Isoperimetric Inequality. (E. Schmidt)

\[l: \text{perimeter} \]
\[A: \text{area,} \]
\[A \leq \frac{l^2}{4\pi} \]

Assumptions:
1. The boundary is a simple closed curve.
2. The boundary is parametrized by
 \[\Gamma(s) = (x(s), y(s)) \text{ for } [-\pi, \pi] \]
 where \(\Gamma \) is continuous, piecewise \(C^1 \).
3. \(\Gamma(s) \) is the arc-length parametrization
 so \(|\Gamma'(s)| = 1 \) for all \(s \).

Then \(l = 2\pi \). We prove \(A \leq \pi \).

Green's Theorem:

\[\iint_\Omega \left(\frac{\partial M}{\partial x} - \frac{\partial L}{\partial y} \right) \, dx \, dy = \oint_\gamma L \, dx + M \, dy \]

We have by taking \(M = x \),

\[A = \int_\pi x \, dy = \int_{-\pi}^{\pi} x(s) y'(s) \, ds \]
Let \(x(s) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos ns + b_n \sin ns) \)
(pointwise convergence holds)

Without loss of generality, by shifting \(x \)
if necessary, we can assume that \(a_0 = 0 \).

Similarly, \(y(s) = \frac{c_0}{2} + \sum_{n=1}^{\infty} (c_n \cos ns + d_n \sin ns) \)
and we can assume that \(c_0 = 0 \). Thus,

\[
x(s) = \sum_{n=1}^{\infty} (a_n \cos ns + b_n \sin ns)
\]

\[
y(s) = \sum_{n=1}^{\infty} (c_n \cos ns + d_n \sin ns)
\]

and pointwise convergence hold for both.

On the other hand, by integration by parts

\[
C_n = \frac{1}{\pi} \int_{-\pi}^{\pi} y(s) \cos ns \, ds \\
= \frac{1}{\pi} \left[y(s) \frac{\sin ns}{n} \right]_{-\pi}^{\pi} \quad - \quad \frac{1}{\pi} \int_{-\pi}^{\pi} y'(s) \frac{\sin ns}{n} \, ds
\]

\[
d_n = \frac{1}{\pi} \int_{-\pi}^{\pi} y(s) \sin ns \, ds \\
= \frac{1}{\pi} \left[y(s) \frac{-\cos ns}{n} \right]_{-\pi}^{\pi} \quad + \quad \frac{1}{\pi} \int_{-\pi}^{\pi} y'(s) \frac{\cos ns}{n} \, ds
\]
Since \(y(\pi) = y(-\pi) \),

\[
c_n = -\frac{1}{\pi} \int_{-\pi}^{\pi} y'(s) \frac{\sin ns}{n} ds
\]

\[
d_n = \frac{1}{\pi} \int_{-\pi}^{\pi} y'(s) \frac{\cos ns}{n} ds
\]

Then the Fourier series of \(y'(s) \) is

\[
y'(s) \sim \sum_{n=1}^{\infty} \left(n d_n \cos ns - n c_n \sin ns \right)
\]

\[
(\hat{y}(s)) = \sum_{n=1}^{\infty} (-n a_n)
\]

Note that \(y' \) is only assumed piecewise continuous. So, pointwise convergence is not guaranteed.

1. Since \(y' \) is piecewise continuous,
 it belongs to \(L^2([\pi, \pi]) \).
 We can use the theorems in \(L^2 \) theory such as Bessel's inequality, Parseval's theorem.

Lemma

For \(f, g \in L^2([\pi, \pi]) \),

\[
f = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)
\]

\[
g = \frac{c_0}{2} + \sum_{n=1}^{\infty} (c_n \cos nx + d_n \sin nx)
\]

Then \(\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx = \pi \left(\frac{a_0 c_0}{2} + \sum_{n=1}^{\infty} (a_n c_n + b_n d_n) \right) \)
proof. Use \(\langle f, g \rangle = \frac{1}{2} \left(\langle f+g, f+g \rangle - \langle f, f \rangle - \langle g, g \rangle \right) \)

and Parseval's theorem. In fact,

\[
\langle f+g, f+g \rangle = \pi \left(\frac{a_0^2 + c_0^2}{2} + \sum_{n=1}^{\infty} \left((a_n^2 + c_n^2) + (b_n^2 + d_n^2) \right) \right)
\]

\[
\langle f, f \rangle = \pi \left(\frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2) \right)
\]

\[
\langle g, g \rangle = \pi \left(\frac{c_0^2}{2} + \sum_{n=1}^{\infty} (c_n^2 + d_n^2) \right)
\]

Therefore

\[
\langle f, g \rangle = \pi \left(\frac{a_0 c_0}{2} + \sum_{n=1}^{\infty} (a_n c_n + b_n d_n) \right)
\]

Proposition (A in terms of Fourier coefficients)

\[A = \int_{-\pi}^{\pi} x(s) y'(s) \, ds = \pi \sum_{n=1}^{\infty} n (a_n d_n - b_n c_n) \]

By Assumption 3, \(x'(s)^2 + y'(s)^2 = 1 \) for all \(s \in [-\pi, \pi] \). Then

\[
\int_{-\pi}^{\pi} \left(x'(s)^2 + y'(s)^2 \right) \, ds = 2\pi
\]

Then by Lemma,

\[\pi \sum_{n=1}^{\infty} n^2 (a_n^2 + b_n^2 + c_n^2 + d_n^2) = 2\pi \]
Now, \(n \leq n^2 \) (equality only for \(n = 1 \))
and \(\left| a_n d_n - b_n c_n \right| \leq \frac{a_n^2 + d_n^2}{2} + \frac{b_n^2 + c_n^2}{2} \)
by AM-GM inequality.

Then the area \(A \) in proposition 1 is bounded by

\[
A = \pi \sum_{n=1}^{\infty} n (a_n d_n - b_n c_n)
\]
\[
\leq \pi \sum_{n=1}^{\infty} n^2 \left(\frac{a_n^2 + d_n^2}{2} + \frac{b_n^2 + c_n^2}{2} \right) = \frac{2\pi}{2} = \pi.
\]

Therefore, we have proved the isoperimetric inequality 1.

(Equality) Let us find the condition for equality.

If \(\frac{a_n^2 + d_n^2}{2} + \frac{b_n^2 + c_n^2}{2} > 0 \) for some \(n \geq 2 \),
then since \(n < n^2 \), the inequality \(A < \pi \).

become strict. For the equality \(A = \pi \), we must have \(a_n = b_n = c_n = d_n = 0 \) for all \(n \geq 2 \).

Also, \(a_1 = b_1 = c_1 = d_1 = 1 \).

Let \(a_i = \cos \beta , \ b_i = \sin \beta \). Then by trigonometric identity
\[
\chi(s) = \cos (s-\beta) , \ \gamma(s) = \sin (s-\beta)
\]
This is a parametrization of a circle of radius 1.