Name: \qquad PID: \qquad
TA: \qquad Sec. No: \qquad Sec. Time: \qquad

Q \#:	Score:
1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
Total	$/ 50$

Math 20E Midterm 1

Summer Session II, 2015

1. [10 points total]: Circle your answer to each of the following true/false or multiple-choice questions. [2 points each]:
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function and $\overrightarrow{x_{0}} \in \mathbb{R}^{n}$.
(a) True or False: If f is differentiable at $\overrightarrow{x_{0}}$, then all of the partial derivatives of f must exist at $\overrightarrow{x_{0}}$.
(b) True or False : If all of the partial derivatives of f exist at $\overrightarrow{x_{0}}$, then f must be differentiable at $\overrightarrow{x_{0}}$.
(c) True or False: If f is differentiable at $\overrightarrow{x_{0}}$, then f must be continuous at $\overrightarrow{x_{0}}$.
(d) Which of the following double integrals are evaluated over this shaded domain?
(i) $\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} d y d x$
(ii) $\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} d x d y$
(iii) $\int_{0}^{1} \int_{\sqrt{y}}^{y^{2}} d x d y$
A. (i) only
B. (ii) only
C. (iii) only
D. (i) and (ii)
E. (i) and (iii)

(e) The shaded region below is
A. x-simple
B. y-simple
C. both x-simple and y-simple
D. neither x-simple nor y-simple

$$
\begin{aligned}
& = \begin{cases}-\sqrt{4-x^{2}} & -2 \leq x<-1 \\
\sqrt{1-x^{2}} & -1 \leq x<0 \\
1 & 0 \leq x \leq \sqrt{3}\end{cases} \\
& = \begin{cases}\sqrt{4-x^{2}} & -2 \leq x \leq \sqrt{3}\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{ll}
-\sqrt{4-y^{2}} & -\sqrt{3} \leq y \leq 2 \\
- \begin{cases}\sqrt{4-y^{2}} & 1<y \leq 2 \\
-\sqrt{1-y^{2}} & 0<y \leq 1 \\
-1 & -\sqrt{3} \leq y \leq 0\end{cases}
\end{array} . \begin{array}{l}
-1
\end{array}\right. \\
& =1
\end{aligned}
$$

2. [10 points total]:
(a) [2 points]: Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $g(x, y, z)=x y^{2}+\cos z$. Find the matrix of partial derivatives $\mathrm{D} g(x, y, z)$.

Solution:

$$
\mathrm{D} g(x, y, z)=\left[\begin{array}{lll}
y^{2} & 2 x y & -\sin z
\end{array}\right]
$$

(b) [3 points]: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $f(u, v)=\left(u, v \sin u, e^{v-u}\right)$. Find the matrix of partial derivatives $\mathrm{D} f(u, v)$.
Solution: $\quad \mathrm{D} f(u, v)=\left[\begin{array}{cc}1 & 0 \\ v \cos u & \sin u \\ -e^{v-u} & e^{v-u}\end{array}\right]$
(c) [2 points]: Find $f(0,1)$ and $\mathrm{D} f(0,1)$.

Solution:

$$
\begin{aligned}
f(0,1) & =\left(0,1 \cdot \sin 0, e^{1-0}\right)=(0,0, e) \\
D f(0,1) & =\left[\begin{array}{cc}
1 & 0 \\
(1) \cos 0 & \sin 0 \\
-e^{1-0} & e^{1-0}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
-e & e
\end{array}\right]
\end{aligned}
$$

(d) [3 points]: Let $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $h=g \circ f$. Use the chain rule to find $\operatorname{D} h(0,1)$.

Solution: By the chain rule,

$$
\mathrm{D} h(0,1)=[\mathrm{D} g(f(0,1))][\mathrm{D} f(0,1)]=[\mathrm{D} g(0,0, e)]\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
-e & e
\end{array}\right]
$$

We have

$$
[\mathrm{D} g(0,0, e)]=\left[\begin{array}{lll}
0^{2} & 2(0)(0) & -\sin e
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & -\sin e
\end{array}\right]
$$

and hence

$$
\begin{aligned}
\operatorname{Dh}(0,1) & =\left[\begin{array}{lll}
0 & 0 & -\sin e
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
-e & e
\end{array}\right] \\
& =\left[\begin{array}{ll}
(0)(1)+(0)(1)+(-\sin e)(-e) & (0)(0)+(0)(0)+(-\sin e)(e)
\end{array}\right] \\
& =\left[\begin{array}{ll}
e \sin e & -e \sin e
\end{array}\right]
\end{aligned}
$$

3.

$$
\int_{1}^{e} \int_{\ln x}^{1} \frac{\cos \left(y^{2}\right)}{x} d y d x
$$

Solution: Since we don't know an easy y-antiderivative for $\frac{\cos \left(y^{2}\right)}{x}$, we want to switch the order of integration. To do so, we draw the region of integration:

Then

$$
\begin{aligned}
\int_{1}^{e} \int_{\ln x}^{1} \frac{\cos \left(y^{2}\right)}{x} d y d x & =\int_{0}^{1} \int_{1}^{e^{y}} \frac{\cos \left(y^{2}\right)}{x} d x d y \\
& =\int_{0}^{1} \cos \left(y^{2}\right)[\ln x]_{1}^{e^{y}} d y \\
& =\int_{0}^{1} \cos \left(y^{2}\right)\left[\ln \left(e^{y}\right)-\ln 1\right] d y \\
& =\int_{0}^{1} \cos \left(y^{2}\right)[y-0] d y \\
& =\int_{0}^{1} y \cos \left(y^{2}\right) d y \\
& =\left[\frac{\sin y^{2}}{2}\right]_{0}^{1} \\
& =\left[\frac{\sin (1)}{2}\right]-\left[\frac{\sin 0}{2}\right] \\
& =\frac{\sin (1)}{2}
\end{aligned}
$$

4. [10 points](Evaluate): Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(u, v)=\left(u+e^{v},-2 u+e^{v}\right)$. Let $D^{*}=[0,1] \times[0,1]$ in the u-v plane. Calculate

$$
\iint_{T\left(D^{*}\right)}[x-y] d A
$$

Solution: Since $\mathrm{D} T(u, v)=\left[\begin{array}{cc}1 & e^{v} \\ -2 & e^{v}\end{array}\right]$ we see that the partial derivatives of T all exist and are continuous. Moreover, T is one-to-one on D^{*} since if $x=u+e^{v}$ and $y=-2 u+e^{v}$ for $(u, v) \in D^{*}$, then $u=\frac{x-y}{3}$ and $v=\ln \frac{2 x+y}{3}$. Thus T is one-to-one and continuously differentiable, so by the change of variables theorem,

$$
\iint_{T\left(D^{*}\right)} f(x, y) d A=\iint_{D^{*}} f\left(u+e^{v},-2 u+e^{v}\right) \cdot|\operatorname{det} \mathrm{D} T(u, v)| d A
$$

for any integrable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. We have

$$
\operatorname{det} \mathrm{D} T(u, v)=\left|\begin{array}{cc}
1 & e^{v} \\
-2 & e^{v}
\end{array}\right|=(1)\left(e^{v}\right)-(-2)\left(e^{v}\right)=3 e^{v}
$$

and so taking $f(x, y)=x-y$ we have

$$
\begin{aligned}
\iint_{T\left(D^{*}\right)} x-y d A & =\iint_{D^{*}}\left(\left(u+e^{v}\right)-\left(-2 u+e^{v}\right)\right)\left|3 e^{v}\right| d A \\
& =\int_{0}^{1} \int_{0}^{1}(3 u)\left(3 e^{v}\right) d v d u \\
& =\int_{0}^{1} 9 u\left[e^{v}\right]_{0}^{1} d u \\
& =\int_{0}^{1} 9 u\left[e^{1}-e^{0}\right] d u \\
& =9(e-1)\left[\frac{u^{2}}{2}\right]_{0}^{1} \\
& =\frac{9}{2}(e-1)
\end{aligned}
$$

5. [10 points](Evaluate): One day, Bill the baker spills an entire bag of sugar on his (2 meter)-by-(2 meter) baking table, represented by $D=[-1,1] \times[-1,1]$. Assume the planar density of sugar over a point (x, y) is given by

$$
f(x, y)=x^{2}+y^{2} \quad \mathrm{mg} / \mathrm{m}^{2}
$$

Luke the very lucky ant then eats his way across the table in path given by

$$
c(t)=\left(e^{-t} \cos t, e^{-t} \sin t\right) \quad \text { from } \quad t=0 \quad \text { to } \quad t=10 .
$$

If the path Luke eats is 1 millimeter ($=\frac{1}{1000}$ meters) wide, then

$$
\left[f(c(t)) \mathrm{mg} / \mathrm{m}^{2}\right]\left[\frac{1}{1000} \mathrm{~m}\right]=\frac{f(c(t))}{1000} \mathrm{mg} / \mathrm{m}
$$

approximates the linear density of sugar along Luke's path. In mg, about how much sugar did Luke eat?

Solution: Since $\frac{f(c(t))}{1000}$ approximates the linear density of sugar along the path \mathbf{c}, the total mass of sugar eaten (in mg) is given by $\int_{\mathbf{c}} \frac{f(x, y)}{1000} d s=\frac{1}{1000} \int_{0}^{10} f(c(t))\left\|c^{\prime}(t)\right\| d t$. For $0 \leq t \leq 10$ we have

$$
f(c(t))=e^{-2 t} \cos ^{2} t+e^{-2 t} \sin ^{2} t=e^{-2 t} \quad\left(\text { using } \sin ^{2} t+\cos ^{2} t=1\right)
$$

and

$$
\begin{aligned}
\left\|c^{\prime}(t)\right\| & =\left\|\left(-e^{-t} \cos t+e^{-t}(-\sin t),-e^{-t} \sin t+e^{-t} \cos t\right)\right\| \\
& =\sqrt{\left(-e^{-t} \cos t-e^{-t} \sin t\right)^{2}+\left(-e^{-t} \sin t+e^{-t} \cos t\right)^{2}} \\
& =\sqrt{e^{-2 t} \cos ^{2} t+2\left(e^{-t} \cos t\right)\left(e^{-t} \sin t\right)+e^{-2 t} \sin ^{2} t+e^{-2 t} \sin ^{2} t-2\left(e^{-t} \sin t\right)\left(e^{-t} \cos t\right)+e^{-2 t} \cos ^{2} t} \\
& =\sqrt{2 e^{-2 t}} \quad\left(\text { using } \sin ^{2} t+\cos ^{2} t=1\right) \\
& =\sqrt{2} e^{-t}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{1000} \int_{0}^{10} f(c(t))\left\|c^{\prime}(t)\right\| d t & =\frac{1}{1000} \int_{0}^{10}\left(e^{-2 t}\right)\left(\sqrt{2} e^{-t}\right) d t \\
& =\frac{\sqrt{2}}{1000} \int_{0}^{10} e^{-3 t} d t \\
& =\frac{\sqrt{2}}{1000}\left[\frac{-e^{-3 t}}{3}\right]_{0}^{10} \\
& =\frac{\sqrt{2}}{1000}\left[\frac{-e^{-30}}{3}-\frac{-e^{0}}{3}\right] \\
& =\frac{\sqrt{2}}{3000}\left(1-e^{-30}\right)
\end{aligned}
$$

so Luke ate $\frac{\sqrt{2}}{3000}\left(1-e^{-30}\right) \mathrm{mg}$ of sugar. That must have been a small bag of sugar!

