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IMB, Université de Bourgogne
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1. Introduction

1. Introduction

In the early 70:ies Lars Hörmander suggested to Anders and me to extend
the theory of Fourier integral operators, developed in his paper in Acta
Math. (1971), to the case of complex valued phase functions. Doing so
was very interesting and stimulating and I lerned a lot from Anders. (A
parallel theory in the framework of Maslov’s canonical operator was
developed by Maslov, Kucherenko. See also books by
Laptev-Safarov-Vassiliev, Combescure-Robert.) This became the main
theme for me and has kept me busy through the years. With Anders we
returned some 23 years ago to another form of complex phase theory in
the study of quantization rules for eigenvalues for semi-classical
non-self-adjoint operators in dimension 2. I have had the chance to
continue on this and related subjects with Michael Hitrik, a former student
of Anders.
I shall present a joint work with Martin Vogel on a model for a general
problem of tunneling for non-self-adjoint operators. We will mention at
the end some related works for Magnetic Schrödinger and Pauli operators.
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1. Introduction

Let P : H → H be a closed densely defined operator on a complex Hilbert
space H . When P is self-adjoint, the operator norm of the resolvent
satisfies ‖(P − z)−1‖ = 1/dist (z , σ(P)) for z ∈ C, where σ(P) denotes
the spectrum of P and with the convention that the norm is = +∞ for z
in the spectrum. In the non-self-adjoint case we may have

‖(P − z)−1‖ � 1

dist (z , σ(P))
,

and this may be a source of spectral instability, problematic for the
numerical computation of eigenvalues, but also of interest for instance in
the presence of random perturbations. Under some assumptions the norm
of the resolvent is equal to 1/tmin(P − z) where tmin denotes the smallest
singular value, i.e. the smallest eigenvalue of ((P − z)∗(P − z))1/2. We
are therefore interested in the small singular values of P − z .
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1. Introduction

We will work in the semi-classical limit and consider operators of the form

P =
∑
|α|≤m

aα(x ; h)(hDx)α, α ∈ Nn, 0 < h� 1

with |α| = |α|`1 , (hDx)α = (hDx1)α1 ...(hDxn)αn , Dxj = (1/i)∂xj , on a
manifold M with aα(x ; h) = aα(x ; 0) +O(h) in C∞, and semi-classical
principal symbol

p(x , ξ) =
∑
|α|≤m

aα(x ; 0)ξα ∈ C∞(T ∗M)

.

Example

P = −h2∆ + V (x) (Schrödinger operator), p(x , ξ) = ξ2 + V (x)
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1. Introduction

If z ∈ C, z = p(x , ξ) for some ρ = (x , ξ) ∈ T ∗M and

1

i
{p − z , p − z}(ρ) > 0,where {a, b} := a′ξ · b′x − a′x · b′ξ

denotes the Poisson bracket of two C 1 functions, then

∃u = uh ∈ C∞0 (M), ‖u‖L2 = 1, (P−z)u = O(h∞) (i.e. ON(hN),∀N ≥ 0).

This implies that ‖(P − z)−1‖ ≥ 1/O(hN) for every N ≥ 0 (when the
resolvent is well defined), [Ho60a, Ho60b, Zw01, DeSjZw04].
When M is real analytic and P has analytic coefficients,

∃u ∈ C∞0 (M), s.t.‖u‖ = 1, (P − z)u = O(e
− 1

C0h ), for some fixed C0 > 0.

In particular, ‖(P − z)−1‖ ≥ e1/O(h) and tmin(P − z) = O(e−1/O(h)).
Convention: “O(...)” in a denominator always denotes a positive quantity.
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1. Introduction

The proof in both cases is based on the construction of WKB solutions
(for the analytic version see [Sj82, DeSjZw04] and references there to
earlier works, in particular to those of Boutet de Monvel–Krée and
Sato-Kawai-Kashiwara): Assume that z = 0 for simplicity and let
ρ0 = (x0, ξ0) satisfy p(ρ0) = 0, {p, p}(ρ0)/i > 0. Then, as observed by
Hörmander ([Ho60a, Ho60b]), ∃ϕ ∈ C∞(neigh (x0)) such that

ϕ(x0) = 0, ϕ′x(x0) = ξ0, =ϕ′′xx(x0) > 0, p(x , ϕ′x(x)) = O((x − x0)∞),

and by solving a sequence of transport equations, we get a Gaussian type
quasimode u(x ; h) = a(x ; h)e iϕ(x)/h with the symbol

a(x ; h) ∼ a0(x) + a1(x)h + ... in C∞(neigh (x0)),

such that Pu = O(h∞), ‖u‖ = 1.
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1. Introduction

We are interested in the precise exponential decay in the analytic case.
This leads to a quantum tunneling problem, presumably to link a point ρ0

as above via a path in the complexification of T ∗M to points ρ1 ∈ p−1(0)
where {p, p}(ρ1)/i < 0.
Tunneling is well understood for some operators like the semi-classical
self-adjoint Schrödinger operator, but remains difficult for others like the
magnetic Schrödinger operator. We will get fairly complete results for the
small singular values of operators that are conjugations of h∂ with
exponential weights in real dimension 2 under assumptions that allow
separation of variables and the use of a Witten complex in dimension 1.
Recall that the singular values of an operator P are the eigenvalues of
(P∗P)1/2.
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2. Results

2. Results

We will work on X + iY , where X = S1 = R/2πZ and Y is equal to R or
S1.
Let z = x + iy , x ∈ X , y ∈ Y and 0 < h� 1.
Let ϕ = ϕ(y) be a real-valued smooth function on X + iY which is
independent of x and consider the operator1

P = 2 e−ϕ/h ◦ hDz ◦ eϕ/h = 2(hDz + (Dzϕ)) = hDx + h∂y + ∂yϕ, (1)

where ∂z = 1
2 (∂x + i∂y ) and Dz = 1

i ∂z = 1
2 (Dx + iDy ). We choose the

following two model cases

ϕ(y) =

{
1
3y

3, when Y = R,

sin y , when Y = S1.
(2)

We equip P with the natural domain, a weighted Sobolev space.
1This is basically a Pauli operator. More comments and references on Pauli and

magnetic Schrödinger operators at the end of the talk
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2. Results

P has the symbol

p(x , y ; ξ, η) := ξ + iη + ∂yϕ =: pξ(y , η), (3)

The characteristic set of P is given by

p−1(0) = {(x , y ; ξ, η) ∈ T ∗(S1 × Y ); η = 0, ∂yϕ = −ξ}. (4)

1

2i
{p, p} = ∂2

yϕ (= 4∂z∂zϕ). (5)

Let

Σ± = {(x , y ; ξ, η) ∈ p−1(0); ± 1

i
{p, p}(x , y ; ξ, η) > 0}. (6)

More explicitly, Σ± is given by

η = 0, ξ ∈

{
]−∞, 0[, when Y = R,

]− 1, 1[, when Y = S1,
y = y±(ξ), where
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2. Results

∂yφ(y±(ξ)) = −ξ:

ady4

N=R o

340 I
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2. Results

The submanifolds Σ± are symplectic.
Using Fourier series in x we see that P has the orthogonal direct sum
decomposition

P =
⊕
ξ∈hZ

Pξ, Pξ = ξ + h∂y + ∂yϕ on Y . (7)

The set of singular values of P is the union over hZ of the sets of singular
values of Pξ.
We equip the operator Pξ with its natural domain, a weighted
semiclassical Sobolev space. Adjoint:

P∗ξ = −h∂y + ξ + ∂yϕ. (8)

We show that the spectrum of P∗ξPξ, ξ ∈ hZ, is purely discrete and equal
to the spectrum of PξP

∗
ξ . We will denote the singular values of Pξ (i.e. the

eigenvalues of (P∗ξPξ)
1/2) by

0 ≤ t0(ξ) ≤ t1(ξ) ≤ · · · → +∞. (9)
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2. Results

Theorem

We define ϕ as in (2) and Pξ = h∂y + ξ + ∂yϕ as in (7).
1. Let Y = R. For every C0 > 0, there exists a constant C > 0 such that
if −C0h

2/3 ≤ ξ, then the smallest singular value t0(ξ) of Pξ satisfies

t0(Pξ) ≥
1

C
(|ξ|+ h2/3).

2. There is a similar statement when Y = R/2πZ, valid for
|ξ| ≥ 1− C0h

2/3.
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2. Results

Theorem

Assume Y = R for simplicity. For ξ < 0, let y+, y− ∈ Y be the two
solutions of the equation ∂yϕ(y) = −ξ, labelled so that ±∂2

yϕ(y±) > 0.
Let d denote the Lithner-Agmon distance on Y for the metric
(ξ + ∂yϕ(y))2dy2 and define the action
D(S0) :=]−∞, 0[3 ξ 7→ S0(ξ) = d(y+(ξ), y−(ξ)) ∈]0,+∞[.
Then, uniformly for ξ varying in any compact h-independent subset of
]−∞, 0[, the smallest singular value of Pξ satisfies for any ε > 0

t0(ξ) = h
1
2

(
|{pξ, pξ}(y+, 0)|1/4|{pξ, pξ}(y−, 0)|1/4

(4π)1/2
+O(h)

)
e−S0/h.

We will later view S0 as a function on the symplectic manifold Σ+, cf. (6).
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2. Results

In the case Y = S1 there is a similar statement for ξ varying in a compact
subset of ]− 1, 1[ now with a possible cancellation in the leading terms for
ξ ≈ 0. (Indeed t0(0) = 0!)
Furthermore, we can extend the result to regions −C ≤ ξ ≤ −h2/3 when
Y = R and similarly when Y = S1.
We show that the second smallest singular value is well above the region
of interest.

14 / 29



2. Results

We also study the distribution of the values t0(ξ) and hence of the small
singular values of P and obtain a form of Weyl asymptotics.

Theorem

Let P be (1), let Σ+ be as in (6) and recall (5). Let S0 be as in Theorem
2.2. Let C0 > 0 be large enough and let

C0h ≤
δ3/2

log δ−1
, δ > 0.

Then, for 0 < a < b with b � 1 and a � δ3/2,

#
(
Spec(

√
P∗P ∩ [e−b/h, e−a/h]

)
=

1

2πh

∫
S−1

0 ([a,b])
σ|Σ+

+O(1)
log δ−1

√
δ

.

Here σ|Σ+
denotes the symplectic 2-form on Σ+ and S0 is viewed as a

function on Σ+.
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3. About the proofs, Witten Laplacians

3. About the proofs, Witten Laplacians

Putting
f (y , ξ) = yξ + ϕ(y), (10)

we have (7), (8) in the form

Pξ = h∂y + ∂y f = e−f /hh∂ye
f /h,

P∗ξ = −h∂y + ∂y f = −ef /hh∂ye−f /h
(11)

Cf. the Witten complex. We will use [HeSj85]. f (·, ξ) is in general
multi-valued when Y = S1, but ∂y f is well-defined.
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3. About the proofs, Witten Laplacians

Q+ := P∗ξPξ = −h2∂2
y + (∂y f )2 − h∂2

y f ,

Q− := PξP
∗
ξ = −h2∂2

y + (∂y f )2 + h∂2
y f

(12)

can be viewed as the Witten Laplacians for 0 and 1 forms respectively.
They are semi-classical Schrödinger operators with potential V0 +O(h),
where

V0(y , ξ) = (∂y f )2 ≥ 0. (13)

We now restrict ξ to a compact h-independent subset

of ]−∞, 0[, when Y = R, and of ]− 1, 1[, when Y = S1. (14)

V0 ≥ 0, with equality precisely at y+, y−.
We check that

d(y±, y) = ±(f (y)− f (y±)), y ∈ neigh (y±). (15)
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3. About the proofs, Witten Laplacians

Q± ≥ 0,

,
Q+(e−(f−f (y+))/h) = 0, near y+,

Q−(e(f−f (y−)/h) = 0, near y−

Also (12) implies that
Q± ≥ h/C near y∓.

By standard arguments, if C > 0 is large enough, then for h > 0 small
enough, Q+ has a unique eigenvalue λ+ in [0, h/C [ which is simple and in
addition λ+(h) = O(e−1/(Ch)). Similarly Q− has a unique eigenvalue
λ−(h) ∈ [0, h/C [ which is simple, = O(e−1/(Ch)), and

λ+ = λ−.
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3. About the proofs, Witten Laplacians

Let e+, e− be the corresponding normalized eigenvectors: Q±e± = λ±e±,
and let F± = Ce± denote the associated 1-dimensional eigenspaces. From
the intertwining properties,

PξQ+ = Q−Pξ, Q+P
∗
ξ = P∗ξQ−,

we see that
Pξ : F+ → F−, P∗ξ : F− → F+.
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3. About the proofs, Witten Laplacians

We have
Pξe+ = m+e−, P∗ξ e− = m−e+, m± ∈ C,

m+ = (Pξe+|e−) = (e+|P∗ξ e−) = m−. (16)

The lowest eigenvalue λ+ of Q+ = P∗ξPξ is given by

λ+ = (P∗ξPξe+|e+) = (Pξe+|Pξe+) = |m+|2. (17)

We show that e+, e− are well approximated by

u±(y ; h) = a±(h)χ±(y)e∓(f (y)−f (y±))/h, (18)

where
a±(h) ∼ h−1/4(a±0 + a±−h + ...) with a±0 > 0 (19)

is a normalization factor such that ‖u±‖ = 1. χ± are suitable cutoffs to
large closed interval neighborhoods of y±, not containing y∓.
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3. About the proofs, Witten Laplacians

Further work with exponentially weighted estimates (following [HeSj85]),
leads to

m+ = (Pξu+|u−) + Õη(e−
3
h
S0). (20)

We get
(Pξu+|u−) = ha+(h)a−(h)e−S0/h,

hence
m+ = ha+(h)a−(h)e−S0/h + Õη(e−3S0/h). (21)

When Y = S1, we get two terms with opposite signs that can be in
competition when ξ ≈ 0.
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4. Related works, prospects

4. Related works, prospects

Our results are related to several recent works about tunneling for
Schrödinger operators and especially Pauli operators with magnetic fields
even though our motivations have been different.
Fournais, Morin, Raymond [FoMoRa23] study the exponentiall small
splitting of eigenvalues for the magnetic Schrödinger operator with two
magnetic wells with Coulomb type symmetries. Helffer, Kachmar
Sundqvist [HeKaSu23] make a similar study and show braidstructure for
the lowest eigenvalues in the presence of a triangular symmetry. An earlier
related result was obtained by Fefferman, Shapiro, Weinstein [FeShWe22].
See also [HeKa22]
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4. Related works, prospects

Recent works on the Pauli operator are even closer. The operator(
0 P
P∗ 0

)2

(22)

with P as in (1) is a Pauli operator2. The works
[EkKoPo16, HeSu17, HeSu17a, HeKoSu17, BaTrRaSt18] deal mainly with
the bottom of the spectrum. In particular [HeKoSu17] consider the case of
magnetic fields (∆φ) that change sign.

A possible next step is to deal with (1) when φ(x , y) depends on both
variables x , y . An important step might be to extend the known
description of the asymptotic Bergman kernel KB(z ,w) when ∆φ > 0 to
the case when ∆φ changes sign along a curve γ . We believe that this can
be done for x,y on opposite sides of γ for ∆φ(y) > 0, ∆φ(x) < 0 when
roughly dist (x , γ) < dist (y , γ)).

2We thank J.P. Solovej and M. P. Sundqvist for remarks prompting us to add the
exponent 2 in (22).
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