Changing the Order of Integration in the Wild

Below is an example of how changing the order of integration can appear "in the wild," that is, when trying to evaluate a surface integral. The surface is the same as in question 4 of Midterm 2 but with the domain D restricted. You will find that this problem is actually easier!

1. Let S be the surface parametrized by

$$
\Phi(x, \theta)=\left(x, \theta\left(1-x^{2}\right), \sin \theta\right)
$$

for (x, θ) in the domain $D=\left\{(x, \theta) \in \mathbb{R}^{2}: 0 \leq x \leq 1, x \leq \theta \leq 1\right\}$.
(a) Sketch the region D.

(b) Evaluate $\iint_{\Phi} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}}$ where $\overrightarrow{\mathbf{F}}(x, y, z)=\overrightarrow{\mathbf{i}}-3 x^{2} \overrightarrow{\mathbf{j}}+\overrightarrow{\mathbf{k}}$.

Solution: Just as on Midterm 2,
$\overrightarrow{\mathbf{T}}_{x} \times \overrightarrow{\mathbf{T}}_{\theta}=\left|\begin{array}{ccc}1 & 0 & \overrightarrow{\mathbf{i}} \\ -2 x \theta & \left(1-x^{2}\right) & \overrightarrow{\mathbf{j}} \\ 0 & \cos \theta & \overrightarrow{\mathbf{k}}\end{array}\right|=-2 x \theta \cos \theta \overrightarrow{\mathbf{i}}+\cos \theta(-\overrightarrow{\mathbf{j}})+\left(1-x^{2}\right) \overrightarrow{\mathbf{k}}=-2 x \theta \cos \theta \overrightarrow{\mathbf{i}}-\cos \theta \overrightarrow{\mathbf{j}}+\left(1-x^{2}\right) \overrightarrow{\mathbf{k}}$
Then for $\overrightarrow{\mathbf{F}}(x, y, z)=\overrightarrow{\mathbf{i}}-3 x^{2} \overrightarrow{\mathbf{j}}+\overrightarrow{\mathbf{k}}$,

$$
\begin{aligned}
\iint_{\Phi} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}} & =\iint_{D}\left[\overrightarrow{\mathbf{F}}(\Phi(x, \theta)) \cdot\left(\overrightarrow{\mathbf{T}}_{x} \times \overrightarrow{\mathbf{T}}_{\theta}\right)\right] d A=\iint_{D}\left[\left(1,-3 x^{2}, 1\right) \cdot\left(-2 x \theta \cos \theta,-\cos \theta, 1-x^{2}\right)\right] d A \\
& =\int_{0}^{1} \int_{x}^{1}\left[-2 x \theta \cos \theta+3 x^{2} \cos \theta+1-x^{2}\right] d \theta d x
\end{aligned}
$$

Now, we could integrate in θ, but we would have to do integration by parts. Instead, we can change the order of integration!

$$
\begin{aligned}
\iint_{\Phi} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{S}} & =\int_{0}^{1} \int_{0}^{\theta}\left[-2 x \theta \cos \theta+3 x^{2} \cos \theta+1-x^{2}\right] d x d \theta \\
& =\int_{0}^{1}\left[-x^{2} \theta \cos \theta+x^{3} \cos \theta+x-\frac{1}{3} x^{3}\right]_{0}^{\theta} d \theta=\int_{0}^{1}\left[-\theta^{3} \cos \theta+\theta^{3} \cos \theta+\theta-\frac{1}{3} \theta^{3}\right] d \theta \\
& =\int_{0}^{1}\left[\theta-\frac{1}{3} \theta^{3}\right] d \theta=\left[\frac{1}{2} \theta^{2}-\frac{1}{12} \theta^{4}\right]_{0}^{1}=\frac{1}{2}-\frac{1}{12}=\frac{5}{12}
\end{aligned}
$$

Green's Theorem Example from Class

2. (a) Let $\boldsymbol{c}(t)=(2 \cos t, 5 \sin (2 t))$ for $-\pi / 2 \leq t \leq \pi / 2$. Compute the area of the region D enclosed by \boldsymbol{c} :

We have $c^{\prime}(t)=(-2 \sin t, 10 \cos (2 t))$. Using the area formula:

$$
\begin{aligned}
\operatorname{Area}(D)= & \iint_{D} 1 d A=\frac{1}{2} \int_{\partial D}-y d x+x d y=\frac{1}{2} \int_{-\pi / 2}^{\pi / 2}[(-5 \sin (2 t), 2 \cos t) \cdot(-2 \sin t, 10 \cos (2 t))] d t \\
& =\frac{1}{2} \int_{-\pi / 2}^{\pi / 2}[10 \sin (2 t) \sin t+20 \cos t \cos (2 t)] d t
\end{aligned}
$$

which you can now integrate by using the double angle formulas $\sin (2 t)=2 \sin t \cos t$ and $\cos 2 t=1-2 \sin ^{2} t$. The answer will be $\frac{40}{3}$.
(b) Let \boldsymbol{c}_{1} be the top half of the curve from part (a), i.e. $\boldsymbol{c}_{1}(t)=(2 \cos t, 5 \sin (2 t))$ for $0 \leq t \leq \pi / 2$, and let \boldsymbol{c}_{2} be the jagged curve pictured:

Given that $\frac{1}{2} \int_{\boldsymbol{c}_{2}}-y d x+x d y=M$, find the area of the region \tilde{D} enclosed by \boldsymbol{c}_{1} and \boldsymbol{c}_{2} in terms of M.

$$
\begin{aligned}
\operatorname{Area}(\tilde{D}) & =\iint_{\tilde{D}} 1 d A=\left[\frac{1}{2} \int_{\boldsymbol{c}_{1}}-y d x+x d y\right]+\left[\frac{1}{2} \int_{\boldsymbol{c}_{2}}-y d x+x d y\right] \\
& =\left[\frac{1}{2} \int_{\boldsymbol{c}_{1}}-y d x+x d y\right]+M \\
& =M+\frac{1}{2} \int_{0}^{\pi / 2}[10 \sin (2 t) \sin t+20 \cos t \cos (2 t)] d t \\
& =M+\frac{20}{3}
\end{aligned}
$$

where you can get to the last line using double angle formulas as above.

