			Q #:	Score:
Name:	PID:		1	/10
TA:	Sec. No:	_ Sec. Time:	2	/10
			3	/10
			4	/10
	Math 20E	Midterm 1	5	/10
	Summer Sess	ion II, 2015	Total	/50
1. [10 points total]: C [2 points each]: Let $f : \mathbb{R}^n \to \mathbb{R}^m$ b	Circle your answer to each of $\vec{x_0} \in \mathbb{R}^n$.	the following true/false or mu	ltiple-choice	e questions.
(a) True or Fa	alse: If f is differentiable at :	$\vec{x_0}$, then all of the partial deriv	vatives of f	must exist
(b) True or Fall $\vec{x_0}$.	se : If all of the partial deriv	vatives of f exist at $\vec{x_0}$, then f	must be di	fferentiable
(c) True or Fa(d) Which of the	alse: If f is differentiable at a following double integrals are	$\vec{x_0}$, then f must be continuous e evaluated over this shaded de	s at $\vec{x_0}$. omain?	1
(i) $\int_{0}^{1} \int_{x^2}^{\sqrt{x}} dy dx$ A. (i) only B. (ii) only C. (iii) only D. (i) and (iii) E. (i) and (iii)	(ii) $\int_{0}^{1} \int_{y^2}^{\sqrt{y}} dx dy$ (iii) $\int_{0}^{1} \int_{\sqrt{y}}^{y^2} dx dy$ (iii) (iii) (iii)	xdy		
(e) The shaded re	egion below is	I		
A. x -simple B. y -simple C. both x -s D. neither x -s	imple and <i>y</i> -simple simple nor <i>y</i> -simple			12 -1 - x

x^2+y^2 = 4

 $- \left\{ \begin{array}{c} -\sqrt{4-y^2} & -\sqrt{3} \leq y \leq 2 \end{array} \right.$

 $\begin{cases} \sqrt{4 - y^2} & 1 < y \le 2 \\ -\sqrt{1 - y^2} & 0 < y \le 1 \\ -1 & -\sqrt{3} \le y \le 0 \end{cases}$

-1

 $x^{2+y^{2}} = 4$

12

 $-\begin{cases} -\sqrt{4-x^2} & -2 \le x < -1 \\ \sqrt{1-x^2} & -1 \le x < 0 \\ 1 & 0 \le x \le \sqrt{3} \end{cases}$

 $- \left\{ \sqrt{4-x^2} \quad -2 \le x \le \sqrt{3} \right.$

-1

- **2.** [10 points total]:
 - (a) [2 points]: Let $g : \mathbb{R}^3 \to \mathbb{R}$ be defined by $g(x, y, z) = xy^2 + \cos z$. Find the matrix of partial derivatives Dg(x, y, z).

Solution:				
	$\mathrm{D}g(x,y,z) = \left[y^2\right.$	2xy	$-\sin z$]	

(b) [3 points]: Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $f(u, v) = (u, v \sin u, e^{v-u})$. Find the matrix of partial derivatives Df(u, v).

Solution:				
		[1	0]	
	$\mathrm{D}f(u,v) =$	$v \cos u$	$\sin u$	
		$\left\lfloor -e^{v-u}\right\rfloor$	e^{v-u}	

(c) [2 points]: Find f(0,1) and Df(0,1).

Solution:	f(0,1) = 0	$(0, 1 \cdot \sin 0)$	$(, e^{1-0}) =$	(0, 0, e	e)		
	$\mathrm{D}f(0,1) = \Bigg $	$ \begin{array}{c} 1 \\ (1)\cos 0 \\ -e^{1-0} \end{array} $	$\begin{bmatrix} 0\\ \sin 0\\ e^{1-0} \end{bmatrix} =$	$\begin{bmatrix} 1\\ 1\\ -e \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \\ e \end{bmatrix}$		

(d) [3 points]: Let $h : \mathbb{R}^3 \to \mathbb{R}$ be defined by $h = g \circ f$. Use the chain rule to find Dh(0, 1).

Solution: By the chain rule,

$$Dh(0,1) = [Dg(f(0,1))][Df(0,1)] = [Dg(0,0,e)] \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ -e & e \end{bmatrix}$$
We have

$$[Dg(0,0,e)] = \begin{bmatrix} 0^2 & 2(0)(0) & -\sin e \end{bmatrix} = \begin{bmatrix} 0 & 0 & -\sin e \end{bmatrix}$$
and hence

$$Dh(0,1) = \begin{bmatrix} 0 & 0 & -\sin e \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ -e & e \end{bmatrix}$$

$$= \begin{bmatrix} (0)(1) + (0)(1) + (-\sin e)(-e) & (0)(0) + (0)(0) + (-\sin e)(e) \end{bmatrix}$$

$$= \begin{bmatrix} e \sin e & -e \sin e \end{bmatrix}$$

3. [10 points]: Evaluate

$$\int_{1}^{e} \int_{\ln x}^{1} \frac{\cos(y^2)}{x} \, dy dx$$

4. [10 points]: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(u, v) = (u + e^v, -2u + e^v)$. Let $D^* = [0, 1] \times [0, 1]$ in the *u-v* plane. Calculate

$$\iint_{T(D^*)} [x-y] \, dA$$

Solution: Since $DT(u, v) = \begin{bmatrix} 1 & e^v \\ -2 & e^v \end{bmatrix}$ we see that the partial derivatives of T all exist and are continuous. Moreover, T is one-to-one on D^* since if $x = u + e^v$ and $y = -2u + e^v$ for $(u, v) \in D^*$, then $u = \frac{x-y}{3}$ and $v = \ln \frac{2x+y}{3}$. Thus T is one-to-one and continuously differentiable, so by the change of variables theorem,

$$\iint_{T(D^*)} f(x,y) \ dA = \iint_{D^*} f(u+e^v, -2u+e^v) \cdot |\det \mathrm{D}T(u,v)| dA$$

for any integrable function $f : \mathbb{R}^2 \to \mathbb{R}$. We have

det DT(u, v) =
$$\begin{vmatrix} 1 & e^v \\ -2 & e^v \end{vmatrix}$$
 = (1)(e^v) - (-2)(e^v) = 3e^v

and so taking f(x, y) = x - y we have

$$\iint_{T(D^*)} x - y \, dA = \iint_{D^*} \left((u + e^v) - (-2u + e^v) \right) |3e^v| \, dA$$
$$= \int_0^1 \int_0^1 (3u)(3e^v) \, dv \, du$$
$$= \int_0^1 9u \, [e^v]_0^1 \, du$$
$$= \int_0^1 9u \, [e^1 - e^0] \, du$$
$$= 9(e - 1) \left[\frac{u^2}{2} \right]_0^1$$
$$= \frac{9}{2}(e - 1)$$

5. [10 points]: One day, Bill the baker spills an entire bag of sugar on his (2 meter)-by-(2 meter) baking table, represented by $D = [-1, 1] \times [-1, 1]$. Assume the *planar* density of sugar over a point (x, y) is given by

$$f(x,y) = x^2 + y^2 \quad \text{mg/m}^2$$

Luke the very lucky ant then eats his way across the table in path given by

$$c(t) = (e^{-t}\cos t, e^{-t}\sin t)$$
 from $t = 0$ to $t = 10$.

If the path Luke eats is 1 millimeter (= $\frac{1}{1000}$ meters) wide, then

$$[f(c(t)) \text{ mg/m}^2][\frac{1}{1000} \text{ m}] = \frac{f(c(t))}{1000} \text{ mg/m}$$

approximates the *linear* density of sugar along Luke's path. In mg, about how much sugar did Luke eat?

Solution: Since $\frac{f(c(t))}{1000}$ approximates the linear density of sugar along the path **c**, the total mass of sugar eaten (in mg) is given by $\int_{\mathbf{c}} \frac{f(x,y)}{1000} ds = \frac{1}{1000} \int_{0}^{10} f(c(t)) ||c'(t)|| dt$. For $0 \le t \le 10$ we have

$$f(c(t)) = e^{-2t} \cos^2 t + e^{-2t} \sin^2 t = e^{-2t} \qquad (\text{using } \sin^2 t + \cos^2 t = 1)$$

and

.

$$\begin{aligned} \|c'(t)\| &= \|(-e^{-t}\cos t + e^{-t}(-\sin t), -e^{-t}\sin t + e^{-t}\cos t)\| \\ &= \sqrt{(-e^{-t}\cos t - e^{-t}\sin t)^2 + (-e^{-t}\sin t + e^{-t}\cos t)^2} \\ &= \sqrt{e^{-2t}\cos^2 t + 2(e^{-t}\cos t)(e^{-t}\sin t) + e^{-2t}\sin^2 t + e^{-2t}\sin^2 t - 2(e^{-t}\sin t)(e^{-t}\cos t) + e^{-2t}\cos^2 t} \\ &= \sqrt{2e^{-2t}} \qquad (\text{using } \sin^2 t + \cos^2 t = 1) \\ &= \sqrt{2}e^{-t} \end{aligned}$$

Hence

$$\begin{aligned} \frac{1}{1000} \int_0^{10} f(c(t)) \| c'(t) \| dt &= \frac{1}{1000} \int_0^{10} (e^{-2t}) (\sqrt{2} e^{-t}) dt \\ &= \frac{\sqrt{2}}{1000} \int_0^{10} e^{-3t} dt \\ &= \frac{\sqrt{2}}{1000} \left[\frac{-e^{-3t}}{3} \right]_0^{10} \\ &= \frac{\sqrt{2}}{1000} \left[\frac{-e^{-30}}{3} - \frac{-e^0}{3} \right] \\ &= \frac{\sqrt{2}}{3000} (1 - e^{-30}) \end{aligned}$$

so Luke at $\frac{\sqrt{2}}{3000}(1-e^{-30})$ mg of sugar. That must have been a small bag of sugar!