Evolution equations with fractional-order operators

Gerd Grubb
Copenhagen University

Workshop on Microlocal Analysis and Mathematical Physics
In Honor of Anders Melin's 80'th Birthday Sptember 19-21, 2023, Lund University

1. Introduction

Activities with Anders, always kind, wise and helpful:
The period in Copenhagen. Anders held a position in Copenhagen in the mid 70 'ies for $11 / 2$ years (until he got a lektor position in Lund), giving lectures on hyperbolic problems and other PDE subjects. This was a temporary use of some some positions that the department wanted to fill permanently at a slow rate (Kalle Andersson also took such a job). He and I did our best to spread the word on (then modern) analysis of PDE. The Øresund seminar. Anders and I cooperated with Lars Hörmander and, in the start, Johannes Sjöstrand, to run the Danish-Swedish Analysis seminar - the Øresund seminar - which started in the mid 80'ies and provided many interesting visitors to both Lund and Copenhagen.
French collaborations. Another activity we had together was the participation in a steering group with French, Swedish and Danish members, which planned the annual meeting in PDE at Saint-Jean-de-Monts on the coast south of Bretagne in France. This was more a formal and honorary thing, not requiring much administrative work, but some funding, as far as I remember. It went on for a large number of years until taken over fully by people at Ecole Polytechnique in Paris.

1. Heat equations

Let $\Omega \subset \mathbb{R}^{n}$, and let $1<q<\infty$. Consider a positive-order operator A in $L_{q}(\Omega)$, e.g. an elliptic differential operator together with a boundary condition $B u=0$; then the heat problem is

$$
\begin{aligned}
\partial_{t} u+A u & =f \text { on } \Omega \times I, \quad I=(0, T) \\
B u & =0 \text { for } t \in I, \\
u & =u_{0} \text { for } t=0
\end{aligned}
$$

Example 1. A is an elliptic diff. op., e.g. $=-\Delta, B$ is a diff. op. followed by restriction to $\partial \Omega$.
But more general situations are of interest too:
Example 2. $A=P+G, B=T$, where P, G and T belong to the Boutet de Monvel calculus. P is a ps.d.o. of order $m \in \mathbb{N}, G$ a singular Green operator of order m, T a suitable trace operator. This situation comes up e.g. when the linearized Navier-Stokes problem is reduced to a truly parabolic form (G.-Solonnikov in the 90^{\prime} ies.)
Example 3. $A=(-\Delta)^{a}$ with $0<a<1$, the fractional Laplacian - or a ps.d.o. generalization of order 2a. Here $B u=0$ is taken to mean that $u=0$ in $\mathbb{R}^{n} \backslash \Omega$. Enters in finance, in differential geometry and physics ${ }_{\text {I }}$

An interesting question is to solve the heat equation in L_{q}-spaces, $1<q<\infty$. The operator provided with the boundary condition defines a realization \boldsymbol{A} in $L_{q}(\Omega)$; an unbounded closed densely defined operator. \boldsymbol{A} acts like $A, P+G$ or $(-\Delta)^{a}$ in the three examples, with domain $D(\boldsymbol{A})$ defined by the boundary condition $B u=0, T u=0$ resp. supp $u \subset \bar{\Omega}$. The heat problem (with $u(x, 0)=0$ for simplicity) is then formulated as

$$
\begin{equation*}
\partial_{t} u+\boldsymbol{A} u=f \text { on } \Omega \times I,\left.\quad u\right|_{t=0}=0 . \tag{1}
\end{equation*}
$$

Under suitable hypotheses of strong ellipticity, \boldsymbol{A} has its spectrum in a sectorial region in $\mathbb{C}($ "keyhole region") $\{|\lambda| \leq r\} \cup\{|\operatorname{Im} \lambda| \leq c \operatorname{Re} \lambda\}$ opening to the right, so the resolvent set contains a region with $\delta>0$

$$
V_{\delta, K}=\{\lambda \in \mathbb{C} \backslash\{0\}|\arg \lambda \in[\pi / 2-\delta, 3 \pi / 2+\delta],|\lambda| \geq K\} .
$$

Then suitable estimates of the resolvent $(\boldsymbol{A}-\lambda)^{-1}$ on $V_{\delta, K}$ lead to solvability theorems for (1).
Example $\mathbf{1}$ was treated by Seeley ' 69 in H_{q}^{s}-spaces; recall

$$
H_{q}^{s}\left(\mathbb{R}^{n}\right)=\left\{u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) \mid \mathcal{F}^{-1}\left(\langle\xi\rangle^{s} \hat{u}\right) \in L_{q}\left(\mathbb{R}^{n}\right)\right\},
$$

for $s \in \mathbb{R}, 1<q<\infty,\langle\xi\rangle=\left(|\xi|^{2}+1\right)^{\frac{1}{2}}$.

Seeley used pseudodifferential machinery (precluding the Boutet de Monvel calculus), for the case where Ω and the coefficients in A and B are C^{∞}. There are more recent results assuming less smoothness; e.g. Denk, Hieber and Prüss '03, giving a new point of view and method. Example 2 was treated in H_{q}^{s}-spaces in G.-Solonnikov '91 (for $p=2$), G.-Kokholm '93 and G. '95, in a smooth setting. Nonsmooth generalizations were introduced by Abels '05.
Example $\mathbf{3}$ will be discussed in this lecture.
An important problem in L_{q} is to show maximal L_{q}-regularity, namely that (1) for any $f \in L_{q}(\Omega \times I)$ has a unique solution $u(x, t)$ satisfying

$$
\begin{equation*}
\left\|\partial_{t} u\right\|_{L_{q}(\Omega \times I)}+\|\boldsymbol{A} u\|_{L_{q}(\Omega \times I)} \leq C\|f\|_{L_{q}(\Omega \times I)} . \tag{2}
\end{equation*}
$$

It is obtained in the mentioned treatments of Examples $\mathbf{1}$ and 2.
To extend Ex. $\mathbf{1}$ to nonsmooth cases, there has been developed a functional calculus point of view, through works of Da Prato and Grisvard, Lamberton, Dore and Venni, Clément, Prüss, Hieber, Denk, Weiss, Bourgain and others, to link the question of maximal L_{q}-regularity with the concept of \mathcal{R}-boundedness, as explained e.g. in Denk-Hieber-Prüss [DHP03]. It is a kind of "boundedness preserved under signed rearrangement".

Definition 1. Let $q \in[1, \infty)$. Denote by Z_{N} the subset of \mathbb{R}^{N} $Z_{N}=\left\{\left(z_{1}, \ldots, z_{N}\right) \mid z_{j} \in\{-1,+1\}\right.$ for all $\left.j\right\}$.
Let X and Y be Banach spaces. Let $q \in[1, \infty)$. A subset \mathcal{T} of the bounded linear operators $\mathcal{L}(X, Y)$ is \mathcal{R}-bounded if there is a constant $C \geq 0$ such that for every choice of $N \in \mathbb{N}$ and every choice of x_{1}, \ldots, x_{N} in X and T_{1}, \ldots, T_{N} in \mathcal{T},

$$
\begin{equation*}
\left(\sum_{z \in Z_{N}}\left\|\sum_{j=1}^{N} z_{j} T_{j} x_{j}\right\|_{Y}^{q}\right)^{1 / q} \leq C\left(\sum_{z \in Z_{N}}\left\|\sum_{j=1}^{N} z_{j} x_{j}\right\|_{X}^{q}\right)^{1 / q} \tag{3}
\end{equation*}
$$

(There is an equivalent definition drawing on probability formulations.) The best constant C, denoted $\mathcal{R}_{\mathcal{L}(X, Y)}(\mathcal{T})$, is called the \mathcal{R}-bound of \mathcal{T}, and the finiteness for one $q \in[1, \infty)$ implies the finiteness for all other $q \in[1, \infty)$. An \mathcal{R}-bounded set is norm-bounded. Finite norm-bounded sets are \mathcal{R}-bounded. (3) is trivial when X, Y are Hilbert spaces.
Theorem 2. [DHP03] Let $1<q<\infty$. Problem (1) has maximal L_{q}-regularity on $I=\mathbb{R}_{+}$if and only if the family $\left\{\lambda(\boldsymbol{A}-\lambda)^{-1} \mid \lambda \in V_{\delta, 0}\right\}$ is \mathcal{R}-bounded in $\mathcal{L}\left(L_{q}(\Omega)\right)$ for some $\delta>0$.
A very useful result, so much more since the \mathcal{R}-boundedness property allows suitable perturbations of \boldsymbol{A}.

Proposition 3. 1° Let $X=L_{q}(\Omega)$, and let \boldsymbol{A} satisfy

$$
\begin{equation*}
\left\|\lambda(\boldsymbol{A}-\lambda)^{-1}\right\|_{\mathcal{L}(X)} \leq C<\infty \text { for } \lambda \in V_{\delta, K} . \tag{4}
\end{equation*}
$$

Let S be defined on $D(\boldsymbol{A})$, satisfying

$$
\begin{equation*}
\|S u\|_{X} \leq \alpha\|\boldsymbol{A} u\|_{X}+\beta\|u\|_{X} \text { for } u \in D(\boldsymbol{A}) . \tag{5}
\end{equation*}
$$

Then when α is sufficiently small, there exists $K_{1} \geq K$ such that $\boldsymbol{A}+S$ satisfies an inequality (4) on $V_{\delta, K_{1}}$.
2°. Assume in addition that $\left\{\lambda(\boldsymbol{A}-\lambda)^{-1} \mid \lambda \in V_{\delta, K}\right\}$ is \mathcal{R}-bounded.
Then, for sufficiently small $\alpha>0$, there is a $K_{2} \geq K$ such that $\left\{\lambda(\boldsymbol{A}+S-\lambda)^{-1} \mid \lambda \in V_{\delta, K_{2}}\right\}$ is \mathcal{R}-bounded.

Here 1° is a well-known standard result; 2° is proved in [DHP03].
Note that \mathcal{R}-boundedness of $\left\{\lambda(\boldsymbol{A}-\lambda)^{-1} \mid \lambda \in V_{\delta, K}\right\}$ implies that when $\mu>K, \mathcal{R}$-boundedness holds for $\left\{\lambda(\boldsymbol{A}+\mu-\lambda)^{-1} \mid \lambda \in V_{\delta^{\prime}, 0}\right\}$ for some $\delta^{\prime}>0$. Then the shifted operator $\boldsymbol{A}+\mu$ has maximal L_{q}-regularity on \mathbb{R}_{+}, and \boldsymbol{A} itself has it on finite intervals $I=(0, T)$.

Now to Example 3, where P is of fractional order:

$$
\begin{align*}
\partial_{t} u+P u & =f \text { on } \Omega \times I, \\
u & =0 \text { on }\left(\mathbb{R}^{n} \backslash \Omega\right) \times I, \tag{6}\\
\left.u\right|_{t=0} & =0 .
\end{align*}
$$

Here $P=(-\Delta)^{a}$ with symbol $|\xi|^{2 a}$, or is more generally a ps.d.o. of order 2a $(0<a<1)$ with special properties.
Recall that the ps.d.o. P with symbol $p(x, \xi)$ is defined by use of the Fourier transform $\mathcal{F}: u(x) \mapsto(\mathcal{F} u)(\xi)=\hat{u}(\xi)=\int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} u(x) d x$, as

$$
(P u)(x)=\mathcal{F}_{\xi \rightarrow x}^{-1}(p(x, \xi)(\mathcal{F} u)(\xi))=\operatorname{Op}(p) u
$$

Our current hypotheses are: $p(x, \xi)$ is C^{τ} in x (some $\tau>2 a$) and C^{∞} in ξ, satisfying

$$
\left\|D_{\xi}^{\alpha} p(\cdot, \xi)\right\|_{C^{\tau}\left(\mathbb{R}^{n}\right)} \leq C_{\alpha}\langle\xi\rangle^{2 a-|\alpha|} \text { for } \xi \in \mathbb{R}^{n}, \alpha \in \mathbb{N}_{0}^{n} .
$$

Moreover, it satisfies for $|\xi| \geq 1$:
(i) p is classical, i.e., $p \sim \sum_{j \in \mathbb{N}_{0}} p_{j}$ with $p_{j}(x, t \xi)=t^{2 a-j} p_{j}(x, \xi)$.
(ii) p is strongly elliptic: $\operatorname{Re} p_{0}(x, \xi) \geq c|\xi|^{2 a}$ with $c>0$.
(iii) p is even, $p_{j}(x,-\xi)=(-1)^{j} p_{j}(x, \xi)$, all j.

Along with $H_{q}^{s}\left(\mathbb{R}^{n}\right)=\left\{u \mid \mathcal{F}^{-1}\left(\langle\xi\rangle^{s} \hat{u}\right) \in L_{q}\left(\mathbb{R}^{n}\right)\right\}$, define

$$
\bar{H}_{q}^{s}(\Omega)=r^{+} H_{q}^{s}\left(\mathbb{R}^{n}\right), \quad \dot{H}_{q}^{s}(\bar{\Omega})=\left\{u \in H_{q}^{s}\left(\mathbb{R}^{n}\right) \mid \operatorname{supp} u \subset \bar{\Omega}\right\} .
$$

Here r^{+}denotes restriction to $\Omega ; e^{+}$will indicate extension by 0 from Ω to \mathbb{R}^{n}. (The dot and overline notation stems from Hörmander '85.) For $q=2$, the index q is omitted.
Let Ω be bounded and $C^{1+\tau}$ with $\tau>2 a$, let $1<q<\infty$, let P satisfy (i)-(iii) (G. '15 for $\tau=\infty$, Abels-G. '23 for $\tau<\infty$). The Dirichlet realization P_{D} in $L_{q}(\Omega)$, acting like $r^{+} P$ on $\dot{H}_{q}^{a}(\bar{\Omega})$, has the domain

$$
D\left(P_{D}\right)=\left\{u \in \dot{H}_{q}^{a}(\bar{\Omega}) \mid r^{+} P u \in L_{q}(\Omega)\right\}=H_{q}^{a(2 a)}(\bar{\Omega}),
$$

where the space $H_{q}^{a(2 a)}(\bar{\Omega})$ is a so-called a-transmission space. It is defined in local coordinates from the definition for $\Omega=\mathbb{R}_{+}^{n}$ by

$$
H_{q}^{a(2 a)}\left(\overline{\mathbb{R}}_{+}^{n}\right)=\operatorname{Op}\left(\left(\left\langle\xi^{\prime}\right\rangle+i \xi_{n}\right)^{-a}\right) e^{+} \bar{H}_{q}^{a}\left(\mathbb{R}_{+}^{n}\right) .
$$

Here $H_{q}^{a(2 a)}(\bar{\Omega})=\dot{H}_{q}^{2 a}(\bar{\Omega})$ if $a<1 / q$; generally $H_{q}^{a(2 a)}(\bar{\Omega}) \subset \dot{H}_{q}^{a+1 / q}(\bar{\Omega})$ $\cap H_{q, l o c}^{2 a}(\Omega)$ and carries a singularity $\operatorname{dist}(x, \partial \Omega)^{a}$. We shall apply the heat equation theory to $\boldsymbol{A}=P_{D}$. The domain is denoted for short

$$
H_{q}^{a(2 a)}(\bar{\Omega})=D_{q}(\bar{\Omega}) .
$$

For $q=2$ it is easy to show, by methods going back to Lions and Magenes '68:
Theorem 4. [G. '18 for $\tau=\infty$, G. '23 for finite $\tau>2$ a.] For any $f \in L_{2}(\Omega \times I)$, there is a unique solution $u(x, t) \in \bar{C}^{0}\left(\bar{I} ; L_{2}(\Omega)\right)$; it satisfies:

$$
\left.u \in L_{2}\left(I ; D_{2}(\bar{\Omega})\right)\right) \cap \bar{H}^{1}\left(I ; L_{2}(\Omega)\right) .
$$

There are also results with higher regularity, that we omit here.
Other works have mostly been concerned with $(-\Delta)^{a}$ and x-independent generalizations. There are results on Schauder estimates and Hölder properties, by e.g. Felsinger and Kassmann '13, Chang-Lara and Davila '14, Jin and Xiong '15; and more precise results on regularity in anisotropic Hölder spaces by Fernandez-Real and Ros-Oton '17, Ros-Oton and Vivas '18. For $P=(-\Delta)^{a}$, Leonori, Peral, Primo and Soria '15 showed $L_{q}\left(I ; L_{r}(\Omega)\right)$ estimates; Biccari, Warma and Zuazua '18 $L_{q}\left(I ; B_{q, r, l o c}^{2 a}(\Omega)\right)$-estimates, Choi, Kim and Ryu '23 weighted L_{q}-estimates. There are results on \mathbb{R}^{n} with x-dependence by Dong, Jung and Kim '23.
We showed an optimal L_{q}-result in '18 under an extra hypothesis:
(iv) p is x-independent, real and homogeneous for $\xi \neq 0$.

Theorem 5. Assume (iv) in addition to (i)-(iii). Then when $1<q<\infty$, (6) has for any $f \in L_{q}(\Omega \times I)$, a unique solution $u(x, t) \in \bar{C}^{0}\left(I ; L_{q}(\Omega)\right)$; it satisfies:

$$
u \in L_{q}\left(I ; D_{q}(\bar{\Omega})\right) \cap \bar{H}_{q}^{1}\left(I ; L_{q}(\Omega)\right)
$$

This is maximal L_{q}-regularity.
Proved for $\tau=\infty$ in '18, extended to finite τ in '23. The proof uses that the sesquilinear form obtained by closure on $\dot{H}^{a}(\bar{\Omega})$ of

$$
\begin{equation*}
s(u, v)=\int_{\Omega} P u \bar{v} d x, \quad u, v \in C_{0}^{\infty}(\Omega) \tag{7}
\end{equation*}
$$

is for real u, v a so-called Dirichlet form, as in books of Davies '89, Fukushima, Oshima and Takeda '94. Then P_{D} is what is called sub-Markovian, and by a result of Lamberton '87, the heat problem (6) has maximal L_{q}-regularity.

Currently, I have been trying for a long time to weaken hypothesis (iv) to extend the result to suitable variable-coefficient operators, by perturbation and localization arguments. Lately, I have had a cooperation with Helmut Abels on this, and we have just recently managed to show:
Theorem 6. Let Ω be bounded with $C^{1+\tau}$-boundary, $\tau>2$ a, and let $1<q<\infty$. Besides our hypotheses (i)-(iii), assume that the principal symbol $p_{0}\left(x_{0}, \xi\right)$ is real positive at each boundary point $x_{0} \in \partial \Omega$.
Then there are constants $\delta>0, K \geq 0$ such that $\left\{\lambda\left(P_{D}-\lambda\right)^{-1} \mid \lambda \in V_{\delta, K}\right\}$ is \mathcal{R}-bounded in $\mathcal{L}\left(L_{q}(\Omega)\right)$.
The proof involves a comparison, at each boundary point $x_{0} \in \partial \Omega$, of P with the constant-coefficient operator $\bar{P}=\operatorname{Op}\left(p_{0}\left(x_{0}, \xi\right)\right)$ in an auxiliary bounded domain Σ coinciding with Ω in a small ball around x_{0}, where perturbation estimates and blow-up techniques can be applied.
This leads to the desired heat equation result:
Theorem 7. Hypotheses as in Theorem 6. Then for any $f \in L_{q}(\Omega \times I)$, the heat equation (6) has a unique solution $u(x, t) \in \bar{C}^{0}\left(\overline{\bar{I}} ; L_{q}(\Omega)\right)$ satisfying

$$
u \in L_{q}\left(I ; D_{q}(\bar{\Omega})\right) \cap \bar{H}_{q}^{1}\left(I ; L_{q}(\Omega)\right) .
$$

This is a first result on maximal L_{q}-regularity for variable-coefficient nonselfadjoint ps.d.o. boundary problems of fractional order.

4. Nonhomogeneous problems

Nonhomogeneous boundary problems can also be considered. There is a local nonzero Dirichlet boundary condition associated with P, namely the assignment of $\gamma_{0}\left(u / d^{a-1}\right)$; here $d(x)=\operatorname{dist}(x, \partial \Omega)$. The problem

$$
\begin{equation*}
P u=f \text { in } \Omega, \quad \gamma_{0}\left(u / d^{a-1}\right)=\varphi, \quad \operatorname{supp} u \subset \bar{\Omega}, \tag{8}
\end{equation*}
$$

had good solvability properties for given $f \in L_{q}(\Omega), \varphi \in B_{q}^{a+1-1 / q}(\partial \Omega)$, when u is sought in the $(a-1)$-transmission space $H_{q}^{(a-1)(2 a)}(\bar{\Omega})$. This is a larger space than $D_{q}(\bar{\Omega})=H_{q}^{a(2 a)}(\bar{\Omega})$, satisfying

$$
H_{q}^{a(2 a)}(\bar{\Omega})=\left\{u \in H_{q}^{(a-1)(2 a)}(\bar{\Omega}) \mid \gamma_{0}\left(u / d^{a-1}\right)=0\right\} .
$$

So the case $\varphi=0$ in (8) is the homogeneous Dirichlet problem. One has that $H_{q}^{(a-1)(2 a)}(\bar{\Omega}) \subset L_{q}(\Omega)$ when $q<\frac{1}{1-\mathrm{a}}$. We assume this for the nonhomogeneous heat problem:

$$
\begin{align*}
\partial_{t} u+P u & =f \text { on } \Omega \times I, \\
\gamma_{0}\left(u / d^{a-1}\right) & =\psi \text { on } \partial \Omega \times I, \\
u & =0 \text { on }\left(\mathbb{R}^{n} \backslash \Omega\right) \times I, \tag{9}\\
\left.u\right|_{t=0} & =0
\end{align*}
$$

Here we can show:
Theorem 8. In addition to the hypotheses of Theorem 6, assume that $\tau>2 a+1$ and $q<\frac{1}{1-a}$. Then (9) has for $f \in L_{q}(\Omega \times I)$,
$\psi \in L_{q}\left(I ; B_{q}^{a+1-1 / q}(\partial \Omega)\right) \cap \dot{H}_{q}^{1}\left(\bar{I} ; B_{q}^{\varepsilon}(\partial \Omega)\right)$ a unique solution $u(x, t)$ satisfying

$$
u \in L_{q}\left(I ; H_{q}^{(a-1)(2 a)}(\bar{\Omega})\right) \cap \bar{H}_{q}^{1}\left(I ; L_{q}(\Omega)\right)
$$

Let us finally mention that one can also use the resolvent estimates (just in uniform norms) to show results in other function spaces. For example, by a strategy of Amann '97:
Theorem 9. Hypotheses as in Theorem 6. Let s be noninteger >0. For any $f \in \dot{C}^{s}\left(\overline{\mathbb{R}}_{+} ; L_{q}(\Omega)\right)$ there is a unique solution $u \in \dot{C}^{s}\left(\overline{\mathbb{R}}_{+} ; D_{q}(\bar{\Omega})\right)$, and there holds
$f(x, t) \in \dot{C}^{s}\left(\overline{\mathbb{R}}_{+} ; L_{q}(\Omega)\right) \Longleftrightarrow u(x, t) \in \dot{C}^{s}\left(\overline{\mathbb{R}}_{+} ; D_{q}(\bar{\Omega})\right) \cap \dot{C}^{s+1}\left(\overline{\mathbb{R}}_{+} ; L_{q}(\Omega)\right)$.
Here $\dot{C}^{s}\left(\overline{\mathbb{R}}_{+} ; X\right)$ stands for functions in $C^{s}(\mathbb{R} ; X)$ vanishing on \mathbb{R}_{-}.
Some references:
H. Abels: Reduced and generalized Stokes resolvent equations in asymptotically flat layers II. Ho-calculus. J. Math. Fluid Mech. 7. 223-260 (2005).
H. Abels and G. Grubb: Fractional-order operators on nonsmooth domains, J. Lond. Math. Soc. (2) 107 (2023), 1297-1350.
H. Amann: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications, Math. Nachr. 186 (1997), 5-56.
U. Biccari, M. Warma and E. Zuazua: Local regularity for fractional heat equations, arXiv:1704.07562.
L. Boutet de Monvel: Boundary problems for pseudo-differential operators, Acta Math. 126 (1971), 11-51.
H. Chang-Lara and G. Davila: Regularity for solutions of non local parabolic equations, Calc. Var. Part. Diff. Equations 49 (2014), 139-172.
J. Choi, K. Kim and J. Ryu: Sobolev regularity theory for the non-local elliptic and parabolic equations on $C^{1,1}$ open sets, Disc. Cont. Dyn. Syst. 43(9) 3338-3377 (2023). E. B. Davies: Heat kernels and spectral theory. Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge 1989.
H. Dong, P. Jung and D. Kim: Boundedness of non-local operators with spatially dependent coefficients and Lp-estimates for non-local equations. Calc. Var. 62 no. 62 (2023).
M. Felsinger and M. Kassmann: Local regularity for parabolic nonlocal operators, Comm. Part. Diff. Equations 38 (2013), 1539-1573.
X. Fernandez-Real and X. Ros-Oton: Regularity theory for general stable operators: parabolic equations, J. Funct. Anal. 272 (2017), 4165-4221.
M. Fukushima, Y. Oshima and M. Takeda: Dirichlet forms and symmetric Markov processes. De Gruyter Studies in Mathematics, 19, Berlin 1994.
G. Grubb: Parameter-elliptic and parabolic pseudodifferential boundary problems in global Lp Sobolev spaces. Math. Z. 218 (1995), 43-90.
G. Grubb: Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators, Adv. Math. 268 (2015), 478-528.
G. Grubb: Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators, Analysis and P.D.E. 7 (2014) 1649-1682.
G. Grubb: Regularity in L_{p} Sobolev spaces of solutions to fractional heat equations. J. Funct. Anal. 274 (2018), 2634-2660.
G. Grubb: Resolvents for fractional-order operators with nonhomogeneous local boundary conditions, J. Funct. Anal. 284 (2023) no. 109815.
G. Grubb and N. J. Kokholm: A global calculus of parameter-dependent pseudo differential boundary problems in L_{p} Sobolev spaces, Acta Math. 171 (1993), 165-229. L. Hörmander: Seminar notes on pseudo-differential operators and boundary problems, Lectures at IAS Princeton 1965-66, available from Lund University, https://lup.lub.lu.se/search/
L. Hörmander: The analysis of linear partial differential operators III, Springer 1985.
T. Jin and J. Xiong: Schauder estimates for solutions of linear parabolic integro-differential equations, Disc. Cont. Dyn. Syst. 35 (2015), 5977-5998.
D. Lamberton: Équations d'évolution linéaires associées à des semi-groupes de contractions dans les espaces Lp, J. Funct. Anal. 72 (1987), 252-262. no T. Leonori, I. Peral, A. Primo and F. Soria: Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Disc. Cont. Dyn. Syst. 35 (2015) 6031-6068.
J.-L. Lions and E. Magenes: Problèmes aux limites non homogènes et applications. Vol. 1 et 2, Éditions Dunod, Paris 1968.
X. Ros-Oton and J. Serra: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl. 101 (2014), 275-302.
X. Ros-Oton and H. Vivas: Higher-order boundary regularity estimates for nonlocal parabolic equations, Calc. Var. Partial Differential Equations 57 (2018), No. 111.

Dear Anders!

Congratulations with the 80 years!

