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1. Crystalline measures

Crystalline measure: the measure µ itself and its Fourier transform µ̂ are sums
of delta functions with discrete supports:

µ =
∑
λ∈Λ

aλδλ µ̂ =
∑
s∈S

bsδs

Example: Poisson summation formula∑
n∈Z

f (n) =
∑
m∈Z

f̂ (m) ⇔
∑
n∈Z

δ(x − n) =
∑
m∈Z

e i2πmx

Fourier transform of the Dirac comb is a Dirac comb.

The sets Λ (the support) and S (the spectrum) need to be very well structured.

Fourier quasicrystal: both |µ| and |µ̂| are in addition tempered distributions.
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1. Crystalline measures
Any linear combination of Poisson formulas gives crystalline measures.

Kahane and Mandelbrojt (1958) - an advanced collection of properties, no
explicit examples.

Problem: Construct examples of crystalline measures that are not finite
combinations of Poisson summation formulas.

”Negative” results

Lev-Olevskii (2015)

Theorem. If the support of both a crystallline measure and its Fourier
transform are uniformly discrete, then the corresponding summation
formula is a finite sum of Poisson formulas with the same period.

Yves Meyer: working hypothesis: no non-trivial crystalline measures with
uniformly discrete support exist

”Positive” examples

Lev-Olevskii (2016): there exist non-trivial crystallline measures, not
explicit.

Kolountzakis (2016): simplifies construction as above, not explicit.

Y. Meyer (2016): an explicit example of crystalline measure, assuming
Riemann hypothesis
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2. Trace formula for metric graphs
Metric graph: collection of compact intervals (edges) en with certain end
points identified (equivalence classes are vertices Vm)
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Laplacian on the edges:

τ = − d2

dx2

Standard vertex conditions: (free, natural, Neumann)
u(xi ) = u(xj), xi , xj ∈ Vm continuity condition;

∑
xj∈Vm

∂u(xj) = 0, Kirchhoff condition.
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2. Trace formula for metric graphs

1 Solution of the differential equation −ψ′′(x) = λψ(x), λ = k2 on the
edges is a combination of exponentials for x ∈ [v2n−1, x2n]:

ψ(x)|en = a2n−1e
ik|x−x2n−1| + a2ne

ik|x−x2n| incoming waves
≡ b2ne

−ik|x−x2n| + b2n−1e
−ik|x−x2n−1 | outgoing waves

aj - amplitudes of the waves coming into the edges
bj – amplitudes of the waves leaving the edges

2 Equation above implies the first relation between a and b amplitudes:

Se(k)a⃗ = b⃗,

where Se(k) = diag

{(
0 e ikℓn

e ikℓn 0

)}
n=1,2,...,N

.

Se(k) is unitary for k ∈ R and contracting for ℑk > 0.
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2. Trace formula for metric graphs

3 Vertex conditions imply another relation between the amplitudes

Svb⃗ = a⃗,

where Sv is formed from vertex scattering matrices.

The two relations imply
Sv Se(k)a⃗︸ ︷︷ ︸

b⃗

= a⃗

and the secular equation:

fΓ(k) := det
(
Se(k)− Sv

)
= 0 (1)

Sv - unitary
Se(k) - unitary if k ∈ R, contraction if ℑk > 0

}
⇒ (1) has only real solutions

pΓ(k) is a trigonometric polynomial since all entries are exponentials and
numbers ⇒ the theory of almost periodic functions
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2. Trace formula for metric graphs
Integrate the jump of the logarithmic derivative of fΓ(k) on the real axis ⇒
residues at the zeroes.

LHS: the (real) zeroes of fΓ(k) give delta functions with the supports at kj .

RHS:
▶ fΓ(k) = detSv det

(
I− SvSe(k)

)
▶ log det = Tr log

▶ expand log
(
I− SvSe(k)

)
▶ calculate the traces ⇒ periodic orbits
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2. Trace formula for metric graphs
J.-P. Roth, B. Gutkin, T. Kottos, U. Smilansky, P.K., M. Nowaczyk∑

kn

(δ(k − kn) + δ(k + kn))︸ ︷︷ ︸
spectral information

= (1− β1)︸ ︷︷ ︸
= χ

δ(k) +
L
π
+

1

π

∑
p∈P

l(prim (p))Sv(p) cos kℓ(p)

︸ ︷︷ ︸
geometric/topologic information

where
L - the total length of the graph;
χ – Euler characteristic of Γ;
β1 – number of independent cycles in Γ;
P – the set of closed oriented paths p on Γ;
ℓ(p) – length of the closed path p;
Sv(p) – product of all vertex scattering coefficients along the path p.

The formula is exact and thus reminds of Selberg trace formula but is close to
Gullemin-Melrose formula (for compact Riemannian manifolds):∑

λi∈spec(∆)

cos
(
λi
)1/2

t =
∑ T ∗

γ

|I − Pγ |1/2
δ(t − Tγ) + R(t), R ∈ L1,loc
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2. Trace formula for metric graphs
J.-P. Roth, B. Gutkin, T. Kottos, U. Smilansky, P.K., M. Nowaczyk

∑
kn

(δ(k − kn) + δ(k + kn))︸ ︷︷ ︸
spectral information

= (1− β1)︸ ︷︷ ︸
= χ

δ(k) +
L
π
+

1

π

∑
p∈P

l(prim (p))Sv(p) cos kℓ(p)

︸ ︷︷ ︸
geometric/topologic information

(1 + β1)δ(k) +
∑
kn ̸=0

(δ(k − kn) + δ(k + kn))︸ ︷︷ ︸
u(k)

=
L
π
+

1

π

∑
p∈P

l(prim (p))Sv(p) cos kℓ(p)

û(ℓ) = 2Lδ(ℓ) +
∑
p∈P

ℓ(prim (p))Sv(p)
(
δ(ℓ− ℓ(p)) + δ(ℓ+ ℓ(p))

)
,

u(k) is a crystalline measure
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3. Zero sets of secular polynomials

Barra-Gaspard (2000)
The secular function

pΓ(k) = det
(
Se(k)︸ ︷︷ ︸
∼Γ

− Sv︸︷︷︸
∼G

)
can be written using secular polynomial PΓ(z) in N variables

zn = e ikℓn , ℓn is the length of the edge ℓn.

Explicit formula for the secular polynomial:

PG (z) = det

diag

{(
0 zn
zn 0

)}N

n=1︸ ︷︷ ︸
∼ Se

−Sv

 (2)

G – discrete graph, Γ – metric graph.
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3. Zero sets of secular polynomials

Properties of the secular polynomial

PG (z) = det

(
diag

{(
0 zn
zn 0

)}N

n=1

− Sv

)

Second order polynomial in each variable

Stable and invariant under involution:

PG (1/z) = z21 z
2
2 ..P(z)

The polynomial PG is determined by the discrete graph G alone,
while the secular function fΓ(k) depends on the edge lengths.

For any set {ℓn}Nn=1 the secular equation

PG (e
ikℓ1 , . . . , e ikℓN ) ≡ fΓ(k) = 0 (3)

has only real solutions satisfying Weyl’s asymptotics.
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3. Zero sets of secular polynomials

Properties of the secular polynomial

The zero set ZG for PG on the torus TN = (R/2πZ)N .
The spectrum of LΓ is given by the intersections of the line
k 7→ (e ikℓ1 , . . . , e ikℓN ) ∈ TN with ZG .
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3. Zero sets of secular polynomials

e3

e2

e1

P(3.4) = (z3 − 1)
(
− 2z21 z

2
2 z3 − z21 z3 − z22 z3 + z21 + z22 + 2

)
L(3.4) = sin

φ3

2

(
2 sin(φ1 + φ2 +

φ3

2
) + sin(φ1 − φ2 +

φ3

2
) + sin(−φ1 + φ2 +

φ3

2
)
)
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3. Zero sets of secular polynomials

Figure: Zero sets Z and Z∗ for G(3.4).

The zero set ZG for PG on the torus TN = (R/2πZ)N .
The spectrum of LΓ is given by the intersections of the line
k 7→ (e ikℓ1 , . . . , e ikℓN ) ∈ TN with ZG .

Problem Show that the singular set has codimension 3.
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4. The first explicit crystalline measure

e1
e2

Take

P(z1, z2) =���
�(z1 − 1)
(
1− 1

3
z1 +

1

3
z22 − z1z

2
2

)
Stability:

P(z) = 0 ⇔ z1 − 3

1− 3z1
= z22 .

Invariance under involution:

z1z
2
2P(1/z) = P(z).

The polynomials are treated projectively.
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4. The first explicit crystalline measure
The zero set on the torus: z1 = e ix , z2 = e iy , (x , y) ∈ [0, 2π]× [0, 2π]

L(x , y) = 3 sin(
x

2
+ y) + sin(

x

2
− y) = 0

0 1 2 3 4 5 6

0

1

2

3

4

5

6

X

Y

The spectrum given by the equation

f (k) = 3 sin

(
(
ℓ1
2

+ ℓ2)k

)
+ sin

(
(
ℓ1
2

− ℓ2)k

)
= 0 ⇒ {kj}

is clearly uniformly discrete.
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4. The first explicit crystalline measure

The summation formula takes the form∑
γj

h(kj) = (ℓ1 + 2ℓ2) ĥ(0)

−
∑

n=(n1,n2)∈Z2
+

c(n1, 2n2)
(
ĥ(n1ℓ1 + 2n2ℓ2)

+ĥ(−(n1ℓ1 + 2n2ℓ2))
)
,

with

c(n1, 2n2) = −(n1ℓ1 + 2n2b2)
∑

k1,k2,k3∈N∪{0}
k1+k3=n1
k2+k3=n2

(k1 + k2 + k3 − 1)!

k1! k2! k3!

(−1)k2

3k1+k2
.

Important observations:

n1ℓ1 + 2n2ξ2 - the lengths of periodic orbits on the lasso graph

c(n1, n2) - products of scattering coefficients on the lasso graph.

Kurasov (Stockholm) Fourier quasicrystals and metric graphs September 21, 2023, Melin-Fest 17 / 34



4. The first explicit crystalline measure
This crystalline measure is not a combination of Poisson formulas

Theorem 1. Every uniformly discrete finite combination of Dirac combs is
periodic.

Obviously, the function f (k) is not periodic, provided ℓ1 and ℓ2 are rationally
independent. Hence its zero set is not periodic. The measure is not a finite sum
of Dirac combs.

Mathematics is simple, one should only understand why (P. Sarnak)
Constructed measure resolves the following questions

a positive crystalline measure which is not a generalised Dirac comb
(question by Y. Meyer);
In fact idempotent.
a positive Fourier quasicrystal for which every arithmetic progression meets
the support in a finite set (question by Lev–Olevskii);
Not only µ and µ̂ are tempered, but also |µ| and |µ̂|.
Fourier quasicrystal for which the support (that is Λ) is a Delone
(Delaunay) set, but the spectrum (that is S) is not (question by Y. Meyer
and Lev–Olevskii);
a discrete set (that is Λ) which is a Bohr almost periodic Delone
(Delaunay) set, but is not an ideal crystal (question by J. Lagarias).
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4. The first explicit crystalline measure
This crystalline measure is not a combination of Poisson formulas

Theorem 3. Every uniformly discrete finite combination of Dirac combs is
periodic.

Obviously, the function f (k) is not periodic, provided ℓ1 and ℓ2 are rationally
independent. Hence its zero set is not periodic. The measure is not a finite sum
of Dirac combs.

Mathematics is simple, one should only understand why (P. Sarnak)
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Question
Consider the trigonometric equation:

3 sinAk + sin k = 0, A /∈ Q

Prove that

dimQ LQ
{
kn
}
= ∞

The question was asked to ca 50 mathematicians.
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5. Reducibility of secular polynomials

Graph’s contraction Γ/ej - deletion of the edge ej in Γ.

e1
e2

e3

G(3.2) G(2.1) G(1.1)

⇒ ⇒
e1 e2 e1

P(3.2)(z1, z2, z3) = 3z21 z
2
2 z

2
3 +

(
z21 z

2
2 + z21 z

2
3 + z22 z

2
3

)
−
(
z21 + z22 + z23

)
− 3

z3→1−→ P(2.1)(z1, z2) = z21 z
2
2 − 1

z2→1−→ P(1.1)(z1) = z21 − 1

Kurasov (Stockholm) Fourier quasicrystals and metric graphs September 21, 2023, Melin-Fest 20 / 34



5. Reducibility of secular polynomials

e1
e2

G(2.2) G(1.1)

⇒ e1

lim
z2→1

P(2.2)(z1, z2) = lim
z2→1

(
(z2−1)(3z21 z2−z21 +z2−3)

)
= 2(z21 −1) = P(1.1)(z1).

The polynomials are treated projectively.

Lemma.
PG/ej

(z1, . . . , �z j , . . . , zN) = lim
zj→1

PG (z1, . . . , zN).
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5. Reducibility of secular polynomials

e2
e1

G(2.2) G(1.1)

⇒ e2

lim
z2→1

P(2.2)(z1, z2) = lim
z2→1

(
��

��(z2 − 1)(3z21 z2−z21+z2−3)
)
= 2(z21−1) = P(1.1)(z1).

The polynomials are treated projectively.

Lemma.
PG/ej

(z1, . . . , �z j , . . . , zN) = lim
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PG (z1, . . . , zN).
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5. Reducibility of secular polynomials
Colin de Verdiére’s conjecture

Theorem 4. The secular polynomial for G is reducible iff the metric graph is
symmetric for any choice of the edge lengths:

G has loops;

G is a watermelon graph WN :

Moreover, if the secular polynomial is reducible, then

if G has loops

PG (z) =
( ∏

en is a loop in G

(zn − 1)
)
QG (z),

the product is over the loop edges, QG is irreducible;

if G is a watermelon WN

PG = Ps
WN

Pa
WN

Ps
WN

and Pa
WN

are irreducible, first order in each variable.

Proof by reducing graphs to elementary graphs on 2, 3, 4, 5, 6 edges and
watermelon graphs and their closest relatives.
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6. Lang’s GM conjecture (theorem)

Theorem 6. Lang’s conjecture (P. Sarnak, P. Liardet, W. Schmidt, M.
Laurent, J-H. Evertse ...)

V ⊂ (C∗)N - an algebraic subvariety given by the zero set of Laurent
polynomial;

Γ - finitely generated subgroup of rank r of the torus T ⊂ (C∗)N

considered as a group under coordinatewise product;

Γ - the division group of Γ

Γ =
{
z ∈ T : zm ∈ Γ for some m ≥ 1

}
.

Then there exists finitely many translates of (may be low dimensional) subtori
T1,T2, . . . ,Tν contained in V such that

Γ ∩ V = Γ ∩ (T1 ∪ T2 ∪ · · · ∪ Tν)

and

ν ≤
(
C (V )

)r
,

where C (V ) is an effectively computable constant.
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6. Lang’s GM conjecture (theorem)
How to apply this to quantum graphs?

We want to prove that: dimQ LQ{kn} = ∞

Assume the opposite dimQ LQ{kn} <∞, i.e.

kn = αn
1k1 + αn

2k2 + · · ·+ αn
n0kn0 , αn

j ∈ Q

for a certain n0 and arbitrary n.

It follows that
e iknℓj =

(
e ik1ℓj

)αn
1
(
e ik2ℓj

)αn
2 . . .

(
e ikn0ℓj

)αn
n0

in other words, all (e iknℓ1 , . . . , e iknℓN ) belong to the division group for the
multiplicative group Γ generated by

(e ikiℓ1 , e ikiℓ2 , . . . , e ikiℓN ), i = 1, 2, . . . , n0.

Multiplication is carried coordinate-wise.

It feels like Liardet’s theorem was proven especially to serve our purposes!
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6. Lang’s GM conjecture (theorem)
Hypertori in the zero set
Hypertori zα1

1 zα2
2 . . . zαN

N = qzβ1

1 zβ2

2 . . . zβN

N

αjβj = 0 and |q| = 1.

Quantum graphs have hypertori zn − 1 corresponding to loops in G .

No other hypertori are contained in the zero manifold – follows essentially from
the factorisation of the secular polynomial (Colin de Verdiére’s conjecture) and
Hilbert’s Nullstellensatz.

Only hypertori determine arithmetic sequences in the spectrum for rationally
independent edge lengths, lower dimensional tori are not “dangerous.”
Conclusion:

Edge lengths are rationally independent
PG is not a product of hypertoric factors

⇒ dimQ{kn} = ∞.

Interval, single loop and figure eight graph (the only exceptional cases):

e1 e2

P(1.1) = (z1 − 1)(z1 + 1)− interval

P(1.2) = (z1 − 1)2 − loop

P(2.4) = (z1 − 1)(z2 − 1)(z1z2 − 1)
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7. Arithmetic structure of the spectrum

Theorem 7.
▶ If Γ is a segment or a single loop, then

Spec (Γ) = L1(Γ)

▶ If Γ is a figure eight graph, then

Spec (Γ) = L1(Γ) ∪ L2(Γ) ∪ L3(Γ)

If all edge lengths are pairwise rationally dependent, then

Spec (Γ) = L1(Γ) ∪ L2(Γ) ∪ · · · ∪ Lm(Γ),

If edge lengths are rationally independent and G is not exceptional, then

Spec (Γ) = L1(Γ) ∪ L2(Γ) ∪ · · · ∪ Lν(Γ)︸ ︷︷ ︸
coming from loops

∪N(Γ)︸ ︷︷ ︸
̸=∅

N(Γ) contains no finite arithmetic progressions of length more than c(G ),

dimQ Spec (Γ) = ∞.

ν = the number of loops in G
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8. Stable polynomials: summation formula

Multivariate polynomial P(z) is D stable iff P(z) ̸= 0 for z = (z1, . . . , zn) :
|zj | < 1.

Definition. Two multivariate polynomials P,Q are said to form stable pair if

1 both polynomials P and Q are D-stable;
2 there exist an integer-valued vector ℓ = (ℓ1, ℓ2, . . . , ℓn) ∈ Nn and a

constant η such that P and Q satisfy the functional equation

Q(z) = η zℓ11 zℓ22 . . . zℓnn P(1/z); (4)

3 the normalization condition

P (⃗0) = Q (⃗0) = 1

is fulfilled.
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8. Stable polynomials: summation formula

Dirichlet series
Let
b1, b2, . . . , bn ≥ 1 – arbitrary positive real numbers,
ξj = ln bj > 0, j = 1, 2, . . . , n.

Entire functions of order 1

F (s) = P(b−s
1 , b−s

2 , . . . , b−s
n ) = 1 +

∑
m∈MP

aP(m)(bm)−s

⇒ F ′(s)

F (s)
= −

∑
k∈Zn

+

(ξ · k)cP(k)e−(ξ·k)s .

Stable pair ⇒ all zeroes of F are on the imaginary axis.

Integrating the logarithmic derivative one obtains summation formula à la
Poisson.
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9. Improvements
Yves Meyer: several alternative approaches

▶ curved model sets
▶ inner functions in several variables
▶ linear recurrence relations on lattices
▶ almost periodic perturbations of lattices

Olevskii-Ulanovskii: trigonometric polynomials
Every Fourier quasicrystal with unit (integer) masses is given by an
exponential polynomial

f (k) =
∑

1≤j≤N

cje
2πiγjk , n ∈ N, cj ∈ C, γj ∈ R with only real zeroes.

Equivalent to construction via stable polynomials.
This follows directly from the fact that for every trig polynomial with real
coefficients, it holds:

f (k)

f ∗(k)
= e−iθe−iωk

▶ P(z) leading to f (k) can be chosen invariant under involution
▶ stability of P(z) comes from the fact that logP(z) can be defined on the

torus.

Using amoebas: Alon-Cohen-Vinzant
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10. Perspectives

Multidimensional crystalline measures:

Two-dimensional crystalline measures
▶ Yves Meyer

⋆ starting from two-dimensional measures having one-dimensional character
⋆ more two-dimensional measures

▶ M. de Courcy Ireland + P.K.
⋆ as intersections between families of curves

▶ L.Alon, M.Kummer, P.K., C.Vinzant
⋆ via Lee-Yang varieties
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11. New question

Consider the trigonometric equation:

3 sinAk + sin k = 0, A /∈ Q

Prove that for any α ∈ R only finitely many pairs satisfy

ki/kj = α

Alternative formulation:
For any A /∈ Q and α ∈ R, prove that the trigonometric polynomials

P(x) = 3 sinAk + sin k
Q(x) = 3 sinAαk + sinαk

have at most finitely many common zeroes.
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More about spectral theory of metric graphs and Schrödinger operators on
metric graphs

P. Kurasov Spectral Geometry of Graphs, 2023, almost 700 pages.

Congratulations to Anders!
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Short history

2005: J.P. Kahane: not surprising (thanks Jan Boman)
“Playing with Poisson formulas in several dimensions gives a lot of formulas on
the line.”

2018: Y. Meyer: lecture at Institute Mittag-Leffler on crystalline measures,
constructed an explicit example assuming Riemann hypothesis.
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