			Q #:	Score:
Name:	PID:		1	/10
TA:	Sec. No:	Sec. Time:	2	/10
			3	/10
			4	/10
	Math 20E	Midterm 1	5	/10
		sion II, 2015	Total	/50
[2 points each]:		the following true/false or mu	ltiple-choice	e questions.
Let $f : \mathbb{R}^n \to \mathbb{R}^m$ b	be a function and $\vec{x_0} \in \mathbb{R}^n$.			
(a) True or Fa	alse: If f is differentiable at	$\vec{x_0}$, then f must be continuous	at $\vec{x_0}$.	
(b) True or Fa at $\vec{x_0}$.	alse: If f is differentiable at	$\vec{x_0}$, then all of the partial derivation of the partial derivatio	vatives of f	must exist
(c) True or Fal	se: If all of the partial deriv	vatives of f exist at $\vec{x_0}$, then f	must be di	fferentiable
at $\vec{x_0}$. (d) Which of the	following double integrals ar	e evaluated over this shaded d	omain?	
			Jillaili.	_
(i) $\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} dy dx$ A. (i) only B. (ii) only C. (iii) only D. (i) and (ii) E. (i) and (ii)	-	dxdy		x ²
(e) The shaded re	egion below is	I		
	simple and y -simple simple nor y -simple			
	y 1 2 1 2 1 1 x x x 2 y x x x x x x x x x x x x x x x	2 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -	1 2 1 +y^2 = 1	-1 - x

 $(x^2+y^2=4)$

 $- \left\{ \begin{array}{c} -\sqrt{4-y^2} & -\sqrt{3} \leq y \leq 2 \end{array} \right.$

 $\begin{cases} \sqrt{4-y^2} & 1 < y \le 2 \\ -\sqrt{1-y^2} & 0 < y \le 1 \\ -1 & -\sqrt{3} \le y \le 0 \end{cases}$

-1

 $(x^2+y^2 = 4)$

12

 $\begin{bmatrix}
-\sqrt{4-x^2} & -2 \le x < -1 \\
\sqrt{1-x^2} & -1 \le x < 0 \\
1 & 0 \le x \le \sqrt{3}
\end{bmatrix}$

 $- \left\{ \sqrt{4-x^2} \quad -2 \le x \le \sqrt{3} \right.$

-1

- **2.** [10 points total]:
 - (a) [2 points]: Let $g : \mathbb{R}^3 \to \mathbb{R}$ be defined by $g(x, y, z) = zx^2 + \cos y$. Find the matrix of partial derivatives Dg(x, y, z).

Solution:		
	$Dg(x, y, z) = \begin{bmatrix} 2zx & -\sin y \end{bmatrix}$	x^2]

(b) [3 points]: Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $f(u, v) = (u \sin v, e^{u-v}, v)$. Find the matrix of partial derivatives Df(u, v).

Solution:		
	$\begin{bmatrix} \sin v & u \cos v \end{bmatrix}$	
	$Df(u,v) = \begin{bmatrix} \sin v & u \cos v \\ e^{u-v} & -e^{u-v} \end{bmatrix}$	

(c) [2 points]: Find f(1,0) and Df(1,0).

Solution:	$f(1,0) = (1 \cdot \sin 0, e^{1-0}, 0) = (0, e, 0)$
	$Df(1,0) = \begin{bmatrix} \sin 0 & (1)\cos 0\\ e^{1-0} & -e^{1-0}\\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1\\ e & -e\\ 0 & 1 \end{bmatrix}$

(d) [3 points]: Let $h : \mathbb{R}^3 \to \mathbb{R}$ be defined by $h = g \circ f$. Use the chain rule to find Dh(1,0).

Solution: By the chain rule,

$$Dh(1,0) = [Dg(f(1,0))][Df(1,0)] = [Dg(0,e,0)] \begin{bmatrix} 0 & 1 \\ e & -e \\ 0 & 1 \end{bmatrix}$$
We have

$$[Dg(0,e,0)] = [2(0)(0) - \sin e \quad 0^2] = \begin{bmatrix} 0 & -\sin e & 0 \end{bmatrix}$$
and hence

$$Dh(1,0) = \begin{bmatrix} 0 & -\sin e & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ e & -e \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} (0)(0) + (-\sin e)(e) + (0)(0) & (0)(1) + (-\sin e)(-e) + (0)(1) \end{bmatrix}$$

$$= \begin{bmatrix} -e\sin e & e\sin e \end{bmatrix}$$

3. [10 points]: Evaluate

$$\int_{1}^{e} \int_{\ln x}^{1} \frac{\sin(y^2)}{x} \, dy dx$$

Solution: Since we don't know an antiderivative (in y) for $\frac{\sin(y^2)}{x}$, we want to switch the order of integration. To do so, we draw the region of integration: y $= \ln(x)$ $x = e^{y}$ 1 0.5 X 2 3 4 -0.5 Then $\int_{1}^{e} \int_{\ln x}^{1} \frac{\sin(y^2)}{x} \, dy \, dx = \int_{0}^{1} \int_{1}^{e^y} \frac{\sin(y^2)}{x} \, dx \, dy$ $= \int_{0}^{1} \sin(y^{2}) \left[\ln x\right]_{1}^{e^{y}} dy$ $= \int_{0}^{1} \sin(y^{2}) \left[\ln(e^{y}) - \ln 1 \right] dy$ $= \int_{0}^{1} \sin(y^2) \, [y - 0] \, dy$ $=\int_0^1 y\sin(y^2)dy$ $= \left[-\frac{\cos y^2}{2} \right]_0^1$ $= \left[-\frac{\cos(1)}{2} \right] - \left[-\frac{\cos 0}{2} \right]$ $=\frac{-\cos(1)+1}{2}$

4. [10 points]: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(u, v) = (u - e^v, u + e^v)$. Let $D^* = [0, 1] \times [0, 1]$ in the *u-v* plane. Calculate

$$\iint_{T(D^*)} [x+y] \, dA$$

Solution: Since $DT(u, v) = \begin{bmatrix} 1 & -e^v \\ 1 & e^v \end{bmatrix}$ we see that the partial derivatives of T all exist and are continuous. Moreover, T is one-to-one on D^* since if $x = u - e^v$ and $y = u + e^v$ for $(u, v) \in D^*$, then $u = \frac{x+y}{2}$ and $v = \ln \frac{y-x}{2}$. Thus T is one-to-one and continuously differentiable, so by the change of variables theorem,

$$\iint_{T(D^*)} f(x,y) \, dA = \iint_{D^*} f(u - e^v, u + e^v) \cdot |\det \mathrm{D}T(u,v)| dA$$

for any integrable function $f: \mathbb{R}^2 \to \mathbb{R}$. We have

det DT(u, v) =
$$\begin{vmatrix} 1 & -e^v \\ 1 & e^v \end{vmatrix}$$
 = (1)(e^v) - (1)(-e^v) = 2e^v

and so taking f(x, y) = x + y we have

$$\iint_{T(D^*)} x + y \, dA = \iint_{D^*} (u - e^v + u + e^v) |2e^v| \, dA$$
$$= \int_0^1 \int_0^1 (2u)(2e^v) dv du$$
$$= \int_0^1 4u \, [e^v]_0^1 du$$
$$= \int_0^1 4u \, [e^1 - e^0] \, du$$
$$= 4(e - 1) \left[\frac{u^2}{2}\right]_0^1$$
$$= 2(e - 1)$$

5. [10 points]: One day, Bill the baker spills an entire bag of sugar on his (2 meter)-by-(2 meter) baking table, represented by $D = [-1, 1] \times [-1, 1]$. Assume the *planar* density of sugar over a point (x, y) is given by

$$f(x,y) = x^2 + y^2 \quad \text{mg/m}^2$$

Luke the very lucky ant then eats his way across the table in path given by

$$c(t) = (e^{-t}\cos t, e^{-t}\sin t)$$
 from $t = 0$ to $t = 10$.

If the path Luke eats is 1 millimeter (= $\frac{1}{1000}$ meters) wide, then

$$[f(c(t)) \text{ mg/m}^2][\frac{1}{1000} \text{ m}] = \frac{f(c(t))}{1000} \text{ mg/m}$$

approximates the *linear* density of sugar along Luke's path. In mg, about how much sugar did Luke eat?

Solution: Since $\frac{f(c(t))}{1000}$ approximates the linear density of sugar along the path **c**, the total mass of sugar eaten (in mg) is given by $\int_{\mathbf{c}} \frac{f(x,y)}{1000} ds = \frac{1}{1000} \int_{0}^{10} f(c(t)) ||c'(t)|| dt$. For $0 \le t \le 10$ we have

$$f(c(t)) = e^{-2t} \cos^2 t + e^{-2t} \sin^2 t = e^{-2t} \qquad (\text{using } \sin^2 t + \cos^2 t = 1)$$

and

.

$$\begin{aligned} \|c'(t)\| &= \|(-e^{-t}\cos t + e^{-t}(-\sin t), -e^{-t}\sin t + e^{-t}\cos t)\| \\ &= \sqrt{(-e^{-t}\cos t - e^{-t}\sin t)^2 + (-e^{-t}\sin t + e^{-t}\cos t)^2} \\ &= \sqrt{e^{-2t}\cos^2 t + 2(e^{-t}\cos t)(e^{-t}\sin t) + e^{-2t}\sin^2 t + e^{-2t}\sin^2 t - 2(e^{-t}\sin t)(e^{-t}\cos t) + e^{-2t}\cos^2 t} \\ &= \sqrt{2e^{-2t}} \qquad (\text{using } \sin^2 t + \cos^2 t = 1) \\ &= \sqrt{2}e^{-t} \end{aligned}$$

Hence

$$\begin{aligned} \frac{1}{1000} \int_0^{10} f(c(t)) \| c'(t) \| dt &= \frac{1}{1000} \int_0^{10} (e^{-2t}) (\sqrt{2} e^{-t}) dt \\ &= \frac{\sqrt{2}}{1000} \int_0^{10} e^{-3t} dt \\ &= \frac{\sqrt{2}}{1000} \left[\frac{-e^{-3t}}{3} \right]_0^{10} \\ &= \frac{\sqrt{2}}{1000} \left[\frac{-e^{-30}}{3} - \frac{-e^0}{3} \right] \\ &= \frac{\sqrt{2}}{3000} (1 - e^{-30}) \end{aligned}$$

so Luke at $\frac{\sqrt{2}}{3000}(1-e^{-30})$ mg of sugar. That must have been a small bag of sugar!