		Q #:	Score:
Name:	PID:	1	/10
TA:	Sec. No: Sec. Time:	2	/10
		3	/10
		4	/10
	Math 20E Midterm 1	5	/10
	Summer Session II, 2015	Total	/50

[10 points total]: Circle your answer to each of the following true/false or multiple-choice questions.
 [2 points each]:

Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a function and $\vec{x_0} \in \mathbb{R}^n$.

- (a) True or False: If f is differentiable at $\vec{x_0}$, then f must be continuous at $\vec{x_0}$.
- (b) True or False: If f is differentiable at $\vec{x_0}$, then all of the partial derivatives of f must exist at $\vec{x_0}$.
- (c) True or False: If all of the partial derivatives of f exist at $\vec{x_0}$, then f must be differentiable at $\vec{x_0}$.
- (d) Which of the following double integrals are evaluated over this shaded domain?

(i)
$$\int_{0}^{1} \int_{x^2}^{\sqrt{x}} dy dx$$
 (ii) $\int_{0}^{1} \int_{\sqrt{y}}^{y^2} dx dy$ (iii) $\int_{0}^{1} \int_{y^2}^{\sqrt{y}} dx dy$
A. (i) only
B. (ii) only
C. (iii) only
D. (i) and (ii)
E. (i) and (iii)

- (e) The shaded region below is
 - **A.** x-simple
 - **B.** *y*-simple
 - **C.** both *x*-simple and *y*-simple
 - **D.** neither x-simple nor y-simple

 \sqrt{x}

- **2.** [10 points total]:
 - (a) [2 points]: Let $g : \mathbb{R}^3 \to \mathbb{R}$ be defined by $g(x, y, z) = zx^2 + \cos y$. Find the matrix of partial derivatives Dg(x, y, z).

(b) [3 points]: Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ be defined by $f(u, v) = (u \sin v, e^{u-v}, v)$. Find the matrix of partial derivatives Df(u, v).

(c) [2 points]: Find f(1,0) and Df(1,0).

(d) [3 points]: Let $h : \mathbb{R}^3 \to \mathbb{R}$ be defined by $h = g \circ f$. Use the chain rule to find Dh(1,0).

3. [10 points]: Evaluate

$$\int_{1}^{e} \int_{\ln x}^{1} \frac{\sin(y^2)}{x} \, dy dx$$

4. [10 points]: Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(u, v) = (u - e^v, u + e^v)$. Let $D^* = [0, 1] \times [0, 1]$ in the *u-v* plane. Calculate

$$\iint_{T(D^*)} [x+y] \ dA$$

5. [10 points]: One day, Bill the baker spills an entire bag of sugar on his (2 meter)-by-(2 meter) baking table, represented by $D = [-1, 1] \times [-1, 1]$. Assume the *planar* density of sugar over a point (x, y) is given by

$$f(x,y) = x^2 + y^2 \quad \mathrm{mg/m^2}$$

Luke the very lucky and then eats his way across the table in path given by

$$c(t) = (e^{-t}\cos t, e^{-t}\sin t)$$
 from $t = 0$ to $t = 10$.

If the path Luke eats is 1 millimeter (= $\frac{1}{1000}$ meters) wide, then

$$[f(c(t)) \text{ mg/m}^2][\frac{1}{1000} \text{ m}] = \frac{f(c(t))}{1000} \text{ mg/m}$$

approximates the *linear* density of sugar along Luke's path. In mg, about how much sugar did Luke eat?