b - 8)| \leq |a - 5| + |b - 8| < \frac{1}{2} + \frac{1}{2} = 1\)
15. (a) 11 (b) 1
16. \(r_1 = \frac{3}{11}\) and \(r_2 = \frac{4}{15}\)
17. Let \(a = 1\) and \(b = \sqrt{3}\) (see the discussion before Example 1). The decimal expansions of \(a\) and \(b\) do not agree, but \(|1 - \sqrt{3}| < 10^{-k}\) for all \(k\).
18. (a) \((x - 2)^2 + (y - 4)^2 = 9\)
19. \((x - 2)^2 + (y - 4)^2 = 26\)
20. \(D = \{r, s, t, u\}; R = \{A, B, E\}\)
21. \(D:\) all reals; \(R:\) all reals
22. \(D:\) all reals; \(R:\) all reals
23. \(D:\) all reals; \(R:\) all reals
24. \(D:\) all reals; \(R:\) all reals
25. \(D:\) all reals; \(R:\) all reals
26. \(D:\) all reals; \(R:\) all reals
27. \(D:\) all reals; \(R:\) all reals
28. \(D:\) all reals; \(R:\) all reals
29. \(D:\) all reals; \(R:\) all reals
30. \(D:\) all reals; \(R:\) all reals
31. \(D:\) all reals; \(R:\) all reals
32. \(D:\) all reals; \(R:\) all reals
33. \(D:\) all reals; \(R:\) all reals
34. \(D:\) all reals; \(R:\) all reals
35. \(D:\) all reals; \(R:\) all reals
36. \(D:\) all reals; \(R:\) all reals
37. (a) \((x - 2)^2 + (y - 4)^2 = 9\)
38. (b) \((x - 2)^2 + (y - 4)^2 = 26\)
39. \(D:\) all reals; \(R:\) all reals
40. \(D:\) all reals; \(R:\) all reals
41. \(D:\) all reals; \(R:\) all reals
42. \(D:\) all reals; \(R:\) all reals
43. \(D:\) all reals; \(R:\) all reals
44. \(D:\) all reals; \(R:\) all reals
45. \(D:\) all reals; \(R:\) all reals
46. \(D:\) all reals; \(R:\) all reals
47. \(D:\) all reals; \(R:\) all reals
48. \(D:\) all reals; \(R:\) all reals
49. On the interval \((-1, \infty)\)
50. On the interval \((0, \infty)\)
51. Zeros: \(\pm 2;\) Increasing: \(x > 0;\) Decreasing: \(x < 0;\) Symmetry: \(f(-x) = f(x),\) so \(y\)-axis symmetry.
52. 53. 54. 55. Zeros: \(0, \pm 2;\) Symmetry: \(f(-x) = -f(x),\) so origin symmetry.

ANSWERS TO ODD-NUMBERED EXERCISES
53. $4 \pm \sqrt{8}$
57. For x^2, $\Delta y = \frac{x^2-x_0^2}{x-x_0} = x_2 + x_1$.
61. $(x - a)(x - \beta) = x^2 - ax - \beta x + a \beta = x^2 + (-a - \beta)x + a \beta$

Section 1.3 Preliminary Questions
1. One example is $f(x) = \frac{3x^2-2}{3x^4+x-1}$.
2. $y = |x|$ is not a polynomial; $y = (x^2 + 1)$ is a polynomial.
3. The domain of $f \circ g$ is the empty set.
4. Decreasing 5. One possibility is $f(x) = e^x - \sin x$.

Section 1.3 Exercises
1. $x \geq 0$
3. All reals
5. $t \neq -2$
7. $u \neq \pm 2$
9. $x \neq 0, 1$
11. $y > 0$
13. Polynomial
15. Algebraic
17. Transcendental
19. Rational
21. Transcendental
23. Rational
25. Yes
27. $f(g(x)) = \sqrt{x+1}$; $D: x \geq -1, g(f(x)) = \sqrt{x+1}$; $D: x \geq 0$
29. $f(g(x)) = 2x^2; D: R$
$g(f(x)) = (2x)^2 = 2x^2; D: R$
31. $f(g(x)) = \cos(x^3 + x^2); D: R$
$g(f(\theta)) = \cos^3 \theta + \cos^2 \theta; D: R$
33. $f(g(t)) = \frac{t+1}{\sqrt{t^2-1}}; D: \text{Not valid for any } t,$
$g(f(t)) = -\left(\frac{1}{\sqrt{t}}\right)^2 = -\frac{1}{t}; D: t > 0$

35.

39. $P(t+10) = 30 \cdot 2^{0.1(t+10)} = 30 \cdot 2^{0.1t+1} = 2(30 \cdot 2^{0.1t}) = 2P(t)$;
$g \left(t + \frac{1}{k} \right) = a2^{2(t+1/k)} = a2^{2(t+1)} = 2a2^{2t} = 2g(t)$
41. $f(x) = x^2$;
$\delta f(x) = f(x+1) - f(x) = (x+1)^2 - x^2 = 2x + 1$
$f(x) = x; \delta f(x) = x + 1 - x = 1$
$f(x) = x^3; \delta f(x) = (x+1)^3 - x^3 = 3x^2 + 3x + 1$
43.

37.

43.

45.

47. A double root occurs when $c = \pm 2$. There are no real roots when $-2 < c < 2$.
49. For all $x \geq 0$, $0 \leq \left(x^{1/2} - x^{-1/2}\right)^2 = x - 2 + \frac{1}{x}$.
Therefore, $x + \frac{1}{x} \geq 2$.

Section 1.4 Preliminary Questions
1. It is possible if the rotations differ by an integer multiple of 2π.
2. $\frac{3\pi}{4}$ and $\frac{11\pi}{4}$
3. $-\frac{3\pi}{4}$
4. (a)
Section 1.4 Exercises

1. \(5\pi/4\)

3. (a) \(180^\circ / \pi \approx 57.3^\circ\)
(b) \(60^\circ\)
(c) \(22\pi/7 \approx 23.87^\circ\)
(d) \(225^\circ\)

5. \(x = r\theta = 3.6; x = r\phi = 8\)

7. | \(\theta\) | \((\cos \theta, \sin \theta)\) | \(\theta\) | \((\cos \theta, \sin \theta)\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi/2)</td>
<td>((0, 1))</td>
<td>(5\pi/4)</td>
<td>((-\sqrt{2}/2, -\sqrt{2}/2))</td>
</tr>
<tr>
<td>(2\pi/3)</td>
<td>((-1/2, \sqrt{3}/2))</td>
<td>(4\pi/3)</td>
<td>((-1/2, -\sqrt{3}/2))</td>
</tr>
<tr>
<td>(3\pi/4)</td>
<td>((-\sqrt{2}/2, \sqrt{2}/2))</td>
<td>(3\pi/2)</td>
<td>((0, -1))</td>
</tr>
<tr>
<td>(5\pi/6)</td>
<td>((-\sqrt{3}/2, -1))</td>
<td>(7\pi/4)</td>
<td>((\sqrt{2}/2, -\sqrt{2}))</td>
</tr>
</tbody>
</table>

9. \(\theta = \pi/3, 5\pi/3\)

11. \(\theta = 2\pi/3, 7\pi/3\)

13. \(x = \pi/3, 2\pi/3\)

15. | \(\theta\) | \(\tan \theta\) | \(\sec \theta\) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi/6)</td>
<td>(1/\sqrt{3})</td>
<td>(\sqrt{3})</td>
</tr>
<tr>
<td>(\pi/4)</td>
<td>(1)</td>
<td>(\sqrt{2})</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>(\sqrt{3})</td>
<td>(\sqrt{3})</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(\pi/3)</td>
<td>(-\sqrt{3})</td>
<td>(-1)</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>(-1)</td>
<td>(-\sqrt{2})</td>
</tr>
</tbody>
</table>

17. The hypotenuse of the triangle will have length \(\sqrt{1 + c^2}\).

19. \(\sin \theta = 12/13\) and \(\tan \theta = 12/5\)

21. \(\sin \theta = 2 \sqrt{2}/3\), \(\sec \theta = 3 \sqrt{2}/2\) and \(\cot \theta = 7/2\)

23. 23/25

25. \(\cos \theta = -\sqrt{2}/3\) and \(\tan \theta = -2\sqrt{2}/3\)

27. \(\cos \theta = -1\)

29. Let’s start with the four points in Figure 23(A).

- The point in the first quadrant:
 \(\sin \theta = 0.918, \ \cos \theta = 0.3965, \ \text{and} \ \tan \theta = 0.918\)

- The point in the second quadrant:
 \(\sin \theta = 0.3965, \ \cos \theta = -0.918, \ \text{and} \ \tan \theta = -0.918\)

- The point in the third quadrant:
 \(\sin \theta = -0.918, \ \cos \theta = -0.3965, \ \text{and} \ \tan \theta = 0.918\)

- The point in the fourth quadrant:
 \(\sin \theta = -0.3965, \ \cos \theta = 0.918, \ \text{and} \ \tan \theta = -0.3965\)

Now consider the four points in Figure 23(B).

- The point in the first quadrant:
 \(\sin \theta = 0.918, \ \cos \theta = 0.3965, \ \text{and} \ \tan \theta = 0.918\)

- The point in the second quadrant:
 \(\sin \theta = -0.918, \ \cos \theta = -0.3965, \ \text{and} \ \tan \theta = -0.918\)

- The point in the third quadrant:
 \(\sin \theta = -0.3965, \ \cos \theta = 0.918, \ \text{and} \ \tan \theta = -0.3965\)

- The point in the fourth quadrant:
 \(\sin \theta = 0.918, \ \cos \theta = 0.3965, \ \text{and} \ \tan \theta = 0.918\)

ANSWERS TO ODD-NUMBERED EXERCISES

31. \(\cos \psi = 0.3, \ \sin \psi = \sqrt{0.91}, \ \cot \psi = \frac{\cos \psi}{\sin \psi}\)

33. \(\cos \left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \frac{\sqrt{3} - \sqrt{6}}{2}\)

35.

37.

39. 3 \cos(\theta/2); period 4\pi; amplitude 3

41. If \(|c| > 1\), no points of intersection; if \(|c| = 1\), one point of intersection; if \(|c| < 1\), two points of intersection.

43. \(\theta = 0, \frac{2\pi}{3}, \frac{4\pi}{5}, \frac{6\pi}{7}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\)

45. \(\theta = \frac{\pi}{6}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{3\pi}{2}, \frac{11\pi}{6}\)

47. \(\cos 2\theta = \cos(\theta + \theta) = \cos \theta \cos \theta - \sin \theta \sin \theta = \cos^2 \theta - \sin^2 \theta = 2 \cos^2 \theta - 1\)

49. Substitute \(x = \theta/2\) into the double angle formula for sine, \(\sin^2 x = \frac{1}{2} (1 - \cos 2x)\), then take the square root of both sides.

51. \(\cos(\theta + \pi) = \cos \theta \cos \pi - \sin \theta \sin \pi = \cos \theta (-1) = -\cos \theta\)

53. \(\tan(\pi - \theta) = \frac{\sin(\pi - \theta)}{\cos(\pi - \theta)} = \frac{-\sin(\theta)}{-\cos(\theta)} = \frac{\sin \theta}{-\cos \theta} = -\tan \theta\)

55. \(\sin 2x \cot \frac{\pi}{4} = \frac{\frac{3}{2} \sin x \cos x}{\frac{3}{2} \cos^2 x - 1} = \frac{\frac{3}{2} \sin x \cos x}{\frac{3}{2} \cos^2 x} = \frac{\sin x}{\cos x} = \tan x\)

59. 16.928

Section 1.5 Preliminary Questions

1. It is best to experiment.

2. (a) The screen will display nothing.

(b) The screen will display the portion of the parabola between the points \((0, 3)\) and \((1, 4)\).

3. No

4. Experiment with the viewing window to zoom in on the lowest point on the graph of the function. The y-coordinate of the lowest point on the graph is the minimum value of the function.
Section 1.5 Exercises

1. \[x = -3, x = -1.5, x = 1, \text{ and } x = 2 \]

3. Two positive solutions

5. There are no solutions.

9. \[x = 2, y = 2 \]

11. The table and graphs below suggest that as \[n \] gets large, \(\frac{n}{n^2} \) approaches 1.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\frac{n}{n^2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.258925412</td>
</tr>
<tr>
<td>10^2</td>
<td>1.047128548</td>
</tr>
<tr>
<td>10^3</td>
<td>1.006931669</td>
</tr>
<tr>
<td>10^4</td>
<td>1.000921458</td>
</tr>
<tr>
<td>10^5</td>
<td>1.000115136</td>
</tr>
<tr>
<td>10^6</td>
<td>1.000013816</td>
</tr>
</tbody>
</table>

13. The table and graphs below suggest that as \(n \) gets large, \(n^{1/n} \) approaches 1.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n^{1/n})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.033975758</td>
</tr>
<tr>
<td>10^2</td>
<td>1.003338973</td>
</tr>
<tr>
<td>10^3</td>
<td>1.000333334</td>
</tr>
<tr>
<td>10^4</td>
<td>1.000033333</td>
</tr>
<tr>
<td>10^5</td>
<td>1.000003333</td>
</tr>
</tbody>
</table>

15. The table and graphs below suggest that as \(n \) gets large, \(f(n) \) tends toward \(\infty \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\left(1 + \frac{1}{n}\right)^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.3780.61234</td>
</tr>
<tr>
<td>10^2</td>
<td>1.635828771 \times 10^{43}</td>
</tr>
<tr>
<td>10^3</td>
<td>1.195366603 \times 10^{53}</td>
</tr>
<tr>
<td>10^4</td>
<td>5.341783312 \times 10^{43}</td>
</tr>
<tr>
<td>10^5</td>
<td>1.70233054 \times 10^{43}</td>
</tr>
<tr>
<td>10^6</td>
<td>1.897308749 \times 10^{43}</td>
</tr>
</tbody>
</table>

17. The table and graphs below suggest that as \(x \) gets large, \(f(x) \) approaches 1.

\[
\begin{array}{c|c}
 x & \left(\frac{x}{\tan \left(\frac{1}{x}\right)}\right)^x \\
\hline
 10 & 1.033975758 \\
 10^2 & 1.003338973 \\
 10^3 & 1.000333334 \\
 10^4 & 1.000033333 \\
 10^5 & 1.000003333 \\
 10^6 & 1.000000333 \\
\end{array}
\]

21. \(x \in (-2, 0) \cup (3, \infty) \)

23. \[
f_3(x) = \frac{1}{2} \left(\frac{1}{2} (x+1) + \frac{x}{\left(\frac{x^2+6x+1}{4(x+1)}\right)}\right) = \frac{x^2 + 6x + 1}{4(x+1)}
\]

\[
f_4(x) = \frac{1}{2} \left(\frac{x^2 + 6x + 1}{4(x+1)} + \frac{x}{\left(\frac{x^2+6x+1}{4(x+1)}\right)}\right) = \frac{x^4 + 28x^3 + 70x^2 + 28x + 1}{8(1+x)(1+6x+x^2)}
\]

And

\[
f_5(x) = \frac{1}{1+120x+1820x^2+4808x^3+32870x^4+4808x^5+1820x^6+120x^7+x^8}
\]

It appears as if the \(f_n \) are asymptotic to \(\sqrt{x} \).

Chapter 1 Review

1. \(\{x : |x - 7| < 3\} \)

3. \([-5, -1] \cup [3, 7] \)

5. \((x, 0) \) with \(x \geq 0; (0, y) \) with \(y < 0 \)
Section 2.1 Exercises

1. (a) 11.025 m (b) 22.05 m/s

 (c) The instantaneous velocity at \(t = 2 \) is 19.6 m/s.

3. 0.559017 mg/°C

5. 0.3 m/s

7. (a) Dollars/year (b) \([0, 0.5]: 7.8461; [0, 1]: 8\)
 (c) Approximately $8/year

9. (a) Approximately 5% per year.

 (b) Increases

 (c) Approximately 5.5% per year.

 (d) Greater at \(t = 2012; \) less at \(t = 2008.\)

11. 12 \(-0.0625 \)

13. 1.105

15. 1.864

17. 0.864

19. (a) \([0, 0.1]: -144.721 \text{ cm/s}; [3, 3.5]: 0 \text{ cm/s} \)
 (b) 0 cm/s
21. (a) 3000 cells per hour
(b) 1250 cells per hour. The quantity \(m \) represents the instantaneous rate of change of \(P(t) \) at \(t = 1 \).

23. Sales decline more slowly as time increases.

25. * In graph (A), the particle is (c) slowing down.
 - In graph (B), the particle is (b) speeding up and then slowing down.
 - In graph (C), the particle is (d) slowing down and then speeding up.
 - In graph (D), the particle is (a) speeding up.

27. (a) Percent/day; measures how quickly the population of flax plants is becoming infected.
 (b) [40, 52], [0, 12], [20, 32]
 (c) The average rates of infection over the intervals [30, 40], [40, 50], [30, 50] are 9, 5, 7 %/d, respectively.
 (d) 0.55%/day

31. (B)
33. Interval \([1, t]\); average rate of change is \(t + 1 \); instantaneous rate of change is \(1 + 1 = 2 \); interval \([2, t]\); average rate of change is \(t + 2 \); instantaneous rate of change is \(2 + 2 = 4 \).

35. \(x^2 + 2x + 4 \); instantaneous rate of change is \(2 + 2 * 2 + 4 = 12 \).

Section 2.2 Preliminary Questions

1. 1 2 3 20 4. Yes; \(f(x) = \frac{x^2 - 9}{x-3} \) at \(c = 3 \) and \(c = 3 \).
5. \(\lim_{x \to 1^-} f(x) = \infty \) and \(\lim_{x \to 1^+} f(x) = 3 \)
6. No because \(\lim_{x \to 5^-} f(x) \) may not be equal to \(f(5) \).
7. Yes

Section 2.2 Exercises

1. \(x \quad 0.998 \quad 0.999 \quad 0.9995 \quad 0.99999 \)
 \(f(x) \quad 1.498501 \quad 1.499250 \quad 1.499625 \quad 1.499993 \)

 \(x \quad 1.00001 \quad 1.0005 \quad 1.001 \quad 1.002 \)
 \(f(x) \quad 1.500008 \quad 1.500375 \quad 1.500750 \quad 1.501500 \)

 The limit as \(x \to 1 \) is \(\frac{3}{2} \).

3. \(\begin{array}{ccc}
 y & 1.998 & 1.999 & 1.9999 \\
 f(y) & 0.59984 & 0.59992 & 0.599992 \\
 \end{array} \)

 \(\begin{array}{ccc}
 y & 2.0001 & 2.001 & 2.002 \\
 f(y) & 0.600008 & 0.60008 & 0.60016 \\
 \end{array} \)

 The limit as \(y \to 2 \) is \(\frac{3}{2} \).

5. 1.5 7. 21 9. \(|x - 12| = 3|x - 4| \)
11. \(|(5x + 2) - 17| = |5x - 15| = 5|x - 3| \)
13. Suppose \(|x| < 1 \) so that \(|x - 0| = |x + 0| = |x||x| < |x| \).
15. If \(|x| < 1 \), \(|4x + 2| \) can be no bigger than 6, so \(|4x^2 + 2x + 5 - 5| = |4x^2 + 2x| = |x||4x + 2| < 6|x| \).

17. \(\frac{1}{2} \) 19. \(\frac{5}{2} \) 21. 2 23. 0
25. As \(x \to 4^- \), \(f(x) \to -\infty \); similarly, as \(x \to 4^+ \), \(f(x) \to \infty \)
27. \(-1/5\) 29. \(-\infty\) 31. 0 33. 1
35. 2

37.

\(\begin{array}{c}
 y \\
 \hline
 x \\
 \hline
 1 \\
 2 \\
 3 \\
 4 \\
 \hline
 \end{array} \)

(a) \(c - 1 \) (b) \(c \) (c) 2
39. \(\lim_{x \to 0^-} f(x) = -1, \lim_{x \to 0^+} f(x) = 1 \)
41. \(\lim_{x \to 0^-} f(x) = \infty, \lim_{x \to 0^+} f(x) = \frac{1}{6} \)
43. \(\lim_{x \to -2^-} \frac{4x^2 + 7}{x^3 + 8} = -\infty, \lim_{x \to -2^+} \frac{4x^2 + 7}{x^3 + 8} = \infty \)
45. \(\lim_{x \to 1^+} \frac{x^5 - x - 2}{x^2 + x - 2} = 2 \)
47. * \(\lim_{x \to 2^-} f(x) = \infty \) and \(\lim_{x \to 2^+} f(x) = \infty \).
 - \(\lim_{x \to 4^-} f(x) = -\infty \) and \(\lim_{x \to 4^+} f(x) = 10 \).

 The vertical asymptotes are the vertical lines \(x = 2 \) and \(x = 4 \).

49.

51. 53. * \(\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = 3 \)
 - \(\lim_{x \to 3^-} f(x) = -\infty \)
 - \(\lim_{x \to 3^+} f(x) = 4 \)
 - \(\lim_{x \to 5^-} f(x) = 2 \)
 - \(\lim_{x \to 5^+} f(x) = -3 \)
 - \(\lim_{x \to 6^-} f(x) = \lim_{x \to 6^+} f(x) = \infty \)
Section 2.3 Exercises

1. 9 3. 1/16 5. 1/2 7. 4.6 9. 1 11. 9 13. −7/5 15. 10
17. 1/5 19. 1/5 21. 1/2 23. 64 27. 3 39. 1/16 31. No
33. \(f(x) = 1/x \) and \(g(x) = -1/x \) 37. Write \(g(t) = \frac{16(t)}{t} \).
39. (b)

Section 2.4 Exercises

1. Continuity 2. \(f(3) = \frac{1}{2} \) 3. No 4. No; Yes
5. (a) False. The correct statement is, “If the left- and right-hand limits of \(f(x) \) as \(x \to a \) exist and equal equal \(f(a) \).”
(b) True.
(c) False. The correct statement is, “If the left- and right-hand limits of \(f(x) \) as \(x \to a \) are equal but not equal to \(f(a) \), then \(f \) has a removable discontinuity at \(x = a \).”
(d) True.
(e) False. The correct statement is, “If \(f \) and \(g \) are continuous at \(x = a \) and \(g(a) \neq 0 \), then \(f/g \) is continuous at \(x = a \).”

Section 2.3 Preliminary Questions

1. Suppose \(\lim_{x \to c} f(x) \) and \(\lim_{x \to c} g(x) \) both exist. The Sum Law states that
\[\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x) \]
Provided \(\lim_{x \to c} g(x) \neq 0 \), the Quotient Law states that
\[\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \]
2. (b) 3. (a)

Section 2.4 Preliminary Questions

1. At \(\theta \) and \(\sin \theta \)
2. (b) \(x = 3 \):
3. \(x = 3 \); redefine \(g(3) = 4 \)
5. The function \(f \) is discontinuous at \(x = 0 \), at which \(\lim_{x \to 0^+} f(x) = \infty \) and \(\lim_{x \to 0^-} f(x) = 2 \). The function \(f \) is also discontinuous at \(x = 2 \), at which \(\lim_{x \to 2^+} f(x) = 6 \) and \(\lim_{x \to 2^-} f(x) = 0 \). The discontinuity at \(x = 2 \) is removable. Assigning \(f(2) = 6 \) makes \(f \) continuous at \(x = 2 \).
7. \(y = x \) and \(y = \sin x \) are continuous, so \(f(x) = x + \sin x \) by Continuity Law (i).
9. Since \(y = x \) and \(y = \sin x \) are continuous, so are \(y = 3x \) and \(y = 4 \sin x \) by Continuity Law (ii). Thus, \(f(x) = 3x + 4 \sin x \) is continuous by Continuity Law (i).
11. Since \(y = \cos x \) is continuous, so is \(y = e^{x^2} \) by Continuity Law (iii). Recall that constant functions, such as \(1 \), are continuous. Thus, \(y = x^2 + 1 \) is continuous by Continuity Law (i). Finally, \(f(x) = \frac{1}{x^2 + 1} \) is continuous by Continuity Law (iv) because \(x^2 + 1 \) is never 0.
13. The function \(f \) is a composite of two continuous functions: \(y = \cos x \) and \(y = x^2 \), so \(f \) is continuous by Theorem 5.
15. \(y = 2^x \) and \(y = \cos 3x \) are continuous, so \(f(x) = 2^x \cos 3x \) is continuous by Continuity Law (iii).
17. Discontinuous at \(x = 0 \), at which there is an infinite discontinuity. The function is neither left- nor right-continuous at \(x = 0 \).
19. Discontinuous at \(x = 1 \), at which there is an infinite discontinuity. The function is neither left- nor right-continuous at \(x = 1 \).
21. Discontinuous at even integers, at which there are jump discontinuities. Function is right-continuous at the even integers but not left-continuous.
23. Discontinuous at \(x = \frac{1}{2} \), at which there is an infinite discontinuity. The function is neither left- nor right-continuous at \(x = \frac{1}{2} \).
25. Continuous for all \(x \)
27. Jump discontinuity at \(x = 2 \). Function is left-continuous at \(x = 2 \) but not right-continuous.

29. Discontinuous whenever \(t = (2n + 1)\pi/4 \), where \(n \) is an integer. At every such value of \(t \) there is an infinite discontinuity. The function is neither left- nor right-continuous at any of these points of discontinuity.

31. Continuous everywhere.

33. Discontinuous at \(x = 0 \), at which there is an infinite discontinuity. The function is neither left- nor right-continuous at \(x = 0 \).

35. The domain is all real numbers. Both \(y = \sin x \) and \(y = \cos x \) are continuous on this domain, so \(f(x) = 2\sin x + 3\cos x \) is continuous by Continuity Laws (i) and (ii).

37. Domain is \(x \geq 0 \). Since \(y = \sqrt{x} \) and \(y = \sin x \) are continuous, so is \(f(x) = \sqrt{x} \sin x \) by Continuity Law (iii).

39. Domain is all real numbers. Both \(y = x^{2/3} \) and \(y = 2^x \) are continuous on this domain, so \(f(x) = x^{2/3}2^x \) is continuous by Continuity Law (iii).

41. Domain is \(x \neq 0 \). Because the function \(y = x^{4/3} \) is continuous and not equal to zero for \(x \neq 0 \), \(f(x) = x^{-4/3} \) is continuous for \(x \neq 0 \) by Continuity Law (iv).

43. Domain is all \(x \neq \pm(2n - 1)\pi/2 \), where \(n \) is a positive integer. Because \(y = \tan x \) is continuous on this domain, it follows from Continuity Law (iii) that \(f(x) = \tan^2 x \) is also continuous on this domain.

45. Domain of \(f(x) = (x^4 + 1)^{3/2} \) is all real numbers. Because \(y = x^{3/2} \) and the polynomial \(y = x^4 + 1 \) are both continuous, so is the composite function \(f(x) = (x^4 + 1)^{3/2} \).

47. Domain is all \(x \neq \pm1 \). Because the functions \(y = \cos x \) and \(y = x^2 \) are continuous on this domain, so is the composite function \(y = \cos(x^2) \). Finally, because the polynomial \(y = x^2 - 1 \) is continuous and not equal to zero for \(x \neq \pm1 \), the function \(f(x) = \cos(x^2) \) is continuous by Continuity Law (iv).

49. \(f \) is right-continuous at \(x = 1 \); \(f \) is continuous at \(x = 2 \).

51. The function \(f \) is continuous everywhere.

53. The function \(f \) is neither left- nor right-continuous at \(x = 2 \).

55. \(\lim_{x \to 4} \frac{x^2 - 16}{x - 4} = \lim_{x \to 4} (x + 4) = 8 \neq 10 = f(4) \)

57. \(c = \frac{5}{3} \)

59. \(a = 2 \) and \(b = 1 \)

61. (a) No (b) \(g(1) = 0 \)

63. \(f(x) = 3 \) and \(g(x) = [x] \)

87. In this case, \(y = f(x)^2 \) is the constant function 1.

89. In this case, \(y = f(x)^2 \) is the constant function 1.

Section 2.5 Preliminary Questions

1. \(\frac{x^2 - 1}{\sqrt{x^2 + 2}} \)

2. (a) \(f(x) = \frac{x^2 - 1}{x - 1} \) (b) \(f(x) = \frac{x^2 - 1}{x - 1} \) (c) \(f(x) = \frac{1}{x} \)

3. The “simplify and plug-in” strategy is based on simplifying a function that is indeterminate to a continuous function. Once the simplification has been made, the limit of the remaining continuous function is obtained by evaluation.

Section 2.5 Exercises

1. \(\lim_{x \to 6} \frac{x^2 - 36}{x - 6} = \lim_{x \to 6} \frac{(x-6)(x+6)}{x-6} = \lim_{x \to 6} (x + 6) = 12 \)

3. \(\frac{1}{14} \) \(7. -1 \) \(9. \frac{11}{10} \) \(11. 2 \) \(13. 1 \) \(15. 2 \) \(17. \frac{1}{2} \) \(19. -\frac{1}{4} \)

21. Limit does not exist.

- As \(h \to 0^+ \), \(\frac{\sqrt{h + 2} - 2}{h} \to -\infty \).
- As \(h \to 0^- \), \(\frac{\sqrt{h + 2} - 2}{h} \to \infty \).

23. \(2 \) \(25. \frac{1}{4} \) \(27. 1 \) \(29. -\frac{1}{2} \) \(31. 9 \) \(33. \frac{1}{2} \)

35. \(\lim_{x \to 4} f(x) \approx 2.00 \); to two decimal places, this matches the value of 2 obtained in Exercise 23.
Therefore, by the Squeeze Theorem,

\[
\lim_{x \to c} f(x) = L.
\]

Here, \(c = \frac{\pi}{2}\) and \(\cos c = \frac{\sqrt{2}}{2} \approx 0.707107\).

Here, \(c = 0\) and \(\cos c = 1\).

\[
\frac{\sin x - \sin c}{x - c} = 0.710631 \quad 0.707460 \quad 0.706753 \quad 0.703559
\]

Here, \(c = 0\) and \(\cos c = 0\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 2\) and \(\cos c = \cos 2 \approx -0.416147\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{0.863511}{0.865775} \quad 0.866275 \quad 0.868511
\]

Here, \(c = -\frac{\pi}{6}\) and \(\cos c = \frac{\sqrt{3}}{2} \approx 0.866025\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 0\) and \(\cos c = 1\).

\[
\frac{\sin x - \sin c}{x - c} = 0.710631 \quad 0.707460 \quad 0.706753 \quad 0.703559
\]

Here, \(c = 0\) and \(\cos c = 0\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 2\) and \(\cos c = \cos 2 \approx -0.416147\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{0.863511}{0.865775} \quad 0.866275 \quad 0.868511
\]

Here, \(c = -\frac{\pi}{6}\) and \(\cos c = \frac{\sqrt{3}}{2} \approx 0.866025\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 0\) and \(\cos c = 1\).

\[
\frac{\sin x - \sin c}{x - c} = 0.710631 \quad 0.707460 \quad 0.706753 \quad 0.703559
\]

Here, \(c = 0\) and \(\cos c = 0\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 2\) and \(\cos c = \cos 2 \approx -0.416147\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{0.863511}{0.865775} \quad 0.866275 \quad 0.868511
\]

Here, \(c = -\frac{\pi}{6}\) and \(\cos c = \frac{\sqrt{3}}{2} \approx 0.866025\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 0\) and \(\cos c = 1\).

\[
\frac{\sin x - \sin c}{x - c} = 0.710631 \quad 0.707460 \quad 0.706753 \quad 0.703559
\]

Here, \(c = 0\) and \(\cos c = 0\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 2\) and \(\cos c = \cos 2 \approx -0.416147\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{0.863511}{0.865775} \quad 0.866275 \quad 0.868511
\]

Here, \(c = -\frac{\pi}{6}\) and \(\cos c = \frac{\sqrt{3}}{2} \approx 0.866025\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 0\) and \(\cos c = 1\).

\[
\frac{\sin x - \sin c}{x - c} = 0.710631 \quad 0.707460 \quad 0.706753 \quad 0.703559
\]

Here, \(c = 0\) and \(\cos c = 0\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 2\) and \(\cos c = \cos 2 \approx -0.416147\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{0.863511}{0.865775} \quad 0.866275 \quad 0.868511
\]

Here, \(c = -\frac{\pi}{6}\) and \(\cos c = \frac{\sqrt{3}}{2} \approx 0.866025\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 0\) and \(\cos c = 1\).

\[
\frac{\sin x - \sin c}{x - c} = 0.710631 \quad 0.707460 \quad 0.706753 \quad 0.703559
\]

Here, \(c = 0\) and \(\cos c = 0\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 2\) and \(\cos c = \cos 2 \approx -0.416147\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{0.863511}{0.865775} \quad 0.866275 \quad 0.868511
\]

Here, \(c = -\frac{\pi}{6}\) and \(\cos c = \frac{\sqrt{3}}{2} \approx 0.866025\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 0\) and \(\cos c = 1\).

\[
\frac{\sin x - \sin c}{x - c} = 0.710631 \quad 0.707460 \quad 0.706753 \quad 0.703559
\]

Here, \(c = 0\) and \(\cos c = 0\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{-0.411593}{-0.415692} \quad -0.416601 \quad -0.420686
\]

Here, \(c = 2\) and \(\cos c = \cos 2 \approx -0.416147\).

\[
\frac{\sin x - \sin c}{x - c} = \frac{0.863511}{0.865775} \quad 0.866275 \quad 0.868511
\]

Here, \(c = -\frac{\pi}{6}\) and \(\cos c = \frac{\sqrt{3}}{2} \approx 0.866025\).
(b) From the graph below, it also appears that
\[\lim_{x \to \pm \infty} \frac{x^5}{x^3 + x} = 1 \]

(c) The horizontal asymptote of \(f \) is \(y = 1 \).
7. 1 9. 0 11. \(-\infty\) 13. \(-\infty\) 15. \(-\infty\) 17. \(y = \frac{1}{4} \) 19. \(y = \frac{2}{3} \) and \(y = -\frac{2}{3} \) 21. \(y = 0 \) 23. 0 25. 2 27. \(\frac{1}{10} \) 29. 0
31. \(1 \); the graph of \(y = 5^{-1/2} \) has a horizontal asymptote at \(y = 1 \).
33. (a) \(\lim_{x \to -\infty} R(x) = \lim_{x \to -\infty} \frac{A}{x} = \lim_{x \to -\infty} \frac{A}{\frac{1}{x} + \frac{A}{x}} = A \).
(b) \(R(K) = \frac{AK}{K} + \frac{A}{2K} \) \(\approx \frac{A}{2} \) half of the limiting value.
35. 0 37. \(-\infty\) 39. \(-\sqrt{3} \)
43. \(\lim_{x \to -\infty} \frac{3x^2 - x}{2x^2 + 5} = \lim_{t \to 0^+} \frac{3 - t}{2 + 5t^2} = \frac{3}{2} \)
45. * \(b = 0.2 \):
<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td>1.000064</td>
<td>1.000000</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
It appears that \(G(0.2) = 1 \).
* \(b = 0.8 \):
<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td>1.058324</td>
<td>1.010251</td>
<td>1.000000</td>
<td>1.000000</td>
</tr>
</tbody>
</table>
It appears that \(G(0.8) = 1 \).
* \(b = 2 \):
<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td>2.012347</td>
<td>2.000195</td>
<td>2.000000</td>
<td>2.000000</td>
</tr>
</tbody>
</table>
It appears that \(G(2) = 2 \).
* \(b = 3 \):
<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td>3.002465</td>
<td>3.000000</td>
<td>3.000000</td>
<td>3.000000</td>
</tr>
</tbody>
</table>
It appears that \(G(3) = 3 \).
* \(b = 5 \):
<table>
<thead>
<tr>
<th>(x)</th>
<th>5</th>
<th>10</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G(x))</td>
<td>5.000320</td>
<td>5.000000</td>
<td>5.000000</td>
<td>5.000000</td>
</tr>
</tbody>
</table>
It appears that \(G(5) = 5 \).
Based on these observations, we conjecture that \(G(b) = 1 \) if \(0 \leq b \leq 1 \) and \(G(b) = b \) for \(b > 1 \). The graph of \(y = G(b) \) is shown below; the graph does appear to be continuous.

Section 2.8 Preliminary Questions
1. Observe that \(f(1) = -1 \) and \(f(1) = 1 \). Therefore, by the Intermediate Value Theorem, there is a \(c \in [0, 1] \) such that \(f(c) = 0 \).
2. We must assume that temperature is a continuous function of time.
3. If \(f \) is continuous on \([a, b]\), then the horizontal line \(y = k \) for every \(k \) between \(f(a) \) and \(f(b) \) intersects the graph of \(y = f(x) \) at least once.
4.

5. (a) Sometimes true. (b) True. (c) Never true. (d) Sometimes true.

Section 2.8 Exercises
1. Observe that \(f(1) = 2 \) and \(f(2) = 10 \). Since \(f \) is a polynomial, it is continuous everywhere; in particular on \([1, 2]\). Therefore, by the IVT, there is a \(c \in [1, 2] \) such that \(f(c) = 9 \).
3. \(g(0) = 0 \) and \(g(\frac{1}{4}) = \frac{\sqrt{2}}{16} \); \(g \) is continuous for all \(t \) between 0 and \(\frac{1}{4} \), and \(0 < \frac{1}{4} < \frac{\sqrt{2}}{16} \); therefore, by the IVT, there is a \(c \in [0, \frac{1}{4}] \) such that \(g(c) = \frac{1}{2} \).
5. Let \(f(x) = x - \cos x \). Observe that \(f \) is continuous with \(f(0) = -1 \) and \(f(1) = 1 - \cos 1 \approx .646 \). Therefore, by the IVT, there is a \(c \in [0, 1] \) such that \(f(c) = c - \cos c = 0 \).
7. Let \(f(x) = \sqrt{x + \sqrt{x + 2}} - 3 \). Note that \(f \) is continuous on \([\frac{1}{4}, 2]\) with \(f(\frac{1}{4}) = -1 \) and \(f(2) = \sqrt{2} - 1 \approx .841 \). Therefore, by the IVT, there is a \(c \in [\frac{1}{4}, 2] \) such that \(f(c) = \sqrt{c} + \sqrt{c + 2} - 3 = 0 \).
9. Let \(f(x) = x^2 \). Observe that \(f \) is continuous with \(f(1) = 1 \) and \(f(2) = 4 \). Therefore, by the IVT, there is a \(c \in [1, 2] \) such that \(f(c) = c^2 = 2 \).
11. For each positive integer \(k \), let \(f(x) = x^k - \cos x \). Observe that \(f \) is continuous on \([0, \frac{\pi}{2}]\) with \(f(0) = -1 \) and \(f(\frac{\pi}{4}) = (\frac{\pi}{4})^k > 0 \). Therefore, by the IVT, there is a \(c \in [0, \frac{\pi}{4}] \) such that \(f(c) = c^k - \cos(c) = 0 \).
13. Let \(f(x) = x^2 + x^3 - 4x \). Observe that \(f \) is continuous on \([0, 2]\) with \(f(0) = 0 \) and \(f(2) = -3 \). Therefore, by the IVT, there is a \(c \in (0, 2) \) such that \(f(c) = 2c^2 + 3c - 4 = 0 \).
15. Let \(f(x) = x^2 + \frac{1}{x} + 4 \). Note that \(f \) is continuous on \([-\infty, 0) \cup (0, \infty) \). Therefore, by the IVT, there is a \(c \in (-1, -\frac{1}{\sqrt{6}}) \) such that \(f(c) = 2c^2 + \frac{1}{c} + 4 = 0 \), so that \(2c^2 + \frac{1}{c} = -4 \).
17. Apply Corollary 2 to the Intermediate Value Theorem. \(f \) is a polynomial and continuous everywhere. \(f(-3) = 170 \), \(f(-2) = -25 \), \(f(-1) = 2 \), \(f(0) = -1 \), \(f(1) = 2 \), \(f(2) = -25 \), and \(f(3) = 170 \). Thus, \(f \) has a zero in each of these intervals: \((-3, -2) \), \((-2, -1) \), \((-1, 0) \), \((0, 1) \), \((1, 2) \), \((2, 3) \), and \(f \) must have six distinct solutions.
19. The IVT does not apply since g is not continuous on the interval $[-1, 1]$. However, this function does take on all values between $g(-1) = 1$ and $g(1) = 2$.

21. (a) $f(1) = 1$, $f(1.5) = 2^{1.5} - (1.5)^3 < 3 - 3.75 < 0$. Hence, $f(x) = 0$ for some x between 1 and 1.5.
(b) $f(1.25) \approx 0.425 > 0$ and $f(1.5) < 0$. Hence, $f(x) = 0$ for some x between 1.25 and 1.5.
(e) $f(1.375) \approx -0.0059$. Hence, $f(x) = 0$ for some x between 1.25 and 1.375.

23. $[0, .25]$

27. $\\$

29. No; No

Section 2.9 Preliminary Questions

1. (c)
2. (b) and (d) are true.

Section 2.9 Exercises

1. $L = 4$, $\epsilon = .8$, and $\delta = .1$

3. (a) $|f(x) - 35| = |8x + 3 - 35| = |8x - 32| = |8(x - 4)| = 8|x - 4|$
(b) Let $\epsilon > 0$. Let $\delta = \epsilon / 8$ and suppose $|x - 4| < \delta$. By part (a), $|f(x) - 35| = 8|x - 4| < 8\delta$. Substituting $\delta = \epsilon / 8$, we see $|f(x) - 35| < 8\epsilon / 8 = \epsilon$.

5. (a) If $0 < |x - 2| < \delta = .01$, then $|x| < 3$ and $|x^2 - 4| = |x - 2||x + 2| \leq |x - 2|(|x| + 2) < 5|x - 2| < .05$.
(b) If $0 < |x - 2| < \delta = .0002$, then $|x| < 2.0002$ and $|x^2 - 4| = |x - 2||x + 2| \leq |x - 2|(|x| + 2) < 4.0002|x - 2| < .00080004 < .0009$.

(c) $\delta = 10^{-5}$
7. $\delta = 6 \times 10^{-4}$
9. $\delta = 0.25$

11. $\delta = 0.05$

13. (a) Since $|x - 2| < 1$, it follows that $1 < x < 3$, in particular that $x > 1$. Because $x > 1$, then $\frac{1}{x} < 1$ and $|\frac{1}{x} - \frac{1}{2}| = \frac{2 - x}{2x} = \frac{|x - 2|}{2x} < \frac{1}{2}|x - 2|$
(b) Let $\delta = \min\{1, 2\epsilon\}$ and suppose that $|x - 2| < \delta$. Then by part (a) we have $|\frac{1}{x} - \frac{1}{2}| < \frac{1}{2}|x - 2| < \frac{1}{2}\delta < \frac{1}{2} \cdot 2\epsilon = \epsilon$
(c) Choose $\delta = .02$.
(d) Let $\epsilon > 0$ be given. Then whenever $0 < |x - 2| < \delta = \min\{1, 2\epsilon\}$, we have $|\frac{1}{x} - \frac{1}{2}| < \frac{1}{2}\delta \leq \epsilon$.

15. $\\$

17. Given $\epsilon > 0$, we let $\delta = \min\{\frac{\epsilon}{3|c|}, \frac{1}{3}\}$. Then, for $|x - c| < \delta$, we have $|x^2 - c^2| = |x - c||x + c| < 3|c|\delta < 3|c|\frac{\epsilon}{3|c|} = \epsilon$

19. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{3}\}$. If $|x - 4| < \delta$, $|\sqrt{x} - 2| = |x - 4| < 1 \Rightarrow \delta < 1 \Rightarrow \frac{4}{\sqrt{x^2 + 2}} < |x - 4| \Rightarrow \frac{\epsilon}{3} < \frac{4}{\sqrt{x^2 + 2}} \Rightarrow \epsilon$

21. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{3}\}$, and assume $|x - 1| < \delta$. Since $\delta < 1$, $0 < x < 2$. Since $x^2 + x + 1$ increases as x increases for $x > 0$, $x^2 + x + 1 < 7$ for $0 < x < 2$, so $|x^3 - 1| = |x - 1||x^2 + x + 1| < 7|x - 1| < 7\frac{\epsilon}{7} = \epsilon$

23. Let $\epsilon > 0$ be given. Let $\delta = \min\{1, \frac{\epsilon}{4}\}$, and suppose $|x - 2| < \delta$. Since $\delta < 1$, $|x - 2| < 1$, so $1 < x < 3$. This means that $4x^2 > 4$ and $|2 + x| < 5$ so that $\frac{4x^2}{4x^2} = \frac{4}{4} < \frac{4}{5}$. We get $|x^2 - \frac{1}{4}| = |2 - x||x + x + \frac{1}{4}| < \frac{5}{4}|x - 2| < \frac{5}{4} \cdot \frac{4}{5} \epsilon = \epsilon$
25. Let \(L \) be any real number. Let \(\delta > 0 \) be any small positive number. Let \(x = \frac{\delta}{2} \), which satisfies \(|x| < \delta\), and \(f(x) = 1\). We consider two cases:

- \((f(x) - L) \geq \frac{1}{2}\) : we are done.
- \((f(x) - L) < \frac{1}{2}\) : This means \(\frac{1}{2} < L < \frac{3}{2} \). In this case, let \(x = -\frac{\delta}{2} \), \(f(x) = -1 \) so \(\frac{\delta}{2} < L - f(x) \).

In either case, there exists an \(x \) such that \(|x| < \frac{\delta}{2} \), but \(|f(x) - L| \geq \frac{1}{2} \).

27. Let \(\epsilon > 0 \) and let \(\delta = \min(1, \frac{\epsilon}{2}) \). Then, whenever \(|x - 1| < \delta\), it follows that \(0 < x < 2 \). If \(1 < x < 2 \), then \(\min(x, x^2) = x \) and

\[
|f(x) - 1| = |x - 1| < \delta < \frac{\epsilon}{2} < \epsilon
\]

On the other hand, if \(0 < x < 1 \), then \(\min(x, x^2) = x^2 \), \(|x - 1| < 2\) and

\[
|f(x) - 1| = |x^2 - 1| = |x - 1||x + 1| < 2\delta < \epsilon
\]

Thus, whenever \(|x - 1| < \delta\), \(|f(x) - 1| < \epsilon\).

31. Suppose that \(\lim_{x \to a} f(x) = L \). Let \(\epsilon > 0 \) be given. Since \(\lim_{x \to a} f(x) = L \), we know there is a \(\delta > 0 \) such that \(|x - c| < \delta \) forces \(|f(x) - L| < \epsilon/|a|\). Suppose \(|x - c| < \delta\). Then

\[
|af(x) - aL| = |a||f(x) - aL| < |a|\epsilon/|a| = \epsilon.
\]

37. Let \(\theta \) be any real number. Then

\[
\cos \theta = 2
\]

43. \(\lim_{\theta \to \frac{\pi}{2}} \cos \theta = \infty \)

45. \(\lim_{x \to 0^+} \tan x = \infty \)

47. \(\tan x = \infty \) as \(x \to \pi^+ \)

51. According to the graph of \(f \),

\[
\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = 1
\]

\[
\lim_{x \to 2^-} f(x) = \lim_{x \to 2^+} f(x) = \infty
\]

\[
\lim_{x \to 4^-} f(x) = -\infty
\]

\[
\lim_{x \to 4^+} f(x) = \infty
\]

The function is both left- and right-continuous at \(x = 0 \) and neither left- nor right-continuous at \(x = 2 \) and \(x = 4 \).

53. At \(x = 0 \), the function has an infinite discontinuity but is left-continuous.

55. \(g \) has a jump discontinuity at \(x = -1 \); \(g \) is left-continuous at \(x = -1 \).

57. \(b = 7 \); \(h \) has a jump discontinuity at \(x = -2 \).

59. Does not have any horizontal asymptotes.

61. \(y = 2 \) \quad 63. \(y = 1 \)

65. \(B = B \cdot 1 = B \cdot L = \lim_{x \to a} g(x) \cdot \lim_{x \to a} f(x) = \lim_{x \to a} g(x) \cdot \lim_{x \to a} f(x) = A \)

67. \(f(x) = \frac{1}{(x-a)^3} \) and \(g(x) = \frac{1}{(x-a)^5} \)

71. Let \(f(x) = x^2 - \cos x \). Now, \(f \) is continuous over the interval \([0, \frac{\pi}{2}]\), \(f(0) = -1 < 0 \) and \(f(\frac{\pi}{2}) = \frac{\pi^2}{4} > 0 \). Therefore, by the Intermediate Value Theorem, there exists a \(c \in (0, \frac{\pi}{2}) \) such that \(f(c) = 0 \); consequently, the curves \(y = x^2 \) and \(y = \cos x \) intersect.

73. \(f(x) = 2-x^2 - x \). Observe that \(f \) is continuous on \([0, 1]\) with \(f(0) = 2 \) and \(f(1) = 2 \). Therefore, the IVT guarantees there exists a \(c \in (0, 1) \) such that \(f(c) = 2-\epsilon - c = 0 \).

75. \(g(x) = |x| \); On the interval

\[
x \in \left[-a, \frac{a}{2}, \frac{a}{2}, a \right] \subset [-a, a]
\]

\(\frac{1}{2} \) runs from \(\frac{a}{2} \) to \(\frac{a}{2} + 2\pi \), so the sine function covers one full period and clearly takes on every value from \(-\sin \alpha \) through \(\sin \alpha \).

77. \(\delta = 0.55 \);

79. Let \(\epsilon > 0 \) and take \(\delta = \epsilon/8 \). Then, whenever

\[
|\epsilon - (-1)| = |\epsilon| < \delta
\]

\[
|f(x) - (-\epsilon)| = |x + 8x + 4| = 8|x + 1| < 8\delta = \epsilon
\]
Chapter 3
Section 3.1 Preliminary Questions

1. \(B\) and \(D\)
2. \(f(x) - f(a)\) and \(f(a + h) - f(a)\)
3. \(a = 3\) and \(h = 2\)
4. Derivative of the function \(f(x) = \tan x\) at \(x = \frac{\pi}{4}\)
5. (a) The difference in height between the points \((0.9, \sin 0.9)\) and \((1.3, \sin 1.3)\)
 (b) The slope of the secant line between the points \((0.9, \sin 0.9)\) and \((1.3, \sin 1.3)\)
 (c) The slope of the tangent line to the graph at \(x = 0.9\)

Section 3.1 Exercises

1. \(f'(3) = 30\) 5. \(f'(-1) = -2\)
7. \(f'(1) = 5\)
9. Slope of the secant line = 1; the secant line through \((2, f(2))\) and \((2.5, f(2.5))\) has a larger slope than the tangent line at \(x = 2\).
11. \(f'(1) \approx 0; f'(2) \approx 0.8\)
13. \(f'(1) = f'(2) = 0; f'(4) = \frac{1}{2}; f'(7) = 0\)
15. \(f'(5.5)\)
17. \(f'(x) = 7\)
19. \(g'(t) = -3\)
21. \(y - 2x - 1\)
23. The tangent line at any point is the line itself.
25. \(f(-2 + h) = \frac{1}{-2 + h} - \frac{1}{3}\)
27. \(f'(5) = -\frac{10}{5}\)
29. \(f'(3) = 22; y = 22x - 18\)
31. \(f'(3) = -11; y = -11x + 18\)
33. \(f'(0) = 1; y = x\)
35. \(f'(8) = -\frac{1}{64}; y = -\frac{1}{64}x + \frac{1}{4}\)
37. \(f'(-2) = -1; y = -x + 1\)
39. \(f'(1) = \frac{1}{2\sqrt{3}}; y = \frac{1}{2\sqrt{5}}x + \frac{9}{2\sqrt{5}}\)
41. \(f'(4) = -\frac{1}{16}; y = -\frac{1}{16}x + \frac{3}{4}\)
43. \(f'(3) = \frac{3}{\sqrt{10}}; y = \frac{3}{\sqrt{10}}x + \frac{1}{\sqrt{10}}\)
45. \(f'(0) = 0; y = 1\)
47. \(W'(4) \approx 0.9\) kg/year; slope of the tangent is zero at \(t = 10\) and at \(t = 11.6\); slope of the tangent line is negative for \(10 < t < 11.6\).
49. (a) \(f'(0) \approx -0.68\)
 (b) \(y = -0.68x + 2\)
51. For \(1 < x < 2.5\) and for \(x > 3.5\)
 (a) \(f(x) = x^3\) and \(a = 5\)
 (b) \(f(x) = \sin x \) and \(a = \frac{\pi}{6}\)
 (c) \(f(x) = 5^x\) and \(a = 2\)
 (d) \(f'(\frac{\pi}{4}) \approx 0.7071\)

ANSWERS TO ODD-NUMBERED EXERCISES

61. On curve (A), \(f'(1)\) is larger than \(\frac{f(1 + h) - f(1)}{h}\)
 The curve is bending downward, so the secant line to the right is at a lower angle than the tangent line.
 On curve (B), \(f'(1)\) is smaller than \(\frac{f(1 + h) - f(1)}{h}\)
 The curve is bending upward, so the secant line to the right is at a steeper angle than the tangent line.
63. (b) \(f'(4) \approx 20.0000\)
65. \(c \approx 0.37\)
67. \(P'(303) \approx \frac{P'(313) - P'(293)}{20} = \frac{0.0808 - 0.0278}{20} = 0.00265\) atm/K;
 \(P'(313) \approx \frac{P'(323) - P'(303)}{20} = \frac{0.1311 - 0.0482}{20} = 0.004145\) atm/K;
 \(P'(323) \approx \frac{P'(333) - P'(313)}{20} = \frac{0.2067 - 0.0808}{20} = 0.006295\) atm/K;
 \(P'(333) \approx \frac{P'(343) - P'(333)}{20} = \frac{0.4754 - 0.2067}{20} = 0.013435\) atm/K;
69. \(-0.39375\) kph-km/car
71. \(i(3) = 0.06\) amperes
73. \(v'(4) \approx 160; C \approx 0.2\) farads
75. It is the slope of the secant line connecting the points \((a - h, f(a - h))\) and \((a + h, f(a + h))\) on the graph of \(f\).
77. Let \(f(x) = px^2 + qx + r\); SDQ: \((f(a + h) - f(a - h))/2h = 2h(2pa + q)/2h = 2pa + q; \ f'(a) = \lim_{h \to 0} (f(a + h) - f(a))/h = 2pa + q\)

Section 3.2 Preliminary Questions

1. \(2\) 5. \((f - g)'(1) = -2\) and \((3f + 2g)'(1) = 9\)
3. \(a), (b), (c), and (f)\)
4. \(b\)
5. If \(f\) is differentiable at \(x = c\), then it is continuous at \(x = c\) by Theorem 4. However (see Example 9), there are functions that are continuous at a point without being differentiable there.
Section 3.2 Exercises

1. \(f'(x) = 3 \) 3. \(f'(x) = 3x^2 \) 5. \(f'(x) = 1 - \frac{1}{2\sqrt{x}} \)
7. \(\frac{d}{dx} x^4 \bigg|_{x=-2} = 4(-2)^3 = -32 \)
9. \(\frac{d}{dt} (2/3) \bigg|_{t=8} = \frac{2}{3} \frac{(8)^{-1/3}}{1} = \frac{1}{3} \)
11. 0.35\(x^{-0.65} \) 13. \(\sqrt{7x} \sqrt{7x-1} \)
15. \(f'(x) = 4x^3; y = 32x - 48 \)
17. \(f'(x) = 5 - 16x^{-1/2}; y = -3x - 32 \)
19. \(f'(x) = -\frac{1}{2x^{3/2}}; y = -\frac{1}{54} (x - 9); y = \frac{1}{2} - \frac{1}{54}x \)
21. \(f'(x) = 6x^2 - 6x \) 23. \(f'(x) = \frac{20}{3} x^{2/3} + 6x^{-3} \)
25. \(g'(x) = -\frac{5}{2} - 19/14 - 5z^{-6} \) 27. \(f'(x) = \frac{1}{4} x^{-3/4} + \frac{1}{3} x^{-2/3} \)
29. \(g'(x) = 0 \) 31. \(h'(t) = 2\sqrt{7} \) 33. \(P'(x) = 32x - 24 \)
35. \(g'(x) = -6x^{-5/2} \) 37. 1 39. -60 41. \(\frac{47}{16} \)
43. * The graph in (A) matches the derivative in (III).
 * The graph in (B) matches the derivative in (I).
 * The graph in (C) matches the derivative in (II).
 * The graph in (D) matches the derivative in (III).
 (A) and (D) have the same derivative because the graph in (D) is just a vertical translation of the graph in (A).
45. Label the graph in (A) as \(f \), the graph in (B) as \(h \), and the graph in (C) as \(g \).
47. (B) might be the graph of the derivative of \(f \).
49. (a) \(\frac{d}{dt} ct^3 = 3ct^2 \) (b) \(\frac{d}{dz} (5z + 4cz^2) = 5 + 8cz \)
 (c) \(\frac{d}{dy} (9c^2y^3 - 24c) = 27c^2y^2 \)
51. \(x = \frac{1}{2} \) 53. \(a = 2 \) and \(b = -3 \)
55. * \(f'(x) = 3x^2 - 3 \geq -3 \) since \(3x^2 \) is nonnegative.
 * The two parallel tangent lines with slope 2 are shown with the graph of \(f \) here.

57. \(f'(x) = \frac{3}{2} x^{1/2} \)
59. \(\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} = \lim_{h \to 0} \frac{|h^2 + 2h|}{h} = \lim_{h \to 0} \frac{(h+2)|h|}{h} \)
This limit does not exist, since the \(h+2 \) term becomes 2 as \(h \to 0 \), but the remaining term, \(|h|/h \), is 1 for \(h > 0 \) and -1 for \(h < 0 \). Thus the two one-sided limits are not equal.
61. Decreasing; \(y = -0.63216(m - 33) + 83.445 \); \(y = -0.25606(m - 68) + 69.647 \)

ANSWERS TO ODD-NUMBERED EXERCISES

63. \(P'(303) \approx \frac{P(313) - P(293)}{20} \approx \frac{0.0808 - 0.0278}{20} = 0.00265 \text{ atm/K;} \)
 \(P'(313) \approx \frac{P(323) - P(303)}{20} \approx \frac{0.1311 - 0.0482}{20} = 0.004145 \text{ atm/K;} \)
 \(P'(323) \approx \frac{P(333) - P(313)}{20} \approx \frac{0.2067 - 0.0808}{20} = 0.006295 \text{ atm/K;} \)
 \(P'(333) \approx \frac{P(343) - P(333)}{20} \approx \frac{0.3173 - 0.1311}{20} = 0.00931 \text{ atm/K;} \)
 \(P'(343) \approx \frac{P(353) - P(333)}{20} \approx \frac{0.4754 - 0.2067}{20} = 0.013435 \text{ atm/K} \)

\(T^2 \frac{dP}{P \frac{dT}{T}} \) is roughly constant, suggesting that the Clausius–Clapeyron law is valid, and that \(k \approx 5000 \).

67.

69. For \(x < 0 \), \(f(x) = -x^2 \), and \(f'(x) = -2x \). For \(x > 0 \), \(f(x) = x^2 \), and \(f'(x) = 2x \). Thus, \(f'(0) = 0 \).

71. \(c = 1 \) 73. \(c = 0 \) 75. \(c = \pm 1 \)
77. It appears that \(f \) is not differentiable at \(a = 0 \). Moreover, the tangent line does not exist at this point.
79. It appears that \(f \) is not differentiable at \(a = 3 \). Moreover, the tangent line appears to be vertical.
81. It appears that \(f \) is not differentiable at \(a = 0 \). Moreover, the tangent line does not exist at this point.
83. (1, 8) 85. \(\frac{10}{7} \)
87. The normal line intersects the \(x \)-axis at the point \(T \) with coordinates \((x + f(x)f'(x), 0) \). The point \(R \) has coordinates \((x, 0) \), so the subnormal is \(|x + f(x)f'(x) - x| = |f(x)f'(x)| \).
89. The tangent line to \(f \) at \(x = a \) is \(y = 2ax - a^2 \). The \(x \)-intercept of this line is \(\frac{a}{2} \), so the subtangent is \(a - \frac{a}{2} = a/2 \).
91. The subtangent is \(\frac{1}{n} \). 93. \(r \leq \frac{1}{2} \)

Section 3.3 Preliminary Questions

1. (a) False. The notation \(fg \) denotes the function whose value at \(x \) is \(f(x)g(x) \).
 (b) True.
 (c) False. The derivative of a product \(fg \) is \(f'(x)g(x) + f(x)g'(x) \).
 (d) False. \(\frac{d}{dx} (fg) \bigg|_{x=4} = f(4)g'(4) + g(4)f'(4) \).
 (e) True.
2. -1 3. 5
Section 3.3 Exercises

1. \(f'(x) = 10x^3 + 3x^2 \)
2. \(f'(x) = \frac{1}{2\sqrt{x}} - 2 \sqrt{x} = \sqrt{x} - 2 \sqrt{x} = 0 \)
3. \(\frac{dh}{dx} = \frac{7x^3}{2} + \frac{3x^4}{14} = \frac{871}{64} \)
4. \(f'(x) = -2 \) \(\frac{dg}{dt} = -4t \) \(\frac{dg}{dt} \mid_{t=-2} = \frac{8}{9} \)
5. \(g'(x) = -\frac{3\sqrt{2}}{2(1 + x \sqrt{2})^2} \)
6. \(f'(t) = 6t^2 + 2t - 4 \)
7. \(h'(t) = 1 \) for \(t \neq 1 \)
8. \(f'(x) = 6x^5 + 4x^3 + 18x^2 + 5 \)
9. \(\frac{dy}{dx} = \frac{3}{(x^3 + 1)^2} \)
10. \(f'(x) = 1 \) for \(x \geq 0 \)
11. \(\frac{dz}{dx} = \frac{3x^2}{(x^3 + 1)^2} \)
12. \(h'(t) = -2t^2 - t + 1 \)
13. \(f'(t) = 0 \)
14. \(g'(t) = 3x^2 - 6x - 13 \)
15. \(f'(x) = \frac{\sqrt{5}x^3 + 7x^2 + x + 3}{2(x + 1)^2} \)
16. \(f'(x) = \frac{-3x^2 + 4x}{(x^2 - 5)^2} \)
17. \(f'(t) = 0 \)

Section 3.4 Preliminary Questions

1. \(a \) atmospheres/meter \(b \) moles/(liter-hour)
2. 90 mph \(3 \) \(f(26) \approx 43.75 \)
3. \(P' \) (2009) measures the rate of change of the population of Freedonia in the year 2009.
\(b \) \(P(2010) \approx 5.2 \) million.

Section 3.4 Exercises

1. 10 square units per unit increase
2. \(c \) ROC of \(f(x) \) with respect to \(x \) at \(x = c \)
 - \(f'(1) = \frac{1}{2} \)
 - \(f'(8) = \frac{26}{11} \)
 - \(f'(27) = \frac{1}{27} \)
3. \(\frac{dT}{dt} \approx -1.5625 \) C/hour
4. \(\frac{dT}{dh} \) over the interval \([13, 23]\), and near the points \(h = 50 \) and \(h = 90 \)
5. \(\frac{dr}{dt} = 2 \)
6. \(\frac{dV}{dt} = 3\pi r^2 \)
7. \(a \) 100 km/hour \(b \) 100 km/hour \(c \) 0 km/hour \(d \) 50 km/hour
8. \(a \) (i) \(b \) (ii) \(c \) (iii)
9. \(\frac{dT}{dh} \) over the interval \([13, 23]\), and near the points \(h = 50 \) and \(h = 90 \)
10. \(\frac{dV}{dv} \approx 1 \)
11. \(a \) \(\frac{dV}{dv} = -1 \)
12. \(b \) \(\frac{dV}{dv} = -4 \)
13. \(\frac{dT}{dh} \) over the interval \([13, 23]\), and near the points \(h = 50 \) and \(h = 90 \)
14. \(\frac{dV}{dv} \approx 1 \)
15. \(\frac{dT}{dh} \) over the interval \([13, 23]\), and near the points \(h = 50 \) and \(h = 90 \)
16. \(\frac{dT}{dh} \) over the interval \([13, 23]\), and near the points \(h = 50 \) and \(h = 90 \)
17. \(\frac{dT}{dh} \) over the interval \([13, 23]\), and near the points \(h = 50 \) and \(h = 90 \)
18. \(\frac{dT}{dh} \) over the interval \([13, 23]\), and near the points \(h = 50 \) and \(h = 90 \)
19. \(\frac{dV}{dv} \approx 1 \)
20. \(25. \) Maximum velocity: 200 m/s; maximum height: 2040.82 m
 \(26. \) Initial velocity: \(v_0 = 19.6 \) m/s; maximum height: 19.6 m
21. \(a \) \(\frac{dV}{dv} = -1 \)
22. \(b \) \(\frac{dV}{dv} = -4 \)
23. \(\frac{dV}{dv} \approx 1 \)
24. \(\frac{dV}{dv} \approx 1 \)
25. \(\frac{dV}{dv} \approx 1 \)
26. \(\frac{dV}{dv} \approx 1 \)
27. \(\frac{dV}{dv} \approx 1 \)
28. \(\frac{dV}{dv} \approx 1 \)
29. \(\frac{dV}{dv} \approx 1 \)
30. \(\frac{dV}{dv} \approx 1 \)
31. \(\frac{dV}{dv} \approx 1 \)
32. \(\frac{dV}{dv} \approx 1 \)
33. \(\frac{dV}{dv} \approx 1 \)
34. \(\frac{dV}{dv} \approx 1 \)
35. \(\frac{dV}{dv} \approx 1 \)
36. \(\frac{dV}{dv} \approx 1 \)
37. \(\frac{dV}{dv} \approx 1 \)
38. \(\frac{dV}{dv} \approx 1 \)
39. \(\frac{dV}{dv} \approx 1 \)
40. \(\frac{dV}{dv} \approx 1 \)
41. \(\frac{dV}{dv} \approx 1 \)
42. \(\frac{dV}{dv} \approx 1 \)
43. \(\frac{dV}{dv} \approx 1 \)
44. \(\frac{dV}{dv} \approx 1 \)
45. \(\frac{dV}{dv} \approx 1 \)
46. \(\frac{dV}{dv} \approx 1 \)
47. \(\frac{dV}{dv} \approx 1 \)
48. \(\frac{dV}{dv} \approx 1 \)
49. \(\frac{dV}{dv} \approx 1 \)
39. \(\sqrt{5} - \sqrt{1} \approx \frac{1}{2} \); the actual value, to six decimal places, is 0.414214. \(\sqrt{0.1} - \sqrt{0.001} \approx .05 \); the actual value, to six decimal places, is 0.0498756.

41. (a) \(F(65) = 282.75 \) ft
(b) Increasing speed from 65 to 66 therefore increases stopping distance by approximately 7.6 ft.
(c) The actual increase in stopping distance when speed increases from 65 mph to 66 mph is
\[F(66) - F(65) = 290.4 - 282.75 = 7.65 \text{ ft}, \]
which differs by less than 1% from the estimate found using the derivative.

43. The cost of producing 2000 bagels is $796. The cost of the 2001st bagel is approximately $0.244, which is indistinguishable from the estimated cost.

45. An increase in oil prices of a dollar leads to a decrease in demand of 0.5625 barrels a year, and a decrease of a dollar leads to an increase in demand of 0.5625 barrels a year.

47. \(\frac{dB}{dI} = \frac{2k}{3I^{1/3}} \)
(a) As \(I \) increases, \(\frac{dB}{dI} \) shrinks, so the rate of change of perceived intensity decreases as the actual intensity increases.
(b) As \(W \) increases, \(\frac{dB}{dW} \) increases as well, so the rate of change of perceived weight increases as weight increases.

49. (a) The average income among households in the bottom \(r \)th part is
\[\frac{F(r)T}{rN} = \frac{F(r)}{r} \cdot \frac{T}{N} = \frac{F(r)}{r} \cdot \frac{rN}{r} = \frac{F(r)}{r} A \]
(b) The average income of households belonging to an interval \([r, r + \Delta r] \) is equal to
\[\frac{F(r + \Delta r)T - F(r)T}{\Delta r N} = \frac{F(r + \Delta r) - F(r)}{\Delta r} \cdot \frac{T}{N} \]
\[\lim_{\Delta r \to 0} \frac{F(r + \Delta r) - F(r)}{\Delta r} = F'(r) \]
we find that a household in the 100th percentile has income \(F'(r) A \).
(d) The point \(P \) in Figure 14(B) has an \(r \)-coordinate of 0.6, while the point \(Q \) has an \(r \)-coordinate of roughly 0.75. Thus, on curve \(L_1 \), 40% of households have \(F'(r) > 1 \) and therefore have above-average income. On curve \(L_2 \), roughly 25% of households have above-average income.

53. By definition, the slope of the line through \((0, 0)\) and \((x, C(x))\) is
\[\frac{C(x) - 0}{x - 0} = \frac{C(x)}{x} = C_{\text{avg}}(x) \]
(a) At point \(A \), average cost is greater than marginal cost.
(b) At point \(B \), average cost is greater than marginal cost.
(c) At point \(C \), average cost and marginal cost are nearly the same.
(d) At point \(D \), average cost is less than marginal cost.

Section 3.5 Preliminary Questions
1. The first derivative of stock prices must be positive, while the second derivative must be negative.
2. True
3. All quadratic polynomials
4. 0

Section 3.5 Exercises
1. \(y'' = 28 \) and \(y''' = 0 \)
3. \(y'' = 12x^2 - 50 \) and \(y''' = 24x \)
5. \(y'' = 8\pi r \) and \(y''' = 8\pi \)
7. \(y'' = -\frac{16}{5} t^{-6/5} + \frac{4}{3} t^{-4/3} \) and \(y''' = \frac{96}{25} t^{-11/5} - \frac{16}{9} t^{-7/3} \)
9. \(y'' = -8z^{-3} \) and \(y''' = 24z^{-4} \)
11. \(y'' = 129 + 14 \) and \(y''' = 12 \)
13. \(y'' = -8x^{-3} \) and \(y''' = 24x^{-4} \)
15. \(y'' = \frac{1}{4} (3x^{-5/2} - s^{-3/2}) \) and \(y''' = \frac{1}{8} (3x^{-5/2} - 15s^{-7/2}) \)
17. \(f^{(4)}(1) = 24 \)
19. \(\frac{d^2y}{dt^2} \bigg|_{t=1} = 54 \)
21. \(\frac{d^4x}{dt^4} \bigg|_{t=16} = 134217728 \)
23. \(f'''(-3) = -\frac{62}{9} \)
25. \(h''(1) = \frac{1}{8} \)
27. \(y(0) = 0, y(1) = e, y(2) = 2b, y(3) = 0 \) and \(y(4) = 24 \) and \(y(5) = 0 \)
29. \(\int x^{-1} = 720x^{-7} \)
31. \(f^{(n)}(x) = (-1)^n (n + 1)! x^{-(n+2)} \)
33. \(f^{(n)}(x) = (-1)^n (2n-1) \cdots (2n-3) x^{-(2n+1)/2} \)
35. \(f^{(n)}(x) = (-1)^n n! (x + n + 1) \cdots \frac{1}{x+n+1} \)
37. (a) \(a(5) = -120 \) m/min²
(b) The acceleration of the helicopter for \(0 \leq t \leq 6 \) is shown in the figure below. As the acceleration of the helicopter is negative, the velocity of the helicopter must be decreasing. Because the velocity is positive for \(0 \leq t \leq 6 \), the helicopter is slowing down.

![Graph showing the velocity of the helicopter over time](image-url)
47. A possible plot of the drill bit’s vertical velocity follows:

![Graph of vertical velocity]

A graph of the acceleration is extracted from this graph:

![Graph of acceleration]

49. (a) Traffic speed must be reduced when the road gets more crowded, so we expect $\frac{dS}{dQ}$ to be negative.

(b) The decrease in speed due to a 1-unit increase in density is approximately $\frac{dS}{dQ}$ (a negative number). Since $\frac{d^2S}{dQ^2} = 5764Q^{-3} > 0$ is positive, this tells us that $\frac{dS}{dQ}$ gets larger as Q increases.

(c) dS/dQ is plotted below. The fact that this graph is increasing shows that $d^2S/dQ^2 > 0$.

![Graph of dS/dQ]

51.

$$f'(x) = -\frac{3}{(x-1)^2} = (-1)^1 \frac{3 - 1}{(x-1)^{2+1}};$$

$$f''(x) = \frac{6}{(x-1)^3} = (-1)^2 \frac{3 \cdot 1}{(x-1)^{3+1}};$$

$$f'''(x) = -\frac{18}{(x-1)^4} = (-1)^3 \frac{3 \cdot 3!}{(x-1)^{4+1}}; \text{ and}$$

$$f''''(x) = \frac{72}{(x-1)^5} = (-1)^4 \frac{3 \cdot 4!}{(x-1)^{5+1}}$$

From the pattern observed above, we conjecture

$$f^{(k)}(x) = (-1)^k \frac{3 \cdot k!}{(x-1)^{k+1}}$$

53. 99!

55. $(fg)^{(n)} = f^{(n)}g + 3f^{(n-1)}g' + 3f^{(n-2)}g'' + fg^{(n)}$;

$$(fg)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(n-k)}g^{(k)}$$

Section 3.6 Exercises

1. $y = \frac{\sqrt{3}}{2}x + \frac{\sqrt{3}}{2} \left(1 - \frac{\pi}{4}\right)$

3. $y = 2x + 1 - \frac{\pi}{2}$

5. $f'(x) = \cos^2 x - \sin^2 x$

7. $f'(x) = 2\sin x \cos x$

9. $H'(t) = \sec t + 2\sin t \sec^2 t \tan t$

11. $f''(\theta) = \sec \theta (\sec^2 \theta + \tan^2 \theta)$

13. $f'(x) = (8x^3 + 4x^{-2}) \sec x + (2x^4 - 4x^{-1}) \sec x \tan x$

15. $y' = \frac{\theta \sec \theta \sec \tan \theta - \sec \theta}{\theta^2}$

17. $R'(y) = \frac{4 \cos y - 3}{\sin^2 y}$

19. $f'(x) = \frac{2\sec^2 x}{(1 - \tan x)^2}$

21. $f'(x) = \frac{-2\cos x}{(\sin x - 1)^2}$

23. $R'(\theta) = -\frac{4\sin \theta}{(4 + \cos \theta)^2}$

25. $y = 1 \quad 27. \quad y = \frac{2}{3}t + \frac{3\sqrt{3} - 2\pi}{9}$

29. $y = (1 + \sqrt{3}) \left(\theta - \frac{\pi}{3}\right) + 1 + \sqrt{3}$

31. $y = \frac{7}{6}t + \frac{3\sqrt{3} + 7\pi}{18}$

33. $y = 6\pi t - \frac{9}{2} \pi^2$

35. $\cot x = \frac{\cos x}{\sin x}$; use the Quotient Rule.

37. $\csc x = \frac{1}{\sin x}$; use the Quotient Rule.

39. $f''(\theta) = 2\cos \theta - \sin \theta$

41. $y'' = 2\sec^2 x \tan x$

$y^{(n)} = 2\sec^2 x + 4\sec^2 x \tan^2 x$

43. Then $f'(x) = -\sin x, f''(x) = -\cos x, f'''(x) = \sin x, f^{(4)}(x) = \cos x, \text{ and } f^{(5)}(x) = -\sin x$.

Accordingly, the successive derivatives of f cycle among

$$\{-\sin x, -\cos x, \sin x, \cos x\}$$

in that order. Since 8 is a multiple of 4, we have $f^{(8)}(x) = \cos x$.

Since 36 is a multiple of 4, we have $f^{(36)}(x) = \cos x$.

Therefore, $f^{(37)}(x) = -\sin x$.

45. $x = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$

47. (a) This function can be differentiated using the Product Rule.

(b) We have not yet discussed how to differentiate a function like this.

(e) This function can be differentiated using the Product Rule.

3. 0

4. The difference quotient for the function $f'(x) = \sin x$ involves the expression $\sin(x + h)$. The addition formula for the sine function is used to expand this expression as $\sin(x + h) = \sin x \cos h + \sin h \cos x$.

Section 3.6 Preliminary Questions

1. (a) $\frac{d}{dx} (\sin x + \cos x) = -\sin x + \cos x$

(b) $\frac{d}{dx} \sec x = \sec x \tan x$

(c) $\frac{d}{dx} \cot x = -\csc^2 x$

(b) Since $g'(t) = 1 - \cos t \geq 0$ for all t, the slope of the tangent line to g is always nonnegative.

(e) $t = 0, 2\pi, 4\pi$
49. \(f'(x) = \sec^2 x = \frac{1}{\cos^2 x} \). Note that \(f'(x) = \frac{1}{\cos^2 x} \) has numerator 1; the equation \(f'(x) = 0 \) therefore has no solution. The least slope for a tangent line to \(\tan x \) is 1. Here is a graph of \(f' \).

\[
\begin{array}{c}
-4 & -2 & 2 & 4 \\
-12 & -10 & 10 & 12
\end{array}
\]

51. \(\frac{dR}{d\theta} = (v_0^2/9.8)(-\sin^2 \theta + \cos^2 \theta) \); if \(\theta = 7\pi/24 \), increasing the angle will decrease the range.

53. \(f'(x) = \lim_{h \to 0} \frac{\cos(x + h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} \)
\[
= \lim_{h \to 0} \left((\sin x) \frac{\sin h}{h} + (\cos x) \frac{\cos h - 1}{h} \right)
\]
\[
= (\sin x) \cdot 1 + (\cos x) \cdot 0 = -\sin x
\]

Section 3.7 Preliminary Questions

1. (a) The outer function is \(\sqrt{x} \), and the inner function is \(4x + 9x^2 \).
 (b) The outer function is \(\tan x \), and the inner function is \(x^2 + 1 \).
 (c) The outer function is \(x^5 \), and the inner function is \(\sec x \).
 (d) The outer function is \(x^3 \), and the inner function is \(1 + x^{12} \).
 (e) The function \(x^{\frac{1}{2}} \) can be differentiated using the Quotient Rule, and the functions \(\sqrt[3]{x} \cdot \sec x \) and \(x^e \) can be differentiated using the Product Rule. The functions \(\tan(7x^2 + 2) \), \(\sqrt{x} \cos x \) and \(e^{\sin x} \) require the Chain Rule.

3. (b)
4. We do not have enough information to compute \(F'(4) \). We are missing the value of \(f'(1) \).

Section 3.7 Exercises

1. \[
\begin{array}{c|c|c|c|c|c}
\hline
f(g(x)) & f'(u) & f'(g(x)) & g'(x) & (f \circ g)' \\
\hline
\tan(x^2) & \sec^2 u & \sec^2(x^4) & 4x^3 & 4x^3 \sec^2(x^4) \\
\hline
\end{array}
\]

3. \[
\begin{align*}
\tan(x^2) & - \sec^2 x \sin(x^2) \\
\end{align*}
\]

5. \(4(x + \sin x)^3(1 + \cos x) \)

7. (a) \(2x \sin(9 - x^2) \) \(\frac{\sin(x^2)}{x^2} \) \(\cos x \sin(x^2) \)

9. 12 \(12x^3(4x^2 + 5) \)

11. \(2\sqrt{14x^3} - \frac{7}{x} \)

15. \(-2(x^2 + 9x)^{-3}(2x + 9) \)

17. \(-4 \cos^3 \theta \sin \theta \)

19. \(9(2 \cos \theta + 5 \sin \theta)^5(5 \cos \theta - 2 \sin \theta) \)

21. \((x + 1)(x^2 + 2x + 9)^{-1/2} \)

23. \(2 \cos(2x + 1) \)

25. \(\sec^2 x - \csc^2 x \)

27. \[
\frac{d}{dx} f(g(x)) = -\sin(x^2 + 1)(2x) = -2x \sin(x^2 + 1)
\]

\[
\frac{d}{dx} g(f(x)) = -2 \sin x \cos x
\]

29. \(2x \cos \left(x^2 \right) \)

31. \(\frac{t}{\sqrt{t^2 + 9}} \)

33. \(\frac{2}{3} \left(x^4 - x^3 - 1 \right)^{-1/3} \left(4x^3 - 3x^2 \right) \)

35. \((1 + x)^3 \) \((1 - x)^3 \)

37. \(-\sec(1/x) \tan(1/x) \)

39. \(\left(1 - \sin \theta \right) \sec^2 \left(\theta + \cos \theta \right) \)

41. \(4 \cot(2\theta - 9) \csc(2\theta - 9) \)

43. \((2x + 4) \sec^2(x^2 + 4x) \)

45. \(\cos(1 - 3x) + 3x \sin(1 - 3x) \)

47. \((2\theta + 9)^{-1/2} \)

49. \(4(\sin x - 3x^2)(x^3 + \cos x)^{-5} \)

51. \(\cos 2x \sqrt{2} \sin 2x \)

53. \(\frac{x \cos(x^2) - 3 \sin 6x}{\cos 6x + \sin(x^2)} \)

55. \(3(\tan^2 x \sec^2 x + x^2 \sec^2(3x)) \)

57. \(\frac{-1}{8 \sqrt{\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{x}}}}} \}

59. \(\frac{\sin(-1) - \sin(1 + x)}{(1 + \cos x)^2} \)

61. \(-35x^4 \cot^6 \left(\frac{x^5}{3} \right) \)

63. \(-180x^3 \cot^4 \left(\frac{x^4 + 1}{3} \right) \)

65. \(-36x^2 \left(1 - \cot^2 \left(1 - x^3 \right) \right)^5 \cot(1 - x^3) \)

67. \(-\frac{1}{2x^2} - \frac{3}{2x} \)

69. \(\frac{\sqrt{3} + \sqrt{3} \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{x}}}}}{8 \sqrt{\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{x}}}}} \}

71. \(\frac{k}{3} (x + b)^{-4/3} \)

73. \(2 \cos \left(\frac{x^2}{2} \right) - 4x^2 \sin \left(\frac{x^2}{2} \right) \)

77. \(-336(9 - x)^5 \) \(\frac{dV}{dP} \) \(\rho = 1.5 \) \(= \frac{290\sqrt{5}}{3} \) \(\text{m} \) \text{ s}\cdot\text{atm} \)

79. (a) When \(r = 3 \), \(\frac{dV}{dt} = 1.6\pi(3)^2 \approx 45.24 \text{ cm/s} \).

(b) When \(t = 3 \), we have \(r = 1.2 \). Hence, \(\frac{dV}{dt} = 1.6\pi(1.2)^2 \approx 7.24 \text{ cm/s} \).

81. \(W'(10) \approx 0.3600 \text{ kg/year} \)

83. (a) \(\frac{\pi}{360} \) \(\frac{\pi}{90} \)

85. \(\sqrt{3} \)

87. 12 \(\frac{1}{16} \)

89. 1 \(\frac{dP}{dt} \) \(t = 1.5 \) \(= -0.727 \text{ dollars/year} \)

91. \(\frac{dV}{dt} = \frac{-4.03366 \times 10^{-16}}{288.14 - 0.000649 \times 4.256} \text{ for each additional meter of altitude, } \Delta P \approx -1.15 \times 10^{-2} \text{ Pa} \)

93. \(\frac{0.0973 \text{ kelvins/year}}{97.} \)

99. \(u = h(x), v = g(a), \text{ and } w = f(v) \).

Then \(\frac{d}{dx} g(h(x))g'(h(x))h'(x) \)

103. For \(n = 1 \), we find \(\frac{d}{dx} \sin x = \cos x = \sin \left(x + \frac{\pi}{2} \right) \)

as required. Now, suppose that for some positive integer \(k \),

\[
\frac{d^{k+1}}{dx^{k+1}} \sin x = \frac{d}{dx} \sin \left(x + \frac{k\pi}{2} \right)
\]

Then

\[
\frac{d^{k+1}}{dx^{k+1}} \sin x = \frac{d}{dx} \sin \left(x + \frac{k\pi}{2} \right) = \cos \left(x + \frac{k\pi}{2} \right) = \sin \left(x + \frac{(k+1)\pi}{2} \right)
\]
Section 3.8 Preliminary Questions

1. The Chain Rule
2. (a) This is correct. (b) This is correct.

(c) This is incorrect. Because the differentiation is with respect to the variable \(x \), the Chain Rule is needed to obtain

\[
\frac{d}{dx} \sin(y^2) = 2y \cos(y^2) \frac{dy}{dx}
\]

3. There are two mistakes in Jason’s answer. First, Jason should have applied the product rule to the second term to obtain

\[
\frac{d}{dx}(2xy) = 2x \frac{dy}{dx} + 2y
\]

Second, he should have applied the general power rule to the third term to obtain

\[
\frac{d}{dx}y^3 = 3y^2 \frac{dy}{dx}
\]

4. (b)

Section 3.8 Exercises

1. (2, 1), \(\frac{dy}{dx} = \frac{2}{3} \)
3. \(\frac{d}{dx} \left(x^2 y^3 \right) = 3x^2y^2 \frac{dy}{dx} + 2x y^3 \)
5. \(\frac{d}{dx} \left(\left(x^2 + y^2 \right)^{3/2} \right) = 3 \left(x + y \frac{dy}{dx} \right) \sqrt{x^2 + y^2} \)
7. \(\frac{d}{dx} \frac{y}{x + y} + 1 = \frac{y'}{(y+1)^2} \)
9. \(y' = -\frac{2x}{3y^2} \)
11. \(y' = \frac{2xy + 6x^2 y - 1}{1 - x^2 - 2x^3} \)
13. \(R' = -\frac{3R}{5x} \)
15. \(y' = \frac{y(x^2 - x^2)}{x(y^2 - x^2 - 2x y^2)} \)
17. \(y' = \frac{9}{4} x^{1/2} y^{3/2} \)
19. \(y' = \frac{(2x + 1)y^2}{y^2 - 1} \)
21. \(y' = \frac{1 - \cos(x + y)}{\cos(x + y) + \sin y} \)
23. \(y' = -\frac{\tan^2(x + y) - \tan^2(x)}{\tan^2(x + y) - \tan^2(y)} \)
25. \(y' = \frac{y + 3 \sin(3x - y)}{\sin(3x - y) - x} \)

27. Multiplying both sides of \(x + y x^{-1} = 1 \) by \(x \) gives \(x^2 + y = x \), so the two define the same curve except when \(x = 0 \). Since \(y = x - x^2 \), differentiating the first form gives

\[
y' = \frac{y}{x} - x = \frac{x - x^2}{x} - x = 1 - 2x.
\]

29. \(y = \frac{1}{4} \)
31. \(y = -\frac{2}{3}x + 2 \)
33. \(y = -2x + 2 \)
35. \(y = -\frac{12}{5}x + \frac{32}{5} \)
37. \(y = 2x + \pi \)

39. The tangent is horizontal at the points \((-1, \sqrt{3})\) and \((-1, -\sqrt{3})\).

41. The tangent line is horizontal at

\[
\left(\frac{2\sqrt{78}}{13}, 4\sqrt{78} \right) \quad \text{and} \quad \left(-\frac{2\sqrt{78}}{13}, \frac{4\sqrt{78}}{13} \right)
\]

43. The slopes corresponding to \(x = 0 \) are \(-1 \pm \frac{1}{2} \sqrt{2} \). At \((1, 1)\), the tangent line has equation \(x - 5y = -4 \).

45. \((2^{1/3}, 2^{2/3})\) 47. \(x = \frac{1}{2}, 1 \pm \sqrt{2} \)
Section 3.9 Preliminary Questions

1. Let s and V denote the length of the side and the corresponding volume of a cube, respectively. Determine $\frac{dV}{ds}$ if $\frac{ds}{dt} = 0.5$ cm/s.
2. $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$
3. Determine $\frac{dh}{dh}$ if $\frac{dV}{dh} = 2$ cm3/min
4. Determine $\frac{dV}{dh}$ if $\frac{dh}{dt} = 1$ cm/min

Section 3.9 Exercises

1. 0.039 ft/min
2. (a) $100\pi \approx 314.16$ m2/min (b) $24\pi \approx 75.40$ m2/min
3. 27000 m cm3/min 7. 96000 cm3/min
9. -0.632 m/s 11. $x = 4.737$ m; $\frac{dy}{dt} \approx 0.405$ m/s
13. $\frac{9}{8\pi} \approx 0.36$ m/min 15. $\frac{1000\pi}{3} \approx 1047.20$ cm3/s
17. 0.675 m/s
19. (a) 594.6 km/hr (b) 0 km/h
21. 1.22 km/min 23. $\frac{1200}{241} \approx 4.98$ rad/h
25. (a) $\frac{100\sqrt{13}}{13} \approx 57735$ km/hr (b) 112962 km/hr
27. $\sqrt{15.2} \approx 4.025$ m 29. $\frac{5}{3} \approx 1.67$ m/s 31. -1.92 kPa/min
33. $\frac{1}{8}$ rad/s
35. (b): when $x = 1$, $L'(t) = 0$; when $x = 2$, $L'(t) = \frac{16}{3}$
37. $-4\sqrt{3} \approx -8.94$ ft/s 39. -0.79 m/min
41. Let the equation $y = f(x)$ describe the shape of the roller coaster track. Taking $\frac{d^2y}{dx^2}$ of both sides of this equation yields $\frac{d^2y}{dx^2} = f''(x)\frac{dx}{df}$.
43. (a) The distance formula gives

 $$L = \sqrt{(x - r \cos \theta)^2 + (-r \sin \theta)^2}$$

 Thus,

 $$L^2 = (x - r \cos \theta)^2 + r^2 \sin^2 \theta$$

 (b) From (a), we have

 $$0 = 2(x - r \cos \theta)\left(\frac{dx}{dt} + r \sin \theta \frac{d\theta}{dt}\right) + 2r^2 \sin \theta \cos \theta \frac{d\theta}{dt}$$

 (c) $-80\pi \approx -251.33$ cm/min

Chapter 3 Review

1. 3; the slope of the secant line through the points $(2, 7)$ and $(0, 1)$ on the graph of $f(x)$
2. $\frac{8}{3}$; the value of the difference quotient should be larger than the value of the derivative
3. $f'(1) = 1; y = x - 1$ 7. $f'(4) = -\frac{1}{16}; y = -\frac{1}{16}x + \frac{1}{2}$
9. $-2x$ 11. $\frac{1}{2(2 - x)^2}$ 13. $f'(1)$, where $f(x) = \sqrt{x}$
15. $f'(\pi)$, where $f(t) = \sin t \cos t$ 17. $f(4) = -2; f'(4) = 3$
19. (C) is the graph of $f'(x)$.
21.

23. (a) 8.05 cm/year (b) Larger over the first half
c) $h'(3) \approx 7.8$ cm/year, $h'(8) \approx 6.0$ cm/year
25. $A'(t)$ measures the rate of change in automobile production in the United States; $A'(1971) \approx 0.25$ million automobiles/year; $A'(1974)$ would be negative.
27. $15x^4 - 14x$ 29. $-7.3r^8$ 31. $1 - 2x - x^2$
33. $6(4x^3 - 9)(x^4 - 9x)^5$ 35. $27x(2 + 9x^2)^{1/2}$
37. $\frac{2 - z}{2(1 - z)^{3/2}}$ 39. $2x - \frac{3}{2}x^{-5/2}$
41. $\frac{1}{2}\left(\frac{x + \sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x}}}\right)^{-1/2} + \frac{3}{2} \cdot \frac{1}{2} (x + \sqrt{x})^{-1/2} + \frac{3}{2} \cdot \frac{1}{2} (x - \sqrt{x})^{-1/2}$
43. $-3t^{-4} \sec^2(t^{-3})$ 45. $-6 \sin^2 x \cos^2 x + 2 \cos^4 x$
47. $1 + \sec t - t \sec t \cot t$ 49. $\frac{\tan \theta}{(1 + \cot \theta)^2}$
51. $\sec^2 t \tan \theta \csc \theta \cot \theta$ 53. -27 55. $-\frac{57}{16}$ 57. -18 59. $(-1, -1)$ and $(3, 7)$
61. $a = \frac{1}{6}$ 63. $72x - 10$ 65. $-(2x + 3)^{-3/2}$
67. $8x^2 \sec^2(x^2) \tan(x^2) + 2 \sec^2(x^2)$ 69. $\frac{dy}{dx} = \frac{x^2}{y^2}$
71. $\frac{dy}{dx} = \frac{\sqrt{x^4 + 4x}}{1 - 2x}$ 73. $\frac{dy}{dx} = \frac{\cos(x + y)}{1 - \sin(x + y)}$
75. For the plot on the left, the red, green, and blue curves, respectively, are the graphs of f, f', and f''. For the plot on the right, the green, red, and blue curves, respectively, are the graphs of f', f'', and f'''.
77. $\frac{dR}{dp} = \frac{\frac{dq}{dp}}{\frac{dp}{dp}} + q = \frac{p \frac{dq}{dp}}{q \frac{dp}{dp}} + q = q(E + 1)$
79. $E(150) = -3$; number of passengers increases 3% when the ticket price is lowered 1%. 81. $\frac{11\pi}{9\sqrt{89}} \approx -0.407$ cm/min
83. $\frac{640}{(336)^2} \approx 0.00567$ cm/s 85. 0.284 m/s
Chapter 4

4.1 Preliminary Questions

1. True 2. g(1.2) − g(1) ≈ 0.8 3. f(2.1) ≈ 1.3
4. The Linear Approximation tells us that up to a small error, the change in output Δy is directly proportional to the change in input Δx when Δx is small.

4.1 Exercises

1. Δf ≈ 0.12 3. Δf ≈ −0.00222 5. Δf ≈ 0.00333
7. Δf ≈ 0.074074
9. Δf ≈ 0.05; error is 0.000610; percentage error is 1.24%.
11. Δf ≈ −0.03; error is 0.0054717; percentage error is 22.31%.
13. Δy ≈ −0.007 15. Δy ≈ −0.026667
17. Δf ≈ 0.1; error is 0.00098.
19. Δf ≈ −0.0005; error is 3.71902 × 10−6.
21. Δf ≈ 0.083333; error is 3.25 × 10−3.
23. Δf ≈ 0.023; error is 2.03 × 10−6 25. f(4.03) ≈ 2.01
27. 2.71 − 2.73 is larger than |2.71| − 2.70.
29. R(9) = 25110 euros; if p is raised by 0.5 euros, then ΔR ≈ 585 euros; on the other hand, if p is lowered by 0.5 euros, then ΔR ≈ −585 euros.
31. ΔL ≈ −0.00171 cm
33. P ≈ 5.5 + 0.56 · (−.87) = 5.065 kilopascals
35. (a) ΔW ≈ W′(R)Δx = −2whRΔx = −2whRΔx ≈ −0.0005wh
(b) ΔW ≈ −0.7 pounds (lb)
37. (a) Δh ≈ 0.71 cm (b) Δh ≈ 1.02 cm
(c) There is a bigger effect at higher velocities.
39. (a) If θ = 34° (i.e., t = tan 34°), then

\[\Delta s = s ′ (t) \Delta t = \frac{625}{16} \cos \left(\frac{17}{45} \right) \Delta t \]

\[= \frac{625}{16} \cos \left(\frac{17}{45} \right) \Delta \theta \cdot \frac{\pi}{180} \approx 0.255 \Delta \theta \]

(b) If Δθ = 2°, this gives Δs ≈ 0.51 ft, in which case the shot would not have been successful, having been off half a foot.
41. ΔV ≈ 4π(25)(0.5) ≈ 3927 cm³; ΔS ≈ 8π(25)(0.5) ≈ 314.2 cm²
43. P = 6 atm; ΔP ≈ ±0.45 atm
45. L(1) = 4x − 3 47. L(θ) = θ − \frac{π}{4} + \frac{1}{2}
49. L(x) = −\frac{1}{2}x + 1 51. L(x) = 1 53. L(x) = −\frac{4}{\pi}x + \frac{4}{\pi}
55. f′(2) = 8
57. 16\sqrt{3} = L(16.2) = 4.025. Graphs of f and L are shown below. Because the graph of L lies above the graph of f, we expect that the estimate from the Linear Approximation is too large.

\[\frac{1}{\sqrt{17}} \approx L(17) \approx 0.24219; \text{the percentage error is 0.14%}. \]
21. Maximum value: 1

23. Local maximum at \((x, y) \approx (1.860334, 0.561096)\); local minimum at \((x, y) \approx (3.425618, -3.288371)\).

25. Minimum: \(f(-1) = 3\), maximum: \(f(2) = 21\)

27. Minimum: \(f(0) = 0\), maximum: \(f(3) = 9\)

29. Minimum: \(f(4) = -24\), maximum: \(f(6) = 8\)

31. Minimum: \(f(1) = 5\), maximum: \(f(2) = 28\)

33. Minimum: \(f(2) = -128\), maximum: \(f(-2) = 128\)

35. Minimum: \(f(6) = 18.5\), maximum: \(f(5) = 26\)

37. Minimum: \(f(1) = -1\), maximum: \(f(0) = f(3) = 0\)

39. Minimum: \(f(0) = 2\sqrt{5} \approx 4.9\), maximum: \(f(2) = 4\sqrt{2} \approx 5.66\)

41. Minimum: \(f\left(\frac{\sqrt{3}}{2}\right) \approx -0.589980\), maximum: \(f(4) \approx 0.472136\)

43. Minimum: \(f(0) = f\left(\frac{\pi}{2}\right) = 0\), maximum: \(f\left(\frac{\pi}{4}\right) = \frac{1}{2}\)

45. Minimum: \(f(0) = -1\), maximum:

- \(f\left(\frac{\pi}{4}\right) = \sqrt{2}\left(\frac{\pi}{4} - 1\right) \approx -0.303493\)

47. Minimum: \(g\left(\frac{\pi}{3}\right) = \frac{\pi}{3} - \sqrt{3} \approx -0.685\), maximum:

- \(g\left(\frac{5}{3}\pi\right) = \frac{5}{3}\pi + \sqrt{3} \approx 6.968\)

49. Minimum: \(f\left(\frac{\pi}{4}\right) = 1 - \frac{\pi}{2} \approx -0.570796\), maximum: \(f(0) = 0\)

51. (d) \(\frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}\), and \(\frac{7\pi}{3}\): the maximum value is \(f\left(\frac{5\pi}{3}\right) = f\left(\frac{7\pi}{3}\right) = \frac{3\sqrt{3}}{2}\) and the minimum value is \(f\left(\frac{\pi}{3}\right) = f\left(\frac{2\pi}{3}\right) = -\frac{3\sqrt{3}}{2}\).

(e) We can see that there are six flat points on the graph between 0 and \(2\pi\), as predicted. There are four local extrema, and two points at \((\frac{\pi}{2}, 0)\) and \((\frac{3\pi}{2}, 0)\) where the graph has neither a local maximum nor a local minimum.

53. Critical point: \(x = 2\); minimum value: \(f(2) = 0\), maximum: \(f(0) = f(4) = 2\)

55. Critical point: \(x = 2\); minimum value: \(f(2) = 0\), maximum: \(f(4) = 20\)

57. \(c = 1\)

59. \(c = \frac{15}{4}\)

61. \(f(0) < 0\) and \(f(2) > 0\), so there is at least one root by the Intermediate Value Theorem; there cannot be another root because \(f'(x) \geq 4\) for all \(x\).

63. There cannot be a root \(c > 0\) because \(f'(x) > 0\) for all \(x > 0\).

67. (a) \(F = \frac{1}{2} \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{2}\right)\)

(b) \(F\) achieves its maximum value when \(r = 1/3\).

(c) If \(v_2\) were 0, then no air would be passing through the turbine, which is not realistic.

71. • The maximum value of \(f\) on \([0, 1]\) is

\[
\left(\frac{a}{b}\right)^{1/(b-a)} - \left(\frac{a}{b}\right)^{a/(b-a)}
\]

\[
\cdot \frac{1}{4}
\]

73. Critical points: \(x = 1, x = 4,\) and \(x = \frac{5}{2}\); maximum value:

\(f(1) = f(4) = \frac{5}{2}\), minimum value:

\(f(-5) = \frac{7}{4}\)

75. (a) There are therefore four points at which the derivative is zero:

\((-1, -\sqrt{2}), (-1, \sqrt{2}), (1, -\sqrt{2}), (1, \sqrt{2})\)

(b) The curve \(27x^2 = (x^2 + y^2)^3\) and its horizontal tangents are plotted below.

77.

81. If \(f(x) = a \sin x + b \cos x\), then \(f'(x) = a \cos x - b \sin x\), so \(f'(-x) = 0\) implies \(a \cos x - b \sin x = 0\). This implies \(\tan x = \frac{a}{b}\).

\[
\sin x = \frac{\pm a}{\sqrt{a^2 + b^2}} \quad \text{and} \quad \cos x = \frac{\pm b}{\sqrt{a^2 + b^2}}
\]

Therefore,

\[
f(x) = a \sin x + b \cos x = a \frac{\pm a}{\sqrt{a^2 + b^2}} + b \frac{\pm b}{\sqrt{a^2 + b^2}}
\]

\[
= \pm \frac{a^2 + b^2}{\sqrt{a^2 + b^2}} = \pm \sqrt{a^2 + b^2}
\]

83. Let \(f(x) = x^2 + r x + s\) and suppose that \(f(x)\) takes on both positive and negative values. This will guarantee that \(f\) has two real roots. By the quadratic formula, the roots of \(f\) are

\[
x = \frac{-r \pm \sqrt{r^2 - 4s}}{2}
\]
Observe that the midpoint between these roots is

\[\frac{1}{2} \left(-r + \sqrt{r^2 - 4s} \right) + \frac{1}{2} \left(-r - \sqrt{r^2 - 4s} \right) = -r \]

Next, \(f'(x) = 2x + r = 0 \) when \(x = -\frac{r}{2} \) and, because the graph of \(f \) is an upward-opening parabola, it follows that \(f(-\frac{r}{2}) \) is a minimum.

85. \(b > \frac{1}{4}a^2 \)

87. • Let \(f \) be a continuous function with \(f(a) \) and \(f(b) \) local minima on the interval \([a, b]\). By Theorem 1, \(f(x) \) must take on both a minimum and a maximum on \([a, b]\). Since local minima occur at \(f(a) \) and \(f(b) \), the maximum must occur at some other point in the interval, call it \(c \), where \(f(c) \) is a local maximum.

• The function graphed here is discontinuous at \(x = 0 \).

Section 4.3 Preliminary Questions

1. \(m = 3 \)
2. (c)
3. Yes. The figure below displays a function that takes on only negative values but has a positive derivative.

4. (a) \(f(c) \) must be a local maximum. (b) No.

Section 4.3 Exercises

1. \(c = 4 \)
3. \(c = \frac{3\pi}{4} \) or \(\frac{7\pi}{4} \)
5. \(c = \pm\sqrt{7} \)
7. \(c = 0 \)
9. The slope of the secant line between \(x = 0 \) and \(x = 1 \) is

\[\frac{f(1) - f(0)}{1 - 0} = 1 \]

Since \(f'(x) = 2x \), solving \(2c = 1 \) gives \(c = \frac{1}{2} \). A graph of \(f \) and the tangent line appears below:

11. \(c = \sqrt{2} - 1 \)

13. The slope of the secant line between \(x = 0 \) and \(x = 1 \) is

\[\frac{f(1) - f(0)}{1 - 0} = 2 - 0 = 2 \]

It appears that the \(x \)-coordinate of the point of tangency is approximately 0.62.

15. The derivative is positive on the intervals \((-\infty, 1) \cup (3, 5)\) and negative on the intervals \((1, 3) \cup (5, 6)\).
17. \(f(2) \) is a local maximum; \(f(4) \) is a local minimum
19. 21.

23. Critical point: \(c = 3 \); since the derivative changes sign from \(+\) to \(-\), this is a point of local maximum.
25. Critical points: \(c = -2 \) and \(c = 0 \). Since \(f'(x) \) changes sign from \(+\) to \(-\) at \(c = -2 \), this is a point of local maximum. Since \(f'(x) \) changes sign from \(-\) to \(+\) at \(c = 0 \), this is a point of local minimum.
27. \(c = \frac{7}{4} \)

29. \(c = 0, 8 \)
31. $c = -2, -1, 1$

<table>
<thead>
<tr>
<th>x</th>
<th>$(\infty, -2)$</th>
<th>-2</th>
<th>$(\infty, -1)$</th>
<th>-1</th>
<th>1</th>
<th>$(1, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>m</td>
<td>$>$</td>
<td>M</td>
<td>$/$</td>
<td>m</td>
</tr>
</tbody>
</table>

33. $c = -2, -1$

<table>
<thead>
<tr>
<th>x</th>
<th>$(\infty, -2)$</th>
<th>-2</th>
<th>$(\infty, -1)$</th>
<th>-1</th>
<th>1</th>
<th>$(1, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>M</td>
<td>$/$</td>
<td>m</td>
<td>$/$</td>
<td>M</td>
</tr>
</tbody>
</table>

35. $c = 0$

<table>
<thead>
<tr>
<th>x</th>
<th>$(-\infty, 0)$</th>
<th>0</th>
<th>$(0, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$+$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>M</td>
<td>$/$</td>
</tr>
</tbody>
</table>

37. $c = \left(\frac{3}{2}\right)^{2/5}$

<table>
<thead>
<tr>
<th>x</th>
<th>$(0, \left(\frac{3}{2}\right)^{2/5})$</th>
<th>$\left(\frac{3}{2}\right)^{2/5}$</th>
<th>$(\left(\frac{3}{2}\right)^{2/5}, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>m</td>
<td>$/$</td>
</tr>
</tbody>
</table>

39. $c = 1$

<table>
<thead>
<tr>
<th>x</th>
<th>$(0, 1)$</th>
<th>1</th>
<th>$(1, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>m</td>
<td>$/$</td>
</tr>
</tbody>
</table>

41. $c = 0$

<table>
<thead>
<tr>
<th>x</th>
<th>$(-\infty, 0)$</th>
<th>0</th>
<th>$(0, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>M</td>
<td>$/$</td>
</tr>
</tbody>
</table>

43. $c = 0$

<table>
<thead>
<tr>
<th>x</th>
<th>$(-\infty, 0)$</th>
<th>0</th>
<th>$(0, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$+$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>M</td>
<td>$/$</td>
</tr>
</tbody>
</table>

45. $c = \frac{\pi}{2}$ and $c = \pi$

<table>
<thead>
<tr>
<th>x</th>
<th>$(0, \frac{\pi}{2})$</th>
<th>$\frac{\pi}{2}$</th>
<th>$(\frac{\pi}{2}, \pi)$</th>
<th>π</th>
<th>$(\pi, 2\pi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>M</td>
<td>$/$</td>
<td>m</td>
<td>$/$</td>
</tr>
</tbody>
</table>

47. $c = \frac{\pi}{2}, \frac{3\pi}{4}, \frac{7\pi}{6}, \text{and} \frac{11\pi}{6}$

<table>
<thead>
<tr>
<th>x</th>
<th>$(0, \frac{\pi}{2})$</th>
<th>$\frac{\pi}{2}$</th>
<th>$(\frac{\pi}{2}, \frac{7\pi}{6})$</th>
<th>$\frac{7\pi}{6}$</th>
<th>$(\frac{7\pi}{6}, \frac{3\pi}{2})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$+$</td>
<td>0</td>
<td>$-$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>M</td>
<td>$/$</td>
<td>m</td>
<td>$/$</td>
</tr>
</tbody>
</table>

49. $c = 0$; f' is positive on $(-\infty, 0)$ and on $(0, \infty)$ and is undefined at 0; f is increasing on $(-\infty, 0)$ and $(0, \infty)$; $x = 0$ is not a local minimum or maximum.

<table>
<thead>
<tr>
<th>x</th>
<th>$(-\infty, 0)$</th>
<th>0</th>
<th>$(0, \infty)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f'</td>
<td>$+$</td>
<td>0</td>
<td>$+$</td>
</tr>
<tr>
<td>f</td>
<td>$/$</td>
<td>M</td>
<td>$/$</td>
</tr>
</tbody>
</table>

53. $a \geq 0$

55. (a) Mean Value Theorem (b) Intermediate Value Theorem

69. (b) First Derivative Test does not apply

Section 4.4 Preliminary Questions

1. (a) increasing 2. $f(c)$ is a local maximum.
3. False 4. False; $f(x)$ may undefined at $x = c$.

Section 4.4 Exercises

1. (a) In C, we have $f''(x) < 0$ for all x.
(b) In A, $f''(x)$ goes from $+$ to $-$.
(c) In B, we have $f''(x) > 0$ for all x.
(d) In D, $f''(x)$ goes from $-$ to $+$.

3. Concave up everywhere; no points of inflection.
5. Concave up for $x < -\sqrt{3}$ and for $0 < x < \sqrt{3}$; concave down for $-\sqrt{3} < x < 0$ and for $x > \sqrt{3}$; point of inflection at $x = 0$ and at $x = \pm \sqrt{3}$.
7. Concave up for $0 < \theta < \pi$; concave down for $\pi < \theta < 2\pi$; point of inflection at $\theta = \pi$.
9. Concave down for $0 < x < 9$; concave up for $x > 9$; point of inflection when $x = 9$.
11. Concave up on $(0, 1)$; concave down on $(-\infty, 0) \cup (1, \infty)$; point of inflection at both $x = 0$ and $x = 1$.
13. Concave up for $|x| > 1$; concave down for $|x| < 1$; point of inflection at both $x = -1$ and $x = 1$.

15. (a) Starts 100 km away traveling towards us at slower and slower speeds, stops when it gets to us (after 2 h), then turns around and goes back to 100 km away, traveling at increasing speeds.
(b) The velocity is always increasing. When the ambulance is moving towards us (negative velocity), that means the speed is decreasing; when it is moving away, it means the speed is increasing.

17. Near the point of inflection, the curve is roughly a straight line going through $(55, 200)$ and $(35, 100)$, so the rate of change is roughly $\frac{200-100}{55-35} = 5 \text{ cm/day}$. So when the growth rate starts to slow down, the height is growing at about 5 cm/day. Plots of the first and second derivatives are.

19. Points of inflection are a, d, f. The function is concave down on $[0, a) \cup (d, f)$.
21. (a) f is increasing on $(0, 0.4)$.
(b) f is decreasing on $(-\infty, 0) \cup (0, 4, 1) \cup (1, 1, 2)$.

AMS24 ANSWERS TO ODD-NUMBERED EXERCISES
(e) \(f \) is concave up on \((0, 0.17) \cup (0.64, 1)\).

(d) \(f \) is concave down on \((0.17, 0.64) \cup (1, 1.2)\).

23. Critical points are \(x = 3 \) and \(x = 5 \); \(f(3) = 54 \) is a local maximum, and \(f(5) = 50 \) is a local minimum.

25. Critical points are \(x = 0 \) and \(x = 1 \); \(f(0) = 0 \) is a local minimum. Second derivative test is inconclusive at \(x = 1 \).

27. Critical points are \(x = -4 \) and \(x = 2 \); \(f(-4) = -16 \) is a local maximum, and \(f(2) = -4 \) is a local minimum.

29. Critical points are \(x = 0 \) and \(x = \frac{2}{3} \); \(f \left(\frac{2}{3} \right) \) is a local minimum; \(f''(x) \) is undefined at \(x = 0 \), so the Second Derivative Test cannot be applied there.

31. Critical points are \(x = 0 \), \(x = \frac{\pi}{3} \) and \(x = \pi \); \(f(0) \) is a local minimum, \(f \left(\frac{\pi}{3} \right) \) is a local maximum, and \(f(\pi) \) is a local minimum.

33. Critical point is \(x = 0 \); local minimum \(f''(0) = 2 \).

39. Critical point is \(x = e^{-1/3} \); \(f' \left(e^{-1/3} \right) \) is a local minimum.

35. \[
x & (-\infty, \frac{2}{3}) & \frac{2}{3} & (\frac{2}{3}, 1) & 1 & (1, \infty) \\
f' & + & 0 & - & 0 & + \\
f'' & - & 0 & + & + & + \\
\]

37. \[
x & (-\infty, 0) & 0 & (0, \frac{\pi}{3}) & \frac{\pi}{3} & (\frac{\pi}{3}, \infty) \\
f' & - & 0 & + & 0 & + \\
f'' & - & 0 & + & + & + \\
\]

39. \(f''(x) > 0 \) for all \(x \geq 0 \), which means there are no inflection points.

41. \[
x & (-\infty, -3\sqrt{3}) & -3\sqrt{3} & (-3\sqrt{3}, 3\sqrt{3}) & 3\sqrt{3} & (3\sqrt{3}, \infty) \\
f' & - & 0 & + & 0 & - \\
f'' & - & 0 & + & 0 & + \\
\]

43. \[
x & (-\infty, -\left(\frac{3}{4}\right)^{1/2}) & -\left(\frac{3}{4}\right)^{1/2} & (-\left(\frac{3}{4}\right)^{1/2}, 0) & 0 & (0, \left(\frac{3}{4}\right)^{1/2}) & \left(\frac{3}{4}\right)^{1/2} & \left(\frac{3}{4}\right)^{1/2}, \infty) \\
f'' & - & - & - & - & + & + & + \\
\]
\(c + h < c. \) On the other hand, if \(h \) is sufficiently small but positive, then \(f'(c + h) \) must also be positive and \(c + h > c. \) Thus, there exists an open interval \((a, b)\) containing \(c \) such that \(f'(x) < 0 \) for \(a < x < c \) and \(f'(c) > 0 \) for \(c < x < b. \) Finally, because \(f'(x) \) changes from negative to positive at \(x = c, \) \(f(c) \) must be a local minimum.

59. (b) \(f(x) \) has a point of inflection at \(x = 0 \) and at \(x = \pm 1. \) The figure below shows the graph of \(y = f(x) \) and its tangent lines at each of the points of inflection. It is clear that each tangent line crosses the graph of \(f \) at the inflection point.

61. Let \(f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \) be a polynomial of degree \(n. \) Then

\[
f'(x) = n a_n x^{n-1} + (n-1) a_{n-1} x^{n-2} + \ldots + 2 a_2 x + a_1
\]

and

\[
f''(x) = n(n-1) a_n x^{n-2} + (n-1)(n-2) a_{n-1} x^{n-3} + \ldots + 6 a_3 x + 2 a_2
\]

If \(n \geq 3 \) and is odd, then \(n - 2 \) is also odd and \(f''' \) is a polynomial of odd degree. Therefore, \(f''' \) must take on both positive and negative values. It follows that \(f'''(x) \) has at least one root \(c \) such that \(f'''(x) \) changes sign at \(c. \) The function \(f \) will then have a point of inflection at \(x = c. \) On the other hand, the functions \(f(x) = x^n, \) and \(x^3 \) are polynomials of even degree that do not have any points of inflection.

Section 4.5 Preliminary Questions

1. An arc with the sign combination ++ (increasing, concave up) is shown below at the left. An arc with the sign combination −+ (decreasing, concave up) is shown below at the right.

2. (e)

3. \(x = 4 \) is not in the domain of \(f. \)

Section 4.5 Exercises

1. • In A, \(f \) is decreasing and concave up, so \(f' < 0 \) and \(f'' > 0. \)
 • In B, \(f \) is increasing and concave up, so \(f' > 0 \) and \(f'' > 0. \)
 • In C, \(f \) is increasing and concave down, so \(f' > 0 \) and \(f'' < 0. \)
 • In D, \(f \) is decreasing and concave down, so \(f' < 0 \) and \(f'' < 0. \)
 • In E, \(f \) is decreasing and concave up, so \(f' < 0 \) and \(f'' > 0. \)
 • In F, \(f \) is increasing and concave up, so \(f' > 0 \) and \(f'' > 0. \)
 • In G, \(f \) is increasing and concave down, so \(f' > 0 \) and \(f'' < 0. \)

3. This function changes from concave up to concave down at \(x = -1 \) and from increasing to decreasing at \(x = 0. \)

5. The function is decreasing everywhere and changes from concave up to concave down at \(x = -1 \) and from concave down to concave up at \(x = -\frac{1}{2}. \)

7.

9.

11.

13.

15. Local maximum at \(x = -16, \) a local minimum at \(x = 0, \) and an inflection point at \(x = -8. \)
17. $f(0)$ is a local minimum, $f\left(\frac{1}{2}\right)$ is a local maximum, and there is a point of inflection at $x = \frac{1}{12}$.

19. f has local minima at $x = \pm\sqrt{6}$, a local maximum at $x = 0$, and inflection points at $x = \pm\sqrt{2}$.

21. Graph has no critical points and is always increasing, inflection point at $(0, 0)$.

23. $f\left(\frac{1-\sqrt{33}}{8}\right)$ and $f(2)$ are local minima, and $f\left(\frac{1+\sqrt{33}}{8}\right)$ is a local maximum; points of inflection both at $x = 0$ and $x = \frac{3}{2}$.

25. $f(0)$ is a local maximum, $f(12)$ is a local minimum, and there is a point of inflection at $x = 10$.

27. $f(4)$ is a local minimum, and the graph is always concave up.

29. f has a local maximum at $x = 6$ and inflection points at $x = 8$ and $x = 12$.

31. f has a local maximum at $x = 1$ and no inflection points. There are also critical points at $x = 0$ and $x = 2$ where the derivative does not exist.

33. f has no critical points or inflection points.

35. f has a local maximum at $x = -2$ and an inflection point at $\frac{5\sqrt{48}}{}$.

37. Graph has an inflection point at $x = \frac{3}{5}$, a local maximum at $x = 1$ (at which the graph has a cusp), and a local minimum at $x = \frac{9}{5}$.
39. \(f \) has a local maximum at \(x \approx -0.86776 \) and a local minimum at \(x = 0 \). It has an inflection point at \(x \approx -0.41119 \).

\[\begin{align*}
\text{Graph (A)}
\end{align*} \]

41. \(f \) has local minima at \(x = -1.473 \) and \(x = 1.347 \), a local maximum at \(x = 0.126 \), and points of inflection at \(x = \pm \sqrt{\frac{2}{3}} \).

\[\begin{align*}
\text{Graph (B)}
\end{align*} \]

43. Graph has an inflection point at \(x = \pi \), and no local maxima or minima.

\[\begin{align*}
\text{Graph (C)}
\end{align*} \]

45. Local maximum at \(x = \frac{\pi}{2} \), a local minimum at \(x = \frac{3\pi}{2} \), and inflection points at \(x = \frac{\pi}{6} \) and \(x = \frac{5\pi}{6} \).

\[\begin{align*}
\text{Graph (D)}
\end{align*} \]

47. Local maximum at \(x = \frac{\pi}{6} \) and a point of inflection at \(x = \frac{2\pi}{3} \).

\[\begin{align*}
\text{Graph (E)}
\end{align*} \]

49. In both cases, there is a point where \(f \) is not differentiable at the transition from increasing to decreasing or decreasing to increasing.

\[\begin{align*}
\text{Graph (F)}
\end{align*} \]

51. Graph (B) cannot be the graph of a polynomial.

53. (B) is the graph of \(f(x) = \frac{3x^2}{x^2 - 1} \); (A) is the graph of \(f(x) = \frac{3x}{x^2 - 1} \).

55. \(f \) is decreasing for all \(x \neq \frac{1}{2} \), concave up for \(x > \frac{1}{2} \), concave down for \(x < \frac{1}{2} \), has a horizontal asymptote at \(y = 0 \) and a vertical asymptote at \(x = \frac{1}{2} \).

\[\begin{align*}
\text{Graph (G)}
\end{align*} \]

57. \(f \) is decreasing for all \(x \neq 2 \), concave up for \(x > 2 \), concave down for \(x < 2 \), has a horizontal asymptote at \(y = 1 \) and a vertical asymptote at \(x = 2 \).

\[\begin{align*}
\text{Graph (H)}
\end{align*} \]

59. \(f \) is decreasing for all \(x \neq 0, 1 \), concave up for \(0 < x < \frac{1}{2} \) and \(x > 1 \), concave down for \(x < 0 \) and \(\frac{1}{2} < x < 1 \), has a horizontal asymptote at \(y = 0 \) and vertical asymptotes at \(x = 0 \) and \(x = 1 \).

\[\begin{align*}
\text{Graph (I)}
\end{align*} \]

61. \(f \) is increasing for \(x < 0 \) and \(0 < x < 1 \) and decreasing for \(1 < x < 2 \) and \(x > 2 \); \(f \) is concave up for \(x < 0 \) and \(x > 2 \) and concave down for \(0 < x < 2 \); \(f \) has a horizontal asymptote at \(y = 0 \) and vertical asymptotes at \(x = 0 \) and \(x = 2 \).

\[\begin{align*}
\text{Graph (J)}
\end{align*} \]

63. \(f \) is increasing for \(x < 2 \) and for \(2 < x < 3 \), is decreasing for \(3 < x < 4 \) and for \(x > 4 \), and has a local maximum at \(x = 3 \); \(f \) is concave up for \(x < 2 \) and for \(x > 4 \) and is concave down for \(2 < x < 4 \); \(f \) has a horizontal asymptote at \(y = 0 \) and vertical asymptotes at \(x = 2 \) and \(x = 4 \).
65. \(f \) is increasing for \(|x| > 2\) and decreasing for \(-2 < x < 0\) and for \(0 < x < 2\); \(f \) is concave down for \(-2\sqrt{2} < x < 0\) and for \(x > 2\sqrt{2}\) and concave up for \(x < -2\sqrt{2}\) and for \(0 < x < 2\sqrt{2}\); \(f \) has a horizontal asymptote at \(y = 1\) and a vertical asymptote at \(x = 0\).

67. \(f \) is increasing for \(x < 0\) and for \(x > 2\) and decreasing for \(0 < x < 2\); \(f \) is concave up for \(x < 0\) and for \(0 < x < 1\), is concave down for \(1 < x < 2\) and for \(x > 2\), and has a point of inflection at \(x = 1\); \(f \) has a horizontal asymptote at \(y = 0\) and vertical asymptotes at \(x = 0\) and \(x = 2\).

69. \(f \) is increasing for \(x < 0\), decreasing for \(x > 0\), and has a local maximum at \(x = 0\); \(f \) is concave up for \(|x| > 1/\sqrt{3}\), is concave down for \(|x| < 1/\sqrt{3}\), and has points of inflection at \(x = \pm 1/\sqrt{3}\); \(f \) has a horizontal asymptote at \(y = 0\) and no vertical asymptotes.

71. \(f \) is increasing for \(x < 0\) and decreasing for \(x > 0\); \(f \) is concave down for \(|x| < \sqrt{2}\) and concave up for \(|x| > \sqrt{2}\); \(f \) has a horizontal asymptote at \(y = 0\) and no vertical asymptotes.

75. \(f \) is increasing for \(x < -2\) and for \(x > 0\), is decreasing for \(-2 < x < -1\) and for \(-1 < x < 0\), has a local minimum at \(x = 0\), has a local maximum at \(x = -2\), is concave down on \((-\infty, -1)\) and concave up on \((-1, \infty)\); \(f \) has a vertical asymptote at \(x = -1\); by polynomial division, \(f(x) = x - 1 + \frac{1}{x+1} \) and
\[
\lim_{x \to -\infty} \left(x - 1 + \frac{1}{x+1} - (x - 1) \right) = 0
\]
which implies that the slant asymptote is \(y = x - 1\).

77. \(y = x + 2 \) is the slant asymptote of \(f \); local minimum at \(x = 2 + \sqrt{3}\), a local maximum at \(x = 2 - \sqrt{3}\), and \(f \) is concave down on \((-\infty, 2)\) and concave up on \((2, \infty)\); vertical asymptote at \(x = 2\).

Section 4.6 Preliminary Questions

1. \(b + h + \sqrt{b^2 + h^2} = 10 \)

2. If the function tends to infinity at the endpoints of the interval, then the function must take on a minimum value at a critical point.

3. No

Section 4.6 Exercises

1. (a) \(y = \frac{3}{2} - x \) \hspace{1cm} (b) \(A = x(x^2 + x) = \frac{3}{2}x - x^2 \)

(c) Closed interval \([0, \frac{2}{3}]\)

(d) The maximum area 0.5625 m² is achieved with \(x = y = \frac{3}{4} \) m.

3. One side of length 6 and two of length 3 \hspace{1cm} 5. 4 and 32

7. Allot approximately 5.28 m of the wire to the circle.

9. 20 and 20

11. Not possible. \(y \) can be arbitrarily large; then \(x \) is positive but close to zero and \(x + 2y \approx 2y \) is arbitrarily large.

13. (a) The box should be a cube with side length \(12/3\)

(b) The box should be a cube with side length \(\sqrt{36}/3\).
15. The corral of maximum area has dimensions

\[x = \frac{300}{1 + \pi/4} \text{ m} \quad \text{and} \quad y = \frac{150}{1 + \pi/4} \text{ m}, \]

where \(x \) is the width of the corral and therefore the diameter of the semicircle and \(y \) is the height of the rectangular section.

17. Square of side length \(4\sqrt{2} \)

19. About 1.43 m

21. \(\left(\frac{1}{2}, \frac{1}{2} \right) \)

23. \(x = 21/4 \approx 1.1892; (x, y) \approx (1.1892, 2.8710). \)

25. \(\theta = \frac{\pi}{2} \)

27. \(3\sqrt{3}/4 \)

29. 60 cm wide by 100 cm high for the full poster (48 cm by 80 cm for the printed matter)

31. Radius: \(\sqrt{\frac{3}{2}} R \); half-height: \(\frac{R}{\sqrt{3}} \)

33. \(x = 10\sqrt{3} \approx 22.36 \text{ m and} y = 20\sqrt{2} \approx 44.72 \text{ m}, \) where \(x \) is the length of the brick wall and \(y \) is the length of an adjacent side

35. 1.0718

37. \(L H + \frac{1}{2}(L^2 + H^2) \)

39. \(y = -3x + 24 \)

43. \(x = 3\sqrt{4} \text{ m and} h = 2\sqrt{4} \text{ m}, \) where \(x \) is the length of the side of the square bottom of the box and \(h \) is the height of the box

45. (a) Each compartment has length of 600 m and width of 400 m.

(b) 240,000 m

47. \(N \approx 58.14 \) lb and \(P \approx 77.33 \) lb

49. $990

51. 1.2 million euros in equipment and 600,000 euros in labor

53. Brandon swims diagonally to a point located 20.2 m downstream and then runs the rest of the way.

57. \(A = B = 30 \) cm

59. \(x = \frac{x_1 + x_2 + \cdots + x_n}{n} \)

63. (a) 900 m when \(x = -10 \) (b) \([0, 20]\); 800 m when \(x = 0 \)

65. \(\tan \theta = \frac{5}{2} \)

67. (b) \(\left(\frac{17}{0.003} \right)^{1/4} \approx 8.676247 \)

(d) \(v_d \approx 11.418583; D(v_d) \approx 191.741 \) km

69. \(x = \left(\frac{y^{2/3} + h^{2/3}}{2^{2/3}} \right)^{3/2} \)

71. \(\left(\frac{y^{2/3} + b^{2/3}}{2^{2/3}} \right)^{3/2} \)

73. (a) \(\theta = 0 \) corresponds to shooting the ball directly at the basket, while \(\theta = \pi/2 \) corresponds to shooting the ball directly upward. In neither case is it possible for the ball to go into the basket. If the angle \(\alpha \) is extremely close to 0, the ball is shot almost directly at the basket; on the other hand, if the angle \(\alpha \) is extremely close to \(\pi/2 \), the ball is launched almost vertically. In either one of these cases, the ball has to travel at an enormous speed.

(b) The minimum clearly occurs where \(\theta = \pi/3. \)

(e) \(\nu^2 = \frac{16d}{F'(\theta)}; \) hence, \(\nu^2 \) is smallest whenever \(F'(\theta) \) is greatest.

(d) A critical point of \(F \) occurs where \(\cos(\alpha - 2\theta) = 0 \) so that \(\alpha - 2\theta = \frac{\pi}{2} \) (negative because \(2\theta > \theta > \alpha \)), and this gives us \(\theta = \alpha/2 + \pi/4. \) The minimum value \(F(\theta_0) \) takes place at \(\theta_0 = \alpha/2 + \pi/4. \)

(f) This shows that the minimum velocity required to launch the ball to the basket drops as shooter height increases. This shows one of the ways height is an advantage in free throws; a taller shooter need not shoot the ball as hard to reach the basket.

75. (a) From the figure, we see that

\[\theta(x) = \tan^{-1} \left(\frac{c - f(x)}{x} \right) - \tan^{-1} \left(\frac{b - f(x)}{x} \right) \]

Then

\[\theta'(x) = \frac{b - (f(x) - x f'(x))}{x^2 + (b - f(x))^2} - \frac{c - (f(x) - x f'(x))}{x^2 + (c - f(x))^2} \]

\[= \frac{(b - c) x^2 - bc + (b + c)(f(x) - x f'(x)) - (f(x))^2 + 2x f(x) f'(x)}{(x^2 + (b - f(x))^2)(x^2 + (c - f(x))^2)} \]

\[= \frac{(b - c) (x^2 + (sf'(x))^2) - (bc - (b + c))(f(x) - x f'(x)) + (f(x) - x f'(x))^2}{(x^2 + (b - f(x))^2)(x^2 + (c - f(x))^2)} \]

(b) The point \(Q \) is the \(y \)-intercept of the line tangent to the graph of \(f \) at point \(P \). The equation of this tangent line is

\[Y = f(x) = f'(x)(X - x) \]

The \(y \)-coordinate of \(Q \) is then \(f(x) - x f'(x) \).

(c) From the figure, we see that

\[BQ = b - (f(x) - x f'(x)), \]

\[CQ = c - (f(x) - x f'(x)) \]

and

\[PQ = \sqrt{x^2 + (f(x) - (f(x) - x f'(x)))^2} = \sqrt{x^2 + (x f'(x))^2} \]

Comparing these expressions with the numerator of \(d\theta / dx \), it follows that \(\frac{d\theta}{dx} = 0 \) is equivalent to

\[P Q^2 = B Q \cdot C Q \]

(d) The equation \(P Q^2 = B Q \cdot C Q \) is equivalent to

\[\frac{P Q}{B Q} = \frac{C Q}{P Q} \]

In other words, the sides \(C Q \) and \(P Q \) from the triangle \(\Delta CQP \) are proportional in length to the sides \(P Q \) and \(B Q \) from the triangle \(\Delta QPB \). As \(\angle P QB = \angle CQP \), it follows that triangles \(\Delta CQP \) and \(\Delta QPB \) are similar.
Section 4.7 Preliminary Questions

1. One
2. Every term in the Newton’s Method sequence will remain \(x_0 \).
3. Newton’s Method will fail.
4. Yes, that is a reasonable description. The iteration formula for Newton’s Method was derived by solving the equation of the tangent line to \(y = f(x) \) at \(x_0 \) for its \(x \)-intercept.

Section 4.7 Exercises

1. Table:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>2.5</td>
<td>2.45</td>
<td>2.44948980</td>
</tr>
</tbody>
</table>

3. Table:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>2.16666667</td>
<td>2.15450362</td>
<td>2.15443469</td>
</tr>
</tbody>
</table>

5. Table:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>0.28540361</td>
<td>0.24288009</td>
<td>0.24267469</td>
</tr>
</tbody>
</table>

7. We take \(x_0 = -1.4 \), based on the figure, and then calculate:

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>-1.33096467</td>
<td>-1.32827282</td>
<td>-1.328268856</td>
</tr>
</tbody>
</table>

9. \(x \approx 0.5739277833 \)
11. \(\sqrt{11} \approx 3.317 \); a calculator yields 3.31662479.
13. \(2^{7/3} \approx 5.040 \); a calculator yields 5.0396842
15. 2.093064358 17. -2.225
19. 1.202
21. \(x = 4.49341 \), which is approximately \(1.4303\pi \)
23. (2.7984, -0.941684)
25. (a) \(P \approx $156.69 \)
(b) \(b \approx 1.02121 \); the interest rate is around 25.45%.
27. (a) The sector \(SAB \) is the slice \(OAB \) with the triangle \(OBS \) removed. \(OAB \) is a central sector with arc \(\theta \) and radius \(OA = a \), and therefore has area \(\frac{a^2\theta}{2} \). \(OBS \) is a triangle with height \(a \sin \theta \) and base length \(OS = a \). Hence, the area of the sector is \(\frac{a^2\theta}{2} - \frac{1}{2} a^2 \sin \theta = \frac{a^2}{2} (\theta - \sin \theta) \)
(b) Since Kepler’s Second Law indicates that the area of the sector is proportional to the time \(t \) since the planet passed point \(A \), we get \(\pi a^2 \left(\frac{t}{T} \right) = \frac{a^2}{2} (\theta - \sin \theta) \)
\[\frac{2\pi}{T} \frac{t}{T} = \theta - \sin \theta \]
(c) From the point of view of the Sun, Mercury has traversed an angle of approximately 1.76696 radians = 101.24°. Mercury has therefore traveled more than one fourth of the way around (from the point of view of central angle) during this time.
29. The sequence of iterates diverges spectacularly, since \(x_n = (-2)^n x_0 \).
31. (a) Let \(f(x) = \frac{1}{x} - c \). Then
\[x - \frac{f(x)}{f'(x)} = x - \frac{\frac{1}{x} - c}{-\frac{1}{x^2}} = 2x - cx^2 \]
(b) For \(c = 10.3 \), we have \(f(x) = \frac{1}{x} - 10.3 \) and thus \(x_{n+1} = 2x_n - 10.3x_n^2 \)
 - Take \(x_0 = 0.1 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>0.097</td>
<td>0.0970873</td>
<td>0.09708738</td>
</tr>
</tbody>
</table>

- Take \(x_0 = 0.5 \).

<table>
<thead>
<tr>
<th>(n)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_n)</td>
<td>-1.575</td>
<td>-28.7004375</td>
<td>-85.4166654</td>
</tr>
</tbody>
</table>

(c) The graph is disconnected. If \(x_0 = 0.5 \), \(f(x_1) \) is on the other portion of the graph, which will never converge to any point under Newton’s Method.
33. \(\theta \approx 1.2757 \); hence, \(h = L \frac{\cos \theta}{2 \sin \theta} \approx 1.11181 \)

Chapter 4 Review

1. 8.1^{1/3} - 2 \approx 0.00833333; error is 3.445 \times 10^{-5}.
2. 625^{1/4} - 6241/4 \approx 0.002; error is 1.201 \times 10^{-6}.
3. \(\frac{1}{\sqrt[5]{x}} \approx 0.98; \) error is 3.922 \times 10^{-4}.
7. \(L(x) = 5 + \frac{1}{10} (x - 25) \) 9. \(L(r) = 36\pi (r - 2) \)
11. \(L(\theta) = 36 - \pi \) 13. \(\Delta s \approx 0.632 \)
15. (a) An increase of $1500 in revenue.
(b) A small increase in price would result in a decrease in revenue.
17. 9% \(f'(3) = \frac{1}{3} \) \(f(3) - f(2) = \frac{9}{10} = f'(3) \) since \(f'(x) = 1 - \frac{1}{x^2} \)
23. Let \(x > 0 \). Because \(f \) is continuous on \([0, x]\) and differentiable on \((0, x)\), the Mean Value Theorem guarantees there exists a \(c \in (0, x) \) such that
\[f'(c) = \frac{f(x) - f(0)}{x - 0} \]
Now, we are given \(f(0) = 4 \) and \(f'(x) \leq 2 \) for \(x > 0 \). Therefore, for all \(x \geq 0 \),
\[f(x) \leq 4 + x(2) = 2x + 4 \]
25. \(x = \frac{2}{3} \) and \(x = 2 \) are critical points; \(f\left(\frac{2}{3}\right) \) is a local maximum, while \(f(2) \) is a local minimum.
27. \(x = 0, x = -2 \) and \(x = -\frac{4}{3} \) are critical points; \(f(-2) \) is neither a local maximum nor a local minimum, \(f\left(-\frac{4}{3}\right) \) is a local maximum and \(f(0) \) is a local minimum.
29. \(\theta = \frac{3\pi}{4} + n\pi \) is a critical point for all integers \(n \); \(g\left(\frac{3\pi}{4} + n\pi\right) \) is neither a local maximum nor a local minimum for any integer \(n \).
31. Maximum value is 21; minimum value is -11.
33. Minimum value is -1; maximum value is \(\frac{5}{4} \).
35. Minimum value is -1; maximum value is 3.
37. Minimum value is 2 - 2^{3/2} at \(x = 2 \); maximum value is \(\frac{4}{27} \) at \(x = \frac{4}{3} \).
39. Critical points are \(x = 1 \) and \(x = 3 \). The minimum value is 2, occurring at \(x = 3 \), and the maximum value is 17, occurring at the right endpoint \(x = 8 \).
41. \(x = \frac{4}{3} \) 43. \(x = \pm \frac{2}{\sqrt{3}} \) 45. \(x = 0 \) and \(x = \pm\sqrt{3} \)
ANSWERS TO ODD-NUMBERED EXERCISES

47. No horizontal asymptotes; no vertical asymptotes

49. No horizontal asymptotes; no vertical asymptotes

51. \(y = 0 \) is a horizontal asymptote; \(x = -1 \) is a vertical asymptote.

53. Horizontal asymptote of \(y = 0 \); no vertical asymptotes

55.

57.

59. \(b = \sqrt{12} \) m and \(h = \frac{1}{2} \sqrt{12} \) m

61. \(t = 8 \) days

63. \(\frac{16}{9} \pi \)

69. \(\sqrt{25} = 2.9240 \)

Chapter 5

Section 5.1 Preliminary Questions

1. The right endpoints of the subintervals are then \(\frac{3}{2}, 3, \frac{7}{2}, 4, \frac{9}{2}, 5 \), while the left endpoints are \(2, \frac{5}{2}, 3, \frac{7}{2}, 4, \frac{9}{2} \).

2. (a) \(\frac{9}{2} \) (b) \(\frac{3}{2} \)

3. (a) Are the same (b) Not the same (c) Are the same (d) Are the same

4. The first term in the sum \(\sum_{j=0}^{100} j \) is equal to zero, so it may be dropped; on the other hand, the first term in \(\sum_{j=0}^{100} 1 \) is not zero.

5. On \([3, 7]\), the function \(f(x) = x^{-2} \) is a decreasing function.

Section 5.1 Exercises

1. Over the interval \([0, 3]\): 0.96 km; over the interval \([1, 2.5]\): 0.5 km

3. 28.5 cm; The figure below is a graph of the rainfall as a function of time. The area of the shaded region represents the total rainfall.

5. \(L_5 = 46; R_5 = 44 \)

7. (a) \(L_6 = 16.5; R_6 = 19.5 \)

(b) Via geometry (see figure below), the exact area is \(A = 18 \). Thus, \(L_6 \) underestimates the true area \((L_6 - A = -1.5) \), while \(R_6 \) overestimates the true area \((R_6 - A = +1.5) \).

9. \(L_3 = 32; R_3 = 20 \); the area under the graph is larger than \(L_3 \) but smaller than \(R_3 \).

11. \(R_3 = 2.5; M_3 = 2.875; L_6 = 3.4375 \)

13. (a) \(L_4 = 1.75 \) (b) \(R_4 = 3.75 \) (c) The actual area \(A \) under the curve \(f(x) = x^2 \) over the interval \([0, 2]\) satisfies \(L_4 < A < R_4 \).
15. \(R_3 = \frac{16}{3} \)
17. \(M_6 = 87 \)
19. \(M_5 \approx 0.575 \)
21. \(L_4 \approx 0.410236 \)
23. \(\sum_{k=4}^{8} k^7 \)
25. \(\sum_{k=2}^{5} (2k^2 + 2) \)
27. \(\sum_{i=1}^{n} \frac{i}{(i + 1)(i + 2)} \)
29. (a) 45
(b) 24
(c) 99
31. (a) \(-1\)
(b) 13
(c) 12
33. 15,050
35. 352,800
37. 1,093,350
39. 41,650
41. \(-123,165\)
43. \(\frac{1}{2}\)
45. \(\frac{1}{3}\)
47. 18; the region under the graph is a triangle with base 2 and height 18.
49. 12; the region under the graph over \([0, 2]\) is a trapezoid with base width 4 and heights 2 and 4.
51. 2; the region under the graph over \([0, 2]\) is a triangle with base and height 2.
53. \(\lim_{N \to \infty} R_N = 16 \)
55. \(R_N = \frac{1}{3} + \frac{1}{2N} + \frac{1}{6N^2}; \frac{1}{3} \)
57. \(R_N = \frac{222}{N} + \frac{27}{N^2}; \frac{222}{N} \)
59. \(R_N = 2 + \frac{6}{N} + \frac{8}{N^2}; 2 \)
61. \(R_N = (b-a)(2a+1) + (b-a)^2 + \frac{(b-a)^2}{N}; (b^2 + b) - (a^2 + a) \)
63. The area between the graph of \(f(x) = x^4 \) and the \(x \)-axis over the interval \([0, 1]\)
65. The area between the graph of \(y = x^4 \) and the \(x \)-axis over the interval \([-2, 3]\)
67. \(\lim_{N \to \infty} R_N = \lim_{N \to \infty} \frac{\pi}{N} \sum_{k=1}^{N} \sin \left(\frac{k\pi}{N} \right) \)
69. \(\lim_{N \to \infty} L_N = \lim_{N \to \infty} \frac{4}{N} \sum_{j=0}^{N-1} \sqrt{15 + \frac{8j}{N}} \)
71. \(\lim_{N \to \infty} M_N = \lim_{N \to \infty} \frac{1}{2N} \sum_{j=1}^{N} \tan \left(\frac{\pi}{2} + \frac{1}{2N} \left(j - \frac{1}{2} \right) \right) \)
73. Represents the area between the graph of \(y = f(x) = \sqrt{1 - x^2} \) and the \(x \)-axis over the interval \([0, 1]\). This is the portion of the circular disk \(x^2 + y^2 \leq 1 \) that lies in the first quadrant. Accordingly, its area is \(\frac{\pi}{2} \).
75. Of the three approximations, \(R_N \) is the least accurate, and then \(L_N \) and finally \(M_N \) are the most accurate.
77. The area \(A \) under the curve is somewhere between \(L_4 \approx 0.518 \) and \(R_4 \approx 0.768 \).
79. \(f \) is increasing over the interval \([0, \pi/2]\), so
0.79 \(\approx L_4 \leq A \leq R_4 \approx 1.18 \).
81. \(L_{100} = 0.793998; R_{100} = 0.803999; L_{200} = 0.797074; R_{200} = 0.802075; \) thus, \(A = 0.80 \) to two decimal places.
83.
85. When \(f' \) is large, the graph of \(f \) is steeper and hence there is more gap between \(f \) and \(L_N \) or \(R_N \).
89. \(N > 30,000 \)

Section 5.2 Preliminary Questions
1. 2
2. (a) False, \(f(b) - f(a) \) is the signed area between the graph and the \(x \)-axis.
(b) True
(c) True
3. Because \(\cos(\pi - x) = -\cos x \), the “negative” area between the graph of \(y = \cos x \) and the \(x \)-axis over \([\frac{\pi}{2}, \pi]\) exactly cancels the “positive” area between the graph and the \(x \)-axis over \([0, \frac{\pi}{2}]\).
4. \(\int_{-1}^{5} 8 \, dx = 40 \)

Section 5.2 Exercises
1. The region bounded by the graph of \(y = 2x \) and the \(x \)-axis over the interval \([-3, 3]\) consists of two right triangles. One has area \(\frac{1}{2}(3)(6) = 9 \) below the axis, and the other has area \(\frac{1}{2}(3)(6) = 9 \) above the axis. Hence,
\[
\int_{-3}^{3} 2x \, dx = 9 - 9 = 0
\]
2. The region bounded by the graph of \(y = 3x + 4 \) and the \(x \)-axis over the interval \([-2, 1]\) consists of two right triangles. One has area \(\frac{1}{2}(2)(\frac{7}{2}) = \frac{7}{2} \) below the axis, and the other has area \(\frac{1}{2}(2)(\frac{7}{2}) = \frac{7}{2} \) above the axis. Hence,
\[
\int_{-2}^{1} (3x + 4) \, dx = \frac{49}{6} - \frac{2}{3} = \frac{15}{2}
\]
3. The region bounded by the graph of \(y = 7 - x \) and the \(x \)-axis over the interval \([6, 8]\) consists of two right triangles. One triangle has area \(\frac{1}{2}(1)(1) = \frac{1}{2} \) above the axis, and the other has area \(\frac{1}{2}(1)(1) = \frac{1}{2} \) below the axis. Hence,
\[
\int_{6}^{8} (7 - x) \, dx = \frac{1}{2} - \frac{1}{2} = 0
\]
The set of sample points is given by rectangles.

19. Over the interval \([0, 5] \) is one-quarter of a circle of radius 5. Hence, \(\int_0^5 \sqrt{25-x^2} \, dx = \frac{1}{4}\pi(5)^2 = \frac{25\pi}{4} \)

9. The region bounded by the graph of \(y = 2 - |x| \) and the \(x \)-axis over the interval \([-2, 2]\) is a triangle above the axis with base 4 and height 2. Consequently, \(\int_{-2}^2 (2 - |x|) \, dx = \frac{1}{2} (2)(4) = 4 \)

11. (a) \(\lim_{N \to \infty} R_N = \lim_{N \to \infty} \left(30 - \frac{50}{N} \right) = 30 \)

(b) The region bounded by the graph of \(y = 8 - x \) and the \(x \)-axis over the interval \([0, 10]\) consists of two right triangles. One triangle has area \(\frac{1}{2}(8)(8) = 32 \) above the axis, and the other has area \(\frac{1}{2}(2)(2) = 2 \) below the axis. Hence, \(\int_0^{10} (8-x) \, dx = 32 - 2 = 30 \)

13. (a) \(-\frac{\pi}{2} \) (b) \(\frac{3\pi}{2} \)

15. \(\int_0^3 g(t) \, dt = \frac{3}{2} \int_3^5 g(t) \, dt = 0 \)

17. The partition \(P \) is defined by \(x_0 = 0 < x_1 = 1 < x_2 = 2.5 < x_3 = 3.2 < x_4 = 5 \)

The set of sample points is given by \(C = [c_1 = 0.5, c_2 = 2, c_3 = 3, c_4 = 4.5] \). Finally, the value of the Riemann sum is \(34.25(1-0) + 20(2.5-1) + 8(3.2-2.5) + 15(5-3.2) = 96.85 \)

19. \(R(f, P, C) = 1.59 \); here is a sketch of the graph of \(f \) and the rectangles.

21. \(R(f, P, C) = 44.625 \); here is a sketch of the graph of \(f \) and the rectangles.

23.

25.

27.

29. The integrand is always positive. The integral must therefore be positive, since the signed area has only a positive part.

31. Since \(y = x \) is an increasing function on \([0, 2\pi]\), and \(\sin x \geq 0 \) on \([0, \pi]\) but \(\sin x \leq 0 \) on \([\pi, 2\pi]\), it follows that the area below the \(x \)-axis is enclosed by \(y = x \sin x \) on the interval \([0, \pi]\). Hence, the total area on \([0, 2\pi]\) will be negative, so the definite integral will be negative as well.

75. On the interval \([0, 1]\), \(x^5 \leq x^4 \); on the other hand, \(x^4 \leq x^5 \) for \(x \in [1, 2] \).
77. \(y = \sin x \) is increasing on \([0.2, 0.3]\). Accordingly, for \(0.2 \leq x \leq 0.3\), we have

\[
m = 0.198 \leq 0.19867 \approx \sin 0.2 \leq \sin x \leq \sin 0.3 \approx 0.29552 \leq 0.296 = M
\]

Therefore, by the Comparison Theorem, we have

\[
0.0198 = m(0.3 - 0.2) = \int_{0.2}^{0.3} m\, dx \leq \int_{0.2}^{0.3} \sin x\, dx \leq \int_{0.2}^{0.3} M\, dx = M(0.3 - 0.2) = 0.0296
\]

79. \(f \) is decreasing and nonnegative on the interval \([\pi/4, \pi/2]\). Therefore, \(0 \leq f(x) \leq f(\pi/4) = 2\sqrt{2}/\pi \) for all \(x \in [\pi/4, \pi/2]\).

81. The assertion \(f'(x) \leq g'(x) \) is false. Consider \(a = 0, b = 1, f(x) = x, g(x) = 2, f(x) \leq g(x) \) for all \(x \) in the interval \([0, 1]\), but \(f'(x) = 1 \), while \(g'(x) = 0 \) for all \(x \).

83. If \(f \) is an odd function, then \(f(-x) = -f(x) \) for all \(x \).

Accordingly, for every positively signed area in the right half-plane where \(f \) is above the \(x \)-axis, there is a corresponding negatively signed area in the left half-plane where \(f \) is below the \(x \)-axis.

Similarly, for every negatively signed area in the right half-plane where \(f \) is below the \(x \)-axis, there is a corresponding positively signed area in the left half-plane where \(f \) is above the \(x \)-axis.

Section 5.3 Preliminary Questions

1. Any constant function is an antiderivative for the function \(f(x) = 0 \).
2. No difference 3. No
4. (a) False. Even if \(f(x) = g(x) \), the antiderivatives \(F \) and \(G \) may differ by an additive constant.

(b) True. This follows from the fact that the derivative of any constant is 0.

(e) False. If the functions \(f \) and \(g \) are different, then the antiderivatives \(F \) and \(G \) differ by a linear function: \(F(x) - G(x) = ax + b \) for some constants \(a \) and \(b \).

5. No

Section 5.3 Exercises

1. \(6x^3 + C \) 3. \(\frac{2}{5}x^5 - 8x^3 + 12\ln |x| + C \)
5. \(2\sin x + 9\cos x + C \) 7. \(-\frac{1}{2}\cos 2x + 4 \sin 3x + C \)
9. (a) (ii) (b) (iii) (c) (i) (d) (iv)

11. \(4x - 9x^2 + C \) 13. \(\frac{11}{5}x^{11/5} + C \) 15. \(3\theta - 2\sin^2 \theta - 14\theta^2 + C \)
17. \(\frac{3\theta^{1/3} - 3\theta^{5/3} + 4\theta^{9/4} + C}{9\theta^{1/4}} \) 19. \(\frac{3}{2}\theta^{1/3} + C \) 21. \(-\frac{18}{7\theta^5} + C \)
23. \(\frac{2\theta^{5/2}}{7} + \frac{1}{2}\theta^2 + \frac{2}{3}\theta^{3/2} + t + C \)
25. \(\frac{1}{2}x^2 + 3\ln |x| + 4x^{-1} + C \) 27. \(12\sec x + C \)
29. \(-\csc t + C \) 31. \(\frac{1}{3}\tan(3\theta) + C \) 33. \(\frac{25}{3}\tan(3\theta) + C \)
35. \(3\sin 4x - 3\cos 3x + C \) 37. \(\frac{5}{8}\ln \left(\sec^2(4\theta + 3\theta) + 3\right) + C \)
39. \(\frac{1}{3}\sin 3\theta - 2\tan \theta + C \)
41. Graph (B) does not have the same local extrema as indicated by \(y = f(x) \) and therefore is not an antiderivative of \(y = f(x) \).
Section 5.5 Exercises

1. \(A(x) = \int_{-2}^{x} (2t + 4) \, dt = (x + 2)^2 \)

3. \(G'(1) = 1 \) and \(G'(2) = 2 \); \(G(x) = \frac{1}{3}x^3 - 2x + \frac{5}{3} \)

5. \(G'(0) = 0 \) and \(G'(\frac{1}{2}) = 1 \)

7. \(\frac{1}{2}x^5 - \frac{32}{5} \)

9. \(1 - \cos x \)

11. \(\frac{1}{2} - \frac{1}{\sqrt{x}} \)

13. \(\frac{1}{2}x^4 - \frac{1}{2} \)

17. \(F(x) = \int_{1}^{\sqrt{x^3 + 1}} dt \)

19. \(F(x) = \int_{0}^{x} \sec t \, dt \)

21. \(x^5 - 9x^3 \)

23. sec(5t - 9)

25. (a) \(A(2) = 4; A(3) = 6.5; A'(2) = 2 \) and \(A'(3) = 3 \)

(b) \(A(x) = \begin{cases} 2x, & 0 \leq x \leq 2 \\ \frac{1}{2}x^2 + 2, & 2 < x \leq 4 \end{cases} \)

29. \(\frac{2x^3}{x^2 + 1} \)

31. \(-\cos^3 x \sin x \)

33. \(2x \tan(x^2) - \frac{\tan(\sqrt{x})}{2\sqrt{x}} \)

35. The minimum value of \(A(x) \) is \(A(1.5) = -1.25 \); the maximum value of \(A \) is \(A(4.5) = 1.25 \).

37. \(A(x) = (x - 2) - 1 \) and \(B(x) = (x - 2) \)

39. (a) \(A \) does not have a local maximum at \(P \).

(b) \(A \) has a local minimum at \(R \).

(c) \(A \) has a local maximum at \(S \).

(d) True

41. \(g(x) = 2x + 1 \); \(c = 2 \) or \(c = -3 \)

43. (a) \(F(x) \) is an inflection point of \(A \), then \(A''(c) = f'(c) = 0 \).

(b) If \(A \) is concave up, then \(A''(x) > 0 \). Since \(A \) is the area function associated with \(f \), \(A'(x) = f(x) \) by FTC II, so \(A''(x) = f'(x) \).

Therefore, \(f'(x) > 0 \), so \(f \) is increasing.

(c) If \(A \) is concave down, then \(A''(x) < 0 \). Since \(A \) is the area function associated with \(f \), \(A'(x) = f(x) \) by FTC II, so \(A''(x) = f'(x) \).

Therefore, \(f'(x) < 0 \), so \(f \) is decreasing.

45. (a) \(A \) is increasing on the intervals \((0, 4)\) and \((8, 12)\) and is decreasing on the intervals \((4, 8)\) and \((12, \infty)\).

(b) Local minimum: \(x = 8 \); local maximum: \(x = 4 \) and \(x = 12 \)

(c) \(A \) has inflection points at \(x = 2 \), \(x = 6 \), and \(x = 10 \).

(d) \(A \) is concave up on the intervals \((0, 2)\) and \((6, 10)\) and is concave down on the intervals \((2, 6)\) and \((10, \infty)\).

47. The graph of one such function is
49. Smallest positive critical point: $x = (\pi/2)^2/3$ corresponds to a local maximum; smallest positive inflection point: $x = \pi^2/3$; $y = F(x)$ changes from concave down to concave up.

51. (a) Then by the FTC, Part II, $A(x) = f(x)$ and thus $y = A(x)$ and $y = F(x)$ are both antiderivatives of $y = f(x)$. Hence, $F(x) = A(x) + C$ for some constant C.

(b) $F(b) - F(a) = (A(b) + C) - (A(a) + C) = A(b) - A(a)$

$$= \int_a^b f(t) dt - \int_a^b f(t) dt$$

which proves the FTC, Part I.

53. Write

$$\int_{u(x)}^{v(x)} f(x) dx = \int_{u(x)}^0 f(x) dx + \int_{0}^{v(x)} f(x) dx$$

Then, by the Chain Rule and the FTC,

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(x) dx = \frac{d}{dx} \int_{u(x)}^0 f(x) dx + \frac{d}{dx} \int_{0}^{v(x)} f(x) dx$$

$$= f(v(x))u'(x) - f(u(x))u'(x)$$

Section 5.6 Preliminary Questions
1. The total drop in temperature of the metal object in the first T minutes after being submerged in the cold water
2. 560 km
3. Quantities (a) and (c) would naturally be represented as derivatives; quantities (b) and (d) would naturally be represented as integrals.

Section 5.6 Exercises
1. 15,250 gal
3. $3,660,000$ kg
5. 33 m
7. 3.675 m
9. Displacement: 10 m; distance: 26 m

11. Displacement: 0 m; distance: 1 m

13. 39 m/s
15. 9200 cars
17. Total cost: 650; average cost of first 10: 37.50; average cost of last 10: 27.50

19. 112.5 ft
21. The area under the graph in Figure 5 represents the total power consumption over one day in California: 3.627×10^{13} joules
23. (a) 2.916×10^{10}
(b) Approximately $240,526$ asteroids of diameter 50 km
25. $\int_0^{365} R(t) dt \approx 605.05$ billion ft3
49. $2 \sin \sqrt{t} + C$
51. $\frac{2}{3} \sin x + 1(\sin x - 2) + C$
53. $3 \tan^4 x - 2 \tan^3 x + C$
55. $\frac{1}{4} \tan(4x + 9) + C$
57. $2 \tan(\sqrt{x}) + C$
59. $-\frac{1}{6} \cos(4x + 1)^{3/2} + C$
61. $\frac{1}{2} (\sec \theta - 1)^2 + C$
63. $-\frac{2}{1 + \sqrt{\theta}} + \frac{1}{(1 + \sqrt{x})^2} + C$
65. With $u = \sin x$, $\frac{1}{2} \sin^2 x + C_1$; with $u = \cos x$, $-\frac{1}{2} \cos^2 x + C_2$; the two results differ by a constant.

67. $u = \pi$ and $u = 4\pi$
69. 136
71. $3 - \sqrt{5}
73. $\frac{3}{16}
75. $\frac{98}{3}
77. $\frac{243}{4}
79. $2\sqrt{2}$
81. $\frac{1}{4}
83. $\frac{20}{3} \sqrt{3} - \frac{32}{3} \sqrt{3}$

85. Use the substitution $u = \sin x$, $du = \cos x \, dx$ to get $\frac{1}{n + 1}$.
87. Use the substitution $u = f(x)$, $du = f'(x) \, dx$; then
$$\int \frac{f'(x)}{u^2} \, dx = \int \frac{du}{u^2} = -\frac{1}{u} + C = -\frac{1}{f(x)} + C$$
89. Let $u = \sin \theta$. Then $u(\pi/6) = 1/2$ and $u(0) = 0$, as required. Furthermore, $du = \cos \theta \, d\theta$, so
$$d\theta = \frac{du}{\cos \theta}$$
If $\sin \theta = u$, then $u^2 + \cos^2 \theta = 1$, so $\cos \theta = \sqrt{1 - u^2}$. Therefore, $d\theta = du/\sqrt{1 - u^2}$. This gives
$$\int_0^{\pi/2} f(\sin \theta) \, d\theta = \int_0^{1/2} f(u) \frac{1}{\sqrt{1 - u^2}} \, du$$
91. $I = \pi/4$

Chapter 5 Review

1. $L_4 = \frac{23}{4}$; $M_4 = 7$

3. In general, R_N is larger than $\int_a^b f(x) \, dx$ on any interval $[a, b]$ over which $f(x)$ is increasing. Given the graph of f, we may take $[a,b] = [0, 2]$. In order for L_4 to be larger than $\int_a^b f(x) \, dx$, f must be decreasing over the interval $[a, b]$. We may therefore take $[a,b] = [2, 3]$.
5. $R_6 = \frac{485}{8}$

$\int_0^{\pi/2} f(x) \, dx$

$M_6 = \frac{1127}{16}$

$\int_0^{\pi/2} f(x) \, dx$

$L_6 = \frac{505}{32}$; The rectangles corresponding to this approximation are shown below.

7. $R_N = \frac{141}{2} + \frac{45}{N} + \frac{9}{2\sqrt{N}}; \quad R_5 \approx \frac{141}{2}$
9. $R_5 \approx 0.733732; \quad M_5 \approx 0.786231; \quad L_5 \approx 0.833732$
11. The area represented by the shaded rectangles is $R_5; \quad R_5 = 90; \quad L_5 = 90$.
13. $\lim_{N \to \infty} \frac{\pi}{6N} \sum_{j=1}^{N} \sin \left(\frac{\pi}{3} + \frac{\pi j}{6N} \right) = \int_{\pi/3}^{\pi/2} \sin x \, dx = \frac{1}{2}$
15. $\lim_{N \to \infty} \frac{5}{N} \sum_{j=1}^{N} \sqrt{4 + 5j/N} = \int_{4}^9 \sqrt{x} \, dx = \frac{38}{3}$
17. $x^4 - \frac{2}{3} x^3 + C$
19. $- \cos(\theta - 8) + C$
21. $-2x^2 - 4x^3 + C$
23. $\tan x + C$
25. $\frac{1}{2} (y + 2)^3 + C$
27. $\sin \theta - \frac{1}{2} \theta + C$
29. $-4x^2 + C$
31. $y(x) = x^4 + 3$
33. $y(x) = 2\sqrt{x} - 1$
35. $y(t) = t - \frac{\pi}{3} (\cos(3t) - 1)$
37. $f(t) = \frac{t^2}{2} - \frac{t^3}{3} - t + 2$
39. $\frac{1}{4} \ln \frac{5}{3}$
41. $\frac{1}{5} \left(\frac{1}{9} - \sqrt{3} \right)$
43. $4x^5 - \frac{9}{4} x^4 - x^2 + C$
45. $\frac{4}{3} x^5 - 3x^4 + 3x^3 + C$
47. $\frac{1}{4} x^4 + x^3 + C$
51. $\frac{3}{4} x^4$
53. $\frac{1}{150} (10t - 7)^{15} + C$
55. $-\frac{1}{24} (3x^4 + 9x^2)^{-4} + C$
57. 506
59. $-\frac{3\sqrt{3}}{2\pi}$
61. $\frac{1}{27} \tan(9t^3 + 1) + C$
63. $\frac{1}{2} \cot(9t - 2\theta) + C$
65. $3 - 3\sqrt{2}$
67. $\frac{1}{5} (2y + 3)^{3/2} (y - 1) + C$
69. tan(1)
71. $\int_{-2}^2 f(x) \, dx$

73. Local minimum at $x = 0$, no local maxima, inflection points at $x = \pm 1$
75. Daily consumption: 9.312 million gal; from 6 pm to midnight: 1.68 million gal
77. $\$208.245$
79. 0
83. The function $f(x) = 2x$ is increasing, so $1 \leq x \leq 2$ implies that $2 = 2^1 \leq 2x \leq 2^2 = 4$. Consequently,
$$2 = \int_1^2 2 \, dx \leq \int_1^2 2^3 \, dx \leq \int_1^2 4 \, dx = 4$$
On the other hand, the function $f(x) = 3^{-x}$ is decreasing, so $1 \leq x \leq 2$ implies that
$$\frac{1}{9} = 3^{-2} \leq 3^{-x} \leq 3^{-1} = \frac{1}{3}$$
It then follows that
$$\frac{1}{9} = \int_1^2 \frac{1}{9} \, dx \leq \int_1^2 3^{-x} \, dx \leq \int_1^2 \frac{1}{3} \, dx = \frac{1}{3}$$
85. \(\frac{4}{3} \leq \int_0^1 f(x) \, dx \leq \frac{5}{3} \)
87. \(-\frac{1}{1 + \pi} \)
89. \(\sin^3 x \cos x \)
91. \(-2 \)
93. Consider the figure below, which displays a portion of the graph of a linear function.

The shaded rectangles represent the differences between the right-endpoint approximation \(R_N \) and the left-endpoint approximation \(L_N \). Because the graph of \(y = f(x) \) is a line, the lower portion of each shaded rectangle is exactly the same size as the upper portion. Therefore, if we average \(L_N \) and \(R_N \), the error in the two approximations will exactly cancel, leaving

\[\frac{1}{2} (R_N + L_N) = \int_a^b f(x) \, dx \]

Chapter 6

Section 6.1 Preliminary Questions

1. Area of the region between the graphs of \(y = f(x) \) and \(y = g(x) \), bounded on the left by the vertical line \(x = a \) and on the right by the vertical line \(x = b \)
2. Yes \(\int_0^3 (f(x) - g(x)) \, dx = \int_3^5 (g(x) - f(x)) \, dx \)
4. Negative
5. The area of the region bounded by the graphs of the functions \(f \) and \(g \), and the vertical lines \(x = a \) and \(x = b \)
6.

Section 6.1 Exercises

1. \(102 \) \(3. \frac{32}{3} \)
5. \(\sqrt{2} - 1 \)
7. \(\frac{343}{3} \)
9. The curves intersect at \((\pm 1, 0) \):

11. \(\pi - 2 \)
13. Horizontally simple \(15. \) Neither
19. \(\frac{12\sqrt{3} - 12(\sqrt{7} - 2)\pi}{24} \)
21. \(2 - \frac{\pi}{2} \)
23. \(\frac{1331}{6} \)
25. 256
27. \(\frac{32}{3} \)
29. \(\frac{64}{3} \)
31. \(\frac{64}{3} \)
33. 2
35. \(\frac{128}{3} \)
37. \(\frac{1}{2} \)
ANSWERS TO ODD-NUMBERED EXERCISES

39. \(\frac{1225}{8} \)

41. \(\frac{32}{3} \)

43. \(\frac{3\sqrt{3}}{4} \)

45. \(\frac{2-\sqrt{2}}{2} \)

47. \(\frac{1}{2} \cos 1 - 1 \approx 0.2298 \)

49. \(\approx 0.7567130951 \)

51. (a) (ii) (b) No (c) At 10 s, athlete 1; at 25 s, athlete 2

53. \(\frac{5}{2} r^3/2; c = \frac{913}{3} \approx 0.520021 \)

55. \(\int_{-\sqrt{1+\sqrt{3}/2}}^{\sqrt{1+\sqrt{3}/2}} \left[(1 + x^2)^{-1} - x^2 \right] dx \)

57. \(0.8009772242 \)

59. \(214.75 \text{ in}^2 \)

61. (b) \(\frac{1}{5} \) (c) 0 (d) 1

63. \(m = 1 - \left(\frac{1}{2} \right)^1/3 \approx 0.206299 \)

Section 6.2 Preliminary Questions

1. \(3 \) 2. 15

3. Flow rate is the volume of fluid that passes through a cross-sectional area at a given point per unit time.

4. The fluid velocity depended only on the radial distance from the center of the tube.

5. 15

Section 6.2 Exercises

1. (a) \(\frac{4}{25} (20 - y)^2 \) (b) \(\frac{1280}{3} \)

3. \(\pi R^2/3 \) 5. \(\pi \left(R^2 - \frac{a^3}{3} \right) \) 7. \(\frac{1}{2} abc \)

9. \(\frac{5}{3} \) 11. 36 13. 18

15. \(\frac{2}{3} \) 17. \(96\pi \)

21. (a) \(2\sqrt{r^2 - y^2} \) (b) \(4(r^2 - y^2) \) (c) \(16 \pi r^3 \)

23. \(160\pi \) 25. 5 kg 27. 0.36 g

29. \(P \approx 4423.59 \text{ thousand} \) 31. \(L_{10} = 233.86, R_6 = 290.56 \)

33. \(P \approx 61 \text{ deer} \) 35. \(Q = 128\pi \text{ cm}^3/\text{s} \) 37. \(Q = \frac{8\pi}{3} \text{ cm}^3/\text{s} \)

39. 16 41. \(\frac{5}{2} \) 43. \(\frac{1}{10} \) 45. -4 47. \(\frac{1}{\sqrt{2}} \)

49. Over \([0,0.24]\), the average temperature is 20; over \([2,6]\), the average temperature is \(20 + \frac{15}{22} \approx 22.387325 \).

51. \(\approx 79.56^\circ F \) 53. \(\frac{100}{\pi} \) 55. \(\frac{17}{2} \text{ m/s} \) 57. 159.033 m/s

59. \(\frac{3}{\sqrt{\pi}} \approx 2.006221 \)

61. Mean Value Theorem for Integrals; \(c = \frac{A}{\sqrt{2}} \)

63. Over \([0,1]\), \(f(x); \) over \([1,2]\), \(g \)

65. Many solutions exist. One could be

67. \(v_0/2 \)

Section 6.3 Preliminary Questions

1. (a), (c) 2. True

3. False, the cross sections will be washers.

4. (b)

Section 6.3 Exercises

1. (a)

5. \(\frac{1}{2} x^2 \)

(b) Disk with radius \(x + 1 \)

(c) \(V = 21\pi \)
ANSWERS TO ODD-NUMBERED EXERCISES

3. (a)

(b) Disk with radius $\sqrt{x + 1}$
(c) $V = \frac{2\pi}{3}$

5. $V = \frac{8\pi}{10}$
7. $V = \frac{24.573\pi}{13}$
9. $V = \pi$
11. $V = 2\pi$
13. (ii)

15. (a)

(b) A washer with outer radius $R = 10 - x^2$ and inner radius $r = x^2 + 2$
(c) $V = 256\pi$

17. (a)

(b) A washer with outer radius $R = 16 - x$ and inner radius $r = 3x + 12$
(c) $V = \frac{666\pi}{3}$
19. (a)

(b) A circular disk with radius $R = \sec x$
(e) $V = 2\pi$
21. $V = \frac{13\pi}{10}$
23. $V = \frac{3\pi}{10}$
25. $V = 32\pi$
27. $V = \frac{704\pi}{15}$
29. $V = \frac{128\pi}{3}$
31. $V = 40\pi$
33. $V = \frac{376\pi}{3}$
35. $V = \frac{824\pi}{15}$
37. $V = \frac{32\pi}{3}$
39. $V = \frac{1872\pi}{5}$
41. $V = \frac{1400\pi}{3}$
43. $V = \pi \left(\frac{27}{4} - \sqrt{3} \right)$
45. $V = \frac{96\pi}{3}$
47. $V = \frac{16\pi}{35}$
49. $V = \frac{1184\pi}{15}$
51. $V = \frac{9}{8}\pi$
53. $V \approx 12,120\pi \approx 38,076.1$ cm3
55. $V = \frac{1}{3}\pi r^2 h$
57. $V = \frac{32\pi}{105}$

59. $V = 4\pi \sqrt{3}$
61. $V = \frac{4}{3}\pi a^2 b$

Section 6.4 Preliminary Questions

1. (a) Radius h and height r (b) Radius r and height h
2. (a) With respect to x (b) With respect to y
3. $V = 2\pi \int_0^8 y \cdot 1 \, dy = 64\pi$

Section 6.4 Exercises

1. $V = \frac{2}{5}\pi$

3. $V = 4\pi$

5. $V = 18\pi \left(2\sqrt{2} - 1 \right)$

7. $V = \frac{32\pi}{3}$
9. $V = 16\pi$
11. $V = \frac{32\pi}{3}$
13. The point of intersection is $x = 1.376769504$; $V = 1.321975576$.
15. $V = \frac{3\pi}{5}$

17. $V = \frac{280\pi}{81}$

19. $V = \frac{1}{3}\pi a^3 + \pi a^2$
21. $V = \frac{374}{3}$

23. $V = \frac{128\pi}{3}$

25. $V = \frac{256\pi}{3}$

27. (b) $V = \frac{576\pi}{3}$ (b) $V = \frac{96\pi}{3}$

31. (a) \mathcal{A} generates a disk with radius $R = h(y)$; \mathcal{B} generates a shell with radius x and height $f(x)$.

33. $V = \frac{602\pi}{3}$

35. $V = 8\pi$

37. $V = \frac{40\pi}{3}$

39. $V = \frac{1024\pi}{15}$

41. $V = 16\pi$

43. $V = \frac{32\pi}{3}$

45. $V = \frac{776\sqrt{2}\pi}{15}$

47. $V = \frac{625\pi}{6}$

49. $\frac{3\pi}{10}$

51. $V = \frac{121\pi}{25}$

53. $V = \frac{56\pi}{10}$

55. $V = \frac{4\pi}{3}x^3$

57. $V = 2x^2a^2$

59. $x^2 + y^2 = 1$ over $[0, 1]$; $y = 1 - x$ over $[0, 1]$

Section 6.5 Preliminary Questions

1. Because the required force is not constant through the stretching process.
2. The force involved in lifting the tank is the weight of the tank, which is constant.
3. $\frac{1}{2}kx^2$
4. When the force applied is in the opposite direction to the motion.

Section 6.6 Exercises

1. $W = 627.2$ joules 3. $W = 5.76$ joules 5. $W = 8$ joules

11. $W = 105.840$ joules

13. $W = \frac{56.448k}{3}$ joules $\approx 3.547 \times 10^4$ joules

15. $W \approx 1.842 \times 10^{12}$ joules 17. $W = 3.92 \times 10^6$ joules

19. $W = 1.18 \times 10^8$ joules 21. $W = 9800\pi \sqrt{r^3}$ joules

23. $W = 2.94 \times 10^6$ joules 25. $W \approx 1.222 \times 10^6$ joules

27. $W = 3920$ joules 29. $W = 529.2$ joules

31. $W = 1470$ joules 33. $W = 374.85$ joules

37. $W \approx 5.16 \times 10^9$ joules 41. $\sqrt{2GM_e \left(\frac{1}{R_e} - \frac{1}{r + R_e} \right)}$ m/s

43. $v_{esc} = \sqrt{\frac{2GM_e}{R_e}}$ m/s

Chapter 6 Review

1. $\frac{3\pi}{2}$ 3. $\frac{1}{2}$ 5. 24 7. $\frac{1}{2}$ 9. $3\sqrt{2} - 1$ 11. $\frac{1}{2} \left(1 - \tan \left(\frac{\pi}{4} \right) \right)$

13. Intersection points $x \approx \pm 0.8241323123$; Area ≈ 1.094753609

15. $V = 4\pi$ 17. 2.7552 kg 19. $\frac{3\pi}{2}$ 21. $\frac{1}{2} \left(625 \cdot 5^{3/5} - 5 \right)$

23. $\frac{3\pi}{2}$ 25 27. $\frac{2\pi m^5}{15}$ 29. $V = \frac{162\pi}{3}$ 31. $V = 64\pi$

33. $V = 8\pi$ 35. $V = \frac{56\pi}{15}$ 37. $V = \frac{128\pi}{15}$ 39. $V = \pi$

41. $V = 2\pi \left(e + \frac{3}{\pi} \right)$

43. $V = c\pi$

45. (a) $\int_{-1}^{1} \left(\sqrt{1 - (x - 1)^2} - (1 - \sqrt{1 - x^2}) \right) dx$

(b) $\pi \int_{0}^{1} \left((1 - (x - 1)^2) - (1 - \sqrt{1 - x^2}) \right) dx$

47. $V = \pi \int_{0}^{1/2} a(\sqrt{x} - ax)^2 dx = \frac{\pi}{6}$

49. $W = 1.6$ joules

51. $W = 1.93 \times 10^{10}$ joules 53. $9800\pi \left(h^3 + 2h^2 - \frac{1}{4}h^4 \right)$ joules

Chapter 7

Section 7.1 Preliminary Questions

1. Equations (a), (b), and (d) are correct, but equation (c) is not: $3^2 \cdot 2^3 = 9 \cdot 8 = 72$.

2. The domain of $f(x) = \ln x$ is $(0, \infty)$; its range is $(-\infty, \infty)$. In $x < 0$ when $0 < x < 1$.

3. (a), (c), and (f). The others do not have a variable base and a constant exponent.

4. $0 < b < 1$. 5. For all $b > 0$ except $b = 1$.

6. (0, 1). 7. (c).

Section 7.1 Exercises

1. (a) 1 (b) 29 (c) 1 (d) 81 (e) 16 (f) 0 3. $x = 4$

5. $x = -\frac{1}{2}$ 7. $x = -\frac{1}{4}$

9. $k = 9$ 11. ∞ 13. ∞

15. $y = 4x + 4$ 17. $y = e(x + 1) + e$

19. $14e^{2x} + 12e^{4x}$ 21. $\pi e^{\pi x}$

23. $-4e^{-4x} + 9$ 25. $e^{x^2 + 2x - 1}$

27. $4(1 + e^x)^3 e^x$ 29. $(2x + 2)e^{2x^2 + 2x - 3}$

31. $\cos x \cdot e^{\sin x}$ 33. $e^0 \cos(e^0)$ 35. $-\frac{3x^3 - 3}{(1 - e^{-3x})^2}$
37. \(e^x \frac{3x-2}{(3x+1)^3} \)
39. \(\frac{2e^x - 2e^x x - e^x + 1 - 1}{(2e^x - 1)^2} \)
41. \(16e^{4x-3} \)
43. \(2e^x \cos t \)
45. \(((1 - 2x)^2 - 2)e^t \)
47. Local minimum at \(x = 0 \)
49. Local minimum at \(x = 1 \)
51. Critical point at \(t = 1 \), neither maximum nor minimum
53. Critical point, local maximum, at \(x = 1 \); point of inflection at \(x = 2 \).

55. Critical point, local maximum, at \(x = -\frac{\pi}{4} \); inflection point at \(x = 0 \).

57. Critical point, local minimum, at \(x = 0 \); no inflection points.

59. \(a = 1 \)
61. \(y = x \)
63. \(y = x + 1; e^{-0.1} \approx 0.99 \)
65. (a) 1.29 cm/yr (b) 2.33 yr (c) 32 cm
67. \(kb^{1/m-1}(b-a) \)
69. \(e^x + 2x + C \)
71. \(\frac{1}{4}(1 - e^{-3}) \)
73. \(\frac{1}{6}(e - e^{-17}) \)
75. \(\frac{2}{3}e^{4x} + x + C \)
77. \(1 - e^{-1/2} \)
79. \(\frac{2}{3}(e^x + 1)^{3/2} + C \)
81. \(e^x - \frac{1}{2}e^{3x} + C \)
83. \(2\sqrt{e^x + 1} + C \)
85. \(2e^{\sqrt{x}} + C \)
87. \(\frac{1}{2} + \frac{3}{2}e^2 - e \)
89. \(e^2 + 1 \)
91. (b) \(e^{-1/16} - e^{-25/64} \approx 0.263 \)
97. \(f'(x) = e^x + xe^x; f''(x) = 2e^x + xe^x; f'''(x) = 3e^x + xe^x; f^{(n)}(x) = ne^x + xe^x \)

Section 7.2 Preliminary Questions
1. (a), (b), (f) 2. No
3. Many different teenagers will have the same last name, so this function will not be one-to-one.
4. This function is one-to-one, and \(f^{-1}(627) = \text{Hamilton Township} \).
5. The graph of the inverse function is the reflection of the graph of \(y = f(x) \) through the line \(y = x \).
6. 2
7. 1/3

Section 7.2 Exercises
1. \(f^{-1}(x) = \frac{1}{x} + \frac{3}{7} \)
3. \([−\pi/2, \pi/2]\)
5. \(f(g(x)) = (x - 5)^{1/3} + 3 = x - 3 + 3 = x \).
\(g(f(x)) = (x + 3 - 3)^{1/3} = (x)^{1/3} = x \).
7. \(v^{-1}(R) = \frac{2GM}{R^2} \)
9. \(f^{-1}(x) = 4 - x \).

11. \(f^{-1}(x) = \frac{1}{x} + \frac{3}{7} \)
13. Domain \(\{x : x \geq 0\} \): \(f^{-1}(x) = \sqrt[3]{1-x^2} \); domain \(\{x : x \leq 0\} \): \(f^{-1}(x) = -\sqrt[3]{1-x^2} \)
Section 7.3 Preliminary Questions

1. \(\log_2(5^4) = 2 \)
2. For \(0 < x < 1 \) \(\ln(-3) \) is not defined.
4. This phrase is a verbal description of the general property of logarithms that states \(\log(ab) = \log a + \log b \).
5. D: \(x > 0 \); R: real numbers. 6. \(\ln(-x) \).
7. \(\ln 4 \) 8. \(\frac{1}{10} \)

Section 7.3 Exercises

1. 3 3. 0 5. \(\frac{5}{3} \) 7. \(\frac{1}{3} \) 9. \(\frac{5}{2} \) 11. 1 13. 7 15. 29
17. (a) \(\ln 1600 \) (b) \(\ln(9x^{7/2}) \)
19. \(t = \frac{1}{3} \ln \left(\frac{102}{100} \right) \)
21. \(x = -1 \) or \(x = 3 \)
23. \(e = x \) 25. Let \(a = e^2 \) and \(b = e^3 \)
27. June 2012 (about 11.55 years)
29. \(\frac{d}{dx} \ln x = x = 1 \) 31. \(\frac{d}{dx} (\ln x)^2 = \frac{2}{x} \ln x \)
33. \(\frac{d}{dx} \ln(9x^2 - 8) = \frac{18x}{9x^2 - 8} \)
35. \(\frac{d}{dx} \sin x + 1 = \cos x \)
37. \(\frac{d}{dx} \ln x = 1 - \ln x + \frac{1}{x} \)
39. \(\frac{d}{dx} \ln \ln x = \frac{1}{x \ln x} \)
41. \(\frac{d}{dx} (\ln \ln x)^2 = \frac{2(\ln \ln x)^2}{x \ln x} \)
43. \(\frac{d}{dx} \ln((x + 1)(2x + 9)) = \frac{4x + 11}{x + 1)(2x + 9)} \)
45. \(\frac{d}{dx} x^{11} = 11x^{10} \)
47. \(\frac{d}{dx} x^{11} = \ln x \cdot 11x^{10} \)
49. \(\frac{d}{dx} (\ln x)^2 = \frac{2x}{x^2} \ln x \)
51. \(\frac{d}{dx} \log_2 \sin x = \frac{\cot t}{\ln 2} \)
53. \(x = 26 \ln(6x - 2) + 36 \)
55. \(x = 3^{20} \ln(3x - 2) + 3^{18} \)
57. \(x = 5^1 \)
59. \(y = -1(t - 1) + \ln 4 \)
61. \(y = \frac{1}{25} \ln 5 \)
63. \(y = \frac{8}{\ln 2} \left(\frac{w - 1}{8} \right) - 3 \)
65. \(y' = 2x + 14 \)
67. \(y' = 3x^2 - 12x - 79 \)
69. \(y' = \left(x^2 + 1 \right) \left(\frac{1}{x^2 + 1} + \frac{2x}{x^2 + 1} - \frac{1}{x^2 + 1} \right) \)
71. \(y' = \frac{1}{2} \sqrt{\frac{x(x + 2)}{2x + 1)(3x + 2)} - \left(\frac{1}{x} + 1 + \frac{1}{2}x - \frac{3}{3x + 2} \right) \)
73. \(\frac{d}{dx} \ln x = \frac{1}{x} \)
75. \(\frac{d}{dx} e^x = e^x (e^x + e^x \ln x) \)
77. \(\frac{d}{dx} x^3 = 3x^2 (x + (\ln x)(3x^4)) \)
79. \(g(e) \) is a local maximum.
81. \(g(e^{1/2}) \) is a local maximum.
83. There is a local maximum at \(x = e^{1/2} \approx 1.65 \), and an inflection point at \(x = e^{5/6} \approx 2.301 \).

Section 7.4 Preliminary Questions

1. Doubling time is inversely proportional to the growth constant. Consequently, the quantity with \(k = 3.4 \) doubles more rapidly.
2. It takes longer for the population to increase from one cell to two cells.
3. \(\frac{dS}{dn} = -\ln 2S(n) \)
4. They would be too ancient, as we would have overestimated the actual amount of \(C^{14} \) and thus underestimated the time it took to decay.
Section 7.4 Exercises

1. (a) 2000 bacteria initially (b) \(t = \frac{1}{1.3} \ln 5 \approx 1.24 \) hours
2. \(f(t) = 5e^{t \ln 7} \)
3. \(N'(t) = \frac{\ln 2}{3} N(t); \) 1048576 molecules after one hour
4. \(y(t) = Ce^{-5t} \) for some constant \(C; \) \(y(t) = 3.4e^{-5t} \)
5. \(y(t) = 1000e^{3(t-2)} \)
6. 5.33 years
7. \(k \approx 0.023 \) hours\(^{-1} \); \(P_0 \approx 332 \)
8. Double: 11.55 years; triple: 18.31 years; seven-fold: 32.43 years
9. One-half: 1.98 days; one-third: 3.14 days; one-tenth: 6.58 days
10. Set 1 21. (a) 26.39 years (b) 1969
11. 7600 years 25. 2.34 \times 10^{-13} \) to 2.98 \times 10^{-13}
12. 2.55 hours
13. (a) Yes, the graph looks like an exponential graph especially towards the latter years; \(k \approx 0.369 \) years\(^{-1} \).

(b)
\[N(t) = 2250e^{0.369t} \]
(c) \(N(t) = 2250e^{0.369t} \)
(d) The doubling time is \(\ln 2 \) or 0.693 years.
(e) \(\approx 2.53 \times 10^{10} \) transistors
(f) No, you can’t make a microchip smaller than an atom.
31. With \(t_0 = 10 \), the doubling time is then 14; with \(t_0 = 20 \), the doubling time is 24.
32. \(T = -\frac{1}{k} \ln \left(1 - \frac{d}{L} \right) \)
33. \(P(t) = 204e^{0.15t} \) with \(a \approx -0.02 \); 136 rats after 20 months
34. For \(m \)-fold growth, \(P(t) = mP_0 \) for some \(t \). Solving \(mP_0 = P_0e^{kt} \) for \(t \), we find \(t = \frac{\ln m}{k} \).

Section 7.5 Preliminary Questions

1. 12% compounded quarterly is an annual rate of 48.55%; 11% compounded continuously is 11.63%, so 12% compounded quarterly.
2. 1.0942; 1.0931 3. (b)
4. If the interest rate goes up, the present value of $1 a year from now will decrease.
5. He will be sad, because at 7%, the amount someone would need to invest today for $1000 in a year is less than it would be at 6%. Thus today’s value of that gift is smaller.

Section 7.5 Exercises

1. (a) \(P(10) = 4870.38 \) (b) \(P(10) = 4902.71 \)
(c) \(P(10) = 4919.21 \)
3. (a) 1.0508 (b) 1.0513
5. 12,752.56
7. In 3 years:
 (a) \(PV = 8284.75 \)
 (b) \(PV = 8284.75 \)
In 5 years:
 (a) \(PV = 7304.09 \)
 (b) \(PV = 7304.09 \)
9. 9.16%
11. (a) The present value of the reduced labor costs is \(7000(e^{-0.08} + e^{-0.16} + e^{-0.24} + e^{-0.32} + e^{-0.4}) = $27,708.50 \). This is more than the $25,000 cost of the computer system, so the computer system should be purchased.
(b) The present value of the savings is \($27,708.50 - $25,000 = $2708.50 \).
13. $39,346.93 15. $41,906.75 19. \(R = $1200 \)
21. $71,460.53
23. \(e^6 \) 25. \(e^6 \)
27. Start by expressing \(\ln \left(1 + \frac{x}{n} \right) = \frac{1}{n} \int_0^1 \frac{dt}{t} \).
Following the proof in the text, we note that \(\frac{x}{n + x} \leq \ln \left(1 + \frac{x}{n} \right) \leq \frac{x}{n} \)
provided \(x > 0 \), while \(\frac{x}{n} \leq \ln \left(1 + \frac{x}{n} \right) \leq \frac{x}{n + x} \)
when \(x < 0 \). Multiplying both sets of inequalities by \(n \) and passing to the limit as \(n \to \infty \), the squeeze theorem guarantees that \(\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \).
Finally, \(\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x \).

29. (a) 9.38%
(b) In general, \(P_0(1 + r/M)^M = P_0(1 + r)^M \), so \((1 + r/M)^M = (1 + r)^M \) or \(r = (1 + r/M)^M - 1 \). If interest is compounded continuously, then \(P_0e^{rt} = P_0(1 + r)^t \) so \(e^{rt} = (1 + r)^t \) or \(r = e^{rt} - 1 \).
(c) 11.63%
(d) 18.26%

Section 7.6 Preliminary Questions

1. \(y(t) = 5 - ce^{kt} \) for any positive constant \(c \)
2. No 3. True
4. The difference in temperature between a cooling object and the ambient temperature is decreasing. Hence, the rate of cooling, which is proportional to this difference, is also decreasing in magnitude.

Section 7.6 Exercises

1. General solution: \(y(t) = 10 + ce^{2t} \); solution satisfying \(y(0) = 25 \): \(y(t) = 10 + 15e^{2t} \); solution satisfying \(y(0) = 5 \): \(y(t) = 10 - 5e^{2t} \)
ANSWERS TO ODD-NUMBERED EXERCISES

3. \(y = -6 + 11e^{4x} \)
4. \(y' = -0.02(y - 10) \)\(\) \hspace{1cm} \(y = 10 + 90e^{-\pi t} \)
5. \((a) \) \(y' = -0.02(y - 10) \) \hspace{1cm} \((b) \) \(y = 10 + 90e^{-\pi t} \)\(\)
6. \((c) \) \(100 \ln 3 \approx 109.8 \) s
7. \(\approx 5:50 \) AM \hspace{1cm} \(\approx 0.77 \) min = 46.6 s
8. \(500 \ln \frac{3}{2} \approx 203 \) s = 3 min 23 s

Section 7.7 Preliminary Questions
1. Not of the form \(\frac{0}{0} \) or \(\frac{\infty}{\infty} \)
2. No

Section 7.7 Exercises
1. L'Hôpital's Rule does not apply.
2. L'Hôpital's Rule does not apply.
3. L'Hôpital's Rule does not apply.
4. L'Hôpital's Rule does not apply.
5. L'Hôpital's Rule does not apply.
6. L'Hôpital's Rule does not apply.
7. L'Hôpital's Rule does not apply.
8. \(\frac{5}{6} \)
9. \(\frac{3}{2} \)
10. \(\frac{9}{7} \)
11. \(\frac{2}{7} \)
12. \(\frac{1}{2} \)
13. \(\frac{3}{2} \)
14. \(\frac{2}{7} \)
15. \(\frac{1}{2} \)
16. \(\frac{4}{7} \)
17. \(\frac{5}{6} \)
18. \(\frac{3}{2} \)
19. \(\frac{9}{7} \)
20. \(\frac{2}{7} \)
21. \(\frac{1}{2} \)
22. \(\frac{3}{2} \)
23. \(\frac{9}{7} \)
24. \(\frac{2}{7} \)
25. \(\frac{1}{2} \)
26. \(\frac{4}{7} \)
27. \(\frac{5}{6} \)
28. \(\frac{3}{2} \)
29. \(\frac{9}{7} \)
30. \(\frac{2}{7} \)
31. \(\frac{1}{2} \)
32. \(\frac{3}{2} \)
33. \(\frac{9}{7} \)
34. \(\frac{2}{7} \)
35. \(\frac{1}{2} \)
36. \(\frac{4}{7} \)

51. \(\lim_{x \to \pi/2} \frac{\cos mx}{\cos nx} = \begin{cases} (-1)^{m-n}/2, & m, n \text{ even} \\ 0, & m, n \text{ odd} \end{cases} \)

53. \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \)

61. \(\lim_{x \to -\infty} \frac{\ln x}{x^a} = \lim_{x \to -\infty} \frac{\ln -x}{-x^a} = 0 \)

65. \((a) \) \(1 \leq 2 + \sin x \leq 3 \) \hspace{1cm} \(\frac{x^2 + 1}{x^2 + 1} \leq \frac{x(2 + \sin x)}{x^2 + 1} \leq \frac{3x}{x^2 + 1} \)

67. (a) Using Exercise 66, we see that \(G(b) = e^{H(b)} \).

69. \(\frac{\sin x}{x} \) \hspace{1cm} \(\frac{1}{x} \)

71. For \(x \neq 0 \), \(f'(x) = e^{-1/2} \frac{1}{\sqrt{x}} \). \hspace{1cm} \(\frac{2}{\sqrt{x}} \)

75. \(\frac{\sin x}{x} = 1 \)

77. (a) \(e^{-1/6} \approx 0.846481724 \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>0.1</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin x) (\frac{1}{x^2})</td>
<td>0.841471</td>
<td>0.846435</td>
<td>0.846481</td>
</tr>
</tbody>
</table>
Section 7.8 Preliminary Questions
1. (b) and (c)
2. Any angle $\theta < 0$ or $\theta > \pi$ will work.
3. The sum of the two non-right angles in a right triangle is $\pi/2$. It tells us that the derivatives of the two functions are negatives of each other (since their sum is zero).
4. $\sqrt{3}$
5. $x = \pm 4u$

Section 7.8 Exercises
1. 0 3 7 7 7 17 27 29 31 33 35 35 37 39 40 41 43 45 47 49
2. $\sqrt{\frac{\pi}{3}}$
3. No inverse
4. $\frac{7}{\sqrt{1-(7x)^2}}$
5. $\frac{-2x^2}{\sqrt{1-x^2}}$
6. $\frac{\tan^{-1}x}{x^2+1} + x + \frac{1}{1+x^2}$
7. $\frac{e^x}{\sqrt{1-e^{2x}}}$
8. $\frac{1-t^2}{\sqrt{1-t^2}}$
9. $\frac{3\tan^{-1}x^2}{x^2+1}$
10. 0
11. -1
12. $-\frac{1}{\sin^2 x}$
13. $\cos \theta = x$
14. $\sin \theta = \sqrt{1-x^2}$
15. $\frac{7}{6}$

Section 7.9 Preliminary Questions
1. $y = \cosh x$ and $y = \text{sech} x$
2. $y = \sinh x$ and $y = \tanh x$
3. Parity, identities and derivative formulas
4. $y = \cosh x$, $y = \sinh x$

Section 7.9 Exercises
1.

<table>
<thead>
<tr>
<th>x</th>
<th>-3</th>
<th>0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sinh x$</td>
<td>$\frac{e^x-e^{-x}}{2}$</td>
<td>-0.0179</td>
<td>74.203</td>
</tr>
<tr>
<td>$\cosh x$</td>
<td>$\frac{e^x+e^{-x}}{2}$</td>
<td>10.0677</td>
<td>74.210</td>
</tr>
</tbody>
</table>

3. $f(x)$ is increasing everywhere and strictly increasing for $x \neq 0$; $f(x) = \cosh x$ is increasing for $x \geq 0$ and strictly increasing for $x > 0$.

7. $\cosh x \cos y + \sinh x \sin y$

 $= \frac{e^x+e^{-x}}{2} \cdot \frac{e^y+e^{-y}}{2} + \frac{e^x-e^{-x}}{2} \cdot \frac{e^y-e^{-y}}{2}$

 $= \frac{2e^{x+y} + 2e^{-(x+y)}}{4} = e^{x+y} + e^{-(x+y)} = \cosh(x+y)$

9. $\frac{\pi}{3\sqrt{3}}$
10. $\frac{1}{4} \sin^{-1}(4t) + C$
11. $\frac{\sqrt{3}}{2} \sin^{-1}(2x) + C$
12. $\frac{\sqrt{3}}{2} \sec^{-1}(2x) + C$
13. $\frac{3}{2} \ln(\sin^{-1}x) + C$
14. $\frac{3}{2} \ln(2 - \ln 3) = \ln \frac{4}{3}$
15. $\frac{\text{coth} t}{\text{tanh} t}$

 $= \frac{(\text{cosh} t^2 + 2 \text{csch} t \text{sech} t)}{(1 + \text{tanh} t)^2}$
Recall that \(\cosh(x) \) is defined as:

\[
\cosh(x) = \frac{e^x + e^{-x}}{2}
\]

Solving for \(x \) yields:

\[
\sinh(x) = \frac{e^x - e^{-x}}{2}
\]

The formula for \(\frac{ds}{dt} \) follows upon substituting the results from parts (a) and (b).

Chapter 7 Review

1. (a) No match (b) No match (c) (i): \(2^a b = 2^{ab} \)
 (d) (iii): \(2^{a-b} b-a = 2^{a-b} \left(\frac{1}{2} \right)^{a-b} = \left(\frac{1}{2} \right)^{a-b} \)

2. (b): \((ln 2)2^x \)
 5. \(f^{-1}(x) = \frac{\ln x}{\ln 2} \); domain \(\{ x : x \neq 1 \} \); range: \(\{ y : y \neq 1 \} \)
 7. \(g(g(x)) = \left(\frac{1}{x} \right)^x = \frac{x}{x^x} = x \)

9. (a) (iii) (b) (iv) (c) (ii) (d) (i) 11. \(\frac{1}{e} \)

13. \(-36e^{-4x} \)
 15. \(-e^{x+1} \)
 17. \(\frac{1}{2} \ln s \)

19. \((4-2x)e^{4-x^2} \)
21. \(\cot \theta \)
23. \(\frac{\ln x}{\ln 1} \)
25. \(\left(1 + \frac{1}{2} \right) e^{x+1} \)
27. \(-2^{3-y} \ln 2 \)
29. \(-2 \ln 7 \cdot 7^{-2x} \)
31. \(\frac{1}{\sqrt{x^2-x^2}} \)
33. \(\frac{1}{\ln 95} \)

37. \((\sin 2t)^2(2 \ln s+2 t \cot t) \)

43. \(y = -\frac{1}{2} x + 6 \)

47. Global minimum at \(x = \ln(2) \); no maximum.

49. Local minimum at \(x = e^{-1} \); no points of inflection:
 \[
 \lim_{x \to 0^+} x \ln x = 0; \quad \lim_{x \to \infty} x \ln x = \infty.
 \]

51. Local minimum at \(x = 1 \); local maximum at \(x = e^{-2} \); point of inflection at \(x = \frac{1}{2} \); \(\lim_{x \to 0^+} (\log x)^2 = 0; \lim_{x \to \infty} (\log x)^2 = \infty. \)
53. $y' = \frac{(x+1)^3}{(4x-2)^2} \cdot \frac{3}{x+1} - \frac{8}{4x-2}$

55. $y' = 4e^{(x-1)^2}e^{(x-3)^2}(x - 2)$

57. $y' = 3e^{(x-2)^2} \left(\frac{3}{x+1} - \frac{1}{x} \right)$

59. (a) $f'(u) = \frac{b\phi'(a-u)}{(1 + e^{b(a-u)})^2} > 0$

(b) $u = a + \frac{1}{b} \ln 2$

61. $\frac{1}{2} \ln(y^3) + C$ 63. $-\sin^{-1}(e^{-x}) + C$

65. $\tan^{-1}(\ln(x)) + C$ 67. $-\frac{1}{2} e^{0-2x} + C$

69. $\frac{1}{2} \ln(2) + C$ 71. $\frac{1}{2}(e^{9-e}) + C$ 73. $\frac{1}{9}$

75. $\sin^{-1} \left(\frac{3}{2} \right) - \sin^{-1} \left(\frac{1}{3} \right)$

77. $\frac{1}{2} \sin^2 2$ 79. $\frac{1}{2} \ln 2$

81. $\frac{1}{2} \sin^{-1} x^2 + C$ 83. $\frac{1}{2} \sin^{-1} x + C$

85. $\frac{1}{2} \ln 2$

87. $\frac{1}{2} \sin^{-1} x^2 + C$ 89. $\frac{1}{4} \sin^4 x + C$ 91. $\frac{\sqrt{2}}{2} \tan^{-1}(4\sqrt{2})$

93. (a) $y'(t) = -\frac{1}{25} y(t)$ (b) $y(365) \approx 0.0655$ g

97. $\frac{\partial k}{\partial T} \approx 12.27 \text{ hr}^{-1}$; approximate change in k when T is raised from 500 to 510: 122.7 hr^{-1}

99. Solution satisfying $y(0) = 3$: $y(t) = 4 - e^{-2t}$; solution satisfying $y(0) = 4$: $y(t) = 4$

101. (a) 12

(b) ∞, if $y'(0) > 12$; 12, if $y'(0) = 12$; $-\infty$, if $y'(0) < 12$

(c) -3

103. $P'(t) = 0.05P(t) - 2000$ 105. $20 \ln \left(\frac{20}{19} \right) \approx 1.025 \text{ yr}$

107. Yes; the present value of those savings is $1,134,704. Largest interest rate at which it is a good investment is about 10.66%.

109. 4 111. 0 113. 3 115. In 2 117. $\frac{1}{b}$ 119. 2

121. As $x \to \infty$, both $2x - \sin x$ and $3x + \cos 2x$ tend toward infinity, so L'Hôpital's Rule applies to $\lim_{x \to \infty} \frac{2x - \sin x}{3x + \cos 2x}$; however, the resulting limit, $\lim_{x \to \infty} \frac{2 - \cos x}{2 \sin 2x}$, does not exist due to the oscillation of $\sin x$ and $\cos x$. $\lim_{x \to \infty} \frac{2x - \sin x}{3x + \cos 2x} = \frac{2}{3}$

123. e^x

127. Let $g(x) = \tan^{-1}(\sin x)$. Then

$$\frac{d}{dx} g(x) = \frac{1}{1 + \sin^2 x} \cos x = \frac{1}{\cos x} = \text{sech} x$$

129. Let $x = g(y) = \tan^{-1}(\sin y)$. Solving for y yields $y = \sin^{-1}(\tan x)$. Therefore,

$$g^{-1}(y) = \sin^{-1}(\tan y)$$
Section 8.2 Exercises

1. \[\sin x - \frac{1}{3} \sin^3 x + C \]
2. \[-\frac{1}{3} \cos^3 \theta + \frac{1}{5} \cos^5 \theta + C \]
3. \[\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{4} \sin 4x + \frac{\sqrt{2}}{4} \cos 4x + C \]
4. \[\frac{\sqrt{2}}{2} \sin(x^2) + \frac{\sqrt{2}}{2} \cos(x^2) + C \]

Section 8.2 Preliminary Questions

1. Rewrite \(\sin^5 x = \sin x \sin^4 x = \sin x(1 - \cos^2 x)^2 \) and then substitute \(u = \cos x \).
3. No, a reduction formula is not needed because the sine function is raised to an odd power.
5. The second integral requires the use of reduction formulas and therefore more work.

Section 8.3 Preliminary Questions

1. \(x = 3 \sin \theta \) \(b) = 4 \sec \theta \) \(c) = 4 \tan \theta \)
2. \(x = \sqrt{3} \sec \theta \)
3. \(2x\sqrt{1 - x^2} \)

Section 8.3 Exercises

1. \(\theta + C \)
2. \(\sin^{-1} \left(\frac{1}{2} \right) + C \)
3. \(\int \frac{dx}{\sqrt{4x^2 + \theta}} = \frac{1}{2} \int \sec \theta \, d\theta + C \)
4. \(\frac{1}{2} \ln | \sec \theta + \tan \theta | + C \)
5. \(\frac{8}{\sqrt{3}} \arcsin \left(\frac{\sqrt{2}}{8} \right) + \frac{1}{2} x \sqrt{16 - 5x^2} + C \)
6. \(\frac{1}{2} \ln \sqrt{4x^2 + 9} + 2x + C \)
7. \(\frac{1}{2} \ln (x) + \frac{1}{2} \ln \left| \tan \frac{x}{2} \right| + C \)

Section 8.4 Preliminary Questions

1. \(x = \sinh t \)
2. \(x = \sinh t \)
3. \(3x = \sinh t \)
4. \(\frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| \)
Section 8.4 Exercises

1. $\frac{1}{3}\sinh(3x) + C$
2. $\frac{1}{2}\cosh(x^2 + 1) + C$
3. $-\frac{1}{2}\tanh(1 - 2x) + C$
4. $\frac{\tanh^2 x}{2} + C$
5. $\ln\cosh x + C$
6. $\ln|\sinh x| + C$
7. $\frac{7}{12}\sinh(8x - 18) - \frac{1}{2}x + C$
8. $\frac{1}{2}\tanh^{-1}\left(\frac{x}{2}\right) + C$
9. $\frac{1}{2}\cos^{-1}\left(\frac{x}{2}\right) - \frac{1}{2}\cos^{-1}\left(\frac{1-x}{2}\right) + C$

10. $\frac{1}{3}\sinh 4x - \frac{1}{4}x + C$
11. $\cos^{-1}x + C$
12. $\frac{3}{4}\sinh^{-1}\left(\frac{5x}{4}\right) + C$
13. $2\tanh^{-1}\left(\frac{1}{2}\right) + C$
14. $\sinh^{-1}\left(\frac{1}{2}\right) - \sinh^{-1}\left(-\frac{1}{2}\right) + C$

15. $\cosh^{-1}x - \sqrt{x^2 - 1} + C$
16. $x = \sinh t$ for the first formula and $x = \cosh t$ for the second.
17. $\frac{1}{3}x\sqrt{x^2 + 16} + 8\ln\left|\frac{x}{2} + \sqrt{\left(\frac{x}{2}\right)^2 + 1}\right| + C$
18. $\ln u - \ln|\sinh x + 3| + 2\ln|\sin x| + C$
19. $\frac{1}{2}\ln|\sinh x| - \frac{1}{2}\ln\left|x^2 + 9\right| - \frac{2}{9}\tan^{-1}\left(\frac{x}{3}\right) + C$
20. $\frac{1}{6}\ln|x| - \frac{1}{12}\ln|x^2 + 8| + \frac{1}{16(x^2 + 8)} + C$
21. $\frac{1}{6}\ln|x + 2| - \frac{1}{12}\ln|x^2 + 4x + 10| + C$
22. $\frac{5}{6}\ln|x| - \frac{1}{2}\ln|x - 1| + \frac{1}{2}\ln|x^2 + 5x + 9| - \frac{1}{10}\ln\left|x^2 + 1\right| + C$
23. $\frac{1}{2}\ln|\sin^2 x| - \frac{1}{2}\ln|\cosh^2 x| + C$
24. $\ln|\sin x| - \ln|\cosh x + 3| + 2\ln|\sin x| + C$
25. $\ln|x - 1| - 2\ln|x + 2| + \frac{2}{x + 2} + \frac{2}{x + 2} + C$
26. $\frac{1}{2}\ln\left|\tan^2 x - \sqrt{3}\right| - \frac{1}{2}\ln\left|\tan^2 x + \sqrt{3}\right| + C$
27. $\frac{1}{2}\ln|\sin x| - \frac{1}{2}\ln|\sin x + 1| + C$
28. $\frac{1}{2}\ln|\sin x| - \frac{1}{2}\ln|\sin x + 1| + C$
29. $\frac{1}{2}\ln|\sin x - 3| + C$
30. $\frac{1}{2}\ln|\sin x - 3| + C$
31. $\frac{1}{2}\ln|\sin x - 3| + C$
32. $\frac{1}{2}\ln|\sin x - 3| + C$
33. $\frac{1}{2}\ln|\sin x - 3| + C$
34. $\frac{1}{2}\ln|\sin x - 3| + C$
35. $\frac{1}{2}\ln|\sin x - 3| + C$
36. $\frac{1}{2}\ln|\sin x - 3| + C$
37. $\frac{1}{2}\ln|\sin x - 3| + C$
38. $\frac{1}{2}\ln|\sin x - 3| + C$
39. $\ln|\sin x - 3| + C$
40. $\frac{1}{2}\ln|\sin x - 3| + C$
41. $\ln|\sin x - 3| + C$
42. $\ln|\sin x - 3| + C$
43. $\ln|\sin x - 3| + C$
44. $\ln|\sin x - 3| + C$
45. $\ln|\sin x - 3| + C$
46. $\ln|\sin x - 3| + C$
47. $\ln|\sin x - 3| + C$
48. $\ln|\sin x - 3| + C$
49. $\ln|\sin x - 3| + C$
50. $\ln|\sin x - 3| + C$
51. $\ln|\sin x - 3| + C$
52. $\ln|\sin x - 3| + C$
53. $\ln|\sin x - 3| + C$
54. $\ln|\sin x - 3| + C$
55. $\ln|\sin x - 3| + C$
56. $\ln|\sin x - 3| + C$
57. $\ln|\sin x - 3| + C$
58. $\ln|\sin x - 3| + C$
59. $\ln|\sin x - 3| + C$
60. $\ln|\sin x - 3| + C$
61. $\ln|\sin x - 3| + C$

Section 8.5 Preliminary Questions

1. No, f cannot be a rational function because the integral of a rational function cannot contain a term with a noninteger exponent such as $\sqrt{x+1}$.
2. Square is fully completed; reducible.
3. Square is fully completed; perfect squares.
4. $x^2 + 4x + 6 = (x + 2)^2 + 2$; irreducible.
5. $x^2 + 4x + 6 = (x + 2)^2 - 2$; irreducible.
6. $x^2 - 2\sqrt{2}x + x + 2\sqrt{2}$.

Section 8.5 Exercises

1. $\frac{x^2 + 4x + 12}{(x + 2)(x^2 + 4)} = \frac{1}{x + 2} + \frac{4}{x^2 + 4}$
2. $\frac{2x^3 + 8x + 24}{(x + 2)^2(x^2 + 4)} = \frac{1}{x + 2} + \frac{2}{(x + 2)^2} + \frac{-x + 2}{x^2 + 4}$
3. $\frac{x^2 - 4x + 8}{(x - 1)(x - 2)(x^2 + 4)} = \frac{-8}{x - 2} + \frac{4}{(x - 2)^2} + \frac{8}{x + 1} + \frac{5}{(x - 1)^2}$
4. $\frac{x^2 - 4x + 8}{(x + 2)(x^2 + 4)} = x = 2 + \frac{4}{x^2 + 4}$
5. $\frac{1}{3}(3x + 4\ln(3x - 4)) + C$
6. $\frac{1}{7}\ln|x + 2| + C$
7. $\frac{1}{7}\ln|x - 2| + C$
8. $\frac{1}{7}\ln|x - 4| + C$
9. $\frac{1}{3}\arctan\left(\frac{x}{3}\right) + C$
10. $\frac{1}{3}\arctan\left(\frac{x}{3}\right) + C$

Section 8.6 Preliminary Questions

1. Integration by parts with $u = x$, $dv = \sin x\ dx$
2. Trigonometric substitution $x = \tan \theta$, $dx = \sec^2 \theta\ d\theta$
3. Partial fractions
4. Substitute $u = \cos x$, $du = -\sin x\ dx$
5. Integration by parts with $u = \ln x$, $dv = x\ dx$
6. Trigonometric substitution $x = \sin \theta$, $dx = \cos \theta\ d\theta$
7. Trig Method. Rewrite as $\int (1 - \sin^2 x)^2 \cos^2 x\ sin x\ dx$. Then use u-substitution with $u = \cos x$ and $du = -\sin x\ dx$.

\[\int \frac{u^2 - 2u}{a + bu} \, du = \frac{1}{a^2b^3} \left[(a + bu)^2 - 4a(a + bu) + 2a^2 \ln |a + bu| + C \right] \]
9. Trig substitution with $x = \frac{1}{2}\tan \theta$ and $dx = \frac{1}{2}\sec^2 \theta\ d\theta$
10. $\int \sec^3 u\ du = \frac{1}{2} \sec u \tan u + \frac{1}{2} \ln |\sec u + \tan u| + C$
11. Complete the square, followed by u-substitution with $u = x + 1$ and $du = dx$. Then use trig substitution with $u = 2\tan \theta$ and $du = 2\sec^2 \theta\ d\theta$.

ANSWERS TO ODD-NUMBERED EXERCISES
Section 8.6 Exercises

1. Complete the square to get \(\int \frac{x \, dx}{\sqrt{21 - (x + 3)^2}} \) and then use the substitution \(x + 3 = \sqrt{21} \sin u \) so that \(dx = \sqrt{21} \cos u \, du \).

3. Trig Method. Rewrite as \(\int \sin^3 x \left(1 - \sin^2 x \right) \cos x \, dx \) followed by \(u \)-substitution with \(u = \sin x \) and \(du = \cos x \, dx \).

5. Trig substitution \(x = 3 \sin \theta \) and \(dx = 3 \cos \theta \, d\theta \).

7. None \(9. \) Partial fractions \(11. \) - \(\frac{\sqrt{x}-x}{4x} + C \)

13. \(x = \frac{1}{2} + \frac{1}{8} \sin 4x \cos 4x + C \)

15. \(\frac{x}{160(9+x^2)} + \frac{1}{x \tan^{-1} \left(\frac{x}{2} \right)} + C \)

17. \(\sec x - \frac{1}{2} \sec^3 x + \frac{1}{3} \sec^5 x + C \)

19. \(x \ln \left(x^2 + 1 \right) - 4x + 2 \tan^{-1} x - \ln |x - 1| + \ln |x + 1| + C \)

21. \(\ln \left(\sqrt{x^2 - 1} + x \right) - \frac{x}{\sqrt{x^2 - 1}} + C \)

23. \(\frac{-x^2 + 6}{81(x^2 + 4x + 9)} + C \)

25. \(6 \tan^{-1} \left(\frac{x}{\sqrt{6}} \right) - 6x \frac{1}{6} + 2 \sqrt{x} - \frac{3}{2} \frac{5}{6} + 6 \frac{3}{2} + C \)

27. \(\frac{1}{3} \ln |3x + 1| + C \)

29. \(\frac{1}{3} \ln |3x - 2x^2 + x| + C \)

31. \(\frac{1}{2} \tan^{-1} \left(\frac{1 + x}{2} \right) + C \)

33. \(\frac{1}{3} \left(1 + x^2 \right)^{3/2} + C \)

35. \(x - \ln (1 + e^x) + C \)

37. \(2 \sqrt{x} + x + \frac{3}{2} x^{3/2} + 2 \ln |\sqrt{x} - 1| + C \)

39. \(\frac{1}{2} (x + 1)^{3/2} - \frac{1}{4} (x + 1)^{3/2} + 2 \sqrt{x + 1} + C \)

41. \(x + \cos x - \frac{1}{2} \sin 2x - \frac{1}{4} \cos 3x + \frac{1}{4} \sin 4x + C \)

43. \(\frac{1}{4} \cos^2 x - \ln |\cos x| + C \)

45. \(x \ln \left(x^2 + 9 \right) + 6 \tan^{-1} \left(\frac{x}{2} \right) - 2x + C \)

47. \(-\frac{1}{4} \cos x - \frac{1}{2} \cos^3 x - \frac{1}{4} \cos^3 x + C \)

49. \(\sin x - \sin^3 x + \frac{3}{2} \sin x - \frac{1}{3} \sin x + C \)

51. \(\frac{1}{2} x^2 - \frac{1}{4} \ln \left(x^2 + 1 \right) + \frac{1}{4} \ln |x - 1| + \frac{1}{4} \ln |x + 1| + C \)

53. \(\frac{1}{2} \sin 2x + 9 \tan x - \frac{1}{2} \tan x + C \)

55. \(\frac{1}{2} x^2 + \frac{1}{2} \ln \left(x^2 + 1 \right) - \frac{1}{3} x^3 + C \)

57. \(\cosh^{-1} \left(\frac{x}{2} \right) + C \)

(h) Proper. The function \(y = 1/\sqrt{3 - x^2} \) is continuous on the finite interval \([0, 1] \).

(i) Improper. Infinite interval of integration.

(j) Improper. The function \(y = \ln x \) is infinite at 0.

3. \(\int_{1}^{\infty} x^{-2/3} \, dx = \lim_{R \to \infty} \int_{1}^{R} x^{-2/3} \, dx = \lim_{R \to \infty} 3 \left(R^{1/3} - 1 \right) = \infty \)

The integral does not converge.

7. The integral converges; \(I = 10,000e^{0.0004} \).

9. The integral does not converge.

11. The integral converges; \(I = 4 \).

13. The integral converges; \(I = \frac{3}{8} \).

15. The integral converges; \(I = 2 \).

17. The integral converges; \(I = 0 \).

19. The integral does not converge.

21. The integral does not converge.

23. The integral does not converge.

25. The integral does not converge.

27. The integral converges; \(I = \frac{3}{2} \).

29. The integral converges; \(I = \frac{2}{5} \).

31. The integral converges; \(I = \frac{3}{8} \).

33. The integral does not converge.

35. The integral does not converge.

37. The integral does not converge.

39. The integral does not converge.

41. (a) Partial fractions yield \(\int \frac{dx}{(x - 2)(x - 3)} = \frac{dx}{x - 3} - \frac{dx}{x - 2} \). This yields \(\int_{a}^{b} \frac{dx}{x - 3} \)

(b) \(I = \lim_{R \to \infty} \left(\ln |\frac{2 - 3}{R - 2}| - \ln \frac{1}{2} \right) = \ln 1 - \ln 2 = \ln 2 \)

43. The integral does not converge.

45. The integral does not converge.

47. The integral converges; \(I = 0 \).

49. \(\int_{1}^{0} \frac{dx}{x^{1/3}} = \int_{0}^{1} \frac{dx}{x^{1/3}} + \int_{1}^{0} \frac{dx}{x^{1/3}} = 0 \)

51. The integral converges for \(a < 0 \).

53. \(\int_{\infty}^{0} \frac{dx}{1 + x^2} = \pi \).

55. \(\frac{1}{x + 2} \leq \frac{1}{x} \). Therefore, by the Comparison Test, the integral converges.

57. For \(x \geq 1 \), \(x^2 \geq x \), so \(-x^2 \leq -x \) and \(e^{-x^2} \leq e^{-x} \). Now \(\int_{1}^{\infty} e^{-x} \, dx \) converges, so \(\int_{1}^{\infty} e^{-x^2} \, dx \) converges by the Comparison Test. We conclude that our integral converges by writing it as a sum: \(\int_{0}^{\infty} e^{-x^2} \, dx = \int_{0}^{1} e^{-x^2} \, dx + \int_{1}^{\infty} e^{-x^2} \, dx \).

59. Let \(f(x) = \frac{1 - \sin x}{x^2} \). Since \(f(x) \leq \frac{2}{x^2} \) and \(\int_{1}^{\infty} 2x^{-2} \, dx = 2 \), it follows that \(\int_{1}^{\infty} \frac{1 - \sin x}{x^2} \, dx \) converges by the Comparison Test.

61. The integral converges.

63. The integral converges.

65. The integral converges.

67. The integral does not converge.

69. The integral converges.

71. The integral converges.

73. The integral converges.

75. The integral does not converge.
Section 8.9 Preliminary Questions

1. \(T_1 = 6; T_2 = 7 \)

3. The Trapezoidal Rule integrates linear functions exactly, so the error will be zero.

5. The two graphical interpretations of the Midpoint Rule are the same for the areas of the midpoint rectangles and the same for the areas of the tangential trapezoids.

Section 8.9 Exercises

1. \(T_4 = 2.75; M_4 = 2.625 \)
2. \(T_6 = 64.6875; M_6 = 63.2813 \)
5. \(T_5 \approx 1.4054; M_5 \approx 1.3769 \)
7. \(T_6 \approx 1.1703; M_6 \approx 1.2063 \)
9. \(T_5 \approx 0.3846; M_5 \approx 0.3871 \)
11. \(T_5 \approx 0.7444; M_5 \approx 0.7481 \)
13. \(S_4 \approx 5.2522 \)
15. \(S_6 \approx 1.1090 \)
17. \(S_4 \approx 0.7469 \)
19. \(S_8 \approx 2.6450 \)
21. \(S_{10} \approx 0.3466 \)
23. \(\approx 2.4674 \)
25. \(\approx 1.8769 \)
27. \(\approx 608.611 \)

29. (a) Assuming the speed of the tsunami is a continuous function, at \(x \) miles from the shore, the speed is \(\sqrt{x^3} \). Covering an infinitesimally small distance, \(dx \), the time \(T \) required for the tsunami to cover that distance becomes \(\sqrt{x^3} dx \). It follows from this that \(T = \int_0^M dx \sqrt{x^3} \).

(b) \(\approx 3.347 \) h.

31. (a) Since \(x^3 \) is concave up on \([0, 2] \), \(T_6 \) is too large.

(b) We have \(f'(x) = 3x^2 \) and \(f''(x) = 6x \). Since \(|f''(x)| = |6x| \) is increasing on \([0, 2] \), its maximum value occurs at \(x = 2 \) and we may take \(K_2 = f''(2) = 12. \) Thus, \(\text{Error}(T_6) \leq \frac{2}{9} \).

(c) \(\text{Error}(T_6) \approx 0.1111 < \frac{2}{9} \).

33. \(T_{10} \) will overestimate the integral. \(\text{Error}(T_{10}) \leq 0.045 \).

35. \(M_{10} \) will overestimate the integral. \(\text{Error}(M_{10}) \leq 0.0113 \).

37. \(N \geq 10^3; \text{Error} \approx 3.333 \times 10^{-7} \)

39. \(N \geq 750; \text{Error} \approx 2.805 \times 10^{-7} \)

41. \(\text{Error}(T_{10}) \leq 0.0225; \text{Error}(M_{10}) \leq 0.01125 \)

43. \(S_8 \approx 4.0467; \text{Error}(S_8) \leq 0.00833; N \geq 78 \)

45. \(\text{Error}(S_{10}) \leq 1.017 \times 10^{-4} \)
47. \(N = 306 \)
49. \(N = 186 \)

51. (a) The maximum value of \(f''(x) \) on the interval \([0, 1] \) is 24.

(b) \(N = 20; \) \(S_{20} \approx 0.785398; \frac{0.785398 - \frac{2}{9}}{2} \approx 1.55 \times 10^{-10} \)

53. (a) Notice \(|f''(x)| = |2 \cos(x^2) - 4x^2 \sin(x^2)| \); the proof follows.

(b) When \(K_2 = 6, \) \(\text{Error}(M_N) \leq 1 \frac{4}{15} \).

(c) \(N \geq 16 \)

55. \(\text{Error}(T_3) \approx 0.1039; \text{Error}(T_{10}) \approx 0.0258; \text{Error}(T_{16}) \approx 0.0064; \text{Error}(T_{32}) \approx 0.0016; \text{Error}(T_{64}) \approx 0.0004 \). These are about twice as large as the error in \(M_N \).

57. \(S_3 = \frac{1}{4} \). This is the exact value of the integral.

59. \(T_N = \frac{r(b^2 - a^2)}{2} + s(b - a) = \int_a^b f(x) \, dx \)

61. (a) This result follows because the even-numbered interior endpoints overlap:

\[
\sum_{i=0}^{(N-2)/2} \delta_i^2 = \frac{b - a}{6} \left(y_0 + 4y_1 + y_2 + 4y_3 + y_4 + \cdots \right) = \frac{b - a}{6} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \cdots + 4y_{N-1} + y_N \right) = S_N
\]
ANS54 ANSWERS TO ODD-NUMBERED EXERCISES

(b) If \(f(x) \) is a quadratic polynomial, then by part (a), we have

\[
S_N = s_0 + s_2 + \cdots + s_{2N-2} = \int_0^1 f(x) \, dx
\]

63. Let \(f(x) = ax^2 + bx + cx + d \), with \(a \neq 0 \), be any cubic polynomial. Then \(f^{(4)}(x) = 0 \), so we can take \(K_4 = 0 \). This yields Error\((S_N) \leq \frac{M_{N+1}}{180} = 0 \). In other words, \(S_N \) is exact for all cubic polynomials for all \(N \).

Chapter 8 Review

1. (a) (v) (b) (iv) (c) (iii) (d) (i) (e) (ii)

2. \[\frac{\sin \theta}{\tan \theta} - \sec \theta + C \]

3. \[\tan \theta \sec^2 \theta - 7 \tan \theta \tan \theta + 24 + 16 \ln |\sec \theta + \tan \theta| + C \]

4. \[-\frac{1}{\sqrt{\theta^2 - 1}} - \sec^{-1} x + C \]

5. \[2 \tan^{-1} \left(\frac{x+1}{2} \right) + C \]

6. \[5 \ln |x - 1| + \ln |x + 1| + C \]

7. \[\left. \frac{\sin \theta}{\tan \theta} + \tan \theta + C \right|_2^{11} = 1 \approx 0.850 \]

8. \[\frac{\cos^2 \theta}{2} - \cos \theta + C \]

9. \[-\frac{1}{3} \]

10. \[\frac{2}{3} \tan \theta \]

11. \[\frac{\sin \theta}{\sec \theta} - \sin \theta + C \]

12. \[\frac{1}{3} a^3 + C = -\frac{1}{3} \cot^3 x + C \]

13. \[\int_0^{\pi/3} \sec^2 (x) \csc^3 (x) \, dx = \frac{\pi}{18} \ln 3 + \frac{1}{3} \ln \left(\sqrt{2} - 1 \right) + \frac{3}{8} \sqrt{2} - \frac{5}{56} \]

14. \[\frac{1}{3} \ln \left(\frac{x+4}{x+1} \right) + \frac{1}{3} \cdot \frac{1}{1+2} + C \]

15. \[\frac{1}{6} \sec^{-1} \frac{2}{x} + C \]

16. \[\frac{1}{\sqrt{\theta^2 - 1}} - \frac{1}{\sqrt{\theta + \sqrt{\theta^2 - 1}}} + C \]

17. \[\ln |x + 2| + \frac{5}{x+2} - \frac{3}{(x+2)^2} + C \]

18. \[\ln \left| x^2 + 9 \right| - 2x + 6 \tan^{-1} \left(\frac{x}{3} \right) + C \]

19. \[\frac{1}{2} \sec^2 x + \frac{1}{2} \cos x + C \]

20. \[\frac{1}{3} \tan^{-1} \left(\frac{x+4}{2} \right) + \frac{x^2 + x^2}{16x^2} + C \]

21. \[\frac{3}{2} \tan^{-1} x + \frac{4}{x^2} + C \]

22. \[\frac{1}{2} \sinh \left(\frac{x}{2} \right) \cosh \left(\frac{x}{2} \right) + C \]

23. \[\frac{3}{2} \]

24. \[\tan^{-1} (\tan x) + C \]

25. \[\int_0^1 \frac{x^2}{x^2 + 1} \, dx = \frac{1}{3} \ln \left(\frac{1}{x+1} \right) + C \]

26. \[\int_1^2 \frac{x^2}{x^2 + 1} \, dx = 2.28986 \]

Section 9.1 Preliminary Questions

1. \[\int_0^\pi \sqrt{1 + \sin^2 x} \, dx \]

2. \[\int_0^a \sqrt{1 + \left(\frac{d}{dx} (f(x) + C) \right)^2} \, dx \]

3. \[\sqrt{1 + \left(f'(x) \right)^2} \, dx \]

4. The graph of \(y = f(x) + C \) is a vertical translation of the graph of \(y = f(x) \); hence, the two graphs should have the same arc length. We can explicitly establish this as follows:

Length of \(y = f(x) + C = \int_a^b \sqrt{1 + \left(f'(x) \right)^2} \, dx \]

5. Since \(\sqrt{1 + f'(x)^2} \geq 1 \) for any function \(f \), we have

Length of graph of \(y = f(x) \) over \([1, 4]\) is \[\int_1^4 \sqrt{1 + f'(x)^2} \, dx \]

Section 9.1 Exercises

1. \(L = \int_0^1 \sqrt{1 + 16x^6} \, dx \)

2. \(\frac{\pi}{3} \)

3. \(\frac{3\sqrt{10}}{2} \)

4. \(\frac{1}{x^2 - 1} \)

5. \(\frac{\sqrt{2} + \pi}{2} \)

6. \(\frac{\sqrt{2}}{2} \)

7. \(\int_0^\pi \sqrt{1 + x^2} \, dx \approx 3.957736 \)

8. \(\int_0^1 \sqrt{1 + x^2} \, dx \approx 1.132123 \)

9. \(\int_0^3 \sqrt{1 + x^2} \, dx \approx 6.042 \frac{\pi}{2} \)

10. \(\int_0^\pi \sqrt{1 + x^2} \, dx \approx 7.60306 \)

11. \(\int_0^1 \sqrt{1 + x^2} \, dx \approx 8.222696 \)
47. $2\pi \ln 2 + \frac{15\pi}{8}$ 49. $4\pi^2 b r$

51. $2\pi b^2 + \frac{2\pi ba^2}{\sqrt{a^2-b^2}} \sin^{-1}\left(\frac{\sqrt{a^2-b^2}}{a}\right)$

Section 9.2 Preliminary Questions
1. Pressure is defined as force per unit area.
2. The factor of proportionality is the weight density of the fluid, $w = \rho g$.
3. Fluid force acts in the direction perpendicular to the side of the submerged object.
4. Pressure depends only on depth and does not change horizontally at a given depth.
5. When a plate is submerged vertically, the pressure is not constant along the plate, so the fluid force is not equal to the pressure times the area.

Section 9.2 Exercises
1. (a) Top: $F = 176,400$ newtons; bottom: $F = 705,600$ newtons
 (b) $F \approx \sum \rho g \Delta y \quad (c) F = \int_2^8 \rho g \Delta y dy$
 (d) $F = 882,000$ newtons
2. Difference = force on lower plate – force on upper plate = 19,600 newtons
3. (a) The width of the triangle varies linearly from 0 at a depth of $y = 3$ m to 1 at a depth of $y = 5$ m. Thus, $f(y) = \frac{1}{2}(y - 3)$.
 (b) The area of the strip at depth y is $\frac{1}{2}(y - 3)\Delta y$, and the pressure at depth y is $\rho g y$, where $\rho = 10^3$ kg/m3 and $g = 9.8$. Thus, the fluid force acting on the strip at depth y is approximately equal to $\rho g \frac{1}{2} y(y - 3)\Delta y$.
 (c) $F \approx \sum \rho g \frac{1}{2} y(f)\Delta y \rightarrow \int_2^5 \rho g \frac{1}{2} y(y - 3) dy$
 (d) $F = \frac{127,400}{3}$ newtons
4. (b) $F = \frac{19,600}{3}$ newtons
5. $F = \frac{19,600}{3} + 4900\pi m^2$ newtons 11. $F \approx 328,224,000$ lb
6. $F \approx 815.360$ newtons 15. $F \approx 6151.8$ newtons
7. $F \approx 5624.4$ newtons 19. $F = 940,800$ newtons
8. $F = 5.4604 \times 10^{11}$ newtons 23. $F = (15b + 30a)h^2$ lb
9. Front and back: $F = \frac{62.5\sqrt{3}}{10} H^2$; slanted sides: $F = \frac{62.5\sqrt{3}}{3} \ell H^2$

Section 9.3 Preliminary Questions
1. $M_x = M_y = 0$ 2. $M_x = 21$ 3. $M_x = 5$; $M_y = 10$
4. Because a rectangle is symmetric with respect to both the vertical line and the horizontal line through the center of the rectangle, the Symmetry Principle guarantees that the centroid of the rectangle must lie along both these lines. The only point in common to both lines of symmetry is the center of the rectangle, so the centroid of the rectangle must be the center of the rectangle.
5. If the plate looks like a ring, then the center of mass doesn’t occur at any point on the plate.

Section 9.3 Exercises
1. (a) $M_x = 4m$; $M_y = 9m$; center of mass: $(\frac{9}{4}, 1)$
 (b) $\left(\frac{46}{17}, \frac{14}{17}\right)$
5. A sketch of the lamina is shown here.

(a) $M_x = \frac{729}{11}$; $M_y = \frac{243}{3}$
(b) Area = 9 cm2; center of mass: $(\frac{9}{2}, \frac{27}{22})$
7. $M_x = \frac{54\rho}{5}$; $M_y = \frac{32\rho}{5}$; center of mass: $(\frac{3}{5}, \frac{14}{5})$
9. (a) $M_x = 24$
(b) $M = 12$, so $y_{cm} = 2$; center of mass: $(0, 2)$
11. $(\frac{93}{5}, \frac{45}{10})$
13. $(\frac{9}{8}, \frac{18}{5})$
15. $(\frac{119}{3} - 2, \frac{3}{2} - 2)$ 17. $(2, \frac{7}{3})$
19. A sketch of the region is shown here.

The region is clearly symmetric about the line $y = 3$, so we expect the centroid of the region to lie along this line. We find $M_x = 24$, $M_y = \frac{243}{3}$, centroid: $(\frac{2}{5}, 3)$.

21. $(\frac{9}{20}, \frac{9}{20})$ 23. $(\frac{7}{20}, \frac{7}{20})$
25. $\left(\frac{\pi\sqrt{2} - 4}{4(\sqrt{2} - 1)}, \frac{1}{4(\sqrt{2} - 1)}\right)$
27. A sketch of the region is shown here. Centroid: $(\frac{1}{2}, 0)$

29. $(0, \frac{4b}{3})$ 31. $\left(\frac{4}{3\sqrt{3}}, \frac{4}{3\sqrt{3}}\right)$
33. $\left(\frac{21}{r^2\sin^{-1}\sqrt{1-h/r^2}} \sqrt{h^2 - r^2}, \frac{3}{2}\right)$; with $r = 1$ and $h = \frac{1}{2}$;
 $(0, \frac{3\sqrt{3}}{4x - 3\sqrt{3}}) \approx (0, 0.71)$
35. $V = \frac{3\pi H^3}{2}$ 37. $(0, \frac{40}{27})$ 39. $\left(-\frac{4}{\sqrt{3}}, \frac{4}{\sqrt{3}}\right)$
41. For the square on the left: $(4, 4)$; for the square on the right:
 $(4, \frac{28}{9})$

Section 9.4 Preliminary Questions
1. $T_3(x) = 9 + 8(x - 3) + 2(x - 3)^2 + 2(x - 3)^3$
2. The polynomial graphed on the right is a Maclaurin polynomial.
3. A Maclaurin polynomial gives the value of $f(0)$ exactly.
4. The correct statement is (b): $|T_3(2) - f(2)| \leq \frac{2}{5}$.
ANS56

ANSWERS TO ODD-NUMBERED EXERCISES

Section 9.4 Exercises

At a = 1,

3
1. T2 (x) = x; T3 (x) = x − x6
1 (x − 2)2 ;
3. T2 (x) = 13 − 19 (x − 2) + 27
1
1
1
1 (x − 2)3
T3 (x) = 3 − 9 (x − 2) + 27 (x − 2)2 − 81
5. T2 (x) = 75 + 106(x − 3) + 54(x − 3)2 ;
T3 (x) = 75 + 106(x − 3) + 54(x − 3)2 + 12(x − 3)3
3
7. T2 (x) = x; T3 (x) = x + x3
2
2
3
9. T2 (x) = 2 − 3x + 5x2 ; T3 (x) = 2 − 3x + 5x2 − 3x2
1 (x − 1)2 ;
11. T2 (x) = 1e + 1e (x − 1) − 2e
1 (x − 1)2 − 1 (x − 1)3
T3 (x) = 1e + 1e (x − 1) − 2e
6e
3(x−1)2
13. T2 (x) = (x − 1) −
;
2
3(x−1)2
11(x−1)3
T3 (x) = (x − 1) −
+
2
6
x
15. Let f (x) = e . Then, for all n,

f (n) (x) = ex

T2 (x) = 12(x − 1) + 11(x − 1)2

T3 (x) = 12(x − 1) + 11(x − 1)2 + 3(x − 1)3
= −4 − x + 2x 2 + 3x 3 = f (x)

T4 (x) = T3 (x)
T5 (x) = T3 (x)

55. T2 (t) = 60 + 24t − 32 t 2 ; truck’s distance from the intersection
after 4 s is ≈ 132 m.
57. (a) T3 (x) = − k3 x + 3k5 x 3
2R

R

65. T4 (x) = 1 − x 2 + 12 x 4 ; the error is approximately
|0.461458 − 0.461281| = 0.000177.
; 1/2
67. (b) 0 T4 (x) dx = 1841
3840 ; error bound:
.
.<
< 1/2
. (1)7
. 1/2
.
.
cos x dx −
T4 (x) dx . < 2
.
. 0
.
6!
0

and f (n) (0) = 1

69. (a) T6 (x) = x 2 − 16 x 6

It follows that
x + x2 + · · · + xn
Tn (x) = 1 + 1!
2!
n!

21. Tn (x) = e + e(x − 1) +

e(x−1)2
2!

Chapter 9 Review
1. 779
240

19. Tn (x) = 1 + x + x 2 + x 3 + · · · + x n

+ ··· +

e(x−1)n
n!

23.
&
'
1 &x − π '2 + √
1 &x − π '3 · · ·
Tn (x) = √1 − √1 x − π4 − √
4
4
2

T1 (x) = 12(x − 1)

2

2 2

6 2

In general, the coefficient of (x − π/4)n is
1
± √
(2)n!

with the pattern of signs +, −, −, +, +, −, −,
.
2 .
25. T2 (x) = 1 + x + x2 ; .T2 (−0.5) − f (−0.5). ≈ 0.018469

27. T2 (x) = 1 − 23 (x − 1) + 59 (x − 1)2 ;
|f (1.2) − T2 (1.2)| ≈ 0.00334008

1 (x − 1)3
29. T3 (x) = 1 + 12 (x − 1) − 18 (x − 1)2 + 16
6
2
4
33. T5 (x) = 1 − x2 + x24 ; maximum error = (0.25)
6!
1 (x − 4) + 3 (x − 4)2 − 5 (x − 4)3 ;
35. T3 (x) = 12 − 16
256
2048
4
maximum error = 35(0.3)
65,536

$
3
11 . With K = 5,
37. T3 (x) = x − x3 ; T3 12 = 24

39. K = 6.25 is acceptable.

$4

. 5 1
2
1. ≤
2.
4!

41. n = 4

43. n = 6

53. At a = 0,

T1 (x) = −4 − x

T2 (x) = −4 − x + 2x 2

T3 (x) = −4 − x + 2x 2 + 3x 3 = f (x)
T4 (x) = T3 (x)

T5 (x) = T3 (x)

11. 12π + 4π 2

9. 67π
36

13. 176,400 newtons
√
15. Fluid force on a triangular face: 183,750 3 +√306,250 newtons;
fluid force on a slanted rectangular edge: 122,500 3 + 294,000
newtons
#
$
17. Mx = 20,480; My = 25,600; center of mass: 2, 85
#
$
19. 0, π2
21. 3π
10
23. T3 (x) = 1 + 3(x − 1) + 3(x − 2)2 + (x − 1)3
1 (x − 1)4
25. T4 (x) = (x − 1) + 12 (x − 1)2 − 16 (x − 1)3 + 12
3
27. T4 (x) = x − x
1 (3x)2 + 1 (3x)3 + · · · + 1 (3x)n
29. Tn (x) = 1 + 3x + 2!
3!
.
. n!
.
.
31. T3 (1.1) = 0.832981496; .T3 (1.1) − tan−1 1.1. = 2.301 × 10−7

Tn (x) = 1 − x + x 2 − x 3 + · · · + (−x)n .

Chapter 10
Section 10.1 Preliminary Questions
1. (a) First order (b) First order (c) Order 3 (d) Order 2
2. Yes 3. Example: y ′ = y 2 4. Example: y ′ = y 2
5. Example: y ′ + y = x

5
= 384

4
8
x 4n
51. T4n (x) = 1 − x2 + x4! + · · · + (−1)n (2n)!

√
7. 24π 2

33. n = 11 is sufficient.
1 is
35. The nth Maclaurin polynomial for g(x) = 1+x

1.1 |1.1|4
31. e 4!

. # $
.
.T3 12 − tan−1

√
3. 4 17

47. n = 4

Section 10.1 Exercises
1. (a) First order (b) Not first order (c) First order
(d) First order (e) Not first order (f) First order
3. Let y = 4x 2 . Then y ′ = 8x and y ′ − 8x = 8x − 8x = 0.
2

2

5. Let y = 25e−2x . Then y ′ = −100xe−2x and
2
2
y ′ + 4xy = −100xe−2x + 4x(25e−2x) = 0.
7. Let y = 4x 4 − 12x 2 + 3. Then

y ′′ − 2xy ′ + 8y = (48x 2 − 24) − 2x(16x 3 − 24x) + 8(4x 4 − 12x 2 + 3)
= 48x 2 − 24 − 32x 4 + 48x 2 + 32x 4 − 96x 2 + 24 = 0


9. (a) Separable: $y' = \frac{9}{7} y^2$ (b) Separable: $y' = \frac{\sin x}{\sqrt{4 - x^2}} e^{3y}$
 (c) Not separable (d) Separable: $y' = (1)(9 - y^2)$
11. $y = \frac{1}{2} x^3 + 1; y = \frac{1}{10}$
13. (d) $y = \ln \left| \frac{1}{2} - \frac{1}{2} + e^t \right|$
15. $y = Ce^{-x^3/3}$, where C is an arbitrary constant.
17. $y = \ln \left(4t^5 + C \right)$, where C is an arbitrary constant.
19. $y = Ce^{-5t/2} + \frac{4}{5}$, where C is an arbitrary constant.
21. $y = Ce^{-\sqrt{1-x^2}}$, where C is an arbitrary constant.
23. $y = \pm \sqrt{x^2 + C}$, where C is an arbitrary constant.
25. $x = \tan \left(\frac{4t^2}{5} + t + C \right)$, where C is an arbitrary constant.
27. $y = \sin^{-1} \left(\frac{1}{2} x^3 + C \right)$, where C is an arbitrary constant.
29. $y = \sec t$, where C is an arbitrary constant.
31. $y = 75e^{-2x}$
33. $y = -\sqrt{\ln (x^2 + e^3)}$
35. $y = 2 + 2e^{-1/(x^2/2)}$
37. $y = \tan \left(\frac{x^2}{2} \right)$
39. $y = e^{1-e^{-t}}$
41. $y = \frac{t}{t^2 + 1}$
43. $y = \sin^{-1} \left(\frac{1}{2} e^t \right)$
45. $a = -3, 4$
47. $t = \pm \sqrt{\pi + 4}$
49. (a) ≈ 1145 s or 19.1 min (b) ≈ 3910 s or 65.2 min
51. $y = 8 - (8 + 0.0002215r)^{1/2}; t \approx 65000$ s or 18 hr, 20 min
55. (a) $q(t) = CV \left(1 - e^{-t/RC} \right)$
 (b) $\lim_{t \to \infty} q(t) = \lim_{t \to \infty} CV \left(1 - e^{-t/RC} \right) = \lim_{t \to \infty} CV \left(1 - 0 \right) = CV$
 (c) $q'(RC) = CV \left(1 - e^{-1} \right) \approx 0.63CV$
57. $V = (4t^3/3 + C)^3$, V increases roughly with the cube of time.
59. $g(x) = Ce^{3x/2x}$, where C is an arbitrary constant; $g(x) = \frac{C}{x^2}$, where C is an arbitrary constant.
61. $y = \pm \sqrt{1 + t}$
63. (b) $v(t) = -9.8r + 100(\ln(50) - \ln(50 - 4.75r)); v(10) = -98 + 100(\ln(50) - \ln(2.5)) \approx 201.573$ m/s
69. (c) $C = \frac{140}{153\sqrt{2\pi}} R^{3/2}$

Section 10.2 Preliminary Questions
1. 7 2. $y = \pm \sqrt{1 + t}$ 3. (b) 4. 20

Section 10.2 Exercises
1.
2.
3.
5. (a)
7.

Section 10.3 Preliminary Questions
1. (a) No (b) Yes (c) No (d) Yes
2. No 3. Yes

Section 10.3 Exercises
1. $y = \frac{5}{1 - e^{-3t/C}}$ and $y = \frac{5}{1 + (3/2)e^{-3t}}$
3. $\lim_{t \to \infty} y(t) = 2$
5. (a) $P(t) = \frac{2000}{1 + 3e^{-0.6t}}$ (b) $t = \frac{1}{0.6} \ln 3 \approx 1.83$ years
7. $k = \ln \left(\frac{81}{10} \right) \approx 0.96$ year$^{-1}$; $t = \frac{\ln 9}{2 \ln 9 - \ln 10} \approx 2.29$ years
9. After $t = 7.6$ h, or at 3:36 PM
11. (a) $y_1(t) = \frac{10}{9} e^{-9t}$ and $y_2(t) = \frac{1}{1 - 2e^{-t}}$
 (b) $t = \ln \frac{2}{e}$ (c) $t = \ln 2$
13. (a) $A(t) = 16(1 - \frac{3}{4} e^{t/40})^2 / (1 + \frac{1}{4} e^{t/40})^2$
 (b) $A(10) \approx 2.1$
 (c)
15. ≈ 943 million
17. (d) $t = -\frac{1}{k} (\ln y_0 - \ln (A - y_0))$

Section 10.4 Preliminary Questions
1. (a) Yes (b) No (c) Yes (d) No
2. (b)
3. $P(x) = x^{-1}$ 4. $P(x) = 1$
Section 10.4 Exercises
1. (c) \(y = \frac{4}{5} + \frac{C}{x} \) (d) \(y = \frac{4}{5} - \frac{1}{x} \)
5. \(y = \frac{1}{5}x^3 + \frac{3}{5} \) 7. \(y = -\frac{1}{5}x^{-1} + Cx^{1/3} \)
9. \(y = \frac{1}{5}x^2 + \frac{1}{5} + Cx^{-3} \) 11. \(y = -x \ln x + Cx \)
13. \(y = \frac{1}{5}x^2 + C \) (c) \[y = x \cos x + C \cos x \]
15. \(y = x^4 + Cx^3 \) 19. \(y = \frac{1}{5}x^2 - \frac{2}{5}e^{-3x} \)
21. \(y = \frac{\ln|x|}{x^{5/2}} - \frac{1}{x^{1/11}} + \frac{5}{12} \) 23. \(y = -\cos x + \sin x \)
25. \(y = \tanh x + 3 \text{sech} x \)
27. For \(m \neq -n: y = \frac{1}{m+n}e^{mx} + Ce^{-nx}; \) for \(m = -n: y = (x + C)e^{-nx} \)
29. (a) \(y' = 4000 - \frac{40y}{5000+400}; y = 1000 \frac{4t^2+100t+125}{2t+25} \)
(b) 40 g/L.
31. 50 g/L.
33. (a) \(\frac{dV}{dt} = \frac{20}{7} - 5 \) and \(V(t) = 20 \ln(1 + t) - 5t + 100 \)
(b) The maximum value is \(V(3) = 20 \ln 4 - 15 + 100 \approx 112.726. \)
(c) Estimate empty at \(\approx 34 \text{ min.} \)

\[
I(t) = \frac{1}{10} \left(1 - e^{-20t} \right)
\]
37. (a) \(I(t) = \frac{V}{R} - \frac{V}{R} e^{-\left(R/L \right)t} \) (c) Approximately 0.0184 s
39. (b) \(c_1(t) = 10e^{-t/6} \)

Chapter 10 Review
1. (a) No, first order (b) Yes, first order (e) No, order 3
(d) Yes, second order
3. \(y = \pm \left(\frac{3}{4}x^3 + C \right)^{1/4} \), where \(C \) is an arbitrary constant.
5. \(y = Cx - 1 \), where \(C \) is an arbitrary constant.
7. \(y = \frac{1}{2} \left(x + \frac{3}{2} \sin 2x \right) + \frac{7}{8} \) 9. \(y = \frac{2}{x^3} \)

\[
11.\quad y(0.1) \approx 1.1; y(0.2) \approx 1.209890; y(0.3) \approx 1.329919
19. \quad y = x^2 + 2x \quad 21. \quad y = \frac{1}{2} + e^{-x} - \frac{11}{2} e^{-2x} \]
23. \(y = \frac{1}{2} \sin 2x - 2 \cos x \) 25. \(y = 1 - \sqrt{t^2 + 15} \)
27. \(u = \tan \left(\frac{k \ln x + \frac{\pi}{4} \right) \)
29. \(y = -\cos x + \frac{\sin x}{x} + \frac{C}{x} \), where \(C \) is an arbitrary constant.
31. Solution satisfying \(y(0) = 3: y(t) = 4 - e^{-2t} \); solution satisfying \(y(0) = 4: y(t) = 4 \)

\[
33. \quad (a) 12
(b) \infty, \text{ if } y(0) > 12; 12, \text{ if } y(0) = 12; -\infty, \text{ if } y(0) < 12
(c) -3
35. \quad 400,000 - 200,000e^{0.25} \approx 143,194.91 \quad 37. \quad 400,000
39. \quad \text{Solutions are of the form } y = \frac{R}{A} + Ce^{-At} \text{ and } \lim_{t \to \infty} y = \frac{R}{A}. \]
41. \(\frac{-7\sqrt{40\pi^2 + 6400}}{2400}; t = 3225.88 \text{ s or 51 min } 56 \text{ s} \)
43. 2 45. \(t = 5 \ln 441 \approx 30.45 \text{ days} \)
49. (a) \(\frac{dc}{dt} = -\frac{1}{5}c_1 \) (b) \(c_1(t) = 8e^{-2/5} \) g/L.

Chapter 11
Section 11.1 Preliminary Questions
1. \(a_4 = 12 \) 2. (c) \(\lim_{n \to \infty} a_n = \sqrt{2} \) 4. (b)
5. (a) False. Counterexample: \(a_n = \cos \pi n \)
(b) True (e) False. Counterexample: \(a_n = (-1)^n \)

Section 11.1 Exercises
1. (a) (iv) (b) (i) (c) (iii) (d) (ii)
3. \(c_1 = 3, c_2 = \frac{9}{2}, c_3 = \frac{9}{4}, c_4 = \frac{27}{8} \)
5. \(a_1 = 2, a_2 = 5, a_3 = 47, a_4 = 4415 \)
7. \(b_1 = 4, b_2 = 6, b_3 = 4, b_4 = 6 \)
9. \(c_1 = 1, c_2 = \frac{1}{3}, c_3 = \frac{11}{12}, c_4 = \frac{25}{24} \)
11. \(b_1 = 2, b_2 = 3, b_3 = 8, b_4 = 19 \)
13. (a) \(a_n = \frac{(-1)^{n+1}}{n} \) (b) \(b_n = \frac{n+1}{n+5} \)
15. \(\lim_{n \to \infty} 12 = 12 \) 17. \(\lim_{n \to \infty} \frac{2n-1}{2n+1} = \frac{5}{12} \)
19. \(\lim_{n \to \infty} (-2^n) = 0 \) 21. The sequence diverges.
Section 11.2 Preliminary Questions

1. The sum of an infinite series is defined as the limit of the sequence of partial sums. If the limit of this sequence does not exist, the series is said to diverge.

2. \(S = \frac{1}{2} \)

3. The result is negative, so the result is not valid: a series with all positive terms cannot have a negative sum. The formula is not valid because the geometric series with \(r = 1 \) diverges.

4. No 5. No 6. \(N = 13 \)

7. No, \(S_N \) is increasing and converges to 1, so \(S_N \leq 1 \) for all \(N \).

8. Example: \(\sum_{n=1}^{\infty} \frac{1}{n^{\pi n}} \)

Section 11.2 Exercises

1. (a) \(a_n = \frac{1}{n^n} \) (b) \(a_n = \left(\frac{5}{2} \right)^n \)

(c) \(a_n = (1 + \frac{1}{n})^{-n+1} \) (d) \(a_n = \frac{1 + \frac{1}{n+1}}{n+1} \)

3. \(S_2 = \frac{2}{3}, S_4 = \frac{4}{9}, S_6 = \frac{8}{27} \)

4. \(S_2 = \frac{2}{3}, S_4 = \frac{4}{9}, S_6 = \frac{8}{27} \) 7. \(S_6 = 1.24992 \)

5. \(S_{100} = 0.03535167962, S_{500} = 0.03539810274, S_{1000} = 0.03539816290 \)

9. \(S_3 = \frac{1}{10}, S_4 = \frac{5}{17}, S_5 = \frac{5}{17} \sum_{n=1}^{\infty} \left(\frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{1}{2} \)

13. \(S_3 = \frac{1}{3}, S_4 = \frac{4}{9}, S_5 = \frac{5}{17} \sum_{n=1}^{\infty} \frac{1}{n+1} = \frac{1}{2} \)

15. \(S = \frac{1}{2} \) 17. \(\lim_{n \to \infty} \frac{n}{10^{10} + 12} = \frac{1}{10} \neq 0 \)

19. \(\lim_{n \to \infty} (1^n - \frac{1}{n}) \) does not exist.

21. \(\lim_{n \to \infty} a_n = \lim_{n \to \infty} \cos \frac{1}{n+1} = 1 \neq 0 \)

23. \(S = \frac{5}{2} \) 25. The series diverges. 27. \(S = \frac{5}{33} \)

29. \(S = \frac{1}{e-1} \) 31. \(S = \frac{35}{9} \) 33. \(S = 4 \) 35. \(S = \frac{7}{9} \) 37. \(\frac{7}{9} \)

41. The fractions \(S_n = \frac{n}{2} \), where \(a = 1, 2, \ldots, 8 \) have repeating decimals of the form \(\frac{a}{9} \)

43. (b) and (c)

47. (a) Count example: \(\sum_{n=1}^{\infty} \left(\frac{1}{2} \right)^n = 1 \).

(b) Count example: If \(a_n = 1 \), then \(S_N = N \).

(c) Count example: \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges.

(d) Count example: \(\sum_{n=1}^{\infty} \cos 2\pi n \neq 1 \).

49. The total area is \(\frac{1}{2} \).

51. (a) \(D e^{-k} + D e^{-2k} + D e^{-3k} + \cdots = \frac{D e^{-k}}{1-e^{-k}} \)

(b) \(D e^{-kt} + D e^{-2kt} + D e^{-3kt} + \cdots = \frac{D e^{-kt}}{1-e^{-kt}} \)

(c) \(t \geq -\frac{1}{k} \ln \left(1 - \frac{k}{2} \right) \)

53. The total length of the path is \(2 + \sqrt{2} \). 57. 42 ft

Section 11.3 Preliminary Questions

1. (b)

2. A function \(f \) such that \(a_n = f(n) \) must be positive, decreasing, and continuous for \(x \geq 1 \).

3. Convergence of \(p \)-series or integral test

4. Comparison Test

5. No; \(\sum_{n=1}^{\infty} \frac{1}{n} \) diverges, but since \(\frac{\sin x}{\pi n} < \frac{1}{n} \) for \(n \geq 1 \), the

Comparison Test tells us nothing about the convergence of \(\sum_{n=1}^{\infty} \frac{\sin x}{n} \).

Section 11.3 Exercises

1. \(\int_{1}^{\infty} \frac{dx}{x^2} \) converges, so the series converges.

3. \(\int_{1}^{\infty} \frac{dx}{x^{1/3}} \) diverges, so the series diverges.

5. \(\int_{1/2}^{\infty} \frac{x^2}{(x^2+9)^2} \) diverges, so the series converges.

7. \(\int_{1}^{\infty} \frac{dx}{x^{2/3}} \) converges, so the series converges.

9. \(\int_{1}^{\infty} \frac{dx}{x(x+1)} \) diverges, so the series diverges.

11. \(\int_{1}^{\infty} \frac{1}{x \ln x} \) diverges, so the series diverges.

13. \(\int_{1}^{\infty} \frac{dx}{x^{2/3}} \) diverges, so the series diverges.

15. \(\frac{1}{n^{3/2}} \leq \frac{1}{n^2} \), so the series diverges.

19. \(\frac{1}{n^3} \leq \left(\frac{1}{n^2} \right)^n \), so the series diverges.

21. \(\frac{1}{n^{1/3} + 2n} \leq \left(\frac{1}{n} \right)^n \), so the series diverges.

23. \(\frac{4}{n^{3/4} + n} \leq \left(\frac{1}{n} \right)^n \), so the series diverges.

25. \(0 \leq \frac{\sin^2 k}{k^2} \leq \frac{1}{k^2} \), so the series diverges.

27. \(\frac{2}{3^n + 3} \leq 2 \left(\frac{1}{2} \right)^n \), so the series converges.

29. \(\frac{1}{n^{1/3} + n} \leq \frac{1}{n^2} \), so the series diverges.

31. \(\frac{\ln n}{n^2} \leq \frac{1}{n^2} \) for \(n \geq 1 \), so the series converges.
33. \(\lim_{n \to \infty} \frac{\ln(n)}{n} \leq \frac{1}{n} \) for \(n \) sufficiently large, so the series converges.

35. \(a_n \leq \left(\frac{3}{2} \right)^n \) for \(n \geq 1 \), so the series converges.

39. The series converges. 41. The series diverges.

43. The series converges. 45. The series diverges.

47. The series converges. 49. The series converges.

51. The series diverges. 53. The series converges.

55. The series diverges. 57. The series converges.

59. The series diverges. 61. The series diverges.

63. The series converges. 65. The series converges.

67. The series diverges. 69. The series diverges.

71. The series converges. 73. The series converges.

75. The series converges. 77. The series converges.

79. The series converges for \(a > 1 \) and diverges for \(a \leq 1 \).

81. The series converges for \(p > 1 \) and diverges for \(p \leq 1 \).

89. \(\sum_{n=1}^{\infty} n^{-5} \approx 1.0369540120 \).

93. \(\sum_{n=1}^{1000} \frac{1}{n^2} = 1.6439345667 \) and \(1 + \sum_{n=1}^{100} \frac{1}{n(n+1)} = 1.6448848903 \).

The second sum is a better approximation to \(\pi^2/6 \approx 1.6449340668 \).

Section 11.4 Preliminary Questions

1. Example: \(\sum (-1)^n/n^2 \) 2. No

4. \(|S - S_{100}| \leq 10^{-3} \), and \(S \) is larger than \(S_{100} \).

Section 11.4 Exercises

3. Converges conditionally. 5. Converges absolutely.

11. (a) | \begin{array}{c|c|c}
 n & S_n & S_{2n} \\
 1 & 0.1 & 1.07 \\
 2 & 0.198 & 1.137 \\
 3 & 0.19807 & 1.1375 \\
 4 & 0.198067 & 1.13727 \\
 5 & 0.198067 & 1.13726 \\
 \end{array} |

13. \(S_5 = 0.947 \) 15. \(S_{44} = 0.06567457397 \)

17. Converges (by geometric series).

19. Converges (by Comparison Test).

21. Converges (by Limit Comparison Test).

23. Diverges (by Limit Comparison Test).

25. Converges (by geometric series and linearity).

27. Converges absolutely (by Integral Test).

29. Converges (by Alternating Series Test).

Section 11.5 Preliminary Questions

1. \(\rho = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| \)

2. The Ratio Test is conclusive for \(\sum \frac{1}{n^p} \) and inconclusive for \(\sum \frac{1}{n} \).

3. No

Section 11.5 Exercises

1. Converges absolutely. 3. Converges absolutely.

5. The Ratio Test is inconclusive. 7. Diverges.

13. Diverges. 15. The Ratio Test is inconclusive.

21. \(\rho = \frac{1}{3} < 1 \) 23. \(\rho = \frac{2}{3} \)

25. \(\rho = |r| \) 29. Converges absolutely.

31. The Ratio Test is inconclusive, so the series may converge or diverge.

33. Converges absolutely. 35. The Ratio Test is inconclusive.

41. Converges absolutely.

43. Converges (by geometric series and linearity).

45. Diverges (by the Divergence Test).

47. Converges (by the Direct Comparison Test).

49. Diverges (by the Direct Comparison Test).

51. Converges (by the Ratio Test).

53. Diverges (by the Limit Comparison Test).

59. Converges (by Limit Comparison Test).

61. Diverges (by Divergence Test).

65. (b) \(\sqrt{n^2} \approx 2.50663 \)

\begin{array}{c|c}
 n & e^{\pi r} \\
 1000 & 0.2506837 \\
 1500 & 0.2506768 \\
 2000 & 0.2506733 \\
 2500 & 0.2506712 \\
 3000 & 0.2506698 \\
 \end{array}

Section 11.6 Preliminary Questions

1. Yes. The series must converge for both \(x = 4 \) and \(x = -3 \).

2. (a), (c) \(R = 4 \)

4. \(P(x) = \sum_{n=1}^{\infty} n^2 x^{n-1} \); \(R = 1 \)

Section 11.6 Exercises

1. \(R = 2 \). It does not converge at the endpoints.

3. \(R = 3 \) for all three series.

9. \((-1, 1) \) 11. \(-\sqrt{2}, \sqrt{2} \) 13. \([1, 1] \) 15. \((\infty, \infty)\)

17. \((-\infty, \infty) \) 19. \((-1, 1) \) 21. \(-1, 1 \) 23. \([-1, 1]\)

25. (2, 4) 27. (6, 8) 29. \(\left[-\frac{1}{2}, \frac{1}{2} \right] \) 31. \((-\infty, \infty) \)

33. \((2 - \frac{1}{2}, 2 + \frac{1}{2}) \)

35. \(\sum_{n=0}^{\infty} x^n \) on the interval \(\left(-\frac{1}{2}, \frac{1}{2} \right) \)

37. \(\sum_{n=0}^{\infty} \frac{x^n}{3^n} \) on the interval \((-3, 3)\)

39. \(\sum_{n=0}^{\infty} (-1)^n x^{2n} \) on the interval \((-1, 1)\)

43. \(\sum_{n=0}^{\infty} (-1)^{n+1} (x - 5)^n \) on the interval \((4, 6)\)
Section 11.7 Exercises

1. \(f(x) = 2 + 3x + 2x^2 + 2x^3 + \cdots \)
2. \(\frac{1}{1-x^2} = \sum_{n=0}^{\infty} 2^n x^n \) on the interval \((-1, 1))
3. \(\cos 3x = \sum_{n=0}^{\infty} (-1)^n \frac{3^{2n+1} x^{2n+1}}{(2n+1)!} \) on the interval \((-\infty, \infty)
4. \(\sin(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{2^{2n+1} x^{4n+2}}{(2n+1)!} \) on the interval \((-\infty, \infty)
5. \(\ln(1 - x^2) = -\sum_{n=1}^{\infty} \frac{x^{2n}}{n} \) on the interval \((-1, 1))
6. \(\tan^{-1}(x^2) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{2n+1} \) on the interval \([-1, 1])
7. \(e^{x^3} = \sum_{n=0}^{\infty} \frac{x^{6n}}{n!} \) on the interval \((-\infty, \infty)
8. \(\sin x = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!} \) on the interval \((-\infty, \infty)
9. \(e^x \sin x = x + x^2 + \frac{x^3}{3} - \frac{x^5}{30} + \cdots \)

Section 11.7 Exercises

1. \(f(0) = 3 \) and \(f^{(n)}(0) = 30 \)
2. \(f(-2) = 0 \) and \(f^{(4)}(-2) = 48 \)
3. Substitute \(x^2 \) for \(x \) in the Maclaurin series for \(\sin x \)
4. \(f(x) = 4 + \sum_{n=1}^{\infty} \frac{(x-3)^{n+1}}{n(n+1)!} \) on the interval \((-3, 5))
5. \(\frac{1}{1-x^3} = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1-1)}{2n+1} (x-3)^n \) on the interval \((1, 5))
6. \(\cos^2 x = \sum_{n=0}^{\infty} (-1)^n \frac{(4^n x^{2n})}{(2n)!} \)
7. \(\int \frac{1}{(1-x^3)(1-x)} \) is finite at \(x=1 \)
8. \(\lim_{x \to 0} \frac{\sin x - x + \frac{x^3}{6}}{x^3} = \frac{1}{120} \)
9. \(\lim_{x \to 0} \left(\frac{\sin(x^2)}{x^4} - \cos x \right) x^2 = \frac{1}{2} \)
10. \(S = \frac{\pi}{4} - \frac{1}{2} \ln 2 \)

Chapter 11 Review

1. \(a_1 = 4, a_2 = \frac{1}{4}, a_3 = 0 \)
2. \(b_1 = \frac{1}{2}, b_2 = \frac{1}{3}, b_3 = \frac{1}{4} \)
3. \(a_1 b_1 = -\frac{1}{12}, a_2 b_2 = -\frac{1}{72}, a_3 b_3 = 0 \)
4. \(2a_2 - 3a_1 = 5, 2a_3 - 3a_2 = \frac{3}{2}, 2a_4 - 3a_3 = \frac{1}{2} \)
5. \(\lim_{n \to \infty} (5a_n - 2a_{n-1}) = 2 \)
6. \(\lim_{n \to \infty} e^{a_n} = e^2 \)
7. \(\lim_{n \to \infty} (-1)^n a_n \) does not exist.
8. \(\lim_{n \to \infty} \left(\sqrt{n + 5} - \sqrt{n + 2} \right) = 0 \)
9. \(\lim_{n \to \infty} \tan^{-1} \left(\frac{n+2}{n+5} \right) = \frac{\pi}{4} \)
10. The sequence diverges.
11. \(\lim_{n \to \infty} \tan^{-1} \left(\frac{n+2}{n+5} \right) = \frac{\pi}{4} \)
12. \(\lim_{n \to \infty} \left(\sqrt{n^2 + n - \sqrt{n^2 + 1}} \right) = \frac{1}{2} \)
13. \(\lim_{n \to \infty} \left(\frac{3m}{1} \right) = e^3 \)
21. \(\lim_{n \to \infty} \left(n \left(\ln(n + 1) - \ln n \right) \right) = 1 \)

25. \(\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 3 \) 27. \(S_4 = -\frac{11}{60} \), \(S_7 = \frac{41}{630} \)

29. \(\sum_{n=2}^{\infty} \left(\frac{3}{n} \right)^n = \frac{4}{3} \) 31. \(S = \frac{4}{37} \) 33. \(\sum_{n=1}^{\infty} \frac{2^{n+3}}{3^n} = 36 \)

35. \(a_n = \left(\frac{1}{3} \right)^n + 1 - 2^n \), \(b_n = 2^n - 1 \)

37. \(S = \frac{47}{180} \) 39. The series diverges.

41. \(\int_{n}^{\infty} \frac{1}{(x+2)\ln(x+2)} \, dx = \frac{1}{2\ln(3)} \), so the series converges.

43. \(\sum_{n=1}^{\infty} \frac{1}{n+3} \) converges, so the series converges.

45. \(\sum_{n=0}^{\infty} \frac{1}{n^3+1} \) converges, so the series converges.

47. \(\sum_{n=0}^{\infty} \frac{10^n}{n!} \) converges, so the series converges.

51. Converges.

55. (b) \(0.3971162690 \leq S \leq 0.3971172688 \), so the maximum size of the error is \(10^{-6} \).

61. (a) 500 (b) \(K \approx \sum_{n=0}^{499} \frac{(-1)^n}{(2n+1)^2} = 0.9159650942 \)

63. (a) Converges. (b) Converges. (c) Diverges.

71. Diverges. 73. Converges. 75. Converges.

77. Converges (by geometric series).

79. Converges (by geometric series).

81. Converges (by the Leibniz Test).

83. Converges (by the Leibniz Test).

85. Diverges (by the Divergence Test).

87. Converges (absolutely, by a Direct Comparison with the p-series \(\sum_{n=1}^{\infty} \frac{1}{n^p} \)).

89. Converges (by the Root Test).

91. Converges (by the Limit Comparison Test)

93. Converges using partial sums (the series is telescoping).

95. Diverges (by the Direct Comparison Test).

97. Converges (by the Direct Comparison Test).

99. Converges (by the Limit Comparison Test).

101. Converges on the interval \((-\infty, \infty)\).

103. Converges on the interval \([2, 4]\).

105. Converges at \(x = 0 \).

107. \(\frac{2}{3-x} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{3}{4} \right)^n \) x^n. The series converges on the interval \((-\frac{4}{3}, \frac{4}{3})\).

109. (c) 111. \(\lim_{x \to 0} \frac{x^2}{\cos 3x - 1} = -2 \)

113. \(e^{\frac{t}{2}} = \sum_{n=0}^{\infty} \frac{4^n}{n!} \) x^n

115. \(x^4 = 16 + 32(x - 2) + 24(x - 2)^2 + 8(x - 2)^3 + (x - 2)^4 \)

117. \(\sin x = \sum_{n=0}^{\infty} (-1)^{n+1} (x - \pi)^{2n+1} \frac{1}{(2n+1)!} \)

119. \(\frac{1}{n-x} = \sum_{n=0}^{\infty} \frac{2^n}{3^n} (x + 2)^n \) 121. \(\ln \frac{2}{3} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1} (x-2)^n}{n!} \)

123. \((x^2 - x)e^{x^2} = \sum_{n=0}^{\infty} \frac{(2n+2-x)^{2n+1}}{n!} \) so \(f^{(3)}(0) = -6 \)

125. \(\frac{1}{1+\tan x} = 1 - x + x^2 - \frac{4}{3} x^3 + \cdots \) so \(f^{(3)}(0) = -8 \)

127. \(\pi - \frac{x^5}{5!} + \frac{x^7}{7!} = \cdots = \sin \frac{x}{2} = 1 \)

Chapter 12

Section 12.1 Preliminary Questions

1. A circle of radius 3 centered at the origin

2. The center is at (4, 5). 3. Maximum height: 4

4. Yes; No

5. (a) The line \(y = x \) traversed left to right.

(b) Same path traversed left to right twice as fast.

6. \(c_1(t) = (t, t^3), c_2(t) = (\sqrt{7}, t), c_3(t) = (t^3, t^9) \)

Section 12.1 Exercises

1. \((t = 0)(1, 9); (t = 2)(9, -3); (t = 4)(65, -39) \)

3. \(y = 2.5x - .000766x^2 \)

5. (a) \(\sqrt{y} \)

7. \(y = 4x - 12 \) 9. \(y = \tan^{-1} \left(x^3 + e^x \right) \)

11. \(y = \frac{6}{x^2} \) (where \(x > 0 \)) 13. \(y = 2 - e^x \)

15. \(\frac{1}{x} \)

17. \(\frac{1}{x} \)
19. (a) \leftrightarrow (iv), (b) \leftrightarrow (ii), (c) \leftrightarrow (iii), (d) \leftrightarrow (i)

21. (a) $y_{\text{max}} = 100$ cm; (b) lands at $x = 2040$ cm from the origin, when $t = 20$ s

23. $c(t) = (t, 9 - 4t)$
25. $c(t) = \left(\frac{5 + t^2}{2}, t\right)$

27. $c(t) = (-9 + 7\cos t, 4 + 7\sin t)$
29. $c(t) = (-4 + t, 9 + 8t)$
31. $c(t) = (3 - 8t, 1 + 3t)$
33. $c(t) = (1 + t, 1 + 2t)$ $(0 \leq t \leq 1)$
35. $c(t) = (3 + 4\cos t, 9 + 4\sin t)$
37. $c(t) = (-4 + t, -8 + t^2)$
39. $c(t) = (2 + t, 2 + 3t)$
41. $c(t) = \left(3 + t, (3 + t)^2\right)$

43. $y = \sqrt{x^2 - 1}$ $(1 \leq x < \infty)$
45. Plot III

47.

49. $\frac{dy}{dx}|_{x=-4} = -\frac{1}{6}$
51. $\frac{dy}{dx}|_{x=-1} = -\frac{3}{4}$
53. $-\frac{2}{3}$

55. $y = -\frac{9}{2} + \frac{11}{2} \frac{dy}{dx} = \frac{9}{2}$

57. $y = x^2 + x^{-1}$; $\frac{dy}{dx} = 2x - \frac{1}{x^2}$
59. $(0, 0), (96, 180)$

61.

The graph is in: quadrant i for $t < -3$ or $t > 8$, quadrant ii for $-3 < t < 0$, quadrant iii for $0 < t < 3$, quadrant iv for $3 < t < 8$.

63. $(55, 0)$

65. The coordinates of P, $(R \cos \theta, r \sin \theta)$, describe an ellipse for $0 \leq \theta \leq 2\pi$.

69. $c(t) = (3 - 9t + 24t^2 - 16t^3, 2 + 6t^2 - 4t^3), 0 \leq t \leq 1$

73. $y = -\sqrt{3x + \frac{\sqrt{3}}{2}}$

75. $(2k - 1)\pi, 2), \quad k = 0, \pm 1, \pm 2, \ldots$
85. $\left.\frac{d^2y}{dx^2}\right|_{t=\pi} = \frac{-21}{512}$
87. $\left.\frac{d^2y}{dx^2}\right|_{t=-3} = 0$

Section 12.2 Preliminary Questions

1. $S = \int_{a}^{b} \sqrt{x'(t)^2 + y'(t)^2}\,dt$
2. No. They are equal when the curve traced by $c(t)$ is a line segment from the initial to the final point, and $c(t)$ is a one-to-one function.
3. The speed at time t
4. Displacement: 5; No
5. $L = 180$ cm
6. 4π

Section 12.2 Exercises

1. $S = 10$
3. $S = 800$
5. $S = \frac{1}{2}(653/2 - 53/2) \approx 256.43$

7. $S = 3\pi$
9. $S = -8\left(\frac{\sqrt{2}}{2} - 1\right) \approx 2.34$

13. $S = \ln(\cosh(A))$
15. $\left.\frac{dx}{dt}\right|_{t=2} = 4\sqrt{10} \approx 12.65$ m/s

17. $\left.\frac{dx}{dt}\right|_{t=9} = \sqrt{41} \approx 6.4$ m/s
19. $\left.\frac{dx}{dt}\right|_{t=0} = 1$

21. $\left(\frac{dx}{dt}\right)_{\text{min}} \approx \sqrt{4.89} \approx 2.21$
23. $\frac{dx}{dt} = 8$

25.

$M_{10} = 6.903734, M_{20} = 6.915035, M_{30} = 6.914949, M_{50} = 6.914951$

27.

$M_{10} = 25.528309, M_{20} = 25.526999, M_{30} = 25.526999, M_{50} = 25.526999$

29. $S = 2\pi^2 R$
39. (a) \[y = \pm \sqrt{49 - x^2} \]

(b) \[L \approx 212.096 \]

Section 12.3 Preliminary Questions
1. (a) \[r \theta = \left(\frac{\pi}{6}, \frac{\pi}{6} \right); \] Negative: \(r, \theta = \left(1, -\frac{\pi}{6} \right) \)
2. Positive: \(r, \theta = \left(1, \frac{\pi}{6} \right) \)
3. (a) \[\text{Equation of the circle of radius 2 centered at the origin} \]
(b) \[\text{Equation of the circle of radius } \sqrt{2} \text{ centered at the origin} \]
(c) \[\text{Equation of the vertical line through the point } (2, 0) \]
4. (a)

Section 12.3 Exercises
1. (A): \(\left(\frac{3}{2}, \frac{5\pi}{4} \right) \); (B): \((3, \pi) \); (C):
 \(\left(\sqrt{3}, \pi + 0.46 \right) \approx \left(\sqrt{3}, 3.60 \right) \); (D): \(\left(\sqrt{2}, \frac{5\pi}{4} \right) \); (E): \(\left(\sqrt{2}, \frac{\pi}{4} \right) \);
 (F): \((4, \frac{\pi}{6}) \); (G): \((4, \frac{11\pi}{6}) \)
2. (a) \((1, 0) \) (b) \(\left(\sqrt{12}, \frac{\pi}{6} \right) \) (c) \(\left(\sqrt{8}, \frac{3\pi}{4} \right) \) (d) \(\left(2, \frac{3\pi}{4} \right) \)
3. (a) \(\left(\sqrt{5}, \frac{\pi}{2} \right) \) (b) \(\left(-\frac{5}{\sqrt{2}}, \frac{6}{\sqrt{2}} \right) \) (c) \((0, 0) \) (d) \((0, -5) \)
4. (A): \(0 \leq r \leq 3, \pi \leq \theta \leq 4 \pi \); (B): \(0 \leq r \leq 3, \frac{\pi}{2} \leq \theta \leq \frac{5\pi}{2} \); (C):
 \(3 \leq r \leq 5, \frac{\pi}{4} \leq \theta \leq \pi \)
5. \(m = \tan \frac{\theta}{2} \approx -3.1 \) 11. \(x^2 + y^2 = 7^2 \)
6. \(x^2 + (y - 1)^2 = 1 \) 15. \(y = x - 1 \) 17. \(r = \sqrt{5} \)
19. \(r = \tan \theta \sec \theta \) 21. \(\theta = 1 \)
23. (a) \(\theta = \pi \); (b) \(\theta = \pi \); (c) \(\theta = \pi \); (d) \(\theta = \pi \)
25. (a) \(r, 2\pi - \theta \) (b) \(r, \theta + \pi \) (c) \(r, \pi - \theta \)
(d) \(r, \frac{\pi}{2} - \theta \)
27. \(r \cos (\theta - \frac{\pi}{2}) = d \)
29. \[r \]
31. \[r \]

33. (a) \(A, \theta = 0, r = 0; B, \theta = \frac{\pi}{4}, r = \sin \frac{2\pi}{3} = 1; C, \theta = \frac{\pi}{3}, r = \cos \frac{2\pi}{3} = 1; D, \theta = \frac{\pi}{4}, r = \sin \frac{2\pi}{3} = 1; E, \theta = \pi, r = 0; F, \theta = \frac{5\pi}{4}, r = 1; G, \theta = \frac{5\pi}{3}, r = 0; H, \theta = \frac{2\pi}{3}, r = 1; I, \theta = 2\pi, r = 0 \)
(b) \(0 \leq \theta \leq \frac{\pi}{2} \) is in the first quadrant. \(\frac{\pi}{2} \leq \theta \leq \pi \) is in the second quadrant.
(c) \(\frac{\pi}{2} \leq \theta \leq \pi \) is in the third quadrant. \(\frac{3\pi}{2} \leq \theta \leq 2\pi \) is in the fourth quadrant.

35. \[r^2 = 8 \cos 2\theta \]
37. \((x - \frac{a}{2})^2 + (y - \frac{b}{2})^2 = \frac{a^2 + b^2}{2}, r = \frac{\sqrt{x^2+y^2}}{2}, \) centered at the point \(\left(\frac{a}{2}, \frac{b}{2} \right) \)
39. \(r^2 = 2a^2 \cos 2\theta \)
41. \((x^2 + y^2)^2 = x^3 - 3y^3x \)
43. \(r = 2 \sec (\theta - \frac{\pi}{4}) \)
45. \(r = 2\sqrt{2} \sec (\theta - 4.39) \)
49. \(r = 2a^2 \cos 2\theta \)

Section 12.4 Preliminary Questions
1. (b) \(\text{Yes} \) 3. (c)

Section 12.4 Exercises
1. \[A = \frac{1}{2} \int_{-\pi/2}^{\pi/2} r^2 d\theta = \frac{25\pi}{4} \]
3. $A = \frac{1}{2} \int_{0}^{\pi} r^{2} d\theta = 4\pi$
5. $A = \frac{\pi}{32} + \frac{\pi^4}{16} + \frac{\pi^3}{3}$
7. $A = \frac{3\pi}{2}$
9. $A = \frac{2\pi}{5} \approx 0.39$

11. \[y = \frac{x^3}{3\sqrt{3}} \]

13. $A = \frac{\sqrt{2 \pi}}{2} + 7 \cos^{-1}\left(\frac{1}{2}\right) \approx 11.163$
15. $A = \pi - \frac{3\pi}{2} \approx 0.54$
17. $A = \frac{\pi}{3} - \frac{1}{3} \approx 0.14$
19. $A = 4\pi$
21. $A = \frac{9\pi}{2} - 4\sqrt{2}$
23. $S = 4\pi$
25. $L = \frac{1}{2} \left((\pi^2 + 4)^{3/2} - 8 \right) \approx 14.55$
27. π
29. $L = \sqrt{2\pi}/4 \approx 1.11$
31. $L = \frac{\int_{0}^{\pi} \sqrt{\cos^4 \theta + 4\cos^2 \theta \sin^2 \theta} \ d\theta}{\pi} \approx 5.52$
33. $I_{0}^{\pi/2} \sqrt{2e^{2\theta} + 2e^{\theta} + 1} \ d\theta$
35. $I_{0}^{\pi/2} \sin^2 \theta \sqrt{1 + 8 \cos \theta} \ d\theta$
37. $L \approx 6.682$
39. $L \approx 79.56$

Section 12.5 Preliminary Questions
1. (a) Hyperbola (b) Parabola (c) Ellipse
(d) Not a conic section
2. Hyperbolas
3. The points $(0, c)$ and $(0, -c)$
4. $\pm \frac{a}{b}$ are the slopes of the two asymptotes of the hyperbola.

Section 12.5 Exercises
1. $F_1 = (-\sqrt{65}, 0), F_2 = (\sqrt{65}, 0)$. The vertices are $(9, 0), (-9, 0), (0, 4), (0, -4)$.
3. $F_1 = (9\sqrt{7}, 0), F_2 = (9\sqrt{7}, 0)$. The vertices are $(4, 0)$ and $(-4, 0)$.
5. $F_1 = (\sqrt{65} + 3, -1), F_2 = (-\sqrt{65} + 3, -1)$. The vertices are $(10, -1)$ and $(-4, -1)$.
7. $\frac{x^2}{9} + \frac{y^2}{5} = 1$
9. $\frac{(x-14)^2}{6} + \frac{(y+4)^2}{3} = 1$
11. $\frac{x^2}{36} + \frac{y^2}{5} = 1$\[\frac{x^2}{243} + \frac{y^2}{50/37} = 1 \]
15. $\left(\frac{1}{3}\right)^2 - \left(\frac{1}{4}\right)^2 = 1$
17. $\frac{x^2}{25} - \frac{y^2}{9} = 1$
19. $\left(\frac{x-2}{5}\right)^2 - \left(\frac{y}{10}\right)^2 = 1$
21. $y = 3x^2$
23. $y = \frac{1}{20}x^2$
25. $y = \frac{1}{16}x^2$
27. $x = \frac{1}{6}y^2$
29. Vertices: $(-4, 0), (0, \pm2)$. Foci: $(\pm \sqrt{12}, 0)$. Centered at the origin.
31. Vertices: $(7, -5), (-1, -5)$. Foci: $(\sqrt{65} + 3, -5), (-\sqrt{65} + 3, -5)$. Center: $(3, -5)$. Asymptotes: $y = \frac{-41}{4}x$ and $y = \frac{3}{4}x + \frac{-7}{4}$.

33. Vertices: $(5, 5), (-7, -5)$. Foci: $(\sqrt{84} - 1, 5), (-\sqrt{84} - 1, 5)$. Center: $(-1, 5)$. Asymptotes: $y = \frac{x}{2\sqrt{2}}, x + 5 \approx -1.15x + 6.15$ and $y = -\frac{x}{2\sqrt{2}}, x + 5 \approx 1.15x + 3.85$.
35. Vertices: $(0, 0), (0, \frac{\sqrt{2}}{2})$.
37. Vertices: $(1 \pm \frac{4}{2}, \frac{1}{2}), (1, \frac{1}{2} \pm 1)$. Foci: $(-\frac{x}{2}, 1 + \frac{1}{4})$, $\sqrt{\frac{1}{2}} + 1 + \frac{1}{4}$. Centered at $(1, \frac{1}{2})$.
39. $D = -87$; ellipse
41. $D = 40$; hyperbola
47. Focus: $(0, c)$. Directrix: $y = -c$.
49. $A = \frac{9\pi}{4}$
51. $r = \frac{3}{1 + \cos \theta}$
53. $r = \frac{4}{1 - \cos \theta}$
55. Hyperbola, $e = 4$, directrix, $x = 2$
57. Ellipse, $e = \frac{3}{4}$, directrix, $x = \frac{8}{3}$
59. $r = \frac{12}{5 + 4\sin \theta}$
61. $\left(\frac{x+3}{2}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$
63. 4.5 billion miles

Chapter 12 Review
1. (a), (c)
3. $c(t) = (1 + 2\cos t, 1 + 2\sin t)$. The intersection points with the y-axis are $(0, 1 \pm \sqrt{3})$. The intersection points with the x-axis are $(\pm \sqrt{5}, 0)$.
5. $c(\theta) = (\cos(\theta + \pi), \sin(\theta + \pi))$
7. $c(t) = (1 + 2t, 3 + 4t)$
9. $y = -\frac{3}{4} + \frac{37}{4}$
11. $y = -\frac{8}{(x-3)^2} + \frac{3-x}{2}$
13. $\frac{dy}{dx} \bigg|_{\theta=3} = \frac{3}{14}$
15. $\frac{dy}{dx} \bigg|_{\theta=0} = \cos 2\theta$
17. $(1.41, 1.60)$
19. $c(t) = (-1 + 6t^2 - 4t^3, -1 + 6t - 6t^2)$
21. $\frac{dy}{dx} = \sqrt{3 + 2(\cos t - \sin t)}$; maximal speed: $\sqrt{3 + 2\sqrt{2}}$
23. $s = \sqrt{2}$
25. $s = 2\int_{0}^{\pi} \sqrt{\cos^2 2r + \sin^2 2r} \ dr \approx 6.0972$
27. $(1, \frac{x}{2})$ and $(3, \frac{2x}{3})$ have rectangular coordinates $(\frac{\sqrt{3}}{2}, \frac{1}{2})$ and $(-\frac{3\sqrt{3}}{2}, -\frac{3\sqrt{3}}{2})$.
29. $\sqrt{x^2 + y^2} = \frac{2x}{3y}$
31. $r = 3 + 2\sin \theta$
33. $A = \pi \frac{3}{16}$
35. $e - \frac{1}{2}$
Note: One needs to double the integral from $-\frac{\pi}{2}$ to $\frac{\pi}{2}$ in order to account for both sides of the graph.

37. $A = \frac{3 \pi r^2}{2}$

39. Outer: $L \approx 36.121$, inner: $L \approx 7.5087$, difference: 28.6123

41. Ellipse. Vertices: $(\pm 3, 0), (0, \pm 2)$. Foci: $(\pm \sqrt{5}, 0)$.

43. Ellipse. Vertices: $(\pm \frac{2}{\sqrt{2}}, 0), (0, \pm \frac{4}{\sqrt{2}})$. Foci: $(0, \pm \sqrt{12})$.

45. $(\frac{x}{2})^2 + (\frac{y}{3})^2 = 1$
47. $(\frac{x}{6})^2 - (\frac{y}{3})^2 = 1$
49. $x = \frac{7}{2} y^2$

51. $y = \sqrt{3} x + (\sqrt{3} - 5)$ and $y = -\sqrt{3} x + (-\sqrt{3} - 5)$

Chapter 13

Section 13.1 Preliminary Questions

1. (a) True (b) False (c) True (d) True

2. $\|−3a\| = 15$
3. The components are not changed.
4. (0, 0)

5. (a) True (b) False

Section 13.1 Exercises

1. $v_1 = (2, 0), \|v_1\| = 2$
$v_2 = (2, 0), \|v_2\| = 2$

$v_3 = (3, 1), \|v_3\| = \sqrt{10}$
$v_4 = (2, 2), \|v_4\| = 2\sqrt{2}$

Vectors v_1 and v_2 are equivalent.

3. (3, 5)

5. $\left(\frac{\sqrt{2}}{2}\|u\|, \frac{\sqrt{2}}{2}\|u\|\right)$ or $\left(0.707\|u\|, 0.707\|u\|\right)$

7. $(\cos(-20^\circ)\|w\|, \sin(-20^\circ)\|w\|)$ or $(0.94\|w\|, -0.342\|w\|)$

9. $\overrightarrow{PQ} = (-1, 5)$
11. $\overrightarrow{PQ} = (-2, -9)$
13. $\frac{3}{5}$

15. (30, 10)
17. $\frac{1}{2}$

19. Vector (B)

21. $2v = (4, 6)$
$-w = (-4, -1)$

23. $3v + w = (-2, 10), 2v - 2w = (4, -4)$

25.

27. (b) and (c)

29. $\overrightarrow{AB} = (2, 6)$ and $\overrightarrow{PQ} = (2, 6)$; equivalent

31. $\overrightarrow{AB} = (3, -2)$ and $\overrightarrow{PQ} = (3, -2)$; equivalent

33. $\overrightarrow{AB} = (2, 3)$ and $\overrightarrow{PQ} = (6, 9)$; parallel and point in the same direction

35. $\overrightarrow{AB} = (-8, 1)$ and $\overrightarrow{PQ} = (8, -1)$; parallel and point in opposite directions

37. $\|\overrightarrow{OR}\| = \sqrt{53}$
39. $P = (0, 0) 41. \left(\frac{1}{2}, \frac{4}{5}\right)$

43. $4e_u = (-2\sqrt{2}, -2\sqrt{2})$
45. $2e_n = -\sqrt{2}i + \sqrt{2}j$
47. \(e = \left(\cos \frac{4\pi}{3}, \sin \frac{4\pi}{3} \right) = (-0.22, 0.97) \)

49. \(\lambda = \pm \frac{1}{\sqrt{19}} \)

51. \(P = (4, 6) \)

53. (a) \(\rightarrow \) (ii), (b) \(\rightarrow \) (iv), (c) \(\rightarrow \) (iii), (d) \(\rightarrow \) (i)

55. \(9i + 7j \)

57. \(-5i - 3j \)

61. \(u = 2v - w \)

63. The force on cable 1 is \(\approx 45 \) lb, and force on cable 2 is \(\approx 21 \) lb.

65. 230 km/h

67. \(r = (6.45, 0.38) \)

Section 13.2 Preliminary Questions

1. (4, 3, 2)
2. (3, 2, 1)
3. (a)
4. (c)
5. Infinitely many direction vectors
6. True

Section 13.2 Exercises

1. \(\|v\| = \sqrt{14} \)

3. The head of \(\vec{v} = \overrightarrow{PQ} \) is \(Q = (1, 2, 1) \).

53. \(\left\{ \frac{2}{3}, \frac{2}{3} \right\} \)

55. \(\left\{ -\frac{2}{3}, 0, -\frac{2}{3} \right\} \)

57. \(-4k \)

59. \(a \times v \)

61. \(2\sqrt{2} \)

63. \(\sqrt{7} \)

65. \(a = \left\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right\} + \left\{ 4, \frac{1}{2}, -\frac{1}{2} \right\} \)

67. \(a = \left\{ 0, -\frac{1}{2}, -\frac{1}{2} \right\} + \left\{ 4, -\frac{1}{2}, \frac{1}{2} \right\} \)

69. \(\left\{ \frac{3}{2}, \frac{y}{2}, \frac{3}{2} \right\} \)

73. \(\approx 35^\circ \)

75. \(\overrightarrow{AD} \)

77. \(\approx 109.5^\circ \)

81. \(\approx 68.07 \) N

99. \(2x + 2y - 2z = 1 \)

Section 13.4 Preliminary Questions

1. \(\left[\begin{array}{c} -5 \\ 4 \end{array} \right] \)

2. \(\|e \times f\| = \frac{1}{2} \)

3. \(u \times v = (-2, -2, -1) \)

4. (vector notation) (a) 0
(b) 0

5. \(i \times j = k \) and \(i \times k = -j \)

6. \(v \times w = 0 \) if either \(v \) or \(w \) (or both) is the zero vector or \(v \) and \(w \) are parallel vectors.

7. (a) not meaningful because you cannot find the cross product of a scalar and a vector;
(b) meaningful because it represents the dot product of two vectors;
(c) meaningful because it is the product of two scalars;
(d) meaningful because it is a scalar multiple of a vector.

8. (b)
Section 13.4 Exercises
1. \(-5\) \hspace{0.1cm} 3. \(-15\) \hspace{0.1cm} 5. \(-8\) \hspace{0.1cm} 7. \(-9\) \hspace{0.1cm} 9. \(-1, 2, -5\) \hspace{0.1cm} 11. \((6, 0, -8)\)
13. \(-j + i\) \hspace{0.1cm} 15. \(i + j + k\) \hspace{0.1cm} 17. \((-1, -1, 0)\)
19. \((-2, -2, -2)\) \hspace{0.1cm} 21. \((4, 4, 4)\)
23. \(v \times i = cj - bk; v \times j = -ci + ak; v \times k = bi - aj\)
25. \(-u\) \hspace{0.1cm} 27. \((0, 3, 3)\)
31. \(e^3\) \hspace{0.1cm} 33. \(F_1\) \hspace{0.1cm} 37. \(2\sqrt{138}\)
39. The volume is 4.

The area of the triangle is \(\sqrt{33} \approx 5.92\).

The volume is 4.

The area of the triangle is \(\frac{3\sqrt{2}}{2} \approx 7.8\).

Section 13.6 Preliminary Questions
1. True, mostly, except at \(x = \pm a, y = \pm b, \text{ or } z = \pm c\)
2. False \hspace{0.1cm} 3. Hyperbolic paraboloid
4. No \hspace{0.1cm} 5. Ellipsoid
6. All vertical lines passing through a parabola \(c\) in the \(xy\)-plane

Section 13.6 Exercises
1. Ellipsoid \hspace{0.1cm} 3. Ellipsoid
5. Hyperboloid of one sheet \hspace{0.1cm} 7. Elliptic paraboloid
9. Hyperbolic paraboloid \hspace{0.1cm} 11. Hyperbolic paraboloid
13. Ellipsoid, the trace is a circle on the \(xz\)-plane
15. Ellipsoid, the trace is an ellipse parallel to the \(xy\)-plane
17. Hyperboloid of one sheet, the trace is a hyperbola
19. Paraboloid cylinder, the trace is the parabola \(y = 3x^2\)
21. (a) \(\leftrightarrow\) Figure b; (b) \(\leftrightarrow\) Figure c; (c) \(\leftrightarrow\) Figure a
23. \(y = \left(\frac{x}{2}\right)^2 + \left(\frac{z}{3}\right)^2\)
25. \(z = x^3\) \hspace{0.1cm} 27. Figure a
39. \((\frac{x}{2})^2 + (\frac{y}{3})^2 + (\frac{z}{4})^2 = 1\)
41. \((\frac{x}{2})^2 + (\frac{y}{3})^2 - \left(\frac{z}{3\sqrt{2}}\right)^2 = 1\)
43. One or two vertical lines, or an empty set
45. An elliptic cone

Section 13.7 Preliminary Questions
1. Cylinder of radius \(R\) whose axis is the \(z\)-axis, sphere of radius \(R\) centered at the origin
2. (b) 3. (a) 4. \(\phi = 0, \pi\) 5. \(\phi = \frac{\pi}{2}\), the \(xy\)-plane

Section 13.7 Exercises
1. \((-4, 0, 4)\) 3. \((0, 0, \frac{1}{2})\) 5. \((\sqrt{3}, \frac{7\pi}{4}, 1)\) 7. \((2, \frac{\pi}{3}, 7)\)
9. \((5, \frac{\pi}{4}, 2)\) 11. \(r^2 \leq 1\)
13. \(r^2 + z^2 \leq 4, \theta = \frac{\pi}{3}\) or \(\theta = \frac{5\pi}{3}\)
15. \(r^2 \leq 9, \frac{\pi}{4} \leq \theta \leq 2\pi\) and \(0 \leq \theta \leq \frac{\pi}{4}\)

21.
23.

25.

27. \(r = \frac{z}{\cos \theta + \sin \theta}\)
29. \(r = \frac{z \tan \theta}{\cos \theta}\)
31. \(r = 2\)
33. \((3, 0, 0)\)
35. \((0, 0, 3)\) 37. \((\frac{2\sqrt{2}}{3}, \frac{1}{2}, -3\sqrt{3})\)
39. \((2, 0, \frac{2}{3})\)
41. \((\sqrt{3}, \frac{\pi}{4}, 0.955)\)
43. \((2, \frac{\pi}{3}, \frac{\pi}{6})\)
45. \((2\sqrt{2}, 0, \frac{\pi}{4})\)
47. \((2\sqrt{2}, 0, 2\sqrt{2})\)
49. \(0 \leq \rho \leq 1\)
51. \(\rho = 1, 0 \leq \theta \leq \frac{\pi}{2}, 0 \leq \phi \leq \frac{\pi}{2}\)
53. \((\rho, \theta, \phi) : 0 \leq \rho \leq 2, \theta = \frac{\pi}{4}\) or \(\theta = \frac{3\pi}{4}\)

55.
57.

59.
61.

63.

65. \(\rho = \frac{2}{\cos \phi}\)
67. \(\rho = \frac{\cos \theta \tan \phi}{\cos \phi}\)
69. \(\rho = \frac{2}{\sin \phi \sqrt{\cos 2\theta}}\)
71. (b)
73. Helsinki: (25.0°, 29.9°), São Paulo: (313.48°, 113.52°)
75. Sydney: (-4618.8, 2560.3, -3562.1), Bogotá: (1723.7, -6111.7, 503.1)
77. \(z = \pm \rho \sqrt{\cos 2\theta}\)
79. \(\{(r, \theta, z) : -\sqrt{4 - r^2} \leq z \leq \sqrt{4 - r^2}, 1 \leq r \leq 2, 0 \leq \theta \leq 2\pi\}\)
83. \(r = \sqrt{z^2 + 1}\) and \(\rho = \sqrt{\frac{1}{\cos 2\phi}}\); no points: \(\frac{\pi}{4} < \phi < \frac{3\pi}{4}\)

Chapter 13 Review
1. \((21, -25)\) and \((-19, 31)\)
3. \(\left\{\frac{-2}{\sqrt{20}}, \frac{5}{\sqrt{20}}\right\}\)
5. \(i = \frac{\sqrt{2}}{11}v + \frac{\sqrt{3}}{11}w\)
7. \(P \hat{Q} = (4, 1); \quad \|P \hat{Q}\| = \sqrt{17}\)
9. \(\left\{\frac{3}{\sqrt{2}}, -\frac{3}{\sqrt{2}}\right\}\)
11. \(\beta = \frac{3}{2}\)
13. \(u = \left\{\frac{1}{2}, -\frac{11}{6}, \frac{7}{6}\right\}\)
15. \(r_1 (t) = (1 + 3t, 4 + t, 5 + 6t); \quad r_2 (t) = (1 + 3t, 5 + 6t)\)
17. \(a = -2, b = 2\)
19.

21. \(v \cdot w = -9\)
23. \(v \times w = (10, -8, -7)\)
25. \(V = 48\)
29. \(\frac{1}{3}\)
31. \(||F_1|| = \frac{20\sqrt{13}}{34}, ||F_1|| = 980\ N\)
33. \(v \times w = (-6, 7, -2)\)
35. -47
37. \(5\sqrt{3}\)
41. \(||e - 4f|| = \sqrt{15}\)
47. \((x - 0) + 4(y - 1) - 3(z + 1) = 0\)
49. \(17x - 21y - 13z = -28\)
51. \(3x - 2y = 4\)
53. Ellipsoid
55. Elliptic paraboloid
57. Elliptic cone
59. (a) Empty set (b) Hyperboloid of one sheet
(c) Hyperboloid of two sheets
61. \((r, \theta, z) = \left(\frac{5}{\sqrt{2}}, \tan^{-1} \frac{\sqrt{3}}{2}, -1\right), (\rho, \theta, \phi) = \left(\sqrt{\frac{9}{2}}, \tan^{-1} \frac{\sqrt{3}}{2}, \frac{\pi}{2}\right)\)
63. \((r, \theta, z) = \left(\frac{1}{\sqrt{2}}, \frac{\pi}{4}, \frac{3}{2}\right)\)
65. \(z = 2x \)

69. \(A < -1 \): Hyperboloid of one sheet
 \(A = -1 \): Cylinder with the \(z \)-axis as its central axis
 \(A > -1 \): Ellipsoid
 \(A = 0 \): Sphere

Chapter 14

Section 14.1 Preliminary Questions
1. (c) 2. The curve \(z = e^x \)
3. The projection onto the \(xz \)-plane 4. The point \((-2, 2, 3)\)
5. As \(t \) increases from 0 to \(2\pi \), a point on \(ri + \cos tj \) moves clockwise and a point on \(\cos ri + \sin tj \) moves counterclockwise.
6. (a), (c), and (d)

Section 14.1 Exercises
1. \(D = \{ t \in \mathbb{R}, t \neq 0, t \neq -1 \} \)
2. \(\mathbf{r}(2) = \left\{ 0, 4, \frac{1}{2} \right\}; \mathbf{r}(-1) = \left\{ -1, 1, \frac{1}{2} \right\} \)
3. \(\mathbf{r}(t) = (3 + 3\pi)i - 5j + (7 + t)k \)
4. Yes, when \(t = (2n - 1)\pi \), where \(n \) is an integer, at the points \((0, 0, 2(n - 1)\pi)\)
5. No intersection \(\mathbf{A} \leftrightarrow \mathbf{i}, \mathbf{B} \leftrightarrow \mathbf{i}, \mathbf{C} \leftrightarrow \mathbf{iii} \)
6. (a) \(\mathbf{v} \), (b) \(\mathbf{i} \), (c) \(\mathbf{(ii)} \), (d) \(\mathbf{(vi)} \), (e) \(\mathbf{(iv)} \), (f) \(\mathbf{(iii)} \)
7. \(\mathbf{C} \leftrightarrow \mathbf{i}, \mathbf{A} \leftrightarrow \mathbf{i}, \mathbf{B} \leftrightarrow \mathbf{ii} \)
8. This is a circle of radius 9 centered at the origin lying in the \(xy \)-plane.
9. Radius 1, center \((0, 0, 4)\), \(xz\)-plane
10. \(\mathbf{r}(t) = (|t| + t, |t| - t) \)

Section 14.2 Preliminary Questions
1. \(\frac{d}{dt} (f(t)\mathbf{r}(t)) = f(t)\mathbf{r}'(t) + f'(t)\mathbf{r}(t) \)
2. \(\frac{d}{dt} (\mathbf{r}_1(t) \cdot \mathbf{r}_2(t)) = \mathbf{r}_1(t) \cdot \mathbf{r}_2'(t) + \mathbf{r}_1'(t) \cdot \mathbf{r}_2(t) \)
3. \(\frac{d}{dt} (\mathbf{r}_1(t) \times \mathbf{r}_2(t)) = \mathbf{r}_1(t) \times \mathbf{r}_2'(t) + \mathbf{r}_1'(t) \times \mathbf{r}_2(t) \)
7. (a) Vector (b) Scalar (c) Vector

Section 14.2 Exercises
1. \(\lim_{t \to 3} \left\{ t^2, 4t, \frac{1}{t} \right\} = \left\{ 9, 12, \frac{1}{3} \right\} \)
2. \(\lim_{t \to 0} (e^{2t}i + \ln(t + 1)j + 4k) = i + 4k \)
3. \(\lim_{h \to 0} \frac{\mathbf{r}(t+h) - \mathbf{r}(t)}{h} = \left\{ -\frac{1}{t^2}, \cos t, 0 \right\} \)
4. \(\frac{d}{dt} = \left\{ 1, 2t, 3t^2 \right\} \)
5. \(\frac{d}{dt} = \left\{ 3e^{3t}, -e^{-3t}, 4x^3 \right\} \)
6. \(\mathbf{c}'(t) = -t^2i - 2e^{2t}k \)
7.\(\mathbf{r}'(t) = \left\{ 1, 2t, 3t^2 \right\}, \mathbf{r}''(t) = (0, 2, 6t) \)
8. \(x = t, y = \frac{1}{t}, z = \cos t \)
Answers to Odd-Numbered Exercises

Section 14.3 Preliminary Questions

1. (a) $L'(2) = 4$
 (b) $L(t)$ is the distance along the path traveled, which is usually different from the distance from the origin.

2. $r(t) = \left(-t^2 + t + c_1, 2t^2 + c_2 \right)$; with initial conditions $r(t) = \left(-t^2 + t + 3, 2t^2 + 1 \right)$

49. $r(t) = \left(\frac{1}{\sqrt{2}} \right)^2 i + \left(\frac{3}{2} \right) j + k + c$; with initial conditions, $r(t) = \left(\frac{1}{\sqrt{2}} - \frac{1}{4} \right) i + \left(\frac{3}{2} - \frac{1}{2} \right) j + (t + 1) k$

51. $r(t) = (8t^2)k + c_1 t + c_2$; with initial conditions, $r(t) = 1 + t + (8t^2)k$

53. $r(t) = (0, t^2, 0) + c_1 t + c_2$; with initial conditions, $r(t) = (1, t^2 - 2t + 10, t - 3)$

55. $\left(\frac{45}{2}, \frac{5}{2} \right)$

57. Only at time $t = 3$ can the pilot hit a target located at the origin.

59. $r(t) = (t - 1)v + w$
 $r(t) = e^{t^2}c$

Section 14.3 Exercises

1. $\mathbf{r}'(t) = (8t + 9)$, $\mathbf{T}(t) = \frac{1}{\sqrt{64t^2 + 81}} (8t, 9)$
 $T(1) = \left(\frac{8}{\sqrt{145}}, \frac{9}{\sqrt{145}} \right)$

3. $\mathbf{r}'(t) = (4, -5, 9)$, $\mathbf{T}(t) = \left(\frac{4}{\sqrt{13}}, \frac{-5}{\sqrt{13}}, \frac{9}{\sqrt{13}} \right)$
 $T(1) = T(t)$

5. $\mathbf{r}'(t) = (-\pi \sin \pi t, \pi \cos \pi t, 1)$
 $\mathbf{T}(t) = \left(\frac{\pi}{\sqrt{\pi^2 + 1}}, \frac{\pi}{\sqrt{\pi^2 + 1}}, \frac{1}{\sqrt{\pi^2 + 1}} \right)$

7. $\kappa = \frac{e^3}{(48 + 1)^{1/2}}$
 $\kappa (0) = 0$
 $\kappa (\pi) = \frac{e^3}{(48 + 1)^{1/2}} \approx 0.0025$

9. $\kappa (2) = \frac{48\sqrt{21}}{210^{1/2}} \approx 0.0015$

11. $\kappa (\pi) = \frac{e^3}{(48 + 1)^{1/2}} \approx 0.0025$

13. $\kappa (\pi) = \frac{e^3}{(48 + 1)^{1/2}} \approx 1.11$

15. $\kappa (\pi) = \frac{e^3}{(48 + 1)^{1/2}} \approx 1.11$

17. $\mathbf{T}(1) = \left(\frac{5}{\sqrt{3}}, \frac{-2\sqrt{2}}{3}, \frac{2\sqrt{2}}{3} \right)$
 $N(1) = \left(0, -\frac{2\sqrt{2}}{3}, \frac{2}{3} \right)$
 $B(1) = (1, 0, 0)$
43. \(T(1) = \left(\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}} \right), N(1) = \left(-\frac{2}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \right), B(1) = \left(\frac{2}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \)
45. \(N \left(\pi/3 \right) = \left(\frac{1}{3}, -\sqrt{3}/2 \right) \)
47. \(N(1) = \frac{1}{\sqrt{13}} \left(-3, 2 \right) \)
49. \(N(1) = \left(\frac{1}{\sqrt{2}} \right) (0, 1, -1) \)
51. \(N(0) = \left(\frac{1}{6} \right) \left(-\sqrt{6}, 2\sqrt{6}, -\sqrt{6} \right) \)
53. (a) \(T(1) = \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3} \right), N(1) = \left(-\frac{2}{3}, -\frac{1}{3}, \frac{2}{3} \right), B(1) = \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right) \)
(b) \(6x - 6y + 3z = 1 \)
55. (a) \(T(t) = \left(\frac{1}{\sqrt{2+4t^2}}, -\frac{1}{\sqrt{2+4t^2}}, \frac{2t}{\sqrt{2+4t^2}} \right) \)
\(N(t) = \left(\frac{-t}{\sqrt{2+4t^2}}, \frac{t}{\sqrt{2+4t^2}}, \frac{2}{\sqrt{2+4t^2}} \right) \)
(b) \(B(t) = \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \right) \)
(c) The osculating planes are all parallel to each other, with equation \(x + y = c \) for some \(c \).
59. \((\cos t, \sin t) \), that is, the unit circle itself.
61. \(e(t) = \left(-4, \frac{1}{2}, 5 \right) + \frac{2}{\sqrt{9}} \left(\cos t, \sin t \right) \)
63. \(e(t) = (\pi, -2) + 4 \left(\cos t, \sin t \right) \)
65. \(e(t) = \left(-1 - 2 \cos t, \frac{2\sin t}{\sqrt{2}}, 2\sin t \right) \)
73. \(\kappa(\theta) = 1 \)
75. \(\kappa(\theta) = \frac{1}{2}e^{-\theta} \)
91. (a) \(N(0) = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right) \) (b) \(N(1) = \left(\frac{1}{\sqrt{66}} \right) (4, 7, -2) \)

Section 14.5 Preliminary Questions
1. No, since the particle may change its direction. 2. \(a(t) \)
3. Statement (a), their velocity vectors point in the same direction.
4. The velocity vector always points in the direction of motion. Since the vector \(N(t) \) is orthogonal to the direction of motion, the vectors \(a(t) \) and \(\mathbf{v}(t) \) are orthogonal.
5. Description (b), parallel 6. \(\|a(t)\| = 8 \text{ cm/s}^2 \) 7. \(a_N \)

Section 14.5 Exercises
1. \(h = -0.2 : (-0.085, 1.91, 2.635) \)
\(h = -0.1 : (-0.19, 2.07, 2.97) \)
\(h = 0.1 : (-0.41, 2.37, 4.08) \)
\(h = 0.2 : (-0.525, 2.505, 5.075) \)
\(v(1) \approx (-0.3, 2.2, 3.5) \), \(v(1) \approx 4.1 \)
3. \(v(1) = (3, -1, 8), \ a(1) = (6, 0, 8) \), \(v(1) = \sqrt{74} \)
5. \(v(\frac{\pi}{4}) = \left(\frac{1}{2}, -\sqrt{2}, 0 \right), a(\frac{\pi}{4}) = \left(-\sqrt{2}, -\frac{1}{2}, 9 \right), v(\frac{\pi}{4}) = 1 \)
7. \(a(t) = -2\left(\cos \frac{t}{3}, \sin \frac{t}{3} \right), a(\frac{\pi}{4}) \approx (-1.85, -0.077) \)

Section 14.6 Preliminary Questions
1. \(\frac{dA}{dt} = \frac{1}{2} \| \mathbf{J} \| \) 3. The period is increased eight-fold.

Section 14.6 Exercises
1. The data support Kepler’s prediction; \(T \approx \sqrt{a^3} \cdot 3 \cdot 10^{-7} \approx 11.9 \text{ years} \)
3. \(M \approx 1.897 \times 10^{27} \text{ kg} \) 5. \(M \approx 2.6225 \times 10^{41} \text{ kg} \)
11. The satellite’s orbit is in the plane \(20x - 29y = 9z = 0 \).
Chapter 14 Review

1. (a) \(-1 < t < 0 \) or \(0 < t \leq 1 \) (b) \(0 < t \leq 2 \)
2. \(r(t) = \left(t^2, t, \sqrt{3 - t^2} \right) \), \(-\infty < t < \infty \)
3. \(r'(t) = \left(2t, 1, \frac{-t}{\sqrt{3 - t^2}} \right) \)
4. \(r(0) = \left(0, 1, \sqrt{3} \right) \)
5. \(\frac{d}{dt} r'(t) = \left(1, 1 + t, 2t + t^2 \right) \)
6. \(\frac{d}{dt}(6r_1(t) - 4r_2(t))|_{t=3} = \left(0, -8, -10 \right) \)
7. \(\frac{d}{dt}(r_1(t) \cdot r_2(t))|_{t=3} = 2 \)
8. \(f(t) \Rightarrow 3t^3 + t^2, -4t^3 \) \(\Rightarrow dt = \left(27, 9, -81 \right) \)
9. \((3, 3, \frac{16}{3}) \)
10. \(r(t) = \left(2t^2 - \frac{5}{2}t^3 + t, t^4 - \frac{1}{4}t^3 + 1 \right) \)
11. \(L = 2\sqrt{13} \)
12. \(\left(5 \cos \frac{2\pi}{5\sqrt{1 + 4\pi^2}}, 5 \sin \frac{2\pi}{5\sqrt{1 + 4\pi^2}}, \frac{-\pi}{\sqrt{1 + 4\pi^2}} \right) \)
13. \(v_0 \approx 67.279 \text{ m/s} \)
14. \(T(\pi) = \left(\frac{\pi}{2}, \frac{\pi}{2}, 0 \right) \)
15. \((a) \) \(T = \langle 1, -1, 0 \rangle \) and \(N = \langle 0, 1, -1 \rangle \)
16. \(a = \frac{1}{\sqrt{2}} \langle T + 4N \rangle \)
17. \(\kappa = \frac{1}{\sqrt{6}} \)
18. \(c(t) = \left(\frac{25}{2} + \frac{17\sqrt{2}}{2} \cos t, -32 + \frac{17\sqrt{2}}{2} \sin t \right) \)
19. \(2x - 4y + 2z = -3 \)

Chapter 15

Section 15.1 Preliminary Questions

1. Same shape, but located in parallel planes
2. The parabola \(z = x^2\) in the \(xz\)-plane
3. Not possible
4. The vertical lines \(x = \) constant with distance of 1 unit between adjacent lines
5. In the contour map of \(g(x, y) = 2x\), the distance between two adjacent vertical lines is \(\frac{1}{2}\).

Section 15.1 Exercises

1. \(f(2, 2) = 18\), \(f(-1, 4) = -5\)
2. \(h(3, 8, 2) = 6h(3, -2, -6) = -\frac{1}{6}\)
3. The domain is the entire \(xy\)-plane.
4. \(D = \{ (y, z) : z \neq -y^2 \} \)
5. \(\varphi = \frac{1}{\sqrt{2}} \)
6. \(\lambda = \frac{4}{\sqrt{2}} \)
7. The vertical traces in the plane \(z = c\), \(|c| \leq 1\), are the lines \(x - y = \sin^{-1} c + 2k\pi\) and \(x - y = \pi - \sin^{-1} c + 2k\pi\), for integer \(k\).
8. The vertical traces in the plane \(x = a\) are \(z = \sin (a - y)\).
9. The vertical traces in the plane \(y = a\) are \(z = \sin (x - a)\).
10. \(m = 1 : m = 2\)

ANSWERS TO ODD-NUMBERED EXERCISES

13. Domain: entire \((x, y, z)\)-space; range: entire real line
15. Domain: \((r, s, t) : |rst| \leq 4\); range: \(\{w : 0 \leq w \leq 4\}\)
17. \(f \leftrightarrow (B), g \leftrightarrow (A)\)
19. (a) \(D\) (b) \(C\) (c) \(E\) (d) \(B\) (e) \(A\) (f) \(F\)
21. Horizontal trace: \(3x + 4y = 12 - c\) in the plane \(z = c\)
Vertical trace: \(z = (12 - 3a) - 4y\) and \(z = -3x + (12 - 4a)\) in the planes \(x = a\), and \(y = a\), respectively
23. The horizontal traces are ellipses for \(c > 0\).
The vertical trace in the plane \(x = a\) is the parabola \(z = a^2 + 4y^2\).
The vertical trace in the plane \(y = a\) is the parabola \(z = x^2 + 4a^2\).
25. The horizontal traces in the plane \(z = c\), \(|c| \leq 1\), are the lines \(x - y = \sin^{-1} c + 2k\pi\) and \(x - y = \pi - \sin^{-1} c + 2k\pi\), for integer \(k\).
27. \(m = 1 : m = 2\)
31.

33.

35.

37. $m = 6$: \(f(x, y) = 2x + 6y + 6 \)

 $m = 3$: \(f(x, y) = x + 3y + 3 \)

39. (a) Only at (A) (b) Only at (C) (c) West

41.

43.

45. Average ROC from B to $C = 0.000625$ kg/m3 ppt

47. At point A

49. Average ROC from A to $B \approx 0.0737$, average ROC from A to $C \approx 0.0457$

51.

53.

55.

57. \(f(r, \theta) = \cos \theta \); the level curves are

 \(\theta = \pm \cos^{-1}(c) \) for \(|c| < 1, \ c \neq 0 \);

 the y-axis for $c = 0$;

 the positive x-axis for $c = 1$;

 the negative x-axis for $c = -1$.
Section 15.2 Preliminary Questions
1. $D^*(p, r)$ consists of all points in $D(p, r)$ other than p itself.
2. $f(2, 3) = 27$
3. All three statements are true.
4. $\lim_{(x, y) \to (0, 0)} f(x, y)$ does not exist.

Section 15.2 Exercises
1. $\lim_{(x, y) \to (1, 2)} (x^2 + y) = 3$
2. $\lim_{(x, y) \to (2, -1)} (xy - 3x^2y^3) = 10$
3. $\lim_{(x, y) \to (0, 0)} \tan x \cos y = 1$
5. $\lim_{(x, y) \to (0, 0)} \frac{x^2 - e^{-x^2} - e^{-y^2}}{x^2 + y^2} = \frac{1}{2}(e - e^{-1})$
7. $\lim_{(x, y) \to (1, 1)} e^{f(x, y) - g(x, y)} = e^2$
9. $\lim_{(x, y) \to (2, 3)} e^{f(x, y) - g(x, y)} = e^2$

Section 15.3 Exercises
3. $\frac{\partial f}{\partial y} = \frac{2y}{x^2 + y^2}$
5. $f_2(2, 3, 1) = 6$
7. $m = 10$
9. $f_2(A) \approx 10, f_1(A) \approx -20$

Section 15.3 Preliminary Questions
1. $\frac{\partial}{\partial y} (x^2 + y^2) = 2xy$
2. In this case, the Constant Multiple Rule can be used. In the second part, since y appears in both the numerator and the denominator, the Quotient Rule is preferred.
3. (a), (c)
4. $f_x = 0$
5. (a), (d)
19. $L(x, y, z) = \frac{5}{12} \sqrt{3}x + \frac{5}{12} \sqrt{3}y + 2 \sqrt{3}z - 5 \sqrt{3}$
21. $5.07 \quad 23. \ 8.44 \quad 25. \ 4.998 \quad 27. \ 3.945$
29. $f(-2.1, 3.1) \approx 4.2 \quad 31. \ \Delta f \approx 0.5644$
33. (b) $\Delta H \approx 0.022$ m
35. (b) 6% (c) 1% error in r
37. (a) $\$7.10 \ (b) \$28.85, \$57.69 \ (c) -\$74.24
39. Maximum error in V is about 8.948 m.

Section 15.5 Preliminary Questions

1. (b) (3, 4) 2. False
3. ∇f points in the direction of maximum rate of increase of f and is normal to the level curve of f.
4. (b) NW and (c) SE 5. $3 \sqrt{2}$

Section 15.5 Exercises

1. (a) $\nabla f = \left(2xy, 2x^2\right)$, $r'(t) = \left(t, 3t^2\right)$
 \[\frac{d}{dt}(f(r(t))) \bigg|_{t=1} = 4 \quad \frac{d}{dt}(f(r(t))) \bigg|_{t=-1} = -4 \]
2. A: zero, B: positive, C: negative, D: zero
3. $\nabla f = -\sin(x^2 + y) (2x, 1)$
 $V h = (y^2 - 3, x^2 - 3, -3xy - 4)$
4. $\frac{d}{dt}(f(r(t))) \bigg|_{t=0} = 7 \quad \frac{d}{dt}(f(r(t))) \bigg|_{t=0} = -3$
5. $\frac{d}{dt}(f(r(t))) \bigg|_{t=0} = 5 \cos 1 \approx 2.702$
6. $\frac{d}{dt}(f(r(t))) \bigg|_{t=0} = -56$
7. $\frac{d}{dt}(f(r(t))) \bigg|_{t=\pi/4} = -1 + \frac{\pi}{8} \approx 1.546$
8. $\frac{d}{dt}(g(r(t))) \bigg|_{t=0} = 0$
9. $D_u f(1, 2) = 8.8 \quad D_u f\left(\frac{1}{2}, 3\right) = \frac{39}{4} \sqrt{2}$
31. $D_u f\left(3, 2\right) = -\frac{20}{\sqrt{3}}$
33. $D_u f(P) = -\frac{5}{\sqrt{2}} \approx -4.974$

35. (a) $m = 3$, angle of inclination is approximately $1.249 \approx 71.6^\circ$.
 (b) $m = -4 \sqrt{2} \approx 5.66$, angle of inclination is approximately $1.396 \approx 80.0^\circ$.
 (c) $m = -\sqrt{3} \approx -5.66$, angle of inclination is approximately $-1.396 \approx -80.0^\circ$.
 (d) $m = 3 \sqrt{4} \approx 5.83$, angle of direction is approximately 121°.
37. f is increasing at P in the direction of v.
39. $D_u f(P) = \frac{\sqrt{2}}{2}$
41. (6, 2, -4)
43. \left(\frac{4}{\sqrt{11}} + \frac{9}{\sqrt{11}} - \frac{2}{\sqrt{11}}\right) \text{ and } \left(-\frac{4}{\sqrt{17}} + -\frac{9}{\sqrt{17}} - \frac{2}{\sqrt{17}}\right)
45. $9x + 10y + 5z = 33$
47. $0.5217x + 0.7826y - 1.2375z = -5.309$
49. $f(x, y, z) = x^2 + y + 2z$
51. $f(x, y, z) = x^2 + y^2$
53. $f(x, y, z) = xz + y^2$
57. $\Delta f \approx 0.08$
59. (a) $(34, 18, 0)$
 (b) $\left(2 + \frac{3\sqrt{21}}{2}, 2 + \frac{16\sqrt{21}}{7}, 8 - \frac{8\sqrt{21}}{7}\right) \approx 4.58$ s
63. $x = 1 - 4t, y = 2 + 26t, z = 1 - 25t$
65. $y = \frac{1}{\sqrt{1 - \cos(\cos^2(x))}}$

Section 15.6 Preliminary Questions

1. (a) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ (b) u and v
2. (a) $3. \ f(u, v)|_{(x, z)=(1, 1)} = e^2$ (b) (c) 6. No

Section 15.6 Exercises

1. (a) $\frac{\partial f}{\partial x} = 2xy^3, \frac{\partial f}{\partial y} = 3x^2y^2, \frac{\partial f}{\partial z} = 4z^3$
 (b) $\frac{\partial u}{\partial x} = 2x, \frac{\partial v}{\partial y} = y^2, \frac{\partial w}{\partial z} = 2zt$
 (c) $\frac{\partial f}{\partial u} = 7x^6 + 8x^7 t^4$
3. $\frac{\partial f}{\partial x} = 6x^2, \frac{\partial f}{\partial y} = 2x^3 + 4y^3$
5. $\frac{\partial w}{\partial u} = -10 \sin(10u - 20v), \frac{\partial w}{\partial v} = 20 \sin(10u - 20v)$
7. $\frac{\partial F}{\partial y} = xe^{x^2 + y^2} \quad \frac{\partial F}{\partial z} = 0$
9. $\frac{\partial F}{\partial u} = 0$
11. $\frac{\partial F}{\partial (x,v)} = (-1, 1), \frac{\partial F}{\partial (u,v)} = (1, 1) = -2$
13. $\frac{\partial F}{\partial (x,v)} = \left(2 \sqrt{2}, \frac{\pi}{4}\right) = \frac{-1}{\sqrt{2}}$ 15. $\frac{\partial F}{\partial (u,v)} = (0, 1) = 2 \cos 2$
17. $-26.8 \text{ ft/s} \quad 19. 4\pi^3 - 3\pi^2 - 1$
23. (a) $F_x = z^3 + y, \quad F_y = 2yz + x, \quad F_z = 2xz + y^2$
 (b) $\frac{\partial x}{\partial F} = -\frac{z^3 + y}{2xz + y}, \frac{\partial x}{\partial F} = -\frac{2yz + x}{2xz + y}$
27. $\frac{\partial F}{\partial v} = -\frac{2xv + 2z}{2xz + y}, \frac{\partial F}{\partial v} = -\frac{2xv + 2z}{2xz + y}$
29. $\frac{\partial F}{\partial w} = -\frac{v^2 + 1}{x \cos(xz)}$
31. $\frac{\partial F}{\partial w} = \frac{-y(w^2 + x^2)^2}{w((w^2 + y)^2 + (w^2 + x)^2)}$; at $(1, 1, 1), \frac{\partial w}{\partial F} = -\frac{1}{2}$
35. $V \left(\frac{1}{2}\right) = -\frac{1}{2} r$ 37. (c) $\frac{\partial F}{\partial w} = \frac{x - \frac{1}{2} y}{x^2 + y^2}$
39. $\frac{\partial P}{\partial F} = -\frac{F_x}{P} = -\frac{aR}{V - \frac{1}{2} n R} = \frac{nR}{V - \frac{1}{2} n R}$

Section 15.7 Preliminary Questions

1. f has a local (and global) min at $(0, 0)$; g has a saddle point at $(0, 0)$.
2.
 Point R is a saddle point.
 Point S is neither a local extremum nor a saddle point.
Section 15.7 Exercises

1. (b) $P_1 = (0, 0)$ is a saddle point, $P_2 = (2\sqrt{2}, \sqrt{2})$ and $P_3 = (-2\sqrt{2}, -\sqrt{2})$ are local minima; absolute minimum value of f is -4.
2. (c) $(0, 0)$ saddle point, $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ local minima.
3. (e) $(0, 0)$, $(1, 0)$, and $(0, -1)$ saddle points, $(\frac{1}{2}, \frac{1}{2})$ local minimum.
4. (f) $(\frac{1}{2}, \frac{1}{2})$ local minimum.
5. (g) $(-2, -1)$ local maximum, $(\frac{1}{2}, \frac{1}{2})$ saddle point.
6. (h) $(0, \pm \sqrt{2})$ saddle points, $(\frac{1}{\sqrt{2}}, 0)$ local maximum, $(-\frac{1}{2}, 0)$ local minimum.
7. $(0, 0)$ saddle point, $(1, 1)$ and $(-1, -1)$ local minima.
8. $(0, 0)$ saddle point, $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ local maximum, $(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$ and $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ local minimum.
9. Critical points are $(j\pi, k\pi + \frac{\pi}{4})$, for j, k even: saddle points.
10. Critical points are $(j\pi, k\pi + \frac{\pi}{4})$, for j, k odd: local maxima.
11. Critical points are $(j\pi, k\pi + \frac{\pi}{4})$, for j, k odd: local minima.
12. Critical points are $(j\pi, k\pi + \frac{\pi}{4})$, for j, k even: saddle points.
13. $(\frac{1}{2}, \frac{1}{2})$ local minimum.
14. $(-\frac{1}{2}, -\frac{17\pi}{8})$ local minimum.
15. $x = y = 0.27788$ local minimum.
16. Global maximum 2, global minimum 0.
17. Global maximum 1, global minimum $\frac{1}{19}$.
18. Maximum value $\frac{1}{4}$.
19. Global minimum $f(0, 1) = -\frac{1}{2}$, global maximum $f(1, 0) = 1$.
20. Global minimum $f(0, 0) = 0$, global maximum $f(1, 1) = 3$.
21. Global minimum, $f(0, 0) = 0$, global maximum $f(1, 0) = 1$.
22. Global minimum, $f(1, 2) = -5$, global maximum $f(0, 0) = f(3, 3) = 0$.
23. Global minimum, $f(-0.4343, 0.9) = f(-0.4343, -0.9) \approx -0.5161$, global maximum $f(0.7676, 0.6409) = f(0.7676, -0.6409) \approx 1.2199$.
24. Maximum volume $\frac{3}{4}$.
25. (a) No. In the box B with minimal surface area, z is smaller than \sqrt{V}, which is the side of a cube with volume V.
26. Width: $x = (2V)^{1/3}$; length: $y = (2V)^{1/3}$; height: $z = \left(\frac{V}{2}\right)^{1/3}$.
27. $f(3, 1) = \sqrt{2}, f(-5, -3) = -2$.

Section 15.8 Preliminary Questions

1. Statement (b).
2. f had a local maximum 2, under the constraint, at A; $f(B)$ is neither a local minimum nor a local maximum of f.
3. (a) (b) Global minimum $\frac{-4}{3}$, global maximum $\frac{6}{3}$.

Section 15.8 Exercises

1. (c) Critical points $(-1, -2)$ and $(1, 2)$.
2. (d) Maximum 10, minimum -10.
3. Maximum $4\sqrt{2}$, minimum $-4\sqrt{2}$.
4. Minimum $\frac{36}{7}$, no maximum value.
5. Maximum $\frac{3}{2}$, minimum $-\frac{3}{2}$.
6. Maximum $\frac{\sqrt{2}}{2}$, minimum 1.
8. Maxima at $f(\pm 4, \pm 4, 2) = 20$, and minima at $f(\pm 4, \mp 4, -2) = -20$.
9. Maximum $2\sqrt{2}$, minimum $-2\sqrt{2}$.
10. (-1, e^{-1}).
11. (a) $\frac{b}{a} = \sqrt{2}$ (b) $\frac{a}{b} = \sqrt{2}$.
12. (c) There is no cone of fixed V with maximal S.
13. (8, -2).
14. (18, 108).
15. minimum $\frac{30}{108}$.
16. minimum $\frac{30}{108}$.
17. minimum $\frac{30}{108}$.
18. minimum $\frac{30}{108}$.
19. minimum $\frac{30}{108}$.
20. minimum $\frac{30}{108}$.
21. (e) $r = 3, h = 6$.
22. $x + y + z = 3$.
23. $\frac{25}{3}$.
24. (minimum) $\frac{138}{17}$.
25. minimum $\frac{138}{17}$.
26. minimum $\frac{138}{17}$.
27. minimum $\frac{138}{17}$.
28. minimum $\frac{138}{17}$.
29. minimum $\frac{138}{17}$.
30. minimum $\frac{138}{17}$.
31. minimum $\frac{138}{17}$.
32. minimum $\frac{138}{17}$.
33. minimum $\frac{138}{17}$.
34. minimum $\frac{138}{17}$.
35. minimum $\frac{138}{17}$.
36. minimum $\frac{138}{17}$.
37. minimum $\frac{138}{17}$.
38. minimum $\frac{138}{17}$.
39. minimum $\frac{138}{17}$.
40. minimum $\frac{138}{17}$.
41. minimum $\frac{138}{17}$.
42. minimum $\frac{138}{17}$.
43. minimum $\frac{138}{17}$.
44. minimum $\frac{138}{17}$.
45. minimum $\frac{138}{17}$.
46. minimum $\frac{138}{17}$.
47. minimum $\frac{138}{17}$.
48. minimum $\frac{138}{17}$.
49. minimum $\frac{138}{17}$.
50. minimum $\frac{138}{17}$.
51. minimum $\frac{138}{17}$.
52. minimum $\frac{138}{17}$.
53. The fence should be cut into 12 pieces 10 m long, forming three 10×10 squares.
54. $V = \frac{64,000}{12} \approx 20,372$ cm3.
55. $f(x) = 1.9629x - 1.5519$.

Chapter 15 Review

1. (a) $f(3, 1) = \sqrt{2}, f(-5, -3) = -2$.
2. (c) $\left(-\frac{5}{3}, 1\right)$.
Section 16.1 Exercises

1. $S_{1,3} = 13.5$
 (A) $S_{1,2} = 42$, (B) $S_{1,2} = 43.5$
 5. (A) $S_{3,2} = 60$, (B) $S_{3,2} = 62$

7. Two possible solutions are $S_{3,2} = \frac{77}{72}$ and $S_{3,2} = \frac{79}{72}$

9. $\frac{225}{2}$

11. 0.19375
13. $1.0731, 1.0783, 1.0809$
15. 0
17. $\frac{3}{4}$
19. 40
21. 55
23. $\frac{1}{2}$
25. 84
27. 4
29. 0.5588
31. $6 \ln 6 - 2 \ln 2 - 5 \ln 5 \approx 1.317$
33. $\frac{1}{3} \left(19 - 5 \sqrt{5} \right) \approx 10.426$
35. $\frac{1}{2} \left(\ln 3 \right) \left(-2 + \ln 48 \right) \approx 1.028$
37. $6 \ln 3 \approx 6.592$
39. 1
41. $(e^2 - 1) \left(1 - \frac{7}{2} \right) \approx 1.781$
43. $m = \frac{3}{4}$
45. $\frac{3}{15} \left(8 \sqrt{2} - 7 \right) \approx 0.575$
47. $2 \ln 2 - 1 \approx 0.386$
51. $\frac{3}{4} - \frac{1}{e} + 1 \approx 4.644$

Section 16.2 Preliminary Questions

1. (b), (c)

3. (b)

Section 16.2 Exercises

1. (a) Sample points $O \cdot S_{3,4} = -3$
 (b) Sample points $O \cdot S_{3,4} = -4$

3. As a vertically simple region: $0 \leq x \leq 1, 0 \leq y \leq 1 - x^2$; as a horizontally simple region: $0 \leq y \leq 1, 0 \leq x \leq \sqrt{1-y}$,

$$\int_0^1 \left(f(x) - x^2 \right) \, dy = \frac{9}{32}$$

5. $\frac{103}{5} = 20.6 \times 20.6$
7. $608 \times 608 \approx 40.53$
9. $2 \frac{1}{4}$
11. $-\frac{3}{4} + \ln 4$
13. $\frac{16}{15} \approx 5.33$
15. $11 \times 10 \approx 116.93$
17. $\frac{1756}{15} \approx 116.93$
19. $\frac{e^2 - 1}{2} \approx 0.359$
21. $\frac{1}{12}$
23. $2e^{12} - \frac{4}{12} e^9 + \frac{1}{12} e^6 \approx 321,532.2$
25. $\int_0^4 \int_0^4 f(x, y) \, dy \, dx = \int_0^4 \int_0^4 f(x, y) \, dx \, dy$
ANSWERS TO ODD-NUMBERED EXERCISES

39. \(\int_{0}^{4} \int_{x/4}^{3x/4} e^{x+y} \, dy \, dx = \frac{1}{2} \left(e^{16} - 1 \right) \)

40. \(\int_{0}^{4} \int_{y}^{7-y} \frac{dy}{x} \, dx = 6 - 6 \ln 2 \approx 1.841 \)

43. \(\iint_{D} \frac{\sin \sqrt{z}}{\sqrt{z}} \, dA = \cos 1 - \cos 2 \approx 0.956 \)

47. \(\frac{512}{3} \)

49. \(\int_{0}^{2} \int_{0}^{4} \left(\frac{\sqrt{x^2 - r^2}}{\sqrt{x^2 + r^2}} \right) \left(\left(8 - x^2 - y^2 \right) - \left(x^2 + y^2 \right) \right) \, dy \, dx \)

51. \(\frac{1}{2} \int_{0}^{1} \int_{0}^{1} y^2 \sin x \, dx \, dy = \frac{2}{\sqrt{1}} \)

55. \(\hat{F} = p \)

61. One possible solution is \(P = \left(\frac{2}{3}, 2 \right) \).

Section 16.3 Preliminary Questions

1. (c) 2. (b)

3. (a) \(D = \{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq x\} \)

(b) \(D = \{(x, y) : 0 \leq x \leq 1, 0 \leq y \leq \sqrt{1 - x^2}\} \)

Section 16.3 Exercises

1. 6 \((e-1)(1-e^{-2}) \)

3. \(-\frac{27}{2} \)

5. \(-\frac{27}{2} \)

7. \(\frac{25}{20} \left((a+c)^5 - a^5 - c^5 \right) \)

9. \(\frac{1}{16} \)

11. \(\frac{1}{76} \)

13. \(e - \frac{5}{2} \)

15. \(\frac{21}{12} \)

17. \(\frac{128}{75} \)

19. \(\frac{31}{10} \int_{0}^{1/4} dz \, dy \, dx = 6 \)

21. \(\frac{1}{12} \)

23. \(\frac{126}{75} \)

25. Region enclosed by sphere \(x^2 + y^2 = 25 \) to right of plane \(y = 1 \).

27. \(\int_{0}^{1} \int_{0}^{1/2} \int_{0}^{1-x} \int_{0}^{1-z} f(x, y, z) \, dz \, dy \, dx \), and \(\int_{0}^{1} \int_{0}^{1/2} \int_{0}^{1-z} f(x, y, z) \, dz \, dy \, dx \)

29. \(\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x, y) \, dy \, dx \)

31. \(\frac{16}{27} \)

33. \(\int_{1}^{1} \int_{0}^{1} \left(\int_{0}^{1/2} \left(\int_{0}^{1-z} dz \right) dx \right) \)

35. \(\int_{0}^{1} \left(\int_{0}^{1} \left(\int_{0}^{1} f(x, y, z) \, dx \right) \right) \, dy \)

\(W = \text{(shaded volume)} \)
AMS09 ANSWERS TO ODD-NUMBERED EXERCISES

37. \(\frac{1}{x^2} \) 39. \(2e - 4 \approx 1.437
41. 5_{N,N} \approx 0.561, 0.572, 0.576; I \approx 0.584; N = 100

Section 16.4 Preliminary Questions

1. (d)
2. (a) \(\int_0^{2\pi} \int_0^R r \, dr \, d\theta \)
(b) \(\int_2^0 \int_0^{2\pi} r \, dr \, d\theta \)
3. (a) \(\int_0^{2\pi} \int_0^R \rho^2 \sin \phi \, d\phi \, d\theta \)
(b) \(\int_0^{\pi/2} \int_0^R \rho^2 \sin \phi \, d\phi \, d\theta \)
(c) \(\int_0^{\pi/2} \int_0^R \rho^2 \sin \phi \, d\phi \, d\theta \)
4. \(\Delta A \approx r (\Delta r \Delta \theta) \), and the factor \(r \) appears in \(dA = r \, dr \, d\theta \) in the Change of Variables formula.

Section 16.4 Exercises

1. \[\int_D \sqrt{x^2 + y^2} \, dA = \frac{4\sqrt{2}\pi}{3} \]
3. \[\int_D xy \, dA = 2 \]
5. \[\int_D y(x^2 + y^2)^{-1} \, dA = \sqrt{3} - \frac{\pi}{3} \approx 0.685 \]
7. \[\int_D \int_0^2 \int_2^{4-x^2} (x^2 + y^2) \, dy \, dx = 4\pi \]

Section 16.5 Preliminary Questions

1. \(5 \, \text{kg/m}^3 \) 2. (a)
3. The probability that \(0 \leq X \leq 1 \) and \(0 \leq Y \leq 1 \); the probability that \(0 \leq X + Y \leq 1 \)

Section 16.5 Exercises

1. \(\frac{2}{3} \) 3. \(4 \left(1 - e^{-100}\right) \times 10^{-6} \approx 4 \times 10^{-6} \)
4. 10,000 - 18,000e^{-4/5} \approx 1,912
7. \(25\pi \left(3 \times 10^{-8} \text{ C}\right) \approx 2.356 \times 10^{-6} \text{ C}\)
9. \(\approx 2.593 \times 10^{10} \text{ kg}\)
11. \((0, \frac{2}{3})\)
13. \(\left(\frac{4R}{\pi}, \frac{4R}{3\pi}\right)\)
15. \((0.555, 0)\)
17. \((0, 0), \frac{3R}{\pi}\)
19. \((0, 0), \frac{9}{8}\)
21. \((0, 0), \left(\frac{13}{2(17-6\sqrt{6})}\right)\)
23. \((2, 1)\)
25. \((\frac{1}{6}, \frac{1}{9})\)
27. \(\frac{16}{\sqrt{\pi}}\)
29. (a) \(\frac{M}{6\pi}\) (b) \(I_x = \frac{Mb^2}{2}\); \(I_0 = \frac{M(a^2 + b^2)}{3}\) (c) \(\frac{b}{\sqrt{3}}\)
31. \(I_0 = 8,000 \text{ kg} \cdot \text{m}^2\); \(I_x = 4,000 \text{ kg} \cdot \text{m}^2\)
33. \(\frac{3}{5}\)
35. \(\frac{243}{20}\)
37. \(\left(\frac{a}{2}, \frac{2b}{3}\right)\)
39. \(\frac{2b^4}{60}\)
41. \(I_x = \frac{MR^2}{3}\); kinetic energy required is \(\frac{25M}{2} R^2 J\)
47. (a) \(I = 182.5 \text{ g} \cdot \text{cm}^2\) (b) \(\omega \approx 126.92 \text{ rad/s}\)
49. \(\frac{13}{72}\)
51. \(\frac{1}{15}\)
53. \(C = 15\); probability is \(\frac{5}{8}\).
55. (a) \(C = 4\) (b) \(\frac{1}{3x^2} + \frac{1}{3x} \approx 0.038\)

Section 16.6 Preliminary Questions
1. (b)
2. (a) \(G(1, 0) = (2, 0)\) (b) \(G(1, 1) = (1, 3)\)
(c) \(G(2, 1) = (3, 3)\)
3. Area \((G(R)) = 36\)
4. Area \((G(R)) = 0.06\)

Section 16.6 Exercises
1. (a) Image of the \(u\)-axis is the line \(y = \frac{1}{2}x\); image of the \(v\)-axis is the \(y\)-axis.
(b) The parallelogram with vertices \((0, 0), (10, 5)\) \((10, 2), (0, 7)\)
(c) The segment joining the points \((2, 3)\) and \((10, 8)\)
(d) The triangle with vertices \((0, 1), (2, 1),\) and \((2, 2)\)
3. \(G\) is not one-to-one; \(G\) is one-to-one on the domain \([(u, v) : u \geq 0]\), and \(G\) is one-to-one on the domain \([(u, v) : u \leq 0]\).
(a) The positive \(x\)-axis including the origin and the \(y\)-axis, respectively
(b) The rectangle \([0, 1] \times [-1, 1]\)
(c) The curve \(y = \sqrt{x}\) for \(0 \leq x \leq 1\)
(d)
5. \(y = 3x - c\)
7. \(y = \frac{17}{x}\)
11. \(\text{Jac}(G) = 1\)
13. \(\text{Jac}(G) = -10\)
15. \(\text{Jac}(G) = 1\)
17. \(\text{Jac}(G) = 4\)
19. \((u, v) = (4u + 2v, u + 3v)\)
21. \(\frac{4\sqrt{12}}{2}\) \(\approx 194.08\)
23. (a) Area \((G(R)) = 105\) (b) Area \((G(R)) = 126\)
25. \(\text{Jac}(G) = \frac{4u}{x}\); for \(R = [1, 4] \times [1, 4]\), area \((G(R)) = 15 \ln 4\)
27.

\[G(u, v) = (1 + 2u + v, 1 + 5u + 3v)\]
ANSWERS TO ODD-NUMBERED EXERCISES

15. \(\int_0^3 \int_{-y}^{\sqrt{y^2+y^2}} f(x, y) \, dx \, dy \quad 17. \frac{1}{\pi} \quad 19. 18(\sqrt{2} - 1)

21. \(1 - \cos 1 \quad 23. 67 \pi \quad 25. \pi/2 \quad 27. 10 \quad 29. \frac{5\pi}{4} + \frac{\pi}{2} \quad 31. \pi

33. \(\frac{1}{3} \quad 35. \int_0^{\pi/2} \int_0^1 zr \, dz \, dr \, d\theta = \pi/16 \quad 37. \frac{2\pi(-1 + e^{3})}{3e^{8}}

41. \(\frac{256\pi}{15} = 53.62 \quad 43. 1280\pi \quad 45. \left(-\frac{1}{3} R, 0, \frac{5}{7}H\right)\)

47. \(\left(-\frac{2}{\pi R}, -\frac{2}{\pi R} R(2 - \sqrt{3}), \frac{1}{2}H\right) \quad 49. \left(0, 0, \frac{2}{3}\right) \)

51. \(\left(\frac{8}{15}, \frac{16}{15}, \frac{16}{15}\right) \quad 53. \frac{19}{15} \quad 55. \frac{7}{3} \)

57. \(G(u, v) = (3u + v, -u + 4v); \text{Area}(G(R)) = 156 \)

59. \(\text{Area}(D) \approx \frac{1}{2} \)

61. (a)

(d) \(\frac{3}{4}(e^2 - \sqrt{e}) \)

Chapter 17
Section 17.1 Preliminary Questions
1. (b) 2.

3. \(F = (0, -z, y) \quad 4. f_1(x, y, z) = xyz + 1 \)

Section 17.1 Exercises
1. \(F(1, 2) = (1, 1), \quad F(-1, -1) = (1, -1) \)

3. \(F(P) = (0, 1, 0), \quad F(Q) = (2, 0, 2) \)

5. \(F = (1, 0) \)

9. \(F(x, y) = (0, x) \)

11. \(F = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right) \)

13. Plot (D) 15. Plot (B) 17. Plot (C) 19. Plot (B)

21. \((0, y) \quad 23. \text{div}(F) = y + z, \quad \text{curl}(F) = \left(y, 3x^2, -x\right) \)

25. \(\text{div}(F) = 1 - 4xz - x + 2x^2z, \quad \text{curl}(F) = \left(-1, 2x^2 - 2xz^2, -y\right) \)

27. \(\text{div}(F) = 0, \quad \text{curl}(F) = \left(1 - 3z^2, 1 - 2x, 1 + 2y\right) \)

29. \(\text{div}(F) = 0, \quad \text{curl}(F) = \left(0, \sin x, \cos x - e^{3y}\right) \)

39. \(f(x, y) = \frac{1}{3}x^2 + \frac{1}{2}y^2 + K \)

41. \(f(x, y) = e^{xy} + K \)

43. \(f(x, y, z) = xyz + K \quad 45. f(x, y, z) = \sin(xyz) + K \)

47. \(f(x, y, z) = ax + by + cz + K \)

49. (b) \(e \rho (1, 1) = (-2, -1)/\sqrt{5}; \quad (c) f(x, y, z) = \sqrt{(x - a)^2 + (y - b)^2} \)

51. (A)
Section 17.2 Preliminary Questions
1. 50 2. (a), (c), (d), (e)
3. (a) True
(b) False. Reversing the orientation of the curve changes the sign of the vector line integral.
4. (a) 0 (b) -5

Section 17.2 Exercises
1. (a) $f(r(t)) = 6t + 4r^2; ds = 2\sqrt{11} dt$
(b) $\int_0^1 (6t + 4r^2) 2\sqrt{11} dt = \frac{26\sqrt{11}}{11}$
3. (a) $F(r(t)) = \left(t^2, t^2\right); dr = \left(1, -1\right) dt$
(b) $\int_1^3 \left(t^{-1} - 1\right) dt = -\frac{1}{2}$
5. $\sqrt{3} \left(\pi + \frac{n^2}{9}\right)$
7. $\pi^2/2$ 9. 28 11. $\frac{128\sqrt{22}}{9} \approx 229.8$
13. $\sqrt{3} (e-1) \approx 1.488$ 15. $\frac{2}{7} (e^2 + 5)^3/2 - 2^3/2$
17. 39; the distance between $(8, -6, 24)$ and $(20, -15, 60)$
19. $\frac{3}{4}$ 20. $2 \left(e^2 - e^{-2}\right) - (e - e^{-1}) \approx 12.157$ 25. $\frac{10}{7}$
27. $-\frac{5}{7}$ 29. $\frac{13}{2}$ 31. $\frac{7}{2}$ 33. 339.5587 35. $2 - e - \frac{1}{2}$
37. (a) -8 (b) -11 (c) -16
39. $\approx 7.6; \approx 44$ 41. (A) Zero, (B) Negative, (C) Zero 43. $64\pi g$
45. $\approx 10.4 \times 10^{-6} C$ 47. $\approx 22,743.10$ volts 49. $\approx -10,097$ volts
51. 1 53. $\frac{27}{32}$ 55. (a) ABC (b) CBA
59. $\frac{1}{2} \left(4(\pi^2 + 1)/2 - 1\right) \approx 85.5 \times 10^{-6} C$

Section 17.3 Preliminary Questions
1. Closed
2. (a) Conservative vector fields (b) All vector fields
(c) Conservative vector fields (d) All vector fields
(e) Conservative vector fields (f) All vector fields
(g) Conservative vector fields and some other vector fields
3. (a) Always true (b) Always true
(c) (e) Under additional hypotheses on D
4. (a) 4 (b) -4

Section 17.3 Exercises
1. 0 3. $\frac{5}{2}$ 5. $32e - 1$ 7. $f(x, y, z) = zx + y$
9. $f(x, y, z) = y^2x + e^x y$
11. The vector field is not conservative.
13. $f(x, y, z) = z\tan x + z\phi$ 15. $f(x, y, z) = x^2y + 5x + 4zy$
17. 19. 1 21. 6 23. $\frac{7}{9}$ 0 25. $6.2 \times 10^9 J$
27. (a) $f(x, y, z) = -gz$ (b) ≈ 82.8 m/s
29. (A) 2π, (B) 2π, (C) 0, (D) -2π, (E) 4π

Section 17.4 Preliminary Questions
1. 50
2. A distortion factor that indicates how much the area of R_{ij} is altered under the map G.
3. $\text{Area}(S) \approx 0.0006$ 4. $\int_S f(x, y, z) dS \approx 0.6$
5. $\text{Area}(S) = 20$ 6. $\left(\frac{1}{3}, \frac{2}{3}, \frac{1}{3}\right)$

Section 17.4 Exercises
1. (a) \mathbf{v} (b) i (c) i (d) iv (e) ii
3. (a) $T_u = (2, 1, 3), T_v = (0, -1, 1)$, $n(u, v) = (4, -2, -2)$
(b) $\text{Area}(S) = 4\sqrt{6}$ (c) $\int_S f(x, y, z) dS = \frac{32\sqrt{2}}{3}$
5. (a) $T_u = (1, 0, y)$, $T_v = (0, 1, x), N(x, y) = (-y, -x, 1)$
(b) $\frac{(2\sqrt{2} - 1)\pi}{6}$ (c) $\sqrt{2} + \frac{1}{2}$
7. $T_u = (2, 1, 3), T_v = (1, -4, 0). N(u, v) = 3 \langle 4, 1, -3 \rangle, 4x + y - 3z = 0$
9. $T_{\theta} = (-\sin \theta \sin \phi, \cos \theta \sin \phi, -\sin \phi)$, $N(u, v) = -\cos \theta \sin^2 \phi - \sin \theta \sin^2 \phi j - \sin \phi \cos \phi k$

Section 17.5 Preliminary Questions
1. (b) 2. (c) 3. (a) 4. (b)
5. (a) 0 (b) π (c) π
6. $\approx 0.05\sqrt{2} \approx 0.0707$ 7. 0

Section 17.5 Exercises
1. (a) $\mathbf{N} = (2u, -4uv, 1)$. $\mathbf{F} \cdot \mathbf{N} = 2e^3 + u$
(b) $\frac{4}{\sqrt{69}}$ (c) 265
3. 4 5. -4 7. $\frac{22}{15}(3\pi + 4)$ 9. $\frac{60}{5}$ 11. $\frac{11}{12}$ 13. $\frac{9}{2\pi}$
15. $(e - 1)^2$ 17. 270
19. (a) $18\pi e^{-3}$ (b) $\frac{3}{2} e^{-1}$
21. $\left(2 - \frac{5}{\sqrt{13}}\right)\pi k$ 23. $\frac{22}{15} \text{ m}^3/s$ 25. 4π 27. $\frac{16\pi}{3}$
29. (a) 1 (b) 1
33. $\Phi(t) = -1.56 \times 10^{-5} e^{-0.1t} T\cdot m^2$:
Voltage drop $= -1.56 \times 10^{-6} e^{-0.1t} V$
35. The flow is greatest at $z = 3$.

Chapter 17 Review
1. (a) $(-15, 8)$ (b) $(4, 8)$ (c) $(9, 1)$
3.

\[
\begin{align*}
\vec{F} &= (y, 1) \\
\n\end{align*}
\]
Section 18.1 Exercises
1. \(\int_C xy \, dx + y \, dy = \int_0^{2\pi} (\cos \theta \sin \theta (-\sin \theta) + \sin \theta \cos \theta) \, d\theta = 0 \)
 \[\int_{-1}^1 \int_{\sqrt{1-x^2}}^{\sqrt{1-x^2}} (0-x) \, dy \, dx = \int \int_D \left(\frac{x}{2\pi} y - \frac{y}{3\pi} (xy) \right) \, dA \]
2. 0 5. \(-\frac{\pi}{4} \)
3. \(\frac{\pi}{6} \)
4. 9. \((e^4 - 1)(e^4 - 5) \)
11. (a) \(V(x, y) = x^2 e^y \)
 13. \(I = 34 \)
 15. \(\frac{1}{2} \)
 17. \(\frac{8}{3} \)
19. (c) \(A = \frac{3}{2} \)
23. \(9 + \frac{13\pi}{2} \)
25. \(214\pi \)
27. (A) Zero (B) Positive (C) Negative (D) Zero
29. \(-0.10 \)
31. \(R = \sqrt{\frac{7}{3}} \)
33. Triangle (A), 3; Polygon (B), 12
35. \(-4 \)
37. \(5\pi \)
39. \(\frac{9\pi}{4} \)
41. 29.2 buffalo per minute

Section 18.2 Preliminary Questions
1. (a)
2. (a)
3. A vector field \(\mathbf{A} \) such that \(\mathbf{F} = \text{curl}(\mathbf{A}) \) is a vector potential for \(\mathbf{F} \).
4. (b)
5. \(\mathbf{F} \) must be the curl of some other vector field \(\mathbf{A} \) (see Theorem 2).

Section 18.2 Exercises
1. \(\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S} = \pi \)
3. \(\iint_C \mathbf{F} \cdot d\mathbf{s} = \iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S} = e^{-1} - 1 \)
5. \(\left\{ -3e^2 \, e^3, 2z e^2 + z \sin(xz), 2 \right\} ; 2\pi \)
7. \((-2, 3, 5), 20\pi \)
9. 0
11. \(-45\pi \)
13. 0
15. (a) \langle 0, 0, e^y - e^z \rangle (c) \(\iint_S \mathbf{F} \cdot d\mathbf{S} = \frac{\pi}{2} \)
19. (a) \(\iint_S \mathbf{B} \cdot d\mathbf{S} = r^2 B \pi \) (b) \(\iint_S \mathbf{A} \cdot d\mathbf{S} = 0 \)
21. \(\iint_S \mathbf{F} \cdot d\mathbf{S} = 18B \)
23. \(c = 2a \) and \(b \) is arbitrary.
27. \(\iint_S \mathbf{F} \cdot d\mathbf{S} = 25 \)

Section 18.3 Preliminary Questions
1. \(\iint_S \mathbf{F} \cdot d\mathbf{S} = 0 \)
2. Since the integrand is positive for all \((x, y, z) \neq (0, 0, 0) \), the triple integral, hence also the flux, is positive.
3. (a), (b), (d), (f) are meaningful; (b) and (d) are automatically zero.
4. (c) \(\iint_S \mathbf{F} = 1 \) and flux = \(\iint \text{div}(\mathbf{F}) \, dV = \text{volume} \)

Section 18.3 Exercises

1. \[\int S \mathbf{F} \cdot dS = \int \int \int_R \text{div}(\mathbf{F}) \, dV = 0 \]
2. \[\int S \mathbf{F} \cdot dS = \int \int \int_R \text{div}(\mathbf{F}) \, dV = 0 \]
3. \[\int S \mathbf{F} \cdot dS = \int \int \int_R \text{div}(\mathbf{F}) \, dV = 4\pi \]
4. \[\int S \mathbf{F} \cdot dS = \int \int \int_R \text{div}(\mathbf{F}) \, dV = 0 \]
5. \[\frac{32\pi}{3} \]
6. \[\frac{4\pi}{3} \]
7. \[\frac{32\pi}{3} \]
8. \[\frac{13\pi}{3} \]
9. \[\frac{16\pi}{3} + \frac{9\pi\sqrt{3}}{2} \approx 24.549 \]
10. \[\approx 1.57 \text{ m}^3/\text{s} \]
11. \[32\pi \]
13. \[64\pi \]
15. \[81\pi \]
17. \[\pi \]
19. \[\frac{13}{3} \]
21. \[4\pi \]
23. \[16\pi \]
25. \[1.57 \text{ m}^3/\text{s} \]
27. (b) 0 (c) 0 (d) Since \(E \) is not defined at the origin, which is inside the ball \(W \), we cannot use the Divergence Theorem.
29. \[(-4) \cdot \left[\frac{256\pi}{3} - 1 \right] \approx -1068.33 \]
31. \[\text{Div}(f \mathbf{F}) = f \text{Div}(\mathbf{F}) + \mathbf{F} \cdot \nabla f \]
33. (d) Flux through a closed surface is 0.

Chapter 18 Review

1. 0
3. \[\frac{3}{5} \]
5. \[\frac{3}{5} \]
7. (a) \[\frac{1}{6\pi} \]
(b) \[A \]
9. \[\frac{1}{2} \]
11. \[\frac{1}{3} \]
13. \[\{(x, y) | y = x \text{ or } y = -x\} \]
15. \[36\pi \]
19. \[2\pi \]
21. \[\mathbf{A} = (yz, 0, 0) \text{ and the flux is } 8\pi \]
23. \[\frac{206}{3} \]
25. \[-128\pi \]
27. Volume(\(W \)) = \[2 \]
29. \[4 \cdot 0.009\pi \approx 0.0113 \]
31. \[2x - y + 4z = 0 \]
33. (b) \[\frac{2}{7} \]
35. (c) 0 (d) \[\int_{C_1} \mathbf{F} \cdot ds = -4, \quad \int_{C_2} \mathbf{F} \cdot ds = 4 \]
41. \[V = \frac{4\pi}{3} abc \]
The online source MacTutor History of Mathematics Archive www-history.mcs.st-and.ac.uk has been a valuable source of historical information.

Section 1.1

Section 1.2

Section 1.5

Section 2.2

Section 2.3

Chapter 2 Review

Section 3.1
(EX 77) Problem suggested by Dennis DeTurck, University of Pennsylvania.

Section 3.2
(EX 92) Problem suggested by Chris Bishop, SUNY Stony Brook.

Section 3.4

Section 3.5

(EX 47) Adapted from a contribution by Jo Hoffacker, University of Georgia.

(EX 48–49) Adapted from a contribution by Thomas M. Smith, University of Illinois at Chicago, and Cindy S. Smith, Plainfield High School.

(EX 52, 56) Problems suggested by Chris Bishop, SUNY Stony Brook.

Section 3.9

(EX 34) Problem suggested by Kay Dundas.

Chapter 3 Review
(EX 62, 81) Problems suggested by Chris Bishop, SUNY Stony Brook.

Section 4.2

Section 4.5

Section 4.6
(EX 38) Adapted from Calculus for a Real and Complex World by Frank Wattenberg, PWS Publishing, Boston, 1995.

Section 4.7

Chapter 4 Review

Section 5.1
(EX 3) Problem suggested by John Polhill, Bloomsburg University.
(EX 84) Problem suggested by Chris Bishop, SUNY Stony Brook.

Section 5.5
(EX 42) Problem suggested by Dennis DeTurck, University of Pennsylvania.

Section 5.6

Section 5.7

Section 6.1

Section 6.3

Section 7.7

Section 8.1
(EX 62–64, 67, 68–70, 73) Problems suggested by Brian Bradie, Christopher Newport University.

Section 8.3

Section 8.6
(EX 1–5, 9) Problems suggested by Brian Bradie, Christopher Newport University.

Section 8.7
(EX 84) Problem suggested by Chris Bishop, SUNY Stony Brook.

Section 8.9
Section 9.1

Section 10.1

Section 11.1

Section 11.2

Section 11.4

Section 12.2

Section 12.3

Section 13.4

Section 14.3

Section 14.4

Section 14.5
(EX 57, 60) Adapted from notes to the course “Dynamics and Vibrations” at Brown University, http://www.engin.brown.edu/courses/en4/.

Section 15.8

Section 16.3
(Figure 10 Computation) The computation is based on Jeffrey Nunemacher, “The Largest Unit Ball in Any Euclidean Space,” in *A Century of Calculus*, Part II, Mathematical Association of America, Washington DC, 1992.

Section 16.6

Section 17.2

Section 17.3

Appendix D
AB effect, 994
absissa, 3
absolute convergence, 559, 561, 562, 567
absolute extrema, See global extrema
absolute value, 1
acceleration, 134
centripetal, 740, 741
normal component of, 741, 742
tangential component of, 741, 742
acceleration vector, 738, 740–743
addition
summation notation and, 227, 228
addition formulas, 28
additivity
of adjacent intervals, 242
of circulation, 979
of vector line integrals, 928
advection equation, 810
Aharonov–Bohm (AB) effect, 994
algebra
linear, 670
algebraic functions, 20
Algebraic Laws, A7
algebraic operations, A7
alternating harmonic series, 561, 562
Alternating Series Test, 560, 561, 567
amplitude, 28
angle
between vectors, 661–663
angle of inclination, 736, 799
angles
complementary, 28
degrees and, 23
radians and, 23
angular coordinates, 612, See also polar coordinates, 613
angular momentum, 721, 806
angular momentum vector, 748
angular velocity, 609, 978
curl and, 978
moment of inertia and, 886
annuities, 358, 359
annulus, 300
antiderivatives, 247, See also indefinite integral, 248, 251, 257, 941
definition of, 247, 248
general, 247
logarithms as, 340–344
terminality of, 248
of vector-valued functions, 718
aphelion, 637
Apollonius, 625
applied optimization, 204
approximation, 226–234
by rectangles, 226, 229
left-endpoint, 228
limit of, 230
midpoint, 229
Nth right-endpoint, 226
Riemann sum, 237
summation notation and, 227, 228
arc length, 463–465, 607
definition of, 463, 722
formula for, 464
of parametric curve, 606–610
of path, 722
in polar coordinates, 622
arc length differential, 922, 923
arc length function, 722
arc length parametrization, 723, 724
arccosine
derivatives of, 370
arccosine function, 369
Archimedes, 476, 482, 546, 625
Archimedes’s Law of the Lever, 482
Archimedes’s formula, 868
Archimedes’s Problem, 212
arcsine
derivatives of, 370
arcsine function, 368
area
approximation of, See approximation between two curves, 281–285
computing as limit of approximations, 230, 231
cross product and, 672–674
under a curve, 621
double integrals defining, 849
Green’s Theorem and, 976–979
horizontally simple, 284
of parallelogram, 673, 674
in polar coordinates, 620–623
of polygon, 986
signed, 283, 284
surface, 465–467, 609, 610, 951–953
under map, 896
under parametric curve, 601, 602
vertically simple, 281
area approximation
by rectangles, 227
area distortion factor, 952
area function, 259
Aristarchus, 750
arithmetic-geometric mean, 539
Associative Law, 645, A7
astronomy
history of, 750
asymptote, 510
horizontal, 33, 78
of hyperbola, 628
vertical, 33, 52
asymptotic behavior, 78, 197–201
atmospheric temperature, 45
average rate of change, 43, 44, 760–762
average value, 293, 294, 854, 867
of continuous function, 935
average velocity, 41
axes
x and y, 3
of ellipse, 626, 627
of hyperbola, 628
of parabola, 629
right-hand rule, 651
axial symmetry, 875
balance, 351
ball grid array (BGA), 775
Balmer series, 529
Balmer wavelength, 532
Banker’s Rule of 70, 356
Barrel Problem, 211
base
for exponential functions, 321
basic functions, 20, 21, 62
Basic Laws of Continuity, 62
Basic Limit Laws, 56, 62, 91
proof of, A16, A17
Beer-Lambert Law, 350
Bernoulli, Jacob, 233
Bernoulli numbers, 233
Bernoulli spiral, 721, 726
Bernoulli’s formula, 233
Bernstein polynomials, 601
Bessel function of order 1, 575
Bézier curves, 601
binomial coefficient, A13
recreation relation for, A14
binomial series, 584–586
Binomial Theorem, 584, A13–A15
binormal vector, 732
Bisection Method, 84, 85
Body mass index (BMI), 787, 788
Boltzmann distribution, 834
Bolzano–Weierstrass Theorem, A9
boundaries
Divergence Theorem and, 998
Green’s Theorem, 973
Stokes' Theorem and, 987
types of, 987
boundary of domain, 816
boundary curve
piecewise smooth, 848
boundary orientation, 973, 987
boundary point, 815, 816
bounded above, A8
bounded below, A8
bounded domain, 815
bounded monotonic sequences
convergence of, A9
bounded sequences, 534–536
convergent subsequence of, A9
monotonic, 535, 536
bounded surface, 692
brachistochrone property, 599
Brahe, Tycho, 750
brachistochrone property, 599
branches, 150
A Brief History of Time (Stephen Hawking), 349
Bubble Sort, 364, 365
cable position transducer, 169
calculators
graphing, 32–35
calculus
differential, 39
integral, 39
terminology of, A1–A5
calorie, 313
cardioid, 615
calorie, 313
cardioid, 615
caloric, 396
cardioide, 615
caloric, 396
cardioide, 615
center of mass (COM), 476–482, 884
multiple integrals and, 884
centrally simple region, 878
centripetal acceleration, 740, 741
centroid, 476–482, 884
center of mass and, 884
Chain Rule, 141–144, 148, 714, 715, 803–808
as dot product, 807
Fundamental Theorem of Calculus and,
261
General Version of, 803–806
for Gradients, 791–794
implicit differentiation and, 806, 807
independent variables and, 803
for partial derivatives, 774
for Paths, 792–794, 806
primary derivatives and, 804, 805
Substitution Method and, 270
change net, 41, 264, 265
notation for, 40
rate of, 43, 44, See rate of change
change of variables, 872–875, 894–907
double integrals in polar coordinates and,
873, 874
maps and, 894
in three variables, 903
triple integrals in cylindrical coordinates,
875–876
triple integrals in spherical coordinates
and, 877, 878
Change of Variables Formula, 271–273, 894,
898–904, 953
in cylindrical coordinates, 876
for definite integrals, 273
in polar coordinates, 873–875
in spherical coordinates, 877
change-of-base formula, 337
Chebyshev polynomials, 36
circle
great, 701
osculating, 732, 733
circle of radius
parametrization of, 597, 708
circumference, 740
circulation, 974
additivity of, 979
Green's Theorem and, 978
per unit of closed area, 992
cissoid, 618
Clairaut, Alexis, 778
Clairaut's Theorem, 777, 778
proof of, A21
closed curve, 935, 936, 973
circulation around, 979
closed domain, 816
closed interval, 2
every existence of, A3
every existence of extrema on, A18, A19
extreme values on, 175, 177, 178
optimization on, 177, 178
closed surface, 987
Divergence Theorem and, 998
clodhoth, 735
Cobb–Douglas production function, 827
coefficients, 20
constant, 356
leading, 20
collinear points, 682
common ratio, 532
Commutative Law, 645, A7
Comparison Test
for improper integrals, 437, 438
Comparison Theorem, 242
complementary angles, 28
complete the square for the quadratic
polynomial, 17
completeness, A8
of real numbers, A7
completing the square, 16, 17, 633
complex numbers, 381
component vector of, 663, 665
composite function
continuity of, 64, A18
limit of, A17
composite functions, 21
continuous, 768
compound interest, 351–353, 355
computer algebra systems, 32–35, 430
for partial fraction decomposition, 422
cconcavity, 190–192
definition of, 190, 191
points of inflection and, 192
test for, 191
conclusion, A1
conditional convergence, 560–562
cone
equilateral, 689
parametrized, 948
conic sections, See also ellipse; hyperbola;
parabola, 625–635
congruent, 630
discriminant of, 634
eccentricity of, 629, 630
focus-directrix definition of, 630–632
general equation of degree 2 for, 633, 634
latus rectum of, 636
polynomial equation of, 632
reflective properties of, 632
translation of, 627
conjugate axis
every ellipse, 626
of hyperbola, 628
counted domains, 855
conservation of energy, 938, 939
conservative force fields, 938
conservative vector fields, 915–918, 935–944
circulation around curve, 935, 936
cross-partial condition for, 940, 941
curl of, 915, 916
Fundamental Theorem of, 936
inverse-square, 917, 939
path independence of, 936
path-independent, 937, 938
in physics, 938
potential functions for, 915, 917, 939–942
torque, 942, 943
constant coefficients, 356
constant functions
derivatives of, 100
Constant Multiple Rule, 109, 714
Constant Rule, 107
constant vector, 718
constant vector field, 912
constants
integrals of, 240
constraint
optimizing with, 825–830
constraint curve, 825
constraint equation, 205
continuity
of basic functions, 63
of composite function, 64, A18
definition of, 767
derivable and, 111, 112
INDEX

of elementary function, 64
of inverse function, 64
Laws of Continuity, 62
limits and, 59, 60
one-sided, 61
of polynomial and rational functions, 63
real-world modeling by, 65
in several variables, 766–771
Substitution Method and, 64, 68
continuity of polynomial and rational functions, 63
continuous differentiability, 948
continuous function, 57
integrable, 840, A19–A21
continuous random variable, 887, 888
continuous vector-valued functions, 713
contour interval, 759
contour lines, 759
contour maps, 759, 762, 776
equipotential curves and, 937
gradients and, 797, 798
of linear function, 760
cotangent, 26, 370
hyperbolic, 377
Couette flow, 979
counterexample, A2
Crawford, John M., 977
critical point, 811–815, 826
Second Derivative Test for, 812–815, 818
critical points, 176
First Derivative Test for, 186, 187
Second Derivative Test for, 193
critical value, 826
cross product, 669–676, 683, 749
anticommutativity of, 671
area and volume and, 672–674
definition of, 670
as determinant, See also determinants
determinants and, 670, 673
growth and decay
d’Oresme, Nicole, 546
decay constant, 345, See also exponential
growth and decay
decimal expansions, 1, See also real numbers
decomposition
of vector, 664
decreasing functions, 5
definite integral, 237, 240, 243, 244, 260, 393
additivity for adjacent intervals and, 242
antiderivatives and, 247
Change of Variables Formula and, 273
Comparison Theorem and, 242
definition of, 239
linearity of, 240
lower and upper bounds for, 243
properties of, 240, 242–244
reversing limits of integration and, 241, 242
Riemann sums and, 238, 239
as signed area, 239
degenerate equation, 633
degrees, 20, 23, 24
del operator, 913
delta Δ, 40
density, 291, 292
linear mass density, 291
mass, 883, 884, 954
multiple integrals and, 882, 883
level, 757–759
limaçon, 615
orientation of, 925
parametric, 595–602, 606–610
parametrized, 706, 707, 708
piecewise smooth, 928
plane, 706
space, 706
vector field circulation around, 935, 936
Viviani’s, 711
vs. path, 706
curvilinear coordinates, 949
curvilinear rectangle, 896
cusps, 717
cyclic relation, 810
cycloid, 599
cusps of, 717
length of, 608
parametrization of, 599
tangent vectors on, 717
cylinder
parametrization of, 949, 950
parametrized, 947
quadratic, 690–692
cylindrical coordinates, 694, 695
conversion to rectangular coordinates, 694, 695
equations in, 695
graphing equations in, 695
integration in, 876
level surfaces in, 695
triple integrals in, 875
cylindrical shell method, See Shell Method
d’Oresme, Nicole, 546
decay constant, 345, See also exponential
growth and decay
decimal expansions, 1, See also real numbers
decomposition
of vector, 664
decreasing functions, 5
definite integral, 237, 240, 243, 244, 260, 393
additivity for adjacent intervals and, 242
antiderivatives and, 247
Change of Variables Formula and, 273
Comparison Theorem and, 242
definition of, 239
linearity of, 240
lower and upper bounds for, 243
properties of, 240, 242–244
reversing limits of integration and, 241, 242
Riemann sums and, 238, 239
as signed area, 239
degenerate equation, 633
degrees, 20, 23, 24
del operator, 913
delta Δ, 40
density, 291, 292
linear mass density, 291
mass, 883, 884, 954
multiple integrals and, 882, 883

INDEX

radial density function and, 291
source, 1001
dependent variable, 4
derivatives
acceleration, 134
antiderivatives and, 247, See also antiderivatives of b^2, 338
computation, See differentiation of constant functions, 100
cross-partial, 941
definition of, 97, 98
directional, 794–796, 798, 799
estimating, 100, 101
extreme values and, 174, 175
of $f(x) = b^2$, 321–326, 328
First Derivative Test, 186, 187
as functions, 105, 106
of general exponential and logarithmic functions, 337
graph concavity and, 190–193
graph properties and, 110
growth of functions and, 364, 365
higher, 132
of hyperbolic functions, 377, 379
as tangent vectors, 716
tangent line and, 97, 110
term-by-term, 573
second, 132
Second Derivative Test, 193
sign of, 185, 186
tangent line and, 97, 110
as tangent vectors, 716
of trigonometric functions, 137, 138, 370, 371, 378
vector-valued, 713, 714, 716, 717
Descartes, René, 3, 153, 180
Descartes’s folium, 984
determinants, 670
Jacobian, 896–898
minors, 670
notation for, 673
diagonal rule, 679
difference quotient, 97, 98
symmetric, 104
Difference Rule, 109
differentiability, 98, 106, 111, 783–788
differentiability of b^2, 338
computation, See differentiation of constant functions, 100
cross-partial, 941
definition of, 97, 98
directional, 794–796, 798, 799
estimating, 100, 101
extreme values and, 174, 175
of $f(x) = b^2$, 321–326, 328
First Derivative Test, 186, 187
as functions, 105, 106
of general exponential and logarithmic functions, 337
graph concavity and, 190–193
graph properties and, 110
growth of functions and, 364, 365
higher, 132
of hyperbolic functions, 377, 379
as tangent vectors, 716
tangent line and, 97, 110
term-by-term, 573
second, 132
Second Derivative Test, 193
sign of, 185, 186
tangent line and, 97, 110
as tangent vectors, 716
of trigonometric functions, 137, 138, 370, 371, 378
vector-valued, 713, 714, 716, 717
Descartes, René, 3, 153, 180
Descartes’s folium, 984
determinants, 670
Jacobian, 896–898
minors, 670
notation for, 673
diagonal rule, 679
difference quotient, 97, 98
symmetric, 104
Difference Rule, 109
differentiability, 98, 106, 111, 783–788
differentiability of b^2, 338
computation, See differentiation of constant functions, 100
cross-partial, 941
definition of, 97, 98
directional, 794–796, 798, 799
estimating, 100, 101
extreme values and, 174, 175
of $f(x) = b^2$, 321–326, 328
First Derivative Test, 186, 187
as functions, 105, 106
of general exponential and logarithmic functions, 337
graph concavity and, 190–193
graph properties and, 110
growth of functions and, 364, 365
higher, 132
of hyperbolic functions, 377, 379
as tangent vectors, 716
tangent line and, 97, 110
term-by-term, 573
second, 132
Second Derivative Test, 193
sign of, 185, 186
tangent line and, 97, 110
as tangent vectors, 716
of trigonometric functions, 137, 138, 370, 371, 378
vector-valued, 713, 714, 716, 717
Descartes, René, 3, 153, 180
Descartes’s folium, 984
determinants, 670
Jacobian, 896–898
minors, 670
notation for, 673
diagonal rule, 679
difference quotient, 97, 98
symmetric, 104
Difference Rule, 109
differentiability, 98, 106, 111, 783–788
as iterated integrals, 841–844
linearity of, 840
Mean Value Theorem for, 855
over more general regions, 848–857
notation for, 850, 862
in polar coordinates, 872–876
over rectangle, 839
Riemann sums and, 849
signed volume, 841
over vertically simple region, 850, 851
doubly ruled surface, 693
dummy variable
in summation notation, 227

\[\epsilon = \delta \] definition, 89–91
\[e, \quad 323, \quad 324 \]
\[e^x, \quad 323 \]
integrals involving, 325
eccentricity, 629
of conic sections, 629, 630
economics
marginal cost in, 126
effective interest rate, 356
Einstein, Albert, 128, 314, 380, 750
Einstein’s Law of Velocity Addition, 380, 381
electric field, 939, 940, 965, 966
due to uniformly charged sphere, 1004
electric potential, 924
electromagnetic waves, 1006
electrostatic field, 1002
electrostatics
Divergence Theorem and, 1002–1004
elementary functions, 21
continuity of, 64
ellipse, 626, 627
oxes of, 627
center of, 626
conjugate axis of, 626
eccentricity of, 629, 630
focal axis of, 626
focal vertices of, 627
foci of, 626
parametrization of, 597
planetary orbits as, 747
reflective properties of, 632
in standard position, 626, 627
translation of, 627
vertices of, 627
ellipsoid, 306, 313
traces of, 687
elliptic cone, 689
elliptic cylinders, 690–692
elliptic integral of the first kind, 586
elliptic paraboloid contour map of, 759
elliptic paraboloids, 689, 690
energy
conservation of, 938, 939
potential, 939
total, 939
units of, 313
work and, 313–316
equation of a line, See also linear equations
in point direction form, 656
parametric, 656
equation of cylinders
in three dimensions, 653
equation of spheres
in three dimensions, 653
equations
cross term of, 633
degenerate, 633
parametric, 595–602, 606–610, 612–617
of plane, 681
equilibrium
stable, 515
unstable, 515
equilibrium solution
differential solution, 515
equipotential curve, 937
equivalent statements, A3
equivalent vectors, 642, 654
epsilon error bound
for Taylor polynomials, 489
error bounds, 452, 453, 456
Escape velocity, 519
Euclid, A4
Euler, Leonhard, 381, 546
Euler’s Formula, 382
Euler’s Method, 310–312
Euler’s Midpoint Method, 515
even functions, 6
excursion, 955
existence of inverses, 330
exponential functions, 20, 321, 322
base for, 321
derivatives of, 337
infinite series for, 529
inverse trigonometric functions, 373
Laws of Exponents and, 322
logarithms and, 336
exponential growth and decay, 345–347,
349–351
carbon dating, 348, 349
compound interest and, 351, 353, 355
present value and, 352, 353
exponential probability density, 445
exponents
laws of, 322
extrema
global (absolute), 815–820
local, 811, 812
extreme values, 174–176
on closed interval, 175, 177, 178
critical points and, 175, 176
Fermat’s Theorem and, 176, 180
local minimum/maximum and, 175
on open interval, 175
optimization and, 174
Rolle’s Theorem and, 179

\[f(x) = b^x \]
derivatives of, 321–326, 328
Faraday’s Law of Induction, 965
Fermat, Pierre de, 180
Fermat point, 824
Fermat’s Last Theorem, A5
Fermat’s Theorem, 811
Fibonacci sequence, 530
Fick, Adolf, 779
Fick’s Second Law, 779
First Derivative Test, 186, 187
first octant, 652
first-order linear equations, 519–523
floor function, 54
flow
Couette, 979
laminar, 292, 293
shear, 979
flow rate, 292, 965
Poisuelle’s Law, 293
fluid flow rate, 965
fluid flux, 964, 965
fluid force, 470–473
fluid pressure, 470–473
flux, 960, 961, 991
along plane curve, 930
computation of, 1001
Divergence Theorem and, 1001–1004
fluid, 964, 965
magnetic, 966
of electrostatic field, 1002
of inverse-square field, 1003
focal axis
of ellipse, 626
of hyperbola, 628
circular vertices
of ellipse, 627
folium of Descartes, 605, 984
force
as vector, 647
fluid, 470–473
units of, 313
Fourier, Jean Baptiste Joseph, 779
Fourier Series, 401, 404
Fourier Transform, 779
Fraunhofer diffraction pattern, 55
free fall with air resistance, 357–359
freezing, 687
Frenet Frame, 732, 733
Frenet, Jean, 732
Fubini’s Theorem
for double integrals, 843, 844
for triple integrals, 862
functions
algebraic, 20
antiderivative of, 247, See also
antiderivatives
arc length, 722
arccosine, 369
arcsine, 368
area, 259
as derivatives, 106
basic, 20, 21, 62
basic operations on, 1005
calculate sign, 186
classes of, 19–21
composite, 21, 768, A18
continuation of, 21
continuous, 57, See continuity, 767, 768, 840
coordinate, 705
cumulative area, 259
decreasing, 5
definition of, 4
derivatives, 105
differentiable, See differentiability
discontinuous, See discontinuity
domain of, See also domains
elementary, 21, 64
even, 6
exponential, 20, 321, 322, 337
even, 6
exponential, 20, 321, 322, 337
floor, 54
exponential, 20, 321, 322, 337
even, 6
exponential, 20, 321, 322, 337
floor, 54
gradient, See gradient
graph of, 4, See also graphs
greatest integer, 54, 65
growth of, 364, 365
gudermannian, 415
growth of, 364, 365
harmonic, 782, 810, 987, 1008
hyperbolic, 376, 377, 379, See hyperbolic functions, 383–385
increasing, 5
increasing/decreasing, 185, 186
indeterminate, 69–72
integral, 238, 839, 861
inverse, 64, 329–332, 368, 370, 373
invertible, 329
left-continuous, 61
linear, See also linear functions, See linear functions
linear combinations, 21
locally linear, 785
logarithmic, 21, See also logarithms, 337
monotonic, 6, 230
nondecreasing, 6
nonincreasing, 6
normal density, 443
numerical, 4
objective, 205–207
odd, 6
one-to-one, 330–332
parity, 6, 376
periodic, 26
piecewise, 21
piecewise-defined, 61
polynomial, 63
potential, 915, 917, 939–942
power, 20
primitive, 248
probability density, 443
quadratic, 16
radial, 810
range of, 4, 329
rational, 20, 63, 80, See rational functions
right-continuous, 61
scalar-valued, 705
sequence defined by, 531, 532
sign change for, 187
smooth, 911
special, 586
transcendental, 20
trigonometric, 21, 23–29, 137, See trigonometric functions
of two or more variables, 755, 756
unbounded, 435
value of, 4
well-behaved, 20, 21
zero (root) of, 4, 84, 85
functions integrable, 848
functions of four variables, 762
functions of three variables, 762
functions of two variables, 756–758, 760–762
average rate of change and, 760, 761
continuous, 767
contour maps of, 758–760
graphing, 756
level curves and, 758, 759
vertical traces of, 757
Fundamental Theorem for Conservative Vector Fields, 936
Fundamental Theorem for Line Integrals, 998
Fundamental Theorem of Calculus, 254–257, 259–262, 841, 973, 997
for vector-valued functions, 718
Green’s Theorem and, 974
Stokes’ Theorem and, 988
Galileo Galilei, 127, 128, 380, 482, 750
gamma function, 443
Gauss’s Law, 1004
Gauss–Ostrogradsky Theorem, See Divergence Theorem
Gaussian distribution, 446
general antiderivative, 247
general equation of degree 2, 634
general exponential rule, 143, 144
general power rule, 143, 144
general solution
of differential equation, 499
general term, 529
in summation notation, 227
General Theory of Relativity, 750
general equations of degree 2, 633
geometric sequences, 532, 533
geometric series, 542–544
historical perspective on, 546
summing of, 542–544
Gini index, 288
great circle, 701
Gompertz Model, 387
gradient, 790–800
Chain Rule for, 791–794
contour map and, 797, 798
interpretation of, 797
as normal vector, 799
Product Rule for, 791
properties of, 791, 796
graph of the inverse function, 332
graphing calculators, 32–35
graphs, 3–8
amplitude of, 28
area between, 281–285
area under, See area
asymptotic behavior and, 197–201
conceptual representations of, 756
concavity and, 190, 192
derivatives and, 110
of a function, 948
of functions of two variables, 756
increasing/decreasing functions, 185, 186
interval curve and, 508, 509
of inverse functions, 332
isoclines and, 509
of linear functions, See lines
maximum point on, 121
parabolic, 16
parametrized, 948
plotting, 756
of quadratic functions, 16
reflection of, 332
scale of, 13
scaling (dilation) of, 8
secant line in, 41, 42, 97
sign combinations and, 197–200
sketching of, 4, 197–199, 201
slope fields and, 507–509
slope of line in, 12–16
surface integral over, 962
tangent line in, 97, 98, 110
transition points, 197–200
translation (shifting of), 7
of velocity, 41, 42
vertical asymptote in, 52
Vertical Line Test for, 5
viewing rectangles for, 32
gravitational fields, 939, 955
gravitational force
mass density and, 956
gravitational potential
of sphere, 955
gravity
effects on motion, 127
work against, 939
great circle, 701
greatest integer function, 54, 65
greatest lower bound, A8
Green, George, 999
Green’s Theorem, 973–983, 992, 998, See Divergence Theorem
additivity of circulation, 979
area and, 976–979
circulation per unit of closed area, 992
circulation per unit of enclosed area, 978
more general form of, 980, 981
proof of, 974, 975
statement of, 974
vector form of, 981, 982
Gregory, James, 400
Gregory–Leibniz series, 529
grid curves, 949
grid lines, 612
gudermannian, 388
gudermannian function, 415
Guldin’s Rule, 960
INDEX 17

Gumbel density, 448
Gutenberg-Richter Law, 343
half-life, 347
half-open intervals, 2
Hardy, G. H., 432
harmonic functions, 782, 810, 1008
mean-value property of, 987
harmonic series, 546, 551
alternating, 561
divergence of, 551
Integral Test for, 567
integration, 225–280, 372
Integral Test, 567
integral tables, 428
integral curve, 508, 509
integral calculus, 39, 225
integral curve, 508, 509
integral tables, 428
Integral Test, 567
integrals, 225–280, 372
definite, See also definite integral, 239–241, 243, 244, 393
double, 837–857, 873–875
exponential growth and decay and, 345–353
formulas for, 378, 379
improper, 432–440
indefinite, See also antiderivatives
initial conditions and, 250
integrated, 841–844
involving e^x, 325
involving inverse hyperbolic functions, 413
iterated, 862
line, 921–931, 974
logarithms as, 340–344
Mean Value Theorem for, 295, 855
net change as, 264, 265
notation for, 248, 862
Power Rule for, 248
quantities represented by, 289
reduction (recursive) formula for, 394
signs of, 241
surface, 946–957, 964–967
table of, 400, 402
trigonometric, 249, 397–402, 405–409
triple, 861–870, 875, 877, 878
vector surface, 960–967
of vector-valued functions, 718
of velocity, 266
integrals of constant, 240
integrands, 239, 259
unbounded, 435
integrating factor, 520, 523
integration, 239, 248, 873
algebraic simplification in, 425
along x-axis, 285
along y-axis, 283–285
arc length and, 463–465
area between two curves and, 281–285
center of mass and, 476–481
change of variables and, 876–878
Change of Variables Formula and, 271, 272
canonical algebra systems for, 422, 430
circular coordinates, 875, 876
definition of, 239, 248, 270
error bounds for, 456
fluid pressure and force and, 470–473
of hyperbolic functions, 411–414
Integration by Parts in, 391–414
of lamina and, 476
limits of, 239
Method of Partial Fractions for, 416–422
Midpoint Rule for, 450
multiple, See also double integrals; triple integrals
numerical, 450–457
in polar coordinates, 872–875, 900
probability and, 443–448
of quadratic factors, 419–422
of rational functions, 416–422
reversing limits of, 241
Simpson’s Rule for, 453, 455, 456
in spherical coordinates, 877, 878
strategies for, 424–430
substitution and, 270–273
surface area and, 465–467
taylor polynomials and, 485–492
term-by-term, 573
Trapezoid Rule for, 451
in two variables, 837
vector-valued, 718
volume of revolution and, 299–303,
307–310
Integration by Parts, 391
integration in polar coordinates, 898, 899
INDEX
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>parametric curve</td>
<td>595–602, 606–610, 612–617, 656</td>
</tr>
<tr>
<td>for different parametrization of same line, 657 for intersection of two lines, 657 of a line, 655</td>
<td></td>
</tr>
</tbody>
</table>
polynomial approximation, 463
polynomial functions
 continuity of, 63
polynomials
 Bernstein, 601
 coefficients of, 20
 definition of, 20
 degree of, 20
 domains of, 20
 Maclaurin, 486–489
 roots of, 20
 Taylor, 485–492
population density
 multiple integrals and, 882, 883
population growth
 logistic equation and, 515, 516
position
 net change in, See displacement
 position vector, 641, 654
positive series, 550–555
 convergence of, 550, 552–555
 Direct Comparison Test for, 552–554
 Divergence Test for, 544
 Integral Test for, 551
 Limit Comparison Test for, 554, 555
 Ratio Test for, 570
potential energy, 939
potential functions, 915, 917, 939–942
 as antiderivatives, 941
 existence of, 941
 finding, 940–942
 uniqueness of, 917
power, 313
power functions, 20
 Power Rule, 108, 109
 for integrals, 248
power series, 569–576
 center of, 569
 in solving differential equations, 574
 Taylor series and, 580
power sums, 230–233
present value, 353
pressure
 definition of, 471
 fluid, 470–473
 units of, 471
primary derivatives, 804, 805
primitive function, 248
Principia Mathematica (Newton), 956
principal, 351
Principle of Induction, A12, A13
Principle of Least Distance, 208
probability
 integration and, 443–448
 probability density function, 443, 444, 888
 probability theory, 887–889
product
 limit of, 768
Product Law, 56, 767, 768
 proof of, A16
Product Rule, 117, 118, 714, 715
 for Gradients, 791
 for partial derivatives, 774
production level, 126
projection, 862
 of vector, 663, 664
proof by contradiction, A4
proofs, A5
 rigorous, 88
 proper rational functions, 416
 Pythagorean Theorem, 28, 29, 652, 653
quadratic cylinders, 690–692
quadratic equations
 hyperboloids, 688
quadratic factors
 integration of, 419–422
quadratic form, 818
quadratic formula, 16
quadratic functions, 16, 17
 graphing of, 16
 irreducible, 419
 minimum and maximum of, 17
 square roots of, 408
quadratic polynomial
 completing the square for, 16
 quadratic surfaces, 686–692
 degenerate, 690
 ellipsoids, 687
 hyperboloids, 689
 nondegenerate, 690
 paraboloids, 689
 quadratic cylinders, 690
 in standard position, 686
Quick Sort, 364, 365
Quotient Law, 56, 767
 proof of, A16, A17
Quotient Rule, 117, 119, 120
 for partial derivatives, 774, 775
R (set of real numbers), 1
 radial coordinates, 612, See also polar coordinates, 613
radial curl, 997
radial density function, 291
radial function, 20
 radius of gyration, 887
 random variable, 443, 887, 888
 average value of, 444
 range of, 331
 of functions, 4, 329
 of inverse functions, 330
 rate of change, 39, 43, 44, 123
 average, 43, 44, 123, 760–762
 differential equations and, 356
 directional derivative and, 795
 exponential growth and decay and, 346, 347
 instantaneous, 43, 44, 124
 net change as integral of, 264, 265
 notation for, 124
one-unit, 125
 for single vs. multiple variables, 760
 velocity and, 39, 41
Ratio Test, 564, 565, 567
 for radius of convergence, 570
 rational functions, 20
 continuity of, 63
 integration of, 416–422
 limits at infinity of, 80
 proper, 416
rational numbers, 1
 rigorous, 88
 proof, 88
reduction formula, 394
 for binomial coefficients, A14
 recursive sequence, 530
 redaction ad absurdum, A4
 reduction formula, 394
 reflection of graph, 332
 recursion relation, 574
 for binomial coefficients, A14
 recursive formula, 394
 recursive sequence, 530
 reductio ad absurdum, A4
 reduction formula, 394
 reflection of graph, 332
 recursion relation, 574
 for binomial coefficients, A14
 recursive sequence, 530
 reductio ad absurdum, A4
 reduction formula, 394
 reflection of graph, 332
 recursion relation, 574
 for binomial coefficients, A14
 recursive sequence, 530
 reductio ad absurdum, A4
 reduction formula, 394
 reflection of graph, 332
 recursion relation, 574
rectangular coordinates, See also coordinates
 conversion to cylindrical coordinates, 694, 695
 conversion to polar coordinates, 615
 conversion to spherical coordinates, 696, 697, 699
 vs. polar coordinates, 612, 613
reflection of graph, 332
registration line, 15
regular parametrization, 727, 949
regular partition, 839
related-rate problems, 155–159
removable discontinuity, 60
reverse logarithic equation, 519
Riemann, Georg Friedrich, 239
Riemann sums, 237–239, 607, 849, A20
 limits of, 838
right end-point approximation, 226
right-circular cylinder, 691, 692
right-continuous function, 61
right-hand rule, 651, 671, 675
right-handed system, 671, 675
rigorous proof, 88
Rolle’s Theorem, 179
Römer, Olaf, 1006
root, 20
 of function, 4
 multiple, 123
Root Test, 566, 567
rotation, 24
 degrees and, 24
 radians and, 24
Rule of Seventy, 356

sample points
 Riemann sums and, 238
scalar, 643
scalar component
 of vector, 663
scalar line integrals, 921–924, 967
 applications of, 923, 924
 computing, 922
 definition of, 921
 electric potential and, 924
 mass density and, 923
 total mass and, 923
 vs. vector line integrals, 925
scalar multiple, 643
scalar multiplication, 643, 644, 654
scalar potentials
 vs. vector potentials, 994
scalar product,
 See dot product
scalar-valued derivatives, 717
scalar-valued functions, 705
scalars
 Distributive Law for, 645
 notation for, 643
 vs. vectors, 643
scale/scaling, 7
 of graph, 8, 13
secant, 26, 370,
 See also trigonometric functions
 hyperbolic, 377
 integration of, 399
secant line, 41, 42, 97
 derivatives and, 97
Second Derivative Test, 193, 812, 814, 815, 818
second derivatives, 132
second-order derivatives, 779
second-order differential equations, 381
second-order partial derivatives, 776–778
semimajor axis
 of ellipse, 627
semiminor axis
 of ellipse, 627
separable equations, 500, 501
Separation of Variables, 500, 516
sequences, 529–531, 533, 536, 537
 bounded, 534–536
 bounded monotonic, 535, 536
 convergent, 530, 531, 534, 535
 defined by a function, 531, 532
 definition, 529
 divergent, 530, 532, 535
 Fibonacci, 530
general term of, 529
 geometric, 532
 geometric, 533
 index of, 529
 limit laws for, 533
 limit of, 530
 recursive, 530
Squeeze Theorem for, 533
 terms of, 529
 unbounded, 534, 535
 vs. series, 541
series
 alternating harmonic series, 561
 Alternating Series Test, 560, 561
 Balmer, 529
 binomial, 584–586
 convergence of, 559, 560
 geometric, 542–544
 Gregory–Leibniz, 529
 harmonic, 546, 551
 infinite, 529–593
 Integral Test for, 551
 Maclaurin, 580, 585, 587
 p-series, 552
 positive, 550–555
 power, 569–576, 580
 Taylor, 579–583, 586, 587
 telescoping, 540, 541
 vs. sequences, 541
 shear flow, 979
 Shell Method, 307–310
 shift formulas, 28
 shifting
 in graphing, 7
 sigmoidal correction, 387
 sign combinations, 199, 200
 signed area, 283, 284
 definite integral as, 239
 simple closed curve, 973
 simply connected region, 940
 Simpson’s Rule, 453, 455, 456
 sine, 25, See also trigonometric functions
 arcsine and, 368
 derivative of, 137, 138, 144, 377
 hyperbolic, 376
 integration of, 397–399
 standard values for, 25
 unit circle definition of, 25
 wave, 25
 sinks, 914
 sketch the graph, 5
 slope, 12–16
 slope fields, 507–509
 slope-intercept form, 12
 smooth functions, 911
 Snell’s Law, 213
 solid of revolution, 299
 solution
 equilibrium (steady-state), 515
 of differential equation, 499, 515
 source density
 divergence and, 1001
 space curves, 706
 special functions, 586
 Special Theory of Relativity, 380
 speed, 126
 along parametrized path, 608, 609
 arc length function and, 722
 calculation of, 722
 definition of, 722
sphere
 gravitational potential of, 955
 parametrized, 947, 948
 volume of, 868
spherical coordinates, 696, 697, 699, 873
 conversion to rectangular coordinates, 696, 697, 699
graphing equations in, 698
 integration in, 877, 878
 level surfaces in, 697
 notation for, 696
 via longitude and latitude, 698
spherical wedge
 volume of, 877
spring constant, 314
square roots
 of general quadratic functions, 408
 trigonometric substitution and, 405–407, 409
Squeeze Theorem, 73–76, 533
 proof of, A18
stable equilibrium, 515
standard basis vectors, 646
 in three dimensions, 655
standard deviation, 449
standard normal cumulative distribution function, 446
standard normal density, 445
standard position
 of ellipse, 626
 of hyperbola, 628
 of parabola, 629
 quadratic surface in, 686
 standard values, 25
steady-state solution
 of differential equation, 515
Stefan–Boltzmann Law, 147
Stokes, George, 999
Stokes’ Theorem, 941, 973, 987–994, 998
 proof of, 988, 989
 statement of, 988
 surface independence for curl vector fields and, 991
strict inequality, A7
subsequences, A9
 convergent, A9, A10
substitution, 270–273, 425
 Change of Variables Formula and,
 271–273
differentials in, 271
 hyperbolic, 412
 integration and, 270, 271
 rationalizing, 424
 strategies for, 424–430
 trigonometric, 405–409, 412, 427
Substitution Method, 64, 68, 270–273
sum
 vector, 647
 Sum Law, 56, 57, 91, 119, 767
 proof of, A16
 Sum Rule, 109, 714
summation index, 227
summation notation, 227–229
summations
 linearity of, 228
summing
 of infinite series, 545
sums
 partial, 539, 542
 Riemann, 237, 239
surface area, 465–467, 951, 952
 parametric curve and, 609, 610
 surface integrals and, 953–955
Surface Independence for Curl Vector Fields, 991, 992
surface integrals, 946–957, 965–967
 definition of, 952, 953
 flux and, 964–966
 over graph, 962
 over hemisphere, 962
 of mass density, 954
 parametrized surfaces and, 946–957
 surface area and, 953–955
 of vector fields, 960–967
volume as, 1007
symmetric difference quotient, 104
symmetry
center of mass and, 884
Symmetry Principle, 480, 481

Tait, P. G., 791
tangent, 26, 370, See also trigonometric functions
 hyperbolic, 377
 integration of, 399, 400
tangent line approximation, 167
tangent lines, 39, 97, 98
 definition of, 98
 horizontal, 811
to parametric curves, 600
 slope of, 600
tangent plane, 783–788, 949
 equation of, 784
 horizontal, 811
total mass, 911, 912
 tangent vector, 727–730
Tartaglia, Niccolo, 211
Taylor polynomials, 485–492
 error bound for, 489
Taylor series, 579–583, 586, 587
tempering,
 atmospheric, 45
 wind-chill, 781
torsion
 of sequence, 529
torque, 678, 721
 Torricelli’s Law, 502, 503
torus, 305
total cost
 vs. marginal cost, 267
total energy, 939
total mass, 923
trumes, 683
 definition of, 687
 of ellipsoid, 687
 of horizontal, 758
 of hyperboloids, 688
 of paraboloids, 690
 of vertical, 757, 758
tracrix, 306, 727
transcendental functions, 20
 transition points, 197–200
translation
 in graphing, 7
 of vectors, 641, 654
Trapezoid Rule, 451
triangle
 median of, 484
 triangle inequality, 2, 648
 trigonometric functions, 21, 23–29
 cosecant, 26, 370
cosine, 25
cotangent, 26, 370
cotangent, 26, 370
 derivatives of, 137, 138, 370, 371, 378
 hyperbolic functions and, 376, 377, 381, 383, 414
 integration of, 397, See trigonometric integrals
 inverse, 368, 369, 372–374
 periodic, 26
 secant, 26, 370
sine, 25
tangent, 26, 370
 trigonometric identities, 28, 29, 369
 trigonometric integrals, 249, 397–402
 substitution and, 405–409
 table of, 400, 402
 trigonometric limits, 73–76
 trigonometric substitution, 405–409
 vs. hyperbolic substitution, 412
 triple integrals, 861–870, See also multiple integrals
 in cylindrical coordinates, 875, 876
 defining volume, 868, 869
 Fubini’s Theorem for, 862
 geometric interpretation of, 863
 as iterated integrals, 862
 notation for, 862
 in spherical coordinates, 877, 878
 x-simple region and, 865, 866
 y-simple region and, 866
 z-simple region and, 863, 866
 unbounded functions, 435
 unbounded sequences, 534, 535
 uniform circular motion, 740
 uniform mass density, 883
 unit circle, 25
 unit normal vector, 731
 unit of force, 313
 unit speed parametrization, See arc length parametrization
 unit tangent vector, 727–730
 unit vector, 646
 Frenet Frame and, 732
 unit vector fields, 912, 913, 917
 unstable equilibrium, 515
 upper bound, A8
Valladas, Helene, 350
value
 of function, 4
variables
 change of, 872, See change of variables dependent, 4
 freezing of, 867
 functions of two or more, 755, 756
 independent, 4, 803
 random, 443, 444, 887, 888
 vector addition, 643, 644, 647, 654
 vector algebra, 643–648
 basis properties of, 645
 vector fields, 911–918, 935–944
 basic operations on, 1005
 conservative, 915–918, 935–944
 constant, 912
 curl of, 914–916
 divergence of, 913, 914
 domain of, 911
 electric, 965, 966
 flux of, 961, 991
 gravitational, 955
 incompressible, 914, 1002, 1008
 inverse-square, 917, 939, 1003, 1005
 irrotational, 1008
 Laplacian of, 1006
 magnetic, 965, 966
 nonconservative, 916
 normal component of, 960
 operations on, 913
 potential functions for, 939
 radial, 912, 913, 917
 sinks and, 914
 source and, 914
 source density of, 1001
 surface integrals of, 960–967
 unit, 912, 913, 917
 vortex, 934, 942, 943, 1005
 vector line integrals, 925–927, 931, 967
 additivity of, 928
 applications of, 929
 computing, 926
 curve of, 928
 definition of, 925
 flux along plane curve and, 930
 linearity of, 928
 magnitude of, 927
 orientation of, 928
 properties of, 928
 vs. scalar line integrals, 925
 tangential component of, 925
 work and, 929, 930
vector potentials, 991, 1005
 vs. scalar potentials, 994
vector product, See cross product
vector subtraction, 643, 644
vector sum, 647
vector surface integrals, 960–967
vector triple product, 673
vector-valued derivatives, 713, 714, 716, 717
 computation of, 714
 definition of, 713
 vs. scalar-valued derivatives, 717
vector-valued functions, 705–709, 713–722,
 725–734, 738–751
 antiderivative of, 718
 arc length and, 723
 calculus of, 713–719
 component functions and, 705
 computation of, 713
 continuity of, 713
 coordinate functions and, 705
 curvature and, 727–734
 definition of, 705
 differentiation of, 714, 715
 Fundamental Theorem of Calculus for, 718
 integral of, 718
 length and, 722–725
 limit of, 713, 714
 motion in 3-space and, 738–743
 parameters and, 705
 planetary motion and, 747–751
 speed and, 722–725
 vectors, 641–649, 651–658, 661–665,
 acceleration, 738, 740–743
 angle between, 661–663
 angular momentum, 748
 Associative Law for, 645
 binormal, 732
 Commutative Law for, 645
 component of, 663, 642, 654, 665
 constant, 718
 cross product of, 669–676, 749
 decomposition of, 664
 direction of, 642, 656
 dot product of, 661–665, 670, 672, 807
 equivalent, 642, 643, 654
 force as, 647
 gradient, 790–800
 in the plane, 641–649
 in three dimensions, 651–658
 Law of Vector Addition for, 647
 length (magnitude) of, 641, 642, 654
 linear combination of, 645, 646, 655
 normal, 680, 681, 799, 800, 949, 950
 notation for, 641, 642, 646
 orthogonal, 662, 663
 parallel, 641, 644, 654
 Parallelogram Law for, 643, 644, 647, 654
 parametrization of, 656, 657, 705, 706
 perpendicular
 position, 641, 654
 projection of, 663, 664
 right-hand rule for, 651
 standard basis, 646, 655
 tangent, 716, 717
 translation of, 641, 654
 Triangle Inequality for, 648
 unit, 646, 731, 732
 unit normal, 731
 unit tangent, 727–730
 velocity, 716, 723, 738
 vs. scalars, 643
 zero, 642
 velocity, 40
 angular, 609, 886, 978
 average, 41
 escape, 319
 graphing of, 41, 42
 instantaneous, 39–43
 integral of, 266
 linear motion and, 126
 rate of change and, 39
 speed and, 127
 Velocity Addition, Einstein’s Law of, 380
 velocity vectors, 716, 723, 738
 Verhulst, Pierre-François, 515
 vertical asymptote, 33, 52
 vertical line, 13
 Vertical Line Test, 5
 Vertical Line Test, 5
 vertical scalings, 8
 vertical translation, 7
 vertically simple region, 281, 850
 vertices
 of hyperbola, 628
 of parabola, 629
 Viète’s Formulas, 19
 viewing rectangle, 32, 33
 Viviani’s curve, 711
 volume, 289–291
 Cavalieri’s principle and, 291
 cross product and, 672–674
double integrals defining, 849
 as integral of cross-sectional area, 290
 of pyramids, 290
 of revolution, 299
 of right cylinder, 289
 of sphere, 290
 of sphere in higher dimensions, 868
 of spherical wedge, 877
 as surface integral, 1007
 triple integral defining, 869
 volume of revolution, 300–303, 307–310
disk method and, 299–302, 308–310
 Shell Method and, 307–310
 washer method and, 300–302, 308–310
 Von Bertalanffy growth function, 328
 vortex field, 934, 942, 943
 vortex vector field, 1005
 washer method, 300–302, 308–310
 wave equation, 1006
 waves
 electromagnetic, 1006
 weighted average, 884
 well-behaved functions, 20, 21
 whole numbers, 1
 Wigner, Eugene, 32
 Wiles, Andrew, A5
 wind-chill temperature, 781
 winding number, 943
 Wine Barrel Problem, 211
 work, 313, 315, 316
 against gravity, 939
 in conservative force field, 938
 definition of, 313, 314
 energy and, 314
 vector line integral and, 929, 930
 Work-Energy Theorem, 318
 Wright, Edward, 400
 x Rule, 107, 108
 x-axis, 3
 x-coordinate, 3
 y-axis, 3
 y-coordinate, 3
 yearly multiplier, 352
Z (set of integers), 1
 zero of function, 4, 84, 85
 zero vector, 642
ELEMENTARY FUNCTIONS

Power Functions $f(x) = x^n$

$f(x) = x^n$, n a positive integer

Asymptotic behavior of a polynomial function of even degree and positive leading coefficient

Asymptotic behavior of a polynomial function of odd degree and positive leading coefficient

$f(x) = x^{-n} = \frac{1}{x^n}$

Inverse Trigonometric Functions

$\arcsin x = \sin^{-1} x = \theta$

$\Leftrightarrow \sin \theta = x, \quad -\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$

$\arccos x = \cos^{-1} x = \theta$

$\Leftrightarrow \cos \theta = x, \quad 0 \leq \theta \leq \pi$

$\arctan x = \tan^{-1} x = \theta$

$\Leftrightarrow \tan \theta = x, \quad -\frac{\pi}{2} < \theta < \frac{\pi}{2}$
Exponential and Logarithmic Functions

\[\log_a x = y \iff a^y = x \]
\[\ln x = y \iff e^y = x \]
\[\log_a (a^x) = x \quad a^{\log_a x} = x \]
\[\ln(e^x) = x \quad e^{\ln x} = x \]
\[\log_a 1 = 0 \quad \log_a a = 1 \]
\[\ln 1 = 0 \quad \ln e = 1 \]
\[\log_a (xy) = \log_a x + \log_a y \]
\[\log_a \left(\frac{x}{y} \right) = \log_a x - \log_a y \]
\[\log_a (x^r) = r \log_a x \]

\[\lim_{x \to \infty} a^x = \infty, \quad a > 1 \]
\[\lim_{x \to -\infty} a^x = 0, \quad 0 < a < 1 \]

Hyperbolic Functions

\[\sinh x = \frac{e^x - e^{-x}}{2} \]
\[\cosh x = \frac{e^x + e^{-x}}{2} \]
\[\tanh x = \frac{\sinh x}{\cosh x} \]
\[\coth x = \frac{\cosh x}{\sinh x} \]
\[\operatorname{csch} x = \frac{1}{\sinh x} \]
\[\operatorname{sech} x = \frac{1}{\cosh x} \]

\[\sinh(x + y) = \sinh x \cosh y + \cosh x \sinh y \]
\[\cosh(x + y) = \cosh x \cosh y + \sinh x \sinh y \]
\[\sinh 2x = 2 \sinh x \cosh x \]
\[\cosh 2x = \cosh^2 x + \sinh^2 x \]

Inverse Hyperbolic Functions

\[y = \sinh^{-1} x \iff \sinh y = x \]
\[y = \cosh^{-1} x \iff \cosh y = x \quad \text{and} \quad y \geq 0 \]
\[y = \tanh^{-1} x \iff \tanh y = x \]
\[\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1 + x}{1 - x} \right) \quad -1 < x < 1 \]
DIFFERENTIATION

Differentiation Rules

1. \(\frac{d}{dx} (c) = 0 \)

2. \(\frac{d}{dx} (x) = 1 \)

3. \(\frac{d}{dx} (x^n) = nx^{n-1} \) (Power Rule)

4. \(\frac{d}{dx} (cf(x)) = cf'(x) \)

5. \(\frac{d}{dx} (f(x) + g(x)) = f'(x) + g'(x) \)

6. \(\frac{d}{dx} (f(x)g(x)) = f(x)g'(x) + g(x)f'(x) \) (Product Rule)

7. \(\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} \) (Quotient Rule)

8. \(\frac{d}{dx} f(g(x)) = f'(g(x))g'(x) \) (Chain Rule)

9. \(\frac{d}{dx} (f(x))^n = nf(x)^{n-1}f'(x) \) (General Power Rule)

10. \(\frac{d}{dx} f(kx + b) = kf'(kx + b) \)

11. \(g'(x) = \frac{1}{f'(g(x))} \) where \(g(x) \) is the inverse \(f^{-1}(x) \)

12. \(\frac{d}{dx} \ln f(x) = \frac{f'(x)}{f(x)} \)

Trigonometric Functions

13. \(\frac{d}{dx} \sin x = \cos x \)

14. \(\frac{d}{dx} \cos x = -\sin x \)

15. \(\frac{d}{dx} \tan x = \sec^2 x \)

16. \(\frac{d}{dx} \csc x = -\csc x \cot x \)

17. \(\frac{d}{dx} \sec x = \sec x \tan x \)

18. \(\frac{d}{dx} \cot x = -\csc^2 x \)

Inverse Trigonometric Functions

19. \(\frac{d}{dx} (\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}} \)

20. \(\frac{d}{dx} (\cos^{-1} x) = -\frac{1}{\sqrt{1-x^2}} \)

21. \(\frac{d}{dx} (\tan^{-1} x) = \frac{1}{1+x^2} \)

22. \(\frac{d}{dx} (\csc^{-1} x) = -\frac{1}{|x|\sqrt{x^2-1}} \)

23. \(\frac{d}{dx} (\sec^{-1} x) = \frac{1}{|x|\sqrt{x^2-1}} \)

24. \(\frac{d}{dx} (\cot^{-1} x) = -\frac{1}{1+x^2} \)

Exponential and Logarithmic Functions

25. \(\frac{d}{dx} (e^x) = e^x \)

26. \(\frac{d}{dx} (a^x) = (\ln a)a^x \)

27. \(\frac{d}{dx} \ln |x| = \frac{1}{x} \)

28. \(\frac{d}{dx} (\log_a x) = \frac{1}{(\ln a)x} \)

Hyperbolic Functions

29. \(\frac{d}{dx} (\sinh x) = \cosh x \)

30. \(\frac{d}{dx} (\cosh x) = \sinh x \)

31. \(\frac{d}{dx} (\tanh x) = \text{sech}^2 x \)

32. \(\frac{d}{dx} (\csc x) = -\csc x \cot x \)

33. \(\frac{d}{dx} (\sec x) = -\sec x \tan x \)

34. \(\frac{d}{dx} (\cot x) = -\csc^2 x \)

Inverse Hyperbolic Functions

35. \(\frac{d}{dx} (\sinh^{-1} x) = \frac{1}{\sqrt{1+x^2}} \)

36. \(\frac{d}{dx} (\cosh^{-1} x) = \frac{1}{\sqrt{x^2-1}} \)

37. \(\frac{d}{dx} (\tanh^{-1} x) = \frac{1}{1-x^2} \)

38. \(\frac{d}{dx} (\csch^{-1} x) = -\frac{1}{|x|\sqrt{x^2+1}} \)

39. \(\frac{d}{dx} (\sech^{-1} x) = -\frac{1}{x\sqrt{1-x^2}} \)

40. \(\frac{d}{dx} (\coth^{-1} x) = \frac{1}{1-x^2} \)
INTEGRATION

Substitution
If an integrand has the form \(f(u(x))u'(x) \), then rewrite the entire integral in terms of \(u \) and its differential \(du = u'(x) \, dx \):
\[
\int f(u(x))u'(x) \, dx = \int f(u) \, du
\]

Integration by Parts Formula
\[
\int u(x)v'(x) \, dx = u(x)v(x) - \int u'(x)v(x) \, dx
\]

TABLE OF INTEGRALS

<table>
<thead>
<tr>
<th>Basic Forms</th>
<th>Integration by Parts Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int u^n , du = \frac{u^{n+1}}{n+1} + C), (n \neq -1)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \frac{du}{u} = \ln</td>
<td>u</td>
</tr>
<tr>
<td>(\int e^u , du = e^u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int a^u , du = \frac{a^u}{\ln a} + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \sin u , du = -\cos u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \cos u , du = \sin u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \sec^2 u , du = \tan u + C)</td>
<td>(\int \sec u , du = \tanh^{-1}</td>
</tr>
<tr>
<td>(\int \csc^2 u , du = -\cot u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \tan u , du = \ln</td>
<td>\sec u</td>
</tr>
<tr>
<td>(\int \cot u , du = \ln</td>
<td>\sin u</td>
</tr>
<tr>
<td>(\int \sec u , du = \ln</td>
<td>\sec u + \tan u</td>
</tr>
<tr>
<td>(\int \csc u , du = \ln</td>
<td>\csc u - \cot u</td>
</tr>
<tr>
<td>(\int \frac{du}{\sqrt{a^2 - u^2}} = \sin^{-1} \left(\frac{u}{a} \right) + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \frac{du}{a^2 + u^2} = \frac{1}{a} \tan^{-1} \left(\frac{u}{a} \right) + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
</tbody>
</table>

Exponential and Logarithmic Forms
<table>
<thead>
<tr>
<th>Exponential and Logarithmic Forms</th>
<th>Integral by Parts Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int u e^{au} , du = \frac{1}{a^2} (au - 1) e^{au} + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int u^n e^{au} , du = \frac{1}{a^n} u^n e^{au} - \frac{n}{a} \int u^{n-1} e^{au} , du)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int e^{au} \sin bu , du = \frac{a e^{au}}{a^2 + b^2} (a \sin bu - b \cos bu) + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int e^{au} \cos bu , du = \frac{b e^{au}}{a^2 + b^2} (a \cos bu + b \sin bu) + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \ln u , du = u \ln u - u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
</tbody>
</table>

Hyperbolic Forms
<table>
<thead>
<tr>
<th>Hyperbolic Forms</th>
<th>Integral by Parts Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int \sinh u , du = \cosh u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \cosh u , du = \sinh u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \tanh u , du = \ln \cosh u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \coth u , du = \ln</td>
<td>\sinh u</td>
</tr>
<tr>
<td>(\int \sech u , du = \tanh^{-1}</td>
<td>\sinh u</td>
</tr>
<tr>
<td>(\int \csch u , du = \ln</td>
<td>\tanh \frac{1}{2} u</td>
</tr>
<tr>
<td>(\int \sech^2 u , du = \tanh u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \csch^2 u , du = -\coth u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \sech u \tanh u , du = -\sech u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \csch u \coth u , du = -\csch u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
</tbody>
</table>

Trigonometric Forms
<table>
<thead>
<tr>
<th>Trigonometric Forms</th>
<th>Integral by Parts Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\int \sin^2 u , du = \frac{1}{2} u - \frac{1}{4} \sin 2u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \cos^2 u , du = \frac{1}{2} u + \frac{1}{4} \sin 2u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \tan^2 u , du = \tan u - u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \cot^2 u , du = -\cot u - u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \sin^3 u , du = -\frac{1}{3} (2 + \sin^2 u) \cos u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \cos^3 u , du = \frac{1}{3} (2 + \cos^2 u) \sin u + C)</td>
<td>(\int \frac{1}{u \ln u} , du = \ln</td>
</tr>
<tr>
<td>(\int \tan^3 u , du = \frac{1}{2} \tan^2 u + \ln</td>
<td>\cos u</td>
</tr>
<tr>
<td>(\int \cot^3 u , du = -\frac{1}{2} \cot^2 u - \ln</td>
<td>\sin u</td>
</tr>
<tr>
<td>(\int \sec^3 u , du = \frac{1}{2} \sec u \tan u + \frac{1}{2} \ln</td>
<td>\sec u + \tan u</td>
</tr>
</tbody>
</table>
Inverse Trigonometric Forms

58. \[\int \sin^{-1} u \, du = u \sin^{-1} u + \sqrt{1 - u^2} + C \]
59. \[\int \cos^{-1} u \, du = u \cos^{-1} u - \sqrt{1 - u^2} + C \]
60. \[\int \tan^{-1} u \, du = u \tan^{-1} u - \frac{1}{2} \ln(1 + u^2) + C \]
61. \[\int u \sin^{-1} u \, du = \frac{2u^2 - 1}{4} \sin^{-1} u + \frac{u\sqrt{1 - u^2}}{4} + C \]
62. \[\int u \cos^{-1} u \, du = \frac{2u^2 - 1}{4} \cos^{-1} u - \frac{u\sqrt{1 - u^2}}{4} + C \]
63. \[\int u \tan^{-1} u \, du = \frac{u^2 + 1}{2} \tan^{-1} u - \frac{u}{2} + C \]
64. \[u^n \sin^{-1} u = \frac{1}{n+1} \left(u^{n+1} \sin^{-1} u - \int u^n \frac{du}{\sqrt{1 - u^2}} \right), \quad n \neq -1 \]
65. \[u^n \cos^{-1} u = \frac{1}{n+1} \left(u^{n+1} \cos^{-1} u + \int u^n \frac{du}{\sqrt{1 - u^2}} \right), \quad n \neq -1 \]
66. \[u^n \tan^{-1} u = \frac{1}{n+1} \left(u^{n+1} \tan^{-1} u - \int u^n \frac{du}{1 + u^2} \right), \quad n \neq -1 \]
88. \[\int \frac{du}{\sqrt{a^2 + u^2}} = \ln(u + \sqrt{a^2 + u^2}) + C \]
89. \[\int \frac{u^2 \, du}{\sqrt{a^2 + u^2}} = \frac{u}{2} \sqrt{a^2 + u^2} - \frac{a^2}{2} \ln(u + \sqrt{a^2 + u^2}) + C \]
90. \[\int \frac{du}{u\sqrt{a^2 + u^2}} = -\frac{1}{a} \ln\left(\frac{\sqrt{a^2 + u^2}}{u}\right) + C \]
91. \[\int \frac{du}{u^2\sqrt{a^2 + u^2}} = \frac{a}{a^2\sqrt{a^2 + u^2}} + C \]
92. \[\int \frac{du}{(a^2 + u^2)^{3/2}} = \frac{-u}{a^3\sqrt{a^2 + u^2}} + C \]

Forms Involving \(a + bu\)
93. \[\int \frac{u \, du}{a + bu} = \frac{1}{b^2} \ln\left|a + bu\right| + C \]
94. \[\int \frac{u^2 \, du}{a + bu} = \frac{1}{2b^3} \left(2a(bu - 2a) + 2a^2 \ln|a + bu|\right) + C \]
95. \[\int \frac{du}{a + bu} = \frac{1}{a} \ln\left|\frac{\sqrt{a^2 + bu}}{u}\right| + C \]
96. \[\int \frac{u \, du}{u(a + bu)} = \frac{1}{a} \ln\left|\frac{u}{a + bu}\right| + C \]
97. \[\int \frac{du}{(a + bu)^2} = \frac{1}{a} \ln\left|\frac{a + bu}{u}\right| + C \]
98. \[\int \frac{u^2 \, du}{(a + bu)^2} = \frac{1}{b^3} \left(a + bu - \frac{a^2}{a + bu} - 2a \ln|a + bu|\right) + C \]
99. \[\int \frac{du}{u\sqrt{a + bu}} = \frac{2}{b\sqrt{a^2 + bu}} + C \]
100. \[\int \frac{u \, du}{\sqrt{a + bu}} = \frac{2}{b} \left(\frac{a + bu}{a}\right) + C \]

Forms Involving \(\sqrt{2au - u^2}, a > 0\)
101. \[\int \frac{u \, du}{\sqrt{2au - u^2}} = \frac{1}{2a} \ln\left|\frac{\sqrt{2au - u^2} + u}{a}\right| + C \]
102. \[\int \frac{du}{\sqrt{2au - u^2}} = \frac{\sqrt{2au - u^2} - u}{a} + C \]
103. \[\int \frac{u \, du}{\sqrt{2au - u^2}} = \frac{2a^2}{6a} \ln\left(\frac{\sqrt{2au - u^2} + a}{u}\right) + C \]
104. \[\int \frac{du}{\sqrt{2au - u^2}} = \frac{2}{a} \ln\left(\frac{\sqrt{2au - u^2} + a}{u}\right) + C \]

ESSENTIAL THEOREMS

Intermediate Value Theorem
If \(f(x)\) is continuous on a closed interval \([a, b]\) and \(f(a) \neq f(b)\), then for every value \(M\) between \(f(a)\) and \(f(b)\), there exists at least one value \(c \in (a, b)\) such that \(f(c) = M\).

Mean Value Theorem
If \(f(x)\) is continuous on a closed interval \([a, b]\) and differentiable on \((a, b)\), then there exists at least one value \(c \in (a, b)\) such that

\[f'(c) = \frac{f(b) - f(a)}{b - a} \]

Extreme Values on a Closed Interval
If \(f(x)\) is continuous on a closed interval \([a, b]\), then \(f(x)\) attains both a minimum and a maximum value on \([a, b]\). Furthermore, if \(c \in [a, b]\) and \(f(c)\) is an extreme value (min or max), then \(c\) is either a critical point of \(f(x)\) in \((a, b)\) or one of the endpoints \(a\) or \(b\).

The Fundamental Theorem of Calculus, Part I
Assume that \(f(x)\) is continuous on \([a, b]\) and let \(F(x)\) be an antiderivative of \(f(x)\) on \([a, b]\). Then

\[\int_a^b f(x) \, dx = F(b) - F(a) \]

Fundamental Theorem of Calculus, Part II
Assume that \(f(x)\) is a continuous function on \([a, b]\). Then the area function \(A(x) = \int_a^x f(t) \, dt\) is an antiderivative of \(f(x)\), that is,

\[A'(x) = f(x) \quad \text{or equivalently} \quad \frac{d}{dx} \int_a^x f(t) \, dt = f(x) \]

Furthermore, \(A(x)\) satisfies the initial condition \(A(a) = 0\).
CALCULUS
Third Edition
Jon Rogawski and Colin Adams

Combo Hardcover 1-4641-2526-0
Combo Paperback 1-4641-7500-4
Single Variable Hardcover 1-4641-7501-2
Single Variable Paperback 1-4641-7502-0
Multivariable Hardcover 1-4641-8689-8
Alternate Early Transcendentals version is also available

In addition to these ordering options, we also offer custom printing. Contact your W. H. Freeman Publishing representative for more information.

ABOUT THE COVER In 1943, mechanical engineer Richard James was testing springs of various sizes, metals, and tensions, when a discarded model fell off his desk and "walked" end over end down a pile of books to the floor. The Slinky was born. Now, six decades later, more than 250 millionSlinky's have been sold, and the total amount of wire used in all of them will wrap around the Earth 126 times. The Slinky has also found a home in calculus classrooms where its shape and flexibility make it a useful teaching device. For instance, some instructors have students find the length of a Slinky by computing an arc length integral, while others use it with its ends held together to help students visualize a doughnut shaped torus.

Cover photo: ayzek/Shutterstock

ONLINE HOMEWORK OPTIONS

WebAssign www.webassign.net/freeman
W. H. Freeman has partnered with WebAssign to provide a powerful, easy-to-use online homework option. WebAssign Premium integrates the book's exercises into a popular and trusted online homework system, making it easy to assign algorithmically generated homework and quizzes. Algorithmic exercises offer the instructor optional algorithmic solutions. WebAssign Premium for Rogawski/Adams' Calculus, Third Edition, offers thousands of exercises, as well as access to additional resources, including LearningCurve, Dynamic Figures (some with voiceovers), CalcClips whiteboard tutorials, and a "Show My Work" feature. In addition, WebAssign Premium is available with a fully customizable e-Book option that includes links to interactive applets and projects.

LaunchPad www.macmillanhighered.com/catalog/launchpad
LaunchPad, our new course space, combines an interactive e-Book with high-quality multimedia content and ready-made assessment options. Prebuilt, curated units are easy to assign or adapt with your own materials and are accompanied by a gradebook that provides a clear window on performance for your whole class, for individual students, and for individual assignments. Use LaunchPad on its own or integrate it with your school's learning management system so your class is always on the same page.

Assets integrated into LaunchPad include:
Interactive e-Book: Every LaunchPad e-Book comes with powerful study tools for students, video and multimedia content, and easy customization for instructors. Students can search, highlight, and bookmark, making it easier to study and access key content. And instructors can make sure their class gets just the book they want to deliver: customize and rearrange chapters, add and share notes and discussions, and link to quizzes, activities, and other resources.

LearningCurve provides students and instructors with powerful adaptive quizzing in a gamelike format, direct links to the e-Book, and instant feedback. The quizzing system features questions tailored specifically to the text and adapts to students' responses, providing questions at different difficulty levels and topics based on student performance.

Enhanced! Dynamic Figures: Over 250 figures from the text have been recreated in a new interactive format for students and instructors to manipulate and explore, making the visual aspects and dimensions of calculus concepts easier to grasp. New: Select Dynamic Figures now include voice-over instructions and assessments.

CalcClips: These whiteboard tutorials show students how to solve key problems step by step.

SolutionMaster With this innovative web-based digital tool, instructors can provide a secure solutions file for any assignment from the textbook to their students. Solutions are easy to generate and can be exported in .pdf format for convenient downloading, posting, and printing.

WeBWorK www.webwork.maa.org
W. H. Freeman offers thousands of algorithmically generated questions (with full solutions) through this free, open-source, online homework system created at the University of Rochester. Adopters also have access to a shared national library test bank with thousands of additional questions, including 2,500 problem sets matched to the book's table of contents.