Name:	PID:
11411101	

ΓA:	Sec. No:	Sec. Time:

Q #:	Score:
1	/10
2	/10
3	/10
4	/10
5	/10
Total	/50

Math 20E Midterm 1

Summer Session II, 2015

1. [10 points total]: Circle your answer to each of the following true/false or multiple-choice questions. [2 points each]:

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a function and $\vec{x_0} \in \mathbb{R}^n$.

- (a) True or False: If f is differentiable at $\vec{x_0}$, then all of the partial derivatives of f must exist at $\vec{x_0}$.
- (b) True or False: If all of the partial derivatives of f exist at $\vec{x_0}$, then f must be differentiable at $\vec{x_0}$.
- (c) True or False: If f is differentiable at $\vec{x_0}$, then f must be continuous at $\vec{x_0}$.
- (d) Which of the following double integrals are evaluated over this shaded domain?

$$\mathbf{C}$$
. (iii) only

- (e) The shaded region below is
 - $\mathbf{A.} x$ -simple
 - \mathbf{B} . y-simple
 - \mathbf{C} . both x-simple and y-simple
 - **D.** neither x-simple nor y-simple

- **2.** [10 points total]:
 - (a) [2 points]: Let $g: \mathbb{R}^3 \to \mathbb{R}$ be defined by $g(x, y, z) = xy^2 + \cos z$. Find the matrix of partial derivatives $\mathrm{D}g(x, y, z)$.

(b) [3 points]: Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $f(u,v) = (u,v\sin u,e^{v-u})$. Find the matrix of partial derivatives $\mathrm{D}f(u,v)$.

(c) [2 points]: Find f(0,1) and Df(0,1).

(d) [3 points]: Let $h: \mathbb{R}^3 \to \mathbb{R}$ be defined by $h = g \circ f$. Use the chain rule to find $\mathrm{D}h(0,1)$.

3. [10 points]: Evaluate

$$\int_{1}^{e} \int_{\ln x}^{1} \frac{\cos(y^2)}{x} \, dy dx$$

4. [10 points]: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(u,v) = (u+e^v, -2u+e^v)$. Let $D^* = [0,1] \times [0,1]$ in the u-v plane. Calculate

$$\iint\limits_{T(D^*)} [x-y] \; dA$$

5. [10 points]: One day, Bill the baker spills an entire bag of sugar on his (2 meter)-by-(2 meter) baking table, represented by $D = [-1, 1] \times [-1, 1]$. Assume the *planar* density of sugar over a point (x, y) is given by

$$f(x,y) = x^2 + y^2 \quad \text{mg/m}^2$$

Luke the very lucky ant then eats his way across the table in path given by

$$c(t) = (e^{-t}\cos t, e^{-t}\sin t)$$
 from $t = 0$ to $t = 10$.

If the path Luke eats is 1 millimeter (= $\frac{1}{1000}$ meters) wide, then

$$[f(c(t)) \text{ mg/m}^2][\frac{1}{1000} \text{ m}] = \frac{f(c(t))}{1000} \text{ mg/m}$$

approximates the linear density of sugar along Luke's path. In mg, about how much sugar did Luke eat?