Name: \qquad PID: \qquad
TA: \qquad Sec. No: \qquad Sec. Time: \qquad

Q \#:	Score:
1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 10$
Total	$/ 50$

Math 20E Midterm 1

Summer Session II, 2015

1. [10 points total]: Circle your answer to each of the following true/false or multiple-choice questions. [2 points each]:
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a function and $\overrightarrow{x_{0}} \in \mathbb{R}^{n}$.
(a) True or False: If f is differentiable at $\overrightarrow{x_{0}}$, then all of the partial derivatives of f must exist at $\overrightarrow{x_{0}}$.
(b) True or False: If all of the partial derivatives of f exist at $\overrightarrow{x_{0}}$, then f must be differentiable at $\overrightarrow{0_{0}}$.
(c) True or False: If f is differentiable at $\overrightarrow{x_{0}}$, then f must be continuous at $\overrightarrow{x_{0}}$.
(d) Which of the following double integrals are evaluated over this shaded domain?
(i) $\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} d y d x$
(ii) $\int_{0}^{1} \int_{y^{2}}^{\sqrt{y}} d x d y$
(iii) $\int_{0}^{1} \int_{\sqrt{y}}^{y^{2}} d x d y$
A. (i) only
B. (ii) only
C. (iii) only
D. (i) and (ii)
E. (i) and (iii)
(e) The shaded region below is
A. x-simple
B. y-simple
C. both x-simple and y-simple
D. neither x-simple nor y-simple

2. [10 points total]:
(a) [2 points]: Let $g: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $g(x, y, z)=x y^{2}+\cos z$. Find the matrix of partial derivatives $\mathrm{D} g(x, y, z)$.
(b) [3 points]: Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by $f(u, v)=\left(u, v \sin u, e^{v-u}\right)$. Find the matrix of partial derivatives $\mathrm{D} f(u, v)$.
(c) [2 points]: Find $f(0,1)$ and $\mathrm{D} f(0,1)$.
(d) [3 points]: Let $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by $h=g \circ f$. Use the chain rule to find $\mathrm{D} h(0,1)$.
3.

$$
\int_{1}^{e} \int_{\ln x}^{1} \frac{\cos \left(y^{2}\right)}{x} d y d x
$$

4. $[10$ points $]$: Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by $T(u, v)=\left(u+e^{v},-2 u+e^{v}\right)$. Let $D^{*}=[0,1] \times[0,1]$ in the $u-v$ plane. Calculate

$$
\iint_{T\left(D^{*}\right)}[x-y] d A
$$

5. [10 points](Evaluate): One day, Bill the baker spills an entire bag of sugar on his (2 meter)-by-(2 meter) baking table, represented by $D=[-1,1] \times[-1,1]$. Assume the planar density of sugar over a point (x, y) is given by

$$
f(x, y)=x^{2}+y^{2} \quad \mathrm{mg} / \mathrm{m}^{2}
$$

Luke the very lucky ant then eats his way across the table in path given by

$$
c(t)=\left(e^{-t} \cos t, e^{-t} \sin t\right) \quad \text { from } \quad t=0 \quad \text { to } \quad t=10
$$

If the path Luke eats is 1 millimeter $\left(=\frac{1}{1000}\right.$ meters) wide, then

$$
\left[f(c(t)) \mathrm{mg} / \mathrm{m}^{2}\right]\left[\frac{1}{1000} \mathrm{~m}\right]=\frac{f(c(t))}{1000} \mathrm{mg} / \mathrm{m}
$$

approximates the linear density of sugar along Luke's path. In mg, about how much sugar did Luke eat?

