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1. Introduction

Activities with Anders, always kind, wise and helpful:

The period in Copenhagen. Anders held a position in Copenhagen in
the mid 70’ies for 1 1/2 years (until he got a lektor position in Lund),
giving lectures on hyperbolic problems and other PDE subjects. This was
a temporary use of some some positions that the department wanted to
fill permanently at a slow rate (Kalle Andersson also took such a job). He
and I did our best to spread the word on (then modern) analysis of PDE.

The Øresund seminar. Anders and I cooperated with Lars Hörmander
and, in the start, Johannes Sjöstrand, to run the Danish-Swedish Analysis
seminar — the Øresund seminar — which started in the mid 80’ies and
provided many interesting visitors to both Lund and Copenhagen.

French collaborations. Another activity we had together was the
participation in a steering group with French, Swedish and Danish
members, which planned the annual meeting in PDE at
Saint-Jean-de-Monts on the coast south of Bretagne in France. This was
more a formal and honorary thing, not requiring much administrative
work, but some funding, as far as I remember. It went on for a large
number of years until taken over fully by people at Ecole Polytechnique in
Paris.

Gerd Grubb Copenhagen University Evolution equations



1. Heat equations

Let Ω ⊂ Rn, and let 1 < q <∞. Consider a positive-order operator A in
Lq(Ω), e.g. an elliptic differential operator together with a boundary
condition Bu = 0; then the heat problem is

∂tu + Au = f on Ω× I , I = (0,T )

Bu = 0 for t ∈ I ,

u = u0 for t = 0.

Example 1. A is an elliptic diff. op., e.g. = −∆, B is a diff. op. followed
by restriction to ∂Ω.

But more general situations are of interest too:

Example 2. A = P + G , B = T , where P, G and T belong to the
Boutet de Monvel calculus. P is a ps.d.o. of order m ∈ N, G a singular
Green operator of order m, T a suitable trace operator. This situation
comes up e.g. when the linearized Navier-Stokes problem is reduced to a
truly parabolic form (G.-Solonnikov in the 90’ies.)

Example 3. A = (−∆)a with 0 < a < 1, the fractional Laplacian — or a
ps.d.o. generalization of order 2a. Here Bu = 0 is taken to mean that
u = 0 in Rn \ Ω. Enters in finance, in differential geometry and physics.
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An interesting question is to solve the heat equation in Lq-spaces,
1 < q <∞. The operator provided with the boundary condition defines a
realization AAA in Lq(Ω); an unbounded closed densely defined operator. AAA
acts like A, P + G or (−∆)a in the three examples, with domain D(AAA)
defined by the boundary condition Bu = 0, Tu = 0 resp. supp u ⊂ Ω.
The heat problem (with u(x , 0) = 0 for simplicity) is then formulated as

∂tu +AAAu = f on Ω× I , u|t=0 = 0. (1)

Under suitable hypotheses of strong ellipticity, AAA has its spectrum in a
sectorial region in C (“keyhole region”) {|λ| ≤ r} ∪ {| Imλ| ≤ c Reλ}
opening to the right, so the resolvent set contains a region with δ > 0

Vδ,K = {λ ∈ C \ {0} | arg λ ∈ [π/2− δ, 3π/2 + δ], |λ| ≥ K}.

Then suitable estimates of the resolvent (AAA− λ)−1 on Vδ,K lead to
solvability theorems for (1).
Example 1 was treated by Seeley ’69 in Hs

q-spaces; recall

Hs
q(Rn) = {u ∈ S ′(Rn) | F−1(〈ξ〉s û) ∈ Lq(Rn)},

for s ∈ R, 1 < q <∞, 〈ξ〉 = (|ξ|2 + 1)
1
2 .
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Seeley used pseudodifferential machinery (precluding the Boutet de
Monvel calculus), for the case where Ω and the coefficients in A and B
are C∞. There are more recent results assuming less smoothness; e.g.
Denk, Hieber and Prüss ’03, giving a new point of view and method.

Example 2 was treated in Hs
q-spaces in G.-Solonnikov ’91 (for p = 2),

G.-Kokholm ’93 and G. ’95, in a smooth setting. Nonsmooth
generalizations were introduced by Abels ’05.

Example 3 will be discussed in this lecture.

An important problem in Lq is to show maximal Lq-regularity, namely
that (1) for any f ∈ Lq(Ω× I ) has a unique solution u(x , t) satisfying

‖∂tu‖Lq(Ω×I ) + ‖AAAu‖Lq(Ω×I ) ≤ C‖f ‖Lq(Ω×I ). (2)

It is obtained in the mentioned treatments of Examples 1 and 2.

To extend Ex. 1 to nonsmooth cases, there has been developed a
functional calculus point of view, through works of Da Prato and
Grisvard, Lamberton, Dore and Venni, Clément, Prüss, Hieber, Denk,
Weiss, Bourgain and others, to link the question of maximal Lq-regularity
with the concept of R-boundedness, as explained e.g. in
Denk-Hieber-Prüss [DHP03]. It is a kind of “boundedness preserved
under signed rearrangement”.

Gerd Grubb Copenhagen University Evolution equations



Definition 1. Let q ∈ [1,∞). Denote by ZN the subset of RN

ZN = {(z1, . . . , zN) | zj ∈ {−1,+1} for all j}.
Let X and Y be Banach spaces. Let q ∈ [1,∞). A subset T of the
bounded linear operators L(X ,Y ) is R-bounded if there is a constant
C ≥ 0 such that for every choice of N ∈ N and every choice of x1, . . . , xN
in X and T1, . . . ,TN in T ,

(∑
z∈ZN

‖
N∑
j=1

zjTjxj‖qY
)1/q ≤ C

(∑
z∈ZN

‖
N∑
j=1

zjxj‖qX
)1/q

. (3)

(There is an equivalent definition drawing on probability formulations.)

The best constant C , denoted RL(X ,Y )(T ), is called the R-bound of T ,
and the finiteness for one q ∈ [1,∞) implies the finiteness for all other
q ∈ [1,∞). An R-bounded set is norm-bounded. Finite norm-bounded
sets are R-bounded. (3) is trivial when X ,Y are Hilbert spaces.

Theorem 2. [DHP03] Let 1 < q <∞. Problem (1) has maximal
Lq-regularity on I = R+ if and only if the family {λ(AAA− λ)−1 | λ ∈ Vδ,0}
is R-bounded in L(Lq(Ω)) for some δ > 0.

A very useful result, so much more since the R-boundedness property
allows suitable perturbations of AAA.
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Proposition 3. 1◦ Let X = Lq(Ω), and let AAA satisfy

‖λ(AAA− λ)−1‖L(X ) ≤ C <∞ for λ ∈ Vδ,K . (4)

Let S be defined on D(AAA), satisfying

‖Su‖X ≤ α‖AAAu‖X + β‖u‖X for u ∈ D(AAA). (5)

Then when α is sufficiently small, there exists K1 ≥ K such that AAA + S
satisfies an inequality (4) on Vδ,K1 .
2◦. Assume in addition that {λ(AAA− λ)−1 | λ ∈ Vδ,K} is R-bounded.
Then, for sufficiently small α > 0, there is a K2 ≥ K such that
{λ(AAA + S − λ)−1 | λ ∈ Vδ,K2} is R-bounded.

Here 1◦ is a well-known standard result; 2◦ is proved in [DHP03].

Note that R-boundedness of {λ(AAA− λ)−1 | λ ∈ Vδ,K} implies that when
µ > K , R-boundedness holds for {λ(AAA + µ− λ)−1 | λ ∈ Vδ′,0} for some
δ′ > 0. Then the shifted operator AAA + µ has maximal Lq-regularity on
R+, and AAA itself has it on finite intervals I = (0,T ).
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3. Fractional-order operators

Now to Example 3, where P is of fractional order:

∂tu + Pu = f on Ω× I ,

u = 0 on (Rn \ Ω)× I , (6)

u|t=0 = 0.

Here P = (−∆)a with symbol |ξ|2a, or is more generally a ps.d.o. of order
2a (0 < a < 1) with special properties.
Recall that the ps.d.o. P with symbol p(x , ξ) is defined by use of the
Fourier transform F : u(x) 7→ (Fu)(ξ) = û(ξ) =

∫
Rn e
−ix·ξu(x) dx , as

(Pu)(x) = F−1
ξ→x

(
p(x , ξ)(Fu)(ξ)

)
= Op(p)u.

Our current hypotheses are: p(x , ξ) is C τ in x (some τ > 2a) and C∞ in
ξ, satisfying

‖Dα
ξ p(·, ξ)‖Cτ (Rn) ≤ Cα〈ξ〉2a−|α| for ξ ∈ Rn, α ∈ Nn

0.

Moreover, it satisfies for |ξ| ≥ 1:

(i) p is classical, i.e., p ∼
∑

j∈N0
pj with pj(x , tξ) = t2a−jpj(x , ξ).

(ii) p is strongly elliptic: Re p0(x , ξ) ≥ c |ξ|2a with c > 0.
(iii) p is even, pj(x ,−ξ) = (−1)jpj(x , ξ), all j .
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Along with Hs
q(Rn) = {u | F−1(〈ξ〉s û) ∈ Lq(Rn)}, define

H
s

q(Ω) = r+Hs
q(Rn), Ḣs

q(Ω) = {u ∈ Hs
q(Rn) | supp u ⊂ Ω}.

Here r+ denotes restriction to Ω; e+ will indicate extension by 0 from Ω
to Rn. (The dot and overline notation stems from Hörmander ’85.) For
q = 2, the index q is omitted.
Let Ω be bounded and C 1+τ with τ > 2a, let 1 < q <∞, let P satisfy
(i)–(iii) (G. ’15 for τ =∞, Abels-G. ’23 for τ <∞). The Dirichlet
realization PD in Lq(Ω), acting like r+P on Ḣa

q(Ω), has the domain

D(PD) = {u ∈ Ḣa
q(Ω) | r+Pu ∈ Lq(Ω)} = Ha(2a)

q (Ω),

where the space H
a(2a)
q (Ω) is a so-called a-transmission space. It is

defined in local coordinates from the definition for Ω = Rn
+ by

Ha(2a)
q (Rn

+) = Op((〈ξ′〉+ iξn)−a)e+H
a

q(Rn
+).

Here H
a(2a)
q (Ω) = Ḣ2a

q (Ω) if a < 1/q; generally H
a(2a)
q (Ω) ⊂ Ḣ

a+1/q
q (Ω)

∩H2a
q,loc(Ω) and carries a singularity dist(x , ∂Ω)a. We shall apply the heat

equation theory to AAA = PD . The domain is denoted for short

Ha(2a)
q (Ω) = Dq(Ω).

Gerd Grubb Copenhagen University Evolution equations



For q = 2 it is easy to show, by methods going back to Lions and
Magenes ’68:

Theorem 4. [G. ’18 for τ =∞, G. ’23 for finite τ > 2a.] For any

f ∈ L2(Ω× I ), there is a unique solution u(x , t) ∈ C
0
(I ; L2(Ω)) ; it

satisfies:
u ∈ L2(I ;D2(Ω))) ∩ H

1
(I ; L2(Ω)).

There are also results with higher regularity, that we omit here.

Other works have mostly been concerned with (−∆)a and x-independent
generalizations. There are results on Schauder estimates and Hölder
properties, by e.g. Felsinger and Kassmann ’13, Chang-Lara and Davila
’14, Jin and Xiong ’15; and more precise results on regularity in
anisotropic Hölder spaces by Fernandez-Real and Ros-Oton ’17,
Ros-Oton and Vivas ’18. For P = (−∆)a, Leonori, Peral, Primo and
Soria ’15 showed Lq(I ; Lr (Ω)) estimates; Biccari, Warma and Zuazua ’18
Lq(I ;B2a

q,r ,loc(Ω))-estimates, Choi, Kim and Ryu ’23 weighted
Lq-estimates. There are results on Rn with x-dependence by Dong, Jung
and Kim ’23.

We showed an optimal Lq-result in ’18 under an extra hypothesis:
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(iv) p is x-independent, real and homogeneous for ξ 6= 0.

Theorem 5. Assume (iv) in addition to (i)–(iii). Then when 1 < q <∞,

(6) has for any f ∈ Lq(Ω× I ), a unique solution u(x , t) ∈ C
0
(I ; Lq(Ω));

it satisfies:
u ∈ Lq(I ;Dq(Ω)) ∩ H

1

q(I ; Lq(Ω)).

This is maximal Lq-regularity.
Proved for τ =∞ in ’18, extended to finite τ in ’23. The proof uses that
the sesquilinear form obtained by closure on Ḣa(Ω) of

s(u, v) =

∫
Ω

Pu v̄ dx , u, v ∈ C∞0 (Ω), (7)

is for real u, v a so-called Dirichlet form, as in books of Davies ’89,
Fukushima, Oshima and Takeda ’94. Then PD is what is called
sub-Markovian, and by a result of Lamberton ’87, the heat problem (6)
has maximal Lq-regularity.
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Currently, I have been trying for a long time to weaken hypothesis (iv) —
to extend the result to suitable variable-coefficient operators, by
perturbation and localization arguments. Lately, I have had a cooperation
with Helmut Abels on this, and we have just recently managed to show:

Theorem 6. Let Ω be bounded with C 1+τ -boundary, τ > 2a, and let
1 < q <∞. Besides our hypotheses (i)–(iii), assume that the principal
symbol p0(x0, ξ) is real positive at each boundary point x0 ∈ ∂Ω.
Then there are constants δ > 0, K ≥ 0 such that
{λ(PD − λ)−1 | λ ∈ Vδ,K} is R-bounded in L(Lq(Ω)).

The proof involves a comparison, at each boundary point x0 ∈ ∂Ω, of P
with the constant-coefficient operator P = Op(p0(x0, ξ)) in an auxiliary
bounded domain Σ coinciding with Ω in a small ball around x0, where
perturbation estimates and blow-up techniques can be applied.
This leads to the desired heat equation result:

Theorem 7. Hypotheses as in Theorem 6. Then for any f ∈ Lq(Ω× I ),

the heat equation (6) has a unique solution u(x , t) ∈ C
0
(I ; Lq(Ω))

satisfying

u ∈ Lq(I ;Dq(Ω)) ∩ H
1

q(I ; Lq(Ω)).

This is a first result on maximal Lq-regularity for variable-coefficient
nonselfadjoint ps.d.o. boundary problems of fractional order.
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4. Nonhomogeneous problems

Nonhomogeneous boundary problems can also be considered. There is a
local nonzero Dirichlet boundary condition associated with P, namely the
assignment of γ0(u/da−1); here d(x) = dist(x , ∂Ω). The problem

Pu = f in Ω, γ0(u/da−1) = ϕ, supp u ⊂ Ω, (8)

had good solvability properties for given f ∈ Lq(Ω), ϕ ∈ B
a+1−1/q
q (∂Ω),

when u is sought in the (a− 1)-transmission space H
(a−1)(2a)
q (Ω). This is

a larger space than Dq(Ω) = H
a(2a)
q (Ω), satisfying

Ha(2a)
q (Ω) = {u ∈ H(a−1)(2a)

q (Ω) | γ0(u/da−1) = 0}.

So the case ϕ = 0 in (8) is the homogeneous Dirichlet problem.

One has that H
(a−1)(2a)
q (Ω) ⊂ Lq(Ω) when q < 1

1−a . We assume this for
the nonhomogeneous heat problem:

∂tu + Pu = f on Ω× I ,

γ0(u/da−1) = ψ on ∂Ω× I ,

u = 0 on (Rn \ Ω)× I , (9)

u|t=0 = 0.
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Here we can show:
Theorem 8. In addition to the hypotheses of Theorem 6, assume that
τ > 2a + 1 and q < 1

1−a . Then (9) has for f ∈ Lq(Ω× I ),

ψ ∈ Lq(I ;B
a+1−1/q
q (∂Ω)) ∩ Ḣ1

q (I ;Bεq (∂Ω)) a unique solution u(x , t)
satisfying

u ∈ Lq(I ;H(a−1)(2a)
q (Ω)) ∩ H

1

q(I ; Lq(Ω)).

Let us finally mention that one can also use the resolvent estimates (just
in uniform norms) to show results in other function spaces. For example,
by a strategy of Amann ’97:

Theorem 9. Hypotheses as in Theorem 6. Let s be noninteger > 0. For
any f ∈ Ċ s(R+; Lq(Ω)) there is a unique solution u ∈ Ċ s(R+;Dq(Ω)),
and there holds

f (x , t) ∈ Ċ s(R+; Lq(Ω)) ⇐⇒ u(x , t) ∈ Ċ s(R+;Dq(Ω))∩Ċ s+1(R+; Lq(Ω)).

Here Ċ s(R+;X ) stands for functions in C s(R;X ) vanishing on R−.
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L. Hörmander: Seminar notes on pseudo-differential operators and boundary problems,
Lectures at IAS Princeton 1965-66, available from Lund University,
https://lup.lub.lu.se/search/
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Dear Anders!

Congratulations with the 80 years!
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