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SPLICING OF TIME OPTIMAL CONTROLS

H. O. FATTORINI
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ABSTRACT. Two controls u1(t) and u2(t) are spliced (in symbols (u1 ∪ u2)(t)) if u2(t) is applied

after u1(t); both are defined in finite intervals. We seek conditions under which time optimality

of u1, u2 imply time optimality of u1 ∪ u2, and extend the results to a finite or infinite number

of controls. The theorems (or rather examples, since they are restricted to the right translation

semigroup in L2(0,∞)) are used to construct time optimal controls that do not satisfy Pontryagin’s

maximum principle.

AMS (MOS) Subject Classification. 93E20, 93E25

1. PRELIMINARIES

The system is

(1.1) y′(t) = Ay(t) + u(t) , y(0) = ζ

with controls u(·) ∈ L∞(0, T ; E). The operator A generates a strongly continuous

semigroup S(t) in a Banach space E, called the state space of (1.1). The solution of

(1.1) is the continuous function

(1.2) y(t) = y(t, ζ, u) = S(t)ζ +

∫ t

0

S(t − σ)u(σ)dσ .

A control is admissible if

(1.3) ‖u(·)‖L∞(0,T ;E) ≤ 1 .

The control is time optimal if it drives the initial point ζ to a point target

(1.4) y(T, ζ, u) = ȳ

in optimal time T , that is, no other admissible control does the drive in less time.

Under restrictions on ζ, ȳ, necessary and sufficient conditions for optimality can be

given in terms of Pontryagin’s maximum principle (1.6) below. The principle requires

multipliers [4], [6] Section 2.3 whose construction we outline. When A has a bounded

inverse, E∗
−1 is the completion of the dual E∗ in the norm

‖y∗‖E∗

−1
= ‖(A−1)∗y∗‖E∗ .
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The adjoint semigroup S(t)∗ can be extended to an operator S(t)∗ : E∗
−1 → E∗

−1. If

S(t)∗ is strongly continuous, Z(T ) ⊆ E∗
−1 consists of all z ∈ E∗

−1 such that S(t)∗z ∈ E∗

(t > 0) and

(1.5) ‖z‖Z(T ) =

∫ T

0

‖S(t)∗z‖E∗dt < ∞ .

The norm (1.5) makes Z(T ) a Banach space. All Z(T ) coincide and all norms ‖·‖Z(T )

are equivalent for T > 0. Z(T ) is an example of a multiplier space, a linear space

Z ⊇ E∗ to which S(t)∗ can be extended in such a way that S(t)∗Z ⊆ E∗ for t > 0

and that the semigroup equation S(s + t)∗ζ = S(s)∗S(t)∗ζ is valid for ζ ∈ Z and

s, t > 0. When A does not have a bounded inverse, E∗
−1 is the completion of E∗ in

any of the equivalent norms

‖y∗‖E∗

−1
,λ = ‖((λI − A)−1)∗y∗‖E∗

(λ large enough). The definition of Z(T ) (and of multiplier spaces) doesn’t change.

An admissible control ū(·) ∈ L∞(0, T ; E) satisfies Pontryagin’s maximum prin-

ciple if

(1.6) 〈S(T − t)∗η, ū(t)〉 = max
‖u‖≤1

〈S(T − t)∗η, u〉 a. e. in 0 ≤ t < T ,

〈· , ·〉 the duality of the spaces E and E∗, η in some multiplier space Z. We call η

the multiplier and z(t) = S(T − t)∗η ∈ E∗ the costate corresponding to (or associated

with) the control ū(t). We assume that (1.6) is nontrivial, that is, that S(T − t)∗z is

not identically zero in the interval 0 ≤ t < T , although it may be zero in part of the

interval (where (1.6) gives no information on ū(t)). When E is a Hilbert space (1.6)

reduces to

(1.7) ū(t) =
S(T − t)∗η

‖S(T − t)∗η‖
(T − δ < t ≤ T ) ,

where (T − δ, T ] is the maximal interval where S(T − t)∗η 6= 0; if δ = T the interval

is 0 < t ≤ T . We say that ū(t) is regular if it satisfies (1.6) with η = z ∈ Z(T ).

Theorem 1.1. Assume ū(t) drives ζ ∈ E to ȳ = y(T, ζ, ū) time optimally in the

interval 0 ≤ t ≤ T and that

(1.8) ȳ − S(T )ζ ∈ D(A) .

Then ū(t) is regular.

Theorem 1.2. Let ū(t) be a regular control with

(a) ȳ = y(T, ζ, ū) ∈ D(A) , ‖Aȳ‖ < 1 , or

(b) ζ ∈ D(A) , ‖Aζ‖ < 1 , S(T − t)∗z 6= 0 (0 < t ≤ T ) .

Then ū(t) drives ζ ∈ E to ȳ = y(T, ζ, ū) time optimally in the interval 0 ≤ t ≤ T .
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Theorem 1.1 is [6] Theorem 2.5.1. It does not guarantee that S(t)∗z 6= 0 in the

whole interval (see Remark 4.4). Theorem 1.2 is [6] Theorem 2.5.7. We only use it

here when ζ = 0 (which fits into (b), with no assumptions on ȳ).

We say that ȳ ∈ E is reachable if there exists an admissible control driving 0 to

ȳ.

Theorem 1.3 (existence of optimal controls). Let E be a Hilbert space. If ȳ is reach-

able then there exists an optimal control, that is, an admissible control ū(·) driving 0

to ȳ in optimal time.

Although sufficient for this paper, the result is true in spaces much more general

than Hilbert; see [6] Section 3.1. The following result is [6] Theorem 2.1.3 and is

totally independent of the maximum principle (1.6).

Theorem 1.4. Let ū(·) be time optimal.1 Then

(1.9) ‖ū(t)‖ = 1 .

Theorem 1.4 implies uniqueness of optimal controls in a Hilbert space. In fact,

if two controls ū1(t) and ū2(t) drive 0 to ȳ in optimal time T so does ū(t) = (ū1(t) +

ū2(t))/2; since (1.9) is mandatory, ū1(t) = ū2(t). The result is valid in strictly convex

spaces; see [6] Theorem 3.1.4. We don’t know whether strict convexity is necessary

for uniqueness, although nonuniqueness examples in spaces not strictly convex exist

(see [6], Sections 1.2 and 5.5).

Theorem 1.1 says nothing about time optimal controls driving ζ to ȳ not satisfying

(1.8), in particular about controls driving 0 to ȳ /∈ D(A). In fact, the main purpose

of this paper is to construct time optimal controls that do not satisfy the maximum

principle (1.6). For these, y(T, 0, ū) /∈ D(A).

2. SPLICING

Let u1(·) ∈ L∞(0, T1; E), u2(·) ∈ L∞(0, T2; E). The splice u1 ∪ u2 of u1 and u2 is

(2.1) u(t) = (u1 ∪ u2)(t) =

{

u1(t) (0 ≤ t < T1)

u2(t − T1) (T1 < t ≤ T1 + T2)

and belongs to L∞(0, T1+T2; E). Splicing of n controls uj(·) ∈ L∞(0, Tj; E) is defined

directly, or inductively by

(2.2) u = u1 ∪ u2 ∪ · · · ∪ un = (u1 ∪ u2 ∪ · · · ∪ un−1) ∪ un

1Statements like (1.9) should be qualified by “almost everywhere”. We don’t bother with this.
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and u(·) ∈ L∞(0, T1 + T2 + · · · + Tn; E). The definition extends to infinite sequences

{un(·) ∈ L∞(0, Tn; E); n = 1, 2, . . .}. If ‖un(·)‖L∞(0,Tn;E) ≤ C then the splice

(2.3) u(t) =

( ∞
⋃

n=1

un

)

(t)

belongs to L∞(0, T ; E), T =
∑∞

n=1 Tn. We only use this case when T < ∞. Obviously,

the finite or infinite splice of admissible controls is admissible. Splicing is associative

but not commutative.

In general, splicing optimal controls does not preserve optimality; for the sim-

plest one-dimensional system y′(t) = u(t) the only time optimal controls in [0, T ]

are u1(t) = 1 and u−1(t) = −1 and no nontrivial splicing is optimal. One can only

hope for examples where splicing preserves optimality, and the results are only for

the control system

(2.4)

∂y(t, x)

∂t
= −

∂y(t, x)

∂x
+ u(t, x) ,

y(0, x) = ζ(x) , y(t, 0) = 0 (0 ≤ t, x < ∞) .

This system can be written as (1.1) in the space E = L2(0,∞) with

(2.5) Ay(x) = −y′(x) ,

domain D(A) = {all y(·) ∈ L2(0,∞) with y′(·) in L2(0,∞) and y(0) = 0}. This

operator generates the (isometric) right translation semigroup

(2.6) S(t)y(x) =

{

y(x − t) (x ≥ t)

0 (x < t) .

We show below that there exists classes SP(T ) of optimal controls2 such that if

u2(·) ∈ SP(T2) and u1(·) is an arbitrary optimal control in [0, T1] then the splice

(u1 ∪u2)(t) is optimal (Theorem 4.1). The result is easily extended to finite splicings

(Theorem 4.2). Infinite splicings are not as simple; all we can show (Theorem 5.3) is

that there exist inductively defined sequences of optimal controls {ūj(·)} (ū1(·) time

optimal, uj(·) ∈ SP(Tj) for j = 2, 3, . . . ) whose splice is time optimal. Since the

results are restricted to the system (2.4) splicing seems little more than a curiosity.

However, it can be used to produce time optimal controls not satisfying Pontryagin’s

maximum principle (1.6). The results are generalizations of the results in [5] and [6]

Section 2.7 (where splicing was used in particular cases but not explicitly defined)

and we are able to produce time optimal controls “rougher” than the ones therein.

2Each control u(t) is defined in its own interval [0, T ], possibly different for different controls.

That u(t) is optimal in [0, T ] means it drives time optimally 0 to the target ȳ = y(T, 0, ū), that is,

the target is not fixed beforehand. Optimality has the same meaning: no other admissible control

u(·) can drive 0 to y(T, 0, ū) in less time. Sometimes we abbreviate “optimal in [0, T ]” to simply

“optimal”.



SPLICING OF TIME OPTIMAL CONTROLS 173

Splicing (although not of optimal controls) is known in control theory; it has been

especially used in controllability of systems in Euclidean spaces and Lie groups. For

references see [6], Section 6.3.

3. THE RIGHT TRANSLATION SEMIGROUP

The adjoint of (2.6) is the left translation (and chop-off) semigroup

(3.1) S(t)∗y(x) =

{

y(x + t) (x ≥ 0)

0 (x < 0) .

We have

(3.2) S(t)∗S(t) = I , S(t)S(t)∗y(x) = χt(x)y(x) ,

χt(x) the characteristic function of [t,∞). Formula (1.2) for the control u(t)(x) =

u(t, x) is

y(t, x, ζ, u) = y(t, ζ, u)(x) =

(

S(t)ζ +

∫ t

0

S(t − σ)u(σ)dσ

)

(x)(3.3)

= ζ(x − t) +

∫ t

0

u(σ, x − (t − σ))dσ ,

thus the contribution of the control u(σ, x) to y(t, x, ζ, u) is the integral of u(σ, x)

over the intersection of the positive quadrant t, x ≥ 0 with the line (σ, x − (t − σ))

joining (0, x − t) with (t, x) as shown in Figure 1.

The space Z of all multipliers consists of all measurable z(x) defined in x > 0

and such that

κ(t, z) = ‖S(t)∗z(·)‖ =

√

∫ ∞

0

z(x + t)2dx =

√

∫ ∞

t

z(x)2dx < ∞ ,

for t > 0, while Z(T ) consists of all z(·) ∈ Z satisfying the integrability condition

(1.5),
∫ T

0

‖S(σ)∗z(·)‖dσ =

∫ T

0

κ(σ, z)dσ < ∞ .

Since we are in a Hilbert space, (1.7) applies, and any control that satisfies (1.6) is

given by

ū(t, x) =
S(T − t)∗z(x)

‖S(T − t)∗z(·)‖
(3.4)

= χ0(x)
z(x + (T − t))

κ(T − t, z)
(T − δ < t ≤ T ) ,



174 H. O. FATTORINI

x

x t

t

0 x

Figure 1. Integration lines in formula (3.3).
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Figure 2. Optimal time and optimal control when s(ȳ) < ∞.

where (T − δ, T ] is the maximal interval where S(T − t)∗z 6= 0; if δ = T , the interval

in (3.4) is 0 < t ≤ T . Using the second equality (3.2)

S(T − σ)ū(σ, x) =
S(T − σ)S(T − σ)∗z(x)

‖S(T − σ)∗z(·)‖
(3.5)

=
χT−σ(x)z(x)

κ(T − σ, z)
(T − δ ≤ t < T ) .

Consequently, if κ(T − σ) 6= 0 in 0 < σ ≤ T , y(T, x, 0, u) is the integral in 0 ≤ σ ≤ T

of the right side of (3.5). This leads to a simple explicit formula for y(T, x, 0, u) in

terms of z(x) ([6] formula (2.6.25)) which we don’t need to use here.

Let ϕ(x) be measurable in x > 0. Define s(ϕ(·)) as the minimum s ≥ 0 such that

support ϕ(·) ∈ [0, s] (support defined modulo null sets). If the support of ϕ(·) is not

contained in any interval [0, s] we set s(ϕ(·)) = ∞.

Lemma 3.1. Assume that ȳ(·) ∈ L2(0,∞) is reachable and s(ȳ(·)) < ∞. Then (a)

if T is the optimal driving time from 0 to ȳ(x) we have T ≤ s(ȳ), (b) if ū(t, x) is the

optimal control doing the drive, the support of ū(t, x) is contained in the region R̃ in

Figure 2 right.
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Proof. Assume T > s(ȳ) so that we have the configuration in Figure 2 left. If

the time optimal control ū(t, x) is not zero in K we may modify its definition to

ū(t, x) = 0 there. This doesn’t affect the target and, if anything, improves each norm

‖ū(t, ·)‖L2(0,∞). The modified control is admissible, thus time optimal; by uniqueness

it is equal to ū(t, x). If T > s(ȳ) then ‖ū(t, ·)‖L2(0,∞) = 0 in 0 ≤ t ≤ T − s(ȳ).

However, Theorem 1.4 says that a time optimal control must satisfy ‖u(t)‖ = 1, thus

we have a contradiction. (b) If the optimal control ū(t, x) is not zero in K we modify

its definition to ū(t, x) = 0 there and argue as in (a).

Lemma 3.2. Assume ȳ(x) is reachable with a control of the form (3.4). Then

(3.6) s(z(·)) = s(ȳ(·)) .

Proof. Equality (3.6) follows from the far more precise statement

(3.7) z(x) = 0 ⇐⇒ ȳ(x) = 0 .

To see that (3.7) holds we look at formula (3.5). The target ȳ(x) is obtained inte-

grating in 0 ≤ σ ≤ T the function on the right side, thus z(x) = 0 ⇒ ȳ(x) = 0. On

the other hand, the function χT−σ(x) (as a function of t) is nonzero for T − σ ≤ x

thus ȳ(x) = 0 ⇒ z(x) = 0 and we are done.

Lemma 3.1 and Lemma 3.2 have totally different scopes. In Lemma 3.1 ȳ(x)

is just reachable by an admissible control (thus by an optimal control in view of

Theorem 1.3). In Lemma 3.2, ȳ(x) is reachable by a control of the form (3.4), this

control being automatically optimal by Theorem 1.2. The aim of this paper is to

produce optimal controls not of the form (3.4).

4. FINITE SPLICING

A control u(t, x) in L∞(0, T ; L2(0,∞)) belongs to the class SP(T ) if and only

if it is admissible and drives 0 in optimal time T to a target ȳ(x) with s(ȳ(·)) = T .

Examples of controls in SP(T ) are easy to produce with the help of Theorem 1.2

and (3.4): if z(·) ∈ Z(T ) with s(z(·)) = T then the control ū(t, x) in (3.4) drives

0 to a target ȳ(x) = y(T, x, 0, ū) in optimal time T and thus is in SP(T ). Since

Z(T ) ⊃ L2(0,∞) we may take z(·) ∈ L2(0,∞) for the purposes of this paper. Any

control in SP(T ) must be zero in the region K in Figure 3; if not, we can modify its

definition to ū(t, x) = 0 there and argue as in the proof of Lemma 3.1

The condition s(z(·)) = s(ȳ(·)) = T alone does not guarantee that T is the

optimal time to reach ȳ(·); if s(z(·)) = T and T ′ < T the control

ū(t, x) =
S(T ′ − t)∗z(x)

‖S(T ′ − t)∗z(·)‖
= χ0(x)

z(x + (T ′ − t))

κ(T ′ − t, z)
(0 < t ≤ T ′)

drives 0 to a target ȳ(·) with s(ȳ(·)) = T in time T ′ < T .
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Figure 3. Controls in the class SP(T ).
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Figure 4. Splicing of ū1(t, x) and ū2(t, x).

Theorem 4.1. Let the admissible control ū1(· , ·) ∈ L∞(0, T1; L
2(0,∞)) be optimal in

[0, T1] and let u2(· , ·) ∈ SP(T2). Then the splice

(u1 ∪ u2)(· , ·) ∈ L∞(0, T1 + T2; L
2(0,∞))

is optimal in [0, T1 + T2].

Proof. ū2(t, x) is zero in the complement K of the triangle R in Figure 4 left, thus

the splice ū(t, x) = (ū1 ∪ ū2)(t, x) is zero in the corresponding region K of Figure 4

right. If ū2(t, x) drives 0 to the target ȳ2(x) in time T2 and ū1(t, x) drives 0 to the

target ȳ1(x) in time T1, formula (3.3) shows that ū(t, x) drives 0 to the target

(4.1) ȳ(x) =

{

ȳ2(x) (0 ≤ x ≤ T2)

ȳ1(x − T2) (T2 < x)

in time T = T1 + T2. It remains to show that this drive is optimal.

Since ū(t, x) is admissible the target (4.1) is reachable and Theorem 1.3 says that

a time optimal control ũ(t, x) exists. Let T̃ be the optimal driving time, and assume

first that T̃ < T2. The control

u(t, x) =

{

ũ(t, x) (t, x) ∈ R̃

0 (t, x) ∈ K̃
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x
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Figure 5. Time optimality of the splice.

(R̃, K̃ the two regions in Figure 5 left) is admissible and drives 0 to ȳ2(x) in time

T̃ < T2, which contradicts the optimality of ū2(t, x). Accordingly, T̃ ≥ T2. If T̃ <

T1 + T2, let δ = T1 + T2 − T̃ . The admissible control

uδ(t, x) = ũ(t − δ, x) (δ ≤ t ≤ T1 + T2)

does the drive

y(δ, x, 0, uδ) = 0 , y(T1 + T2, x, 0, uδ) = ȳ(x) .

The control

v(t, x) =

{

uδ(t, x) (t, x) ∈ R

0 (t, x) ∈ K
(T1 ≤ t ≤ T1 + T2)

(R,K the regions in Figure 5 right) is admissible and does the drive

y(T1, x, 0, v) = 0 , y(T1 + T2, x, 0, v) = ȳ2(x)

while ū2(t−T1, x) does the same drive optimally; it follows that v(t, x) is also optimal

and, by uniqueness of optimal controls,3

(4.2) v(t, x) = uδ(t, x) = ū2(t − T1, x) (T1 ≤ t ≤ T1 + T2)

which shows that uδ(t, x) = 0 in K. By Formula (3.3) (Figure 1) we must have

(4.3) y(T1, x, 0, uδ) = ȳ1(x) .

Accordingly, uδ(t + δ, x) = ũ(t, x) drives 0 to ȳ1(x) in time T1 − δ, which contradicts

the optimality of ū1(t, x).

Theorem 4.2. Let ū1(· , ·) ∈ L∞(0, T1; L
2(0,∞)) be optimal in [0, T1] and let ūj(·, ·) ∈

SP(Tj), j = 2, . . . , n. Then the splice

v̄n(t, x) = (ū1 ∪ ū2 ∪ · · · ∪ ūn)(·, ·) ∈ L∞(0, T1 + T2 + · · ·+ Tn; L2(0,∞))

is optimal in [0, T1 + T2 + · · · + Tn].

3Time optimality can be defined for an arbitrary interval [a, b]. Results are the same.
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Proof. Theorem 4.1 and induction: use formula (2.2).

Remark 4.3. We can figure out the target hit by v̄n(t, x) arguing as in Theorem 4.1.

Let ȳj(x) = y(Tj, x, 0, ūj) be the target hit by the control ūj(t, x) in optimal time Tj ,

and define Sj = T1 + · · ·+ Tj (j = 1, . . . n − 1), T = T1 + T2 + · · ·+ Tn. Then

y(T, x, 0, v̄n)(4.4)

=











ȳ1(x − (T − S1)) (T − S1 < x)

ȳj(x − (T − Sj)) (T − Sj ≤ x < T − Sj−1 , j = 2, . . . , n − 1)

ȳn(x) (0 ≤ x < Tn) .

This formula reads from right to left as j increases. We can put it in table form:

Interval Target ȳ(x)

[0, Tn) ȳn(x)

[Tn, Tn + Tn−1) ȳn−1(x − Tn)

[Tn + Tn−1, Tn + Tn−1 + Tn−2) ȳn−2(x − Tn − Tn−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tn + · · · + T3, Tn + · · · + T2) ȳ2(x − Tn − · · · − T3)

[Tn + · · ·+ T2,∞) ȳ1(x − Tn − · · · − T2)

Remark 4.4. The finite splices of optimal controls in Theorem 4.2 have a seemingly

conflictual relationship with Theorem 1.1. Assume the optimal controls ūj(· , ·) in

the splice are produced from formula (3.4) and let zj(x) be the multiplier for each

control. It is proved in [6] Section 2.6 that zj(x) can be chosen in such a way that

ȳj(x) = (Tj , x, 0, ūj) is continuously differentiable in [0, Tj ] with ȳj(0) = ȳ′
j(0) =

ȳj(Tj) = 0 = ȳ′
j(Tj) = 0. In view of the definition (2.5) of the infinitesimal generator

A and of formula (4.4) the target ȳ(T, x, 0, v̄n) belongs to D(A). In fact, the different

pieces of the target are smooth and match (together with their derivatives) at the

divisory points of (4.4) and the target is zero for x = 0. Theorem 1.1 applies and

v̄(t, x) satisfies the maximum principle (1.6) in its Hilbert space version (1.7), which

seems to clash with the discontinuous nature of v̄n(t, x). The explanation lies in

the fact that Theorem 1.1 does not guarantee that the costate z(t) = S(T − t)∗z

in (1.6) is nonzero in the entire control interval [0, T ], just in an interval (T − δ, T ].

The multiplier provided by Theorem 1.1 for the control v̄(t, x) is the multiplier zn(·)

(extended = 0 for x ≥ Tn) for the last piece ūn(t, x) of the splice v̄n(t, x), and the

costate z(t) = S(T − t)∗zn vanishes outside of the interval (T − Tn, T ]. In fact, the

control v̄n(t, x) “switches costates” every time t crosses one of the divisory points

Sj = T1 + · · · + Tj in the interval [0, T ]. For more details on this see [6] Section 2.7.
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5. INFINITE SPLICING

If y ∈ E = state space of (1.1) we denote by T (y) the optimal driving time from

0 to y. If y is reachable and E is a Hilbert space, Theorem 1.3 says that T (y) exists

and is finite. If y is not reachable, that is, if 0 cannot be driven to y by any admissible

control in any time we define T (y) = ∞. The first result below is in [4], [6] Lemma

2.7.3; the second result is specific to the system (2.4).

Lemma 5.1. Let E be a Hilbert space and let {yn} ⊂ E be a sequence with yn → y ∈

E. Then

(5.1) T (y) ≤ lim inf
n→∞

T (yn) .

Lemma 5.2. Assume |y1(x)| ≤ |y2(x)|. Then

(5.2) T (y1(·)) ≤ T (y2(·)) .

Proof. We may assume that T (y2(·)) < ∞. If ū2(t, x) is the control driving 0 to

y2(x) optimally we define a new control u1(t, x) multiplying ū2(t, x) by the quotient

y1(x)/y2(x) over each integration line (σ, x − (T − σ)) in Formula (3.3) (Figure 1);

precisely

u1(σ, x − (T − σ)) = φ(x)ū2(σ, x − (T − σ))

(0 ≤ x < ∞, 0 ≤ σ ≤ T, x + (T − σ) ≥ 0)

where φ(x) = 0 if y2(x) = 0, φ(x) = y1(x)/y2(x) if y2(x) 6= 0. We have |φ(x)| ≤ 1,

thus |u1(σ, x)| ≤ |ū2(σ, x)| and it follows that u1(σ, x) is admissible. Formula (3.3)

shows that y(T, x, 0, u1) = y1(x), so that y1(x) is reachable in time T = T (y2(·)). The

optimal driving time is ≤ T , thus inequality (5.2) holds and we are done.

The infinite sequence to be spliced is {ūn(t, x)}, where the first control ū1(·, ·) ∈

L∞(0, T1; L
2(0,∞)) is time optimal in [0, T1] and un(· , ·) ∈ SP(Tn) (n = 2, 3, . . . ).

The sequence is far from arbitrary; in fact it will be constructed inductively, each

ūn(t, x) (or, rather, its support) depending on the choice of the preceding terms

ū1(t, x), . . . , ūn−1(t, x). The procedure implies T =
∑∞

n=1 Tn < ∞, thus the splice

is defined in a finite interval [0, T ]. The primary objects are not the Tn but two

sequences {Sn; n = 0, 1, 2, . . .} and {Sn; n = 0, 1, 2, . . .} such that

0 < S0 < S1 < S2 < . . . S0 > S1 > S2 > . . .(5.3)

Sn < Sn (n = 0, 1, 2, . . . ) .

In addition, the sequences {Sn} and {Sn} satisfy

(5.4) Sn+1 − Sn ≤ αn , Sn − Sn ≤ αn (n = 0, 1, 2, . . . ) ,
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Sn+1

Sn

Sn−1

y(Sn,x, 0, v̄n)

y(τ,x, 0,

t

wn)

Figure 6. Choice of Sn+1 from v̄n(t, x).

where the summable positive series {αn; n = 0, 1, . . .} is given in advance and totally

arbitrary. The Tn are obtained from the Sn by

(5.5) Tn = Sn − Sn−1 (n = 1, 2, . . . ) ,

hence

(5.6) T =
∞

∑

n=1

Tn =
∞

∑

n=1

(Sn − Sn−1) ≤
∞

∑

n=1

αn−1 =
∞

∑

n=0

αn = α .

The sequences begin with S0 = 0 and S0 > 0 satisfying the second condition (5.4) for

n = 0, that is, S0 − S0 ≤ α0. For the inductive step, we assume that the Sj , the Sj

and the ūj(t, x) have been constructed for j ≤ n. Define v̄n(t, x) as the finite splice

(5.7) v̄n(t, x) = (ū1 ∪ ū2 ∪ · · · ∪ ūn)(t, x) .

By Theorem 4.2 it drives 0 in optimal time Sn to the target y(Sn, x, 0, v̄n). If we

define

(5.8) wn(t, x) =

{

v̄n(t, x) (0 ≤ t ≤ Sn)

0 (Sn < t)

we have (Figure 6)

(5.9) y(τ, x, 0, wn) =

{

0 (0 ≤ x < τ − Sn)

y(Sn, x − (τ − Sn)), 0, v̄n) (τ − Sn ≤ x)

for τ > Sn, so that

||y(τ, · , 0, wn) − y(Sn, · , 0, v̄n)||L2(0,∞) → 0 as τ → Sn .

Accordingly, Lemma 5.1 can be applied and we can select Sn+1 > Sn with

(5.10) T (y(τ, · , 0, wn)) ≥ T (y(Sn, · , 0, v̄n)) −
1

n
(Sn ≤ τ ≤ Sn+1) .
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In fact, if this choice is not possible there exists a sequence {τk}, τk → Sn such that

T (y(Sn, · , 0, v̄n)) ≥ lim inf
k→∞

T (y(τk, · , 0, wn)) +
1

n

contradicting (5.1). Since T (y(Sn, · , 0, v̄n)) = Sn, (5.10) becomes

(5.11) T (y(τ, · , 0, wn)) ≥ Sn −
1

n
(Sn ≤ τ ≤ Sn+1) .

Moving Sn+1 to the left if necessary we may assume that

(5.12) Sn+1 − Sn ≤ αn+1

and then select Sn+1 with

(5.13) Sn < Sn+1 < Sn+1

which, in view of (5.12) gives the second condition (5.4). The control ūn+1(t, x)

added at this step to the splice is an arbitrary control in SP(Tn+1), where Tn+1 =

Sn+1−Sn. This control exists, since formula (3.4) applied to z(·) with s(z(·)) = T (T

arbitrary) produces a control in SP(T ). The sequences {Sn} and {Sn} constructed

by repeated application of this inductive step satisfy the three conditions (5.3) and

the two conditions (5.4). We then define

T = sup
n

Sn = lim
n→∞

Sn = lim
n→∞

Sn+1 = inf
n

Sn+1

and splice the chosen sequence ūn(t, x),

ū =

∞
⋃

n=1

ūn

obtaining an admissible control ū(· , ·) ∈ L∞(0, T ; L2(0,∞)). This control drives 0 to

the target

ȳ(x) = y(T, x, 0, ū)(5.14)

=

{

ȳ1(x − (T − S1)) (T − S1 < x)

ȳj(x − (T − Sj)) (T − Sj ≤ x < T − Sj−1 , j = 2, 3, . . . )

where ȳj(x) = y(Tj, x, 0, ūj) has support in [0, Tj] for j ≥ 2; the support of ȳ1(x) is

unrestricted. (This formula is the generalization of (4.4) to infinite splices.) Consider

now a second splice where each ūj(t, x) (j ≥ n + 1) is replaced by ξj(t, x) = 0 in the

same interval [0, Tj],

wn =

( n
⋃

j=1

ūn

)

∪

( ∞
⋃

j=n+1

ξj

)

.

This control is the same defined in (5.8). It drives 0 to a target y(T, x, 0, wn)

which can be described by (5.14) with the only difference that ȳj(x) = 0 for j ≥ n+1;
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precisely

ȳ(x) = y(T, x, 0, ū)(5.15)

=











ȳ1(x − (T − S1)) (T − S1 ≤ x)

ȳj(x − (T − Sj)) (T − Sj ≤ x < T − Sj−1 , j = 2, 3, . . . , n)

0 (0 ≤ x < T − Sn)

which can be written in the form

(5.16) y(T, x, 0, wn) = χ(x)y(T, x, 0, ū)

where χ(x) is the characteristic function of the interval [0, T − Sn]. It follows from

(5.16) that

|y(T, x, 0, wn)| ≤ |y(T, x, 0, ū)|

hence, using Lemma 5.2 in the first inequality and taking (5.11) into account in the

second,

(5.17) T (ȳ(·)) ≥ T (y(T, · , 0, wn)) ≥ Sn −
1

n
→ T as n → ∞ .

Taking limits, we deduce that T (ȳ(·)) ≥ T . Since ū(t, x) drives 0 to ȳ(x) in time T ,

it follows that T (ȳ(·)) = T and that ū(t, x) is optimal. We have proved

Theorem 5.3. The infinite splice (2.3) of the controls {ūn(t, x); n = 1, 2, . . .} is time

optimal.

Remark 5.4. The function T (y) is a version of the value function used in the

Hamilton-Jacobi approach to optimal control, although the usual value function is

defined as the time needed to drive a target y ∈ E to 0 (see [1], [2], [3]). Lemma 5.1

is related to existing results on smoothness of the value function.

6. APPLICATIONS: STRONGLY SINGULAR TIME OPTIMAL

CONTROLS

A control is called singular if does not satisfy the maximum principle (1.6) with

any multiplier z ∈ Z(T ). If a singular control satisfies (1.6) with a multiplier η ∈ Z

it is called weakly singular; if it does not satisfy (1.6) with any multiplier η, it is

called strongly singular. The control ū(t, x) constructed in Theorem 5.3 using controls

ūn(· , ·) ∈ SP(Tn) of the form (3.4) as building blocks is strongly singular, that is, it

does not satisfy the maximum principle (1.6) with any multiplier η. In fact, if it did,

it would have itself the form (3.4) with z(·) ∈ Z = space of all multipliers (Section 3)

in some interval [T −δ, T ]. This is impossible; controls of the form (3.4) are either = 0

or 6= 0 on lines x + (T − t) = c, a quality that ū(t, x) conspicuously lacks. However,
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ū(t, x) is time optimal in any subinterval4 [0, T ′], T ′ < T and is regular in each of

these subintervals. This is the class of controls constructed in [5] [6] Theorem 2.7.4.

We can apply the same idea to construct optimal controls that are “more singular”

than the ones in [5], [6]. We prove first an addendum to Theorem 5.3 having to do

with the assumptions on ū1(· , ·). In Theorem 5.3 ū1(· , ·) is just assumed to be an

optimal control in [0, T1] (the other controls ūn(· , ·) are in SP(Tn)). We assume now

that u1(· , ·) belongs to the class SP(T1) as well.

Theorem 6.1. Assume that all controls {ūn(t, x); n = 1, 2, . . .} in Theorem 5.3 belong

to SP(Tn). Then the infinite splice ū(t, x) belongs to SP(T ).

Proof. We know from Theorem 5.3 that ū(t, x) drives 0 in optimal time T to a target

ȳ(x) described by formula (5.14); all we have to show is that

(6.1) s(ȳ(·)) = T .

By the assumption on ū1(t, x) we have s(ȳ1(·)) = s(y(T1, x, 0, ū1)) = T1, in particular,

support ȳ1(·) ⊆ [0, T1]. This means the support of y1(· − (T − S1)) in the first line

of (5.14) is contained in [T − S1, T ] = [T − T1, T ], so that support ȳ(·) ⊆ [0, T ].

If support ȳ(·) ⊆ [0, T − ǫ] for ǫ > 0 we reverse this implication and deduce that

s(ȳ1(·))) ≤ T − ǫ, a contradiction.

We call SP0(T ) ⊆ SP(T ) the set of all controls of the form (3.4) with s(z(·)) = T .

The set SP1(T ) ⊆ SP(T ) consists of all infinite splices produced under the auspices

of Theorem 6.1 with building blocks ūn(· , ·) ∈ SP0(Tn).

Lemma 6.2. SP1(T ) 6= ∅ for all T > 0.

Proof. A result like this is needed because the optimal time T in Theorems 5.3 and 6.1

is not chosen in advance; it is a byproduct of the theorem, precisely, it depends on the

choice of the Sn. Given T > 0 arbitrary we construct first a control v̄1(· , ·) ∈ SP1(T
′)

for some T ′ ≤ T . This is possible since the series {αn} and its sum α in (5.6) are

completely arbitrary; we may take α = T . If T ′ = T we are done. Otherwise, we take

a control v̄0(· , ·) ∈ SP0(T ) with optimal time T − T ′ and define

ū = v̄0 ∪ v̄1 ,

that is, we add the building block v̄0 at the beginning of the splice. By Theorem 6.1

the control ū belongs to SP1((T − T ′) + T ′) = SP1(T ).

4The optimality principle says that if ū(·) is time optimal in [0, T ] then it is time optimal in

any subinterval [a, b] ⊆ [0, T ]. The proof is immediate; if we can improve the driving time in [a, b]

then (via a time translation) we can improve the driving time in [0, T ]. The time translation works

because the system (1.1) does not depend explicitly on time.
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Theorem 6.3. The controls ūn(t, x) making up the infinite splice in Theorem 6.1 can

be taken in SP1(Tn).

Proof. We go over the proof of Theorem 5.3 as modified in Theorem 6.1, especially

over the inductive choice of ūn+1(t, x) in the paragraph following (5.11). The only

qualification on ūn+1(t, x) is “an arbitrary control in SP(Tn+1) with Tn+1 = Sn+1−Sn”

where Sn+1 has been chosen on the basis of (5.11). By Lemma 6.2 we can select ū(· , ·)

in SP1(Tn+1) for arbitrary Tn+1. The rest of the proof of Theorem 5.3 remains the

same.

The set of all splices produced by Theorem 6.1 with building blocks ūn(· , ·) ∈

SP1(Tn) is SP2(T ) ⊆ SP(T ). Controls in this class are strongly singular not only in

the whole interval [0, T ] but in each subinterval [0, Sn, ] {Sn} the sequence in Theorem

5.3 with Sn → T .

Exploiting the same idea we prove first that SP2(T ) 6= ∅ for all T > 0 and then

use Theorem 6.1 to construct controls whose building blocks are in SP2(Tn). This is

the class SP3(T ); the intervals where the controls are strongly singular are [0, Smn]

where Smn → Sn as m → ∞ and Sn → T . The classes SPn(T ) are inductively defined

in a similar way for all n and contain optimal controls which are strongly singular in

more and more subintervals of [0, T ].

A time optimal control ū(·) for (1.1) is called hypersingular in [0, T ] if it is strongly

singular in any interval [a, b] ⊆ [0, T ] (for an example, see [7]). Obviously, the controls

in any class SPn(T ) fall short of hypersingular. To produce a hypersingular control

taking ūn(· , ·) ∈ SPn(T ) and then taking limits as n → ∞ won’t work since the

controls in the sequence would have support in a shrinking band 0 ≤ t ≤ T , 0 ≤

x ≤ ǫn → 0. We don’t know if the construction in this paper can be modified to give

hypersingular controls, in fact we don’t know if hypersingular controls for (2.4) exist

at all.

The toy control system (2.4) (one of the simplest involving partial differential

equations) is the carrier of a number of interesting control theory examples and coun-

terexamples; for information on this see [6], [9], [10]. For a recent survey on regular,

singular and strongly singular controls for the system (1.1) and related topics see [10].
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