Name: \qquad PID: \qquad
TA: \qquad Sec. No: \qquad Sec. Time: \qquad

Math 20E Midterm 2

Summer Session II, 2015

Q \#:	Score:
1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
Total	$/ 50$

1. [10 points total]: Circle your answer to each of the following true/false or multiple-choice questions.
(a) [3 points]: Which of the following formulas defines the vector field $\overrightarrow{\mathbf{F}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ represented in the figure?
A. $\overrightarrow{\mathbf{F}}(x, y)=(x,-y)$
B. $\overrightarrow{\mathbf{F}}(x, y)=(y, x)$
C. $\overrightarrow{\mathbf{F}}(x, y)=(y,-x)$

(b) [3 points]: Which of the following shows the surface $x^{2}-y^{2}+z^{2}=0$?

A.

B

C
(c) [4 points]: Recall that a torus can be parametrized by

$$
\Phi(\theta, \phi)=((R+r \cos \theta) \cos \phi,(R+r \cos \theta) \sin \phi, r \sin \theta)
$$

for (θ, ϕ) in $D=[0,2 \pi] \times[0,2 \pi]$ where r is the minor radius and R is the major radius. Which of the following pictures shows $S=\Phi(D)$ for

$$
\Phi(\theta, \phi)=((10+(2+\sin 10 \phi) \cos \theta) \cos \phi, \quad(10+(2+\sin 10 \phi) \cos \theta) \sin \phi, \quad(2+\sin 10 \phi) \sin \theta) ?
$$

A
B.

C
2. [10 points total]: Consider the 15π-meter long storm drain pipe pictured and parametrized by

$$
\Phi(y, \theta)=((10+\sin y) \cos \theta, \quad y, \quad(10+\sin y) \sin \theta)
$$

for (y, θ) in the domain $D=[0,15 \pi] \times[0,2 \pi]$.
(a) [4 points]: Calculate $\left\|\overrightarrow{\mathbf{T}}_{y} \times \overrightarrow{\mathbf{T}}_{\theta}\right\|$.

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}_{y} \times \overrightarrow{\mathbf{T}}_{\theta} & =\left|\begin{array}{ccc}
\cos y \cos \theta & -(10+\sin y) \sin \theta & \overrightarrow{\mathbf{i}} \\
1 & 0 & \overrightarrow{\mathbf{j}} \\
\cos y \sin \theta & (10+\sin y) \cos \theta & \overrightarrow{\mathbf{k}}
\end{array}\right| \\
& =(10+\sin y) \cos \theta \overrightarrow{\mathbf{i}}+\cos y(10+\sin y)\left(\cos ^{2} \theta+\sin ^{2} \theta\right)(-\overrightarrow{\mathbf{j}})+(10+\sin y) \sin \theta \overrightarrow{\mathbf{k}} \\
& \Longrightarrow\left\|\overrightarrow{\mathbf{T}}_{y} \times \overrightarrow{\mathbf{T}}_{\theta}\right\|=\sqrt{(10+\sin y)^{2}\left(\cos ^{2} \theta+\cos ^{2} y+\sin ^{2} \theta\right)}=(10+\sin y) \sqrt{1+\cos ^{2} y}
\end{aligned}
$$

where $\sqrt{(10+\sin y)^{2}}=10+\sin y$, because $10+\sin y$ is always positive.
(b) [6 points]: Over the years, dirt accumulates on the surface S of the pipe. If the density of dirt at a point $(x, y, z) \in S$ is given by $f(x, y, z)=\sqrt{1+\cos ^{2} y} \mathrm{~kg} / \mathrm{m}^{2}$, what is the total mass of dirt on the surface of the pipe in kilograms (kg)?

$$
\begin{aligned}
\text { Total Mass } & =\iint_{S} f d S=\iint_{D} f(\Phi(y, \theta))\left\|\overrightarrow{\mathbf{T}}_{y} \times \overrightarrow{\mathbf{T}}_{\theta}\right\| d A \\
& =\int_{0}^{2 \pi} \int_{0}^{15 \pi} \sqrt{1+\cos ^{2} y}(10+\sin y) \sqrt{1+\cos ^{2} y} d y d \theta \\
& =\left[\int_{0}^{2 \pi} d \theta\right] \cdot\left[\int_{0}^{15 \pi}\left(10+\sin y+10 \cos ^{2} y+\sin y \cos ^{2} y\right) d y\right] \\
& \left(\text { Next using } \cos 2 y=2 \cos ^{2} y-1 \Longrightarrow \cos ^{2} y=\frac{\cos 2 y+1}{2}\right) \\
& =2 \pi\left[\int_{0}^{15 \pi}\left(10+\sin y+5 \cos 2 y+5+\sin y \cos ^{2} y\right) d y\right] \\
& =2 \pi\left[15 y-\cos y+\frac{5}{2} \sin 2 y+\frac{-1}{3} \cos ^{3} y\right]_{0}^{15 \pi} \\
& =2 \pi\left[\left[15 \cdot 15 \pi-(-1)+\frac{-1}{3}(-1)^{3}\right]-\left[-1+\frac{-1}{3}(1)^{3}\right]\right] \\
& =2 \pi\left[(15)^{2} \pi+2+\frac{2}{3}\right]
\end{aligned}
$$

3. [10 points total]: Let D be the shaded portion of the baseball field pictured, which consists of square of side length $\frac{\sqrt{2}}{2}$ inside one quarter of the disc $x^{2}+y^{2} \leq 4$. Let $P(x, y)=x^{2}-y$ and $Q(x, y)=x$.
(a) [1 point]: Use geometric formulas to calculate the area of D.
$\operatorname{Area}(D)=\frac{1}{4} \cdot \pi(2)^{2}-\left(\frac{\sqrt{2}}{2}\right)^{2}=\pi-\frac{1}{2}$

(b) [4 points]: The outer arc $\mathbf{c}_{\boldsymbol{1}}$ of the field is parametrized by $\mathbf{c}_{\mathbf{1}}(t)=(2 \cos t, 2 \sin t)$ for $\frac{\pi}{4} \leq t \leq \frac{3 \pi}{4}$. Evaluate $\int_{\mathbf{c}_{1}} P d x+Q d y$.

$$
\begin{aligned}
c_{1}^{\prime}(t)=(-2 \sin t, 2 \cos t) & =(-y, x) . \\
\int_{c_{1}} P d x+Q d y & =\int_{\pi / 4}^{3 \pi / 4}\left[\left((2 \cos t)^{2}-2 \sin t, 2 \cos t\right) \cdot(-2 \sin t, 2 \cos t)\right] d t \\
& =\int_{\pi / 4}^{3 \pi / 4}\left[-8 \cos ^{2} t \sin t+4 \sin ^{2} t+4 \cos ^{2} t\right] d t=\int_{\pi / 4}^{3 \pi / 4}\left[-8 \cos ^{2} t \sin t+4\right] d t \\
& =\left[\frac{8}{3} \cos ^{3} t+4 t\right]_{\pi / 4}^{3 \pi / 4}=\left[\frac{8}{3}\left(-\frac{1}{\sqrt{2}}\right)^{3}+3 \pi\right]-\left[\frac{8}{3}\left(\frac{1}{\sqrt{2}}\right)^{3}+\pi\right] \\
& =-2 \cdot \frac{8}{3} \frac{1}{2}\left(\frac{1}{\sqrt{2}}\right)+2 \pi=-\frac{8}{3 \sqrt{2}}+2 \pi
\end{aligned}
$$

(c) [5 points]: Use Green's Theorem and your answers for parts (a) and (b) to evaluate $\int_{\mathbf{c}_{\mathbf{2}}} P d x+Q d y$ where $\mathbf{c}_{\boldsymbol{2}}$ is the part of ∂D not covered by $\mathbf{c}_{\mathbf{1}}$, oriented as shown.
[If you did not solve (a) and/or (b), you may use constants a and b in place of those answers]

By Green's Theorem,

$$
\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d A=\int_{\partial D} P d x+Q d y=\left[\int_{c_{1}} P d x+Q d y\right]+\left[\int_{c_{2}} P d x+Q d y\right]
$$

and so

$$
\begin{aligned}
\int_{c_{2}} P d x+Q d y & =\iint_{D}\left[\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right] d A-\left[\int_{c_{1}} P d x+Q d y\right] \\
& =\iint_{D}[1-(-1)] d A-\left[-\frac{8}{3 \sqrt{2}}+2 \pi\right]=2 \iint_{D} 1 \cdot d A+\frac{8}{3 \sqrt{2}}-2 \pi \\
& =2 \operatorname{Area}(D)+\frac{8}{3 \sqrt{2}}-2 \pi=2\left[\pi-\frac{1}{2}\right]+\frac{8}{3 \sqrt{2}}-2 \pi=\frac{8}{3 \sqrt{2}}-1
\end{aligned}
$$

4. [10 points total]: Let S be the surface parametrized by

$$
\Phi(x, \theta)=\left(x, \theta\left(1-x^{2}\right), \sin \theta\right)
$$

for (x, θ) in the domain $D=[-1,1] \times[0,6 \pi]$.

(a) [3 points]: Find $\overrightarrow{\mathbf{T}}_{x} \times \overrightarrow{\mathbf{T}}_{\theta}$.

$$
\begin{aligned}
\overrightarrow{\mathbf{T}}_{x} \times \overrightarrow{\mathbf{T}}_{\theta} & =\left|\begin{array}{ccc}
1 & 0 & \overrightarrow{\mathbf{i}} \\
-2 x \theta & \left(1-x^{2}\right) & \overrightarrow{\mathbf{j}} \\
0 & \cos \theta & \overrightarrow{\mathbf{k}}
\end{array}\right| \\
& =-2 x \theta \cos \theta \overrightarrow{\mathbf{i}}+\cos \theta(-\overrightarrow{\mathbf{j}})+\left(1-x^{2}\right) \overrightarrow{\mathbf{k}}=-2 x \theta \cos \theta \overrightarrow{\mathbf{i}}-\cos \theta \overrightarrow{\mathbf{j}}+\left(1-x^{2}\right) \overrightarrow{\mathbf{k}}
\end{aligned}
$$

(b) [7 points]: Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left(x, x^{2}, z\right)$. Evaluate $\iint_{\Phi} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$.

$$
\begin{aligned}
\iint_{\Phi} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}} & =\iint_{D}\left[\overrightarrow{\mathbf{F}}(\Phi(x, \theta)) \cdot\left(\overrightarrow{\mathbf{T}}_{x} \times \overrightarrow{\mathbf{T}}_{\theta}\right)\right] d A \\
& =\iint_{D}\left[\left(x, x^{2}, \sin \theta\right) \cdot\left(-2 x \theta \cos \theta,-\cos \theta, 1-x^{2}\right)\right] d A \\
& =\iint_{D}\left[-2 x^{2} \theta \cos \theta-x^{2} \cos \theta+\left(1-x^{2}\right) \sin \theta\right] d A \\
& =\int_{0}^{6 \pi} \int_{-1}^{1}\left[-x^{2}(2 \theta \cos \theta+\cos \theta+\sin \theta)+\sin \theta\right] d x d \theta \\
& =\int_{0}^{6 \pi}\left[-\frac{x^{3}}{3}(2 \theta \cos \theta+\cos \theta+\sin \theta)+x \sin \theta\right]_{-1}^{1} d \theta \\
& =\int_{0}^{6 \pi}\left[\left[-\frac{1}{3}(2 \theta \cos \theta+\cos \theta+\sin \theta)+\sin \theta\right]-\left[-\frac{(-1)^{3}}{3}(2 \theta \cos \theta+\cos \theta+\sin \theta)+(-1) \sin \theta\right]\right] d \theta \\
& =\int_{0}^{6 \pi}\left[-\frac{2}{3}(2 \theta \cos \theta+\cos \theta+\sin \theta)+2 \sin \theta\right] d \theta=\int_{0}^{6 \pi}\left[-\frac{2}{3} \cos \theta+\frac{4}{3} \sin \theta\right] d \theta-\frac{4}{3} \int_{0}^{6 \pi} \theta \cos \theta d \theta \\
& \left(\text { now integrating } \int_{0}^{6 \pi} \theta \cos \theta d \theta \text { by parts }\right) \\
& =\left[-\frac{2}{3} \sin \theta+\frac{4}{3}(-\cos \theta)\right]_{0}^{6 \pi}-\frac{4}{3}\left[[\theta \sin \theta]_{0}^{6 \pi}-\int_{0}^{6 \pi} \sin \theta d \theta\right] \\
& =\left[0+\frac{4}{3}(-1)-0-\frac{4}{3}(-1)\right]-\frac{4}{3}\left[[6 \pi \cdot 0-0]+[\cos \theta]_{0}^{6 \pi}\right] \\
& =0-\frac{4}{3}[[0]+[1-1]]=0
\end{aligned}
$$

5. [10 points total]:
(a) [3 points]: Recall that a torus can be parametrized by

$$
\Phi(\theta, \phi)=((R+r \cos \theta) \cos \phi,(R+r \cos \theta) \sin \phi, r \sin \theta)
$$

for (θ, ϕ) in $D=[0,2 \pi] \times[0,2 \pi]$ where r is the minor radius and R is the major radius.

The pictured tray S consists of the half of a torus below the $x-y$ plane for $r=1$ and $R=5$. Find a domain $D \subset \mathbb{R}^{2}$ and a parametrization $\Phi: D \rightarrow \mathbb{R}^{3}$ such that $S=\Phi(D)$.

We need only restrict the domain D for the torus parametrization. Since θ is the angle going around the small circles, we can restrict $\pi \leq \theta \leq 2 \pi$ (or $-\pi \leq \theta \leq 0$, or $-47 \pi \leq \theta \leq-46 \pi \ldots$..., so plugging in $R=5$ and $r=1$, we get

$$
\Phi(\theta, \phi)=((5+\cos \theta) \cos \phi,(5+\cos \theta) \sin \phi, \sin \theta)
$$

for (θ, ϕ) in $D=[\pi, 2 \pi] \times[0,2 \pi]$.
(b) [7 points]: Let S be the surface of the pictured birdbath for $0 \leq z \leq 4$. Horizontal cross-sections of the S are circles, the base of the birdbath being a circle of radius 1 in the $x-y$ plane. At a distance d from the base of the birdbath, the birdbath has height \sqrt{d} as shown below.
Find a domain $D \subset \mathbb{R}^{2}$ and a parametrization $\Phi: D \rightarrow \mathbb{R}^{3}$ such that $S=\Phi(D)$.
Z

Just like on the review guide, we can use modified cylindrical coordinates where the radius changes with z, so we just need to find the radius r at each height z. The radius is $r=1+d$, so that $z=\sqrt{d}=\sqrt{r-1} \Longrightarrow r=z^{2}+1$. So our parametrization is

$$
\Phi(z, \theta)=\left(\left(z^{2}+1\right) \cos \theta,\left(z^{2}+1\right) \sin \theta, z\right)
$$

for (z, θ) in $D=[0,4] \times[0,2 \pi]$.

It is of course possible to parametrize in many other ways, for example using d as a parameter:

$$
\Phi(d, \theta)=((1+d) \cos \theta,(1+d) \sin \theta, \sqrt{d})
$$

for (d, θ) in $D=[0,16] \times[0,2 \pi]$, or using r as a parameter:

$$
\Phi(r, \theta)=(r \cos \theta, r \sin \theta, \sqrt{r-1})
$$

for (r, θ) in $D=[1,17] \times[0,2 \pi]$.
(c) [Extra Credit, 5 points]: The pictured slide S consists of a chute whose vertical cross-sections have the shape of the function $-2 \cos t$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.

The bottom of the chute is always a distant $R=5$ from the z-axis, and the slide spirals around the z-axis at a constant incline, making 3 full revolutions as shown. Find a domain $D \subset \mathbb{R}^{2}$ and a parametrization $\Phi: D \rightarrow \mathbb{R}^{3}$ such that $S=$ $\Phi(D)$.

One idea here is to adapt the parametrization of a torus with $R=5$. We keep the parameter ϕ to revolve the slide around the vertical axis, but since the vertical cross sections are not circular, we replace θ. The role of $R+r \cos \theta$ (the distance from the z-axis in the torus parametrization) is instead played by $R+t$, so that our parametrization takes the form

$$
\Phi(t, \phi)=((R+t) \cos \phi,(R+t) \sin \phi, \square)
$$

for $(t, \phi) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[0,6 \pi]$, where we use 6π since three full revolutions are made. To figure out the z-coordinate, we add the contribution from the $-2 \cos t$ shape to the contribution from the slide spiraling upward. Since the rate of incline is constant and a total vertical change of 15 is achieved over 6π radians of revolution, the latter is given by $\frac{15}{6 \pi} \phi=\frac{5}{2 \pi} \phi$. Hence our answer is:

$$
\Phi(t, \phi)=\left((R+t) \cos \phi,(R+t) \sin \phi,-2 \cos t+\frac{5}{2 \pi} \phi\right)
$$

for $(t, \phi) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[0,6 \pi]$. Plugging in $R=5$, this is

$$
\Phi(t, \phi)=\left((5+t) \cos \phi,(5+t) \sin \phi,-2 \cos t+\frac{5}{2 \pi} \phi\right)
$$

for $(t, \phi) \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times[0,6 \pi]$. There are, of course, other possible correct answers.

