Speaker: Gerd Grubb, University of Copenhagen

Title: Evolution equations with fractional-order operators

Abstract: When A is a closed, densely defined operator in $L_q(\Omega)$, $\Omega \subset \mathbb{R}^n$ and $1 < q < \infty$, the heat problem for $t \in I = (0, T)$,

$$d_t u + A u = f$$
 on $\Omega \times I, u|_{t=0} = 0$,

is said to have maximal L_q -regularity, when for any $f \in L_q(\Omega \times I)$ there is a unique solution u such that $d_t u$ and Au are bounded by f in $L_q(\Omega \times I)$ norm. We study this question when A is the Dirichlet realization P_D of a 2a-order strongly elliptic, EVEN pseudodifferential operator P generalizing the fractional Laplacian $(-\Delta)^a$, 0 < a < 1. The heat problem was shown in 2018 to have maximal L_q -regularity when P is x-independent with real homogeneous symbol. We can now extend this to a large class of x-dependent, nonselfadjoint cases, by perturbation methods involving the concept of Rboundedness. (Joint work with Helmut Abels.)