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The Radon transform

Define

Rf(L) =

∫
L
f ds, f ∈ Cc(Rn), L hyperplane in Rn.

Assume Rf(L) known for all hyperplanes L. Find f .

Application (n = 2): Computerized Tomography (CT).

f(x) attenuation of X-rays at x.

Rf(L) total attenuation along line L.

Coordinates: L(ω, p) is hyperplane {x ∈ Rn; x · ω = p}, ω unit
vector. Thus

Rf(ω, p) = Rf(L(ω, p)), ω ∈ Sn−1, p ∈ R.

Rf is even, Rf(ω, p) = Rf(−ω,−p).



The formula R̂f(ω, τ) = f̂(τω) solves the inversion problem.

Define

R∗φ(x) = mean{φ(L); L 3 x} =

∫
Sn−1

φ(ω, x · ω)dω.

If f is a compactly supported distribution, Rf is defined by

〈Rf, ϕ〉 = 〈f,R∗ϕ〉 for test functions ϕ on the mfd of hyperplanes.

Moreover
R∗Rf(x) =

cn
|x|
∗ f(x),

so
f = c′n(−∆)(n+1)/2R∗Rf.
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Johan Radon (1887-1956) published inversion formulas for R in
1917. Fourier transform was not used in Radon’s paper.

In Linz, Austria, there is a RICAM institute (Radon Institute of
Computational and Applied Mathematics).



Theorem 1 (JB 2020, 2021). Let D ⊂ Rn be a bounded, convex
domain. Assume that there exists a distribution f 6= 0, supported in
D, such that Rf is supported in the set of supporting planes to ∂D.
Then the boundary of D is an ellipsoid.

If ∂D is C1 smooth, the supporting planes for D are of course tangent
planes to ∂D.



The Interior Problem for the Radon transform, n = 2

Let D0, the region of interest, be a proper subset of D. One would
like to reconstruct the restriction to D0 of a function supported in D
from measurements of Rf(L) only for lines that intersect D0.

But this is in general not possible.

D

D0

L

In fact, given two disks D and D0 ⊂ D there exist functions f with
support equal to D such that

Rf(L) = 0 for all lines L that meet D0.

If D and D0 are concentric and centered at the origin, one can take f
radial, that is, f(x) = f(r) with r = |x|, which makes the problem
1-dimensional.
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The Interior Problem, cont.

It is natural to replace the disks by arbitrary convex sets.

Conjecture. Let D and D0 be bounded convex domains in the plane
with D0 ⊂ D. Then there exists a smooth function f with
supp f ⊂ D and supp f ∩D0 6= ∅, such that its Radon transform
Rf(L) vanishes for every line L that intersects D0.

D

D0

Note: not true in odd dimensions!



Proof idea: find a compactly supported distribution f whose Radon
transform is supported on the set of tangents to the blue curve.

D0

D

Then a regularization of f , f1 = f ∗ φ, will solve our problem,
because Rf1 = g1 will be a smooth function (on the manifold of lines)
that is supported in a neighborhood of the set of tangents to the curve.



Newton’s lemma

A bounded domain in the plane is called algebraically integrable, if
the area of a segment cut off by a secant line is an algebraic function
of the parameters defining the line.

Lemma 28 in Principia reads according to Arnold and Vassiliev in
Newton’s Principia read 300 years later (Notices of the AMS 1989):

Theorem. There exists no algebraically integrable convex
non-singular algebraic curve.
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Newton’s lemma, cont.

P

AO

A segment is equal to a sector minus a triangle, and the area of the
triangle depends algebraically on the coordinates of the corners.

Newton’s proof. Let A be fixed, and let f(P ) be the area of the sector
defined by the lines OA and OP . This function is multivalued, and as
P comes back to A after a full cycle, its value will be the area of the
region bounded by the oval. After two full cycles f(P ) will be equal
to twice the area. And so on.

So the function f(P ) must have infinitely many values, which is
impossible if it is algebraic.
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Arnold’s Problem

Problem 1987-14 in Arnold’s Problems asks:

Is it true that

V (ω, p) algebraic =⇒

n odd and ∂D ellipsoid.

V (ω, p)

L(ω, p)

Vassiliev 1988: There exist no convex algebraically integrable
bounded domains in even dimensions.

V. A. Vassiliev: Applied Picard - Lefschetz Theory, AMS 2002.

Case of odd dimension still unsolved.
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Arnold’s Problem, cont.

Special case: assume n is odd and the volume function p 7→ V (ω, p)
is polynomial for all ω. Prove that the boundary of D is an ellipsoid.

Solved by Koldobsky, Merkurjev, and Yaskin 2017.

Theorem 1 implies the result of Koldobsky, Merkurjev, and Yaskin.

Because if p 7→ V (ω, p) is a polynomial of degree ≤ N for all ω, then
the Radon transform, p 7→ RχD(ω, p), of the characteristic function
for the domain D is a polynomial of degree ≤ N (for p in some
interval that depends on ω). Hence

∂2m
p RχD(ω, p) = R(∆mχD)(ω, p)

is supported on the set of tangent planes, if 2m > N . By Theorem 1
the boundary of D must then be an ellipsoid.
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Just a reminder:

Theorem 1. Assume that there exists a distribution f 6= 0, supported
in D, D convex and bounded, such that Rf is supported in the set of
supporting planes to ∂D. Then the boundary of D is an ellipsoid.



On the proof of Theorem 1

Strategy of proof (n = 2):

1. Write down an expression for an arbitrary distribution g(ω, p) on
the manifold of lines in R2 that is supported on the set of tangents to
the boundary of D.

2. Write down the condition on g(ω, p) for g (compactly supported) to
be the Radon transform of a distribution f on R2.

The condition is that

ω = (ω1, ω2) 7→
∫
R
g(ω, p)pkdp is a homogeneous polynomial

of degree k for every k.

3. Prove that those conditions imply that the boundary curve is an
ellipse.
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On the proof of Theorem 1, case D = −D

Let ρD(ω) = ρ(ω) be the supporting function for D

ρ(ω) = sup{x · ω; x ∈ D}.

The line L(ω, p) is tangent to ∂D iff

p = ρ(ω) or p = inf{x · ω; x ∈ D} = −ρ(−ω) = −ρ(ω).

We may assume that g is even with respect to ω and p separately. If g
is of order 0, then for some density q(ω)

g(ω, p) = q(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
.

Here δ(·) denotes the Dirac measure.

Use range conditions to deduce information on ρ(ω).
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Case D = −D and Rf = g is a distribution of order 0, cont.

g(ω, p) = q(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
.

k = 0:∫
R g(ω, p)p0dp = 2 q(ω) must be constant, q(ω) = q 6= 0.

k = 2:∫
R g(ω, p)p2dp = 2q ρ(ω)2 must be polynomial of degree 2, hence

ρ(ω)2 = ρ(ω1, ω2)2 is a homogeneous polynomial of degree 2.

If D = −D, then ∂D is an ellipsoid iff ρ(ω)2 is a (quadratic)
polynomial.

It follows that ∂D is an ellipse.
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Assume next that Rf = g is a distribution of order 1 of the form

g(ω, p) = q(ω)
(
δ′(p− ρ(ω))− δ′(p+ ρ(ω))

)
.

Then
∫
g(ω, p)dp = 0.

Since p 7→ g(ω, p) is even, all moments of odd order must vanish.

Moreover ∫
g(ω, p)p2dp = −4q(ω)ρ(ω) = p2(ω)∫
g(ω, p)p4dp = −24q(ω)ρ(ω)3 = p4(ω).

Hence

ρ(ω)2 = 6
p4(ω)

p2(ω)

must be a rational function.
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But ∫
g(ω, p)p6dp = c1 q(ω)ρ(ω)5 = p6(ω)

so

ρ(ω)4 = c2
p6(ω)

p2(ω)
,

and similarly

ρ(ω)2k = ck
p2k+2(ω)

p2(ω)
.

That is, an arbitrarily high power of ρ(ω)2 is a rational function with
the same denominator, hence ρ(ω)2 must be a polynomial.



The same argument applies if g(ω, p) is assumed to be a distribution
of arbitrarily high order, for instance if k is even

g(ω, p) = q(ω)
(
δ(k)(p− ρ(ω)) + δ(k)(p+ ρ(ω))

)
.

without lower order terms.



D not necessarily symmetric, g(ω, p) of order 0

Then ρ(ω) and ρ(−ω) may be different, same with q(ω) and q(−ω).
An arbitrary g(ω, p) of order zero can then be written

g(ω, p) = q(ω)δ(p− ρ(ω)) + q(−ω)δ(p+ ρ(−ω)).

The first few moments of g(ω, p) will be∫
g(ω, p)dp = q(ω) + q(−ω)∫

g(ω, p)p dp = q(ω)ρ(ω)− q(−ω)ρ(−ω)∫
g(ω, p)p2dp = q(ω)ρ(ω)2 + q(−ω)ρ(−ω)2.

Write ρ(ω) = ρ, q(ω) = q, and ρ(−ω) = ρ̌, q(−ω) = q̌.
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Then the range conditions will read

q + q̌ = p0

qρ− q̌ρ̌ = p1

qρ2 + q̌ρ̌2 = p2

qρ3 − q̌ρ̌3 = p3

etc.

or


1 1
ρ −ρ̌
ρ2 ρ̌2

ρ3 −ρ̌3

. . . . . .


(
q
q̌

)
=


p0

p1

p2

p3

. . .


an so on. We want to prove that ρρ̌ = ρ(ω)ρ(−ω) must be a quadratic
polynomial.

Write the system of the first four equations as a set of three matrix
equations:(

1 1
ρ −ρ̌

)(
q
q̌

)
=

(
p0

p1

)
,

(
ρ −ρ̌
ρ2 ρ̌2

)(
q
q̌

)
=

(
p1

p2

)
,(

ρ2 ρ̌2

ρ3 −ρ̌3

)(
q
q̌

)
=

(
p2

p3

)
.
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The important point is that the three square matrices form a geometric
series: (

ρ −ρ̌
ρ2 ρ̌2

)
=
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0 1
−ρρ̌ ρ+ ρ̌

)(
1 1
ρ −ρ̌

)
(
ρ2 ρ̌2

ρ3 −ρ̌3

)
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(
0 1
−ρρ̌ ρ+ ρ̌

)2(
1 1
ρ −ρ̌

)
.

Introduce a name for the important matrix

S =

(
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−ρρ̌ ρ+ ρ̌

)
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We can now easily eliminate
(
q
q̌

)
. Indeed, we have shown that
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Recall that detS = ρρ̌ = ρ(ω)ρ(−ω). To make use of this fact we
form matrix equations by combining the previous equations in pairs:

S

(
p0 p1

p1 p2

)
=

(
p1 p2

p2 p3

)
, S

(
p1 p2

p2 p3

)
=

(
p2 p3

p3 p4

)
, etc.

The product rule for determinants now shows that
detS = ρ(ω)ρ(−ω) must be a rational function.

(Provided det

(
p0 p1

p1 p2

)
is not identically zero; I will come back to

this question.)

To show that detS must in fact be a polynomial we argue as above,
showing that an arbitrary power of detS, (ρρ̌)k, must be a rational
function with the same denominator. Just use the formula
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)
=

(
pk pk+1
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for arbitrarily large k.
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The condition
ρ(ω)2 is polynomial

is not translation invariant. Because if Da = D + (a1, a2), then
ρDa(ω) = ρD(ω) + a · ω, and if D is the unit disk,
ρD(ω) =

√
ω2

1 + ω2
2 , then

ρDa(ω)2 =
(√

ω2
1 + ω2

2 + a · ω)
)2

= ω2
1 + ω2

2 + 2(a · ω)
√
ω2

1 + ω2
2 + (a · ω)2,

which is not polynomial.

On the other hand, for symmetric D (with
respect to some point) the condition that ρ(ω)ρ(−ω) is a polynomial
is translation invariant, because(

ρ(ω) + a · ω
)(
ρ(−ω)− a · ω

)
= ρ(ω)ρ(−ω)− (a · ω)2 − (a · ω)

(
ρ(ω)− ρ(−ω)

)
= ρ(ω)ρ(−ω)− (a · ω)2.
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Lemma. Assume that ρDa(ω)ρDa(−ω) is polynomial in (ω1, ω2) for
two distinct a = (a1, a2). Then the boundary of D is an ellipse.

Proof. We may assume that the two points are (0, 0) and
(a1, a2) 6= (0, 0). The formula(

ρ(ω) + a · ω
)(
ρ(−ω)− a · ω

)
= ρ(ω)ρ(−ω)− (a · ω)2 − (a · ω)

(
ρ(ω)− ρ(−ω)

)
= ρ(ω)ρ(−ω)− (a · ω)2.

then shows that
(a · ω)

(
ρ(ω)− ρ(−ω)

)
must be a quadratic polynomial, hence ρ(ω)− ρ(−ω) is linear, say

ρ(ω)− ρ(−ω) = −2b · ω

for some b = (b1, b2). But this means that

ρ(ω) + b · ω = ρ(−ω)− b · ω.

Hence (ρ(ω) + b · ω)2 is a quadratic polynomial, so ∂Db is a quadric.



On the determinant p0p2 − p2
1

Using the expressions

p0 = q + q̌

p1 = qρ− q̌ρ̌
p2 = qρ2 + q̌ρ̌2

we find that
p0p2 − p2

1 = qq̌(ρ+ ρ̌)2.

Since the left hand side is a polynomial, it is enough to prove that the
right hand side is different from zero at some point. If we choose the
origin inside D, then ρ(ω) and ρ(−ω) will be positive for all ω. So it
is enough to prove that q(ω)q(−ω) cannot be identically zero.

Solving q and q̌ from the first two equations we obtain

qq̌ =
p2

0ρρ̌− p2
1 + p1p0(ρ− ρ̌)

(ρ+ ρ̌)2
.

It is easy to see that this expression cannot be identically zero.
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Rf = g contains terms of different order
If the distribution g(ω, p) is of order 3 and D = −D, then

g(ω, p) = q0(ω)
(
δ(p− ρ(ω)) + δ(p+ ρ(ω))

)
+ q1(ω)

(
δ′(p− ρ(ω))− δ′(p+ ρ(ω))

)
+ q2(ω)

(
δ′′(p− ρ(ω)) + δ′′(p+ ρ(ω))

)
+ q3(ω)

(
δ(3)(p− ρ(ω))− δ(3)(p+ ρ(ω))

)
.

The minus signs are needed to make g even, g(−ω,−p) = g(ω, p).

The range conditions can then be written

1 0 0 0
ρ 1 0 0
ρ2 2ρ 2 0
ρ3 3ρ2 6ρ 6
ρ4 4ρ3 12ρ2 24ρ
ρ5 5ρ4 20ρ3 60ρ2

. . . . . . . . . . . .




q0

q1

q2

q3

 =



p0

p1

p2

p3

p4

p5

. . .


.

Let me denote the sequence of 4× 4 submatrices of the infinite matrix
by M0, M1, M2, etc.
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The important fact is that this sequence is a geometric series in the
sense that

M1 = SM0, M2 = SM1, M1 = M0T, M2 = M1T, etc.,

in other words

Mk = SkM0 Mk = M0T
k for all k, where

S = M1M
−1
0 =


0 1 0 0
0 0 1 0
0 0 0 1
−ρ4 4ρ3 −12ρ2 24ρ


and

T = M−1
0 M1 =


ρ2 1 0 0
0 ρ2 2 0
0 0 ρ2 3
0 0 0 ρ2

 .

So
detS = detT = (ρ2)4 = ρ8.



The three equations and one more

S


p0

p1

p2

p3

 =


p1

p2

p3

p4

 , S


p1

p2

p3

p4

 =


p2

p3

p4

p5

 , S


p2

p3

p4

p5

 =


p3

p4

p5

p6

 ,

can then be combined to the matrix equation

S


p0 p1 p2 p3

p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

 =


p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

p4 p5 p6 p7

 .



Similarly for arbitrary k

Sk


p0 p1 p2 p3

p1 p2 p3 p4

p2 p3 p4 p5

p3 p4 p5 p6

 =


pk pk+1 pk+2 pk+3

pk+1 pk+2 pk+3 pk+4

pk+2 pk+3 pk+4 pk+5

pk+3 pk+4 pk+5 pk+6

 .

Taking determinants we conclude that detS is a rational function and
that an arbitrarily high power of detS is a rational function with the
same denominator. So detS = ρ(ω)8 must be a polynomial.

Provided the matrix in the left hand side is nonsingular. And it must
be, because its determinant is equal to

c
(
ρ(ω)2

)3·3
q3(ω)2

with c 6= 0. And the same for g(ω, p) of arbitrary order.
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This point — to prove that the determinant in the denominator is not
identically zero — gave me very big difficulties in the case when D is
not assumed symmetric. Because then the expression for the
determinant contains the factor

qm(ω)qm(−ω) instead of qm(ω)2.

And it is not obvious that

qm(ω) is not identically zero

implies

qm(ω)qm(−ω) is not identically zero
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Local questions I
Assume that there exists a distribution f with support in D (convex),
a tangent plane L0, a point x0 ∈ L0 ∩ supp f , and a neighborhood V
of L0 in the manifold of hyperplanes, such that the restriction of Rf
to V is supported on the set of supporting planes to ∂D in V . Does it
follow that ∂D is a quadric in some neighborhood of x0?

NO, if x0 is a corner point of D.

Example:
f(x1, x2) = δ′(x1)χ[0,1](x2).

x0

Dsupp f

L
L0

If ∂D is C1 near x0, we don’t know.

x0

D

L0

L
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Local questions II. Singularities of a distribution and the
geometry of its support

The most important result of this kind is Hörmander’s proof of
Holmgren’s uniqueness theorem for PDEs with analytic coefficients.

Theorem (Hörmander 1970; Sato, Kawai, Kashiwara).
Assume that ξ0 is an outer conormal to supp f at x0 ∈ ∂(supp f).
Then (x0,±ξ0) ∈WFA(f).

ξ0

K

x2 = |x1|7/4

x0

x0
K

supp f ⊂ K
Stronger theorems connecting the geometry of supp f at boundary
points of supp f with analytic singularities of f were later given by
Hörmander, Sjöstrand, Kashiwara. In the figures supp f ⊂ K and
x0 ∈ supp f . Actually (x0, ξ) ∈WFA(f) for all ξ 6= 0 in both
situations above.
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The following is an easy consequence of the definition of WF (f):

If f is a C∞ density on a C∞ hypersurface Σ, then WF (f) is
contained in the set N∗(Σ) of conormals to Σ,

N∗(Σ) = {(x, ξ); x ∈ Σ, and ξ conormal to Σ at x}.

If f is a real analytic density on a real analytic hypersurface Σ, then

WFA(f) ⊂ N∗(Σ).

And if f is the characteristic function for a domain D with real
analytic boundary, then

WFA(f) = N∗(∂D).

Σ

D
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Similarly, for distributions of higher order:

Let Σ be a hypersurface in Rn+1 defined by y = Ψ(x) and f be the
distribution

〈f, ϕ〉 =

m−1∑
j=0

∫
Σ
qj ∂

j
yϕdx

=

m−1∑
j=0

∫
Rn

qj(x) (∂jyϕ)(x,Ψ(x))dx, ϕ ∈ C∞c (U).

If Ψ and all qj are real analytic, then WFA(f) ⊂ N∗(Σ).

I am interested in a strong converse to this statement. That is,
assuming some regularity of the distribution f , I want to conclude that
Ψ and all qj are real analytic.

It turned out that the arguments in the proof of Theorem 1 could prove
a theorem of this kind.
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Theorem 2. Let f be the distribution above, supported on the C1

surface Σ : y = Ψ(x), x ∈ U ⊂ Rn, qj continuous, that is

〈f, ϕ〉 =

m−1∑
j=0

∫
Σ
qj ∂

j
yϕdx.

Assume that WFA(f) contains no horisontal
cotangent vectors (ξ, η) = (ξ, 0), i.e. that

N∗(γx) ∩WFA(f) = ∅,

for every line γx : y 7→ (x, y) for x ∈ Rn.
Then the surface Σ and all densities qj are real
analytic.

Σξ

y

x

In particular, if WFA(f) ⊂ N∗(Σ), then the surface Σ and all
densities qj are real analytic.
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Corollary. Let f be the characteristic function χD(x) for a domain D
with C1 boundary, or the product of χD(x) with a real analytic
function, and let x0 ∈ ∂D. Let v be a tangent vector that is transversal
to the boundary at x0. Assume that (x0, ξ) /∈WFA(f) for all ξ that
are conormal to v. Then the boundary of D is real analytic in a
neighborhood of x0.

v
ξ

D



There is in fact a coordinate free formulation of the theorem.

Theorem 2′. Let Σ be a C1 hypersurface in a real analytic manifold
M , let f ∈ D′(M) be supported in Σ, and let z ∈ supp f . Assume
that v ∈ Tz(M) is a tangent vector to M at z that is transversal to Σ
and that

(z, ξ) /∈WFA(f) for every ξ that is conormal to v.

Then there exists a neighborhood U of z such that the surface Σ is
real analytic in U and the distribution f has the form

〈f, ϕ〉 =

m−1∑
j=0

∫
Rn

qj(x) (∂jyϕ)(x,Ψ(x))dx, ϕ ∈ C∞c (U).

in suitable local coordinates in
U with all qj real analytic.

Σv

ξ



Theorems 1 and 2 appear unrelated, but proofs are very similar.

How can that be?

The assumption of Thm 2 is a microlocal regularity property of f , and
the conclusion is that the supporting hypersurface is real analytic
(and more).

The assumption of Theorem 1 implies that

Sn−1 3 ω 7→
∫
g(ω, p)pkdp is a polynomial for every k.

This is a microlocal regularity assumption on g, because it implies
that the conormal of p 7→ (ω, p) is disjoint from WFA(g) for every ω.

The conclusion of Theorem 1 is a
very strong regularity property of
the supporting hypersurface of g;
indeed, it says that the surface is an
ellipsoid.
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Theorem 3. Let D and D0 be bounded convex domains in the plane
with D0 ⊂ D. Then there exists a smooth function f , supported in D,
such that Rf(L) = 0 for every line L that intersects D0.

Sketch of proof.

Take D1 such that D0 ⊂ D1 ⊂ D1 ⊂ D.

Denote by D̂0 the set of lines that meet D0.

Set µ = inf{‖Rf‖
L2(D̂0)

; ‖f‖L2(D) ≤M, f = 1 in D \D1} .

Step 1. There exists f0 ∈ L2
c(D) such that ‖Rf0‖L2(D̂0)

= µ.

Take ϕ ∈ L2
c(D1). Then f0 + λϕ ∈ L2

c(D) and
f0 + λϕ = 1 in D \D1 for all λ ∈ R. Hence

‖R(f0 + λϕ)‖2
L2(D̂0)

≥ |µ|2, which implies

〈Rf0, Rϕ〉 = 0 for all ϕ ∈ L2
c(D1).

Step 2. Set of Rϕ|
D̂0

for ϕ ∈ L2
c(D1) is dense in L2(D̂).

Hence Rf0 = 0 in D̂0.
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