Evolution equations with fractional-order operators

Gerd Grubb Copenhagen University

Workshop on Microlocal Analysis and Mathematical Physics In Honor of Anders Melin's 80'th Birthday Sptember 19-21, 2023, Lund University

1. Introduction

Activities with Anders, always kind, wise and helpful:

The period in Copenhagen. Anders held a position in Copenhagen in the mid 70'ies for $1 \ 1/2$ years (until he got a lektor position in Lund), giving lectures on hyperbolic problems and other PDE subjects. This was a temporary use of some some positions that the department wanted to fill permanently at a slow rate (Kalle Andersson also took such a job). He and I did our best to spread the word on (then modern) analysis of PDE.

The Øresund seminar. Anders and I cooperated with Lars Hörmander and, in the start, Johannes Sjöstrand, to run the Danish-Swedish Analysis seminar — the Øresund seminar — which started in the mid 80'ies and provided many interesting visitors to both Lund and Copenhagen.

French collaborations. Another activity we had together was the participation in a steering group with French, Swedish and Danish members, which planned the annual meeting in PDE at Saint-Jean-de-Monts on the coast south of Bretagne in France. This was more a formal and honorary thing, not requiring much administrative work, but some funding, as far as I remember. It went on for a large number of years until taken over fully by people at Ecole Polytechnique in Paris.

1. Heat equations

Let $\Omega \subset \mathbb{R}^n$, and let $1 < q < \infty$. Consider a positive-order operator A in $L_q(\Omega)$, e.g. an elliptic differential operator together with a boundary condition Bu = 0; then the heat problem is

$$\partial_t u + Au = f \text{ on } \Omega \times I, \quad I = (0, T)$$

 $Bu = 0 \text{ for } t \in I,$
 $u = u_0 \text{ for } t = 0.$

Example 1. A is an elliptic diff. op., e.g. $= -\Delta$, B is a diff. op. followed by restriction to $\partial\Omega$.

But more general situations are of interest too:

Example 2. A = P + G, B = T, where P, G and T belong to the Boutet de Monvel calculus. P is a ps.d.o. of order $m \in \mathbb{N}$, G a singular Green operator of order m, T a suitable trace operator. This situation comes up e.g. when the linearized Navier-Stokes problem is reduced to a truly parabolic form (G.-Solonnikov in the 90'ies.)

Example 3. $A = (-\Delta)^a$ with 0 < a < 1, the fractional Laplacian — or a ps.d.o. generalization of order 2*a*. Here Bu = 0 is taken to mean that u = 0 in $\mathbb{R}^n \setminus \Omega$. Enters in finance, in differential geometry and physics.

An interesting question is to solve the heat equation in L_q -spaces, $1 < q < \infty$. The operator provided with the boundary condition defines a *realization* **A** in $L_q(\Omega)$; an unbounded closed densely defined operator. **A** acts like A, P + G or $(-\Delta)^a$ in the three examples, with domain $D(\mathbf{A})$ defined by the boundary condition Bu = 0, Tu = 0 resp. supp $u \subset \overline{\Omega}$. The heat problem (with u(x, 0) = 0 for simplicity) is then formulated as

$$\partial_t u + \mathbf{A} u = f \text{ on } \Omega \times I, \quad u|_{t=0} = 0.$$
 (1)

Under suitable hypotheses of strong ellipticity, **A** has its spectrum in a sectorial region in \mathbb{C} ("keyhole region") $\{|\lambda| \leq r\} \cup \{| \operatorname{Im} \lambda| \leq c \operatorname{Re} \lambda\}$ opening to the right, so the resolvent set contains a region with $\delta > 0$

$$V_{\delta, \mathsf{K}} = \{\lambda \in \mathbb{C} \setminus \{0\} \mid \arg \lambda \in [\pi/2 - \delta, 3\pi/2 + \delta], |\lambda| \ge \mathsf{K}\}.$$

Then suitable estimates of the resolvent $(\mathbf{A} - \lambda)^{-1}$ on $V_{\delta,\kappa}$ lead to solvability theorems for (1).

Example 1 was treated by Seeley '69 in H_q^s -spaces; recall

$$H_q^s(\mathbb{R}^n) = \{ u \in \mathcal{S}'(\mathbb{R}^n) \mid \mathcal{F}^{-1}(\langle \xi \rangle^s \hat{u}) \in L_q(\mathbb{R}^n) \},$$

for $s \in \mathbb{R}$, $1 < q < \infty$, $\langle \xi
angle = (|\xi|^2 + 1)^{rac{1}{2}}.$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Seeley used pseudodifferential machinery (precluding the Boutet de Monvel calculus), for the case where Ω and the coefficients in A and B are C^{∞} . There are more recent results assuming less smoothness; e.g. Denk, Hieber and Prüss '03, giving a new point of view and method.

Example **2** was treated in H_q^s -spaces in G.-Solonnikov '91 (for p = 2), G.-Kokholm '93 and G. '95, in a smooth setting. Nonsmooth generalizations were introduced by Abels '05.

Example 3 will be discussed in this lecture.

An important problem in L_q is to show **maximal** L_q -**regularity**, namely that (1) for any $f \in L_q(\Omega \times I)$ has a unique solution u(x, t) satisfying

$$\|\partial_t u\|_{L_q(\Omega \times I)} + \|\mathbf{A}u\|_{L_q(\Omega \times I)} \le C \|f\|_{L_q(\Omega \times I)}.$$
(2)

It is obtained in the mentioned treatments of Examples ${\bf 1}$ and ${\bf 2}.$

To extend Ex. **1** to nonsmooth cases, there has been developed a functional calculus point of view, through works of Da Prato and Grisvard, Lamberton, Dore and Venni, Clément, Prüss, Hieber, Denk, Weiss, Bourgain and others, to link the question of maximal L_q -regularity with the concept of \mathcal{R} -**boundedness**, as explained e.g. in Denk-Hieber-Prüss [DHP03]. It is a kind of "boundedness preserved under signed rearrangement".

Definition 1. Let $q \in [1, \infty)$. Denote by Z_N the subset of \mathbb{R}^N $Z_N = \{(z_1, \ldots, z_N) \mid z_j \in \{-1, +1\} \text{ for all } j\}.$ Let X and Y be Banach spaces. Let $q \in [1, \infty)$. A subset \mathcal{T} of the bounded linear operators $\mathcal{L}(X, Y)$ is \mathcal{R} -bounded if there is a constant $C \geq 0$ such that for every choice of $N \in \mathbb{N}$ and every choice of x_1, \ldots, x_N in X and T_1, \ldots, T_N in \mathcal{T} ,

$$\left(\sum_{z\in Z_{N}}\|\sum_{j=1}^{N}z_{j}T_{j}x_{j}\|_{Y}^{q}\right)^{1/q} \leq C\left(\sum_{z\in Z_{N}}\|\sum_{j=1}^{N}z_{j}x_{j}\|_{X}^{q}\right)^{1/q}.$$
 (3)

(There is an equivalent definition drawing on probability formulations.) The best constant C, denoted $\mathcal{R}_{\mathcal{L}(X,Y)}(\mathcal{T})$, is called the \mathcal{R} -bound of \mathcal{T} , and the finiteness for one $q \in [1, \infty)$ implies the finiteness for all other $q \in [1, \infty)$. An \mathcal{R} -bounded set is norm-bounded. Finite norm-bounded sets are \mathcal{R} -bounded. (3) is trivial when X, Y are Hilbert spaces.

Theorem 2. [DHP03] Let $1 < q < \infty$. Problem (1) has maximal L_q -regularity on $I = \mathbb{R}_+$ if and only if the family $\{\lambda(\mathbf{A} - \lambda)^{-1} \mid \lambda \in V_{\delta,0}\}$ is \mathcal{R} -bounded in $\mathcal{L}(L_q(\Omega))$ for some $\delta > 0$.

A very useful result, so much more since the \mathcal{R} -boundedness property allows suitable perturbations of A.

Proposition 3. 1° Let $X = L_q(\Omega)$, and let **A** satisfy

$$\|\lambda(\mathbf{A}-\lambda)^{-1}\|_{\mathcal{L}(X)} \leq C < \infty \text{ for } \lambda \in V_{\delta,K}.$$
 (4)

Let S be defined on $D(\mathbf{A})$, satisfying

$$\|Su\|_X \le \alpha \|Au\|_X + \beta \|u\|_X \text{ for } u \in D(A).$$
 (5)

Then when α is sufficiently small, there exists $K_1 \ge K$ such that $\mathbf{A} + S$ satisfies an inequality (4) on V_{δ,K_1} .

2°. Assume in addition that $\{\lambda(\mathbf{A} - \lambda)^{-1} \mid \lambda \in V_{\delta,K}\}$ is \mathcal{R} -bounded. Then, for sufficiently small $\alpha > 0$, there is a $K_2 \ge K$ such that $\{\lambda(\mathbf{A} + S - \lambda)^{-1} \mid \lambda \in V_{\delta,K_2}\}$ is \mathcal{R} -bounded.

Here 1° is a well-known standard result; 2° is proved in [DHP03].

Note that \mathcal{R} -boundedness of $\{\lambda(\mathbf{A} - \lambda)^{-1} \mid \lambda \in V_{\delta,K}\}$ implies that when $\mu > K$, \mathcal{R} -boundedness holds for $\{\lambda(\mathbf{A} + \mu - \lambda)^{-1} \mid \lambda \in V_{\delta',0}\}$ for some $\delta' > 0$. Then the shifted operator $\mathbf{A} + \mu$ has maximal L_q -regularity on \mathbb{R}_+ , and \mathbf{A} itself has it on finite intervals I = (0, T).

・ 回 と ・ ヨ と ・ ヨ と

3. Fractional-order operators

Now to Example **3**, where *P* is of **fractional order**:

$$\partial_t u + Pu = f \text{ on } \Omega \times I,$$

 $u = 0 \text{ on } (\mathbb{R}^n \setminus \Omega) \times I,$ (6)
 $u|_{t=0} = 0.$

Here $P = (-\Delta)^a$ with symbol $|\xi|^{2a}$, or is more generally a ps.d.o. of order 2a (0 < a < 1) with special properties.

Recall that the ps.d.o. *P* with symbol $p(x,\xi)$ is defined by use of the Fourier transform $\mathcal{F}: u(x) \mapsto (\mathcal{F}u)(\xi) = \hat{u}(\xi) = \int_{\mathbb{R}^n} e^{-ix\cdot\xi} u(x) dx$, as

$$(Pu)(x) = \mathcal{F}_{\xi \to x}^{-1}(p(x,\xi)(\mathcal{F}u)(\xi)) = \operatorname{Op}(p)u.$$

Our current hypotheses are: $p(x,\xi)$ is C^{τ} in x (some $\tau > 2a$) and C^{∞} in ξ , satisfying

$$\|D^{lpha}_{\xi} p(\cdot,\xi)\|_{C^{\tau}(\mathbb{R}^n)} \leq C_{lpha} \langle \xi
angle^{2a-|lpha|} ext{ for } \xi \in \mathbb{R}^n, \ lpha \in \mathbb{N}_0^n$$

Moreover, it satisfies for $|\xi| \ge 1$: (i) p is classical, i.e., $p \sim \sum_{j \in \mathbb{N}_0} p_j$ with $p_j(x, t\xi) = t^{2a-j}p_j(x,\xi)$. (ii) p is strongly elliptic: Re $p_0(x,\xi) \ge c|\xi|^{2a}$ with c > 0. (iii) p is even, $p_j(x, -\xi) = (-1)^j p_j(x,\xi)$, all j. Along with $H_q^s(\mathbb{R}^n) = \{u \mid \mathcal{F}^{-1}(\langle \xi \rangle^s \hat{u}) \in L_q(\mathbb{R}^n)\}$, define

$$\overline{H}^{s}_{q}(\Omega) = r^{+}H^{s}_{q}(\mathbb{R}^{n}), \qquad \dot{H}^{s}_{q}(\overline{\Omega}) = \{u \in H^{s}_{q}(\mathbb{R}^{n}) \mid \text{supp } u \subset \overline{\Omega}\}.$$

Here r^+ denotes restriction to Ω ; e^+ will indicate extension by 0 from Ω to \mathbb{R}^n . (The dot and overline notation stems from Hörmander '85.) For q = 2, the index q is omitted.

Let Ω be bounded and $C^{1+\tau}$ with $\tau > 2a$, let $1 < q < \infty$, let P satisfy (i)–(iii) (G. '15 for $\tau = \infty$, Abels-G. '23 for $\tau < \infty$). The Dirichlet realization P_D in $L_q(\Omega)$, acting like r^+P on $\dot{H}^a_q(\overline{\Omega})$, has the domain

$$D(P_D) = \{ u \in \dot{H}^{\mathfrak{a}}_q(\overline{\Omega}) \mid r^+ P u \in L_q(\Omega) \} = H^{\mathfrak{a}(2\mathfrak{a})}_q(\overline{\Omega}),$$

where the space $H_q^{a(2a)}(\overline{\Omega})$ is a so-called *a-transmission space*. It is defined in local coordinates from the definition for $\Omega = \mathbb{R}^n_+$ by

$$H^{a(2a)}_q(\overline{\mathbb{R}}^n_+) = \operatorname{Op}((\langle \xi'
angle + i\xi_n)^{-a})e^+\overline{H}^a_q(\mathbb{R}^n_+).$$

Here $H_q^{a(2a)}(\overline{\Omega}) = \dot{H}_q^{2a}(\overline{\Omega})$ if a < 1/q; generally $H_q^{a(2a)}(\overline{\Omega}) \subset \dot{H}_q^{a+1/q}(\overline{\Omega}) \cap H_{q,loc}^{2a}(\Omega)$ and carries a singularity dist $(x, \partial\Omega)^a$. We shall apply the heat equation theory to $\mathbf{A} = P_D$. The domain is denoted for short

$$H_q^{a(2a)}(\overline{\Omega}) = D_q(\overline{\Omega}).$$

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

For q = 2 it is easy to show, by methods going back to Lions and Magenes '68:

Theorem 4. [G. '18 for $\tau = \infty$, G. '23 for finite $\tau > 2a$.] For any $f \in L_2(\Omega \times I)$, there is a unique solution $u(x, t) \in \overline{C}^0(\overline{I}; L_2(\Omega))$; it satisfies:

$$u \in L_2(I; D_2(\overline{\Omega}))) \cap \overline{H}^1(I; L_2(\Omega)).$$

There are also results with higher regularity, that we omit here.

Other works have mostly been concerned with $(-\Delta)^a$ and x-independent generalizations. There are results on Schauder estimates and Hölder properties, by e.g. Felsinger and Kassmann '13, Chang-Lara and Davila '14, Jin and Xiong '15; and more precise results on regularity in anisotropic Hölder spaces by Fernandez-Real and Ros-Oton '17, Ros-Oton and Vivas '18. For $P = (-\Delta)^a$, Leonori, Peral, Primo and Soria '15 showed $L_q(I; L_r(\Omega))$ estimates; Biccari, Warma and Zuazua '18 $L_q(I; B_{q,r,loc}^{2a}(\Omega))$ -estimates, Choi, Kim and Ryu '23 weighted L_q -estimates. There are results on \mathbb{R}^n with x-dependence by Dong, Jung and Kim '23.

・ロト ・日下・ キロ・ ・ 日・

We showed an optimal L_q -result in '18 under an extra hypothesis:

(iv) *p* is *x*-independent, real and homogeneous for $\xi \neq 0$.

Theorem 5. Assume (iv) in addition to (i)–(iii). Then when $1 < q < \infty$, (6) has for any $f \in L_q(\Omega \times I)$, a unique solution $u(x, t) \in \overline{C}^0(I; L_q(\Omega))$; it satisfies:

$$u \in L_q(I; D_q(\overline{\Omega})) \cap \overline{H}_q^1(I; L_q(\Omega)).$$

This is maximal L_q -regularity.

Proved for $\tau = \infty$ in '18, extended to finite τ in '23. The proof uses that the sesquilinear form obtained by closure on $\dot{H}^a(\overline{\Omega})$ of

$$s(u,v) = \int_{\Omega} Pu \, \bar{v} \, dx, \quad u,v \in C_0^{\infty}(\Omega), \qquad (7)$$

is for real u, v a so-called Dirichlet form, as in books of Davies '89, Fukushima, Oshima and Takeda '94. Then P_D is what is called sub-Markovian, and by a result of Lamberton '87, the heat problem (6) has maximal L_q -regularity.

(4月) トイヨト イヨト

Currently, I have been trying for a long time to weaken hypothesis (iv) — to extend the result to suitable variable-coefficient operators, by perturbation and localization arguments. Lately, I have had a cooperation with Helmut Abels on this, and we have just recently managed to show:

Theorem 6. Let Ω be bounded with $C^{1+\tau}$ -boundary, $\tau > 2a$, and let $1 < q < \infty$. Besides our hypotheses (i)–(iii), assume that the principal symbol $p_0(x_0, \xi)$ is real positive at each **boundary point** $x_0 \in \partial \Omega$. Then there are constants $\delta > 0$, $K \ge 0$ such that $\{\lambda(P_D - \lambda)^{-1} \mid \lambda \in V_{\delta,K}\}$ is \mathcal{R} -bounded in $\mathcal{L}(L_q(\Omega))$.

The proof involves a comparison, at each boundary point $x_0 \in \partial\Omega$, of P with the constant-coefficient operator $\overline{P} = Op(p_0(x_0, \xi))$ in an auxiliary bounded domain Σ coinciding with Ω in a small ball around x_0 , where perturbation estimates and blow-up techniques can be applied. This leads to the desired heat equation result:

Theorem 7. Hypotheses as in Theorem 6. Then for any $f \in L_q(\Omega \times I)$, the heat equation (6) has a unique solution $u(x, t) \in \overline{C}^0(\overline{I}; L_q(\Omega))$ satisfying

$$u \in L_q(I; D_q(\overline{\Omega})) \cap \overline{H}_q^1(I; L_q(\Omega)).$$

This is a first result on maximal L_q -regularity for variable-coefficient nonselfadjoint ps.d.o. boundary problems of fractional order.

4. Nonhomogeneous problems

Nonhomogeneous boundary problems can also be considered. There is a local nonzero Dirichlet boundary condition associated with P, namely the assignment of $\gamma_0(u/d^{a-1})$; here $d(x) = \operatorname{dist}(x, \partial\Omega)$. The problem

$$Pu = f \text{ in } \Omega, \quad \gamma_0(u/d^{a-1}) = \varphi, \quad \text{supp } u \subset \overline{\Omega},$$
 (8)

had good solvability properties for given $f \in L_q(\Omega)$, $\varphi \in B_q^{a+1-1/q}(\partial\Omega)$, when u is sought in the (a-1)-transmission space $H_q^{(a-1)(2a)}(\overline{\Omega})$. This is a larger space than $D_q(\overline{\Omega}) = H_q^{a(2a)}(\overline{\Omega})$, satisfying

$$H_q^{a(2a)}(\overline{\Omega}) = \{ u \in H_q^{(a-1)(2a)}(\overline{\Omega}) \mid \gamma_0(u/d^{a-1}) = 0 \}.$$

So the case $\varphi = 0$ in (8) is the homogeneous Dirichlet problem. One has that $H_q^{(a-1)(2a)}(\overline{\Omega}) \subset L_q(\Omega)$ when $q < \frac{1}{1-a}$. We assume this for the nonhomogeneous heat problem:

$$\partial_t u + Pu = f \text{ on } \Omega \times I,$$

$$\gamma_0(u/d^{a-1}) = \psi \text{ on } \partial\Omega \times I,$$

$$u = 0 \text{ on } (\mathbb{R}^n \setminus \Omega) \times I,$$

$$u|_{t=0} = 0.$$
(9)

Here we can show:

Theorem 8. In addition to the hypotheses of Theorem 6, assume that $\tau > 2a + 1$ and $q < \frac{1}{1-a}$. Then (9) has for $f \in L_q(\Omega \times I)$, $\psi \in L_q(I; B_q^{a+1-1/q}(\partial \Omega)) \cap \dot{H}_q^1(\bar{I}; B_q^{\varepsilon}(\partial \Omega))$ a unique solution u(x, t) satisfying

$$u \in L_q(I; H_q^{(\mathfrak{a}-1)(2\mathfrak{a})}(\overline{\Omega})) \cap \overline{H}_q^1(I; L_q(\Omega)).$$

Let us finally mention that one can also use the resolvent estimates (just in uniform norms) to show results in other function spaces. For example, by a strategy of Amann '97:

Theorem 9. Hypotheses as in Theorem 6. Let s be noninteger > 0. For any $f \in \dot{C}^{s}(\overline{\mathbb{R}}_{+}; L_{q}(\Omega))$ there is a unique solution $u \in \dot{C}^{s}(\overline{\mathbb{R}}_{+}; D_{q}(\overline{\Omega}))$, and there holds

 $f(x,t)\in \dot{C}^{s}(\overline{\mathbb{R}}_{+};L_{q}(\Omega))\iff u(x,t)\in \dot{C}^{s}(\overline{\mathbb{R}}_{+};D_{q}(\overline{\Omega}))\cap\dot{C}^{s+1}(\overline{\mathbb{R}}_{+};L_{q}(\Omega)).$

(4回) (1日) (日) 日

Here $\dot{C}^{s}(\mathbb{R}_{+}; X)$ stands for functions in $C^{s}(\mathbb{R}; X)$ vanishing on \mathbb{R}_{-} .

Some references:

H. Abels: Reduced and generalized Stokes resolvent equations in asymptotically flat layers II. H_{∞} -calculus. J. Math. Fluid Mech. **7**. 223–260 (2005).

H. Abels and G. Grubb: Fractional-order operators on nonsmooth domains, J. Lond. Math. Soc. (2) **107** (2023), 1297–1350.

H. Amann: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. **186** (1997), 5–56.

U. Biccari, M. Warma and E. Zuazua: Local regularity for fractional heat equations, arXiv:1704.07562.

L. Boutet de Monvel: Boundary problems for pseudo-differential operators, Acta Math. **126** (1971), 11–51.

H. Chang-Lara and G. Davila: Regularity for solutions of non local parabolic equations, Calc. Var. Part. Diff. Equations **49** (2014), 139–172.

J. Choi, K. Kim and J. Ryu: Sobolev regularity theory for the non-local elliptic and parabolic equations on $C^{1,1}$ open sets, Disc. Cont. Dyn. Syst. **43(9)** 3338-3377 (2023).

E. B. Davies: Heat kernels and spectral theory. Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge 1989.

H. Dong, P. Jung and D. Kim: Boundedness of non-local operators with spatially dependent coefficients and Lp-estimates for non-local equations. Calc. Var. **62** no. 62 (2023).

M. Felsinger and M. Kassmann: Local regularity for parabolic nonlocal operators, Comm. Part. Diff. Equations **38** (2013), 1539–1573.

X. Fernandez-Real and X. Ros-Oton: Regularity theory for general stable operators: parabolic equations, J. Funct. Anal. **272** (2017), 4165–4221.

M. Fukushima, Y. Oshima and M. Takeda: Dirichlet forms and symmetric Markov processes. De Gruyter Studies in Mathematics, 19, Berlin 1994.

 G. Grubb: Fractional Laplacians on domains, a development of Hörmander's theory of μ -transmission pseudodifferential operators, Adv. Math. **268** (2015), 478–528.

G. Grubb: Local and nonlocal boundary conditions for *µ*-transmission and fractional elliptic pseudodifferential operators, Analysis and P.D.E. **7** (2014) 1649–1682.

G. Grubb: Regularity in L_p Sobolev spaces of solutions to fractional heat equations. J. Funct. Anal. **274** (2018), 2634–2660.

G. Grubb: Resolvents for fractional-order operators with nonhomogeneous local boundary conditions, J. Funct. Anal. **284** (2023) no. 109815.

G. Grubb and N. J. Kokholm: A global calculus of parameter-dependent pseudo differential boundary problems in L_p Sobolev spaces, Acta Math. **171** (1993), 165–229.

L. Hörmander: Seminar notes on pseudo-differential operators and boundary problems, Lectures at IAS Princeton 1965-66, available from Lund University,

https://lup.lub.lu.se/search/

L. Hörmander: The analysis of linear partial differential operators III, Springer 1985.

T. Jin and J. Xiong: Schauder estimates for solutions of linear parabolic integro-differential equations, Disc. Cont. Dyn. Syst. **35** (2015), 5977–5998.

D. Lamberton: Équations d'évolution linéaires associées à des semi-groupes de

contractions dans les espaces Lp, J. Funct. Anal. 72 (1987), 252-262.

no *T. Leonori, I. Peral, A. Primo and F. Soria:* Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Disc. Cont. Dyn. Syst. **35** (2015) 6031–6068.

J.-L. Lions and E. Magenes: Problèmes aux limites non homogènes et applications. Vol. 1 et 2, Éditions Dunod, Paris 1968.

X. Ros-Oton and J. Serra: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. **101** (2014), 275–302. X. Ros-Oton and H. Vivas: Higher-order boundary regularity estimates for nonlocal parabolic equations, Calc. Var. Partial Differential Equations **57** (2018), No. **111**.

臣

Dear Anders!

Congratulations with the 80 years!

イロト イヨト イヨト イヨト

臣