LINEAR ALGEBRA FROM MODULE THEORY
PERSPECTIVE

KIM, SUNGJIN

1. Introduction

We provide here a list of linear algebra theorems that can be done easily by structure theorems.

Lemma 1.1 (Smith Normal Form). Let \(A \) be a nonzero \(m \times n \) matrix over a principal ideal domain (PID) \(R \). There exist invertible \(m \times m \) and \(n \times n \) matrices \(S, T \) so that

\[
SAT = \text{Diag}(\alpha_1, \cdots, \alpha_r),
\]

where \(\alpha_i | \alpha_{i+1} \) for \(i < r \), here the last few terms can be 0.

The proof uses the property of PID, but basically it is elementary row-column operation.

Lemma 1.2 (Structure Theorem over PID, Invariant factor decomposition). Every finitely generated module \(M \) over a PID \(R \) is isomorphic to a unique one of the form

\[
R^f \bigoplus \bigoplus_{i=1}^r R/(d_i),
\]

where \(d_i | d_{i+1} \), and \(d_i \neq (0) \). The summands are called the invariant factors.

Lemma 1.3 (Structure Theorem over PID, Primary decomposition). Conditions are the same as above, \(M \) is isomorphic to a unique one of the form

\[
R^f \bigoplus \bigoplus_{i=1}^s R/(p_i^{r_i}),
\]

where \(p_i \) are prime ideals.

This is an application of Smith Normal Form to a presentation \(R^r \longrightarrow R^s \).

2. Theorems

The key here is to look at a \(n \times n \) matrix \(A \) over a field \(\mathbb{F} \) as \(\mathbb{F}[x] \)-module element, namely \(x \). We can regard \(\mathbb{F}^n \) as \(\mathbb{F}[x] \)-module with \(p(x) \in \mathbb{F}[x] \) acting as \(p(A) \in M_{n \times n}(\mathbb{F}) \), denote it as \(M^A \). Note that for any field \(\mathbb{F} \), the polynomial ring \(\mathbb{F}[x] \) is a PID. Our application of the structure theorem in invariant factor form is
Theorem 2.1 (Rational Canonical Form-Invariant factor form). Let A be a $n \times n$ matrix over a field \mathbb{F}. Then A is similar to a unique block diagonal matrix of the form
\begin{equation}
\oplus_{i=1}^{r} C(f_i),
\end{equation}
where $f_i \mid f_{i+1}$, and $C(f_i)$ is the companion matrix associated to f_i.

Using primary decomposition, we have

Theorem 2.2 (Rational Canonical Form-Primary decomposition). Conditions are the same as above, A is similar to a unique block diagonal matrix of the form
\begin{equation}
\oplus_{i=1}^{s} C(p_i^{r_i}),
\end{equation}
where p_i are irreducible polynomials in $\mathbb{F}[x]$.

For the proof, use structure theorem to the $\mathbb{F}[x]$-module M_A as described above.

If the ground field is algebraically closed, then we have Jordan Canonical Form.

Theorem 2.3 (Jordan Canonical Form). Let A be a $n \times n$ matrix over a field \mathbb{F}. Then A is similar to a unique block diagonal matrix of the form
\begin{equation}
\oplus_{i=1}^{s} J(\lambda_i, r_i),
\end{equation}
where λ_i are the eigenvalues of A, and $J(\lambda_i, r_i)$ is the Jordan block of diagonal λ_i with size $r_i \times r_i$.

Now, the problem reduces to determining invariant factors. We use Smith Normal Form to do this.

Theorem 2.4 (Invariant Factors). Let A be a $n \times n$ matrix over a field \mathbb{F}. Then invariant factors can be recovered from the Smith Normal Form of $xI - A$. More precisely, if $S(xI - A)T = \text{Diag}(f_1, \cdots, f_n)$ for some invertible matrices S, T and $f_i \mid f_{i+1}$, then f_i are the invariant factors of A.

Here, first few terms can be 1. The proof starts from investigating the exact sequence
\begin{equation}
0 \rightarrow \mathbb{F}[x]^n \xrightarrow{xI - A} \mathbb{F}[x]^n \xrightarrow{\pi} \mathbb{F}[x]^n / \text{Im}(xI - A) \rightarrow 0.
\end{equation}

Then we see that
\[M^A \simeq \mathbb{F}[x]^n / \text{Im}(xI - A). \]

Corollary 2.1 (Similarity of transpose). Let A be a $n \times n$ matrix over a field \mathbb{F}. Then A and its transpose A^T are similar.

Proof. Write $xI - A = PDQ$ where P, Q are invertible in $M_{n \times n}(\mathbb{F}[x])$ and D diagonal. Taking transpose, we have
\[xI - A^T = Q^T D^T P^T = Q^T DP^T. \]

Since Q^T, P^T are also invertible, we see that $xI - A$ and $xI - A^T$ have the same invariant factors. \qed
Corollary 2.2 (Similarity Preserved by Field Extension). Let A and B be $n \times n$ matrices over a field K. Let L be a field extension of K. Then A and B are similar over K if and only if they are similar over L.

Proof. \Rightarrow is obvious.
\Leftarrow Let $\{A_i\}$ be the complete set of invariant factors of A, and $\{B_i\}$ that of B. Then we have
\[
L \otimes_K (\bigoplus_i K[x]/(A_i)) = \bigoplus_i L[x]/(A_i),
\]
and
\[
L \otimes_K (\bigoplus_i K[x]/(B_i)) = \bigoplus_i L[x]/(B_i).
\]
Since A and B are similar over L, we see that the RHS of the above formulas should be equal. Hence the sets of invariant factors $\{A_i\}$ and $\{B_i\}$ are identical, yielding that A and B are similar over K. □

Theorem 2.5 (Centralizer of a matrix). Let A be a $n \times n$ matrix over F. Let $C_A = \{B \in M_{n \times n}(F) \mid AB = BA\}$. Then the minimal dimension of C_A over F is n, and this is obtained precisely when the minimal polynomial and characteristic polynomial of A coincide.

The idea of proof is interpreting C_A as an $F[x]$-endomorphism algebra of the $F[x]$-module M_A (as described above). Use the Rational Canonical Form-Primary decomposition. We have the following formula for $\dim_F C_A$.

\[
\dim_F C_A = \dim_F \text{End}_F[x]M_A = \sum_p (\deg p) \sum_{i,j} \min\{\lambda_{p,i}, \lambda_{p,j}\},
\]

where the first sum is over all irreducible polynomials p that divides the characteristic polynomial of A, and the indices i, j of second double sum is from the partition $\lambda_p = \sum_i \lambda_{p,i}$ that indicates the powers of p in p-primary part of M_A.

We can generalize this idea to solve the Sylvester Equation.

Theorem 2.6 (Sylvester Equation). Let A be a $m \times m$ matrix, B be a $n \times n$ matrix, and C be a $m \times n$ matrix over F. Consider a matrix equation $AX + XB = C$. Then

- The matrix equation $AX + XB = C$ has a unique solution if and only if primary decompositions of M^A and M^{-B} have no common irreducible polynomial.
- Let $C_{A,B} = \{X \in M_{m \times n}(F) \mid AX + XB = 0\}$. Then we have

\[
\dim_F C_{A,B} = \dim_F \text{Hom}_F[x](M^{-B}, M^A) = \sum_p (\deg p) \sum_{i,j} \min\{\lambda_{p,i}, \mu_{p,j}\},
\]

where the first sum is over all irreducible polynomials p which are common in the primary decompositions of M^A and M^{-B}, and the indices i, j of second double sum is from the partition $\lambda_p = \sum_i \lambda_{p,i}$ that indicates the powers of p in p-primary part of M^A, $\mu_p = \sum_j \mu_{p,j}$ that of powers of p in p-primary part of M^{-B}.
Corollary 2.3 (Symmetric Similarity transform, [2]). Let A be a $n \times n$ matrix over \mathbb{F}. Suppose also that the minimal polynomial and characteristic polynomial of A coincide. Then any invertible matrix X satisfying $XA = A^T X$ is symmetric.

Proof. Consider the following system (ΣA) of matrix equations.

(9) $XA = A^T X,$

(10) $X = X^T.$

Note that the below system is equivalent to (ΣA).

(11) $XA = A^T X^T,$

(12) $X = X^T.$

The linear transform $X \mapsto (XA - A^T X^T, X - X^T)$ has rank at most $\frac{n^2 - n}{2}$ since both components are skew-symmetric. Thus, the solution space of the system (ΣA) has dimension at least n.

Now, fix a non-singular transform X_0 such that $X_0 A = A^T X_0$. Then

$XA = A^T X$ if and only if $X_0^{-1} X A = AX_0^{-1} X$.

This yields an isomorphism $X \mapsto X_0^{-1} X$ between \{ X | $XA = A^T X$ \} and $C_A = \{ X' | X' A = A X' \}$. Since $\dim C_A = n$, the solution space for (9) has dimension n. Since the solution space for (ΣA) has dimension $\geq n$, the dimension must be exactly n. Hence, every matrix X satisfying (9) must also satisfy (10). □

Theorem 2.7 (Double Commutant Theorem, [3]). Let A, B be $n \times n$ matrix over a field \mathbb{F} such that any matrix that commutes with A also commutes with B. Then $B = p(A)$ for some $p \in \mathbb{F}[x]$.

Proof. We use rational canonical form-invariant factor form(Theorem 2.1). Then we have

$M^A \simeq \mathbb{F}[x]/P_1 \oplus \cdots \oplus \mathbb{F}[x]/P_r,$

where $P_i = (p_i), p_i | p_{i+1}$. This gives invariant subspace decomposition,

$M^A = \bigoplus_{i=1}^r M_i,$

where $M_i \simeq \mathbb{F}[x]/P_i$.

Let $\pi_i : M^A \mapsto M_i$ be the projection, and $\pi_{ij} : M_i \mapsto M_j$ be the natural projection for $i > j$. Extend π_{ij} linearly to M^A by assigning 0 on all $M_k (k \neq i)$. Then all π_i and π_{ij} commute with A, thus commute with B. Therefore, each M_i is A-invariant, thus it is also B-invariant. Let $e_i \in M_i$ be the element corresponding to $1 + P_i \in \mathbb{F}[x]/P_i$.

We see that there is $p(x) \in \mathbb{F}[x]$ such that $Be_r = p(A)e_r$. We claim that $Be_i = p(A)e_i$ for all $i < r$, and hence $B = p(A)$.

$Be_i = B\pi_{r,i}e_r = \pi_{r,i}Be_r = \pi_{r,i}p(A)e_r = p(A)\pi_{r,i}e_r = p(A)e_i.$
This completes the proof of our claim.

Note that [1] also contains proof of Theorem 2.6, 2.7 using Jordan canonical form. However, the proofs provided here are more elegant and conceptual.

References