Magic Angles for Twisted Bilayer Graphene

Microlocal Analysis and Mathematical Physics In honor of Anders Melin's 80th birthday

Maciej Zworski

September 21, 2023

A project in the time of covid-19
2020: Simon Becker, Mark Embree, Jens Wittsten, MZ: BEWZ

2022: Simon Becker, Tristan Humbert, MZ: BHZ
2023: Michael Hitrik, MZ: HZ; Simon Becker, MZ: BZ

Motivation: bilayer graphene
graphite

graphene

Motivation: bilayer graphene

graphite

MacGyver in the physics (ab

Motivation: bilayer graphene

graphite

Geim-Novoselov '04

Motivation: bilayer graphene

graphite

MacGyver in the physics (ab

Geim-Novoselov '04

Cao et al '18, Yankovitz et al '18: superconductivity at $\theta \simeq 1.08^{\circ}$

Motivation: bilayer graphene

graphite

MacGyver in the physics lab

Geim-Novoselov '04

Cao et al '18, Yankovitz et al '18: superconductivity at $\theta \simeq 1.08^{\circ}$ Predicted by Bistritzer-MacDonald '11

The chiral model of TBG

The chiral model of TBG

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov, ${ }^{*}$ and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

The chiral model of TBG

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

$$
\begin{gathered}
H(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*} \\
D(\alpha) & 0
\end{array}\right), \quad D(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \\
z=x_{1}+i x_{2}, \quad D_{\bar{z}}:=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z):=-\frac{4}{3} \pi i \sum_{k=0}^{2} \omega^{k} e^{i\left\langle z, \omega^{k} K\right\rangle}, \quad K:=\frac{4}{3} \pi, \quad \omega:=e^{2 \pi i / 3}, \\
U(z+\gamma)=e^{i\langle K, \gamma} U(z), \quad U(\omega z)=\omega U(z), \gamma \in \Lambda=\mathbb{Z}+\omega \mathbb{Z} .
\end{gathered}
$$

The chiral model of TBG

Origin of Magic Angles in Twisted Bilayer Graphene
Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

$$
\begin{gathered}
H(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*} \\
D(\alpha) & 0
\end{array}\right), \quad D(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \\
z=x_{1}+i x_{2}, \quad D_{\bar{z}}:=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z):=-\frac{4}{3} \pi i \sum_{k=0}^{2} \omega^{k} e^{i\left\langle z, \omega^{k} K\right\rangle}, \quad K:=\frac{4}{3} \pi, \quad \omega:=e^{2 \pi i / 3}, \\
U(z+\gamma)=e^{i\langle K, \gamma} U(z), \quad U(\omega z)=\omega U(z), \gamma \in \Lambda=\mathbb{Z}+\omega \mathbb{Z} .
\end{gathered}
$$

Derived from the full Bistritzer-MacDonald '11 Hamiltonian;

The chiral model of TBG

Origin of Magic Angles in Twisted Bilayer Graphene
Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

$$
\begin{gathered}
H(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*} \\
D(\alpha) & 0
\end{array}\right), \quad D(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \\
z=x_{1}+i x_{2}, \quad D_{\bar{z}}:=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z):=-\frac{4}{3} \pi i \sum_{k=0}^{2} \omega^{k} e^{i\left\langle z, \omega^{k} K\right\rangle}, \quad K:=\frac{4}{3} \pi, \quad \omega:=e^{2 \pi i / 3}, \\
U(z+\gamma)=e^{i\langle K, \gamma} U(z), \quad U(\omega z)=\omega U(z), \gamma \in \Lambda=\mathbb{Z}+\omega \mathbb{Z} .
\end{gathered}
$$

Derived from the full Bistritzer-MacDonald '11 Hamiltonian; BMH famous for the accurate prediction of the superconducting angle of twisting.

The chiral model of TBG

Origin of Magic Angles in Twisted Bilayer Graphene
Grigory Tarnopolsky, Alex Jura Kruchkov, and Ashvin Vishwanath Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

$$
\begin{gathered}
H(\alpha):=\left(\begin{array}{cc}
0 & D(\alpha)^{*} \\
D(\alpha) & 0
\end{array}\right), \quad D(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right), \\
z=x_{1}+i x_{2}, \quad D_{\bar{z}}:=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
U(z):=-\frac{4}{3} \pi i \sum_{k=0}^{2} \omega^{k} e^{i\left\langle z, \omega^{k} K\right\rangle}, \quad K:=\frac{4}{3} \pi, \quad \omega:=e^{2 \pi i / 3}, \\
U(z+\gamma)=e^{i\langle K, \gamma} U(z), \quad U(\omega z)=\omega U(z), \gamma \in \Lambda=\mathbb{Z}+\omega \mathbb{Z} .
\end{gathered}
$$

Derived from the full Bistritzer-MacDonald '11 Hamiltonian; BMH famous for the accurate prediction of the superconducting angle of twisting. Mathematical derivation: Cancès-Garrigue-Gontier, Watson-Kong-MacDonald-Luskin '22

The operator of today

$$
\begin{aligned}
D(\alpha)= & \left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right) \quad \text { on } \mathbb{C} / \Gamma, \quad D_{\bar{z}}=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
& U(z+\gamma)=U(z), \quad \gamma \in 3 \Lambda, \quad \Lambda=\mathbb{Z}+\omega \mathbb{Z} .
\end{aligned}
$$

The operator of today

$$
\begin{aligned}
D(\alpha)= & \left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right) \quad \text { on } \mathbb{C} / \Gamma, \quad D_{\bar{z}}=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
& U(z+\gamma)=U(z), \quad \gamma \in 3 \Lambda, \quad \Lambda=\mathbb{Z}+\omega \mathbb{Z} .
\end{aligned}
$$

The operator of today

$$
\begin{aligned}
D(\alpha)= & \left(\begin{array}{cc}
2 D_{\bar{z}} & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}
\end{array}\right) \quad \text { on } \mathbb{C} / \Gamma, \quad D_{\bar{z}}=\frac{1}{2 i}\left(\partial_{x_{1}}+i \partial_{x_{2}}\right) \\
& U(z+\gamma)=U(z), \quad \gamma \in 3 \Lambda, \quad \Lambda=\mathbb{Z}+\omega \mathbb{Z} .
\end{aligned}
$$

Seeley 85: $P(\alpha)=e^{i x} D_{x}+\alpha e^{i x}, x \in \mathbb{S}^{1}, \operatorname{Spec}(P(\alpha))=\mathbb{C}, \alpha \in \mathbb{Z}$.

The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)
Editors' Suggestion

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of $\alpha \sim 1 / \theta$, the magic angles recur with a remarkable periodicity of $\Delta \alpha \simeq 3 / 2$. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

```
Editors' Suggestion
```


Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov, ${ }^{*}$ and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of $\alpha \sim 1 / \theta$, the magic angles recur with a remarkable periodicity of $\Delta \alpha \simeq 3 / 2$. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

Bands: eigenvalues of $H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\ D(\alpha)-\mathrm{k} & 0\end{array}\right), \mathrm{k} \in \mathbb{C} / \frac{1}{3} \Lambda^{*}$

The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of $\alpha \sim 1 / \theta$, the magic angles recur with a remarkable periodicity of $\Delta \alpha \simeq 3 / 2$. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

Bands: eigenvalues of $H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\ D(\alpha)-\mathrm{k} & 0\end{array}\right), \mathrm{k} \in \mathbb{C} / \frac{1}{3} \Lambda^{*}$
A flat band at 0 energy means that $\operatorname{Spec}_{L^{2}(\mathbb{C} / 3 \Lambda)}(D(\alpha))=\mathbb{C}$

The operator of today

PHYSICAL REVIEW LETTERS 122, 106405 (2019)

Origin of Magic Angles in Twisted Bilayer Graphene

Grigory Tarnopolsky, Alex Jura Kruchkov,* and Ashvin Vishwanath
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

Twisted bilayer graphene (TBG) was recently shown to host superconductivity when tuned to special "magic angles" at which isolated and relatively flat bands appear. However, until now the origin of the magic angles and their irregular pattern have remained a mystery. Here we report on a fundamental continuum model for TBG which features not just the vanishing of the Fermi velocity, but also the perfect flattening of the entire lowest band. When parametrized in terms of $\alpha \sim 1 / \theta$, the magic angles recur with a remarkable periodicity of $\Delta \alpha \simeq 3 / 2$. We show analytically that the exactly flat band wave functions can be constructed from the doubly periodic functions composed of ratios of theta functions-reminiscent of quantum Hall wave functions on the torus. We further report on the unusual robustness of the experimentally relevant first magic angle, address its properties analytically, and discuss how lattice relaxation effects help justify our model parameters.

Bands: eigenvalues of $H_{\mathrm{k}}(\alpha):=\left(\begin{array}{cc}0 & D(\alpha)^{*}-\overline{\mathrm{k}} \\ D(\alpha)-\mathrm{k} & 0\end{array}\right), \mathrm{k} \in \mathbb{C} / \frac{1}{3} \Lambda^{*}$
A flat band at 0 energy means that $\operatorname{Spec}_{L^{2}(\mathbb{C} / 3 \Lambda)}(D(\alpha))=\mathbb{C}$

A simpler example first:

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$
$\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{\chi}\right)=\mathbb{R}$,

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

$$
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{X}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{X}\right)=\mathbb{Z}
$$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$
$\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}\right)=\mathbb{Z}$
$L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

$$
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{X}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{X}\right)=\mathbb{Z}
$$

$$
\begin{aligned}
& L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})} \\
& u(x) \mapsto U(x, k):=\sum_{m \in \mathbb{Z}} e^{-2 \pi i(x-m) k} u(x-m),
\end{aligned}
$$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$
$\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}\right)=\mathbb{Z}$

$$
\begin{aligned}
& L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})} \\
& u(x) \mapsto U(x, k):=\sum_{m \in \mathbb{Z}} e^{-2 \pi i(x-m) k} u(x-m), \quad D_{x} u \mapsto\left(D_{x}-k\right) U
\end{aligned}
$$

A simpler example first: $D_{x}:=\frac{1}{i} \partial_{x}$

$$
\begin{gathered}
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\mathbb{R}, \quad \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}\right)=\mathbb{Z} \\
L^{2}(\mathbb{R}) \simeq L^{2}\left(\mathbb{R} / \mathbb{Z} ; L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})\right),\left.\left.\quad D_{x}\right|_{L^{2}(\mathbb{R})} \simeq \bigoplus_{k \in \mathbb{R} / \mathbb{Z}}\left(D_{x}-k\right)\right|_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})} \\
u(x) \mapsto U(x, k):=\sum_{m \in \mathbb{Z}} e^{-2 \pi i(x-m) k} u(x-m), \quad D_{x} u \mapsto\left(D_{x}-k\right) U \\
\operatorname{Spec}_{L^{2}(\mathbb{R})}\left(D_{x}\right)=\bigcup_{k \in \mathbb{R} / \mathbb{Z}} \operatorname{Spec}_{L^{2}(\mathbb{R} / 2 \pi \mathbb{Z})}\left(D_{x}-k\right)
\end{gathered}
$$

Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that

$$
\operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Lambda)} D(\alpha)= \begin{cases}\Lambda^{*}+\{K,-K\} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that

$$
\begin{aligned}
& \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Lambda)} D(\alpha)= \begin{cases}\Lambda^{*}+\{K,-K\} & \alpha \notin \mathcal{A} \\
\mathbb{C} & \alpha \in \mathcal{A},\end{cases}
\end{aligned}
$$

Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that

$$
\operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Lambda)} D(\alpha)= \begin{cases}\Lambda^{*}+\{K,-K\} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that

$$
\operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Lambda)} D(\alpha)= \begin{cases}\Lambda^{*}+\{K,-K\} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Tarnopolsky et al '19 observed that $\alpha_{k}-\alpha_{k-1} \simeq \frac{3}{2}(0<k \leq 8)$

Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that

$$
\operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Lambda)} D(\alpha)= \begin{cases}\Lambda^{*}+\{K,-K\} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Tarnopolsky et al '19 observed that $\alpha_{k}-\alpha_{k-1} \simeq \frac{3}{2}(0<k \leq 8)$
Ren-Gao-MacDonald-Niu '20 "exact" WKB: $\alpha_{k}-\alpha_{k-1} \simeq 1.47$

Theorem (BEWZ '20) There exists a discrete set $\mathcal{A} \subset \mathbb{C}$ such that

$$
\operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Lambda)} D(\alpha)= \begin{cases}\Lambda^{*}+\{K,-K\} & \alpha \notin \mathcal{A} \\ \mathbb{C} & \alpha \in \mathcal{A}\end{cases}
$$

k	α_{k}	$\alpha_{k}-\alpha_{k-1}$
1	0.58566355838955	
2	2.2211821738201	1.6355
3	3.7514055099052	1.5302
4	5.276497782985	1.5251
5	6.79478505720	1.5183
6	8.3129991933	1.5182
7	9.829066969	1.5161
8	11.34534068	1.5163
9	12.8606086	1.5153
10	14.376072	1.5155
11	15.89096	1.5149
12	17.4060	1.5150
13	18.920	1.5147

Tarnopolsky et al '19 observed that $\alpha_{k}-\alpha_{k-1} \simeq \frac{3}{2}(0<k \leq 8)$
Ren-Gao-MacDonald-Niu '20 "exact" WKB: $\alpha_{k}-\alpha_{k-1} \simeq 1.47$?

Magic angles vs. Scattering resonances

Magic angles vs. Scattering resonances

Magic α 's

Resonances for $B_{\mathbb{H}^{2}}(0,1)$

Magic angles vs. Scattering resonances

Magic α 's

Resonances for $B_{\mathbb{H}^{2}}(0,1)$

$$
|\{\alpha \in \mathcal{A}:|\alpha| \leq r\}| \leq C r^{2}
$$

Magic angles vs. Scattering resonances

Magic α 's

Resonances for $B_{\mathbb{H}^{2}}(0,1)$

$$
\begin{gathered}
|\{\alpha \in \mathcal{A}:|\alpha| \leq r\}| \leq C r^{2} \\
|\{\alpha \in \mathcal{A}:|\alpha| \leq r\}| \geq c r^{2} ?
\end{gathered}
$$

Magic angles vs. Scattering resonances

Magic α 's

Resonances for $B_{\mathbb{H}^{2}}(0,1)$

$$
\begin{gathered}
|\{\alpha \in \mathcal{A}:|\alpha| \leq r\}| \leq C r^{2} \\
|\{\alpha \in \mathcal{A}:|\alpha| \leq r\}| \geq c r^{2} ?
\end{gathered}
$$

(Known for obstacles in hyperbolic plane: Vodev, Borthwick...)

Flat bands

The bands are eigenvalues of $H_{k}(\alpha)$ on $L_{0}^{2}(\mathbb{C} / \Lambda), \mathrm{k} \in \mathbb{C} / \Lambda^{*}$:

Flat bands

The bands are eigenvalues of $H_{k}(\alpha)$ on $L_{0}^{2}(\mathbb{C} / \Lambda), \mathrm{k} \in \mathbb{C} / \Lambda^{*}$:

Theorem (BHZ '22; implicit in BEWZ '20)

$$
\exists \mathrm{k} \notin \Lambda^{*}+\{K,-K\} \quad E_{1}(\alpha, \mathrm{k})=0 \Longrightarrow \forall \mathrm{k} E_{1}(\alpha, \mathrm{k})=0 .
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$
flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$
flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{8 \pi}{\sqrt{3}},
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$
$\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{8 \pi}{\sqrt{3}}, \quad$ combinatorics $+\wp$ function
flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{8 \pi}{\sqrt{3}}, \quad \text { combinatorics }+\wp \text { function }
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q}
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{8 \pi}{\sqrt{3}}, \quad \text { combinatorics }+\wp \text { function }
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q} \text { and as a consequence }|\mathcal{A}|=\infty
$$

flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{8 \pi}{\sqrt{3}}, \quad \text { combinatorics }+\wp \text { function }
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q} \quad \text { and as a consequence }|\mathcal{A}|=\infty
$$

Theorem (BHZ '22) The first real magic α is simple and it lies in (0.583, 0.589).
flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{8 \pi}{\sqrt{3}}, \quad \text { combinatorics }+\wp \text { function }
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q} \quad \text { and as a consequence }|\mathcal{A}|=\infty
$$

Theorem (BHZ '22) The first real magic α is simple and it lies in (0.583, 0.589).
flat band at $\alpha \Longleftrightarrow \operatorname{Spec}_{L^{2}(\mathbb{C} / \Gamma)} D(\alpha)=\mathbb{C} \Longleftrightarrow \alpha \in \mathcal{A}$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-4}=\operatorname{tr} T_{\mathrm{k}}^{4}=\frac{8 \pi}{\sqrt{3}}, \quad \text { combinatorics }+\wp \text { function }
$$

Theorem (BHZ '22) For all $p>1$

$$
\sum_{\alpha \in \mathcal{A}} \alpha^{-2 p} \in \frac{\pi}{\sqrt{3}} \mathbb{Q} \quad \text { and as a consequence }|\mathcal{A}|=\infty
$$

Theorem (BHZ '22) The first real magic α is simple and it lies in (0.583, 0.589).

Remark: Luskin-Watson '21 showed $|\mathcal{A} \cap(0.583,0.589)| \geq 1$

What lies behind this spectral characterization?

What lies behind this spectral characterization?
An abstract formulation: Galkowski-Z '23
$(\alpha, k) \mapsto Q(\alpha, k): X \rightarrow Y$, holomorphic, Fredholm, index 0
$\tau_{Y}(p)^{-1} Q(\alpha, k) \tau_{X}(p)=Q(\alpha, k+p), \quad p \in \Lambda^{*}$ a weaker assumption possible

What lies behind this spectral characterization?
An abstract formulation: Galkowski-Z '23
$(\alpha, k) \mapsto Q(\alpha, k): X \rightarrow Y$, holomorphic, Fredholm, index 0
$\tau_{Y}(p)^{-1} Q(\alpha, k) \tau_{X}(p)=Q(\alpha, k+p), \quad p \in \Lambda^{*}{ }_{\text {a weaker assumption possible }}$

$$
m(\alpha, k):=\frac{1}{2 \pi i} \operatorname{tr} \oint_{\partial D} Q(\alpha, \zeta)^{-1} \partial_{\zeta} Q(\alpha, \zeta) d \zeta
$$

or ∞ if $Q(\alpha, z)^{-1}$ is never invertible.

What lies behind this spectral characterization?

An abstract formulation: Galkowski-Z '23

$$
\begin{gathered}
(\alpha, k) \mapsto Q(\alpha, k): X \rightarrow Y, \text { holomorphic, Fredholm, index } 0 \\
\tau_{Y}(p)^{-1} Q(\alpha, k) \tau_{X}(p)=Q(\alpha, k+p), \quad p \in \Lambda^{*}{ }_{\text {a weaker assumption possible }}
\end{gathered}
$$

$$
m(\alpha, k):=\frac{1}{2 \pi i} \operatorname{tr} \oint_{\partial D} Q(\alpha, \zeta)^{-1} \partial_{\zeta} Q(\alpha, \zeta) d \zeta
$$

or ∞ if $Q(\alpha, z)^{-1}$ is never invertible.
Theorem (GZ '23) If for some α_{0}

$$
\forall \alpha, k \quad m(\alpha, k) \geq m\left(\alpha_{0}, k\right) \neq \infty
$$

then there exists a discrete set \mathcal{A} such that for

$$
m(\alpha, k)=\left\{\begin{array}{cl}
\infty & \alpha \in \mathcal{A} \\
m\left(\alpha_{0}, k\right) & \alpha \notin \mathcal{A}
\end{array}\right.
$$

What lies behind this spectral characterization?

An abstract formulation: Galkowski-Z '23

$$
\begin{gathered}
(\alpha, k) \mapsto Q(\alpha, k): X \rightarrow Y, \text { holomorphic, Fredholm, index } 0 \\
\tau_{Y}(p)^{-1} Q(\alpha, k) \tau_{X}(p)=Q(\alpha, k+p), \quad p \in \Lambda^{*}{ }_{\text {a weaker assumption possible }}
\end{gathered}
$$

$$
m(\alpha, k):=\frac{1}{2 \pi i} \operatorname{tr} \oint_{\partial D} Q(\alpha, \zeta)^{-1} \partial_{\zeta} Q(\alpha, \zeta) d \zeta
$$

or ∞ if $Q(\alpha, z)^{-1}$ is never invertible.
Theorem (GZ '23) If for some α_{0}

$$
\forall \alpha, k \quad m(\alpha, k) \geq m\left(\alpha_{0}, k\right) \neq \infty
$$

then there exists a discrete set \mathcal{A} such that for

$$
m(\alpha, k)=\left\{\begin{array}{cl}
\infty & \alpha \in \mathcal{A} \\
m\left(\alpha_{0}, k\right) & \alpha \notin \mathcal{A}
\end{array}\right.
$$

Example $Q(\alpha, k)=D(\alpha)+k, m\left(\alpha_{0}, k\right)=\mathbb{1}_{\{K,-K\}+\Lambda^{*}}$ (symmetry protected states!)

What lies behind this spectral characterization?

An abstract formulation: Galkowski-Z '23
$(\alpha, k) \mapsto Q(\alpha, k): X \rightarrow Y$, holomorphic, Fredholm, index 0
$\tau_{Y}(p)^{-1} Q(\alpha, k) \tau_{X}(p)=Q(\alpha, k+p), \quad p \in \Lambda^{*}$ a weaker assumption possible

$$
m(\alpha, k):=\frac{1}{2 \pi i} \operatorname{tr} \oint_{\partial D} Q(\alpha, \zeta)^{-1} \partial_{\zeta} Q(\alpha, \zeta) d \zeta
$$

or ∞ if $Q(\alpha, z)^{-1}$ is never invertible.
Theorem (GZ '23) If for some α_{0}

$$
\forall \alpha, k \quad m(\alpha, k) \geq m\left(\alpha_{0}, k\right) \neq \infty
$$

then there exists a discrete set \mathcal{A} such that for

$$
m(\alpha, k)=\left\{\begin{array}{cl}
\infty & \alpha \in \mathcal{A} \\
m\left(\alpha_{0}, k\right) & \alpha \notin \mathcal{A}
\end{array}\right.
$$

Example $Q(\alpha, k)=\left(2 D_{\bar{z}}+k\right)^{2}-\alpha^{2} U(z) U(-z)$: a scalar model in which $m(0, k)=2 \mathbb{1}_{\Lambda^{*}}(k)>\operatorname{dim} \operatorname{ker} Q(0, k)$.

Works for general potentials with $\mathbb{Z}_{3}^{2} \rtimes \mathbb{Z}_{3}$ symmetries

$$
U_{\theta}(z):=\sum_{k=0}^{2} \omega^{k}\left(\cos ^{2} \theta e^{\frac{1}{2}\left(\bar{z} \omega^{k}-z \bar{\omega}^{k}\right)}+\sin ^{2} \theta e^{\bar{z} \omega^{k}-z \bar{\omega}^{k}}\right)
$$

Works for general potentials with $\mathbb{Z}_{3}^{2} \rtimes \mathbb{Z}_{3}$ symmetries

$$
U_{\theta}(z):=\sum_{k=0}^{2} \omega^{k}\left(\cos ^{2} \theta e^{\frac{1}{2}\left(\bar{z} \omega^{k}-z \bar{\omega}^{k}\right)}+\sin ^{2} \theta e^{\bar{z} \omega^{k}-z \bar{\omega}^{k}}\right)
$$

Structure of eigenfunctions at the flat band

Structure of eigenfunctions at the flat band
Dubrovin-Novikov '80, Tarnopolsky et al '19,

Structure of eigenfunctions at the flat band
Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

Structure of eigenfunctions at the flat band
Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

$$
\forall \alpha \in \mathbb{C}, \quad(D(\alpha)+K) u_{K}(\alpha)=0, \quad u_{K}(\alpha) \in H_{0}^{1}(\mathbb{C} / \Lambda) \backslash\{0\}
$$

Structure of eigenfunctions at the flat band

Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

$$
\forall \alpha \in \mathbb{C}, \quad(D(\alpha)+K) u_{K}(\alpha)=0, \quad u_{K}(\alpha) \in H_{0}^{1}(\mathbb{C} / \Lambda) \backslash\{0\}
$$

Consider the (rescaled) Green function of $2 D_{\bar{z}}$ on \mathbb{C} / Λ :

$$
\left(2 D_{\bar{z}}+k\right) F_{k}(z)=a(k) \delta_{0}(z), \quad k \mapsto F_{k} \text { holomorphic }
$$

Structure of eigenfunctions at the flat band

Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

$$
\forall \alpha \in \mathbb{C}, \quad(D(\alpha)+K) u_{K}(\alpha)=0, \quad u_{K}(\alpha) \in H_{0}^{1}(\mathbb{C} / \Lambda) \backslash\{0\}
$$

Consider the (rescaled) Green function of $2 D_{\bar{z}}$ on \mathbb{C} / Λ :

$$
\left(2 D_{\bar{z}}+k\right) F_{k}(z)=a(k) \delta_{0}(z), \quad k \mapsto F_{k} \text { holomorphic }
$$

$\left(k \mapsto a(k)\right.$ any entire function $\left.a\right|_{\Lambda^{*}}=0, F_{k}=a(k) \times$ Green's function)

Structure of eigenfunctions at the flat band

Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

$$
\forall \alpha \in \mathbb{C}, \quad(D(\alpha)+K) u_{K}(\alpha)=0, \quad u_{K}(\alpha) \in H_{0}^{1}(\mathbb{C} / \Lambda) \backslash\{0\}
$$

Consider the (rescaled) Green function of $2 D_{\bar{z}}$ on \mathbb{C} / Λ :

$$
\left(2 D_{\bar{z}}+k\right) F_{k}(z)=a(k) \delta_{0}(z), \quad k \mapsto F_{k} \text { holomorphic }
$$

($k \mapsto a(k)$ any entire function $\left.a\right|_{\Lambda^{*}}=0, F_{k}=a(k) \times$ Green's function)

$$
(D(\alpha)+k)\left(F_{k-K}\left(z-z_{0}\right) u_{K}\right)=u_{K}\left(z_{0}\right) \alpha(k-K) \delta_{0}\left(z-z_{0}\right)
$$

Structure of eigenfunctions at the flat band

Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

$$
\forall \alpha \in \mathbb{C}, \quad(D(\alpha)+K) u_{K}(\alpha)=0, \quad u_{K}(\alpha) \in H_{0}^{1}(\mathbb{C} / \Lambda) \backslash\{0\}
$$

Consider the (rescaled) Green function of $2 D_{\bar{z}}$ on \mathbb{C} / Λ :

$$
\left(2 D_{\bar{z}}+k\right) F_{k}(z)=a(k) \delta_{0}(z), \quad k \mapsto F_{k} \text { holomorphic }
$$

$\left(k \mapsto a(k)\right.$ any entire function $\left.a\right|_{\Lambda^{*}}=0, F_{k}=a(k) \times$ Green's function)

$$
(D(\alpha)+k)\left(F_{k-K}\left(z-z_{0}\right) u_{K}\right)=u_{K}\left(z_{0}\right) \alpha(k-K) \delta_{0}\left(z-z_{0}\right) .
$$

$\exists z_{0} u_{K}\left(z_{0}\right)=0 \Rightarrow$

Structure of eigenfunctions at the flat band

Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

$$
\forall \alpha \in \mathbb{C}, \quad(D(\alpha)+K) u_{K}(\alpha)=0, \quad u_{K}(\alpha) \in H_{0}^{1}(\mathbb{C} / \Lambda) \backslash\{0\}
$$

Consider the (rescaled) Green function of $2 D_{\bar{z}}$ on \mathbb{C} / Λ :

$$
\left(2 D_{\bar{z}}+k\right) F_{k}(z)=a(k) \delta_{0}(z), \quad k \mapsto F_{k} \text { holomorphic }
$$

$\left(k \mapsto a(k)\right.$ any entire function $\left.a\right|_{\wedge^{*}}=0, F_{k}=a(k) \times$ Green's function)

$$
(D(\alpha)+k)\left(F_{k-K}\left(z-z_{0}\right) u_{K}\right)=u_{K}\left(z_{0}\right) \alpha(k-K) \delta_{0}\left(z-z_{0}\right) .
$$

$\exists z_{0} \quad u_{K}\left(z_{0}\right)=0 \Rightarrow\left\{\begin{array}{l}u_{k}(z):=F_{k-K}\left(z-z_{0}\right) u_{K}(z) \in C^{\infty}(\mathbb{C} / \Lambda), \\ (D(\alpha)+k) u_{k}=0, \quad \forall k \in \mathbb{C}, \\ \text { flat band at } \alpha .\end{array}\right.$

Structure of eigenfunctions at the flat band

Dubrovin-Novikov '80, Tarnopolsky et al '19, Becker et al '22

$$
\forall \alpha \in \mathbb{C}, \quad(D(\alpha)+K) u_{K}(\alpha)=0, \quad u_{K}(\alpha) \in H_{0}^{1}(\mathbb{C} / \Lambda) \backslash\{0\}
$$

Consider the (rescaled) Green function of $2 D_{\bar{z}}$ on \mathbb{C} / Λ :

$$
\left(2 D_{\bar{z}}+k\right) F_{k}(z)=a(k) \delta_{0}(z), \quad k \mapsto F_{k} \text { holomorphic }
$$

$\left(k \mapsto a(k)\right.$ any entire function $\left.a\right|_{\Lambda^{*}}=0, F_{k}=a(k) \times$ Green's function)

$$
(D(\alpha)+k)\left(F_{k-K}\left(z-z_{0}\right) u_{K}\right)=u_{K}\left(z_{0}\right) \alpha(k-K) \delta_{0}\left(z-z_{0}\right) .
$$

$\exists z_{0} \quad u_{K}\left(z_{0}\right)=0 \Rightarrow\left\{\begin{array}{l}u_{k}(z):=F_{k-K}\left(z-z_{0}\right) u_{K}(z) \in C^{\infty}(\mathbb{C} / \Lambda), \\ (D(\alpha)+k) u_{k}=0, \quad \forall k \in \mathbb{C}, \\ \text { flat band at } \alpha .\end{array}\right.$
Theorem (BHZ '22) If $\alpha \in \mathcal{A}$ is simple then the unique zero has to appear at the stacking point $z_{S}:=-z(K)=\sqrt{3} / i$.

Structure of eigenfunctions at the flat band

$$
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)
$$

Structure of eigenfunctions at the flat band

$$
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z)
$$

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k
\end{gathered}
$$

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k, \\
\theta(z):=\theta_{1}(z \mid \omega):=-\sum_{n \in \mathbb{Z}} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \omega+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right)
\end{gathered}
$$

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k \\
\theta(z):=\theta_{1}(z \mid \omega):=-\sum_{n \in \mathbb{Z}} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \omega+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right)
\end{gathered}
$$

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k, \\
\theta(z):=\theta_{1}(z \mid \omega):=-\sum_{n \in \mathbb{Z}} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \omega+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right) \\
(D(\alpha)+k) u(k)=0, \quad\|u(k)\|=1, \quad\left(D(\alpha)^{*}+\bar{k}\right) u^{*}(k)=0, \quad\left\|u^{*}(k)\right\|=1
\end{gathered}
$$

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k, \\
\theta(z):=\theta_{1}(z \mid \omega):=-\sum_{n \in \mathbb{Z}} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \omega+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right) \\
(D(\alpha)+k) u(k)=0,\|u(k)\|=1, \quad\left(D(\alpha)^{*}+\bar{k}\right) u^{*}(k)=0, \quad\left\|u^{*}(k)\right\|=1 \\
u(k)=c(k) F_{k}\binom{\psi}{\varphi}, \quad u^{*}(k)=c(k) \overline{F_{-k}}\binom{\bar{\varphi}}{-\bar{\psi}}
\end{gathered}
$$

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k, \\
\theta(z):=\theta_{1}(z \mid \omega):=-\sum_{n \in \mathbb{Z}} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \omega+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right) \\
(D(\alpha)+k) u(k)=0,\|u(k)\|=1, \quad\left(D(\alpha)^{*}+\bar{k}\right) u^{*}(k)=0, \quad\left\|u^{*}(k)\right\|=1 \\
u(k)=c(k) F_{k}\binom{\psi}{\varphi}, \quad u^{*}(k)=c(k) \overline{F_{-k}}\binom{\bar{\varphi}}{-\bar{\psi}}
\end{gathered}
$$

Application: We can consider an added in-plane magnetic field as a perturbation:

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-K}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k, \\
\theta(z):=\theta_{1}(z \mid \omega):=-\sum_{n \in \mathbb{Z}} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \omega+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right) \\
(D(\alpha)+k) u(k)=0,\|u(k)\|=1, \quad\left(D(\alpha)^{*}+\bar{k}\right) u^{*}(k)=0, \quad\left\|u^{*}(k)\right\|=1 \\
u(k)=c(k) F_{k}\binom{\psi}{\varphi}, \quad u^{*}(k)=c(k) \overline{F_{-k}}\binom{\bar{\varphi}}{-\bar{\psi}}
\end{gathered}
$$

Application: We can consider an added in-plane magnetic field as a perturbation:
$D_{B}(\alpha):=\left(\begin{array}{cc}2 D_{\bar{z}}+B & \alpha U(z) \\ \alpha U(-z) & 2 D_{\bar{z}}-B\end{array}\right)$,

Structure of eigenfunctions at the flat band

$$
\begin{gathered}
u_{k}(z)=F_{k-k}\left(z-z_{S}\right) u_{K}(z)=F_{k}(z) u_{0}(z) \\
F_{k}(z)=e^{\frac{i}{2}(z-\bar{z}) k} \frac{\theta(z-z(k))}{\theta(z)}, \quad a(k)=\frac{2 \pi \theta(z(k))}{\theta^{\prime}(0)}, \quad z(k)=\frac{\sqrt{3}}{4 \pi i} k, \\
\theta(z):=\theta_{1}(z \mid \omega):=-\sum_{n \in \mathbb{Z}} \exp \left(\pi i\left(n+\frac{1}{2}\right)^{2} \omega+2 \pi i\left(n+\frac{1}{2}\right)\left(z+\frac{1}{2}\right)\right) \\
(D(\alpha)+k) u(k)=0,\|u(k)\|=1, \quad\left(D(\alpha)^{*}+\bar{k}\right) u^{*}(k)=0, \quad\left\|u^{*}(k)\right\|=1 \\
u(k)=c(k) F_{k}\binom{\psi}{\varphi}, \quad u^{*}(k)=c(k) \overline{F_{-k}}\binom{\bar{\varphi}}{-\bar{\psi}}
\end{gathered}
$$

Application: We can consider an added in-plane magnetic field as a perturbation:

$$
D_{B}(\alpha):=\left(\begin{array}{cc}
2 D_{\bar{z}}+B & \alpha U(z) \\
\alpha U(-z) & 2 D_{\bar{z}}-B
\end{array}\right), \quad H_{B}(\alpha):=\left(\begin{array}{cc}
0 & D_{B}(\alpha)^{*} \\
D_{B}(\alpha) & 0
\end{array}\right) .
$$

How do the (two) Dirac points move when in-plane magnetic field B is applied to sheets of bilayer graphene twisted by $\theta \simeq 1 / \alpha$?

How do the (two) Dirac points move when in-plane magnetic field
B is applied to sheets of bilayer graphene twisted by $\theta \simeq 1 / \alpha$?

How do the (two) Dirac points move when in-plane magnetic field
B is applied to sheets of bilayer graphene twisted by $\theta \simeq 1 / \alpha$?

$\mathrm{L}: \theta$ varies, $B /|B|$ fixed

How do the (two) Dirac points move when in-plane magnetic field B is applied to sheets of bilayer graphene twisted by $\theta \simeq 1 / \alpha$?

$\mathrm{L}: \theta$ varies, $B /|B|$ fixed

$\mathrm{R}: B /|B|$ varies, θ fixed

How do the (two) Dirac points move when in-plane magnetic field B is applied to sheets of bilayer graphene twisted by $\theta \simeq 1 / \alpha$?

$\mathrm{L}: \theta$ varies, $B /|B|$ fixed

$\mathrm{R}: B /|B|$ varies, θ fixed

In-plane magnetic field for the chiral model

In-plane magnetic field for the chiral model
Kwan et al '20, Qin-MacDonald '21:

In-plane magnetic field for the chiral model
Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

In-plane magnetic field for the chiral model
Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

Dirac point at $k \Longleftrightarrow k \in \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)} D_{B}(\alpha)$

In-plane magnetic field for the chiral model Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

Dirac point at $k \Longleftrightarrow k \in \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)} D_{B}(\alpha)$
Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A}$ is simple (+ one more condition) and $0<B_{0} \ll 1$ then there are no flat bands and for $\alpha \sim \underline{\alpha}$ Dirac points (eigenvalues of $D_{B}(\alpha)$) are close to the Γ point.

In-plane magnetic field for the chiral model Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

Dirac point at $k \Longleftrightarrow k \in \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)} D_{B}(\alpha)$
Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A}$ is simple (+ one more condition) and $0<B_{0} \ll 1$ then there are no flat bands and for $\alpha \sim \underline{\alpha}$ Dirac points (eigenvalues of $D_{B}(\alpha)$) are close to the Γ point.

In-plane magnetic field for the chiral model Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

Dirac point at $k \Longleftrightarrow k \in \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)} D_{B}(\alpha)$
Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A}$ is simple (+ one more condition) and $0<B_{0} \ll 1$ then there are no flat bands and for $\alpha \sim \underline{\alpha}$ Dirac points (eigenvalues of $D_{B}(\alpha)$) are close to the Γ point.

In-plane magnetic field for the chiral model Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

Dirac point at $k \Longleftrightarrow k \in \operatorname{Spec}_{L_{0}^{2}(\mathbb{C} / \Gamma)} D_{B}(\alpha)$
Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A}$ is simple (+ one more condition) and $0<B_{0} \ll 1$ then there are no flat bands and for $\alpha \sim \underline{\alpha}$ Dirac points (eigenvalues of $D_{B}(\alpha)$) are close to the Γ point.

In-plane magnetic field for the chiral model
Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta}
$$

Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A} \cap \mathbb{R}$ is simple and $0<B_{0} \ll 1$ then

$$
\begin{aligned}
& \mathscr{R}_{\ell} \backslash \bigcup_{k \neq \pm K} D(k, \epsilon) \subset \bigcup_{\underline{\alpha}-\delta<\alpha<\underline{\alpha}+\delta} \operatorname{Spec}_{L_{0}^{2}}\left(D_{\omega^{\ell} B}(\alpha)\right) \subset \mathscr{R}_{\ell}, \\
& \mathscr{R}_{\ell}:=\omega^{\ell}\left(2 \pi(i \mathbb{R}+\mathbb{Z}) \cup \frac{2 \pi}{\sqrt{3}}(\mathbb{R}+i \mathbb{Z})\right)
\end{aligned}
$$

In-plane magnetic field for the chiral model Kwan et al '20, Qin-MacDonald '21:

$$
D_{B}(\alpha):=D(\alpha)+\mathcal{B}, \quad \mathcal{B}:=\left(\begin{array}{cc}
B & 0 \\
0 & -B
\end{array}\right), \quad B=B_{0} e^{2 \pi i \theta} .
$$

Theorem (BZ '23) If $\underline{\alpha} \in \mathcal{A} \cap \mathbb{R}$ is simple and $0<B_{0} \ll 1$ then

$$
\begin{aligned}
& \mathscr{R}_{\ell} \backslash \bigcup_{k \neq \pm K} D(k, \epsilon) \subset \bigcup_{\underline{\alpha}-\delta<\alpha<\underline{\alpha}+\delta} \operatorname{Spec}_{L_{0}^{2}}\left(D_{\omega^{\ell} B}(\alpha)\right) \subset \mathscr{R}_{\ell}, \\
& \mathscr{R}_{\ell}:=\omega^{\ell}\left(2 \pi(i \mathbb{R}+\mathbb{Z}) \cup \frac{2 \pi}{\sqrt{3}}(\mathbb{R}+i \mathbb{Z})\right) \quad \ell=1 \text { in the figure }
\end{aligned}
$$

Protected states

Protected states

$$
(D(\alpha)+K) u_{K}=0, \quad u_{K} \in L_{0}^{2}\left(\mathbb{C} / \Lambda ; \mathbb{C}^{2}\right)
$$

Protected states

Protected states

near the hexagon spanned by stacking points

Protected states

near the hexagon spanned by stacking points and near its center

Protected states

near the hexagon spanned by stacking points and near its center
This looks like an estimate in a classically forbidden region with $1 / \alpha$ playing the role of a semiclassical parameter

Classically forbidden regions for protected states

near the hexagon spanned by stacking points and near its center
This looks like an estimate in a classically forbidden region with $1 / \alpha$ playing the role of a semiclassical parameter

A semiclassical formulation

$$
P:=\left(\begin{array}{cc}
2 h D_{\bar{z}} & \lambda U(z) \\
\lambda U(-z) & 2 h D_{\bar{z}}
\end{array}\right)=p(x, h D)
$$

A semiclassical formulation

$$
\begin{gathered}
P:=\left(\begin{array}{cc}
2 h D_{\bar{z}} & \lambda U(z) \\
\lambda U(-z) & 2 h D_{\bar{z}}
\end{array}\right)=p(x, h D) \\
p(x, \xi):=\left(\begin{array}{cc}
2 \bar{\zeta} & \lambda U(z) \\
\lambda U(-z) & 2 \bar{\zeta}
\end{array}\right), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right)
\end{gathered}
$$

A semiclassical formulation

$$
\begin{gathered}
P:=\left(\begin{array}{cc}
2 h D_{\bar{z}} & \lambda U(z) \\
\lambda U(-z) & 2 h D_{\bar{z}}
\end{array}\right)=p(x, h D) \\
p(x, \xi):=\left(\begin{array}{cc}
2 \bar{\zeta} & \lambda U(z) \\
\lambda U(-z) & 2 \bar{\zeta}
\end{array}\right), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right)
\end{gathered}
$$

Symplectic structure:

$$
\sigma=d \xi_{1} \wedge d x_{1}+d \xi_{2} \wedge d x_{2}=2 \operatorname{Re} d \zeta \wedge d z, \quad z=x_{1}+i x_{2}, \quad \zeta=\frac{1}{2}\left(\xi_{1}-i \xi_{2}\right)
$$

A semiclassical formulation

$$
\begin{gathered}
P:=\left(\begin{array}{cc}
2 h D_{\bar{z}} & \lambda U(z) \\
\lambda U(-z) & 2 h D_{\bar{z}}
\end{array}\right)=p(x, h D) \\
p(x, \xi):=\left(\begin{array}{cc}
2 \bar{\zeta} & \lambda U(z) \\
\lambda U(-z) & 2 \bar{\zeta}
\end{array}\right), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right)
\end{gathered}
$$

Symplectic structure:
$\sigma=d \xi_{1} \wedge d x_{1}+d \xi_{2} \wedge d x_{2}=2 \operatorname{Re} d \zeta \wedge d z, \quad z=x_{1}+i x_{2}, \quad \zeta=\frac{1}{2}\left(\xi_{1}-i \xi_{2}\right)$
Classical dynamics: flow of the Hamilton vector field:

$$
H_{a}=\sum_{j=1}^{2} \partial_{\xi_{j}} a \partial_{x_{j}}-\partial_{x_{j}} a \partial_{\xi_{j}}, \quad \sigma\left(\bullet, H_{a}\right)=d a
$$

A semiclassical formulation

$$
\begin{gathered}
P:=\left(\begin{array}{cc}
2 h D_{\bar{z}} & \lambda U(z) \\
\lambda U(-z) & 2 h D_{\bar{z}}
\end{array}\right)=p(x, h D) \\
p(x, \xi):=\left(\begin{array}{cc}
2 \bar{\zeta} & \lambda U(z) \\
\lambda U(-z) & 2 \bar{\zeta}
\end{array}\right), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right)
\end{gathered}
$$

Symplectic structure:
$\sigma=d \xi_{1} \wedge d x_{1}+d \xi_{2} \wedge d x_{2}=2 \operatorname{Re} d \zeta \wedge d z, \quad z=x_{1}+i x_{2}, \quad \zeta=\frac{1}{2}\left(\xi_{1}-i \xi_{2}\right)$
Classical dynamics: flow of the Hamilton vector field:

$$
H_{a}=\sum_{j=1}^{2} \partial_{\xi_{j}} a \partial_{x_{j}}-\partial_{x_{j}} a \partial_{\xi_{j}}, \quad \sigma\left(\bullet, H_{a}\right)=d a
$$

Poisson bracket: $\{a, b\}:=H_{a} b$

A semiclassical formulation

$$
\begin{gathered}
P:=\left(\begin{array}{cc}
2 h D_{\bar{z}} & \lambda U(z) \\
\lambda U(-z) & 2 h D_{\bar{z}}
\end{array}\right)=p(x, h D) \\
p(x, \xi):=\left(\begin{array}{cc}
2 \bar{\zeta} & \lambda U(z) \\
\lambda U(-z) & 2 \bar{\zeta}
\end{array}\right), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right)
\end{gathered}
$$

Symplectic structure:
$\sigma=d \xi_{1} \wedge d x_{1}+d \xi_{2} \wedge d x_{2}=2 \operatorname{Re} d \zeta \wedge d z, \quad z=x_{1}+i x_{2}, \quad \zeta=\frac{1}{2}\left(\xi_{1}-i \xi_{2}\right)$
Classical dynamics: flow of the Hamilton vector field:

$$
H_{a}=\sum_{j=1}^{2} \partial_{\xi_{j}} a \partial_{x_{j}}-\partial_{x_{j}} a \partial_{\xi_{j}}, \quad \sigma\left(\bullet, H_{a}\right)=d a
$$

Poisson bracket: $\{a, b\}:=H_{a} b$
Classical/quantum correspondence:

$$
[a(x, h D), b(x, h D)]=\frac{h}{i}\{a, b\}(x, h D)+\mathcal{O}\left(h^{2}\right)
$$

Principally scalar reduction

Principally scalar reduction

$$
P(-\lambda) P(\lambda)=q(x, h D) I_{\mathbb{C}^{2}}+h R(x)
$$

Principally scalar reduction

$$
\begin{gathered}
P(-\lambda) P(\lambda)=q(x, h D) I_{\mathbb{C}^{2}}+h R(x) \\
q(x, \xi)=4 \bar{\zeta}^{2}-\lambda^{2} U(z) U(-z), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right)
\end{gathered}
$$

Principally scalar reduction

$$
\begin{gathered}
P(-\lambda) P(\lambda)=q(x, h D) I_{\mathbb{C}^{2}}+h R(x) \\
q(x, \xi)=4 \bar{\zeta}^{2}-\lambda^{2} U(z) U(-z), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right) \\
R(x)=\left(\begin{array}{cc}
0 & 2 \lambda D_{\bar{z}} U(z) \\
-\lambda D_{\bar{z}} U(-z) & 0
\end{array}\right)
\end{gathered}
$$

Principally scalar reduction

$$
\begin{gathered}
P(-\lambda) P(\lambda)=q(x, h D) I_{\mathbb{C}^{2}}+h R(x) \\
q(x, \xi)=4 \bar{\zeta}^{2}-\lambda^{2} U(z) U(-z), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right) \\
R(x)=\left(\begin{array}{cc}
0 & 2 \lambda D_{\bar{z}} U(z) \\
-\lambda D_{\bar{z}} U(-z) & 0
\end{array}\right)
\end{gathered}
$$

$\left.\{q, \bar{q}\}\right|_{q^{-1}(0)}$ measures the "complexity" of $q(x, \xi) \in \mathbb{C}$

Principally scalar reduction

$$
\begin{gathered}
P(-\lambda) P(\lambda)=q(x, h D) I_{\mathbb{C}^{2}}+h R(x) \\
q(x, \xi)=4 \bar{\zeta}^{2}-\lambda^{2} U(z) U(-z), \quad z=x_{1}+i x_{2}, \quad \bar{\zeta}=\frac{1}{2}\left(\xi_{1}+i \xi_{2}\right) \\
R(x)=\left(\begin{array}{cc}
0 & 2 \lambda D_{\bar{z}} U(z) \\
-\lambda D_{\bar{z}} U(-z) & 0
\end{array}\right)
\end{gathered}
$$

$\left.\{q, \bar{q}\}\right|_{q^{-1}(0)}$ measures the "complexity" of $q(x, \xi) \in \mathbb{C}$

The rôle of the Poisson bracket

$(q(x, h D)+h R) u=0$

$|\{q, \bar{q}\}|_{q^{-1}(0)}$

The rôle of the Poisson bracket

$(q(x, h D)+h R) u=0$

$|\{q, \bar{q}\}|_{q^{-1}(0)}$

Hörmander'60, Sato-Kawai-Kashiwara'73, Dencker-Sjöstrand-Z'04:

$$
q\left(x_{0}, \xi_{0}\right)=0, i\{q, \bar{q}\}\left(x_{0}, \xi_{0}\right)<0 \Longrightarrow
$$

$\exists u$ microlocalized to $\left(x_{0}, \xi_{0}\right), \quad q(x, h D) u=\mathcal{O}\left(e^{-c / h}\right)$

The rôle of the Poisson bracket

$$
(q(x, h D)+h R) u=0
$$

$|\{q, \bar{q}\}|_{q^{-1}(0)}$

Hörmander'60, Sato-Kawai-Kashiwara'73, Dencker-Sjöstrand-Z'04:

$$
q\left(x_{0}, \xi_{0}\right)=0, i\{q, \bar{q}\}\left(x_{0}, \xi_{0}\right)<0 \Longrightarrow
$$

$\exists u$ microlocalized to $\left(x_{0}, \xi_{0}\right), \quad q(x, h D) u=\mathcal{O}\left(e^{-c / h}\right)$
(reason for exponential squeezing of bands in Becker et al '21)

The rôle of the Poisson bracket

$$
(q(x, h D)+h R) u=0
$$

$|\{q, \bar{q}\}|_{q^{-1}(0)}$

Hörmander'60, Sato-Kawai-Kashiwara'73, Dencker-Sjöstrand-Z'04:

$$
q\left(x_{0}, \xi_{0}\right)=0, i\{q, \bar{q}\}\left(x_{0}, \xi_{0}\right)<0 \Longrightarrow
$$

$\exists u$ microlocalized to $\left(x_{0}, \xi_{0}\right), \quad q(x, h D) u=\mathcal{O}\left(e^{-c / h}\right)$
(reason for exponential squeezing of bands in Becker et al '21)

Proof by example: If $q(x, \xi)=\xi_{1}-i x_{1}$ then $i\{q, \bar{q}\}=-2$, $q(0,0)=0$.

The rôle of the Poisson bracket

$$
(q(x, h D)+h R) u=0
$$

$|\{q, \bar{q}\}|_{q^{-1}(0)}$

Hörmander'60, Sato-Kawai-Kashiwara'73, Dencker-Sjöstrand-Z'04:

$$
q\left(x_{0}, \xi_{0}\right)=0, i\{q, \bar{q}\}\left(x_{0}, \xi_{0}\right)<0 \Longrightarrow
$$

$\exists u$ microlocalized to $\left(x_{0}, \xi_{0}\right), \quad q(x, h D) u=\mathcal{O}\left(e^{-c / h}\right)$
(reason for exponential squeezing of bands in Becker et al '21)

Proof by example: If $q(x, \xi)=\xi_{1}-i x_{1}$ then $i\{q, \bar{q}\}=-2$, $q(0,0)=0$. For $\left(x_{0}, \xi_{0}\right)=(0,0)$ put $u=\exp \left(-x^{2} / 2 h\right)$.

The rôle of the Poisson bracket

$$
(q(x, h D)+h R) u=0
$$

$|\{q, \bar{q}\}|_{q^{-1}(0)}$

Hörmander'60, Sato-Kawai-Kashiwara'73, Dencker-Sjöstrand-Z'04:

$$
q\left(x_{0}, \xi_{0}\right)=0, i\{q, \bar{q}\}\left(x_{0}, \xi_{0}\right)<0 \Longrightarrow
$$

$\exists u$ microlocalized to $\left(x_{0}, \xi_{0}\right), \quad q(x, h D) u=\mathcal{O}\left(e^{-c / h}\right)$
(reason for exponential squeezing of bands in Becker et al '21)

Proof by example: If $q(x, \xi)=\xi_{1}-i x_{1}$ then $i\{q, \bar{q}\}=-2$, $q(0,0)=0$. For $\left(x_{0}, \xi_{0}\right)=(0,0)$ put $u=\exp \left(-x^{2} / 2 h\right)$. \square

Passage to PDE with analytic coefficients has its complications

The rôle of the Poisson bracket

$$
(q(x, h D)+h R) u=0
$$

$|\{q, \bar{g}\}|_{q^{-1}(0)}$

Classically forbidden region when $\{q, \bar{q}\}=0$

Classically forbidden region when $\{q, \bar{q}\}=0$
Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

Classically forbidden region when $\{q, \bar{q}\}=0$
Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

based on: Kashiwara, Sjöstrand, Trepreau, Himonas '80s

Classically forbidden region when $\{q, \bar{q}\}=0$
Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

based on: Kashiwara, Sjöstrand, Trepreau, Himonas '80s related recent work: Sjöstrand-Vogel '23

Classically forbidden region when $\{q, \bar{q}\}=0$
Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

based on: Kashiwara, Sjöstrand, Trepreau, Himonas '80s related recent work: Sjöstrand-Vogel '23

Proof by example: Consider $q(x, \xi)=\xi+i x^{2}, x_{0}=0$.

Classically forbidden region when $\{q, \bar{q}\}=0$
Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

based on: Kashiwara, Sjöstrand, Trepreau, Himonas '80s related recent work: Sjöstrand-Vogel '23

Proof by example: Consider $q(x, \xi)=\xi+i x^{2}, x_{0}=0$. Then $\{q, \bar{q}\}=-\left.4 i x\right|_{x=0}=0,\{q,\{q, \bar{q}\}\}=-4 i$, so the condition holds.

Classically forbidden region when $\{q, \bar{q}\}=0$
Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

based on: Kashiwara, Sjöstrand, Trepreau, Himonas '80s related recent work: Sjöstrand-Vogel '23

Proof by example: Consider $q(x, \xi)=\xi+i x^{2}, x_{0}=0$. Then $\{q, \bar{q}\}=-\left.4 i x\right|_{x=0}=0,\{q,\{q, \bar{q}\}\}=-4 i$, so the condition holds.

If $0=q(x, h D) u=\frac{h}{i}\left(\partial_{x}-x^{2} / h\right) u$, then $u(x, h)=u(0, h) e^{\frac{1}{3} x^{3} / h}$.

Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

based on: Kashiwara, Sjöstrand, Trepreau, Himonas '80s related recent work: Sjöstrand-Vogel '23

Proof by example: Consider $q(x, \xi)=\xi+i x^{2}, x_{0}=0$. Then $\{q, \bar{q}\}=-\left.4 i x\right|_{x=0}=0,\{q,\{q, \bar{q}\}\}=-4 i$, so the condition holds. If $0=q(x, h D) u=\frac{h}{i}\left(\partial_{x}-x^{2} / h\right) u$, then $u(x, h)=u(0, h) e^{\frac{1}{3} x^{3} / h}$. For this to be uniformly bounded near 0 , we need $u(0, h)=e^{-c / h}$, $c>0$.

Theorem. (Hitrik-Z '23) Suppose that $q(x, h D) u=0$ near x_{0}, and $\|u\|_{L^{2}\left(\operatorname{neigh}\left(x_{0}\right)\right)} \leq 1$. Then if

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

then there exists an h-independent neighbourhood of x_{0}, Ω, such that

$$
|u(z, h)| \leq e^{-c / h}, \quad z \in \Omega
$$

based on: Kashiwara, Sjöstrand, Trepreau, Himonas '80s related recent work: Sjöstrand-Vogel '23

Proof by example: Consider $q(x, \xi)=\xi+i x^{2}, x_{0}=0$. Then $\{q, \bar{q}\}=-\left.4 i x\right|_{x=0}=0,\{q,\{q, \bar{q}\}\}=-4 i$, so the condition holds. If $0=q(x, h D) u=\frac{h}{i}\left(\partial_{x}-x^{2} / h\right) u$, then $u(x, h)=u(0, h) e^{\frac{1}{3} x^{3} / h}$. For this to be uniformly bounded near 0 , we need $u(0, h)=e^{-c / h}$, $c>0$. So $|u(x, h)| \leq e^{-c / 2 h}$ for $|x|$ small.

Application to the chiral model of TBG

Application to the chiral model of TBG
Exponential decay of solutions near x_{0} guaranteed by

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

Application to the chiral model of TBG
Exponential decay of solutions near x_{0} guaranteed by

$$
\begin{gathered}
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0 \\
q=(2 \bar{\zeta})^{2}-U(z) U(-z), \quad q=0 \Leftrightarrow 2 \bar{\zeta}= \pm \sqrt{U(z) U(-z)} \\
\{q, \bar{q}\}= \pm 8 i \operatorname{Im}\left((\overline{U(z) U(-z)})^{\frac{1}{2}} \partial_{z}(U(z) U(-z))\right)
\end{gathered}
$$

Application to the chiral model of TBG
Exponential decay of solutions near x_{0} guaranteed by

$$
\begin{gathered}
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0 \\
q=(2 \bar{\zeta})^{2}-U(z) U(-z), \quad q=0 \Leftrightarrow 2 \bar{\zeta}= \pm \sqrt{U(z) U(-z)} \\
\{q, \bar{q}\}= \pm 8 i \operatorname{Im}\left((\overline{U(z) U(-z)})^{\frac{1}{2}} \partial_{z}(U(z) U(-z))\right)
\end{gathered}
$$

$$
\text { Precalculus } \Longrightarrow\{q, \bar{q}\}=0 \text { on } \pi^{-1} \text { (hexagon) } \cap q^{-1}(0)
$$

Application to the chiral model of TBG

Exponential decay of solutions near x_{0} guaranteed by

$$
\begin{gathered}
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0 \\
q=(2 \bar{\zeta})^{2}-U(z) U(-z), \quad q=0 \Leftrightarrow 2 \bar{\zeta}= \pm \sqrt{U(z) U(-z)} \\
\{q, \bar{q}\}= \pm 8 i \operatorname{Im}\left((\overline{U(z) U(-z)})^{\frac{1}{2}} \partial_{z}(U(z) U(-z))\right)
\end{gathered}
$$

Precalculus $\Longrightarrow\{q, \bar{q}\}=0$ on π^{-1} (hexagon) $\cap q^{-1}(0)$
hexagon $=$ spanned by $\pm z_{S}+\Lambda, z_{S}=i / \sqrt{3}, \omega z_{S} \equiv z_{S} \bmod \Lambda$

Application to the chiral model of TBG

Exponential decay of solutions near x_{0} guaranteed by

$$
\begin{gathered}
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0 \\
q=(2 \bar{\zeta})^{2}-U(z) U(-z), \quad q=0 \Leftrightarrow 2 \bar{\zeta}= \pm \sqrt{U(z) U(-z)} \\
\{q, \bar{q}\}= \pm 8 i \operatorname{Im}\left((\overline{U(z) U(-z)})^{\frac{1}{2}} \partial_{z}(U(z) U(-z))\right)
\end{gathered}
$$

$$
\text { Precalculus } \Longrightarrow\{q, \bar{q}\}=0 \text { on } \pi^{-1} \text { (hexagon) } \cap q^{-1}(0)
$$

hexagon $=$ spanned by $\pm z_{S}+\Lambda, z_{S}=i / \sqrt{3}, \omega z_{S} \equiv z_{S} \bmod \Lambda$

Application to the chiral model of TBG

Exponential decay of solutions near x_{0} guaranteed by

$$
\begin{gathered}
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0 \\
q=(2 \bar{\zeta})^{2}-U(z) U(-z), \quad q=0 \Leftrightarrow 2 \bar{\zeta}= \pm \sqrt{U(z) U(-z)} \\
\{q, \bar{q}\}= \pm 8 i \operatorname{Im}\left((\overline{U(z) U(-z)})^{\frac{1}{2}} \partial_{z}(U(z) U(-z))\right)
\end{gathered}
$$

$$
\text { Precalculus } \Longrightarrow\{q, \bar{q}\}=0 \text { on } \pi^{-1} \text { (hexagon) } \cap q^{-1}(0)
$$

hexagon $=$ spanned by $\pm z_{S}+\Lambda, z_{S}=i / \sqrt{3}, \omega z_{S} \equiv z_{S} \bmod \Lambda$

$\{q,\{q, \bar{q}\}\}=\frac{128}{9} \pi^{2}(c-1)^{2}(2 c+1)(2 c-9), \quad c:=\cos (2 \pi \sqrt{3} t / 3)$

Application to the chiral model of TBG
Exponential decay of solutions near x_{0} guaranteed by

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

Application to the chiral model of TBG
Exponential decay of solutions near x_{0} guaranteed by

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

Condition satisfied if x_{0} is in the interior of the edges of the hexagon

Application to the chiral model of TBG

Exponential decay of solutions near x_{0} guaranteed by

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

Condition satisfied if x_{0} is in the interior of the edges of the hexagon
Theorem. (Hitrik-Z '23) Suppose that $(D(\alpha)+k) u(\alpha)=0$ near $x_{0},\|u\|_{L^{2}} \leq 1$, and that x_{0} is in the interior of the edge of the hexagon. Then there exists a neighbourhood, Ω, of x_{0} and $c_{0}>0$ such that

$$
|u(\alpha, z)| \leq C e^{-c_{0} \alpha}, \quad z \in \Omega
$$

Application to the chiral model of TBG
Exponential decay of solutions near x_{0} guaranteed by

$$
q\left(x_{0}, \xi\right)=0 \Longrightarrow\{q, \bar{q}\}=0, \quad\{q,\{q, \bar{q}\}\} \neq 0
$$

Condition satisfied if x_{0} is in the interior of the edges of the hexagon
Theorem. (Hitrik-Z '23) Suppose that $(D(\alpha)+k) u(\alpha)=0$ near $x_{0},\|u\|_{L^{2}} \leq 1$, and that x_{0} is in the interior of the edge of the hexagon. Then there exists a neighbourhood, Ω, of x_{0} and $c_{0}>0$ such that

$$
|u(\alpha, z)| \leq C e^{-c_{0} \alpha}, \quad z \in \Omega
$$

Application to the chiral model of TBG

Application to the chiral model of TBG

$$
\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right)=0
$$

Application to the chiral model of TBG

$\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right)=0$ but $\left\{q,\left\{q,\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right) \neq 0\right.\right.$

Application to the chiral model of TBG

$$
\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right)=0 \text { but }\left\{q,\left\{q,\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right) \neq 0\right.\right.
$$

Galkowski '23: C^{∞} theory of Egorov and Hörmander does not give

$$
|u(\alpha, z)| \leq C_{N} \alpha^{-N} \quad \forall N, \quad z \text { near } \pm z_{S}
$$

Application to the chiral model of TBG

$$
\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right)=0 \text { but }\left\{q,\left\{q,\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right) \neq 0\right.\right.
$$

Galkowski '23: C^{∞} theory of Egorov and Hörmander does not give

$$
|u(\alpha, z)| \leq C_{N} \alpha^{-N} \quad \forall N, \quad z \text { near } \pm z_{S}
$$

What about the center of the hexagon?

Application to the chiral model of TBG

$$
\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right)=0 \text { but }\left\{q,\left\{q,\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right) \neq 0\right.\right.
$$

Galkowski '23: C^{∞} theory of Egorov and Hörmander does not give

$$
|u(\alpha, z)| \leq C_{N} \alpha^{-N} \quad \forall N, \quad z \text { near } \pm z_{S}
$$

What about the center of the hexagon?
At $(x, \xi)=(0,0)$ (the center of the hexagon) the operator is not of principal type:

$$
q(0,0)=0, \quad \nabla q(0,0)=0
$$

Application to the chiral model of TBG

$$
\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right)=0 \text { but }\left\{q,\left\{q,\{q,\{q, \bar{q}\}\}\left(\pm z_{S}, 0\right) \neq 0\right.\right.
$$

Galkowski '23: C^{∞} theory of Egorov and Hörmander does not give

$$
|u(\alpha, z)| \leq C_{N} \alpha^{-N} \quad \forall N, \quad z \text { near } \pm z_{S}
$$

What about the center of the hexagon?
At $(x, \xi)=(0,0)$ (the center of the hexagon) the operator is not of principal type:

$$
q(0,0)=0, \quad \nabla q(0,0)=0
$$

Lower order terms matter as we see in the figure above!

Anonymous '23 (communicated by Simon Becker)
Proofs are for dinosaurs - why don't you just put it on a computer.

Anonymous '23 (communicated by Simon Becker)
Proofs are for dinosaurs - why don't you just put it on a computer.

Anders would not agree!

Anonymous '23 (communicated by Simon Becker)
Proofs are for dinosaurs - why don't you just put it on a computer.

Anders would not agree!
Happy Birthday!

