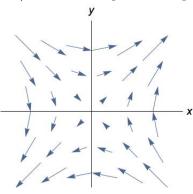
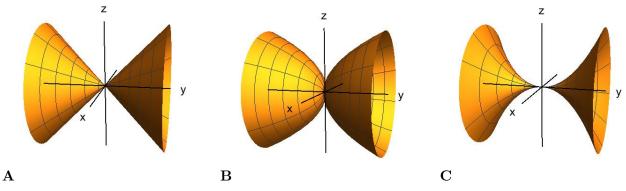
		Q #:	Score:
Name:	PID:	1	/10
TA:	Sec. No: Sec. Time:	2	/10
		3	/10
		4	/10
	Math 20E Midterm 2	5	/10
	Summer Session II, 2015	Total	/50

- 1. [10 points total]: Circle your answer to each of the following true/false or multiple-choice questions.
 - (a) [3 points]: Which of the following formulas defines the vector field $\vec{\mathbf{F}} : \mathbb{R}^2 \to \mathbb{R}^2$ represented in the figure?
 - **A.** $\vec{\mathbf{F}}(x, y) = (x, -y)$
 - **B.** $\vec{F}(x, y) = (y, x)$

$$\mathbf{C.} \ \vec{\mathbf{F}}(x, y) = (y, -x)$$



(b) [3 points]: Which of the following shows the surface $x^2 - y^2 + z^2 = 0$?

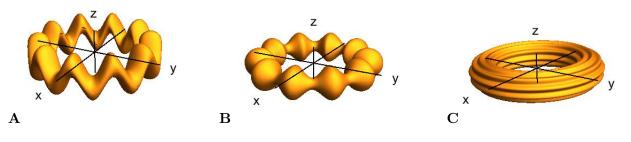


(c) [4 points]: Recall that a torus can be parametrized by

 $\Phi(\theta,\phi) = ((R + r\cos\theta)\cos\phi, (R + r\cos\theta)\sin\phi, r\sin\theta)$

for (θ, ϕ) in $D = [0, 2\pi] \times [0, 2\pi]$ where r is the minor radius and R is the major radius. Which of the following pictures shows $S = \Phi(D)$ for

$$\Phi(\theta,\phi) = ((10 + (2 + \sin 10\phi)\cos\theta)\cos\phi, (10 + (2 + \sin 10\phi)\cos\theta)\sin\phi, (2 + \sin 10\phi)\sin\theta)?$$



2. [10 points total]: Consider the 15π -meter long storm drain pipe pictured and parametrized by

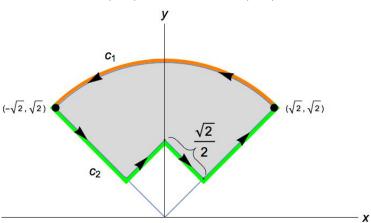
 $\Phi(y,\theta) = ((10 + \sin y)\cos\theta, y, (10 + \sin y)\sin\theta)$

for (y, θ) in the domain $D = [0, 15\pi] \times [0, 2\pi]$.

(a) [4 points]: Calculate $\|\vec{\mathbf{T}}_y \times \vec{\mathbf{T}}_{\theta}\|$.

(b) [6 points]: Over the years, dirt accumulates on the surface S of the pipe. If the density of dirt at a point $(x, y, z) \in S$ is given by $f(x, y, z) = \sqrt{1 + \cos^2 y} \text{ kg/m}^2$, what is the total mass of dirt on the surface of the pipe in kilograms (kg)?

- **3.** [10 points total]: Let *D* be the shaded portion of the baseball field pictured, which consists of square of side length $\frac{\sqrt{2}}{2}$ inside one quarter of the disc $x^2 + y^2 \leq 4$. Let $P(x, y) = x^2 y$ and Q(x, y) = x.
 - (a) [1 point]: Use geometric formulas to calculate the area of *D*.



(b) [4 points]: The outer arc $\mathbf{c_1}$ of the field is parametrized by $\mathbf{c_1}(t) = (2\cos t, 2\sin t)$ for $\frac{\pi}{4} \le t \le \frac{3\pi}{4}$. Evaluate $\int_{\mathbf{c_1}} Pdx + Qdy$.

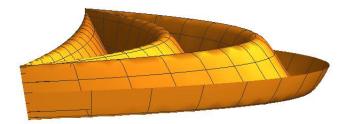
(c) [5 points]: Use Green's Theorem and your answers for parts (a) and (b) to evaluate ∫_{c2} Pdx + Qdy where c2 is the part of ∂D not covered by c1, oriented as shown.
[If you did not solve (a) and/or (b), you may use constants a and b in place of those answers]

4. [10 points total]: Let S be the surface parametrized by

$$\Phi(x,\theta) = (x,\theta(1-x^2),\sin\theta)$$

for (x, θ) in the domain $D = [-1, 1] \times [0, 6\pi]$.

(a) [3 points]: Find $\vec{\mathbf{T}}_x \times \vec{\mathbf{T}}_{\theta}$.



(b) [7 points]: Let $\vec{\mathbf{F}}(x, y, z) = (x, x^2, z)$. Evaluate $\iint_{\Phi} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$.

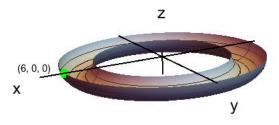
5. [10 points total]:

(a) [3 points]: Recall that a torus can be parametrized by

 $\Phi(\theta, \phi) = ((R + r\cos\theta)\cos\phi, (R + r\cos\theta)\sin\phi, r\sin\theta)$

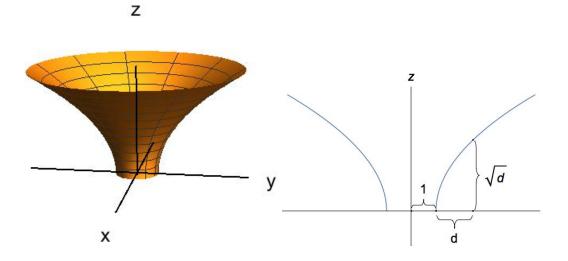
for (θ, ϕ) in $D = [0, 2\pi] \times [0, 2\pi]$ where r is the minor radius and R is the major radius.

The pictured tray S consists of the half of a torus below the x-y plane for r = 1 and R = 5. Find a domain $D \subset \mathbb{R}^2$ and a parametrization $\Phi: D \to \mathbb{R}^3$ such that $S = \Phi(D)$.

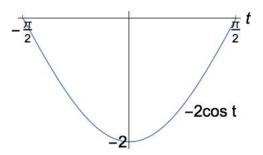


(b) [7 points]: Let S be the surface of the pictured birdbath for $0 \le z \le 4$. Horizontal cross-sections of the S are circles, the base of the birdbath being a circle of radius 1 in the x-y plane. At a distance d from the base of the birdbath, the birdbath has height \sqrt{d} as shown below.

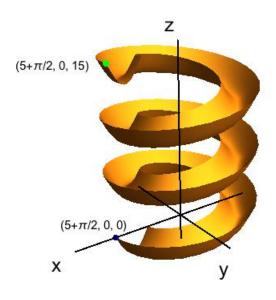
Find a domain $D \subset \mathbb{R}^2$ and a parametrization $\Phi : D \to \mathbb{R}^3$ such that $S = \Phi(D)$.



(c) [Extra Credit, 5 points]: The pictured slide S consists of a chute whose vertical cross-sections have the shape of the function $-2\cos t$ for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$.



The bottom of the chute is always a distant R = 5 from the *z*-axis, and the slide spirals around the *z*-axis at a constant incline, making 3 full revolutions as shown. Find a domain $D \subset \mathbb{R}^2$ and a parametrization $\Phi : D \to \mathbb{R}^3$ such that $S = \Phi(D)$.



[Scratch Paper]