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Abstract: A p-adic analytic family is a family of modular forms fp (eigenforms
of all Hecke operators) parameterized by geometric points P of an integral
scheme Spec(l) finite flat over Spec(Z,[[T]]) whose geometric points is an
open unit disk of @p. The Hecke eigenvalues of T'(1) of fp is given by a;(P)
for a; € I (so analytic). Such a family has corresponding Galois representation
pr - Gal(Q/Q) — GL»>(I). The family is said to have complex multiplication
if pr has abelian image over an open subgroup of Gal(@/@). In this talk,
we emphasize by examples importance of characterizing CM and non CM
families.



0. Notation:

Fix an odd prime_p, a_positive integer N prime to p and field
embeddings C <« Q — Q,.

Consider the space of cusp forms Sy (IFo(Np"),v) (r > 1).

Let the ring Z[y] C C and Zyp[y] C @p be generated by the values
Y over Z and Zp, respectively.

The Hecke algebra over Z is H = Z[Y][T(n)ln = 1,2,---] C
End(Sk+1(r0(NpT),¢)). We put Hk—|—1,¢ = H®Z[¢] Zp[¢]. Some-
times our T(p) is written as U(p) as the level is divisible by
p. The ordinary part hk_|_1,¢ C Hk_|_1,¢ IS the maximal ring di-
rect summand on which U(p) is invertible. Let ¢ = ¥y X
the tame p-part of .

We call a Galois @presentation p CM if there exists an open
subgroup G C Gal(Q/Q) such that the semi-simplification (p|g)**
has abelian image over G.



1. Big Hecke algebra

We have a unique ‘big’ Hecke algebra h = hm characterized by
the following two properties:

1. his free of finite rank over A := Z,[[T]] equipped with T'(n) €
h form=1,2,...,

2. ifk>1and e:Z;/up_1 — ppe is a character,

h ®p 4o (y)ok Lploke] = hpt1 ey,

(v = 14 p) for ¢ := Y1wl™F, sending T(n) ® 1 to T(n),
where w is the Teichmuller character.

Hereafter, we putt =147 € A.



§2. Analytic family

A point P of Spec(I)(Q,) is called arithmetic if it contains
(14T —e(~)v%) with k> 1. If P is arithmetic, we have a Hecke
eigenform

fp € Spa1(Mo(Np™ ), eay,)

such that fp|[T(n) = ap(n)fp (n=1,2,...) forap(n) := P(a(n)) =
(a(n) mod P) € Q,. We write ep = ¢ and k(P) = k for such a
P. Thus I gives rise to an analytic family

F1 = {fplarithemtic P € Spec(I)}.

The Hecke field K(fp) is the field generated over a number field
K Dby all Hecke eigenvalues of fp.

Note that [Q(v, fp) : Q(¥r,ap(p))] is bounded by rankZp[wk] PEt-1,e0,
equal to ranka h independent of P as f§ for any o ¢ Gal(Q/Q)
fixeing Q(ey, ap(p)) has slope O still comeing from hy 41 oy, -



§3. Galois representation

Each irreducible component Spec(l) C Spec(h) has a Galois
representation

pr: Gal(Q/Q) — GL(2)
with coefficients in the quotient field of I such that

Tr(pr(Froby)) = a(l)

(for the image a(l) in I of T'(1)) for almost all primes ¢. Usually
py has values in GL»(I), and we suppose this for simplicity. The
component [ is called CM if py has abelian image over an open
subgroup.

We regard P € Spec(H)(@p) as an algebra homomorphism P :
Zpl[T]] — Qp, and we put pp = Popr: Gal(Q/Q) — GL2(Q,).

If I is a CM component, it is known that for an imaginary
quadratigfield M in which p splits, there exists a Galois character
P - GaI(Q/M) — I* such that P1 = Ind% @7 -



34. p-adic L

One expects to have a two variable p-adic L-function Ly(s, pp?"*")
for each symmetric power interpolating L(s,f}ym@n). In partic-
ular, we have Ly(s,Ad(pr)). We have L, := Ly(1,Ad(py)) =

Lp(l,p]?ym@)z ® det(pp) 1) €1 and

(L, mod P) = L(1,Ad(fp))/period for all arithemtic P.

We also know that if Spec(h) = Spec() U Spec(X) for the com-
plement X, we have a congruence criterion

Spec(l) N Spec(X) = Spec(I ®y X) = Spec(l/(Lyp)).

Adding the cyclotomic variable, because of the modifying Euler
p-factor, Ly(s, Ad(pr)) has an exceptional zero at s = 1, and for
an L-invariant 0 #= L(Ad(pr)) € I, we have

dL,

E(S’ Ad(pr))|s=1 = L(Ad(p1))Lyp.



§5. Is characterizing CM components important?

e (Well known) I is CM <« there exist an imaginary quadratic
field M = Q[v/—D] in which p splits into pp and a character
¢ : Gy = Gal(Q/M) — I* of conductor ¢p™> for an ideal ¢ { p with
pr = Ind% @. Moreover we have

1= 0, (212)

where ¢ (o) = (coc 1o™1) for complex conjugation ¢, and
Lp(p~) is the Katz p-adic L-function associated to ¢~. This
is a base of the proof by Mazur/Tilouine of the anticyclotomic
main conjecture.

e (Known) I'is CM < pr modulo an arithmetic prime is CM.

e (Almost known) I CM < pr mod p is CM. This is almost equiv-
alent to the vanishing of the Iwasawa p-invariant for Ly(¢™).



6. Examples continue.

e (Known for Greenberg’'s L-invariant) L(Ad(pp)) is constant in
Q, if and only if T is CM.

e (Likely) [Q(ap(l)) : Q] is bounded for P running over infinitely
many arithmetic points with fixed level N < I is CM? Maeda’'s
conjecture implies this if the level is N = 1.

e (Mostly true) Fix k> 1 and a prime l1 N. Then [K(ap(l)) : K]
(K = Q(ppo)) is bounded for P running over infinitely many
arithmetic points with fixed weight £k < I is CM. This is true for
a prime [ in a density 1 set (including p).

o (Mostly true) Let L := Z,[t'°%(®)/109(M] c A, where o runs
all algebraic integers in Q,. Then a(l) is transcendental over L.
True for density one set of primes [. Note that P(L) C Q.

e (Mostly known) T non CM < Im(pp) N SLo(A) D Ta(e) =
Ker(SL>(A) — SLo(A/c)) for a non-zero ideal ¢. What is ¢7?
Often a p-adic L.

e (Known) I non CM & py restricted to Gal(Q,/Qp) is upper tri-
angular indecomposable. This is due first to Ghate—Vatsal and
later Hida—Zhao (in a different way).



7. Wild Guesses.

e (7) a(l) mod p is transcendental over L/pL in [®z, Fp if p1 N.
This implies Iwasawa’'s conjecture of vanishing of u-invariant of
Kubota—Leopoldt p-adic L.

o (Wild guess) Is I is CM if and only if L(Ad(fp)) = l0og,(p/p) for
one arithmetic P up to algebraic numbers? Here taking a high
power (p/P)" = (a), log,(p/p) = 7 l0g,(c).

e (Wild guess) Then I is CM if the family contains a rational
Hecke eigenform fp of weight k > 2777

All interesting outcome; so, perhaps, characterization is impor-
tant!



§8. Theorem:

For any infinite set A of arithmetic points in Spec(H)(@p) of a
fixed weight (varying p-power level), there exists a density one
subset = of primes including p such that

1im [QQpee, ap(D) Q)] = o0

for eachl € =.

There is a Hilbert modular version, which is somehow more in-
teresting as Spec(l) has dimension equal to the degree d of the
base totally real field, but still this is valid for any infinite set A
of fixed weight (whose closure could be very small).

If one allows to move all Hecke eigenforms of fixed weight k£ > 2
(not just those in the family), there is an analytic method in-
vented by Serre to show infinite growth of Hecke fields. This
method is now generalized to automorphic forms on unitary
Shimura varieties by Shin and Templier.

We might give a sketch of a proof for [ = p later.



39. p-Adic L-function

Recall of adjoint L-functions and L-invariant to state an appli-
cation.

We have one variable Ly, € I characterized by
2 _
Ly := Lp(1, Ad(pp)) = Lp(1, p”""* @ det(pp) ™)

and

L(1,Ad(fp))
period

Lp(P) := P(Lp) =

for all arithmetic P.



§10. Congruence criterion and L-invariant

If Spec(h) = Spec(l) U Spec(X) for the complement X, (under a
mild assumption)

I
(L)’

Adding the cyclotomic variable, because of the modifying Euler
p-factor,

Spec(l) N Spec(X) = Spec(l ® X) = Spec(

Ly(s, Ad(pr)) has exceptional zero at 1,

and for an analytic L-invariant 0 = L**(Ad(py)) in I[[%], we ex-

pect to have

L (s, Ad(pp)) = L7 (Ad(pp))Lyp.



§11. An application

The p-adic L-function Ly(s, Ad(fp)) has an exceptional zero at
s = 1 coming from modifying Euler p-factor. Greenberg pro-
posed Galois cohomological definition of an L-invariant L(Ad(fp)),
and we have the following formula in IMRN 59 (2004) 3177—
3189: for ¢ = —2log,(y) and a = a(p),

da
_ —1
L(Ad(fp)) =c-a tahz,yk(za)gp(,y)-

Thus P — L(Ad(fp)) is interpolated over Spec(l) as an analytic
function. If T has CM, as we have seen, a(p) = ct® for some

s € Zp. Thus we get

Theorem 1 (Constancy). P — L(Ad(fp)) is constant if and
only if py has CM.



§12. Finiteness proposition, start of the proof of Theorem

Two nonzero numbers a and b equivalent if a/b is a root of
unity. Let K; be the set of all extensions of Q[u,~] of degree
d < oo inside Q whose ramification at [ is tame. Here is a slight
improvement:

Proposition 1 (Finiteness Proposition). We have only finitely
many Weil l-numbers of a given weight in the set-theoretic union
Ukek, /£ up to equivalence.

The tameness assumption is not necessary if [ # p actually. The
proof is an elementary but subtle analysis of prime decomposition
of the Weil number. Tameness is assumed since in that case,
there are only finitely many isomorphism classes of K@Q Q; for
K € K4, and one can consider the prime factorization in a fixed
algebra K®@ Q; picking one isomorphism class.



§13. A rigidity lemma

Let W be a p-adic valuation ring finite flat over Z, and ®(T) €
WI[T]]. Regard & as a function of t =141T,; so, ®(1) = ®|p_g.
We start with a lemma:

Lemma 1 (Rigidity). Suppose that there is an infinite subset
Q C ppo(K) such that ®(Q2) C ppo. Then there exist (g € ppo
and s € Zy such that CO_1<|>(t) =5 =5 <8)T”.

n=0 \n

Note here that if

Z C Gm x G, = SpF(Wt, t=1,¢/,¢~1])
is a formal subtorus, it is defined by the equation t = t/° for
s € Qp. Thus we need to prove that the graph of the function
t— ®P(t) in Gy x Gy, is a formal subtorus.

This is an exercise (or see Section §3.1.4 of my recent Springer
book).



514. Frobenius eigenvalues.

Let A be an eigenvalue of py(Froby) if It Np, and if | = p, we put
A =a(p).

Suppose [Q(up=,ap(l)) : Q(upe)] is bounded over A (so, we
want to show that I is CM). This implies Kp = Q(pup=)(Ap)
has bounded degree over Q(up~); so, for primes [ > 0, Kp is
tamely ramified in Kp (the tameness assumption in Finiteness

Proposition). Indeed, [Q(¢y, fp) : Q(¥p)] < rankp h.
Proposition 2 (Eigenvalue formula). For a root of unity (g,

oo

AT = Got* =G0 3 ()T

n=0

Since a(l) p hits the same Weil number o up to p-power root of
unity, a(l)/«a satisfies the assumption of the rigidity lemma (after
some variable change); so, the above formula follows (a difficult
point is to show (g is a root of unity, which we do not discuss
here).



§15. Abelian image lemma

n=0
series ring W|[[T]] for s € Z,. Let R be an integral domain over

WI[T]] of characteristic different from 2. Assume that the en-
domorphism o5 on W{[T]] extends to an endomorphism o of R.

Consider the endomorphism og : t+— t5 = Y <fl)T” of a power

Lemma 2 (Abelian image). Take a continuous representation
p: Gal(Q/F) — GLo(R) for a field F C Q, and put p° := o o p.
If Tr(p®) = Tr(p2). Then p is absolutely reducible over the
quotient field Q of R.

Heuristically, the assumption implies that the square map: o —
,02(0) is still a representation p?; so, it has to have an abelian
image. Since any automorphism of the quotient field @ of Zy[[T]]
extends to its algebraic closure Q D I, we can apply the above
lemma to py.



§15. Proof of the theorem for [ = p. Suppose

1im [Qkpe, ap(p)) : Q)] < oo.

Step 1: We have [Kp : Q(up=)] bounded independent of [; so,
if [ >0, Kp is at most tamely ramified.

Step 2: We have Tr(p(Frob)) = ¢(1+T)2+¢'(1 +T)a/ for two
roots of unity ¢,¢’ and a,a’ € Qp.

Step 3: Not too difficult to show that the order of (, ¢ is
bounded independent of [.

Step 4: Let my =m{¥ + (7)) and p = py mod my for N >> 0 and
F' be the splitting field of p; so, taking N > 0, we may assume

Tr(p(Frob])) = (1 + 7)1 + (1 + T)7

for all [ > 0 as long as F’roblf c Gal(Q/F).
Step 5: This shows

Tr(osop) = Tr(p°)

over G = Gal(Q/F). Then by the above lemma, p*%|s is abelian,
and hence I is CM. [ ]



