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Abstract. We prove a Moser-type theorem for self-dual harmonic 2-forms on closed 4-
manifolds, and use it to classify local forms on neighborhoods of singular circles on which the
2-form vanishes. Removing neighborhoods of the circles, we obtain a symplectic manifold
with contact boundary – we show that the contact form on each S1 × S2, after a slight
modification, must be one of two possibilities.

1. Introduction

This paper is a study of generic self-dual (SD) harmonic 2-forms near their zero sets.
Let M4 be a closed, oriented 4-manifold with b+2 (M) > 0. Then one can show that, for a
pair (ω, g) consisting of a generic metric g and a generic self-dual harmonic 2-form ω with
respect to g, ω is a transverse section of

∧+
g →M (i.e., ω is transverse to the zero section).

Here
∧+

g is the self-dual subbundle of
∧2 T ∗M → M whose fiber over a point p ∈ M is∧+

g (p) = {ω ∈ ∧2
p T

∗M | ∗g ω = ω}. For a generic (ω, g), the zero set C of ω is therefore
a disjoint union of embedded circles. Now, since ω ∧ ω = ω ∧ ∗ω, ω is nondegenerate at p
if and only if ω(p) 6= 0. That is, ω is symplectic away from C – a union of circles – and is
identically 0 on C. For more details, consult [3] or [2].

The interest in self-dual harmonic 2-forms on closed 4-manifolds comes, to a large extent,
from our attempt to understand which closed 4-manifolds have symplectic structures. We
therefore view the zero set C of ω as an obstruction to the existence of a symplectic structure
on M , and will sometimes refer to the self-dual harmonic forms as singular symplectic forms.

We briefly outline the contents of the paper. In Section 2, we introduce an almost complex
structure J which is naturally associated to our singular symplectic form ω and metric g.
Section 3 is devoted to a discussion of a version of Moser’s theorem (Theorem 2) which applies
to our singular symplectic forms. In Section 4, we use the Moser-type theorem to classify
local normal forms for the singular symplectic forms near an S1, with an eye towards global
results, and in the last section we discuss the induced contact structures on the boundaries
of N(S1).

It turns out that most of the theorems described in paper were already known to various
researchers, but never published. I hope this manuscript fills a gap in the literature, espe-
cially for readers of Taubes’ papers [6, 7, 8, 9], which contain an analysis of J-holomorphic
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curves with boundary on C, and the relationship to the nonvanishing of the Seiberg-Witten
invariants.

2. Almost complex structures

Observe first that we can define an almost complex structure J on M −C, where C is the
zero set of ω.

Proposition 1. If ω is a self-dual harmonic 2-form which is nondegenerate on M −C, then
there exists a unique almost complex structure J compatible with ω and g̃ on M − C, where
g̃ is conformally equivalent to g.

Proof. Given a metric g, any 2-form ω can be written pointwise as

ω = c1e1e2 + c2e3e4,

where (e1, ..., e4) is an oriented orthonormal basis for T ∗
pM at a point p ∈ M . Since ω is

self-dual, c1 = c2. Hence,

ω = c(e1e2 + e3e4).

We claim this c is well-defined and smooth on M −C, up to sign. Since 1
2
ω∧ω = c2e1...e4 =

c2dvg, with dvg the volume form for g, we find that c2 is determined by ω and g. Taking
advantage of M − C being connected, we may fix c on all of M − C so that c > 0.

We then set J : e1 7→ e2, e2 7→ −e1, e3 7→ e4, e4 7→ −e3. This definition is equivalent to the
following: Let g̃ = cg, and define J such that g̃(x, y) = ω(x, Jy). Hence we see that if there
is a J compatible with ω and g̃, it must be unique. Thus J is compatible with ω and g̃ = cg
on M − C. �

Observe that ω is defined on all of M and is zero on C, g̃ can be defined on all of M and
is zero on C, but is not smooth on C, while J is defined only on M − C.

3. Moser argument for self-dual harmonic 2-forms

Let {ωt}, t ∈ [0, 1], be a family of self-dual harmonic 2-forms on M , where ωt is a transverse
section of the corresponding

∧+
gt

for each t, and the following hold:

(i) [ωt] ∈ H2(M ;R) is constant.
(ii) The sets Ct = {x ∈M |ωt(x) = 0} are all S1’s; hence via an isotopy, we may assume

that C = Ct is a fixed S1.
(iii) [ωt] ∈ H2(M,C;R) does not vary with t.

For simplicity, we have assumed in (ii) that the zero set C is a single circle. The result
also holds if there are more circles, provided their number remains constant with t. If C is
contractible, then (iii) is equivalent to the following:

(iii′) Let Ω be an oriented surface with ∂Ω = C. Then
∫
Ω
ωt does not vary with t.

Then we have the following:

Theorem 2. There exists a 1-parameter family of C0-homeomorphisms of M , which is
smooth away from C and takes (M − C, ω0)

∼→(M − C, ω1) symplectically.

This generalizes the classical Moser’s theorem:



LOCAL PROPERTIES OF SELF-DUAL HARMONIC 2-FORMS ON A 4-MANIFOLD 3

Theorem 3 (Moser). Let {ωt} be a family of symplectic forms on a closed manifold M .
Provided [ωt] ∈ H2(M ;R) is fixed, there is a 1-parameter family of diffeomorphisms φt such
that φ∗

tωt = ω0.

Proof of Theorem 3. Let ηt be a 1-parameter family of 1-forms such that
dωt

dt
= dηt. (The

nontrivial part of this proof is to construct a smooth family ηt using Hodge theory.) Thus,
if we define Xt such that iXt

ωt = −ηt, then LXt
ωt = (iXt

◦ d + d ◦ iXt
)ω = −dηt, which,

integrated, gives a 1-parameter family φt such that φ∗
tωt = ω0. �

Proof of Theorem 2. The point here is to find a suitable ηt satisfying
dωt

dt
= dηt, and ηt|C = 0

“up to first order” near C.

Claim. There exists a 1-form η̃t satisfying (1)
dωt

dt
= dη̃t and (2) i∗η̃t is exact, where

i : C →M is the inclusion.

Proof of Claim. This follows from condition (iii) and the relative cohomology sequence:

H1(M ;R) → H1(C;R)
δ→ H2(M,C;R) → H2(M ;R).

In the de Rham setting, δ is given as follows: Given a class [α] ∈ H1(C;R), represented by
a closed 1-form α on C, we extend α to (a not necessarily closed) 1-form α̃ on M . Then let
δ[α] = [dα̃] ∈ H2(M,C;R).

Now choose any smooth family η̃t satisfying
dωt

dt
= dη̃t. Since

[
dωt

dt

]
= 0 ∈ H2(M,C;R),

if [i∗η̃t] 6= 0 ∈ H1(C;R), we can kill this class by adding to η̃t a closed 1-form on M which
represents a class in H1(M ;R) and which maps to [i∗η̃t] ∈ H1(C;R). This modification can
be performed smoothly with respect to t, using Hodge theory. �

Now fix an η̃t as in the Claim. Then there exists a family ft of functions on C such that
i∗η̃t = dft. Our goal is to extend ft to a function on M such that η̃t = dft “up to first order”
near C.

In order to extend ft to a neighborhood N(C) of C, first observe that there is only
one orientable rank 3 bundle over S1 (π1(BSO(3)) = 0 implies S1 → BSO(3) is homo-
topically trivial) and hence N(C) ' C × D3. Choose coordinates (θ, x1, x2, x3) such that
dθ, dx1, dx2, dx3 at (θ, 0) are orthonormal.

Setting

ft(θ, x1, x2, x3) = ft(θ, 0) +
∑

i

η̃i(θ, 0)xi +
1

2

∑

i,j

∂η̃i

∂xj
(θ, 0)xixj

on N(C), where η̃t = η̃θdθ +
∑

i η̃idxi, we have

dft(θ, x1, x2, x3) =
∂ft

∂θ
(θ, 0)dθ +

∑

i

∂η̃i

∂θ
(θ, 0)xidθ

+
∑

i

η̃i(θ, 0)dxi +
1

2

∑

i,j

∂η̃i

∂xj
(θ, 0)(xidxj + xjdxi)
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up to first order in the xi’s. Now observing that

(1)
∂f

∂θ
(θ, 0) = η̃θ(θ, 0),

(2) dη̃t(θ, 0) = 0,

and that Equation 2 gives
∂η̃θ

∂xi
(θ, 0) =

∂η̃i

∂θ
(θ, 0),

∂η̃i

∂xj
(θ, 0) =

∂η̃j

∂xi
(θ, 0),

we obtain

dft(θ, x) =

(
η̃θ(θ, 0) +

∑

i

∂η̃θ

∂xi

(θ, 0)xi

)
dθ

+
∑

i

(
η̃i(θ, 0) +

∑

j

∂η̃i

∂xj

(θ, 0)xj

)
dxi

= η̃θ(θ, x)dθ +
∑

i

η̃i(θ, x)dxi

up to first order in x.
Damping ft out to 0 outside N(C), we arrive at ηt = η̃t − dft. Finally, we obtain the

vector field Xt such that iXt
ωt = −ηt. Xt will then give rise to a 1-parameter family of

symplectomorphisms, away from C, once we establish that Xt → 0 rapidly enough as p ∈M
approaches C.

On N(C),

ωt = L1(θ, x)(dθdx1 + dx2dx3)(3)

+ L2(θ, x)(dθdx2 + dx3dx1)

+ L3(θ, x)(dθdx3 + dx1dx2)

+ Q,

where Li(θ, x) =
∑

j Lij(θ)xj and Q consists of forms in dθ and dxi, whose coefficients are
quadratic or higher in the xi. In terms of matrices, ωt corresponds to

A =




0 L1 L2 L3

−L1 0 L3 −L2

−L2 −L3 0 L1

−L3 L2 −L1 0


+ Q̃,

where Q̃ has quadratic or higher terms in the xi and the matrix is with respect to the basis
{dθ, dx1, dx2, dx3}. iXt

ωt = −ηt then becomes

(aθ a1 a2 a3)A = −(ηθ η1 η2 η3)
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with Xt = aθdθ +
∑

i aidxi. Thus,

(aθ a1 a2 a3) = −(ηθ η1 η2 η3)A
−1

=
(ηθ η1 η2 η3)

L2
1 + L2

2 + L2
3




0 L1 L2 L3

−L1 0 L3 −L2

−L2 −L3 0 L1

−L3 L2 −L1 0




up to first order in x. This means that |Xt| < k|x| near C; hence, as x → 0, |φ1(θ, x) −
φ0(θ, x)| → 0, where φt is the flow such that dφt

dt
= Xt. This concludes our proof. �

4. Local normal forms

On a neighborhood N(C) = C × D3 of C, ω can be written as in Equation 3. If ω is
generic, then it is transverse to the zero section of

∧
+
g , and (Lij(θ)) is nondegenerate for all

θ.

Lemma 4. (Lij(θ)) is symmetric and traceless.

Proof. By comparing zeroth order terms in the xi, dω = 0 implies

∂L1

∂x1
+
∂L2

∂x2
+
∂L3

∂x3
= 0,

∂L2

∂x3
− ∂L3

∂x2
= 0,

∂L3

∂x1
− ∂L1

∂x3
= 0,

∂L1

∂x2
− ∂L2

∂x1
= 0.

�

The traceless symmetric matrix (Lij(θ)) thus has a basis {v1(θ), v2(θ), v3(θ)} of eigenvec-
tors for each θ (though the vi are not necessarily continuous in θ). Since (Lij(θ)) is traceless,
either two of the eigenvalues are positive and the remaining is negative for all θ, or vice
versa. Hence, (Lij(θ)) gives rise to a splitting of R3 × S1 → S1 into a real line bundle over
S1 and a rank 2 vector bundle over S1. Such splittings are classified by homotopy classes of
maps from S1 to RP2, and π1(RP2) = Z/2Z. Hence, we have the well-known:

Proposition 5. There exist two homotopy classes of splittings of R3×S1 → S1, the oriented
one and the unoriented one.

What is rather remarkable is the following:

Theorem 6. For either of the two splitting types, there exists a SD harmonic 2-form for a
flat metric on S1×D3 whose zero set is C = S1×{0} and which has the given splitting type.

Proof. We give representatives of both types.

(A) Corresponding to the oriented splitting, we have:

ωA = x1(dθdx1 + dx2dx3)

+ x2(dθdx2 + dx3dx1)

− 2x3(dθdx3 + dx1dx2)

= ∗3µ+ dθ ∧ µ,
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where µ = d(1
2
(x2

1 + x2
2) − x2

3), and ∗3 is the ∗-operator for the flat metric on D3. Here,
(Lij(θ)) = diag(1, 1,−2), with fixed positive and negative eigenspaces. Note that ωA is
S1-invariant.

(B) We construct ωB, corresponding to the unoriented splitting, as follows. Starting with

Ω = x1(dθdx1 + dx2dx3)

+ x2(dθdx2 + dx3dx1)

− 2x3(dθdx3 + dx1dx2)

on [0, 2π] ×D3, we glue φ : {2π} ×D3 → {0} ×D3 by sending

θ 7→ θ − 2π

x1 7→ x1

x2 7→ −x2

x3 7→ −x3.

One easily verifies that φ∗Ω = Ω. �

Theorem 7. Given a generic SD harmonic 2-form ω on M , there exists a 1-parameter
family of closed 2-forms ωt, t ∈ [0, 1], on M which satisfy the following:

(1) ω0 = ω.
(2) The ωt are symplectic away from their common zero set C.
(3) ωt = ω except on a neighborhood N(C) of C.
(4) On each connected component of N(C), ω1 is (up to sign) one of the two local forms

ωA or ωB of Theorem 6.
(5) [ωt] ∈ H2(M ;R) is independent of t.

Proof. Suppose for simplicity that the zero set C of the SD 2-form ω is a single circle.
Assume that ω on N(C) gives rise to an oriented splitting, i.e., we are in case (A). (Case
(B) is identical.) After an orthonormal change of frame, we may write

ω = (L11(θ)x1 + L12(θ)x2)(dθdx1 + dx2dx3)

+ (L21(θ)x1 + L22(θ)x2)(dθdx2 + dx3dx1)

+ λ3(θ)x3(dθdx3 + dx1dx2)

+ Q,

with, say, (Lij(θ))1≤i,j≤2 positive definite and λ3(θ) < 0. Here, the Lij(θ) and λ3(θ) are
differentiable in θ.

Now, take a 1-parameter family βt = (1 − t)ω + tωA on N(C). After shrinking N(C) if
necessary, βt is symplectic on N(C) − C. Using a local version of our Moser argument (see
the proof of Theorem 2), we see that there exist homeomorphisms

φt : (N0(C), β0 = ω)
∼→ (Nt(C), βt),

where Nt(C) are small neighborhoods of C whose boundary depend smoothly on t, φt = id
on C, and φt is smooth away from C. The φt allow us to remove (N0(C), ω) and graft on
(Nt(C), βt). Hence there exists a global family ωt on M with ω0 = ω and ω1|N(C) = ωA,
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after further shrinking N(C). Moreover, the perturbation can be performed in an arbitrarily
small neighborhood of C and without altering the cohomology class. �

In essence, Theorem 7 tells us that, in studying the singular circles of ω from a global
perspective, we may assume that the zeros are either (A) or (B).

5. Contact structures on the boundaries

In this section we investigate the boundary properties of ωA and ωB. More precisely, we
have:

Theorem 8. There exist contact forms λA and λB on ∂N(C) = S1×S2 such that dλA = i∗ωA

and dλB = i∗ωB, where i is the inclusion S1 × S2 ↪→ N(C) = S1 ×D3.

Proof. (A) Consider the following S1-invariant 1-form

λ = −1

2
(x2

1 + x2
2 − 2x2

3)dθ + x2x3dx1 − x1x3dx2

on N(C). We then compute that dλ = ωA on N(C) and

∑

i

xidxi ∧ λ ∧ dλ =

(
1

2
(x2

1 + x2
2)(x

2
1 + x2

2 + 2x2
3) + 2x4

3

)
dθdx1dx2dx3.

Since S1 × S2 = {
∑

i x
2
i = 1} is an integral submanifold of

∑
i xidxi = 0, i∗(λ ∧ dλ) 6= 0

on S1 × S2 if and only if λ ∧ dλ ∧
∑

i xidxi 6= 0 in a neighborhood of S1 × S2. Noting that
λ∧dλ∧

∑
i xidxi = 0 if and only if x1 = x2 = x3 = 0, we conclude that λA = i∗λ is a contact

1-form on S1 × S2 and (M − N(S1), ωA = dλ) is a symplectic manifold with contact-type
boundary.

(B) Consider the 1-form

λ = −1

2
(x2

1 + x2
2 − 2x2

3)dθ + x2x3dx1 − x1x3dx2

on [0, 2π] ×D3. Using the notation from the proof of Theorem 6, dλ = Ω and φ∗λ = λ, so
we glue together (after pulling back via i) a contact 1-form λB such that dλB = i∗ωB. The
rest is the same as (A). �

Let us now describe the orbits of the Reeb vector fields.

(A) ωA is compatible with a metric g̃ = cg, where g is the standard product metric on
S1 × D3. We can then write the compatible J satisfying g̃(x, y) = ω(x, Jy) as J = − 1

c
A,

where

A =




0 x1 x2 −2x3

−x1 0 −2x3 −x2

−x2 2x3 0 x1

2x3 x2 −x1 0
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represents ω with respect to {θ, x1, x2, x3}. Now, the Reeb vector field X for λA is given, up
to multiple, by

J

(
∑

i

xi
∂

∂xi

)
=

−1√
x2

1 + x2
2 + 4x2

3

(
(x2

1 + x2
2 − 2x2

3)
∂

∂θ
− 3x2x3

∂

∂x1
+ 3x1x3

∂

∂x2

)
.

Finally, λA(X) = 1 implies that

X =
1

f

[
(x2

1 + x2
2 − 2x2

3)
∂

∂θ
− 3x2x3

∂

∂x1

+ 3x1x3
∂

∂x2

]
,

with

f = −1

2

[
(x2

1 + x2
2)(x

2
1 + x2

2 + 2x2
3) + 4x4

3

]
.

Solving for the orbits, x2
1 + x2

2 and x2
3 are fixed for each orbit, and hence,

x1 =
√

1 − r2 cosR1(r)t

x2 =
√

1 − r2 sinR1(r)t

x3 = r

θ = R2(r)t+ c,

where r is a constant, and R1 and R2 are functions of r.
In particular, the noteworthy closed orbits are S1 × {(0, 0, 1)}, S1 × {(0, 0,−1)}, and

S1 × {(x1, x2, 0)}, with x2
1 + x2

2 = 1 and x1, x2 fixed. These correspond to the stable and
unstable gradient directions in the Morse theory of 1

2
(x2

1 +x2
2 − 2x2

3) near (0, 0, 0). Moreover,
the orbit S1 × {(0, 0, 1)} is nondegenerate, and so is the family S1 × {(x1, x2, 0)}. There are
other closed orbits, but these do not seem to have any Morse-theoretic significance. The
relevance of such periodic orbits is manifest in Taubes’ paper [6].

(B) We apply the previous considerations and work on [0, 2π] × S2/ ∼. There is one orbit
S1 ×{(0, 0,±1)}, which is a double of the orbits for (A). Since φ identifies (2π, (x1, x2, 0)) ∼
(0, (x1,−x2, 0)), we also have the doubled closed orbits S1 ×{(x1,±x2, 0)}, with x2 6= 0, and
the single closed orbits S1 × {(1, 0, 0)}, S1 × {(−1, 0, 0)}.
Remark. There is an example of a singularity of type (B) bounding a disk, which can be
made to vanish.

Our final point of investigation is to determine whether the two contact forms represent
the same contact structure on S1 × S2. Let ξA, ξB be the contact structures (i.e., 2-plane
distributions) corresponding to the 1-forms λA, λB. Then we remark the following

Proposition 9. ξA and ξB are both overtwisted.

Proof. A perturbation of the upper hemisphere {x3 ≥ 0}
⋂

({pt.} × S2) ⊂ S1 × S2 is an
overtwisted disk. �

Since overtwisted contact structures on a 3-manifold N are classified by the homotopy
type of the contact 2-plane distribution on TN (c.f. [1]), it suffices to determine whether ξA

and ξB are homotopic as 2-plane distributions inside T (S1 × S2). We have the following:
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Theorem 10. The contact structures ξA and ξB are overtwisted contact structures for dis-
tinct homotopy classes of 2-plane fields on S1 × S2.

Proof. First let us describe the homotopy classes of 2-plane fields of degree 1 on S1 × S2.
A trivialization of T (S1 × S2) and a choice of nonsingular transverse vector field (in our
case the Reeb vector field) gives rise to a Gauß map ψ : S1 × S2 → S2, and the homotopy
classes of 2-plane fields are in 1-1 correspondence with homotopy classes [S1 × S2, S2]. We
are interested in maps where the induced map H2(S

1 × S2;Z) → H2(S
2;Z) has degree one.

The set [S1 × S2, S1]1 of homotopy classes of maps of degree one is computed as follows:

[S1 × S2, S2]1 ' [S1,Map1(S
2, S2)]

' [S1,Diff+(S2)]

' [S1, SO(3)]

' π1(SO(3)) ' Z/2Z.

Here, Map1(S
2, S2) is the set of maps of degree 1, and Diff+(S2) is the space of orientation-

preserving diffeomorphisms of S2. The representatives of the two classes are given by

(4) Ψn : (θ, x) 7→ Rnθ(x),

with n = 0, 1, where Rα is rotation by α about the x1-axis. (Note we could have chosen
representatives to rotate about any axis – however, it is important to remember that Rα is
a rotation about the x1-axis.)

Next trivialize T (S1 × S2) ' R3 × (S1 × S2) as follows: First view S2 as the unit sphere∑
i x

2
i = 1 inside R3. At the point (θ, x1, x2, x3) ∈ S1 × S2, the tangent vector ∂

∂θ
is mapped

to the unit vector (x1, x2, x3) ∈ R3 and v ∈ T(x1,x2,x3)S
2 to the corresponding tangent vector

viewed inside R3.
Let us consider Case (A). After rescaling, the Reeb vector field is

X(θ, x1, x2, x3) = (−x2
1 − x2

2 + 2x2
3, 3x2x3,−3x1x3, 0).

Let ψ : S1 × S2 → S2 be the corresponding Gauß map. Since ψ(θ, x) is independent of t, we
write u(x) = ψ(θ, x). Then u maps (0, 0,±1) 7→ (0, 0,±1), (x1, x2, 0) 7→ (−x1,−x2, 0), and
sends x3 = const to x3 = τ(const). Here τ : [−1, 1] → [−1, 1] sends −1, 0, 1 to itself and
satisfies τ(−x3) = −τ(x3). Since τ is homotopic to the identity via a homotopy τt which
fixes −1, 0, 1 and satisfies τt(−x3) = −τt(x3), ψ is homotopic to:

(θ, x) 7→ Sπ+σ(x3)(x),

where Sα is the rotation by α along the x3-axis, and σ(−x3) = −σ(x3). We can then homotop
σ = σ0 to σ1(x3) = 0, via σt which satisfies σt(−x3) = −σt(x3). Therefore, ψ is homotopic
to (θ, x) 7→ Sπ(x), which in turn is homotopic to Ψ0 in Equation 4.

Let us now consider Case (B). Instead of gluing {2π} × S2 and {0} × S2 via a twist, we
use the diffeomorphism

Φ : [0, 2π] × S2 ∼→ [0, 2π] × S2,

(θ, x) 7→ (θ, R θ

2

x).

Hence, if we push forward via Φ, we may glue {2π} × S2 ∼→ {0} × S2 identically. Our Reeb
field for (B) is Φ∗X, where X = (−x2

1−x2
2 +2x2

3, 3x2x3,−3x1x3, 0) is defined over [0, 2π]×S2.
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The corresponding Gauß map ψ : S1 × S2 → S2 is (homotopic to one) given on [0, 2π] × S2

by
(θ, x) 7→ Rθ/2uR

−1
θ/2(x),

where u : S2 → S2 was described in the previous paragraph. Observe that RπuR
−1
π (x) =

u(x), which allows us to glue θ = 0 and θ = π. The homotopy ut from u to Sπ which was
applied in the analysis of Case (A) also can be applied here, by observing that RπutR

−1
π = ut.

Now,
Rθ/2SπR

−1
θ/2(x) = Rθ/2Rθ/2Sπ(x) = RθSπ(x),

and hence ψ is homotopic to Ψ1.
This shows that ξA and ξB are not homotopic as 2-plane fields. �

We close with the following question:

Question. Can the contact homology theory developed by Hofer and Eliashberg (among oth-
ers), or variations of it, shed any light on the singular symplectic forms?
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