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Abstract: A p-adic analytic family is a family of modular forms fP (eigenforms
of all Hecke operators) parameterized by geometric points P of an integral
scheme Spec(I) finite flat over Spec(Zp[[T ]]) whose geometric points is an

open unit disk of Qp. The Hecke eigenvalues of T (l) of fP is given by al(P)
for al ∈ I (so analytic). Such a family has corresponding Galois representation
ρI : Gal(Q/Q) → GL2(I). The family is said to have complex multiplication

if ρI has abelian image over an open subgroup of Gal(Q/Q). In this talk,
we emphasize by examples importance of characterizing CM and non CM
families.



§0. Notation:

Fix an odd prime p, a positive integer N prime to p and field

embeddings C←↩ Q ↪→ Qp.

Consider the space of cusp forms Sk+1(Γ0(Np
r), ψ) (r ≥ 1).

Let the ring Z[ψ] ⊂ C and Zp[ψ] ⊂ Qp be generated by the values

ψ over Z and Zp, respectively.

The Hecke algebra over Z is H = Z[ψ][T(n)|n = 1,2, · · · ] ⊂
End(Sk+1(Γ0(Np

r), ψ)). We put Hk+1,ψ = H ⊗Z[ψ] Zp[ψ]. Some-

times our T(p) is written as U(p) as the level is divisible by

p. The ordinary part hk+1,ψ ⊂ Hk+1,ψ is the maximal ring di-

rect summand on which U(p) is invertible. Let ψ1 = ψN ×
the tame p-part of ψ.

We call a Galois representation ρ CM if there exists an open

subgroup G ⊂ Gal(Q/Q) such that the semi-simplification (ρ|G)ss

has abelian image over G.
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§1. Big Hecke algebra

We have a unique ‘big’ Hecke algebra h = hψ1
characterized by

the following two properties:

1. h is free of finite rank over Λ := Zp[[T ]] equipped with T(n) ∈
h for n = 1,2, . . . ,

2. if k ≥ 1 and ε : Z×p /µp−1→ µp∞ is a character,

h⊗Λ,t7→ε(γ)γk Zp[ψkε]
∼= hk+1,εψk

(γ = 1 + p) for ψk := ψ1ω
1−k, sending T(n) ⊗ 1 to T(n),

where ω is the Teichmüller character.

Hereafter, we put t = 1 + T ∈ Λ.



§2. Analytic family

A point P of Spec(I)(Qp) is called arithmetic if it contains

(1 + T − ε(γ)γk) with k ≥ 1. If P is arithmetic, we have a Hecke

eigenform

fP ∈ Sk+1(Γ0(Np
r(P)), εψk)

such that fP |T(n) = aP(n)fP (n = 1,2, . . . ) for aP (n) := P (a(n)) =

(a(n) mod P ) ∈ Qp. We write εP = ε and k(P ) = k for such a

P . Thus I gives rise to an analytic family

FI = {fP |arithemtic P ∈ Spec(I)}.
The Hecke field K(fP ) is the field generated over a number field

K by all Hecke eigenvalues of fP .

Note that [Q(ψk, fP) : Q(ψk, aP(p))] is bounded by rankZp[εψk]
hk+1,εψk

equal to rankΛ h independent of P as fσP for any σ ∈ Gal(Q/Q)

fixeing Q(εψk, aP(p)) has slope 0 still comeing from hk+1,εψk
.



§3. Galois representation

Each irreducible component Spec(I) ⊂ Spec(h) has a Galois

representation

ρI : Gal(Q/Q)→ GL(2)

with coefficients in the quotient field of I such that

Tr(ρI(Frobl)) = a(l)

(for the image a(l) in I of T(l)) for almost all primes `. Usually

ρI has values in GL2(I), and we suppose this for simplicity. The

component I is called CM if ρI has abelian image over an open

subgroup.

We regard P ∈ Spec(I)(Qp) as an algebra homomorphism P :

Zp[[T ]]→ Qp, and we put ρP = P ◦ ρI : Gal(Q/Q)→ GL2(Qp).

If I is a CM component, it is known that for an imaginary

quadratic field M in which p splits, there exists a Galois character

ϕI : Gal(Q/M)→ I× such that ρI
∼= IndQ

M ϕI.



§4. p-adic L

One expects to have a two variable p-adic L-function Lp(s, ρ
sym⊗n
I

)

for each symmetric power interpolating L(s, f
sym⊗n
P ). In partic-

ular, we have Lp(s,Ad(ρI)). We have Lp := Lp(1, Ad(ρI)) =

Lp(1, ρ
sym⊗2
I

⊗ det(ρI)
−1) ∈ I and

(Lp mod P ) = L(1, Ad(fP))/period for all arithemtic P .

We also know that if Spec(h) = Spec(I) ∪ Spec(X) for the com-

plement X, we have a congruence criterion

Spec(I) ∩ Spec(X) = Spec(I⊗h X) ∼= Spec(I/(Lp)).

Adding the cyclotomic variable, because of the modifying Euler

p-factor, Lp(s,Ad(ρI)) has an exceptional zero at s = 1, and for

an L-invariant 0 6= L(Ad(ρI)) ∈ I, we have

dLp

ds
(s,Ad(ρI))|s=1 = L(Ad(ρI))Lp.



§5. Is characterizing CM components important?

• (Well known) I is CM ⇔ there exist an imaginary quadratic

field M = Q[
√
−D] in which p splits into pp and a character

ϕ : GM = Gal(Q/M)→ I× of conductor cp∞ for an ideal c - p with

ρI = IndQ
M ϕ. Moreover we have

Lp = Lp(ϕ
−)L(0,

(
M/Q

)

),

where ϕ−(σ) = ϕ(cσc−1σ−1) for complex conjugation c, and

Lp(ϕ−) is the Katz p-adic L-function associated to ϕ−. This

is a base of the proof by Mazur/Tilouine of the anticyclotomic

main conjecture.

• (Known) I is CM ⇔ ρI modulo an arithmetic prime is CM.

• (Almost known) I CM⇔ ρI mod p is CM. This is almost equiv-

alent to the vanishing of the Iwasawa µ-invariant for Lp(ϕ−).



§6. Examples continue.

• (Known for Greenberg’s L-invariant) L(Ad(ρI)) is constant in
Qp if and only if I is CM.
• (Likely) [Q(aP (l)) : Q] is bounded for P running over infinitely
many arithmetic points with fixed level N ⇔ I is CM? Maeda’s
conjecture implies this if the level is N = 1.
• (Mostly true) Fix k ≥ 1 and a prime l - N . Then [K(aP (l)) : K]
(K = Q(µp∞)) is bounded for P running over infinitely many
arithmetic points with fixed weight k ⇔ I is CM. This is true for
a prime l in a density 1 set (including p).
• (Mostly true) Let L := Z(p)[t

logp(α)/ logp(γ)] ⊂ Λ, where α runs
all algebraic integers in Qp. Then a(l) is transcendental over L.
True for density one set of primes l. Note that P (L) ⊂ Q.
• (Mostly known) I non CM ⇔ Im(ρI) ∩ SL2(Λ) ⊃ ΓΛ(c) =
Ker(SL2(Λ) → SL2(Λ/c)) for a non-zero ideal c. What is c?
Often a p-adic L.
• (Known) I non CM ⇔ ρI restricted to Gal(Qp/Qp) is upper tri-
angular indecomposable. This is due first to Ghate–Vatsal and
later Hida–Zhao (in a different way).



§7. Wild Guesses.

• (?) a(l) mod p is transcendental over L/pL in I⊗Zp Fp if p - N .

This implies Iwasawa’s conjecture of vanishing of µ-invariant of

Kubota–Leopoldt p-adic L.

• (Wild guess) Is I is CM if and only if L(Ad(fP )) = logp(p/p) for

one arithmetic P up to algebraic numbers? Here taking a high

power (p/p)h = (α), logp(p/p) = 1
h logp(α).

• (Wild guess) Then I is CM if the family contains a rational

Hecke eigenform fP of weight k ≥ 27??

All interesting outcome; so, perhaps, characterization is impor-

tant!



§8. Theorem:

For any infinite set A of arithmetic points in Spec(I)(Qp) of a
fixed weight (varying p-power level), there exists a density one

subset Ξ of primes including p such that

lim
P∈A

[Q(µp∞, aP(l)) : Q(µp∞)] =∞

for each l ∈ Ξ.

There is a Hilbert modular version, which is somehow more in-

teresting as Spec(I) has dimension equal to the degree d of the
base totally real field, but still this is valid for any infinite set A
of fixed weight (whose closure could be very small).

If one allows to move all Hecke eigenforms of fixed weight k ≥ 2
(not just those in the family), there is an analytic method in-
vented by Serre to show infinite growth of Hecke fields. This
method is now generalized to automorphic forms on unitary

Shimura varieties by Shin and Templier.

We might give a sketch of a proof for l = p later.



§9. p-Adic L-function

Recall of adjoint L-functions and L-invariant to state an appli-

cation.

We have one variable Lp ∈ I characterized by

Lp := Lp(1, Ad(ρI)) = Lp(1, ρ
sym⊗2
I

⊗ det(ρI)
−1)

and

Lp(P ) := P (Lp) =
L(1, Ad(fP ))

period

for all arithmetic P .



§10. Congruence criterion and L-invariant

If Spec(h) = Spec(I) ∪ Spec(X) for the complement X, (under a

mild assumption)

Spec(I) ∩ Spec(X) = Spec(I⊗h X) ∼= Spec(
I

(Lp)
)

Adding the cyclotomic variable, because of the modifying Euler

p-factor,

Lp(s,Ad(ρI)) has exceptional zero at 1,

and for an analytic L-invariant 0 6= Lan(Ad(ρI)) in I[1p ], we ex-

pect to have

L′p(s,Ad(ρI))
?
= Lan(Ad(ρI))Lp.



§11. An application

The p-adic L-function Lp(s,Ad(fP )) has an exceptional zero at

s = 1 coming from modifying Euler p-factor. Greenberg pro-

posed Galois cohomological definition of an L-invariant L(Ad(fP )),

and we have the following formula in IMRN 59 (2004) 3177–

3189: for c = −2 logp(γ) and a = a(p),

L(Ad(fP )) = c · a−1t
da

dt
|
t=γk(P)εP (γ)

.

Thus P → L(Ad(fP )) is interpolated over Spec(I) as an analytic

function. If I has CM, as we have seen, a(p) = cts for some

s ∈ Zp. Thus we get

Theorem 1 (Constancy). P → L(Ad(fP )) is constant if and

only if ρI has CM.



§12. Finiteness proposition, start of the proof of Theorem

Two nonzero numbers a and b equivalent if a/b is a root of

unity. Let Kd be the set of all extensions of Q[µp∞] of degree

d <∞ inside Q whose ramification at l is tame. Here is a slight

improvement:

Proposition 1 (Finiteness Proposition). We have only finitely

many Weil l-numbers of a given weight in the set-theoretic union
⋃
K∈KdK up to equivalence.

The tameness assumption is not necessary if l 6= p actually. The

proof is an elementary but subtle analysis of prime decomposition

of the Weil number. Tameness is assumed since in that case,

there are only finitely many isomorphism classes of K ⊗Q Ql for

K ∈ Kd, and one can consider the prime factorization in a fixed

algebra K ⊗Q Ql picking one isomorphism class.



§13. A rigidity lemma

Let W be a p-adic valuation ring finite flat over Zp and Φ(T) ∈
W [[T ]]. Regard Φ as a function of t = 1+T ; so, Φ(1) = Φ|T=0.

We start with a lemma:

Lemma 1 (Rigidity). Suppose that there is an infinite subset

Ω ⊂ µp∞(K) such that Φ(Ω) ⊂ µp∞. Then there exist ζ0 ∈ µp∞
and s ∈ Zp such that ζ−1

0 Φ(t) = ts =
∑∞
n=0

(
s
n

)
Tn.

Note here that if

Z ⊂ Ĝm × Ĝm = Spf( ̂W [t, t−1, t′, t′−1])

is a formal subtorus, it is defined by the equation t = t′s for

s ∈ Qp. Thus we need to prove that the graph of the function

t 7→ Φ(t) in Ĝm × Ĝm is a formal subtorus.

This is an exercise (or see Section §3.1.4 of my recent Springer

book).



§14. Frobenius eigenvalues.

Let A be an eigenvalue of ρI(Frobl) if l - Np, and if l = p, we put
A = a(p).

Suppose [Q(µp∞, aP(l)) : Q(µp∞)] is bounded over A (so, we
want to show that I is CM). This implies KP = Q(µp∞)(AP )
has bounded degree over Q(µp∞); so, for primes l � 0, KP is
tamely ramified in KP (the tameness assumption in Finiteness
Proposition). Indeed, [Q(ψk, fP ) : Q(ψp)] ≤ rankΛ h.

Proposition 2 (Eigenvalue formula). For a root of unity ζ0,

A(T) = ζ0t
s = ζ0

∞∑

n=0

(s
n

)
Tn.

Since a(l)P hits the same Weil number α up to p-power root of
unity, a(l)/α satisfies the assumption of the rigidity lemma (after
some variable change); so, the above formula follows (a difficult
point is to show ζ0 is a root of unity, which we do not discuss
here).



§15. Abelian image lemma

Consider the endomorphism σs : t 7→ ts =
∑∞
n=0

(
s
n

)
Tn of a power

series ring W [[T ]] for s ∈ Zp. Let R be an integral domain over

W [[T ]] of characteristic different from 2. Assume that the en-

domorphism σ2 on W [[T ]] extends to an endomorphism σ of R.

Lemma 2 (Abelian image). Take a continuous representation

ρ : Gal(Q/F ) → GL2(R) for a field F ⊂ Q, and put ρσ := σ ◦ ρ.
If Tr(ρσ) = Tr(ρ2). Then ρ is absolutely reducible over the

quotient field Q of R.

Heuristically, the assumption implies that the square map: σ 7→
ρ2(σ) is still a representation ρσ; so, it has to have an abelian

image. Since any automorphism of the quotient field Q of Zp[[T ]]

extends to its algebraic closure Q ⊃ I, we can apply the above

lemma to ρI.



§15. Proof of the theorem for l = p. Suppose

lim
P∈A

[Q(µp∞, aP(p)) : Q(µp∞)] <∞.

Step 1: We have [KP : Q(µp∞)] bounded independent of l; so,
if l� 0, KP is at most tamely ramified.
Step 2: We have Tr(ρ(Frobl)) = ζ(1+ T)a+ ζ ′(1+ T)a

′
for two

roots of unity ζ, ζ ′ and a, a′ ∈ Qp.
Step 3: Not too difficult to show that the order of ζ, ζ ′ is
bounded independent of l.
Step 4: Let mN = mN

I
+(T) and ρ = ρI mod mN for N � 0 and

F be the splitting field of ρ; so, taking N � 0, we may assume

Tr(ρ(Frob
f
l )) = (1 + T)fa + (1 + T)fa

′

for all l� 0 as long as Frob
f
l ∈ Gal(Q/F ).

Step 5: This shows

Tr(σs ◦ ρ) = Tr(ρs)

over G = Gal(Q/F ). Then by the above lemma, ρss|G is abelian,
and hence I is CM.


