Name: \qquad PID: \qquad
TA: \qquad Sec. No: \qquad Sec. Time: \qquad

Math 20E Midterm 2

Summer Session II, 2015

Q \#:	Score:
1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
Total	$/ 50$

1. [10 points total]: Circle your answer to each of the following true/false or multiple-choice questions.
(a) [3 points]: Which of the following formulas defines the vector field $\overrightarrow{\mathbf{F}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ represented in the figure?
A. $\overrightarrow{\mathbf{F}}(x, y)=(x,-y)$
B. $\overrightarrow{\mathbf{F}}(x, y)=(y, x)$
C. $\overrightarrow{\mathbf{F}}(x, y)=(y,-x)$

(b) [3 points]: Which of the following shows the surface $x^{2}-y^{2}+z^{2}=0$?

A

B

C
(c) [4 points]: Recall that a torus can be parametrized by

$$
\Phi(\theta, \phi)=((R+r \cos \theta) \cos \phi,(R+r \cos \theta) \sin \phi, r \sin \theta)
$$

for (θ, ϕ) in $D=[0,2 \pi] \times[0,2 \pi]$ where r is the minor radius and R is the major radius. Which of the following pictures shows $S=\Phi(D)$ for

$$
\Phi(\theta, \phi)=((10+(2+\sin 10 \phi) \cos \theta) \cos \phi, \quad(10+(2+\sin 10 \phi) \cos \theta) \sin \phi, \quad(2+\sin 10 \phi) \sin \theta) ?
$$

A
B

C
2. [10 points total]: Consider the 15π-meter long storm drain pipe pictured and parametrized by

$$
\Phi(y, \theta)=((10+\sin y) \cos \theta, \quad y, \quad(10+\sin y) \sin \theta)
$$

for (y, θ) in the domain $D=[0,15 \pi] \times[0,2 \pi]$.

(a) [4 points]: Calculate $\left\|\overrightarrow{\mathbf{T}}_{y} \times \overrightarrow{\mathbf{T}}_{\theta}\right\|$.
(b) [6 points]: Over the years, dirt accumulates on the surface S of the pipe. If the density of dirt at a point $(x, y, z) \in S$ is given by $f(x, y, z)=\sqrt{1+\cos ^{2} y} \mathrm{~kg} / \mathrm{m}^{2}$, what is the total mass of dirt on the surface of the pipe in kilograms (kg) ?
3. [10 points total]: Let D be the shaded portion of the baseball field pictured, which consists of square of side length $\frac{\sqrt{2}}{2}$ inside one quarter of the disc $x^{2}+y^{2} \leq 4$. Let $P(x, y)=x^{2}-y$ and $Q(x, y)=x$.
(a) [1 point]: Use geometric formulas to calculate the area of D.

(b) [4 points]: The outer arc $\mathbf{c}_{\boldsymbol{1}}$ of the field is parametrized by $\mathbf{c}_{\mathbf{1}}(t)=(2 \cos t, 2 \sin t)$ for $\frac{\pi}{4} \leq t \leq \frac{3 \pi}{4}$. Evaluate $\int_{\mathbf{c}_{\mathbf{1}}} P d x+Q d y$.
(c) [5 points]: Use Green's Theorem and your answers for parts (a) and (b) to evaluate $\int_{\mathbf{c}_{\mathbf{2}}} P d x+Q d y$ where $\mathbf{c}_{\mathbf{2}}$ is the part of ∂D not covered by $\mathbf{c}_{\mathbf{1}}$, oriented as shown.
[If you did not solve (a) and/or (b), you may use constants a and b in place of those answers]
4. [10 points total]: Let S be the surface parametrized by

$$
\Phi(x, \theta)=\left(x, \theta\left(1-x^{2}\right), \sin \theta\right)
$$

for (x, θ) in the domain $D=[-1,1] \times[0,6 \pi]$.

(a) [3 points]: Find $\overrightarrow{\mathbf{T}}_{x} \times \overrightarrow{\mathbf{T}}_{\theta}$.
(b) $[7$ points $]$: Let $\overrightarrow{\mathbf{F}}(x, y, z)=\left(x, x^{2}, z\right)$. Evaluate $\iint_{\Phi} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$.
5. [10 points total]:
(a) [3 points]: Recall that a torus can be parametrized by

$$
\Phi(\theta, \phi)=((R+r \cos \theta) \cos \phi,(R+r \cos \theta) \sin \phi, r \sin \theta)
$$

for (θ, ϕ) in $D=[0,2 \pi] \times[0,2 \pi]$ where r is the minor radius and R is the major radius.

The pictured tray S consists of the half of a torus below the $x-y$ plane for $r=1$ and $R=5$. Find a domain $D \subset \mathbb{R}^{2}$ and a parametrization $\Phi: D \rightarrow \mathbb{R}^{3}$ such that $S=\Phi(D)$.

(b) [7 points]: Let S be the surface of the pictured birdbath for $0 \leq z \leq 4$. Horizontal cross-sections of the S are circles, the base of the birdbath being a circle of radius 1 in the $x-y$ plane. At a distance d from the base of the birdbath, the birdbath has height \sqrt{d} as shown below.
Find a domain $D \subset \mathbb{R}^{2}$ and a parametrization $\Phi: D \rightarrow \mathbb{R}^{3}$ such that $S=\Phi(D)$.
Z

(c) [Extra Credit, 5 points]: The pictured slide S consists of a chute whose vertical cross-sections have the shape of the function $-2 \cos t$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.

The bottom of the chute is always a distant $R=5$ from the z-axis, and the slide spirals around the z-axis at a constant incline, making 3 full revolutions as shown. Find a domain $D \subset \mathbb{R}^{2}$ and a parametrization $\Phi: D \rightarrow \mathbb{R}^{3}$ such that $S=$ $\Phi(D)$.

[Scratch Paper]

