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Abstract

For an odd prime p, we compute the p-invariant of the anticyclotomic
Katz p-adic L-function of a p-ordinary CM field if the conductor of the
branch character is a product of primes split over the maximal real sub-
field. Except for rare cases where the root number of the p-adic functional
equation is congruent to —1 modulo p, the invariant vanishes.
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1 Introduction

We fix a rational prime p. In our book [PAF] 4.2.4 and 8.4, we computed
the monodromy group at p inside the automorphism group G of the arithmetic
automorphic function field of the Shimura variety of symplectic and unitary
type. In this paper, we shall carry out a similar computation of the monodromy
group of the Serre-Tate deformation space realized as a formal completion of
the tower of the Hilbert modular varieties at an ordinary abelian variety with
real multiplication (see Corollary 3.5). This combined with the g—expansion
principle enables us to compute the py—invariant of the anti-cyclotomic Katz p—
adic L-function in an explicit manner. In other words, under mild assumptions,
we shall prove the vanishing of the py—invariant of the p—adic Hecke L—functions
constructed by Katz in [K3] (see also [HT]). Let F be an algebraic closure of
F, and W(IF) be the ring of Witt vectors with coefficients in F. We fix a p-adic
valuation ring W finite flat over W (FF). Fix an algebraic closure Q,, (resp. Q) of

~

Qp (resp. Q) and write @p for the p—adic completion of @p. We regard W C Q.

To state the result precisely, we first recall nice properties of the p—adic Katz
measure ¢ = @¢ (of prime-to—p conductor €) interpolating Hecke L—values.
Let F' be a totally real number field and M be a totally imaginary quadratic
extension of F' (hereafter such fields will be called CM fields). We write Dy for
the discriminant of F'. We write O (resp. O) for the integer ring of M (resp. F).
We fix two embeddings throughout the paper: i, : Q — C and Ip Q— @p.
We suppose throughout the paper the following ordinarity hypothesis:

(ord) FEwvery prime factor of p in F splits in M.

Then, writing ¢ both for complex conjugation of C and of Q induced under i,
we can choose a set of embeddings ¥ of M into Q such that

(eml) X U Xec is the set of all embeddings of M into Q;

(cm2) the p—adic place induced by any element of ¥ composed with iy, is distinct
from any of those induced by elements in Xc.

The set ¥ satisfying (cm1-2) is called a p—adic CM-type. Under (ord), we can
find a p-adic CM-type, and we fix one such ¥. We write ¥,, for the set of p-adic
places (hence of prime ideals of M over p) induced by the embedding i, o o for

o € X. We fix a finite idele d € Méoo) (resp. dp € Fléoo)) such that the ideal



corresponding to d (resp. dp) is the different 057 (resp. ?) of M/Q (resp. F/Q).
Let X : M /M* — C* be a Hecke character such that

New) = [ et
ceD

where k and k, are integers. Then A has values in Q on the finite part
M., of M. Moreover, the map A : M, /M* — @: defined by A(z) =
M) [Tyex x](ng”i"(lfc))g is a well defined continuous character, which is called

the p—adic avatar of A\. By class field theory, we may regard X as a Galois char-
acter A : Gal(Q/M) — @; We can associate A its dual \* given by A*(x) =
A(2¢)~!z|s. Then the p-adic avatar of A* is given by A*(z) = A(z°) "N (z)~!
for the p-adic cyclotomic character N. Let 9 be a prime of M dividing the
conductor of A and let dg be a generator of the different of Mg. We define the
local Gauss sum of A at prime ideals 9 dividing the conductor of A by

G(da, Aa) =Mwg?) Y. la(wem(wy®dy'u), (1.1)
u€e(Dgn/Ne)X

where wgq is a prime element of the Q—adic completion My, Dg is the Q-adic
integer ring of Mg, Ag is the restriction of A to MS, e is the exponent of Q in
the conductor of A and ey : My /M — C* is the standard additive character
normalized as ey (7o) = exp(2myv/—1Tr(7s)). Outside the conductor of A, we
simply put G(da,Aq) = 1. We can define the complex and the p-adic period
Qoo € (F ®g C)* 2 (CF)* and Q, € (O ®z W) as in [K3] (see Section 4.4
in the text for more details). In fact, these numbers are defined uniquely only
modulo @X but the ratio “Qs/€Q,” is uniquely determined. Finally, we fix an
9-ideal € prime to p and choose an element § € M such that

(d1) 6 = =6 and iee(Im(67)) > 0 for all o € X,

(d2) The alternating form (z,y) = Tryy, F(%) induces an isomorphism O A
O = ¢ 197! for an ideal ¢ prime to p@ee,

where 9 is the different of F'/Q. By (d2) above, if  is prime to ¢, one can
choose dg in (1.1) to be 2§ or (2§)¢. Then we define root numbers:

W,(\) = [ Najo(P=*)G(26; Ap),
Pex,

W) =] G(@0)%a:h T G@sah [TG(@0)Ah, (1.2)

£IF £[8e 13

where we decomposed € = §F.J so that §F. consists of split primes over F,
J consists of inert or ramified primes over F', §F+ F. = O and §& O §. We
constructed in [HT] (following [K3] where the case € = 1 is treated) a unique
measure @ on the ray class group Z = Z(€) modulo €p> of M characterized



by the following formula:

Jze) Mo

(=127 (kX + k)
AT (O* : O)W,(N)

|Dp| Im(8)rQEE+2x
X H(l = AN H (1= A(P9)) H (1= A"(P)ILO0,A) (1.3)

gle Pex, Pex,

for all Hecke characters A modulo €p*> such that (i) its conductor is divisible
by all prime factors of §, (ii) the infinity type of A is kX + k(1 —¢) for an integer
k and Kk = ZUGE Ky0 with integers k., satisfying either £ > 0 and x, > 0 or
k <1 and k, > 1— k. Moreover denoting the measure ¢ for Z(€¢) by ¢., we
have the following functional equation

/ o = AN(cfl)W’(A)/ N d,

Z(9) Z(e°)

as long as the conductor of A is divisible by all prime factors of §. Here, we used
the following convention for an element & of the formal free module generated
by ¥ and for z € C* and z € W*:

2t =[] 25 and I'n(¢) = [ T(&)

ceD ceEX

The set ¥ is also identified with the formal sum . o, and a € M (including
—1) is considered to be an element of C* via diagonal embedding a +— (a%)yex.
By abusing this convention, 7 is considered to be the diagonal element (7),ex
in C*. We have written >, for the set of prime ideals corresponding to p-adic
places induced by i, o o for ¢ € 3. The L-functions in (1.3) is always the
primitive one associated with a primitive Hecke character. We also tacitly agree
to put A(Q) = 0 if Q divides the conductor of A.

Let A = A(C) be the maximal torsion subgroup of Z(€). A character
P A — W* is called a branch character. We fix a splitting Z(€) = A x T for a
Zp-free subgroup I' so that 1 and any function ¢ on I' can be considered to be
functions on Z(€) via pullback by the projections: Z(€) - A and Z(¢) — T.
The 1-branch ¢, of the measure ¢ is defined on I' and is given by

/F by = /Z o o

Since T is isomorphic to Z(1)/A(1), Gal(M/F) acts on I' naturally. We write
7~ for the projection of T' onto I'~ = T'/TG2M/F) " on which the generator
c € Gal(M/F) acts by —1 : x +— 2¢ = 2~ We write Py =Ty Pyt

/Ff ¢d%:/r¢om%

Take a Hecke character A of infinity type x(1 —¢) for sufficiently large x (so, k =
0) which is trivial on Ag¢ factoring through 7= (such a character always exists



for a well chosen ). Then the characters {wa}x for finite order characters  :
I'™ — @X span a dense subspace of continuous functions on I'", because finite
order characters span the dense subspace of locally constant funct1ons The
constant Ay (c) =W’ (1hAy) only depends on ¢ and is equal to ¢(c)~ W' (1)).
Indeed, because of Ax( )= Ax( )~ (and Ay factoring through I'"), we have
YAx(e) = 1(c) (by ¢ = ¢), ¥Ax|px = Plox for O fp, and Ax(@awae) = 1
(taking wae = @g). This implies G(dq, ¥Ax) = G(da,¥) and

PAX() I (AX) = ¢(c) W (¢)

as desired. Thus the above functional equation stated for characters is actually
valid for all continuous functions ¢ on I'":

[ ey =N W) [ 0tagg =N W) [ odey.,

where ¢*(x) = ¢(x~¢)N(z) ™! = ¢(x) because N(I'") = 1 and ¢ factors through
I'”™ on which x — x7¢ is the identity map. From this, the functional equation
for ¢, can be stated as an identity of the two measures on I'":

dp,, = YN (cHW' ($)dey,..
Thus the measure ¢,, vanishes modulo my if the following condition is satisfied:
Y* =1 modmy and YN(cHW' ()= -1 mod myy. (V)

If (V) is satisfied, the p-invariant of the measure ¢, is positive. Our main
result of this paper is as follows:

Theorem I. Suppose that p > 2 and that p is unramified in F/Q. Further
suppose thatJ = 1. Then the p—invariant of ¢,, vanishes, unless (V) is satisfied.

When (V) is satisfied, p(p,,) is finite and positive.

Actually, we prove a stronger result: Theorem 5.1, computing p(¢,,) explic-
itly in terms of the branch character ¢, and u(yp,,) is given by p(¢) in (5.27).

The above theorem of course implies the vanishing of p(py) unless (V) is
satisfied. Even if (V) is satisfied, p(¢y) might well vanish, but we only study the
anticyclotomic measure ¢, in this paper. The condition (V) is rarely satisfied
because it is equivalent to the following three conditions (see Lemma 5.2):

(M1) M/F is unramified at every finite place;
(M2) The strict ideal class of the polarization ideal ¢ in F' is not a norm class

of an ideal class of M (< (M/F) =-1);

c

(M3) a~ (¢(a)Np/g(a) mod my) is the character (M—/F) of M/F.



The last condition (M3) is equivalent to ¢¥* = v mod my,; (M2) depends on
our choice of the CM-type X, and even if (M1) and (M3) are satisfied, (M2)
could fail (see the example after the proof of the theorem in Subsection 5.4).

Basically at the same time when this paper was first written, for imaginary
quadratic field M = Q(v/—D), the p—invariant of the anti-cyclotomic part was
determined by Finis [F2] without assuming J = 1, by a different method directly
studying the associated CM elliptic curve (and perhaps, his method can be
generalized to general CM fields). Our method does not yield a proof of the
vanishing of p of the restriction to the Galois group of the Coates—Wiles Z,—
extension of an imaginary quadratic field (which has been proven in [G1]). We
will recall the definition of the p—invariant at the end of this introduction.

Recently, Vatsal in [V1], [V2] and [V3] has proposed an idea proving the
vanishing of the py—invariant for many p-adic L—functions of elliptic modular
forms over an imaginary quadratic field (that is, the p-adic Rankin product of
an elliptic modular form with an elliptic cusp form with complex multiplication
by the imaginary quadratic field). His result also concerns with the anticyclo-
tomic restriction of the p-adic L—function and is a modular generalization of
the classical method of Ferrero-Washington [FW].

By this theorem, as long as J = 1 and p is unramified in F/Q and (M1-3)
are not satisfied, the main divisibility result in [HT] Theorem I holds in the
Iwasawa algebra A there in place of the weaker divisibility in A ®z Q proven
in [HT]. We can prove this stronger divisibility even under (M1-3) (see [HO7]),
which results a proof of the anticyclotomic main conjecture under some mild
assumptions (see [HO06]).

In [Si], Sinnott gave an algebro-geometric proof of the theorem of Ferrero-
Washington, relying on the analysis of rational functions on G,,/r, (under tran-

scendental automorphisms of the formal group @m) Our idea is the use of
Hilbert modular Shimura varieties and Eisenstein series in place of G,, and ra-
tional functions. Though the origin of our idea goes back to [Si], in order to
make it work for the Shimura variety in place of geometrically easy G,,, we are
forced to go through an extensive study of the g—expansion of Eisenstein series
and the geometry of the moduli space of abelian varieties with real multiplica-
tion by O (abbreviated as AVRM). The g—expansion principle is equivalent to
geometric irreducibility of the mod p fiber of the variety, which was shown by
Ribet [DR] Section 4 (the study of G also yields the irreducibility; see [PAF)]
4.2.4 and [HO8]). The datum of an ordinary CM type gives rise to an abelian
scheme A of the given CM type over W. We will construct an Eisenstein series
E, indexed by a € 2 for an appropriate finite subset 2 of automorphisms of the
deformation space of A with the following properties:

1. E, is congruent to an arithmetic Eisenstein series modulo p.

2. Elements in 2 are disjoint modulo the stabilizer of A inside the automor-
phism group of the moduli space (that is, the Hilbert modular Shimura
variety).



3. The functions a(E,) = E, oa for a € Q with E, 0 mod p are linearly
independent modulo p.

4. The expansion of a non-zero linear combination of {a(F,)}secq with re-
spect to the canonical variable t of the Serre-Tate deformation space of A
coincides with the power series expansion of a given branch of the (anti-
cyclotomic) Katz measure in the theorem.

Some technical reasons aside, the assumption of unramifiedness of p in F' is
made to guarantee the smoothness over Z, of Hilbert modular varieties of level
prime to p. The smoothness might not be necessary, anyway; so, we might be
able to dispose of this condition by applying our method more carefully.

After proving the theorem in Section 5, we discuss what happens when
J # 1. In this case, Gillard showed that the anticyclotomic p—invariant is
positive for some order p branch characters for infinitely many choices of J
([G2] Proposition 2). We will reprove this result of Gillard in Subsection 5.5,
employing our technique. This is included in order to show that the g—expansion
of our Eisenstein series fully reflects divisibility by p of the Katz measure (and
also as a good evidence for the reliability of our method). The computation
of the p—invariant, when the branch character is ramified and primitive at a
nonsplit prime of M over F, seems far more demanding than in the case of
split-prime level. We hope to come back to this question in future.

We recall in the rest of the introduction the notion of the y—invariant of p—
adic measures and a brief history of proofs of vanishing of the y—invariant of some
other p—adic L—functions. The space A of p—adic measures on I'”™ with values
in W is a p—adic Banach algebra under the convolution product induced from
the group structure on I'". Then A is isomorphic canonically to the continuous
group algebra W[[I'"]] via the isomorphism which takes the Dirac measure at
v € I'" to the element v € W[[['"]]. Choosing a base of I'", this non-canonical
identification with ZLF:Q] induces in turn an isomorphism of W[I'"]] onto the
formal power series ring over W of [F' : Q] variables. Especially, A is regular
and a unique factorization domain. The uniformizer w of W is a prime element
in A. The py—invariant of a measure ¢~ € A is the exponent p such that w
divides exactly ¢~. In other words,

|w|z<@>—Sup¢\ / odem| I8y (16l =Sup, [6@)).  (14)
p

where | |, is the normalized absolute value of Q,, (extended uniquely to @p),
and ¢ runs over all continuous functions on I'™ with values in W.

In the case of Kubota-Leopoldt p—adic L—functions, the vanishing of the
p—invariant was predicted by Iwasawa from the point of view of his theory of
cyclotomic Zj,—extensions, and the conjecture was proven by Ferrero and Wash-
ington [FW] later, and more recently a new and simpler proof was given by
Sinnott [Si]. The idea of Sinnott paved the way of treating the problem even
for the elliptic Zﬁfextensions of imaginary quadratic fields, and a proof of the
vanishing of the Katz-Yager p-adic L-functions for imaginary quadratic fields



was then given by Gillard [G1] and Schneps, independently, according to this
line. I collaborated with R. Gillard in the early 1990’s and proved a result sim-
ilar to the one presented here for partial Hecke L—functions directly related to
Katz’s Eisenstein measure (see [G2]). A new input here is Shimura’s determina-
tion ([Sh2] II) of the automorphism group G of the arithmetic Hilbert modular
function field and the study of the action of G on the Serre-Tate canonical co-
ordinate of the universal deformation space of a CM abelian variety. This new
input combined with a Zariski density result of a positive dimensional subset
stable under the action of an algebraic torus in G enabled us to prove the linear
independence of {a(F,)}ecq modulo p (see Corollary 3.21).

The density result (see Proposition 3.8 and its slight generalization: Propo-
sition 3.11) is an adaptation of Chai’s density result of a Hecke orbit (see [C2]
Section 5) to our setting. In earlier versions of this paper, the proof of this
density result relied on a lifting argument of the mod p subvariety to a charac-
teristic 0 formal scheme. Although lifting works well over the ordinary locus,
C.-L. Chai pointed out to me a flaw in the proof. He suggested to use the tech-
niques in his three papers from [C2] to [C4] to recover the result. Also in the
earlier versions, the condition (V) was not presented as it is now, and we claimed
the vanishing rather unconditionally. Actually, the author found a discrepancy
in the computation of the g—expansion of the Eisenstein series, which resulted
a better understanding of the circumstances with non-triviality of x4 only when
(M1-3) (& (V)) are satisfied.

The author would like to thank Ching-Li Chai for his remarks and assistance.
The author would like to also thank Roland Gillard and Jacques Tilouine and
the referees of this paper who read carefully the drafts of this paper and pointed
out several mistakes.

2 Serre—Tate Deformation Space

In this section, we describe deformation theory of abelian schemes over local
W,,—algebras for W,,, = W/p™W. We follow principally Katz’s exposition [K2].

2.1 A Theorem of Drinfeld

Let R be a local W,,—algebra, and R-LR is the category of local R-algebras.
Let G : R-LR — AB be a covariant functor into the category AB of abelian
groups. When m = oo (that is, Wo, = W), the category R-LR is made up
of p—adically complete local R-algebras B = @n B/p™B and morphisms are
supposed to be p-adically continuous. For simplicity, we always assume that
rings we consider are noetherian. If we regard G as a functor from the category
of affine R schemes (or formal schemes), it is contravariant. Suppose that, for
any faithfully flat extension of finite type B — C' of R-algebras,

1. The group G(B) injects into G(C), that is, G(B) — G(C);

2.Let C'"=C®pCand C"=C®p C®p C. Write 1; : C — C' (i =1,2)
for the two natural inclusions (with ¢1(r) =7 ® 1 and t2(r) = 1 ® r) and



tij : C" — C" for the three natural inclusions (i.e. t12(r®s) =r®s®1
and so on). If x € G(C) satisfies y = G(¢1)(x) = G(12)(x) and G(i12)(y) =
G(t23)(y) = G(t13)(y), then z is in the image of G(B).

Such a G is called an abelian sheaf on R—L R under the fppf—topology (or simply
abelian fppf-sheaf). We denote by R—Gp the category of abelian fppf sheaves
over R. If A/p is an abelian scheme, then G(B) = A(B) = Homg(Spec(B), A)
(S = Spec(R) or Spf(R)) is an fppf-sheaf.

The following definition of p-divisibility is in a naive sense weaker than Tate’s
notion of p-divisible groups. We call an abelian fppf sheaf G a p-divisible fppf
sheaf if for any « € G(B), there exists a finite faithfully flat extension C' of B
and a point y € G(C) such that z = py. If G is an abelian scheme A (including
non-p-torsion points), it is a p—divisible fppf sheaf.

We call a p-divisible fppf sheaf G5 a p-divisible group or a Barsotti-Tate
group if G =lim G[p"] for finite flat group schemes G[p"] = Ker(p" : G — G)
over S with closed immersions G[p"] — G[p™] for m > n and the multiplication
[p™ "] : G[p™] — G[p"] is an epimorphism in the category of finite flat group
schemes. Thus A[p>] = |J,, A[p"] for A[p"] = Ker(p" : A — A) is a Barsotti-
Tate p-divisible group if A, is an abelian scheme.

Let R be a local W-algebra and I be an ideal of R such that 1V*! =0 and
NI =0 for an integer N equal to a power of p. Define functors G; and G by

G1(B) = Ker(G(B) — G(B/I)) and G(B) = Ker(G(B) — G(B/mg)),
where mp is the maximal ideal of B. When G(B) = Homp., (R, B)(= G(B))
for R = R[[T1,...,Ty]] (that is G,z = Spf(R),r) and the identity element O
corresponding to the ideal (T1,...,T},), we call G a formal group. If G is formal,
then the map Homg_rgr(R, B) 2 ¢ — (¢(T1), ..., #(T},)) identifies Gr(B) with
the set I x I x -+ x I (n times) endowed with a formal group law.

Suppose that G/ is formal. Then for any integer m, the endomorphism [m)
of multiplication by m on G induces a continuous algebra endomorphism [m]* :
R — R; it induces multiplication by m on Qg g = (T1,...,Tn)/(Th, ..., Tp)?,
hence on the tangent space T g too. Thus [N](T;) = NT; mod (T1,...,T,)?,
and [N](Gr(B)) = Gr2(B) because NI = 0. Similarly, we have inductively,
[N](G1e(B)) = Gra+1(B). Thus [N¥]G = Gy = {0}. We get

G C GIN"] if G is formal, (2.1)
where G[m| = Ker([m] : G — G) is the kernel of [m].

Theorem 2.1 (Drinfeld). Let G and H be abelian fppf-sheaves over R-LR
and I be as above. Let Go and Hy be the restriction of G and H to R/I-LR.
Suppose

(i) G is a p—divisible fppf sheaf;
(ii) H is formal (so, H(B) — H(B/J) is surjective for any nilpotent ideal .J ).
Then



(1) The modules Hompg.gp(G, H) and Hompg;.cp(Go, Ho) are p—torsion-free,
where the symbol “‘Homx.gp” stands for the homomorphisms of abelian
fopf-sheaves over X-LR;

(2) The natural map, so-called
“reduction mod I”: Hompg.gp(G, H) — Hompg,.cp(Go, Ho)
18 1njective;

(3) For any fo € Hompg/;.cp(Go, Ho), there exists a unique homomorphism
® € Homp.¢p(G, H) such that & mod I = NV fy. We write as in [K2]
“NYf7 for @ even if f exists only in Homp.qp(G, H) @z Q;

(4) In order that f € Hompg.cp(G, H), it is necessary and sufficient that
“NYf7 kills G[N"].

Proof. The first assertion follows from p—divisibility, because if pf(z) = 0 for
all z, taking y with py = z, we find f(z) = pf(y) = 0 and hence f = 0.

We have an exact sequence: 0 — Hy — H — Hy — 0; so, we have another
exact sequence:

0 — Hom(G, H) — Hom(G, H) —22!

Hom(G, H()) = HOHl(Go, Ho),
which tells us the injectivity since Hj is killed by N” and Hom(G, H) is p-
torsion-free.

To show (3), take fo € Hom(Go, Hy). By surjectivity of H(B) — Hy(B/I),
we can lift fo(z mod I) to y € H(B). The class y mod Ker(H — Hy) is
uniquely determined. Since Ker(H — Hy) is killed by NV, for any x € G(B),
therefore N"y is uniquely determined; so, = +— N"y induces functorial map:
“NYf": G(B) — H(B). This shows (3).

The assertion (4) is then obvious from p-divisibility of G. The uniqueness
of f follows from the p—torsion-freeness of Hom(G, H). O

2.2 A Theorem of Serre—Tate

Let A, be the category of abelian schemes defined over R. We consider a
category Def(R, R/I) of triples (Ag, D, €), where Ap is an abelian scheme over
R/I, D is p-divisible, and € : Dy = Ag[p>°]. We have a natural functor A,p —
Def(R,R/I) given by A (A9 = A mod I, A[p>],id).

Theorem 2.2 (Serre-Tate). The above functor: A/p — Def(R,R/I) is a
canonical equivalence of categories.

Proof. By Drinfeld’s theorem applied to A[p™] and A (both abelian fppf—
sheaf), the functor is fully faithful (see [K2] for details). It is known that we
can lift Ag to an abelian scheme B over R. This follows from the deformation
theory of Grothendieck ([GIT] Section 6.3 and [CBT] 2.8.1). Assume that Ay
is ordinary. When R/I is a finite field, by a theorem of Tate, Ag has complex

10



multiplication. By the theory of abelian varieties with complex multiplication,
Ap can be lifted to a unique abelian scheme B over R with complex multiplica-
tion (the canonical lift), because isomorphism classes of such abelian varieties
of CM type corresponds bijectively to lattices (up to scalar multiplication) in
a CM field. Thus we have an isomorphism a(()p ). By [p*°] — Ao[p*]. Then we
have a unique lifting (by the Drinfeld theorem) that f : B[p™] — D of N ”agp ).
Clearly, f is an isogeny, whose (quasi) inverse is the lift of N* (aép ))*1. Thus
Ker(f) is a finite flat group subscheme of B. The geometric quotient of B by
a finite flat group subscheme exists (see [ABV] Section 12) and is an abelian
scheme over R. Then dividing B by Ker(f), we get the desired A/r € A/g. O

2.3 Deformation of an Ordinary Abelian Variety

Let S = Spec(Og) be an affine scheme over F, and (A4,w) be a pair of an
abelian variety over S of relative dimension g and a basis w = wy,...,wg of
H%(A,Q4/s) over Og. Write m : A — S for the structure morphism. We have
the absolute Frobenius endomorphism Fyps : S — S. Let T4 /s be the relative
tangent bundle, and consider the direct image 7,74, over S; so, H°(S, m,T4/s)
is spanned by the dual base n = n(w). For each invariant derivation D of Oy,
by the Leibnitz formula, we have

P
DP(zy) = Z (?) DPigDiy = xDPy + yDP .
j=0

Thus DP is again a derivation. The association: D +— DP induces an Fgps—
linear endomorphism F* of T4,s. Then we define H(A,w) € Og by F* A?n =
H(A,w) \?n. Since n(Aw) = ‘A7In(w) for A € GLy(Og), we see

g9 g9

H(A, M) \n(w) = F* /\n Aw) = F*(det(\)~ /\n(w))

= det(\)"PF* /\77 = det (A /\77
= det(\) PH(A, w) det(\ /\n Aw) = det(A\)"PH(A,w) /g\n()\w).

Thus we get
H(A, ) = det(\)' " PH(A,w).

We call A ordinary if we can embed pf into Alp] after a faithfully flat étale
base-change. As in the elliptic curve case (cf. [GME] 2.9.1), we know

H(A,w) =0 <= A is not ordinary.
Let ~ be an algebraically closed field over FF,,. Let R be a pro-artinian local

ring with residue field k. Write CL,r for the category of complete local R-
algebras with residue field k. We fix an ordinary abelian variety Ag/.. Write

A;  for the dual abelian scheme (representing Pic) /r) of an abelian scheme

11



A/r. We write T A[p>]* for the Tate module of the maximal étale quotient of
A[p*>]. We consider the following deformation functor P:CL /g — SETS:

P, (05) = [(As,14)| A/s is an abelian scheme and 14 : A ®og Kk = Ag) .

Here “[ ]” indicates the set “{ }/ 2" of isomorphism classes of the objects
inside the straight brackets, and f: (A,14)/s = (A, 1a)/sif f: A — A’ is an
isomorphism of abelian schemes with the following commutative diagram:

A®(’)S/€ L A/®(’)S/§

LAJ{? LA/J(?

AO fr—— Ao.
The functor 7/5,40 is representable by the formal torus
Homg, (T Ao[p™]" x TAj[p™]", Cu(S)),

and each deformation (A,g,ia) € P, (Og) gives rise to the Serre-Tate coordi-

nate qa,s : TAo[p™]°* x T A [p>]°" — G (S). We give a sketch of the construc-
tion of g4/5. We prepare some facts. Let f: A — B be an isogeny; so, Ker(f)
is a finite flat group scheme over S. Pick x € Ker(f), and let £ € Ker(f*) C B*
be the line bundle on B with 05L = Og (S = Spec(Og) for an artinian R-
algebra Og). Thus f*£ = O4. Cover B by open affine subschemes U; so that
Lly, = ¢;'0p,. Since 05L = Og, we may assume that (¢;/¢;) o 0p = 1.
Since f : A — B is finite, it is affine. Write V; = f~1(U;) = Spec(Oy,). Then
f*Lly, = p; 'Oy, with p; = ¢; o f, and we have, regarding x : S — Ker(f),

<piox:¢iofox:¢i003 _q
pjox ¢jofox ¢jo0p '

Thus ¢; o x glue into a morphism [z, L] : S — G,,,, and we get a pairing
er : Ker(f) x Ker(f*) — Gyp.

Since A is a Ker(f)-torsor over B, we have A xp A = Ker(f) xg B. Thus for
any homomorphism ¢ : Ker(f) — G,,, we can find a function ¢ : Ker(f) xg
B — P! such that ¢(y +t) = ((t)¢(y) for t € Ker(f). This function ¢ gives
rise to a divisor D on By = B xg A. By definition, f{£(D) = Oagxqa for
fa=fx1:AxsA — BxgA, and ef(z,L(D)) = ¢(z). Thus, over A,
efsa : Ker(f)/a x Ker(f'),a — Gy, is a perfect pairing. Since A — S is
faithfully flat, we find that the original ey is perfect. Write A° for the formal
completion at the origin of the mod p fiber of A.

We apply the above argument to f = [p"] : A — A, write the pairing as e,
and verify the following points:

(P1) en(a(z),y) = en(x, '(y)) for o € End(A,p);

12



(P2) Write Ag[p"]° = ppn C Ao[p"]. Then e, induces an isomorphism of group
schemes: Ag[p"]° = Hom(AL[p"]¢, pipm);

(P3) Taking limit of the above isomorphisms with respect to n, we find
A° =~ Hom(T A [p™]?, Gyn) = Hom(T A} [p™]%, Gy, )
as formal groups. In particular A° = @,9,1.

We are now ready to describe the Serre-Tate coordinate q4,5. Since Og € CL/g
is a projective limit of local R-algebras with nilpotent maximal ideal, we may
assume that Og is a local artinian R—algebra with nilpotent maximal ideal mg.
Then A°(S) is killed by p™ for sufficiently large ng (applying Drinfeld’s theorem
to I = mg). Taking a lift T € A(S) of z € A(F) (such that Z mod mg = z),
Z is determined modulo Ker(A(S) — A(F)) = A°(S) which is a subgroup of
Alp™] if n > ng. By the smoothness of A,g, a lift 7 € A(S) of x € A(F) always
exists. Thus p"Z € A(S) is uniquely determined by = € A(F). If z € A[p"],
p"Z =“p™’x € A°(S) by definition, getting a homomorphism “p™”:A[p"](F) —
A°(S). We have an obvious commutative diagram (if n > ng)

wpnt1y

A[pTS) —— Agp"T(F) ——— A°(S)

| L

Apes) —Z Agp)(F) —2 A(S),

which gives rise to a morphism T Ag[p>]¢* — A°(S). Thus the structure of the
Barsotti-Tate group A[p*] is uniquely determined by the extension class of the
exact sequence of fppf sheaves:

0 — A°[p™];s — Alp™]/s = Alp™]5%5 — 0. (2.2)

Take x = @n T, € TA[p™]® with z, € A[p"]¢t. Lift x,, to v, € A(S) so that
m(vn) = Tp. Then, for “p™”: A[p"] — A°,

qn(«r) — “pn”vn e AO(S)

The value ¢, (z,) becomes stationary if n > ng, and taking limit of ¢, (z,) as
n — oo, we get q(xz) € A°(S) = Hom(TA,[p>=]¢,G,,(S)). Then we define
qass(@,y) = q(x)(y) (see [K2]).

Theorem 2.3 (Serre-Tate). We have

(1) A canonical isomorphism
P(Os) = Homz, (T Ao[p™]*" x TAf[p™]*", Gun(5))

taking (A/s, ta) to QA/S('a )
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(2) The functor P is represented by the formal scheme
Homy, (T Ag[p™] x TAY[p™]*, Gy,) = GY.

(3) qass(x,y) = qarys(y, x) under the canonical identification: (A")" = A.

(4) Let fo : Agjw — Bo)w be a homomorphism of two ordinary abelian varieties
with the dual map: f§ : B — Al. Then fo is induced by a homomorphism
f:As — Byg for A € Pay(Os) and B € Py, (Os) if and only if
QA/S(% fé(y)) = qB/s(fo(x)ay)-

Proof. Here is a brief outline of the proof. Let T/s and E/;s be a multiplicative
and an étale p-divisible group over a scheme S, respectively. Consider the sheafi-
fication Homg = (E[p"], T[p"]) (resp. Extlsfppf(E[p"],T[p"])) of presheaf U —
Homy (E[p"] /v, T[p"] ) (resp. U + Exty (E[p"] v, T[p"]vr)) over the small
fppf site Sgppr over S. Any connected-étale extension T'[p"] — X — E[p"] in the
category of finite flat Z/p™Z-modules over S split over an fppf extension S’/S;
so, we have Mlsfppf(E[p"], T[p"]) = 0 and a splitting X = T[p"|® E[p"]. Taking
a module section ¢ : E[p"] — X|[p"] and projecting down to T'[p"] over S’, we get
a homomorphism ¢g € Homg: (E[p"], T[p"]). Since S’ — ¢g/ satisfies the de-
scent datum, it is a Cech 1-cocycle with values in Homg, (E[p"], T[p"]). Thus
we have a morphism Extlsfppf(E[p"], T[p"]) — H(Seppt, Homsfppf(E[pn]a T[p"])).
By fppf descent, this is an isomorphism. Applying this to S = Spec(Og),
T[p"] = Alp"]° and E[p"] = A[p"]*', we get

Extlsfppf(A[p"]Et, A[p"°) =2 H* (Stppt, Homsfppf(A[p"]Et, Alp™°)).

When S is affine, [C4] Proposition 2.4 (iii) and (iv) combined tells us

Extg, (A[p™]”, A[p™]°) = lim Extg,  (A[p")*, A[p"]°)

P
= HOInZP (TAt [poo]Et ® TA [pOO]et, @m (S))>

since @m o @n R opipn = @n ppn (for m 1 Seppr — Set) as sheaves over the
small étale site Set (see [C4] Section 2 for more details). Since the residue field
F of Og is algebraically closed, A[p"]¢* and At[p™]¢! are constant over Og; so,
we may replace T A'[p>]¢* and T A*[p>]¢" by their special fibers T Ao[p>]¢* and
Ab[p>=]°t, and qa,g completely determines the extension class of the p-divisible
group in (2.2). Therefore, g4, determines the isomorphism class of A[p™],g.
Then by the Serre-Tate theorem in the previous subsection, the deformation
A/g is determined by (Ao, A[p>]) and hence by q4,s. This shows the assertions
(1) and (2). All other assertions follows from (P1-3) easily. O

2.4 Abelian Variety with Real Multiplication

Let F//Q be a totally real finite extension unramified at the fixed prime p. Write
O for the integer ring of F, and put d = [F : Q]. Consider an abelian scheme A
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over a scheme S of relative dimension d with an embedding i : O < End(A4/g)
sending the identity to the identity automorphism of A4,g.

An abelian scheme A /g can be considered as an fppf sheaf on SCH g with
coefficients in abelian groups. For any O—module M, the fppf sheaf A® M which
is the fppf sheafification of the presheaf taking an S—scheme T to A(T) ®o M
gives rise to another abelian scheme, written as A ®@ M. If M = ¢! for an
integral ideal ¢ C O, tensoring A with the exact sequence:

0-0—c¢ct—=cl/0—-0,
we get another exact sequence:
0 — Tor;(A,0/¢) = A— Axc ! —0.

Thus A®c~! is represented by A/A[c], because Tor{ (A, O/c) = A[c] canonically
(since O is a Dedekind domain).

Here is a brief description of polarization on an abelian scheme A, 5 satisfying
the four conditions (rm1-4) below (called an AVRM). See [R] Section 1 for
more details on polarizations on an AVRM. An ample line bundle L on A gives
rise to an isogeny A : A — A' as follows (cf. [ABV] Section 6 and [DAV]
page 3). Pick a T-point a € A(T) for an S-scheme 7. Then by addition,
a induces a morphism 7, : A/p — A,p sending x to x + a. Then A(T) >
a T;(L)® L™t @ a*(L)~* @ 0%(L) € Pic),4(T) = AY(T) is a morphism of
group functors, which gives rise to the homomorphism Ay : 4,5 — A; g A
line bundle is called symmetric if (—1)*L = L. If L is symmetric, A} = Ar.
A polarization is an O-linear isogeny A : A — A? induced by a symmetric
line bundle L4, fiber by fiber over geometric points s € S (cf. [GIT] 6.3). If
A: A — Al is a polarization, Ker()) is given by A[c™!] for an integral ideal
¢! # 0, because Ker(\) is self dual under Cartier duality. Then X induces
A' =2 A ®c. Such a polarization is called a c—polarization. By definition,
ArgrL = AL + Apr. For a € O, we see easily that a o T, = Ty(,) o a and
that A\g+r, = a?Ar. The set of totally positive elements in a square ideal a2
is generated over N by square elements of a. Thus the subset of Hom(A4, A")
generated by polarizations forms a positive cone P(A). If S is a Q-scheme,
the module Lie(A) is a faithful module over End3(A) = Endp(4) ®z Q. In

particular, F-linear symmetric endomorphisms Endgfsym(A) (those fixed by
the Rosati involution) is isomorphic to F'. Thus we have Endo_sym(A4) = O.
Therefore if A is a c—polarization, Homo_ sym (A4, A*) = Homo_sym (A, A)®c = ¢,
and hence P(A) = ¢; canonically, where ¢y is the cone inside ¢ made up of
totally positive elements.

We consider the following fiber category Ap of abelian schemes over the
category of Z,—schemes. Here Z(,y C Q is the valuation ring of the p-adic

valuation. An object of Ap is the triple (A/g,i: O — End(A4,g), A), where
(rml) i =14 is an embedding of algebras taking identity to identity;
(rm2) A is an O-linear symmetric polarization A : A — A! with p { deg()\);

(rm3) The image of i4 is stable under the Rosati involution induced by A;
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(rm4) As O®zOg—modules, we have Lie(A) = O®yzOg locally under the Zariski
topology of S, where the O—module structure of Lie(A) is induced by i.

A morphism ¢ : (A4,i,A\);s — (A',i',X),s in the category Ap is an O-linear
morphism ¢ : 4,5 — A’/S of abelian schemes over S with A = ¢! o X o ¢.

Fix an algebraic closure F of F,,. Take an ordinary abelian scheme (Ao, 49, \o)
defined over F. We fix a polarization \g : Ag — A} of degree prime to p. We
consider the following functor defined from CL v )y into SET'S:

7/514071'07)\0 (R)
- [(A/R, Lai, A) € Ar|(A,1a) € Pag(R), X and i induce Ao and i .

Here we call f : (A, a,t4) — (B, Ap,tp) an isomorphism if f : (A4,14) =
(B,tp) and ffolgof = 4. Note that by Theorem 2.1 (1) (Drinfeld’s theorem),
End(A/R) is torsion-free, and hence, End(A,g) — EndQ(A/R) =End(A,r) ®z
Q. We write a* = A\j' oal o )\ for a € End(4y) ®z Q. Since End(A,g) C
End(Ap) again by Theorem 2.1 (2), the involution keeps EndQ(A/R) stable
(because on End® (A/R), it is given by a* = A" oa’o\). The Rosati involution
a — o is known to be positive (see [ABV] Section 21). The polarization Ao
induces an isomorphism \g : A[p>]¢ = A'[p>]¢’. We identify T Ao[p>]*" and
T AL[p™]°" by Ao. Then the involution o — a' in the Serre-Tate theorem (4)
is replaced by the positive involution “x”; in particular, “x” is the identity map
on i(O) (which is the unique positive involution of the totally real field). Then
it is clear from the previous theorem that, for O, = O ®z Z,,

Pagxo(R) 2 Homz, (T Ao[p™]! @0, TAo[p™], G (R)).
Proposition 2.4. We have T Ay[p™]** = O,, as O-modules.

Proof. Since Ag and the connected component Ag[p]® of the finite flat group
scheme Ag[p] share the tangent space Lie(Ap) at the origin, as O—modules, they
are free of rank 1 over O ®z F. Write Ag[p]°® = Spec(R) for an F-bialgebra R.
Then for its unique maximal ideal m C R, we have Lie(Ap) = Homg(m/m? F).
By Cartier duality (e.g. [GME] 1.7), we have

o

Ablp)*" = Homep—sen(Ao[p]®, pp) — Homscm (Ao[p]®, 11p)
2= Homp—ag (F[t]/(17), R) — Homs_ayg (F[t]/(17), R/m?) 2= m/m?.
Since A[p]°® = ,ug over IF for d = dim Ay, it is easy to see that the above morphism
induces Af[p]®* @, F = H°(Ag, Qa,/7). Then by duality and polarization, we
get Ao[p]® ®p, F = Lie(Ag) as O ®z F-modules. This shows that
Lie(Ag) 2 TAop™®]* @z F as O @z F-modules. (2.3)

Then by Nakayama’s lemma, we conclude from (rm4) the desired assertion. O
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Corollary 2.5. Suppose that O is unramified at p. Let S = G,, ®z 0 1 =
Spec(Z[O)) for the group algebra Z[O]. Then identifying T Ao[p>]*" with O,,
the functor 7/5,4071-7>\0 is represented by the formal scheme §/W; where S is the
formal completion of S along the identity section of G, ®z 0~ 1(F).

Proof. We have seen that the deformation space S is given by

Homg, (T A [p™] ®0, TAo[p™]%, Gm(R))
= Homy, (Op, Gy (R)) = Gn(R) ©z Homz (0, Z) = S(R) (R € CLw).

Here t ® a € @m ®z 07! corresponds to ¢ : O, — @m € Homg, (Op,@m(R))
with q(b) = tT(e?) This supplies us with the desired identity. O

3 Hilbert Modular Shimura Varieties

Let G = Resp/o(GL(2)). We write hg : S = Resc/rGpn, — G g for the homo-
morphism of real algebraic groups sending a + by/—1 to the matrix (‘g ;b). We
write X for the conjugacy class of hg under G(R). The group G(R) acts on X
from the left by conjugation. Since the centralizer of hg is the product of the
maximal compact subgroup of the identity connected component G(R); of the
real Lie group G(R) and its center Z(R), the identity connected component X*
containing 0 = hg is isomorphic to the product 3 = $H of copies of the upper
half complex plane $ indexed by embeddings I of F' into R by ¢(0) — g(i) for
i=(v=1,...,v/=1). Here the action of (gs)ses € G(R) with g, = (% }7) on

3 is given by z = (2,) — (%). Thus X is a finite union of the hermitian

symmetric domain isomorphic to 3, and for an arithmetic subgroup I' C G(Q),
I'\X is a finite union of Hilbert modular varieties.

The pair (G, X) satisfies Deligne’s axiom for Shimura varieties in [D3] 2.1.1.
The Shimura variety over C is given by

She(C) = She(G, X)(C) = Im G(Q)\ (X x G(A™)) /K
K

=G\ (X x G /Z[@), (3.1)

where (7,u) € G(Q) x K acts on (2, g) € X x G(AC)) by y(z, g)u = (7(2), ygu),
Z(Q) is the closure of the center Z(Q) in G(A()). See [M] page 324. We
write [z, g] for the point of She(C) represented by (z,g) € X x G(A)). This
pro-algebraic variety has a unique canonical model Sh(G,X) defined over Q,
which we recall later. In this section, we review the construction of the model,
emphasizing its automorphism group G. Strictly speaking, the group G we will
study is a subgroup of finite index in the full automorphism group, and the full
automorphism group is a semi-direct product of G with the field automorphism
group Aut(F/Q). As is clear from Shimura’s original construction of canonical
models [Sh2], full knowledge of G is almost equivalent to the existence of the
canonical model itself (see [AAF] Chapter II).
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3.1 Abelian Varieties up to Isogenies

Let V = F?2 be a column vector space, and put V(A(®)) =V, ) := Vg A,
We often write F () for F' ®q A which is the finite part of the adele ring
Fy = F ®g A. Then V(A(Oo)) is an F)(-o)-free module of rank 2. We consider
the fibered category .A(% over Q-SC'H defined by the following data:

(Object) abelian schemes with real multiplication by O;
(Morphism) Hom®% (4, 4’) = Homo (4, 4’) @z Q.

For an object A,g, we take a geometric point s € S, consider the Tate module
T(A) =Ts(A) = lim A[N](k(s)), and define V(A) = V4(A) = T(A) @z A,
The module V(A) is an F(«)-free module of rank 2 and has an O-stable lattice
T(A), where O = O ®z Z = [T y.prime Ot-

Picking a geometric point s in each connected component of S, a full level
structure on A is an isomorphism 7 : V(A(>)) 22 V,(A) of Fj(.)-modules. For
a closed subgroup K C G(A(®)), a level K-structure is the K-orbit 7 = nkK of
n for the right action 7 — nou (u € K). Strictly speaking, we consider the
étale (set theoretic) sheaf £(S") = Isomp(Vy (), Vs(A/s/)) (over the small étale
site over S) of level structures of A on which K acts, and 7 is supposed to be
an element of the sheaf quotient £/K. For many instances, we assume K to
be open compact. Since A[N], g is an étale finite group scheme, the algebraic
fundamental group 71 (.S, s) with base point s acts on A[N](k(s)) for any integer
N and hence on the full Tate module Vs(A) = lim  A[N](k(s)) ® Q. The
level K-structure is defined over S if o0 o077 = 7 for each o € 71(S,s). If the
compatibility 0 o = 7 is valid at one geometric point s for each connected
component of S, it is valid for all s € S (see [PAF] 6.4.1).

Two polarizations A\, ) : A — A? are said to be equivalent (written as A ~ \’)
if A = a)N = X oa for a totally positive a € F. Here a is any fraction in F*,
writing £ for the set of all totally positive elements in F. Without introducing
the category .A(% up to isogeny, our notion of polarization classes does not make
sense. The equivalence class of a polarization A\ defined over S is written as A. If
the class A is defined over S, we can find a polarization A € X really defined over
S (e.g., [PAF] pages 100-101). Our requirement (rm4) in Section 2.4 is often
stated as the condition on characteristic polynomials satisfied by the action of
a € O on the Og-module Lie(A) in papers and books dealing with Shimura
varieties of PEL type (for example, [Ko] Section 5 and the condition (det) of
[PAF] 4.2.1). For an open compact subgroup K, we consider the following
functor from SCH /g into SET'S,

PL(S) = [(A, X, 7)) with (rm1-4)] ,

where 7 is a level K-structure as defined above, and [ | ={ }/ = indicates the
set of isomorphism classes in .A(% of the objects defined over S in the brackets.
For a compact subgroup K, Pg (S) is defined by the natural projective limit
lim Pg(S) for U running over open compact subgroups containing K. An F-

linear morphism ¢ € Homg (A, A’) is an isomorphism between triples (A4, \, 7)) /S
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and (A', X/, 7'),g if it is compatible with all data; that is,
¢om =1 and (btoX:X/oqﬁ.

Equip V = F? with an alternating form A : V Arp V 2 F given by (x,y) =
trJyy for Jy = (9 5'). We define a Q-alternating pairing (-,-) : V x V — Q by
Trp goA. Suppose that the point s € S is a complex point s € S(C); so, we have
the Betti homology group Hi(A,Q) := H;(A(k(s)),Q). Then the polarization
A : A — A® induces a nondegenerate F-Hermitian alternating pairing E) :
A’ Hi(A,Q) — Q (the Riemann form; see [ABV] Sections 1 and 20). Here
the word: “F-Hermitian” means Ej(az,y) = Ex(z,ay) for all a € F. We
write ey : H1(A4,Q) Ar H1(A,Q) = F for a unique alternating form satisfying
Trpg o ex = Ex. The Hodge decomposition: H'(A,C) = H(A(k(s)), QY)c) @
HO(A(k(s)), ﬁi&c) induces, by Poincaré duality, an embedding h = hy : C* =
S(R) — Autp(H1(A,R)) such that

1. h(z)w = zw for all w € Homc(HY(A(k(s)),Q4,c),C) (and h(z)w = zw);

2. Ex(x,h(v/—1)y) is a positive definite Hermitian form on H;(A4,R) (&
Tk :=V ®g R) under the complex structure given by h.

In the above definition of Pg for an open compact K, missing is a condition
usually required in papers dealing with Shimura varieties:

(pol) There exists an F-linear isomorphism f: V = H;(A, Q) such that f~1o
ha o f is a conjugate of hg under G(R), f = n mod K under the
canonical isomorphism V;(A) = Hy(A,A®)) = H (A,Q) ®@g A and
ex(f(x), fy)) = a-Alx Ay) for some o € F*.

Since V and H;(A, Q) both have a non-degenerate F-bilinear alternating form,
we can find an F-linear isomorphism fo : V — Hy(A, Q) with ex(fo(z), fo(y)) =

Az Ay). After tensoring A(>) and scaling by an element in Fl), We may

assume that g :=n~1 o fo belongs in SLy(F Iéoo)). By the strong approximation
theorem, we have v € SLy(F) such that g = uy~! for u € K; in other words,
putting f = fo o, we have f € no K as in (pol). Since G(R) is the full group
of Fg-linear automorphisms of Vg, f~'oh4 o f is always conjugate to hg. Thus
this condition (pol) is redundant; so, we ignore it.

By [Shi] and [D2] 4.16-21,

(rep) the canonical model Sh(G, X) g represents the functor PL over Q for
the trivial subgroup 1 made of the identity element of G(A(>)).

This fact will be confirmed over C by a straight calculation (see the paragraph
following (3.2)). Through the action of G(A(>)) on F2 ., 9c€ G(A)) acts
on the level structure by 1 +— 7o g and hence on the variety Sh(G, X) from the
right. If K is open and sufficiently small (so that Aut((4, X, 7),s) = {1} for all
test objects (A4, X, 7)/s), Shi (G, X) := (Sh(G, X)/K) o (whose complex points

are given by the manifold G(Q)\ (X x G(A(*)))/K) represents Pg over Q.

19



Over C, by (3.1), we have

[2,9] = V(2),79] (& [v'(2), 9] = [2,79]) (3.2)

for (z,9) € 3 x G(A(>)) and v € G(Q),, taking the expression

Sh(G, X)(C) = G(Q):\ (3 x GA™)) /Z@)

and noting X = 3. In the complex uniformization, each point [z, g] corresponds
to the test triple (A., Az, 7, 0 g) where A,(C) = CI/(O* + Oz) and n, (§) =
bz — a identifying T(A,) = O* 4+ Oz. To sec this, we note that the map:
[z,9] = (As, Az, 0 g) sends (3 x G(A(®)) surjectively onto PZ(C) for each
open compact subgroup K. Thus we need to check

(A,Yfl(z),x,rl(z), 77,),71(2) @) g) = (Az;Xz; 7 © ,_Y(oo)g) in .A(% for v e G(Q)+

which is equivalent to [y~1(z), g] = [2,7(*)g]. This is because a, o Ny-1(z) =
n. 0 7> for the isogeny ay : Ay-1) — A, given via the multiplication by
(—cz +a) on C! (writing v = (2%)).

We now give a very brief outline of the proof of the representability (as-
suming that K is open-compact), reducing it to the representability of a func-
tor classifying abelian schemes up to isomorphisms not up to isogenies. Let
G1 be the derived group Resp,zSL(2) of G. By shrinking K, we may as-
sume that det(K) N O C (K N Z(Z))*®. This is to guarantee that the im-
ages of gKg=! N G1(Q) and gKg~! N G(Q)T in PG(Q) (PG = G/Z) are
equal; so, Shx (C) can be embedded into Shg, (C) for K; = G1(A™)) N K,
because the moduli problem with respect to K;j is neat without having any
nontrivial automorphisms. Let L C V be an O-lattice. We may assume that
L = a* @b for a pair (a,b) of two fractional ideals, where a* is the dual ideal
given by {¢ € F|Tr(¢a) C Z} = a~'0o~!. We define the polarization ideal ¢ by
¢* = A(LAL) C F. For each point h, € X, we have a unique point z € (C—R)!
fixed by h.(C*) (in this way, we identify 3 with the connected component X* of
X containing hg). By changing the F ®R-linear identification V®qC = F2®¢C,
we may assume that z € X = 3. The action of h,(C*) on Vg =V ®q R gives
a structure of a complex vector space of dimension g = [F : Q] on Vg; that
is, Ve = C! via (a,b) — —a+ bz = (a,b)J; - (2, 1) for J; = (9 '). Then
LcCcWw glves rise to the lattice £,, and A induces the c-polarization A,. Set
L=L®,ZC V(Oo) = V ®g A(>), and define an abelian variety A,/c by
A.(C) =C!/L,. Then we have T(A,) = L, which induces 7, : V(o) 2 V(A,)
and gives rise to a level N-structure ¢y : N"1L/L = A,[N] for any N > 0.

Let CIT(K) = F/(..,/ det(K)F}, which is a finite group (by the open prop-
erty of K). We fix a complete representative set {c € F;(.,} for CI*(K) so

that cO N F = ¢. We define an O-lattice L. = ¢ ® 0O C V as above with
A(Lc A L) =¢*, and put L = Lo. Note that L=L.-(§9) in F2=V.

For each isogeny class of (4,),7)/s € PL(S), we can functorially find a
unique triple (A’, X', 77) /s and a polarization ideal ¢ (representing a unique class
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in CI*(K)) such that n’(Zc) = T(A). Once this is done, as explained after (pol),
we can find a polarization A’ in X so that the alternating pairing induced on
T(A) by the polarization coincides with A under 7. See [PAF] pages 1356 for
the details of this process of finding a unique triple (A’, N',7') /s in the isogeny
class of (A, \,7) /s- Thus once we have adjusted the ¢-polarization A" in Ato A
for each member (A4, \,7) € Pg (S), we have a unique triple (A’, X', 7"),s with
c-polarization X. If two such choices are isogenous, the isogeny between them
has to be an isomorphism keeping the polarization. Thus we get an isomorphism
of functors: PL(S) = Pj.(S) := Ucecr+ (r) Pi,(S), where ¢ runs over the ideal

classes in ClIT(K) = Fléoo)X/Ff det(K), and
Pheo(S) = {(A’,X,ﬁ’)/s with (rm1-4) | /(L) = T(A') and c(N) = c} /=

Here = means an isomorphism (not an isogeny) for a chosen polarization integral
over the fixed lattice L. in the class of A (in other words, A induces a fixed
alternating form on the space V integral over L. (up to units in F' N det(K)).
As we now see, this functor Py . is represented by a scheme M(c, K) over a
specific abelian extension ki of Q dependent on K (see below for a description
of kx for some specific K’s). See [PAF] Section 4.2 for details of this process.

Recall L = ¢* &0 C V, L, =lim L /NLc = L. ®zZ and L A Le = ¢* by
(a,b) A (a,b') — a'b — ab’. Take the principal congruence subgroup I'((N) =
Ker(GL(Zc) — GL(L./NL,)) of G(A(®) for an integer N > 0. We write
I'(N) for T'o(N). We identify un with Z/NZ by choosing a primitive Nth root
¢ = (n of unity in Q[uy]. Then, having a level I'(N)-structure 7 is equivalent
to having a level I'¢(N)-structure 7', because we can identify L. and L via the
left multiplication by (§9). Giving 77’ is equivalent to giving an isomorphism of
locally free group schemes

=

o - (¢ @ pun) x (0 ® Z/NL) = N~'L /L. = A'[N].

Thus Pf( N)e is the standard moduli functor classifying the level structure for
the principal congruence subgroup I'c(N):

Prny,(S) = {(A, N ON)/s (bajflci (Ezg iNc) x (0®Z/NZ) = A[N]} =y

By a standard argument (see [R], [K3] and [PAF] 4.1), this functor is represented
by a geometrically irreducible quasi projective variety MM(c, I'(IV)) jq[un] -

Over kr(n) = Q[un], the component M(c, I'(N)) of Shr(n) (G, X) represents
the functor PF( N)er This irreducible component in turn corresponds to the
component G(Q)\ (.’f xGQ)(§9)T(N)) /T(N) C Shrwy(C) in (3.1). The
choice ¢ gives rise to the identification Q[un] = Q[T]/(®n(T')) with Q[(] for the
cyclotomic polynomial ®x(T") € Z[T], and an automorphism o € Gal(Q[¢]/Q)
changes the identification by ¢ — (7, whose action is induced by ¢n — ¢n ©
(§9) for a unit ¢ € Z* such that ¢° = ¢°. In other words, the action of
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(69) € G(A®)) on Sh(G, X) g brings M(O,T(N)) 1) € Shr(w) (G, X) to its
o-conjugate M(O, F(N>)7Q[<] in Shrn) (G, X) /g
Summing up all these, we have

Proy= || Prav,.e over Qun]-SCH, (3.3)
c€CUE(N)
which implies
Shey (G, X) jgpuy = | M(e, T(V)) over Qluw]- (3.4)
c€CIL(N)

Since L, = (Z (5 ?)71) NV, this corresponds to the decomposition

GAS) = || G@(§9)T(N).

c€CLL(N)

By the Galois action on M (¢, I'(N)) /quy], We can descend the right-hand side
of (3.4) to the base field Q to obtain the model Shr(n) (G, X) over Q, because
M(c, ['(N)) is quasi-projective as we already mentioned.

To construct p-integral models of Shimura varieties, we use the following
variant (due to Kottwitz [Ko]) of the functor 73%. We fix a rational prime p
unramified in F/Q. This concerns an open-compact subgroup K mazimal at
p (e, K = G(Z,) x KP), where O, = O ®z Z,. We have written K®) =
{z € K|z, = 1}. Recall AP®) = {z € Az, = v, = 0}. We identify the
multiplicative group A®>*)” with {z € A% |zp = zoo = 1}.

(p)
F

We consider the following fibered category Ay~ over Z,)-schemes:

(Object) abelian schemes with real multiplication by O;

(Morphism) We define Hom , ) (4, A") = Hom,. (A, A’) ®z Z(y), where

AP
a
Zgy = {2 +pZ =2}

This means that to classify test objects, we now allow only isogenies with degree
prime to p (called “prime-to-p isogenies”), and the degree of the polarization A
is supposed to be also prime to p. Two polarizations are equivalent if A = a\ =
N o a for a totally positive a € F' prime to p.

Fix an O-lattice L C V = F? with A(L A L) = ¢*, and assume self O,-
duality of L, = L ®z Z, under the alternating pairing A : VAV = F. Consider
test objects (4, X, ﬁ(p))/s. Here n®) : V(AP®)) = V @ AP®) = yP)(4) =
T(A) @z AP>®) and X\ € X are supposed to satisfy the following requirement,
V@A) ATVP(A) 2 Flépoo) is proportional to A : VAV = F up to scalars in
(F @ AP=))*_ Here ey is the alternating form induced by the polarization \.
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We write the K)-orbit of ®) as 7). Then we consider the following functor
from Z,)-schemes into SET'S.

PP (3) = [(A,X, 7)) g with (rm1-4)] . (3.5)
Let O(X]D)Jr = O NF{. Aslong as K is maximal at p, we can identify

CIF(K) = F™ JFX det(K) with F)7 07, det(K®). Thus we may
choose the representatives {c} prime to p (and we may assume the self-duality of
L at p). By the same process as bringing Pg isomorphically to P}, oL the func-

tor is equivalent to P}, /Ty defined over Z,)-SCH; so, it is representable over
Z(p), giving a canonical model Shg) (G, X)/z,,, over Z(,). The functor P}(/Z( )
is a disjoint union of the functors Py . indexed by ¢ € CIT(K), where

Pheo(8) = [(A4 A7) /s with (1m1-4) [1% (L) = TP (4), «() =¢. (3.6)

(p)

A subtle point is to relate Sh Ty to Sh,g. The equivalence of functors

(p) ~ !/ : . . . .
PF( N = Prvyz,, are compatible when N varies over integers prime to p;

similarly, for 739( Ny = Pr(ny/q; therefore,

Sh®) @z Q= Sh/G(Z,).

The functor Pf(N)yo /Ty ] for N prime to p is represented by a scheme
M(O,T'(N))/z, un] and gives rise to a closed subscheme of Sh(Fp()N)/Z( lunl”
The characteristic 0 fiber M(O,I'(N)) ®z,, [uy) Qlun] gives M(O, T'(N))/qpun]

in (3.4). We define a closed subscheme DMM® of Sh(P) over the integer ring

—ab
Z3) ™" = Upp Zio 1] by
M) 2= L MO, D(N)) 1z ] € SH? @2, Z3) ™. (3.7)
ptN

Similarly, we define a closed subscheme 9 of Shgas over the maximal abelian
extension Q" = J ., Q[un] by

M ger = lim M(O, T(N)) jqpun] C Sh @g Q. (3.8)
N>0

Since L' = L for any O-lattice L' C V, it is essential to allow all O-
isomorphism classes of O-lattices L’ to define Pf( N because in the definition

of P(®) only L@ is specified (which does not determine the isomorphism class
of L if the class group of F' is nontrivial). This problem is more acute at p
because over Z,), T,(A) does not determine L,. Indeed the p-adic Tate module
of an abelian scheme of characteristic p has less rank than its characteristic 0
counterpart. The self-duality at p of L has to be imposed to overcome this point
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(see the argument just above Remark 7.4 of [PAF]). Also we need the density
of the derived group G1(Q) in G (A(>®)) (the strong approximation theorem) in

(p)
K

order to know that geometrically irreducible components of Shj’ are indexed

by the class group CI*(K): WO(Sh@@) ~ CI+(K).

Since p is unramified in F/Q (and K ®) is sufficiently small), Shg) is smooth
over Zy) by the infinitesimal criterion of smoothness (e.g., [NMD] Proposition
2.2.6); that is, we can show that any characteristic p test object lifts to charac-
teristic 0 infinitesimally. To explain this, let R be a Z,)-algebra with a nilpotent
ideal I C R containing a power of p. Put Ry = R/I. We want to show the
existence of a lifting of a test object (Ag, Ao, ﬁgp )) /R to R. The abelian variety
Ay lifts to an abelian scheme A/ (with A®g Ry = Ag) by the deformation the-
ory of Grothendieck—Messing-Mumford (cf. [CBT] V.1.6, [GIT] Section 6.3, [R]
1.5-10, [DAV] 1.3, and also [PAF] Theorem 8.8 and the remark after the theo-
rem). Since the degree of the polarization is prime to p (here we use the fact that
we can choose a representative ¢ prime to p in a given class in CIT(K)), X also
lifts because we may assume that \g : Ag — Af is étale (and hence A' = A/E

for an étale subgroup E C A lifting Ker(\o); see [ECH] 1.3.12). As for the
level structure n(()p ), it is prime to p and hence étale over Ry. Then it extends

uniquely to a level structure n(®) : VA(p ) = () (A) over R. By the deformation
theory of Barsotti-Tate groups (see [CBT] V.1.6 and [R] 1.5-10), using (rm4),
we can find a deformation A,r of Ay/p, with an embedding O — End(4,g)
compatible with O < End(Ag/g, ).

We can let g € G(A™)) act on Sh(G, X) g by
(4, X, 1,m) = (A, X, i,n0g), (3.9)

which gives a right action of G(A(>)) on Sh(G, X). Define

G=0G(G,X) = {g € G(A)| det(g) € AXFXF;+/FXF;+} ,

and write £ = £(G,X) = G(G, X)/Z(Q)G(R), (see [Sh2] II, [Sh3] and [AAF]
Section 8). Here F, is the subgroup of totally positive elements in Fi, = F®q
R. By (3.1) (and by our construction), we have mo(Sh(G, X)(C)) = F;( /F{ =
FYJFXFL = lim CUL(N). The action of g € G(A(®)) permutes transitively
connected components of Sh(G, X)(C).

The neutral irreducible component of Sh(G,X)(C) is the image of 3 x 1
in Sh(G,X)(C) under the projection in (3.1) and is given by the complex
points M(C) of the closed subscheme M gar of Shgas defined in (3.8). Since
IM(O,T(N))(C) is a connected complex manifold for N > 0, 9 gas is geometri-
cally irreducible. Composing the structure morphism 9t — Spec(Q) with the
unique morphism Spec(Q®) — Spec(Q), we regard M as an irreducible (but
geometrically reducible) Q-scheme. Thus we can think of the rational function
field Q(M,q). The field of definition of M (that is, the algebraic closure of
Q in the function field Q(91,g)) is the maximal abelian extension Q**/Q (so,
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QM q) = Q* (M /qav)), because the values of the Weil pairing on all the tor-
sion points of the universal abelian scheme over 9 generate Q. Then we can
think of the scheme M xg Q% (over Q%) which is no longer connected:

MxgQ®= || M xge, Q™.
oc€Gal(Qt/Q)
Since Sh is defined over Q and 9 gar C Sh gas, 9317@“7 = M Xgab o Q2 gives
another connected components of Sh ®g Q2; in other words, the nonconnected
scheme M xg Q% has an open immersion into Sh(G, X) /qav, and the action of

g € G(A(>®)) preserves (9 xg Q%) if and only if det(g) € AXF*FX,. The
action of g with det(g) € A* permutes transitively geometrically irreducible
components of Sh through the action of the Artin symbol [det(g), Q] on Q®®
(see [PAF] Proof of Theorem 4.14). Thus we may regard G as the stabilizer
inside G(A(*) of the neutral component 9 q. Since G(A(>)) acts transitively
on the set 7o(Sh(G, X) ), the stabilizer of another component M- g in G(A>))

is given by g~ 'Gg. Since G is a normal subgroup of G(A(*)), G is the stabilizer
of any other geometrically irreducible component of Sh(G, X).

We shall give another description of £ due to Deligne. We recall it, because
recently Shimura’s reciprocity is often written down using Deligne’s formulation
and it is also easier to describe the action of G(A(>)) (up to isogeny) in group
theoretic terms if we use his definition. Write G = G(A(>))/Z(Q), I = G(Q) .,
and A = G*(Q) = G(Q)/Z(Q). We have the projection I' 3 v — 7 onto a
subgroup T' of G and the following commutative diagram of group homomor-
phisms:

r 25 A
o] | (3.10)
G —— Auw(0).

Here 7 is the inclusion, ¢ is induced by the projection G(Q) — G*4(Q), Aut(G)

is the automorphism group of the group G, and ad(g)(z) = grg~" for g €G.
We often write () for ¢(5) and by definition, r(§) (6 € A) preserves I as a
whole. Plainly, we have the following two compatibility conditions,

(a) r(e(y)) = ad(®) for all v € T’ (commutativity of (3.10));
(b) ©(r(8)(7)) = ad(d)(p(7)) for all 6 € A and v € T.

We consider the semi-direct product: G x A whose multiplication law is given
by (g,0)(h.€) = (g - (r(0)(h)),d¢), and we have (g,6)"! = (r(67")(g™"),07 7).

By computation, we have

(9:0)F 1 e(N)(g,0) ™" = (g-7(O)F )r(d - (M)(r(6~")(g™)), ad(8) (¢ (7))
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Then again by computation,

=g r(@)F r@OFEE ) ™NT ) =g @@ )T
D™ NEE)FH) =r@E ™

This shows that I ={(F ", ¢())y € I'} is a normal subgroup of the semi-direct
product G x A. We then define

Gsr A= (GxA)T. (3.11)

We have the following commutative diagram with exact rows.

Ker(p) —=— T 4 A 2 Coker(yp)
Hl ml mlwm U
Ker(p) G G xr A ——— Coker(yp).
C gr—>[g71] onto

Then by the (suitably applied) snake lemma, we get a canonical isomorphism

T\G 2 A\ (G #r A). (3.12)

Note that T'\(X x G) = Sh(G, X)(C) by (3.1). By this isomorphism, the amal-
gamated product G #r A acts on I'\ (X x G), and the action of [g, ] € G *r A on
the class [z] in T\ (X x G) = Sh(G, X)(C) (which is sent to [z, 1] € A\(G *r A))
is given by

[2] - [g. 0] = [2,1]lg, 0] = [29, 0] = [1,8][r(8)"*(29),1] = [r(8) " (z9)].  (3.13)

Thus G #r A acts on the Shimura variety Sh(G, X), and by (3.13) combined
with (3.2), the action coincides with the one in (3.9) (see [D3] and [PAF] 4.2.2).
In particular, £(G, X) is identified with the stabilizer of M (and of any other
geometrically irreducible component of Sh(G, X)) in G *r A. The map

Gr A3 (g,ad(y)) — det(g) € F/F*FL,

is a well defined homomorphism, and £(G, X) is identified with the inverse image
of AXFXFX, /F*F . in G xr A. The following fact (whose proof we have
sketched) has been shown in [Sh2] IT 6.5 and [Mt] Theorem 2 (see also [MS] 4.6
and 4.13 and [PAF] Theorem 4.14):

Theorem 3.1. The stabilizer in G(A)) of the geometrically irreducible com-
ponent of Sh(G,X) which contains the image of X% x 1 is given by £(G, X%).
The right action of (g,ad(y)) € E(G,X) (v € G(Q)) on [z,¢'] is given by

2.9 = [ (2): (g'9)* ],

where (¢'g)*) = ~y71(g'g)y.
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Since Shimura does not formulate his result in the language of scheme, it
is hard to say which part of Sh is Shimura’s canonical model, though we can
probably say that the (projective) system {IMyx := M/K} KCEG,x) Of quasi-
projective varieties irreducible over Q (indexed by open compact subgroups K)
each regarded as defined over its field of definition kg (that is, the algebraic
closure of Q in its function field Q(9M,q)) is essentially his canonical model.
Since other geometrically connected components V' of Shq is isomorphic to 90
by an action of ¢ € G(A>)), more precisely, Shimura’s canonical models give
a system of geometrically irreducible varieties of the form g(Mxk) i, with a
specific isomorphism onto My-1x4/k, given by each element of g € G(A),
His theory includes an explicit determination of ki as an abelian extension of
Q via class field theory, the local reciprocity low at each CM point on Mg and
an explicit description of the action of £(G, X) on each member Mg (the global
reciprocity law). The above result is an interpretation in Deligne’s language
of the result of Shimura in [Sh2] II 6.5. When we regard g € £(G, X) as an
automorphism of Ogj, or Sh(G, X) /g, we write it as 7(g).

3.2 Shimura’s Reciprocity Law

Since Sh(G,X)(C) = G(Q)\ (X x G(A®)) /Z(Q), we write [z, g] € Sh(C) for
the image of (z,9) € X x G(A(>®). A point = = [z, g] is called a CM point if
2= (20)oer € X = (C—R)! C F ®g C generates a totally imaginary quadratic
extension M, = F[z] C F ®g C of F' (a CM field over F'). We write O = O,
for the integer ring of M, and O, = {a € O, |aL, C L.} (the order of L, =
O*+0z). Let T, = T be the (abstract) group scheme Resg /zGp, (which is an
abstract torus over Z[] for the discriminant D of O,). We assume p { D for the
prime p (so, we assume that £,Q2Z, = O, RzZ, and O;®zZ, = O,®zZy). The
regular representation p, : T,(Q) = M) — G(Q) given by (%) = p.(a) (F)
gives rise to a representation T} /z1/p] — G z1/p) because (1, z) gives rise to a
basis of £, ®z Z[5]. Since (1,z) gives a basis of £, ®z Z[%] over Z[%] for the
discriminant D of O,, we may regard p. as a representation p, : T, — G defined
over 2[%] Now conjugating by g, we get py : T, a) — G /) defined over
A given by p, (o) = g~ 'p.(a)g. Here we used the fact that A(®) = Z[%]@ZQ.
We assume that A, has complex multiplication by O,; that is, under the action
of T,(Z) = O via p,, L-gN F? is identified with a fractional ideal of M, prime
to p. On the other hand, the level structure n, = 71, o g identifies T'(A,) with
L. g= Zc for a polarization ideal ¢ prime to p.

We let G(Q) act on the column vector space V = F? through the matrix
multiplication. The action of T}, via p, on V makes V' a vector space over M, of
dimension 1. Then the subspace V, = V ®gC on which h, acts by its restriction
te = h:|g,, x1 is preserved by multiplication by M., yielding an isomorphism
class 3, of representations of M. Since the isomorphism class Y, is determined
by its diagonal entries o; : M, — C, we may identify ¥, with a formal sum
>, 0i. Since pp X fi, = h, we find that {o;,coi}i=1,..a (d = [F : Q]) is the
total set I, of complex embeddings of M, into C. Taking the fiber A = A, at
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x € Sh(C) of the universal abelian scheme over Sh, we find that A has complex
multiplication by M, with CM type (M,,¥;). Let (M.,%") be the reflex of
(M, %) as defined in [ACM] Chapter IV. Then a — Hoex; o(a) induces a
morphism 7, : 7" = Res M1 /@Gm — T C G. The field M is by definition the
field of definition of u, : G,, — G. The map r, can be realized as

re : T, = Resars /oG 25 Resu T~ T,

For each b € T.(A(>®)) = (M, ;o)
[b, M!] € Gal(M.,* /M), where M. is the maximal abelian extension of M.
Since T, (R) is the stabilizer of z, [z,vg] = [y71(2), 9] = [z, g] for v € T,,(Q), and
hence [z, g] — [z,74(b)g] only depends on [b, M] by class field theory. Also we
find that elements of p,(T%(Q)) C G(A(>)) stabilize the CM point [z, g] under
right multiplication. Now we are ready to state Shimura’s reciprocity law for
the CM point [z, g] (see [ACM] 18.6, 18.8 and [M] IL.5.1):

)*, we have the Artin reciprocity image

Proposition 3.2. Let x = [z, g] be a CM point in Sh(G, X) ,q. Then the point
x is Mg’cab—mtional, and for any b € T.(A)), we have

b~ M) (2, 9]) = [2, 91Pu (12 (D) = [2, P2 (72 (b))g]

and [z, 91p= () = [z, 0:(7)g] = [v"(2), 9] = [2, g] for any v € T,(Q).

3.3 Reciprocity Law for Deformation Spaces

We suppose that p is unramified in F/Q. We start with a fixed CM point
x = [z, 9] and the associated abelian variety (A, \,i,1) of CM type (M., ;).
Unless confusion seems likely, we write (M, X) for (M,,X,). We suppose that
i:0 — End(A;) extends to i : O — End(A,) for the integer ring O of M. Take
W = W(F,) and consider the reduction Ay modulo (p) of A,. Suppose that Ag
is ordinary. Diagonalizing the action of M on Lie(A;) /w, we may assume that
o € ¥ embeds O into W. We write v; (1 = 1,2,--+) for the p—adic place of M
associated to o € ¥. We write ¥, = 3, ,, for the set of places v;. This condition
of Ag being ordinary is equivalent to

(ord) Each v € X, is not equivalent to voc for 1 # ¢ € Gal(M/F).

This implies that all prime factors of p in F' split in M. We pick a base of
M (o) over Fy () and identify M, ) with V(A(®)) = Fg(m) so that the fixed

lattice in the definition of Péf) is a fractional ideal of M. If = [z, g], the choice
of g is tantamount to the choice of the base of M) over Fjy(). Then the
polarization A induces an alternating pairing (o, 8) = Trys/q(dac(B)) for the
unique non-trivial automorphism ¢ of M/F. Here § € M is a purely imaginary
element § = /—A for a totally positive element A € F with Im(o(5)) > 0
for all 0 € . We then have A4,(C) = L\ (M ®gR) for a fractional ideal
L C M identifying M ®g R with C* through a ® t — (0 (a)t),ex. This induces
n®) = ng“ 0g® . M @q AP>®) = V()(A,). Since K is maximal at p, we may

28



assume that L, = O, = O ®z Z,, (so, g, € G(Z,) because L, ®z Z, = O,
inside M,). We are dealing with Kottwitz’s moduli problem (as in (3.5) in 3.1).
By reduction mod p, n?) induces a prime-to-p level structure n(()p ) on Ap. Let
(A,14,\)/r be any deformation of (Ag, 1o, Ao)/r (F = IF,) over Spec(R) for an
artinian W-algebra R. Since A[N] for N prime to p is étale over Spec(R), the

level structure n(()p ) at the special fiber extends uniquely to a level structure

nff) on A/r. Thus the level structure is insensitive to the deformation of the
underlying triple (Ag, tg, Ao). Therefore, for the deformation functor:

,]/D\(R) = |:(A; LA, i; )\; ?’]%D))/R’(A, LA, ia )\a 77%0)) mod mpg = (AOa Lo, iOa )‘05 nép)) ;

the forgetful morphism: (A, ¢4,1, A, nff))/R = (A,1a,4,\) /R of P into the orig-

inal deformation functor 7/5,4071-07 , induces an isomorphism of functors; so, they
have identical deformation spaces.

We consider the Serre-Tate deformation space S representing P. We take
the Kottwitz model Sh(P) (G, X) jy over W and consider = = [z, g] as a point of
ShP) (G, X)(W). Let Sherd = Shod(G, X) = ShP) (G, X)[£], that is, we invert
over Sh(P) a lift E of a power of the Hasse invariant H. The formal completion
Shord of Shor along Sh{"® = Sh"® @y F is uniquely determined independently
of the choice of E and gives the ordinary locus of A. Writing Sho"® for Sh(®) [+]
is therefore a slight abuse of notation. We assume that = gives rise to a closed
point of ShT?.

Since S carries the universal deformation A = (A, i, A\, nP) /g which is an
element of 73(10)(57), by the universality of the Shimura variety, we have an
inclusion

©: 8 <SG, %) such that o* A = A (3.14)

for the universal quadruple A% over Sh%7?(G, %). Since ®) lacks the informa-
tion about Ag[p>°], the identification of S with G,, ®z 0~ is not yet specified.

Since S is connected, we have the connected component V,y C Sh%,
containing the image of ¢. Then V)p = V ®w F is the connected compo-
nent containing the point z carrying (Ao, to, i, Ao, n(()p )). We can lift the mor-
phism ¢ to the Igusa tower over the formal completion V.2 of VL], along
Vﬁ;d = V[%]/r. The Igusa tower Ig veora studied in [PAF] Chapter 8 is given by
Isomo (Fy, /O, vora, Acrd [poo]%/;,ord) for the universal abelian scheme A°"¢ over
Vord, Strictly speaking, in [PAF], we studied principally the Igusa tower on the
neutral component of Sh?’¢, but here we study it over V2", because we need to

o0

study it over the component containing the fixed CM point 2 € Sh?’¢. We can

also write Ig,yora = Isomo (pp= ®z Dféord, A [p>®]9y,0ra) for the connected

component A°"4[p>]° of A°"¢[p>] (Cartier duality). Let p = [Toes, po for the

prime p, associated to the valuation v € ¥,. Then Uj(pc)*j/D >~ A, [(p%)>],
which induces

77sz : Op = Ope = Homg, (Qp/Zy, Au[(p°)]) = TAs [p>]e.
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We can therefore extend 7 to
ord . (poo)y ~v ocotet (p)
N Op x (M ®g A )2 TA[p™]* x VIP(AL).

Let K be the field of fractions of W. Over the field ﬁ[,upao], we can further extend
ng’”d to 1y 1 Op x Op = O, = T A, [p>] by identifying |J, p7/O = A,[p™]. This
choice is tantamount to the choice of g, which brings the base of L, to the base
given by the two idempotent 1, := (1,0) of Oy and 1pe := (0,1) of Ope in
Op X Dpe = 0, x 0. We write =1, x n®) and 774 = ngTd x ),

We can think of the deformation of (Ao, i, to, Ao, 75"?) /F, for ngrd = nerd
mod p. The p-part of the level p-structure 13"¢ provides the canonical identi-
fication of the deformation space S with @m ®z 0~ !. For any complete local
W-algebra C and any deformation A, of Ag, A[p>] is étale over Spec(C);
so, again the deformation is insensitive to the ordinary level structure. Thus we
get a canonical immersion:

Prord : Gy ®207 " < Ig such that * A" = 47 (3.15)

Here A" (resp. A°"%) denotes the universal ordinary quadruple over Ig (resp.
the universal quintuple over S ).

The abelian variety A, = (A, i, A, n°"%) of CM type (M,Y) is the fiber
of A°™® at a point ¢y € @m ®z 0~ 1(W). Here qo is an O,-bilinear form on
T Ag[p*]**. Since any element a € ig(9D) C End(A5,) can be lifted to A, by
the Serre-Tate theorem, we have

w0(i(@)y,y') = qo(y, i(@)y’) (o € D), (3.16)

where @ = ¢(a) for 1 # ¢ € Gal(M/F). This forces qo to be 0, that is, qo(y,y’)
is the constant 1 of the group @m @0~ ! identically, because go is also O,-linear
and O, = Op. Indeed, the connected étale exact sequence of A, [p™] does split
by complex multiplication, and hence gy = 1 by definition.

We now compute the effect of the isogeny ig(a) : Ag — Ag (Ao = A, /¢ and
a € 9) on the deformation space S. Pick a deformation A /g of Ag = A, p for
an artinian R € C'L,w, and we look into the following diagram with exact rows:

~

Hom(T Ao[p™]*, G (R)) — Ap"|(R) =  Aolp"]*(R)
ol R |ame (3.17)
Hom(T Ao[p™]*,Gin(R)) — APp"I(R) = Ao[p"]*(R).

Take u = lim wu, € TAg[p™>]¢, and lift it to v = lim v, for v, € A(R) (but
—n —n
vn, € A[p"]). Then

q(u) = @(IH(un) S HOIH(TAO [poo]et, @m) for Qn(un> :“pnnvn'

n

Note that the identification of Hom(T Ag[p™]¢, @m) with the formal group A°
of A is given by the Cartier duality composed with the polarization; so, if « is
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prime to p, « sends ¢ to qo‘lfc = lim | a(“p™ a”%(vy,)).Thus the effect of @ on
q is given by q — qo‘lfc. Once the identification of S with @m ® 07! is given
(that is, a level p>™-structure 73" : F,/O, = Ag[p™]* is chosen), a € O prime
to p acts on the coordinate ¢ (of G, ® 071) by t — ' °.

Write m for the formal completion of Z,[O] at the origin 1 € S(F) for

S = Gy, @ 071, Identify Z/-p[a] with the ring made up of series: > ..o a(&)ts

for a(¢) € Z, (here Z,[0] = Z,[[(t* —1),...,(t* — 1)]] for a base &1,...,&

of O over Z). Let T = RespzGm. Since Gy, ®7 071 = Spf(Z,[0]) for the

completion at the origin 1 € S(F) for S = G,, ®z 07", OF = T(Z,) acts on S
X

as follows: We have a character O — Z/-p[B] with s — t°. Then the variable
change t — t° induces an automorphism of the formal group @m ®z 071, and
all O-linear automorphisms are obtained in this way. On the points g of the
formal scheme G,,, ®z 071 (W), the action induces q — ¢°.

The inclusion O — © induces an identification of p-adic rings Op with
O, which we fix in this paper and use always in the sequel. Note that O, =
Op X Ope. This same inclusion: O — O induces an inclusion of Z,-tori
T — T,. Let T := T,/T. By the identification above, the map D(Xp) — OF

1—c

given by o — o~ ¢ induces an injective homomorphism

T(Zpy) — OF = T(Zy). (3.18)

Thereby, the action of T'(Z,) on S and that of T (Zp)) are compatible. The
torus 7 (Zy)) is isomorphic to the image (under p,) of Ty (Z(,)) in £(G, X), and
its action on S factors through the action of E(G, %) on Ig(G,X) via (3.15).
The Op-module structure of S given by t +— t° therefore commutes with the
isogeny action of T, on S.

By the level structure n9"* (and its dual), we identify A3 with Gpr®@0~! and
Ay [p™] with F,/O,. In this way, we may identify the torus 7' with the diagonal
torus T° of SLs. The action of t € T(Z,) = Oy on the quotient A, [p>]* is
given by the multiplication by ¢ € O;, and hence the two tori are identified by
T(Zy) >t — (tgl ) € T°(Z,) C SL2(O,) taking the lower diagonal entry of
T? as the coordinate of the quotient.

Change of level structure 7°7 +— n° @ oq for a € T(Z,) is given by the action
of an element (aal 0) of the diagonal torus in 7° (Z) C SLy(F Iéoo)), which moves
the point x € Ig to a different point y = a(x) étale over the image of = in Shk
(for K = G(Z)) and brings the canonical coordinate at x to that of the image
y. In other words, the action of a by the change of 7°"¢ to n°"? o a:

(A’ i) [’7 A) Tlord) = (A’ i’ [’7 A) Tlord o a)

sends the deformation space S centered at (Ao, io, Lo, Ao, m3"%) on z to the differ-
ent deformation space S, centered at (Ao, g, Lo, Ao, 75 ¢0a) on y = a(z) (as long

as the two quintuples are not isogenous). The action of p, : T, (Q) — G(A(>)
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and the action of T° (Z,) via change of level structure are compatible, since the
intersection of the images of the two groups in £(G, X) is trivial (and the p-
component T°(Z,) and the projection of p, (T:(Q)) to the p-component G(Q,)
are both diagonal).

By the definition of p, given above, we have a o 7" = 7°"4 o p,(a) au-
tomatically. If p,(a) € Tp(Z), it acts on Ig(G,X) as an automorphism,
while p;(a) € T,(Q) may expand or shrink Or, because it would induce a
morphism like the Frobenius map on the special fiber. The action of 7(p,(«))
sends the canonical coordinate ¢ into ¢t (identifying « with its image in

Op = Hpexp Op = 0p).

Lemma 3.3. If h € (G, X) fizes x and is an image of h € G(A() with
hp € G(Zy), then it is induced by an endomorphism o € End%(Am) =M, and

c

h induces t — t&' " ° .

Proof. Since h fixes z, it has to preserve Ig and S by the irreducibility of Ig (a
theorem of Ribet; see [PAF] Theorem 4.21). Take h € G(A®)) with ﬁp € G(Zp)
projecting down to h. Thus ﬁp is in the upper triangular Borel subgroup B(Z,)
by [PAF] Corollary 4.22. The Borel subgroup B is upper triangular with respect
to the coordinate given by 7°"? (and its dual) under which we identified 7" and
T?. By the universality of Sh /@, there exists an isogeny a : A, — A, such that
n® oh =aon® and n°%oh = aon’?. Since a € End(A,) = O, we have
h = () modulo Z(Q), and therefore, h is the image of 7, () in (G, X). The
assertion follows from the above discussion. O

Summing up the above discussion, we have the following fact:

Proposition 3.4. Let a € T(Zy) for T' = Reso/zGm. Then the action:
(A, i, L, A, nord) = (A, i’ L, A, nord o a)

induces an isomorphism: S, = S sending f = e (O € F(ga,Oga) to
foalt) =3, ()t e T(8S, Og), wheret (resp. t') is the canonical coordinate of
S (resp. S,). For an isogeny a € End%(Am) regarded as an element of T,(Q)

by p, we have t o T(py()) = '

Here is how to relate the characteristic 0 Shimura variety Shy,, of level 'y (p™)
with the characteristic p Igusa tower of level p”. A more localized argument
can be found in [H09]. Let W = z;l(W(F)) C Q (a strict henselization of
Z(p) inside Q). We regard Sh(P) as a (pro-)scheme over W. Let K (resp. K)
be the field of fractions of W (resp. W). Consider the quotient Shy__/x =
Sh(G, X)/Us for the stabilizer Uy, = Up o C G(Z,) of the infinity cusp. Thus
Uso =), Un and U, consists of elements g € G(Z,) with g = ({*) mod p".
Thus Shy__/x = @n Shy, k., and Shy, /x (n =1,2,...,00) can be written as
the scheme representing the functor

Isomo (ppn @071 ) Alp"]

/Sh(/l;c)’ /Sh(/l;c))a

32



because the level p-structure 7, mod U, for a test object (A, X\, mod Us)/s
can be given by an O-linear closed immersion: jipe @071 — A[p™] (& O,(1) =
Ty (ppee ®071) > T, A) if n = 0o and an O-linear closed immersion: fin ®07§ —
A[p™] /g if n < co. Here Isomo(G/p, H,p) for finite flat O-modules (or Barsotti-
Tate O-modules) G and H over a base B is a contravariant functor from B-SC H
to SET'S which assigns a B-scheme R the set of O-linear closed immersions
G xp R — H xp R defined over R. By the theory of the Hilbert scheme (e.g.
[PAF] 6.1.5-6), the above functor Isomo (G, 5, H,p) is representable by a scheme
quasi-finite affine over B if G and H is finite flat over B, because flatness and pro-
jectivity of G,p and H,p (following from finiteness) is the requirement of repre-

sentability by the Hilbert scheme. Put I,, = Isomo (ppn ® D;;h(p) , Alp"
/W

We perform the same construction over the category of (p-adic) formal
schemes over Sh2"?. We then get the formal completion Ig, (G, X) of I,, along
its special fiber over F:

sshp), )

19, (G, X) = Isomo (ppn @ °7g,lh%d, Ap"]/shora)

= Tsomo iy © 400 Alp )i
= Tsomp (A[p"]%hord,pan/O/Shggd) (Cartier duality)

mult

for the multiplicative part A[p"] Vshora Of A°"p"]  gpora (which is only well

defined over the formal scheme Sh"?). The Igusa tower Ig/V.2r? we discussed
earlier is the pull back of the full Igusa tower Ig = lim Ig, (G, X) to the integral
formal subscheme V2rd  Shor®. Though Ig,(G, X) is étale finite over Sh2?,
I,,/Sh(®) is étale quasi-finite over Sh(P) (because elements I,, over non-ordinary
locus in characteristic 0 fiber of I,, does not extend to characteristic p fiber). In
any case, by definition I,, @y K = Shy,, /xc.

We look at the normalization Z,, = Z,,(G, X) of the scheme Sh?% in Shy__ /x-

Since In/Sh(p) is étale quasi-finite, I,, is normal. Thus Oy, D Oz, and Oy, » D
01z, » at all closed points x € I,,; in other words, Oy, is a localization of Oz,
over the topological space of I,,; so, we have an open immersion I,, <— Z,, because
Of In ®W IC = ShUn//C-

Since V2" is a connected component of Sh2'¢, Iq/V2rd (defined earlier) is a

closed subscheme of Ig(G, X) (and actually a connected component of I¢g(G, X)
by a result of Ribet). The n-th layer

I9,(G, %) :=Isomo (ppn @ D;;h%d, Acrd [p"]%}fégd)
(x)
= [somp (O/pnO/Shggd, Aord[pn]jghggd)

is finite étale over the formal scheme Sh%¢, and Ig(G,X) = lim Ig,(G,X).
The isomorphism (x) is given by sending an isomorphism of the left-hand-side
to its Cartier dual inverse. Each layer Ig, (G, X) is finite over Sh2%?. As we
have seen, Ig,(G,X) is the formal completion 1, of I, along its special fiber

Iy =1, 9w F = I1g,(G,X)r C Z,,/r and hence is an open formal subscheme
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of the formal completion fn of 7, along its special fiber. In summary, the
special fiber 7,z over F has Ig,(G,X)/r as an open subscheme of maximal
dimension, the formal scheme Ig(G,X),w is the formal completion of I

along Ig(G, X) /r, and I isan open formal subscheme of the formal completion

T along its special fiber.

The quadruple A, = (A.,i,\,n) of CM type (M,¥) gives a unique point
r € Sh(G,X)(K[up=]) and the ordinary quadruple A, = (A;,i, A, 7°"%) gives
a unique integral point z € Z,,(W). Cousider the W-point x € Z,,. Then
writing O, /yy for the stalk at the closed point = (z mod myy) € Zoo(F) (for

the maximal ideal myy C W), we have an isomorphism S = Spf (@x Jw), Where
O, = lim O, /m? for the maximal ideal m, of O, yy. Since § = G, ®z07,

.

the endomorphism ring End(S) as a formal group is isomorphic to My(Zp).
By t — t% a € O, acts on S; so, we write Endp(S) for the commutant of

. .

Reso, /z,Ga(Zp) in End(S). Then Endo(S) = O,. For each f € Og and a €
O,', we write a(f) = foa. Recall the torus 7 defined by T /T. We may consider

the reversed exact sequence of tori over Z,): 1 — 7 — T, rorm

T — 1, where
the map “norm” is induced by the norm map: D(Xp )y = O(Xp )- The character
T, > a — a'~¢ factors through 7 with kernel 7. The inclusion p, : T, — G
(over A(>)) induces p : M — &£(G, %) (and by abusing the symbol, we have
p:T(Q) = p.(Te(Q)/Z(Q) — £(G, X)). Let D be the stabilizer in £(G, X) of
the generic point of the irreducible component of Ig(G, X) r containing z. As
seen in [PAF] Corollary 4.22, we may identify D with

{h € G(G, X)|hy is upper triangular and det(h) € Qp Z(Q)Z(R)+}
Z(Q)G(R)+

Here D contains p,(T:(Q)), pz(h), (h € M;S,) is in the diagonal torus in D and
(7T (Q)) is a discrete subgroup of D.

Corollary 3.5. Ifa € D(Xp) (= To(Zy)), then T(pe(cv)) fizes x and preserves
Ouyw. If (h) for h € E(G, X) fizes , then h is in the image of M. Moreover
writing ¢ for the embedding O,y — Og associated to (Ag, N, 0,174, we have
' =e(u(f)) = (TP ). The effect of pr(a) € E(G, %) (for € M*) on the

canonical coordinate t € S is given by t — t* .

Since the action of T,(Q) (z = [z, ¢]) on S factors through T, (Q)/TQ) =

T(Q) by a — o', we regard p(T (Z(,)) as the isotropy group in £(G, X) of

S < I9(G,X) (by Lemma 3.3). However we need to keep in mind the fact that

the image of a € T (Z(p)) in 7 (Z(y)) acts on S through the action of 7(p(«))
1—c

~

whose action on ¢ € S is given by g — ¢©

3.4 Rigidity for Formal p-Divisible Groups

We set up some notation to quote a result of Chai (Theorem 4.2 in [C3] and
Theorem 6.6 in [C4]). Let k be an algebraically closed field of characteristic
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p > 0. Let T be a finite dimensional p-divisible smooth formal group over k.
Let Ez, = End(’i‘), and let £ = Ez, ®z, Qp. Denote by E* the linear algebraic
group over (@, whose Q,-rational points is £*. Let G be a connected linear
algebraic group over Q,, and let p: G — E* be a homomorphism of algebraic
groups over Q,. Let G(Z,) = pfl(EZXp). The compact p-adic group G(Z,)

operates on the p-divisible formal group T via p-

Theorem 3.6 (C.-L. Chai). Assume that the trivial representation is not a
subquotient of the linear representation (p, E). Suppose that Z is an integral

closed formal subscheme of the p-divisible formal group T which is closed under
the action of an open subgroup U of G(Z,). Then Z is stable under the group

law of'/I\‘ and hence is a p-divisible smooth formal subgroup of'f.

A proof of this fact is given as [C4] Theorem 6.6 (see also [C3] Theorem 4.2).
We now interpret this result in the following setting. In the sequel, £k =F = Fp.
We keep the notation introduced in the previous subsection. In particular, we
recall the torus 7 fixing the CM point z. Let L be a Z,—free module of finite
rank on which 7(Z,) acts by a Qp-rational linear representation. We take

(G/q, T/k) in the theorem to be (7q,, TL/F =Gm ®z, L). Then TL/F inherits
the action of 7 from L; so, we get p: T/, — E for E = End('fL) = Endgz, (L).
Then we get from the theorem the following lemma:

Lemma 3.7. Suppose that the trivial representation of T(Z,) is not a subquo-

tient of L ®z, Qp. If 2/]}- is an integral closed formal subscheme of ’i‘L stable
under the action of an open subgroup U of T (Z,). Then there exists a Z,—direct

summand Lz C L stable under T (Zy) such that Z= @m ®z, Lz; in particular,
Z is a smooth formal subtorus of T,.

We recall the definition of Tate-linear subvarieties in the Hilbert modular

variety given in [C4] Section 5. Fix a closed point = € Sh%fl (F =F,) carrying a
triple (A, X, n®)) (thus A, is of CM type (M, X) and satisfies (ord) in 3.3). Let
V be the irreducible component of Sh%) containing z, and put V¢ = VNSho,

Let m > 1 be a positive integer. Suppose that Z is an irreducible closed
subvariety of (Vord)m = yord x yord i ... x Vord defined over F.

(T1) Let 2 = (21,...,2m) (z; € V°'?) be any closed point of Z. We say that Z
is Tate-linear at z if the formal completion of Z at z is a formal subtorus

of the Serre-Tate formal torus [T}, YZ‘;’”\d =~ (G ®z O)™,
(T2) We say that Z is Tate-linear if it is Tate-linear at every closed point of Z.

(T3) Denote by f : Y — Z the normalization of Z. We say that Z is weakly
Tate-linear if for every closed point y of Y, the morphism induced by f on
the formal completion Y, of Y along y is an isomorphism of Y}, to a formal

subtorus of the Serre-Tate formal torus (G,, ®z 0)™ (at f(y) € V™).

Obviously, we can modify the above definition to define Tate O-linearity insisting
O-linearity in (T1-3). In [C4], the definition of Tate linear subvarieties is given
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for a closed subvariety of the ordinary locus of the Siegel modular variety. Since
(Vord)m has a canonical closed immersion into a Siegel modular variety (e.g.,
[PAF] Corollary 7.2 and 8.4.2), this definition is equivalent to Chai’s definition
for closed subvarieties of the Hilbert modular variety. It is conjectured by Chai
that a weakly Tate linear subvariety is actually Tate linear (see [C4] 5.3.1)),

which has been shown to hold for our V' C Sh%) (see [C4] Theorem 8.6).
If Z is a variety with a morphism 7 : Z — (V°"4)™ and if for a closed point
z € Z, m induces an embedding of Z, into the formal completion of (V°rd)m™

at m(z), we can still speak of Tate-linearity (and weak Tate-linearity) at z of Z
(we shall make this abuse often later).

3.5 Linear Independence

We prove a key result on linear independence of arithmetic modular functions
(Theorem 3.20 below), respectively, forms (Corollary 3.21 below) and their im-
age under a transcendental automorphism of the deformation space S over W.
We keep the assumption of unramifiedness of p in F//Q and the notation intro-
duced in 3.3. Thus d," = Oy, and we have

5=Gn 207! =Gm®z, 0, =G ®z, Op = G ®2 0,

where @m denotes the completion of G,,, over W along the origin 0 in the special
fiber at p. Thus the definition of the Tate linearity of the previous section applies
to this case. Recall that M/F is the fixed CM quadratic extension of F' with
integer ring O, and z € Ig(F) is the CM point corresponding to an ordinary
abelian variety with complex multiplication of type (M,X). We may assume
that the point = has expression = = [z, g] = [2,1] - g for g € G(Z, x AP>)).
Indeed, we can choose the CM abelian variety A, so that its lattice L =L, - ¢
(which is a fractional M-ideal prime to p) is given by ¢* + Oz for a fractional
F-ideal ¢ prime to p. By our choice, £, ®z Z, = O, = Op ® Ope; s0, we
may choose g with 1, = 7, o g so that g, € G(Z,) is the matrix of change of
base from (1, z) € F} to the basis (1p, 1pc) € F7 for the idempotents 1, € Op
and lpe € Ope. The level p™-structure ng’”d (of A;) sends a € O, to a - 1pe
identifying A, [p*]®" with Mp/Ope by L, ®z Z,, = Op @ Ope. For this choice
x = [z, g], we recall the representation p, : T, — G defined over A(*) given at
the beginning of Section 3.2 and the quotient torus 7 (Zy)) = T (Zp)) /T (Z(p))
defined just above (3.18). As studied in Lemma 3.3, p,(7 (Z())) gives the
stabilizer of z = [z, g] in G(Z, x AP>)/Z(Z,). We simply write p for p,
hereafter.

For each open compact subgroup K of G(A(>)) such that K = K, x K ()
with K, = GL2(0,), let Vi be the geometrically irreducible component con-
taining z in the reduction (Sh(P)/K)r modulo p of the Kottwitz model. Let
V' =lim Vi for K running through open compact subgroups of G (A(>®)) maxi-
mal at p. Strictly speaking, the point = gives rise to a projective system of points
xx € Vi (F) (the image of = in Vi), but we write this point as « € Vi (F).
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The formal completion SofV along x is isomorphic to @m ® O whose au-
tomorphism group is isomorphic to O). Through the injective homomorphism
(3.18): a — a'~°, we regard T (Z,)) as a subgroup of Oy, identifying Op, with
Oy by the inclusion O — ©O.

Let Oy, = lim . Ov, o be the stalk of V' at x, and let S = Spec(Ov,z).
The local ring Oy 5 is a dense subring of the affine ring @5 of S.

Take a1, ...,am € Oy . By the action of a; on S (and hence on @S), we have
an algebra homomorphism

(b:@v)x@]F"'@]FOV)x—)@S sending f1® -+ Q fm to Haj(f) 6@5.

j=1

(3.19)
If a;’s (j = 1,...,m) are pairwise distinct modulo 7 (Z,)), we would like to
prove that ¢ is injective. Thus for a nonconstant modular function f € Oy 4,
{a1(f),...,am(f)} are linearly independent over F. Since f is a ratio of two
modular forms, this is not too far from the claim (made in the introduction) that
{a1(E),...,am(E)} are linearly independent over F for a suitable Eisenstein

series E. Thus we study Ker(¢) for ai,...,an € O,

Since p(T (Zy)) fixes x (Lemma 3.3), 7 (Z(y)) acts on Og by ring auto-
morphisms, and by Corollary 3.5, this action is compatible with action of O]DX
via the embedding 7 (Z,)) — O,. Thus we have ¢(a(f1) @ -+ @ a(fm)) =

p(fr ® -+ @ fm)) for all @ € T(Zy)). In other words, the closed sub-
scheme Spec(Im(¢)) C S™ = S x --- x S is stable under the diagonal action
of T(Z)) on S™. Thus we study in the following couple of propositions the
(local) structure of a closed subscheme of S™ stable under the diagonal action
of T(Zp)). After determining the structure of such formal subschemes, we will
globalize the result to reach our desired conclusion of the injectivity of ¢ if a;s
are independent.

Since Ker(¢) is a prime ideal of Oy, @ - - - ® Oy, stable under the diagonal
action of T (Z)), it is induced by an irreducible closed (pro-)subscheme X C V
passing through 2™ = (x,z,...,z). In other words, X is the Zariski closure in
V™ of Spec(Oy,z®- - - @Oy . /b) for the prime ideal b = Ker(¢). We take a more
general setting specified as follows (we use the following notation throughout).

(NO) Let S = Spec(OVm)/]F and Sk = Spec(OVK «)/F with their formal com-
pletion Sand S x along x isomorphic to G ®z07 L= G ®z O;

(N1) For a prime ideal b C (Oy ® --- ® Oy,,) (the m-fold tensor product)
stable under a p-adically open subgroup T of 7 (Z,), we write X/p =
Spec(Oy,3 ® -+ - @ Oy 4/b) C S™ and let Y — X be the normalization;

(N2) X c 8™ is aformal completion of X along its closed point ™ = (z, ..., x);

(N3) X/r is the Zariski closure of X in V™ (so, X is stable under T and X is
the formal completion of X along ™). Let Y — X be the normalization.
Write X = lﬂl X Xg C V™ with irreducible closed subschemes Xx C V7
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(the image of X in V') and Yx — Xg for the normalization of X
(so, Y = @K Yk ), where K runs over open compact subgroups with

K =KW x G(Z).

We first deal with the simplest case of m = 1. We start with an irreducible
closed (pro-)subscheme X C V passing through z stable under the action of a
subgroup T of 7 (Zy)) as above. Define X" = XNV and X974 = XNV
We want to prove that X = V if dim X > 0, and as we will see after the following
proposition, this implies injectivity of ¢. By the étaleness of Oy ,/Ovy 5, X is
canonically isomorphic to the formal completion X x of Xx at z.

Proposition 3.8. Let the notation and the assumption be as in (NO-3) with
m=1. Ifdim X,p > 0, then we have X;p = V) and Xg/;r = Vi F.

Proof. We first follow the argument in [C2] Sections 4 and 5. By the Serre-Tate
deformation theory and unramifiedness of p in F/Q (which implies 2, = O)),
we have a canonical identification:

ViE2S=Gpn ez =Gmez,0," = [[ Gn ez, O,
pex,

where V is the formal completion of V along x. For an open compact subgroup

K maximal at p (so that Ig/VZ"¢ is étale at ), the above identity induces

Vip 28 =G @20 = [[ G ®z, Oy.
pex,

Since Ox,  is a localization of an F-algebra of finite type, it is an excellent ring
(see [EGA] IV.7.8.3 (ii) and (iii)). Since Ox, » is an excellent integral domain,
X = X = Spf(Ox,. o) is reduced (see [EGA] TV.7.8.3 (vii)).

As we have seen, an element ac M* prime to p acts on the Serre-Tate
canonical coordinate by ¢ — t ° for the generator ¢ of Gal(M/F). By the
stability of X under T, the formal completion X along the point z is stable un-
der the closure T of T. Since X = X k is a noetherian reduced formal scheme,
it has only finitely many irreducible components. Thus the stabilizer of each
irreducible component of X is an open subgroup of T and hence is an open sub-
group of T (Zy). Applymg Lemma 3.7 to S = T (L = O,) and an irreducible
component I of X = Xy (which is reduced as we already remarked), we find

I = II &imﬂgzp(?p

pPEET

for a subset Zr C ¥,,. The formal scheme I is a smooth formal subgroup of S.

The group 7(Z(y)) acts naturally on the normalization ¥ = lim Yy of X.
For a closed point y € Yx over z, Oy, , (which is finite type over Ox, ) is
excellent, and the formal completion Y is integral ([EGA] IV.7.8.3 (vii)). Thus
there is a unique point y; € Y over x € X such that the projection Yy — Xg
induces an isomorphism of the formal completion }/}y , along yr onto I.
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Let U be any of the (pro-)varieties Ig, V and Vi . On U, the tangent bundle
Oy is decomposed into the direct sum of eigenspaces under the O—-action:

Oy = Oy ®z O locally, and Oy = EB Ou.p, (3.20)
peSy

where Oy, is a locally free Oy ®z, Op-module of rank 1 (see [C2] page 473).
To see this, let f : A — Z be an AVRM over a scheme Z,z. Then we have
the Kodaira-Spencer map & : fuQ04/7 ®0g,0, f+Qa/z — Qz/r (see [K3] 1.0).
The Kodaira-Spencer map k is an isomorphism if A is the universal abelian
scheme over Z = U (see [K3] (1.0.21)); hence, f.Qz/r = O ®z Oz and, taking
the dual, Oy =2 O ®7 O4. Therefore Oy = ®p62p Oy, for the Op ®z Oz-eigen
sub-bundles Oy ,, and we obtain the expression (3.20).

Let A be the universal abelian scheme over Vk, and write A = A xv, Yk.
We again have the Kodaira-Spencer map sy : ful24,v; ®0@10y, f+Qa/ve —
Qv Since I =[]z, Gum ®z, Oy, after taking the formal completion along
Y1, this map induces an isomorphism

(f*QA/YK ®0@10y, f*QA/YK) ®o H O, = QYK,W/JF-
pPEET

By this expression, via the normalization map: Y — X, the tangent space ©¢
of Y at yr is identified with @pez, (Op @0y, Oy.y,), where ©, = Oy,. By
faithfully flat descent, we have Oy ®o, Oy, = ®pez; (0Op @0, Oy,y,). Thus
on an open dense subscheme Y; C Y with y; € Y7, we have

@YI = Dpez; (633 Koy OYI)'

Since Y is irreducible, N;Y7 for I running over all irreducible components of X
is still open dense in Y. This implies that =; is independent of I; hence, X is
integral and smooth, and we have

~)

=X = [[ Gn ®z, O, (3.21)
pe=

for a subset = of ¥. Therefore, X is smooth at x.

Suppose that = # X, and let p € ¥, — Z. We only need to prove that
Vik = Xk for a choice of an open subgroup K maximal at p. Choosing K
sufficiently small, we may assume that Vi is smooth over F = F,. Recall the
universal abelian scheme A /v, . Define A = A = Axy, Xx. Write pr = Fp,
and consider the pp—divisible group A[p¥].

We need here a lemma (Lemma 3.10 below) about an ordinary AVRM:
A — Z. In our setting, Z = Xk, which is an irreducible excellent affine
scheme. Since p ¢ E, the p-divisible group A[p®] /%, Splits canonically into a
direct sum A[p¥]° & A[p%o]j}K
Uk C Xk the p-divisible group A[p¥] u, splits canonically into a direct sum
Alp¥]° @A[p%"]%}( for the connected component A[p]° and the étale quotient

. By the lemma, on an open dense subscheme

39



A[pF]¢t. We now follow the proof of Theorem 8.6 in [C4] to get a contradiction
(and hence we conclude = = X,). Consider the decomposition A[p™]y, =
Hp/eEp Alp'%F] vy of the Barsotti-Tate group A[p™],y, over Ug. This étale-

connected splitting of A[p¥] over Uk gives two orthogonal idempotents e° and
e in Endy, (A[p%F]), with the following properties.

e The idempotents ¢® and e commute with the action of O on A[p%],
o c° +e =id € Endy, (Ap%F]),

e The image of €° is the multiplicative part of A[p3°], and the image of e
is naturally isomorphic to the maximal étale quotient of A[p%].

Thus, we have

Endo(A[p™]ju,) O | @D Op | @ (0pe® @ Ope?) 2 0, (%)
p'#p

On the other hand, Theorem 2.6 of [J] tells us that
Endo (A[poo]/UK) = EndO(A/UK) Rz Zp.

The endomorphism algebra End?(A4 Jux) = Endo(A,y, ) ® Q is isomorphic to

either a CM quadratic extension or F itself. Since Z # @ (& dim X > 0),

Endo(A[py™]/ux) = Op for p’ € E, because Alpp™] 5 oo, is the univer-
m®O,/

sal Barsotti-Tate group over G, ® Oy C X deforming A, [p%"]/r and hence

Alp™]° — Alp"] = Alp="]*" is non-split over Ug. Thus EndQ(A/UK) can-
not be a CM quadratic extension; so, EndQ(A Jux) = F. This is a contradiction
(against (x)), hence 2 =X, and Xx = Vi as desired. O

Corollary 3.9. Let the notation and the assumption be as in (NO-3) and as in
Proposition 3.8. In particular, m =1 and b C Oy, is a non-mazimal prime

ideal stable under T. Let b be the unique prime ideal of Org . above b, and write
X = Spec(Oy;/b). Thenb =0, b =0 and X = Spec(Ov); in particular, ¢
for m =1 1in (3.19) is injective.

Proof. Let bg = bN Oy, . Since Opy ; is étale over Oy, ., we have a unique
prime ideal b C Ojg , which is over bg. Thus b is also stable under T, and we

have b=0<b=0<b x = 0 for any open compact subgroup K maximal at
p. We consider the Zariski closure Xx of Spec(Ovy »/bx) in Vi /p.

For any Zariski open neighborhood U C Vi of x, put Oy Nbg = Ker(Res :
Oy — Oy, »/bk). Then U N Xk is given by the spectrum relative to U:
Specy (Ou /Oy Nbg). Since Oy Nby is a (sheaf) prime ideal of Oy, UN Xk is
irreducible reduced, and hence Xy is irreducible reduced. Thus

X=Veob=0(&b=0)<bg =0 Xg = Vk.

The irreducible reduced T-invariant closed subscheme X is either a single point
{z} or V itself by the above proposition, and hence we conclude b = 0; in
particular, Ker(¢) = 0, taking b to be Ker(¢). O
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Lemma 3.10. Let A — Z be an ordinary AVRM with real multiplication by
O over a reduced excellent affine base scheme Z over F,. For a closed point
s € Z(F,) and a formal completion Z along s, if the p-divisible group A[p5e] xzZ
splits into a product of its connected component A[pF]S, and étale quotient

/Z
Alp¥ ]/Z, then on an open subscheme U C Z containing s, the p-divisible group

A[p¥] v canonically splits into AlpF]° © AlpyF ]/U for the connected component
AlpF]Jy and the étale quotient A[p%o]%]

Proof. The splitting, if it exists, is canonical, because Z is reduced. Indeed, such
splitting is canonical over an algebraically closed field (cf. [ABV] Section 14,
specifically, page 136), and if the base scheme is reduced, under the existence
of the splitting over the base, it has to be unique at all geometric points (and
hence unique over the reduced base scheme). Replacing Z by its irreducible
component containing s, we may assume that Z is irreducible. The pp-part of
the Serre-Tate coordinate t, around s measures the degree of non-splitting of
the exact sequence A[pF]° — A[pF] — Ap¥F ]et Because of the splitting over

Z, we find that tp (A[p%o]/z) = 0. By assumption, Z = Spec(R) for an excellent
integral domain R. Then by [C4] Proposition 8.4 (ii), there exists an open
neighborhood U of s in Z over which we have a splitting A[p3°]° @A[p%"]%. O

Our goal is to prove the injectivity of ¢ for general m > 1 in (3.19) under the
assumption that the a;’s are pairwise distinct modulo 7 (Zp)). The injectivity is
equivalent to Spec(Im(¢)) = S™; so, we study the local property of Spec(Im(¢))
to show that dim(Im(¢)) < dim S™ implies the equality of two of the a;’s modulo
T (Z(p)). The following result dealing with the local structure of Spec(Im(¢))
when m > 1 is a key to prove the linear independence.

Proposition 3.11. Let the notation be as in (N0-3), Proposition 3.8 and its
proof. In particular, for a positive integer m, let X be a closed integral subscheme
of S™ containing ™ = (x,x,...,x) for the closed point x € S, and let Iy :
Y — X be the normalization of X. Write S™ = 8" x 5" for the first (m — 1)-
factor S" = S™=1 C S™ and the last factor S" = S. Suppose that the projection
to S’ induces a dominant morphism 7y : X — S;]F. Suppose further that X is
stable under the diagonal action of a subgroup T of T (Z,)) C Aut(Ov,,) whose
p-adic closure is open in T (Z,). Then,

(1) Y has finitely ‘many pomts y over ™, is Tate O-linear at every point Y

over z™; so, yy = Gm ®z, L for an O,-direct summand L of X. (Sm)
Moreover the isomorphism class of L as O -module s independent of y.

(2) Y is smooth over F and is flat over S’.

(3) FEither X = S™ or X is finite over S" via wx. If X is finite over S’, Y is
finite flat over S'.

(4) If mx o Iy induces a surjection of the tangent space at one y € Y over
™ onto that of S’ at 2™~ ' and X is a proper subscheme of S™, then
mxolly : Y — 5 is étale.
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Comment: In Proposition 3.8 dealing with the case of m = 1, the factor
S’ is equal to Spec(F). Later in Corollaries 3.16 and 3.19, we prove that X is
smooth; so, YV = &X.

Proof. By Serre-Tate theory, we have = @m ®z, Op. Since the case m =1
has already been taken care of by Proposition 3.8, we may assume that m > 2.
Since X is dominant over S’, we have dim X > 0. Let K be an open compact
subgroup of G(A(>)) maximal at p, and recall Sx = Spec(Oy, ). We assume
that K is small so that S/Sk is étale. Consider the image of Xk of X in
S7. Then Xx = Spec(Rk) for an integral domain Rx and X = Spec(R)
for R = h_n}K Ri. Since Ry is a localization of an integral domain of finite
type over F, Ry is excellent ([EGA] IV.7.8.3 (ii) and (iii)). Thus its formal
completion X = X along z™ is reduced ([EGA] IV.7.8.3 (vii)).

Since & is stable under the diagonal action of the subgroup T of 7 (Z,) C
Aut(Oy,;) and X is mtegral by Lemma 3.7, X is a union of finitely many
formal Op,-submodules of Sm of the form G ® L for Op—direct summands
L of the cocharacter group X,(S™) = Oy X = Urer G, ® L for a finite
index set I of Op—direct summands L of X, (§m) In particular, X is stable
under the action of 7(Z(,)) (not just T) diagonally embedded into Auto (S)m,
and X and X are stable under 7(Z(,)). The normalization ) — X is given by
@1 " Yk for the normalization Vi of Xi. Naturally the semigroup Endgsc g (X)
of endomorphisms of the scheme X’ acts on ); in particular, 7 (Z,)) acts on ).
The formal completion fy along y for each point y € Y over 2™ is isomorphic to
the formal completion 37K7y of Vi along the image of y in Vg . The scheme Vg
is excellent, because Yk is finite over Xk ([EGA] IV.7.8.3 (ii), (vii)). Since 37K7y
is the normalization of Xx and )/J\Ky is integral ([EGA] IV.7.8.3 (vii)), points

yr of Y over 2™ are indexed by the irreducible components of X and hence by
L € I so that yKny = G ® L. Since Y — S’ is dominant, for at least one
Lo € 1, the projection Ly ®o F — X, (§’) ®o F is surjective (i.e., the image of
Ly is of finite index in X, (5")).

Recall that we denote by X the Zariski closure of X in V" and the nor-
malization IT : ¥ — X of X. Again Endgcy(X) acts on Y; in particular,
T (Zp)) acts on Y. We have Y = @K Yk for the normalization Yx of Xk.
We look at the tangent bundle ©; for Z = V™ Y, X, S™ and Sm. Since V™
carries the self product of the universal abelian scheme A™, by the Kodaira-
Spencer map with respect to A™/V™: Qam jym @0mg,0ym) Qam jym = Qym,
and taking dual, we have the diagonal action of O on Oym (actually O™ acts
on Oym). We have the tangent bundle ®x C Oym (which is stable under
0), but ©x may not be locally free around z™ since X may have singular-
ity at ™. The action of O on © X extends to ©y compatibly. Let yp, € Y
be a point above z™ with YyL = G,, ® L. Since Y is stable under T(Zp))
and }/} o @ ® L for each point y;, € Y above 2™, we have Oy = @ Oy
for Oy-eigen sub-bundle Oy . Since YyL = G ®L, By =L®z0p 9, and
rankz, L®o Op = ranko, Oy, = rankz, Lo®oO,. Thus L L as Op-modules
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forall L € I, and 37 is equidimensional (the equidimensionality also follows from
excellency of Xk by [EGA] IV.7.8.3 (x)). This proves (1).

If Ly®o F = X, (Sm) ®o F, we get X = S™, and we are done. Hereafter
we assume rankz, Ly < rankz, X L(5™) (& Lo ®o F # X.(5™) @0 F); s
rankz, L < rankz, X, (§™) for all L € I. Recall the decomposition §™ = ' x S”
with the last factor S” = S. Similarly we decompose V™ = V' x V" for the
product V' of the first (m — 1) copies of V' and the last copy | V' =V. If

: G ® L — & is not dominant for L € I, the image (G,, ® L) is a
proper closed formal subscheme of 5. In particular, Y — & is not flat over
(G ® L) C S'. Define the non-flat locus Y™/ C Y as the Zariski-closure
of the set of closed points y € Y such that Oy, is not flat over Oy, for the
image v € V' of y. The non-flat locus yr, EAY"f C Y is a nonempty proper
closed subscheme, because G,, ® Lo C Y = YyLD is flat over S’ and flatness is
an open property. Since the formal completion of Y™/ at y; contains @m ® L,
dimY"™ = dimY; so, Y cannot be irreducible (because Y™/ is a proper closed
subscheme of V'), a contradiction. Thus Gm®L — S isflat for all L € I ,
and hence 57\ is flat over §’. Since S’ /S’ is faithfully flat, ) is flat over S’. In
particular, for all L € I, Gy, ® L is dominant finite over S’. This - proves (2).

Since 7 : X — § induces a surjection 7, : L ®o F — X.(8') ®o F, the
intersection 5" N (G, ® L) has dimension equal to rankz, Lo +rankz, X (5) —
rankz,, X, (S™) for all L € I. Then S N (G,, ® L) is a formal Op-submodule
isomorphic to HpeEL Gm ® O, in S = §, where Zj, is the set of all primes
p € ¥, such that ranko, Lo ®o0 O, > m — 1. By Proposition 3.8 (applied to
an irreducible component of X N S”), we have either =, = X, or Z; =
If 2 = ¥,, we have rankz, Lo = rankX*(gm), and hence X = S™; so, we
are done. Since L = Ly as Op-modules for all L € I, we actually knew that
5" N (G ® L) and that = = Z;, (indexed by L) are independent of L € I,
and XN S" = 8" N (G ® L) for all L € I (though we did not use this fact).
We hereafter assume that = = = 0. Since 7 @ ® L — S is dominant and
dunG @ L=dimS = rankz, L, 7 : G ®L — 5’ is finite flat for all L € 1.
Thus X — 5’ is finite, and ) is finite flat over S’. This proves (3).

To prove (4), consider the differential sheaf Qy/s/. We may assume that
(mx olly). : Oy — Og: is surjective at yp = yr,. Since i}yo/é\/ is finite flat, i}yo
is étale over &, and hence Vyo/S' is étale. Thus Qy/s|y, = 0, and hence Qy s/
vanishes on a nonempty open subscheme of Y. Thus the support Y™™ C Y of
Qy /s is a proper closed subscheme of Y. If V,, /S’ is not étale, Y, C Y™,
Thus Y™™ is a closed subscheme of dimension equal to dimY; so, it is an

irreducible component of Y, and hence Y is reducible, a contradiction. Thus
Y — 9 is étale finite. O

Remark 3.12. Let the notation and assumption be as in Proposition 3.11. We
suppose m = 2 and that Y — X C S? has two dominant projections onto the left
and the right factor S of S2. We write the Serre-Tate coordinate (induced by

the ordinary level structure on A, ) of the left factor (resp. the right factor) of 52

43



ast (resp. t'). Then by Lemma 3.7, the formal completion 5J\y of Y along a point
y above 22 = (z,z) is canonically isomorphic to a formal subtorus of 52 given
by Gy, ® L for an O,pfree direct summand L of O7. Thus if dim X = dim V,
)/i\y is defined by the equation t* = ¢’ for non-zero-divisors u,v € O, with
uOp + v0, = Oy, and L C O} is given by L = {(z,y) € Ojlux = vy}. If two
projections are étale, (u,v) can be chosen to be (1, a) for a unit a = v/u € Of.

Corollary 3.13. Let b = Ker(¢) for ¢ as in (3.19). Let y € Y be a point
above ™ and Y be the formal completion on along y. Then Y for at least
one y €Y contains A = {(t‘l1 L)t € S} and fori=1,2,...,m, writing
S; for the i-th copy ofS in 5™, the projection X, (Y) — X. (Sl) is surjective,

regarding Y c S In particular, if m = 2 and wx is finite, Y — S’ is étale
finite.

Proof. We have the following commutative diagram

OV,x ®F -+ QF OV,x L) @S

| ] (3.22)

Ove ®F - Qr Oy 0 Os,

where Oy, = Og, ®(fy @+ @ fm) = [T~ a;(f;) and the map ¢ is the tensor
product of the natural inclusion Oy, C @V,x. Thus Ker(®) D «(b). Note
that Spf(Oy., @ - -- @ Oy../ Ker(®)) is the skew diagonal image A in ™.
Taking the formal complet1on along ™, the map ¢ brings A into X' because
Ker(®) D (b). Thus an irreducible component G,, ® L of X contains A. In
particular, if m = 2, wx (L) contains wxy*(X*(ﬁ)) = X,(S'). Then the rest
follows from (4) of the above proposition. O

We keep the assumption and the notation in (N0-3) for b = Ker(¢) (¢ as
n (3.19)). We have globalized X taking its Zariski closure X in V™. We start
with the simplest case where m = 2. There are two possibilities by the above
result that dim X = dimV or X = V2. The latter case implies ¢ is injective
as desired; so, we are done. Assuming dimX = dimV, we take the Zariski
closure X of X in V x V and its normalization II : ¥ — X. We study X
(resp. Y) as a global irreducible subvariety of the self product V' x V (resp.
as a correspondence V «— Y — V). We are going to show in Corollary 3.16
after two preparatory propositions that X =Y and that the variety X is the
graph of an automorphism of V given by an action of an element in G(A®>))
(in other words, a1/az has to be in 7(Z,))). In this process of showing that
X is a graph of an automorphism, we use repeatedly the fact that the diagonal
action of T(Z,)) preserves X in V' x V and extends to Y.

The subvariety X is a graph of an automorphism of V' (as a correspondence
in V x V) if and only if the projections m; : X — V' (j = 1, 2) are isomorphisms.
The only information we have is: (i) X is stable under the diagonal action of
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T (Zp)) (or a finite index subgroup thereof) and (ii) the formal completion Y
at any point y € Y over (z,z) € X has isomorphic projections to the formal
completion of V' at x (that is, we know that the two projections II; = ITo 7, of
Y to V are étale infinitesimally around y). Thus out of (i) and (ii), we need to
show that 7; (j = 1,2) are isomorphisms. We shall do this by the following two
steps:

Step 1. We show that II; is étale over a dense open subscheme of V' (this is
basically achieved by Propositions 3.14 and 3.15).

Step 2. We show that the two pullbacks Y; := IIFA (j = 1,2) of the
universal abelian scheme A,y by II; are isogenous over Y. Writing the prime-
to-p level structure of Y; as n; := IIin, for the isogeny ¢ : Y1 — Y3, we have
wom, =1y og for some g € G(AP>)) and we conclude Y = X and X is the
graph Ay ; C (V x V) of 7(g) (Corollary 3.16).

After finishing off the case m = 2, we proceed by induction on m and show
that a;/a; € T(Z,)) (for some i # j) if X # V™:

Step 3. Under a suitable assumption on X C V™, by induction on m, we
show that an irreducible subvariety X C V™ (containing (z,z,...,x)) stable
under the diagonal action of T (Z,)) (or its p-adically open subgroup) is con-
tained in V™72 x A; , after permuting the components V. We get this result
by applying Step 2 to the projected image of X to the product V x V of the
last two factors in V™ (Corollary 3.19).

Then the linear independence of {a1(Eq,),...,am(Ea,,)} for elements a;’s
mutually distinct modulo 7(Z(,)) in the introduction follows easily from this
(Corollary 3.21).

In Step 2, the two AVRMs Y;/y are (O-linearly) isogenous if and only if
EHd%(Y/y) = My(F) for Y := Y; xy Y. Our argument is by contradiction,
supposing End% (Y,y) = F x F. Since Vi (for an open subgroup K C G(Z)) is
actually defined over a finite field, the generic fiber of Yy is an abelian scheme
over a field of finite type over the prime field F,; so, generically, we can use
finiteness theorem of Zarhin-Tate on the endomorphism ring of abelian scheme
over a field of finite type over IF,,. Since m; is étale over a big open subset, we
can then study Y; xy Ys specializing it to many CM points, and in such a way,
we exhibit a contradiction against the assumption End(Y,y) = F' x F. This
type of arguments is impossible just studying X because the scheme X has only
one closed point and the function field of A’ is not finite type over F,,.

The main tool in Step 1 is the local information from the Serre-Tate co-
ordinates we have studied above and Zariski’s main theorem (or equivalently,
the Stein factorization of the projections X — V'), which requires us to have
a smooth compactification (a toroidal compatification V of V). Though the
minimal (Satake) compactification V* of V is easy (and we still have the action
of £(G,X) on the compactification), we lose smoothness which is vital in the
use of the Zariski’s main theorem. This point adds some technicalities to our
arguments.

For a sufficiently small open compact subgroup K so that Vi is smooth over
F, we take a smooth toroidal compactification Vi . The toroidal compactification
depends on a choice of a simplicial cone decomposition Cx of the totally positive
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cone ' = {a € F|a > 0} into a disjoint union F* = | |,¢c, C stable under
the multiplication by OZ. Fix such a decomposition for K. For smaller K’ <K,
we may take the smooth toroidal compactification \71(/ associated to the same
decomposition Ck. Then K /K’ acts faithfully on Vi extending its action on
Vi, and Vir — Vi is a finite morphism compatible with the action of K ([DAV]
IV.6.7). Then we construct V= hm Vi so that the starting maximal compact
subgroup acts on V compatibly w1th the projection V — V* ([DAV] V.2.5).
Let z € VorY(F) = (V N Sher®)(F). The fiber at  of Ay is a test object
(A, Ay M1 (p )). The abelian variety A, /r has complex multiplication by a CM
field M/F (by a theorem of Tate: [ABV] Section 22). Thus we have an em-
bedding p : To(Zp)) — G(AP>)) given by omg(cp) = n(p)p( ). Since the test
object A, is given in our application, the point of Sh%/)v at which A is realized
as a fiber of A may not be in the neutral component, but it is the image of
the neutral component under the right action by g € G(A(>)). The point z is
therefore of the form [z, g] whose level structure 7, is of the form 7, o g (g # 1;
otherwise, the image of Q-anisotropic torus T, under p, cannot be diagonal at
p in G(AP))). Recall p = p, : T (Z(p)) — G(AP>)) in Section 3.2 with Im(p)
in G(AP®))/Z(Z,)) giving the stabilizer of the point z = [z, g] (Lemma 3.3).

We start with the more general setting of (N0-3) with m = 2: Let
X/]F cVxV

be an irreducible subscheme with (z, ') € X°"4(F) (X°'? = X N (Vord x Vord))
stable under the diagonal action of a p-adically open subgroup T in 7 (Zy)). We
write V for a smooth toroidal compactification of V/, X for the Zariski closure
of X in V x V and I : Y — X for the normalization Y of X. The action of
T on X extends to Y. For an open compact subgroups K1, Ko C G(A®P>)), we
write Vig for Vi, x Vk,, and we define X9 for the image of X in Vi2 and )?12
for the image of X in \712 = \7K1 X \7K2. We write }712 for the normalization of
X1y, Thus YV = @KlXKz Y12. We suppose (see Proposition 3.11 (3))

(DE) The two projections I11,Ils : Y — V are finite at a point y € Y above a
point (x,2") in V(F) x V(F) fived by the diagonal action of To(Zp)).

Since 2 and " are fixed by p(T:(Z(,))), Az and A, are isogenous and have
complex multiplication of the same type (M, ) (cf. [D1] Section 7). We also
have dimg Y = dimg X = dimg V and dimg Yio = dim X;9 = dim Vg If TI;
is not étale at (z,z’), Hj,*(X*(}/}y)) c X.(8) = O, is an Op-submodule of
finite index, and we find o € T, (Zy)) such that o’ X, (§) = II; . (X, (}/}y)) in
X, (§) = O,p. Then p(a™!)oll; is étale (by Proposition 3.11 (4)). The action of
p(a) for a p-adic non-unit a!~¢ is not an automorphism of V but a “radiciel”
endomorphism of V. Indeed, ((1)2) acts on Sh(®) as the relative Frobenius
map of degree p, and hence if p, (), K = (§5) K, the action of p(«) coincides
with the Frobenius map composed with p,(a(P)) on Shy. Since any statement
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concerning the underlying topological space of our schemes is not affected by
“radiciel” endomorphisms, we may assume (for such statements)

(A) II; and Il are étale finite at any point y € Y above (x,z'),

by modifying II; by p(a) for o € M*. This condition follows from Proposi-
tion 3.11 (4) and Corollary 3.13 in the case of our interest: b = Ker(¢).

As already remarked, we will show that X is the graph of the action by
an element g € G(A®>)). In this process, we may also assume the following
condition without losing generality:

(B) z =2

By moving X under the automorphism 1 x p(b?)) of V' x V for suitable b € M),
we can bring 2’ to x, and hence we may assume (B).

Let V; = lim VK , resp. Vj = lim VK (j = 1,2) be the j-th factor in
V x V, resp. in V x V. We now study the finite locus /*V; = hm “VK in Vj
of the projection II; : Y — Vj for j = 1,2. By definition, the non-finite locus
"fiVK]. is the closure of all closed points v € Vk;, such that O?K‘ v is not finite

.

over OVK]. ,v for at least one point y € H;l(v). We put fiVK]. = Vg, — "fiVK]..
Similarly, we define the non-flat locus "ﬂVK]. by the closure of all closed points
v € Vi, such that O?K].  is not flat over OVK]. ., for at least one point y €
H;l(v). Sincg a flat mf)vrphisni is an open map, "JZVK].N is a proper cloEed
subscheme of Vi, . Let 'V, = Vi, ="V . Thus /I, : H;l(ﬂVK].) — MMV,
induced by ﬁj is flat. Since /'I1 i, is proper flat and generically finite, each fiber
of ﬂﬁK]. is noetherian of dimension-zero (by [ALG] II1.9.5); so, ﬂﬁK]. is proper
nfl

and quasi-finite; so, it is finite. Thus the non-flat locus \N/K]. contains the

non-finite locus ™/# Vi ; so,
"ﬂ\N/K]. is a proper closed subscheme of \N/K]. inside "ﬂ\N/K].. (3.23)

Thus the finite-flat locus \N/K]. —"ﬂVK]. is a nonempty open subscheme. Similarly,
we define 8tVK]. by the maximal open subscheme of Vi, over which II; is étale
(the cuspidal divisors ramifies in XN/J over \N/K].; so, the étale locus is in Vj).
;Any of the properties ?7 = et, fi,nfl,nfi..., we write ?VK]. = Vg, N ?17Kj,
V= lim VK and V¢ = ¢V N ¢V, (in other words, over V¢, 11y and Il
are both etale)

Proposition 3.14. Suppose (DE). Then we have

1. The non-finite loci "1V and non-flat loci "'V ofH Y -V (j=1,2)
in'V are of codimension at least 2, and nfiy c nily,

2. If1; : Y — S and Iy : Y — S are étale, V¢ = Vi NV, is an open
dense subscheme of V' containing (x,x) stable under T.
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Proof. As explained before, we may assume (A) and (B). We first show that
we have a very big open subscheme /V; = 1imK fiVK. C V; so that each Y2
is finite over “VK (4 = 1,2) under the two projections II; : Y12 — Vi,. The
projection H . Yip — VK isa covermg generically finite étale; so, over a dense
open subscheme f? 1VK C VK , 1 is finite. Let K ! C K; be open subgroups
maximal at p. Let X}, (resp. Y,) be the image of X in VK{ X VKé (resp. the

normalization of X/,). We have the commutative diagram:

finite

}71/2 I 5(12 I ‘71(;
J{ J{ﬁnitc 71'J{ﬁnitc (324)

Yia P Xy —— VK
nite

The middle down-pointed arrow is finite because \N/Ki X \N/Ké — \71(1 X ‘71(2 is
finite. From this, the left-most down-pointed arrow is finite. Thus fiXN/K; =
7 (JVi,). Put /'Vx, = T"Vk, NVk,. Then we have fiVK; =n1(/"Vk,), and
Iy, = @Kj FVk, C V (for j = 1,2) is a dense open subscheme of V' whose

image in Vg, is fiVK].. In other words, the projection VK; — Vi, induces
surjective projection of the finite loci

Ty, =71 (I'Vie,) = T'Vi, for K C K; for a fixed K, (3.25)

and the image of the non-finite locus "V, := Vi — 11V in \7Kj is a proper
closed subscheme independent of KJ’ C K; Efor a ﬁ;(ed opeli compact subgroup
K x Ky ¢ G(A(®) maximal at p). The scheme "jl‘N/J = @K; nﬂ‘N/K; is the
non-finite locus of I; : X — V (j = 1,2). Put /1Y = II;'(F'V}). Then
I0; : 7'Y; — Vj is finite for j = 1,2, and /*Vj is the maximal open subscheme
of V' with this property By definition, H Y12 — VK is the normalization
of 7y : X12 — VK Since 7; : V12 — VK is projective, 7; : X12 — VK is

projective. Since the projection: Y12 — X12 is finite, it is projective; so, II; is
fi

projective, and we can take the Stein factorization of Y12 — Y AN VK]. of Hj

(see [ALG] III.11.5). Thus we have

i>12 X“;Kj jl‘7K] = }/152t X\7Kj fi‘f;Kja (326)

because over fif/K]., }712 — Y% is birational with connected fiber.

We consider the non-finite locus "fix7 C V and non-flat locus "ﬂf/ CVof
H Y = V. As we already remarked before statmg the pr0p031t10n "f 1V -
"ﬂV and "“V is a proper closed subscheme of V Since TI3" : Y — Vst s

birational and Y** is projective and normal, 15"~ ' s well deﬁned outside the

closed subscheme H;Fl("ﬂf/&) C Y% of codimension > 2 (see [ALG] V.5.1).
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Since Hj is finite, "ﬂVK (C "ﬂVK ) is at least of codimension 2 in \7Kj. The
projection VK/ —» VK again sends "ﬂVK/ into "ﬂVK , nfi V = th "ﬂ\N/K]. is
a closed pro-subscheme of codimension 2 of the pro-variety 1% by the stability
(3.25) of the non-finite locus with respect to K (and by [EGA] IV.8.2.9).

The scheme Y3 is normal dominant finite over XN/K (and is generically étale
finite). Since VK is smooth if Kj is suﬁimently small, the ramified (non-étale)
locus ”””VK = VK — EtVK of Y% over VK is a divisor of Vi ; so, it is of at

least codimension 1 for a given K. Since VK]. — Vk, is the cuspidal divisor, the
ramified (non-étale) locus """V, C Vi, of Y1% over Vi, is a divisor of Vi,; so,
it is of at least codimension 1 for a given K. To extend this result to the pro-
variety V;, we need to show that mmVK/ is sent into "*™ Vi, under the projection
map VK; — V. To show this, we look into the following commutative diagram

similar to (3.24) (removing cuspidal divisors):

finite s

/ /
Yo, X12 Vi X Vi,
Y J{ﬁnitc TX J{ﬁnitc WJ{étalc
[
Yis —— X2 Vi, X Vi,.
finite

Taking fiber products, we get morphisms (from the commutativity of the above
diagram): }/1/2 — }/12 X X1s X{2, X{2 — X12 X(VKIXVKQ) (VK{ X VKé) and
}/12 X(VKIXVKQ) (VK{ X VKé) i X12 X(VKIXVKQ) (VK{ X VKé) Since the pull—
back X12 X (v, xVie,) (VKi X VKé) of X12 to V/ X Vi, is a closed subscheme of
Vi, % Vi étale over X2 containing (z, ). Thus by definition, X, is a closed
irreducible subscheme of Xio X (v, xvi,) (Vie; x Vi) of the same dimension.
Thus X7, is the irreducible component of X2 X (v, xvy,) (Vi; X Vi) contain-
ing (z,x) and covering X192, and 7y is étale finite. Thus we have a commutative
diagram:

étale

/
}/12 XX12 X12 —_— }/12

J{ J{normalization

X1y — Xip
étale
Since étale morphisms are isomorphisms at the level of completed local rings,
they commute with the formation of normalization. Thus Y7, is an irreducible
component of Yi2 Xx,, X{o, and therefore 7y is étale finite. Hence, the pro-
jection VK/ — Vi, sends mmVK/ into "MV, and "MV, = th TAMVE . is a

closed pro-subscheme of codlmensmn 1 (by [EGA] IV.8.2.9) of the pro-variety
Vj (whose image in Vi, is contained in """V ).

By (3.26), “'V; contains V; — ("/*V; U "¥™V;) which is an open dense sub-
scheme of V}, and hence V¢ = “*V;N°*; is open dense in V. By our assumption,
(z,2) € V¢, and V¢ is stable under T, since étaleness is preserved by the action
of T. O
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Let v be a closed point of Yﬁ{d =Y xy2 (V42 above (vy,v2) € V2

We consider the formal completion Y, (resp. 1711]. (v)) along v (resp. II;(v)). If
II; x Iy embeds 5}@ into Vm X 17v2 and the equation defining 5}@ in an(v) X Vnz(v)
is given by t¢ = t§ for the Serre-Tate coordinate t; of VUJ., we call Y O-linear
at v. Write Yy, C Y 4(F) for the subset of all closed O-linear points.

Proposition 3.15. Suppose (DE), and let the notation be as in (NO-3) above
Proposition 3.8 for m = 2. In particular, let X be a Zariski-closure of X in
VxV andY — X be the normalization of X. The subset Yi;, CY of O-linear
points as defined above contains the set of all closed points of an open dense
subscheme YY" in Y°re. In other words, at each closed point y' € Y™ (F), the
formal completion of Y™ along v is defined by a linear equation.

In the following corollary, we will find that the subvariety X is a graph of
the action of an element in G(A®P>)): so, we conclude Y™ = Xlin = xord,
Since X°"¢ is Tate-linear at densely populated v in the image of Y!" by [C4]
Proposition 5.3, X°"¢ is weakly Tate O-linear; so, Y°'¢ is Tate O-linear. We
shall give here an argument (again suggested by Chai) sufficient to prove the
weaker version as stated above.

Proof. Modifying II; by p(a) for o € M* does not affect O-linearity at closed
point of Y over (z, z'); so, by changing IT; by p(a;)oIl; for o € M* if necessary,
we assume (A) and (B) (thus, II; is étale for j =1,2). An endomorphism a, €
End(A4,) induces an endomorphism of the deformation space S = \795 = @m ®RO.
Modifying a, by the central action of O, we may assume that a, is the identity
on the connected component of A, [p>°] without affecting the endomorphism of
the deformation space S induced by a,. We fix an ordinary level p—structure
ng’”d on A,. Identifying Endp (§) = O, by ngrd, the action of a; on S is then
given by the action of a, over the étale quotient A,[p*>]¢*. By Proposition 3.11
(1), Y is O-linear at a point y € Y above (z,x), and hence, by Remark 3.12,
we may assume that the formal completion }/}y along y is defined by '* = t¥
(u,v € Op = Endo (5)) for the Serre-Tate coordinate (£, ') of § x § for § = V,
where ¢t and ¢’ are associated to the ordinary level structure ng’”d. Since the two
projections IIy, I : Y — V are étale at y (by (A)), @ = v/u is a unit in O, and
}/}y is defined by t' = t*. We write a, € End(4,) ®z Z, = End(A,[p>]) for the

.

endomorphism inducing a € End(S) as normalized above. Then a, is a unit in
Endo (A, [p™]).

We consider the universal abelian scheme A ;. We pull it back to I : Y —
X CVxV:Y; =IIA and Yy =II5A. Identifying A, with the fibers Y, of
Y, (j =1,2) at y, we regard the unit a, € End(A,;[p™]) as a homomorphism
Qg - Al,x[poo] = Aac [poo] - Aac [poo] = A2,x[poo]'

We now reduce the existence of the desired non-empty open subscheme
Ylin < Yeord to the existence of an étale irreducible covering U over an open
dense subscheme U C Y°' containing the given point y € Y "¢ such that
a; extends to an isomorphism @ : Y;[p™] Y Yo[p™],7 of Barsotti-Tate

groups over U. Thus supposing the existence of the open subscheme U and
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such an extension a over 17, we specify the open subscheme Y'". Shrinking
U C Y°r? (keeping y inside U), we may assume that the projections Il; : U — V
(j = 1,2) are both étale (cf. Proposition 3.14), because the projections are
étale at the specific point y. Then the formal completion }/}u along v € U with
II(u) = (u1,u2) € V xV is isomorphic by II; (j = 1, 2) to the universal deforma-
tion space of the p-divisible O-module A, [p>°] carrying the universal deforma-
tion Y, [p °°]/f,u =A; [poo]/‘;uj viall; Y, = \7u].. Choose an ordinary level struc-
tures 770”1 F,/0p = Ay, [p™]. Then the canonical coordinate ¢; of A[p °°]/‘7 =

Y[poo]/f,u is given by t; = limy, 0 “p™” (n;”;d( ™)) for the Drinfeld’s lift “ 7
in Theorem 2.1. Another level structure @ o 7974 of A, [p>] gives rise to the
coordinate t3* for a unit a, € O} because Auto( w) = O, Thus we get the
relation ¢; = t5* valid on Y,, because @ sends the t; = lim,, “p™” (n‘l’rpd( ™)) to
to* = lim, “p™” (@ (n‘l’rpd( ~™))). In other words, Y, is contained in the O-linear
formal subscheme Yu’ defined by t; = t3*. Since }/}u — \7“1 X \7“2 is a smooth
formal subscheme with two isomorphisms }/}u = 17“]. induced by II;, we find
Y, = }/}u’, and hence Y, is defined by t; = t5*. Thus we may put Y = U.
Next we shall show that a, extends to @ : Y;[p™®] — Yz[p™] over }/}y
Identifying A, with the fibers Y, , of Y; (j = 1,2) at y, we regard the unit
a; € End(A;[p>]) as a homomorphism ag : Y1 ,[p™] = A, [p™] — A [p™] =
Y5 4 [p™]. As pointed out by one of the referees of this paper, the formal com-
pletion Y = }/}y of Y along y is the maximal subscheme of S x S over which this
a, extends to a homomorphism @ : Y; [p*] v — Yo [p™] sy of Y —group schemes.
To find @, as above, we identify a with an element of O, by projecting a, down
to Endo (A [p™]¢") = O, for the maximal étale quotient A,[p>]*" of the p-
divisible group. The isogeny action p(cv) : Ay — Ay for a € End(4;) = O

s ifa=a

induces p(a) : Ya[p"ly 1= APp"],5, = AP"])p, ﬁ Yo[p"] o

2

mod p"Op for p = HpeEpp and if @ = 1 mod p"Ope. Choose « as above,
and write it as «,,. Therefore the isogeny action of p(a;,,) on A gives rise to

2 Yq[p"] v, Ya[p" /v, well defined over an infinitesimal neighborhood
Y, of Y (1somorph1c to the connected component of A,[p"]). Indeed, the em-
bedding Y < § x § is given by (t,t*), p(ay) sends Yq ,[p ]/Y - A[ "y, to

Y27p(an)p(v)[ ]/Yn —E—> Alp ]/‘7", and v* = p(am)p(v) aslongasv € Yn. Here 17"
is the infinitesimal neighborhood of = isomorphic to the connected component
of Az[p"]), p(an)p € G(Qp) is the p-component of p(ay,), and a,, gives rise to
aly,[pn) after base-change to }/}n By taking the limit @ = lim,, an|Y2[pn]/?
with respect to n, we find out that a, gives rise to a unique homomorphism
a:Y; [poo]/f, — Yy [poo]/f, of Barsotti-Tate groups over Y.

To show the existence of U, we follow an argument of Chai in the proof of
[C4] Propos1t1on 8.4. We choose a suﬁ"lmently small open compact subgroup
K1 x Ky C G( )? maximal at p so that Yia y= Y Since Y% ¢ is irreducible, we
only need to find a non-empty open subscheme U12 C Y@? with the required
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property (then U is given by the pull back of Uys to Y°'?). We have a well
defined over ¥ = }/}127@,. For any reduced local Oy,, ,—algebra R, an O-linear
isomorphism « : Yi[p ]/73 — Ya[p ]/73 inducing a, on A, [p™] (1f ex1sts) is
unique. Write simply O for Oy12 y = OYy and O for OY12 v Since O ®p O is
reduced, the pullbacks of @ by the two projections ; : Y X0 Y — Y coincide by
the above uniqueness; that is, a satisfies the descent datum (relative to @/ 0).
By faithfully flat descent, @ descends to O and hence we can find an open Zariski
neighborhood Uys C Yl"{d of y over which we have an extension a of a,. Then
U = Uiz Xy,, Y does the job.

There is an alternative argument: By M. Artin’s approximation theorem in
[A] (see also [NMD] Theorem 16 in 3.6) applied to the truncated @, = aly, [~
defined over ¥ = ¥, 4, we can find an étale neighborhood U, of Y such that
we have an extension a,, over U The two pullbacks of a, to U Xyord U
coincide by the uniqueness of the extension of a, because of the reducedness
of U, Xyord Un; so, this time by étale descent, we get the desired open dense
subscheme Uy,. Since Isomyora(Y:[p™], Yo[p™]) for m > n is finite flat over
Isomyora(Y1[p"], Yo[p"]), the open set U, stabilizes as n grows. Taking the
intersection Uz = (), U, with respect to n, we get the desired open dense
subscheme Uss C Y. O

Corollary 3.16. Let the notation and the assumption be as in Proposition 3.15.
Then X is everywhere smooth and X =Y. Moreover, if (DE) is satisfied, there
exist non-zero «, 3 € O ) such that X coincides with the skew diagonal

Aap = {(p(@)(v), p(B)(v)) v € V}.

IfII; and Iy are étale finite, we may assume that (o, 8) = (1, B) with 5 € D(p)

Proof. If (DE) fails, Y = X = V2 by Proposition 3.11 (3); so, the assertion
follows trivially. We may assume (DE), (A) and (B) as indicated after stating
(DE). We follow an argument of Chai which is a version of the argument in [C4]
Section 8 adjusted to our self-product of the Hilbert modular variety. Since
the two projections II; : Y — V; are dominant, we have End(Y;) ® Q = F
for Y; = H;TA = A xy,n; Y. Let Yy = Y1 Xy Y. Thus there are only
two possibilities for End%(Y) = End(Y,y) ® Q: Either End%(Y) = F x F or
End®(Y) = My(F). Suppose that End®(Y) = M(F). By semi-simplicity of the
category of abelian schemes, we have two commuting idempotent e; € End®(Y)
such that e;(Y) = Y;. Since End%(Y) = My(F), we can find an invertible
element B in GL3(O()) C M3(F) such that Bo e1 = ea; SO, 5 :Y; — Ys is an
isogeny, whose specialization to the fiber of Y; (j = 1,2) at y gives rise to an
endomorphism 3 € End(A,) ® Q. Thus the isogeny 3 is induced by p(3) (this
point is explained more carefully after proving End®(Y) = My (F)).

We suppose End®(Y) = F x F and try to get a contradiction (in order to
prove that End®(Y) = My(F)). We pick a sufficiently small K} = Ko = K C
G(A®P>)) maximal at p so that Vi is smooth. For the moment, we assume that
K is open compact. The variety Vi is naturally defined over a finite extension
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F,/F, as the solution of the moduli problem Py . in (3.6) for the polarization
ideal ¢ of A, (the minimal choice of Fy is the residue field of WNky for Shimura’s
field kg of definition of Vi C Shg/g). The universal abelian scheme A g
is therefore defined over Vi r,, and Ak is a variety of finite type over F,.
Replacing ¢ by its finite power, we may assume that X12 C Vi x Vi /r, is stable
under the Galois action Gal(F/F,), and hence it has a unique geometrically
irreducible model Xy5/r, C Vi X Vg, defined over F,. Let Yio/r, be the
normalization of Xyo/p . Then Y1z = Yio/p, xp, F. We write Y12/y12/Fq for

the abelian scheme Af( X (ViexVie) Y12. Then Y12 is an abelian scheme over the
variety Y19/, of finite type over F,. Let n be the generic point of Y15/, , and
write 77 for the geometric point over n and F,(77)*°? for the separable algebraic
closure F,(77)°°P of Fy(n) in F, (7). Take an odd prime ¢ # p, and consider the
¢-adic Tate module Tg( 7) for the generic fiber Yz of Y. We consider the image
of the Galois action Im(Gal(IFq (M)*°? /Fq(n))) in GLo,x0,(Ty(Y5)). Then by a
result of Zarhin ([Z] and [DAV] Theorem V.4.7), the Zariski closure over Q of
Im(Gal(FF,(77)°¢" /F4(n))) is a reductive subgroup G of GLg, x r, (To(Y7)®Q), and
Im(Gal(F,(77)*°? /F4(n))) is an open subgroup of G(Q,). Moreover, by Zarhin’s
theorem, the centralizer of G in GLp,xr, (T¢(Ys) ® Q) is End(Y) ® Q. Since
the reductive subgroups of GL(2) are either tori or contain SL(2), the derived
group G1(Qy) of G(Qg) has to be SLy(F; x Fy). By Chebotarev’s density, we
can find a set of closed points u € Y12(F) with positive density such that the
Zariski closure in G of the subgroup generated by the Frobenius element F'rob,, €
Im(Gal(F,(7)%°? /Fq(n))) at w with II(u) = (u1,u2) (u; € V(F)) is a torus
containing a maximal torus T,, = (Ty, X Ty,) N Gy of the derived group G; of
G. In particular the centralizer of T, in G, is itself. Thus Y, is isogenous to a
product of two non-isogenous absolutely simple abelian varieties Y7 = A,,, and
= A,, with multlphcation by F defined over a finite field. The endomorphism
algebra M; = End®(Y, i) is a CM quadratic extension of F' generated over Q by
the relatwe Frobenius map ¢; induced by Frob,. The relative Frobenius map
Frob, acting on X, (V,,,) = O, has [F' : Q] distinct eigenvalues {(bl C)U|a eX¥q}
for the CM type ¥ of Yq, wh1ch differ from the eigenvalues of ¢o € End(Y3)
on X, (\7 ) = O,. Since we have proven that over the open dense subscheme
U=Y!inofy, the formal completion of U at u € U with u = (u1,uz) € X C V2
is canomcally isomorphic to a formal subtorus Zc Vu1 X Vu2 with co-character
group X, (Z) = Op, we may assume that our point u = (u1,u2) as above is
in the (open dense) image Uiz of U in Xjo (because the set of such w’s has
positive density). Projecting X. (Z ) down to the left and the right factors Vi,
the projection map X, (Z) — X, (Vu].) is actually an injection commuting with
the action of Frob,. Thus Frob, has more than [F': Q] distinct eigenvalues on
X, (Z), which is a contradiction. Thus we conclude that End®(Y) = My (F) for
any choice of small open compact subgroups K maximal at p. Passing to the
limit, we may assume that K = G(Z,) (as we do hereafter), and we still have
End%(Y) = My(F).
As we have remarked at the beginning, End%(Y) = My (F) implies that
we have an isogeny B :Y; — Yy over Y. Writing n§-p ) for the prime-to—p
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level structure of Y; inducing the prime-to—p level structure already chosen for
Ay =Yy, =Yy, at y €Y, we find that 6on§p) = n(p) ogforge G(A(poo))
Spec1ahz1ng at y, we have g = p(0) for B € End%(4,) = M. Thus Y -
S x S is given by the equation ¢’ = 5" for nonzero 8 € O(p) for the Serre-
Tate coordinate t resp. ¢’ with respect to the ordinary level p-structure nord
of A, = Y1, resp. Ya,. By (A) (and Remark 3.12), 8¢ € O); so, we may
assume that 3 € D(Xp ) (and hence B is a prime-to-p isogeny). As in the proof of
Proposition 3.11 (1), we have X(m,m) =Uprer Gy ® L for finitely many Op-direct
summands L of X, (52). As we have shown in the proof of Proposition 3.11
(1), points of Y above (3: x) is indexed by L € I. Suppose that y corresponds
to L. Then Y C § x S coincides with G,, ® L. On the other hand, we have
the skew- d1agona1 Ag = A1 g ={(z,p0)(2)]z €e V} CV x V. The formal
completion ﬁg along (z,x) therefore coincides with }/}y and G,, ® L C X(m,m)
inside §2. Thus Ag C X. By the irreducibility of X, we conclude X = Ag.
Since Ag is smooth, Ag =Y, and hence X is smooth everywhere.

If Condition (A) fails, as explained after the statement (DE), the morphisms
p(a)~t o TIy and p(B')~! o Il for suitable nonzero o, 3’ € Oy, are étale; so,
(pla) x p(B))1(X) = Ay by the above argument; so, X = A, g 3. This
finishes the proof. O

Here are two technical lemmas, before going into the case where m > 2.

Lemma 3.17. Let N; = A for a commutative ring A (i = 1,2,...,m). Let
N C N1y X Ny X +-- X Ny = A™ be an A-free submodule of A™ with m > 2. If
A is a product of finitely many local rings and the projection of N to N; X Ny,
is surjective for all i = 1,2,...,m — 1 and the projection @' of N to N' :=
N1 X Ng X -+ X Np,_1 is surjective, we have N = A™.

Proof. We may assume that A is a local ring. Tensoring its residue field, by
Nakayama’s lemma, we may assume that A is a field k. Suppose that dim N <
m — 1. Since 7’ is surjective, 7’ is an isomorphism, and N N (N’ x z,,) is
either empty or z € N N (N’ X z,) is a unique point with 7'(z) = z,,. Since
N — Ni x N, is surjective, there exists at least two points in N N (N’ x z,),
a contradiction. Thus dim N =m and N = k™. O

For a scheme morphism f: Z — Z’, write f(Z) for the Zariski-closure in Z’
of the image of the topological space of Z by f with reduced scheme structure.

Lemma 3.18. Let the assumption be as in (NO-3). Let S?* C S™ be a factor
and 7 : S™ — S% be the projection. Write m(X) = Spec(By) for a local ring
By C Ox (with mazimal ideal mg). Write X = Jpc; Gm ®z, L. Then

(1) For By = lim Bo/my, there exists a finite set Iy of Op-direct summands
¢ C X. (§2) such that Spf(ﬁo) = Urer, G ®z, £, and rankz, £ = dim By.

(2) rankg, m.(L) is independent of L € I and is equal to dim By = dim7(X).
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Proof. From the definition of the image 7(X), By is given by the image of
the composite Og2 =, Ogm — Ox. Let Xg C V2 be as in (N3) such
that Xx = X. Then m(Xk) is an excellent scheme since it is of finite type
over a field F ([EGA] IV.7.8.3 (ii)). For the projection Xx of X to S, write
7m(Xk) = Spec(Bo k). Then By k is a localization of n(Xg) at (z,2) € S%
(Sk = Spec(Oyy ) and is an excellent integral local ring ([EGA] IV.7.8.3
(ii)). By [EGA] IV.7.8.3 (vii) and (x), By = By x is reduced equidimensional.
Since (X) C S? is irreducible and stable under T, Spf(Bo) = Uye;, Gm ©2, ¢
with rankz, ¢ = dim By, by Proposition 3.11 (1), for finitely many O,-direct
summands ¢ C X, (52). This proves (1).

Write X = Spec(Ap), Y = Spec(A) and Spec(B) (resp. Spec(Bg)) for
the normalization of 7(X) (resp. 7(Xk)). Then Spec(Bk)/Spec(By k) is fi-
nite ([EGA] IV.7.8.3 (vi)) and hence Spec(B)/Spec(By) is finite. We have the

commutative diagram:

By —— Ay —S— A,
ml ml lm
B A A
— C

Here A = lim A/mp A (so, Y = Spf(A)). Write Z\TO(Z) for the set of connected

components of a scheme Z. Since I = 7o(Spf(A)) and I = mo(Spf(B)), we
have a natural surjection I = mo(Spf(A)) == mo(Spf(B)) = I1, and L, L' € T
corresponds to a single ¢ if 7, (L) @0 F C £ ®o F and m.(L') @0 F C £ ®¢ F.
We have A = [];.; A with Gy, ® L = Spf(Az) and B = [],;, Be with
@m ® ¢ = Spf(By). Fix £ and let J C I be the collection of all L € I such
that 7.(L) ®o F C £ ®o F. Then we have a morphism By — Ay :=[],.; AL,
and the projection By — A to the L-component is an injection. Indeed, the
image B, of B, in Ay is given by lim B/(m} N B) for the maximal ideal
my of Ar. Since B/(m} N B) is a finite dimensional F-vector space, writing
m = my N B = my N B for the maximal ideal my of By, it is killed by mN
(0 < N € Z). Thus m¥ C (m? N B). The filtrations {m} N B},, and {m"},
give the same topology on B, since m"” C m} N B. Thus By = @n B/m" =
lim B/(m} N B) = By. The ring By, is the power series ring over F with d
variables for d = rankz, 7.(L), and By is the power series ring with rankz, ¢
variables. This shows dim By = rankz, £ = dim B, = rankz, (7.(L)) as desired.

We can give a more elementary proof of (2). Let my : V2 — V2 be the
projection which induces 7. Let U = Spec(By) C 7(Xk) be a sufficiently small
affine open neighborhood of (z, z) such that its normalization B/By is finite. We
can find such By because B/By is finite by (1). We take an affine open neigh-
borhood U’ = Spec(Ao) C m,' (U) of 2™ such that the normalization A/ Ay is
finite and A is of finite type over By; so, A is a noetherian domain of finite
type over B. As already explained, A and B are excellent. Let U = Spec(B)

and U’ = Spec(A). Since B C A and A and B are integral domains, the mor-
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phism: Spec(A) — Spec(B) is generically flat. The non-flat locus 17’ (which
is the Zariski closure of {P € U’|Ap is not flat over By py}) is a proper closed
subscheme of U’. If rankz, 7.(L) < rankgz, /¢, the formal completion Gm®L

of A along the point yr, € U’ corresponding to L is not flat over the formal
completion G, ® ¢ of B along the image 7(yr). Thus U 7 contains a closed
subscheme of maximal dimension, a contradiction against the irreducibility of
U’. Thus rankgz, m.(L) = rankz, ¢ as desired. O

Here is the corollary showing Y = X = V™m=2 x A(q,p) for m > 2:

Corollary 3.19. Let the notation be as in (NO-3) and the assumption be as in
Proposition 3.11. Then X is smooth everywhere, and X°"¢ is Tate O-linear. If
X is finite over S, X is given either by V™=t x{x} oridentical to V"2 x A4 )
for some non-zero a, 3 € Oy (after permuting first m — 1 factors).

Proof. We use the symbols introduced in Proposition 3.11 and its proof; in
particular, S = Spec(Oy,) and S™ = S x §” C V™ with §” = S. By
Proposition 3.8 (m = 1) and by Corollary 3.16 (m = 2), we may assume that
m > 2. Assume that X # S™. If the projection of X to S” is a proper closed
subscheme in S”, by applying Proposition 3.8 to the image of X in S”, we find
that X = 8" x {x}; so, we are done. Thus we may assume that the projection
of X to S” is dominant and that X is finite over S’ (Proposition 3.11 (3)).

There are two ways to prove the assertion now. We first describe a way
of reducing the assertion to Corollary 3.16 which is closer to the treatment in
the earlier version of this paper (putting off a brief description of the second
method due to Chai after the first). Let II : Y — X and Iy : ) — X be the
normalization. Then by Proposition 3.11 (3 ) Y is finite flat over S, and Y is
Tate O-linear at every point y € Y above 2™ € X (abusing the termmology)

Pick a point y € Y above ™, and write Yy =Gp®Land X = Urer Gm®L.
We write S; = S be the i-th component of S™. Let mim : S™ — S; x S”
with ¢ < m be the projection. We regard }/}y = @m ® L C Sm.1f Tim, !
L&oF — X.(8;x8"®0F is surjective for all i < m, by Lemma 3.17 applied to
A= Op®oF Fpand N; = X, (S)®OF we find that L&o F = X, (Sm)®oF
so, Yy = Sm and hence Y = X = V™, and we are done. Thus we assume that
that the projection m; . : L ®0 F — X.(8; x §") ®o F is not surjective for
an ¢ < m, and L

rankyz, 7 m,« (L) < rankz, X, (S; x S”).

Recall that f(Z) denotes the Zariski-closure in Z’ of the image of the un-
derlying topological space of Z for a morphism f : Z — Z’ of schemes. If
Z = Spec(A) and Z' = Spec(B), then the topological space of f(Z) is that of
Spec(f*(B)). Write IT; , :=m;m oIl : Y — S; x S”. By Lemma 3.18 (2),

dim 7 (X) = ranky, ;. (L) < rankz, (X.(S; x §")) = dim(S; x S”). (3.27)

By (3.27), the reduced image m; ,»(X) C S; x S” is an irreducible proper
closed subscheme invariant under T. Applying Corollary 3.16 to m; ., (X), we
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find that 7;,,(X) = Spec(Oa, ;.22) and 7, (X) C Aa,p for some non-zero
a, 3 € O). Permuting indices to bring i to m — 1, we conclude

Xcm ((Aap) =V™2x Aup

Since dim X = (m — 1)dim V' (by Proposition 3.11 (3)), we conclude by irre-
ducibility X = V™72 x A, 3 as desired.

Here is a brief sketch of the second proof, which is based on the argument
in [C4] Section 8. By using Chai’s globalization of the Serre-Tate coordinate in
[C4] Section 2, we find a dense open subscheme Y™ C Y (y € Y!") such that
Y is Tate O-linear at every closed point of Y. The existence of Y!" C Y
follows basically from Proposition 5.3 in [C4] and its proof (applied to Y not
X). Consider the abelian scheme Y = A™ Xym Y. Then End®(Y /y) is either
isomorphic to F™ or F™~2x Ms(F), because Y is dominant over V™! and V by
the two projections. Then in a similar manner to the proof of Corollary 3.16, we
can prove the impossibility of End®(Y /y) = F™. Thus we have End®(Y Jy) =
F™=2 x My(F); in other words, for an index i < m, the i-th factor Y; obtained
by pulling back the i-th factor A of A™ to Y is isogenous to the last factor Y,,.
This isogeny is induced by a nonzero o/ € M = End%(Ax) with a, 8 € O.
Then we conclude that X > S™~1 x ﬁ(aﬁ) for A4, 3) plugged in the product of
the ¢-th and the m-th copy of V in V" and hence X has the desired form. O

The subgroup D(Xp) =~ (T (Zy))) in E(G, X) fixes # € Ig(F) (Lemma 3.3)
and hence acts on the stalk Oy, and the stalk Oy, of x on the Igusa tower
Igv. The group 7 (Z(y,)) is embedded into T(Z;) = O, as in (3.18). Then the

.

action of T (Z(y)) extends to its p-adic completion O = T'(Z,) = Aut(S) for
S = Spf(@v,x) = Spf(@lgym). Each a € O, acts on the formal completion (/Q\Igym
as automorphisms sending the canonical coordinate t to ¢ for a € 7(Z,) = O,'.

Each diagonal element g = diag[a, d] € T°(Z,) for the diagonal torus 7° C G
also acts on Ig by the change of level structure ng’”d — ng’”d og. The image
of T%(Z,) NG in (G, X) has trivial intersection with 7(Z,) inside (G, X),
because T (Zy)) is embedded diagonally in G(A>®) by p = p,, while each
element of 7°(Z,) has only nontrivial component at p. Thus the two actions of
a € T(Zy) = Oy fixing x and that of g € T%(Z,) N G moving = are compatible.

In the following theorem, a € 7(Z,) = O, acts on @Ig,x via t — t* for the
canonical coordinate t. We are now ready to prove:

Theorem 3.20. Let F be the residue field of W (so it is an algebraic closure
of F). Let x € Ig(FF) be a closed point (which is fived by the action of T (Zy))

embedded in E(G,X) by p). Let ay,...,am € T(Zy), and assume that am}l ¢
T (Zpy) for all i # j. Then a;(Orga/w) (5 = 1,2,...,m) are linearly disjoint
over F in 61g7m/]1r, where Org o 15 the stalk at x of the Igusa tower over V.

Let b = Ker(¢) be the kernel of the homomorphism ¢ in (3.19). Let b be
the unique prime ideal of Org . ® -+ ® Ojg4,, over b. Then b is the kernel of the
map ¢ defined in the exactly the same way as ¢ replacing Oy, by Org,. The
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assertion of the theorem is equivalent to b =0 Sinceb=0<b=0 by the
same argument as in the proof of Corollary 3.9, it is enough to prove b = 0.

Proof. We first suppose that m = 2. We use the symbols we introduced in the
proof of the above two propositions. In particular, V = @K Vi for K maximal
at p. For simplicity, we write 0 = O§/F’ S = Spec(0) and S = G ®z 0.
Suppose b # 0. Applying Proposition 3.11 (3) to the two projections S x S — S
and X = Spec(R) which has two dominant projections onto S = Spec(O). Then
the formal completion X' of X' along 2% = (z,z) is a formal torus defined by
2 =% for uy, us € O, N F,* (Corollary 3.16). By our definition of b, we have
ug/up = as/ay € Opx; s0, we may choose u; and ug so that u; = 1 and ug € OpX.
Let X be the schematic closure of X in V' x V. Then by Corollary 3.16, we
find that X = A; , and hence us = o'~ for a € D(Xp). Since a'~¢ € T(Zy),
this contradicts to ai/az & T(Z(,)). Thus X = V2, and a,(O) and az(0O) are
linearly disjoint over F.
We now deal with the case where m > 2. Recall

m

¢:O®]FO®]F"'®]FO—>@

in (3.19) which is the F-algebra homomorphism given by f1 ® fo ® -+ - ® f, —
[Tj=, a;(f) € O @w F. Let R = Im(¢) C O @w F. We regard X = Spec(R)
as a closed subscheme of S™ for S = Spec(Q). Take the schematic closure X
of X in V™. By the induction hypothesis on m, X surjects onto S’ and S”. By
Proposition 3.11 (3), X is either finite over S’ or X = S™. In the latter case, we
are done; so, we assume that X is finite over S’. Then by Corollary 3.19, there
exists an index 0 < 7 < m so that 7;(X) = A, g inside V2 = V; x V" for the i-th
factor V; = V in V™. We have X O A in Lemma 3.13, and we conclude that
Of = T(Zy) 3 aifam = (/B)' ¢ € T(Q), which is a contradiction (because
T(Z)) =T(Zy) NT(Q)). Thus X = S™ (and hence b =0) and X = V™. O

We can add the datum of a nowhere vanishing differential to our classification
problem, looking into the following functor Q:

Uw— [(AaX,iaﬁ(p),w)/U’A € P(U) = Pﬁ?)(U), T.040 = (Oy ®z O) w} ,
(3.28)
where K is an open compact subgroup of G(A(>)) maximal at p and A =
(A, X,4,7P)) is chosen in Py (U) in (3.6). Then Qp is represented by a T-
torsor Mg (G, X) over Sh®) (G, X)/K. The torus T = Resp;zGy, acts on Qg
by w i+ tw for t € T(Oy) = (Oy @z 0)*. Over W, assuming A, to be ordinary

and choosing a level p*°—structure ng’”d, it naturally induces an isomorphism

of formal group n : A3 = G ®z0 ! = Spf(ﬂ//ﬁgeo). In other words, 77*%‘1
gives rise to a canonical differential. Choose a nowhere vanishing differential wg
on Ay = A, Qw F, and consider the formal completion Mg of Mg along its
closed point corresponding to (Ao, Ao, 90, 73"%, wo), which is a formal T-torsor
over S = V,. Here T is the formal completion of T" along the origin. Then the
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formal T-torsor M x splits into a product T X W S over S = @m ®0~L. In other
words, if we consider the deformation functor:

@(C) = [(Aa Xa 1, norda (.«))/C ’ (Aa Xa 1, norda w) xcF = (AO; X0; 10, 778Tda WO)]

for artinian local W-algebras C' with residue field F, Q is prorepresented by
S x T. In the above discussion, we may actually allow K of p—power level in
(3.28) as long as K contains the monodromy group U, of the infinity cusp in
G(Zp) N G(G, %) by replacing Sh(®P) (G, X) by the Igusa tower Ig(G, %) and the
level structure 7P = n® K®) by pord () In this slightly more general case,
the functor is represented by a formal scheme M x which is a T-torsor over
S C Ig(G,%)/K. Therefore in the sequel, we allow modular forms of finite
p—power level of type I'1(p").

We identify the character group X*(T") of T with the module of formal linear
combinations k = Y__ k.0 (ks € Z) for field embeddings ¢ : F — Q so that
z® =[], o(x)* (x € T(Q)). For each character x of T and a p-adic W-algebra
C, we write G (C) for the K~ *—cigenspace of Opq/c. Thus G (C) is the union
of C—integral modular forms of weight x and of finite level (of I'y (N)-type for
all positive integers N). Since p is unramified in O, T is smooth over Z, and
is diagonalizable over Z,. Therefore we have Opnw = @, G(W). By the
above splitting, we may regard G«(C) C Og,. In particular, a € T;(Zp) acts

on f € G.(F) through the identification 7 (Z,) = Auto(g/]p), and we have
a(f) € O§/]F' We write t — 1 = (¢; — 1); for the parameter at 1 of S. Each
¢ € Gx(C) has t—expansion given by

o(t) = ¢(A”) € C[[t - 1]].

The Hasse invariant H satisfies H(t) € F* (because ./Zl\g = (@m ®z 071) xw S

for the universal deformation A / g). Since H is invertible on Sherd, for any given
parallel weight k = >~ _ ko (k € Z), we have H,, € G, (F) such that H.(t) = 1.
Indeed, for k> 0, we can lift H to E € G (W) of level prime to p with E = H
mod myy by the ampleness of the weight £ automorphic line bundle. Then
allowing p-power level, we can find H, r of any parallel positive weight x by
the p-adic density of modular forms of level prime to p in the space of p-adic
modular forms (see [PAF] Theorem 4.10). The form H, r € G.(F) may not
have a characteristic 0 lift if K = 1 even if we allow the level IV divisible by p.

Corollary 3.21. Fiz a parallel weight k, and let H, € Gx(F) be the mod
p modular form with H,(t) = 1. Let ao,...,an € Ty(Zp) and suppose that
aja;' € T.(Q) foralli # j. Let I C {0,1,2,...,n} be a subset of indices. Then
if {Hy, fij € Gx(F)}; for a fired k # 0 are linearly independent over F for each
i €1, then {ai(fij)}ierj in Og 5w are linearly independent over F.

Proof. Note that a(H,)(t) = H.(t*) = 1. The division by a(H,) brings the
module a(G(IF)) isomorphically into the ring a(Oyg ,/r), we may assume that
% = 0. Then the above theorem (Theorem 3.20) implies the desired result. O
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In the introduction, we mentioned linear independence of a;(Eq;) = Eq4, 0 a;
for Eisenstein series F,, of a weight k. Strictly speaking, in our application, we
prove linear independence of E,;, and H, by g-expansion principle, and then
apply the above corollary to {Hy, E,; € Gk(F)}; to show that {a;(E,,)}; is
linearly independent over F.

4 Eisenstein and Katz Measure

We recall the Fourier expansion of classical Eisenstein series and FEisenstein
measure from [HT] Sections 2 and 3. This is based on Katz’s theory in [K3],
but our exposition slightly differs from it in a fashion adapted to our application.
In this section, we do not assume that p is unramified in F/Q.

4.1 Geometric Modular Forms

Let F/Q be a totally real finite extension with integer ring O. Recall the
different 9 of F/Q, and for each ideal a we have written a* = a=*0~!. Thus
O* = 0271, For a nonzero ideal 91 of O, we define a group scheme puy over
Z as the Cartier dual of the constant group O/91. If 9 is generated by an
integer n > 0), unm = O* ®z u, canonically by the trace pairing on O* x O
and the duality between pu, and Z/nZ. In general, we can identify uyn with
{z € O* ® pplax = 0 for all & € N} choosing a positive integer n € M. For
a fixed fractional ideal ¢ of F' and an ideal 91 prime to ¢, the Hilbert modular
variety M (c, N) classifies the following triples (A, A, i),5 formed by

e An abelian scheme 7 : A — S with an algebra homomorphism: O —
End(A/s) making 7.(€24/s) a locally free O ®z Os—module of rank 1;

e An O-linear polarization A : A® 2 A®c. By A we identify the O-
module of symmetric O-linear homomorphisms Hom gy, (A/s, A; g) with
¢ = Homyym(A/s,A/s) ®o ¢. Then we require that the (multiplicative)
monoid P(A) of symmetric isogenies induced locally by an ample invertible
sheaf be identified with the set of totally positive elements ¢y C ¢;

e We have an O-linear closed immersion ¢ = iy : un — A[91] of group
schemes.

Thus M(c,N) is the coarse moduli scheme of the functor P(S) = [(4, A, 4)s]
from the category of schemes S into the category SETS, where [ | ={ }/ =
is the set of isomorphism classes of the objects inside the brackets, and we call
(A, N i) = (A", X, if we have an O-linear isomorphism ¢ : 4,5 — A’/S such
that X = (¢ ® 1) o Ao ¢ and ¢ o i = 4’. The scheme M (c,N) is a fine moduli
if 9 is sufficiently deep. In [K3] and [HT], the moduli (¢, M) is described as
an algebraic space, but it is actually a quasi-projective scheme (e.g. [C1] and
[PAF] Chapter 4).

We could insist that m.(Q24,g) is free over Og ®z O, and taking a genera-
tor w with m.(Q4/5) = (Os ®z O)w, we may consider the functor classifying
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quadruples (A, \, i, w):
Q(S) = [(4, X4, w)s] - (4.1)

Let T = ResozGm. Welet a € T(S) = H(S, (Os ®z 0)*) act on Q(S) by
(A, N\ i,w) — (A, A, i, aw). By this action, Q is a T—torsor over P; so, Q is repre-
sentable by a scheme M = M(¢, M) affine over M = M(c, N). By definition, M
is a T-torsor over M. For each character k € X*(T') = Homgp_scn (T, Gy ) and
a given ring R, if F # Q, the x~'~eigenspace of H(M g, Opq/r) is the space
of modular forms of weight » integral over R, where M ,r = M xz Spec(R).
We write G (¢, M; R) for this space of R-integral modular forms, which is an
R-module of finite type. When F' = Q, as is well known, we need to take the
subsheaf of sections with logarithmic growth towards cusps. To simplify our
argument, hereafter in this section, we often assume that F' # Q, since we do
not need to insist on logarithmic growth by the Koecher principle, assuming
this condition (in any case we just need to add this growth condition in the
elliptic modular case; see [GME] Chapters 2 and 3). Thus f € G,(c,9; R) is
a rule assigning an element in an R-algebra C' to each quadruple (A4, \,i,w),c
(defined over the R-algebra C) satisfying the following three conditions:

(GL) f(A N\ i,w) = f(A, N, i,0) e Cif (AN i,w) = (AN, i, over C;
(G2) f((A N 4,w) ®c, C') = p(f(A, X i,w)) for each p € Homp.a1s(C, C);
(G3) f(A, N i, aw) = k(a) 1 f(A, N, i,w) for a € T(C).

The sheaf of x~!-eigenspace Op[x!] under the action of T is an invertible
sheaf of weight £ on 9. We write this sheaf as w”. Then we have

G,{(C, ma R) = Ho(m(c5 m)a E’i)

as long as M(c,N) is a fine moduli space. Writing A = (A, A\, i,w) for the
universal abelian scheme over M, s = f(A)w" gives rise to the section of w".
Conversely, for any section s € HO(9M(c, M), w"), taking a unique morphism
¢ : Spec(C) — M such that ¢*A = A for A = (A, \,i,w),c, we can define
f € G by ¢%s = f(A)wr.

Fix a prime p. We fix a fractional ideal ¢ prime to 9p and take two ideals
a and b prime to Mp such that ab=! = ¢. To this pair (a,b), we can attach the
Tate AVRM Tateq (q) defined over the completed group ring Z((ab)) made of
formal series f(q) = > c5 a(€)q® (a(€) € Z). Here & runs over all elements
in ab, and there exists a positive integer C' (dependent on f) such that a(§) =0
if 0(§) + C < 0 for some o € I. We write R[[(ab)>¢]] for the subring of
R[[ab]] made of formal series f (having coefficients in R) with a(£) = 0 for all
& with o(§) < 0 for at least one embedding o : F — R. Actually, we skipped
a step of introducing the toroidal compactification of 9t whose (completed)
stalk at the cusp corresponding to (a, b) actually carries Tateq p(q). However
to make exposition short, we ignore this technically important point, referring
the (attentive) reader to the treatment in [K3] Chapter I, [C1], [HT] Section 1
and [HO2] Section 4. The scheme Tate(q) can be extended to a semi-abelian
scheme over Z[[(ab)>o]] with special fiber G,, ® a* at the augmentation ideal 2.
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Since a is prime to p, a, = O,. Thus if R is a Z,-algebra, we have a canonical
isomorphism:

Lie(Tateqp(q) mod A) = Lie(Gp, ® a*) = Rz a* = R®z O*.

By Grothendieck-Serre duality, we have Qraqe, ,(q)/R[[(ab)s0)) = Rl[(ab)>0]]. In-
deed we have a canonical generator ween of Q74te(q) Which induces % ® 1 on
Gm ® a* (writing G,,, = Spec(Z[t,t71]); see [K3] (1.1.17) and (1.2.11)). Since
a is prime to 9p, we have a canonical inclusion pum C p, ®z O* =2 pu, Rz a*
(for an integer 0 < n € M prime to a) into G,, ® a*, which induces a canonical
closed immersion icqn : pm — Tate(q). As described in [K3] (1.1.14) and [HT)
page 204, Tateq s (¢) has a canonical c—polarization Acqn. Thus we can evalu-
ate f € Gu(c, M R) at (Tateq,p(q), Acans teans Wean)- The value f(q) = fa6(q)
actually falls in R[[(ab)>o]] (if F # Q : Koecher principle) and is called the
g—expansion at the cusp (a,b). When F = Q, we impose f to have values in the
ring R[[(ab)>o]] when we define modular forms (this is the logarithmic growth
condition):

(G4) fap(q) € R[[(ab)>0]] for all (a, b).

Suppose that D1 is prime to p. We can think of a functor
,]/D\(R) = [(Aa )\a i;Da Z‘ﬁ)/R]

similar to P defined over the category of p—adic rings R = @n R/p™R. The
only difference here is that we consider an isomorphism of ind-group schemes i, :
Hpoe @7,0* =2 A[p™]° (in place of a differential w), which induces Gp®O* = A for
the formal completion V at the characteristic p-fiber of a scheme V over Z,,. It
is a theorem (due to Deligne-Ribet and Katz) that this functor is representable
by the formal completion ﬁ(c, 9p>) of M(c, Np>°) = lim M(c, Np") along its
mod p fiber. Thus we can think of p-adic modular forms f,r for a p-adic ring
R which are functions of (A, A, i,,im) /¢ (for any p-adic R-algebra C) satisfying
the following conditions:

(Gpl) f(A Nip,im) = f(A, N, 0, i) € Cif (A, N, ip,im) o = (A, N iy, i) /o5

p’ 3 p’
(Gp2) f((A, N ip,im) ®c,p C') = p(f(A, A, ip,im)) for each p-adically continuous
R-algebra homomorphism p : C — C’;
(Gy3) fars(4) € RI[(ab)so]] for all (a, b) prime to Np.

We write V (¢, 9; R) for the space of p-adic modular forms satisfying (G,1-3).
This V (¢, M; R) is a p—adically complete R—algebra.

We have the g—expansion principle valid both for classical modular forms
and p-adic modular forms f,

(¢-exp)  The q-eapansion: f — fou(q) € R[[(ab)so]] determines f uniquely.

This follows from the irreducibility of the Hilbert modular Igusa tower proven
in [DR] (see also [PAF] Theorem 4.21 and [HO8] for other proofs).
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Since G, ® 97! = Spec(Z[t]¢co) has a canonical invariant differential 4,
we have w, = ipy*% on A. This allows us to regard each f € G.(¢,M; R) a
p—adic modular form by putting

f(Aa )\a i;Da ’Lm) = f(Aa )\a imawp)'

By (g-exp), this gives an injection of G (¢, 91; R) into the space of p-adic mod-
ular forms V (¢, 0N; R) (for a p—adic ring R) preserving g—expansions.

Over C, the category of quadruples (A, \,i,w) is equivalent to the category
of triples (£, A, 7) made of the following data (cf. [ABV] I): £ is an O-lattice in
O ®zC = C!, an alternating form A : LAp L =2 ¢* and i : */O* — FL/L. The
form A is supposed to be positive in the sense that A(u,v)/Im(uv®) is totally
positive in O ®z R = R!. Via polarization A\, we can define theta functions
as described in [ABV] Chapter I by which we can embed the complex torus
C!/L into a projective space P (C) for sufficiently large dimension N. Then
by Chow’s theorem, the image A is a projective algebraic variety defined over
C with group structure, in short, an abelian variety over C. The differential w
can be recovered by ¢« : A(C) = C!/L so that w = t*du where u = (uy)ser is
the variable on C'.

Conversely, if we start with a triple (4, A\, w),c,

La= {/Yw e O®Z(C’”y e Hl(A((C),Z)}

is a lattice in C’, and the polarization A : A* =2 A ® ¢ induces £ A £ == ¢*.

Using this equivalence, we can relate our geometric definition of Hilbert
modular forms with the classical analytic definition. Recall 3 which is the
product of I copies of the upper half complex plane: 3 = $7 for

9 ={z=x++—1y € Cly =Im(z) > 0}.

We regard 3 € O ®z C = C! made up of z = (2,)ser with totally positive
imaginary part. Thus we can think of the submodule bz C F ®g C = C! for a
cusp (a, b). For each z € 3, we define £, = 2my/—1(bz + a*) C CI,

. (2mv—1(az + b), 27V ~1(cz + d)) = —(ad — be) € ¢*

and i, : N*/O* = Na)*/a* — FL,/L, by i(a mod O*) = 2mv/—1a mod L,.
Consider the following congruence subgroup I'11(9; a, b) given by

{(gg) e SLQ(F)’a,de O, be (ab)*, c e Mabd and d — 1 € m}

Write I'11(¢; M) = T11(1;0,¢7Y). Welet g = (9,) € SLa(F ®g R) = SLa(R)!
act on 3 by linear fractional transformation of g, on each component z,. Then

(L2, A2,02) 2 (L, A, tw) <= w="(z) foryeT11(M;a,b).

Here an isomorphism between (£,,\,,4.) and (L, Aw, 4w) is supposed to pre-
serve the decomposition £, = £,, = b@®a*. The set of pairs (a, b) with ab™ = ¢
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is in bijection with the set of cusps of I'11(c; 1). Two cusps are equivalent if they
transform each other by an element in T'11(c;91). A standard choice is (O, ¢ 1),
which we call the infinity cusp of 9M(c,M). For each ideal t, (t,t71c7!) gives
another cusp. The two cusps (t,t71¢™!) and (5,5 'c¢71) are equivalent under
Ii1(;M) if t = as for an element a € F* with a =1 mod M in Fy;. We have

M(c,N)(C) 2 T11(c; M)\3, canonically.

Let G = Resp/zGL(2). Take an open compact subgroup K C G(A(®)) such
that v € K if and only if the following two conditions are satisfied:

1oue (497" GZ) (% 9) for an idele dp € O with dpO = d;

2. (4 Q) (dr ?)71 mod 9 is congruent to an upper unipotent matrix in

GLy(O/9) modulo M.

Then taking an idele ¢ with cO =, we see that
M) < (DK (697 NG@4+) € O Tu(wN)

for G(Q)+ made up of all elements in G(Q) with totally positive determinant.
Choosing a representative set of the strict ray class group Clp (M) by finite ideles
in F, we find by the approximation theorem that

GA) = || GO E -GR)

c€CLp (M)

for the identity connected component G(R) of the Lie group G(R). This shows

GQ\(X x GAL))/K 2 GQ)\B x GA)/K= | | M, M(O),
c€Clp (M)

(4.2)
where G(A), = G(A)G(R), and X and 3 is as in (3.1). The Clr(M)-tuple
(fo)e with fo € Gx(c,M; C) can be viewed as a single automorphic form giving
a section of a line bundle over Shx (C) = G(Q);\(3 x G(A(™))/K.

Recall the identification X*(T') with Z[I] so that x(z) =[], o(z)"". Regard-
ing f € Gu(c,M;C) as a holomorphic function of z € 3 by f(2) = f(L., Az, 12),
it satisfies the following automorphic property:

F01=) = F) [[( 20 + 7)™ forally = (28) €Tua(e ). (43)

o

The holomorphy of f is a consequence of the functoriality (G2). Each f €
G (¢, M; C) has the Fourier expansion

fe) = ) a®er(é2)

£€(ab)>o

at the cusp corresponding to (a,b). Here er(£2) = exp(2mv/—1)_ €72, ). This
Fourier expansion equals the g-expansion f, 5(q) replacing er(£2) by ¢°.
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Shimura studied in his theory of arithmetic of Hecke L-values the effect on
modular forms of the following differential operators on 3 indexed by € Z[I]:

o 1 8 Ko k _ o a
51{ 27T\/— (azg + 2y07\/_—1> and 5,{ = H (5l€a+2ka*2 5"%) y (44)

o

where k € Z[I] with k, > 0. An important point is that the differential operator
preserves rationality property at CM points of (arithmetic) modular forms, al-
though it does not preserve holomorphy (see [AAF] IIT and [Sh3]). To describe
the rationality, we recall the two embeddings i, : Q — C and iy Q — Qp
fixed in the introduction. Recall W = i, ' (W), which is a discrete valuation
ring. Let (A, w,i), be an ordinary quadruple of CM type (M,X) (hav-
ing complex multiplication by the integer ring O C M). The complex uni-
formization: ¢+ : A(C) = C¥/%(2A) induces a canonical base we = t*du of
Q¢ over O ®z R, where u = (uo)sex is the standard variable on C*® and
Y(A) = {(0(a))ses € C¥|la € A}. We define the periods Qo € C¥ = O ®z C
by w = Qocwoo- The level p-structure i, : pp= ® 071 — A[p™] induces an

isomorphism ¢, : Spf(W [qf] cco) = G @z 071 2 A for the p-adic formal group
A/W at the origin. Then w = Q,w, () € O @z W = W¥) for w, = pr*%q.
Here is the rationality result of Shimura for f € G, (c, 9% W):

SEAVA N, woo, i N =D
( nfﬂm’jz;k ) (AN w i) €T (8)

Katz interpreted the differential operator in terms of the Gauss-Manin con-
nection of the universal AVRM over 9 and gave a purely algebro-geometric
definition of the operator (see [K3] Chapter II and [HT] Section 1 for a summary
of the result of Katz). Using this algebraization of 6%, he extended the operator
to geometric modular forms and p-adic modular forms. We write his operator
corresponding to Shimura’s operator 6* as d* : V(¢,M; R) — V (¢, M; R). An
important formula given in [K3] (2.6.7) is: for f € G (c, M W),

(d*F)(A, X wp, i)

R = (d*F)(A, N\ w, i) = (6F (AN w,i) e W. (K)

Let ¢ be the canonical variable of the Serre-Tate deformation space S. Iden-
tifying S with G, ®z 0~ Lt is the character 1 € O = X*(G ®z 071 =

Hom(G, ®z 071, G,p,). Write S = G, @z 0 L. We have 5§ = Spf(W [/TS’)])

for the completion Wm)] at the augmentation ideal of the monoid algebra
WIX(S)] = W[O] (X(S) = X*(S) = Homgig—gp(S, Gn)), where W[O] is the
ring made up of formal finite sums 3 ., a(é)ts (a(€) € W). We have the
following interpretation of d":

A"y (@)t = a(§)Erts. (4.5)

3 3

To see this formula, let us recall the construction of d*. Let A = (A,/):,/i\) be
the universal deformation of A = (A, \,4) on S. Since A is ordinary, the level
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o~

p-structure iy : fipee ®7 071 — A gives the identification of formal groups i, :

@m®07§1 >~ A. Note that @m®07§1 is isomorphic to §><W§ over W'; so, we write

the standard variable on the base S as an/gl on the fiber S as s. Then for each
a € O,, we have a unique section w(a) = (ai,). % of w,g- The action of a is just

s 5% s0, w(a) = 4=, By [K2] 4.3.1, the differential operator is S’\finvariant,

sa

and the canonical variable ¢ is normalized so that dt® = at® <= d = t%.

In other Koﬂs, by the construction of d, choosing a parameter ¢ of S so that
S = Spf(W[t*]¢co), we have d = a 't on S for a unit a € W*. Thus changing
t by t*, we have an exact identity as above. This change of variable does not
cause much trouble in the computation we execute later (because everything
involving ¢ is brought to that of ¢* by the variable change). Thus we may
assume d"t¢ = £5¢5,

There is another short cut showing (4.5): It is known that d induces a base
of invariant differentials on the base Spf (I/I//[-a\b]) of the Tate AVRM, regarding
it as G, ® (ab); so, d? coincides with §J. From this, we can also conclude that
d” induces an invariant differential.

For each f € V(c,M; R) (for a p-adic algebra R), we call the expansion

F) = FANG) =D alg, )t

£eo0

as an element of 1?[-5] a t—expansion of f. Hereafter, we write this ring sym-
bolically as R[[t*]]¢co. Choosing a Z-base {a;} of O, Tj = t% — 1 gives a
complete set of local parameters at the point = € ﬁ(c, N)/r given by A and
1?[-5] ~ R[[T1, ..., Tq]]. We have the following t—expansion principle:

(t-exp)  The t—expansion: f v f(t) € R[[t*]]cco determines f uniquely.

The Taylor expansion of f with respect to the variables T' = (1) can be com-
puted by applying differential operators 9; = aa_Tj and evaluating the result at
x = A. Since 0; is a linear combination of the d”’s in the field of fractions of R
as long as R is of characteristic 0, we have, for f,g € V (¢, 0% W),

df(A) = d"g(A) for all k > 0 < f(t) = g(t). (4.6)

What we have described is actually an oversimplified description of Katz’s
theory, and the reader is referred to [K3] and [HT] Section 1 for a more rigorous
explanation on the subject.

4.2 ¢—Expansion of Eisenstein Series

Let ¢ : {Op x (O/f)} x {Op x (O/§")} — C be a locally constant function such
that ¢(e 'z, ey) = N(e)*¢(x,y) for all ¢ € O, where k is a positive integer
and " and f” are integral ideals prime to p. We put f = ' N’ and suppose
that all a, b and ¢ are prime to fp. We regard ¢ as a function on X x Y with
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X =Y = 0, x (O/f) via the natural projection of {O, x (O/f)} x {Op x (O/f)}
to {Op, x (0/f)} x {0, x (O/§")}. We put X, = (O/p*0O) x (O/f) and define
the partial Fourier transform

Pg: {(Fp/O;) X (f*/O*)} XY = {Upo‘f*/O*} xY — C

of ¢, taking a so that ¢ factors through X, x Y, by

p*a[F:Q]N(f)71 Zaexa o(a,y)er(ax) if x € p~f*/O*,

F%@w%—{o it g a0 ()

where ep is the standard additive character of Fj restricted to the local com-
ponent Fys at pf. This definition does not depend on the choice of a.

We construct an Eisenstein series Fy(z; ¢) for a positive integer k and ¢ as
above as a function of triples (£, A, i) we have studied in the previous subsection.
Actually k indicates the parallel weight ) ko. Here i : F},/O; x (f)*/O* —
p~°L/L x §71L/L is the level p>°§*-structure. The f-part s of ¢ induces, via
polarization, the dual map z% : L/fL — O/f, and hence having 45 is equivalent to
having a pair (i1, 4}), which is literally of level §2 (not just of level f). We define
an Ogp,—submodule PV(L) C L ®o Fjp specified by the following conditions:

(pvl) PV (L) D L ®o Osp;
(pv2) PV(L)/ (£ @0 Og,) = Im(i).
By definition, we may regard
i~': PV(L) - PV(L)/ (L ®0 Og) = F, /O3 x §*/O*.
By Pontryagin duality under Tr o A, the dual map i’ of i gives rise to
i' : PV(L) = O, x (O/f).

See [HT] page 206 for details for i’ which is written as 7’ there. Then we may
regard P¢ as a function on p=>f 1L NPV (L) = (U, p~*f1L) N PV (L) by

Po(i~t(w),i(w)) if (w mod L) € Im(i),

. (4.8)
0 otherwise.

-

For each w = (w,) € F ®g C = C!, the norm map N(w) = [[,c; wo is well
defined. Writing £ = (£, A, 7) for simplicity, we define the value E(L; ¢, c) by

N (G NN CED ' Po(w)
Ep(L; ¢, ¢) = JbsT wep};ﬁ/ox N N (@) oo (4.9)

Here “Z/” indicates that we are excluding w = 0 from the summation. As
shown by Hecke, this type of series is convergent when the real part of s is
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sufficiently large and is continued to a meromorphic function well defined at
s = 0 (as long as either &k > 2 or ¢(a,0) = 0 for all a). If either k& > 2 or
#(a,0) = 0 for all a, the function Ej(c, ¢) gives an element in G,/(c, {?p>°; C)
(k =k ,.p g 0), whose g-expansion computed in [HT] Section 2 is given by

N(a) "' Ei(¢, )au(q) = 27" UL — k; 6, a)
LYY @Mk )
IN@

0L&€eab (q,b)e(axb)/O*
ab=¢

where L(s; ¢, a) is the partial L-function given by the Dirichlet series:

k
> ole0) () W@

£€(a—{0})/0Ox

4.3 Eisenstein Measure

We recall the definition of the Eisenstein measure with values in V(c, fs; W)
for a p-adic algebra W given below. Recall the fixed algebraic closure F of IF,,
and the ring W (F) of Witt vectors with coefficients in F. We consider W (F)
as a subring of the p-adic completion @p of @p. Let W be a discrete valuation
ring finite flat over W (F) inside @p. For any fractional ideal a, write its prime
decomposition as Hq q°9; s0, €4 is an integer with €4 = 0 for primes q which do
not show up in the prime decomposition. We denote e(a) = {eq}4 for this set
of exponents. We abbreviate the product Hq qe as q°(%), which is equal to a.

Let s|f be two integral ideals of F' prime to p. We consider the space O =
(Op x (O/f)) x (Op x (O/s5)) and write the variable on O as (z,a;y,b) for
z,y € Op and a € O/f and b € 0/5 We regard O as a ring; then O is
the group of invertible elements in O. Embedding O* into_ O diagonally, we

can take the closure OX under the profinite topology of D We also write
= (0 x (0/f)) x (O x (O/s)). Welet e € O* act on O by e(z,a;y,b) =

(sx,ea;sy,sb). Then we define T = T/OX and T* = 9% /OX. These are the
profinite compact spaces carrying the Eisenstein measure.

For each continuous function ¢(z,a;y,b) on T, we consider the following
partial Fourier transform:

¢°(z,a;y,0) = > bz usy, blep(—uaw ), (4.11)

ueO/f

where we have chosen for each prime q of F', a prime element wy in FJ* C FY
and put @ = [], wy" in F) for each exponent e = {e, € Z}, with eq = 0
almost everywhere (that is, except for finitely many primes). The map ¢ — ¢°
is a linear operator acting on the space C(T; W) of all continuous functions on
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T with values in W (and is invertible by the Fourier inversion formula). If ¢
factors through 7', then ¢° satisfies the following property

¢°(ex,ea;e Ly, e7tb) = ¢°(x,a;y,b) foralle € OX.

This is the property required to define Eisenstein series (for even weight k) in
the previous subsection. Then there exists a unique measure E. : C(T; W) —
V(c, fs; W) with the following two properties:

(E1) If ¢ has values in Q equipped with the discrete topology, then for each
positive integer k£ > 0,

E(N7*¢) = Ew(¢°; 1),

where N : T — Z, is given by N(z,a;y,b) = Np/g(x) for the norm map
Npjg : Op — Z,. Note here that N~%¢° (for any positive integer k)
factors through T' <= ¢° satisfies invariance under O* required for the
definition of the Eisenstein series;

(E2) The g—expansion of E.(¢) at the cusp (a, b) is given by

N(@) > ¢ > ¢°(a;0)|N ()|,

0<E€ab  (a,b)E(axb)/OX,ab=¢

where |N(a)| is the (complex) absolute value of the norm N(a) of a € a,

a x b is embedded in T by (a,a mod f;b,b mod ), and € € O* acts on
(a,b) by (a,b) — (ea,e71b).

The existence and the uniqueness of the measure satisfying (E1-2) is a conse-
quence of the g—expansion principle and the g—expansion of the classical Eisen-
stein series given in the previous section (see [K3] Chapter III and [HT] Sec-
tion 3). Although it is assumed that f = s in [HT], there is no difficulty extending
the construction to the general case, since for any function factoring through 7°
as in (E1), the corresponding Eisenstein series can be checked to be of level fs.

When confusion is unlikely, we write E(¢) for Ey(¢; ) to simplify our nota-
tion (though E(¢) fully depends on c).

4.4 Katz Measure

We can evaluate p-adic modular forms f at any test object (A, A, %)/ defined
over W. This gives rise to a linear form Ev : V(c, fs; W) — W given by
Ev(f) = f(A,A,i). Thus we can think of the evaluation Ev o E., which is a
bounded measure on C(T; W) with values in W.

Now we choose a specific test object. Let x = [z, ¢] be an ordinary CM
point of the Shimura variety. We take the abelian scheme (A, A, 7) sitting over
x € M(c,fs). Thus A has complex multiplication by a CM field M = M, with
a CM type ¥. We write M’ for the reflex field of (M, X) (see [ACM] Section 8).
We suppose that p is unramified in M (and hence in M’). The complex manifold
A(C) is given by C¥/% () for a lattice 2 C M, and we can find a model A
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defined over an abelian extension k of M’ such that all torsion points of A are
rational over an abelian extension of M’ (JACM] 18.6 and 21.1). The model
is unique if the field contains the field of moduli of the sufficiently deep level
structure 7. By a theorem of Serre-Tate, making ¢ deep (for example, making it
of level M for a deep 1 prime to p), A has good reduction over W Nk. Here we
can insist that k is unramified at p if M is unramified at p. Thus we may assume
that (A, A, 7) is defined over W, and if p is unramified in F/Q, we may assume
that W = W (F). We further assume that the special fiber A at p of A is an
ordinary abelian variety. Since the residue field F of W is algebraically closed,
Ap™] = (ppe ®071) x (F,/O,). Thus A has level p> structure io defined over
F. By Serre-Tate deformation theory, A sits at the origin 1 € S. Thus we can
uniquely lift i to a level p>—structure 7,; so, we may assume that ¢ contains a
level p*° structure defined over W.

We would like to recall briefly the construction of the Katz measure interpo-
lating the L—values of arithmetic Hecke characters of conductor dividing €p>,
where € is an integral ideal of M prime to p. We write O for the integer ring of
M. We decompose € = §F.J. Here J consists of inert or ramified primes over
F, 3T, consists split primes over F' and

F+Fe=F+F =Fc+35.=90 and §.DF".

Weput f =§INF, s =F.NFandi=TNF. Wehave D, = ORzZ, = Op X Ope,
where Op = Hm es, Ogq. We suppose the following four conditions:

1. The lattice 2 is a fractional ideal of M prime to €p; so, we write A = A(2)
(so, A()(C) = C*/2(A)).

2. Choose 6 € M so that 6 = — and Im(o(d)) > 0 for all o € 3, and have
the alternating form (u,v) = (u“v—uv°)/26 induce OAD =0~ 1¢~!. Then
this pairing induces ¢(2A2¢)~1-polarization A = A\(2).

3. The inclusion F' — M induces a canonical isomorphism O, = O, which
in turn induces i, : F},/O; = F,/0, = Ms /A0, C C*/%(A). We put
ip()(x) = i,,(26x). This is the p-part of the level structure i(2l).

4. The prime-to—p part i?) of i(2) is defined as follows. Choose an idele

dp of F such that dp@ = 5, the prime-to—fp0 component dgp ® is trivial
and dpq = (20)q for prime ideal Q with Q|F, where ¢ = Q N F. Then
z +— dpz induces (f2)*/O* — (Fi) ™22/, which is the i;.

In addition to the data (A(A), A(2A),i(™A)), assuming that p is unramified in
F/Q, for our later use, we choose the differential w(2() on A() as follows:

5. We choose and fix a differential w = w(9) on A(D)/yy so that
HO(A(D), Qa0)w) = (W @z O)w.

Since A, = O, A(ONA) is an étale covering of both A(A) and A(D); so,
w(9) induces a differential w(A) first by pull-back to A(O N A) and then
by pull-back inverse from A(O NA) to A().
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As long as the projection 7 : A(O NA) — A(2) is étale, the pull-back inverse
(7)1 Qaonayw — Qacy/w is a surjective isomorphism. We thus have

H(A), Qa0)w) = (W &z O)w().

Let Clps(i) be the ideal class group of M modulo i and Cl~ (i) be the quotient of
Cla(i) by the image of (O/i)*. Identifying Op (resp. Ope) with the first (resp.
last) component of O, of O and embedding O/ into O/FJ (resp. identifying O/s
with 9/F.)) through the inclusion O — O, we embed T into Z = Clp(€p>) =
lim Cly(€p"). Then we have the exact sequence:

T 5% Z — Ol (i) — 1,

and the kernel of ¢ is a finite group. We write [2] for the image of the class
of an ideal A prime to €p in Z. For a € O, we have [(a)] = a1, where the
right-hand side is the image of the inclusion Dép — Z. Choosing a complete

representative set {2} for C1~ (i), we have a decomposition
Z=| |
2

For each function ¢ € C(Z; W), we define ¢g € C(T; W) in the following way:
da(t) = ¢(t[A] 1) for t € T* and extend it by 0 outside 7. Then define

/Z pdip = ; /T doudEey (A(), A(),i(2)), (4.12)

where ¢y = ¢(AA¢) 7L, We write Eg(¢) for E, (¢) for functions ¢ € C(T*; W).

In [K3] Chapter V and [HT] Section 4, computation of [, My is made for
the p-adic avatar X of an arithmetic Hecke character A of conductor a factor
of €p. The result is as described in the introduction. Since there are many
misprints in [HT] (though all minor), we have added at the end of this paper a
correction table of misprints in [HT].

5 Proof of Theorem 1

Recall the quadratic CM extension M/F introduced in Section 1, and write ¥
(resp. Xp) for the CM type (resp. the p-adic CM type) we fixed there. We now
prove Theorem I, and the proof concludes in Subsection 5.4. We assume that p
is unramified in F/Q and write W = W (F).

5.1 Splitting the Katz Measure

We start with a general argument. We assume that p > 2. Let the triple
(A(0), A(),i(2A)) be the abelian variety of CM type (M, X) as in Section 4.4.
We consider the measure Ey : ¢ — [ ¢dE, (A(A), \(2),i(~A)) (on the image
of T in Cly(€p*>)) for the polarization ideal cg = c(AA°)~L. For o € M
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prime to €p, u +— au induces an isomorphism: A(2A) = A(a). This mul-
tiplication by « sends () (resp. A(/) and w(2A)) to a o i(aA) which sends
an element x € (F,/O*) x (§2)*/O* to adrz mod a2 (resp. aaA(A) = A(a)
and aw(a)). This shows that

plat)dEy(t) = |  o(t)dEaa(t), (5.1)
TX TX

where a(z, a;y,b) = (az, aa; oy, acb) for t = (x,a;y,b). This tells us how the
piece of the integral corresponding to 2 in the definition of the Katz measure
dy transforms if we change 2 in its ideal class.

This formula (5.1) can be verified functorially using the fact:

(A(al), A(a2), ai(aA)) = (A(RL), (ca®)A(A),i(A)) by au— u,
but there is an easy short-cut: for & > 0,

/ ONF(t)dEx(t) = Y P(N ~H(w), i (w)

weA

= > PV (a7 (), 07" (w))

wead

:/(bN*k(ax,afcy, ala, afcb)dEag[:/ SN F(a ) dEqaa(t),
T T

~—

where N(z,a;y,b) = N(
define g (r) = p(x[2]
containing Ker(¢),

z) = [[, o(z). For each function ¢ on Im(c)[2A] ™!, we
). Now we decompose, for an open subgroup H of T*

(TR =] o H)[B] T = T =| |H[B
B

Thus, we have

/052( JdEy(t) Z/ XH[s-1o)Pa(t)dEwy(t)
—Z/ o (HB ) o (1B d (1) Z/XH (1) (1) B 1),

where x g is the characteristic function of H. Note here that we have B = a2
for a € M*.

For the moment, we assume that € is stable under complex conjugation c.
For simplicity, we write Z for Cly (€p>). We take a subgroup I' = T'¢ C Z of
finite index satisfying the following two conditions:

1. Z =T x A with torsion-free I and a finite group A = Ag;
2. T" and A is stable under c.
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Under the assumption: p > 2, we can choose the splitting Z = I x A stable
under c¢. This fact can be shown as follows: We can first split Z = Z, x A’
so that Z, is the maximal p-profinite subgroup. This splitting is canonical;
so, it is stable under c. Since p is odd, we can split Z, = Z]j X Z, so that ¢
acts through multiplication by +1 on Zpi. Then we just split Z]DjE =T* x Ay
for torsion-free I't and finite groups Ay. Thus we can achieve c-stability of
r=(*xI'")cZ.

For each z € Z, we define 7_(z) = [2]7 := z!7° Recall the torus T, =
Resp/oGn C G fixing the closed point z € Sho™® over (A(D), M(D),i(D)) €
M(c, p>) and its quotient 7 as in (3.18) (with the injection: T (Z,)) —
T(Zy) = O} sending o € T,(Zy)) to o'~ € O)). We have a natural exact
sequence:

1— (D) x (D/€)%) /OX — Z — Cly — 1,

where Clys is the class group of M. Since O* is a subgroup of O of finite
index and p is unramified in M/Q, 7_(9O*) is a finite group of order prime to
p. By this fact, we see that

I~ N ((o; X (9/€)) /g_x) — 9X[-1]= 0,
where O [-1] = {a € O)|c(a) = a~'}. In particular, identifying Op, with O,
for a principal ideal («) prime to €p, [()]” = o' € T(Z,) = OF = O,
where p = HpeEp p. Therefore, writing [] for the image in Z of an ideal 2
prime to €p, we have, regarding 7 (Z,)) C T(Z,) = O, by (3.18),

" €T(Zy) —= A e[O]

(o)) T x A™), (5.2)

where AT = H(Gal(M/F),A), and O(,¢) C M is the localization (not the
completion) of O at pC.

We now allow the case € # €¢. In any case, we have a canonical splitting
of Z into the prime-to—p subgroup A® and the p-profinite subgroup Z,. We
fix a splitting Z, = A, x I'¢ so that the natural projection 7 : Z — Clps(p™)
induces an isomorphism of I'¢ onto the torsion free part I' = T'g of Cly, (p™) we
have already chosen in the above discussion. We then define Ag = A®) x Ap.

The translation ¢(z) — ¢(2¢) by ¢ € A¢ gives an action of A¢ on the space
of continuous functions C(Z; W) on Z with values in W. For each character 1
of A¢, we write C(Z; O)[¢] for the y—eigenspace for the action of A¢. Then
the restriction of continuous functions on Z to I'¢ gives rise to an isomorphism
Resy : C(Z; W)[¢)] = C(T'e; W). We write Infy, for Res;;*.

For a given measure ¢ on Z, the ¢-component ¢, € W/[[I']] is defined by

/F pdipy = /Z Infy, ¢dp.

In terms of group algebras, ¢ : Z — W][T]] given by ¥(¢y) = ¢(C)x(y) for
v € I'e and ¢ € A¢ induces a continuous W-algebra homomorphism W{[Z]] —

WI[L]] (still written as 1), and we can verify that ¢y = ¥(p). If one chooses
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another splitting of Z into a product of a torsion-free group and a finite group,
they differ by a character of I' into Ag. In other words, 7/i~! = ¢ is a character
of T' for two sections 4,4’ : I' — Z of the projection: Z — I'. Then Inf, ¢ for two
different splittings differ by multiplication by 1 o €; hence, the invariant p(py)
is independent of the choice of splitting. Hereafter we stop worrying about the

choice of splitting, fixing it once and for all. We write A for A¢ hereafter.

5.2 Good Representatives

We would like to choose a representative set D for A so that the projection
7w Z — A induces an isomorphism D 2= A if p { |Clys|. In general, D = Z/T”
for the intersection I'V of T" and the image of Dép. We would like to choose D
so that our computation of g—expansion (of Eisenstein series) becomes easier.
Let Z(€p) be the group of fractional ideals of M prime to €p, and define

Z(ep)t = {Ql € I(Cp)’%llfc =al %O fora € MX} )

Suppose for the moment that € does not contain primes ramifying in M/F.
Since 2 is prime to €p, a'~¢ is prime to €p. Thus if a prime factor Q of
¢p divides the principal ideal (), its conjugate Q¢ divides («) with the equal
multiplicity. Thus o = B for v € F* with 8 prime to €p. In other words,
(B17¢) = (o' 7¢) = A ~¢, and hence we can write

Z(ep)t = {A e I(ep)|A' = g O for ag € M* prime to €p} (5.3)

if € does not contain primes ramifying in M/F. Without assuming the above
condition, we can always write

Z(ep)t ={Ae I(Qp)’%llfc = ay “O for ag € M prime to ¢'p},

where €' is the maximal factor of € prime to the relative discriminant of M/F.
The quotient of Z(€p)* by principal ideals prime to €p is a subgroup of the
class group Clps of M, which we write Cl&. We see easily that

Clp = the image of Clp C Clf, € H*(Gal(M/F), Clyy).

If the group O of totally positive units of O coincides with the group of square
units, the equality Clj, = H°(Gal(M/F),Cly) holds. If further the class
number of M is odd, the three groups are all equal. We take a complete repre-
sentative set D~ (resp. DT) for Clp/Cly; (vesp. Clf, in Z(€p)™).

When the class number of M is odd, we choose D* among fractional ideals
of F and D~ among primes of M split over F. If the class number is even,
supposing that € is prime to the discriminant of M/F, we choose D U D~
among primes of M split over F.

We write I for the intersection of ' with the image of Dép in the group Z =
Clp(€p>). Then we put D for a complete representative set in the localization
(not the completion) D(ch) for 7(Og,)/T" with the projection 7 : Oy, — Z if
¢ does not contain primes ramifying in M/F. When € is divisible by a prime
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ramified in M/F, things get more complicated, because we need to include in D
elements o € O divisible by some ramified primes in €. So until Subsection 5.5,
we assume that € is prime to the relative discriminant of M/F. Then we have

[oto= 3 ¥ 3 [ tnn(:dPane

AeDt a€DBeD—

We compute (A(BA), A(AB),i(AB)) for A C F. Since we have
A(BA)(C) = CZ/D(AB) = CE/2(B) @0 A = A(B)(C) @0 A,

we conclude A(AB) = A(B) ®o A. There is another construction if we choose
A C O: Tensoring A(B) to the exact sequence: 0 — A — O — O/2A — 0, we
get another exact sequence:

0 — Tor; (O/2A, A(B)) - A(B) ©0 A — A(B) — 0.

Since O is a Dedekind domain, we have Tor; (O/2, A(B)) = A(B)[2] canon-
ically. Thus ¢ brings A(B)[2] onto (A(B) ®o A)[A]. Since A(B) is a cp—

polarization for cg = ¢(BB¢) "1, we have A(B)* 23), A(B)®cg. This induces

A(B) @A : (A(B) @A) = A(B)"/A(B)[2]
>~ (A(B) ®0 ) @0 A" = (A(B) @0 A) @ e

We can check that A(B) @ 2 = A(A9B). Since 2 is prime to €p, the quotient
process by the 2-torsion subgroup does not alter the level structure; so, i(‘B)
induces 7(AB) = i(B) @ A.

The above process of making (A(AB), A(AB),i(AB)) can be performed
(without any modification) for general triples (A, A,7) (even without complex
multiplication) and yields a functorial map from test objects (A, A, 7) with polar-
ization ideal ¢ to test objects (A®o A, AR, i®2) with polarization ideal ¢ 2.
For a p-adic modular form f € V(¢2=2,N; R), we define f|(A) € V (¢, N; R) by

FIROA, N ) = fF(ARo A, A A, i @A) (5.4)

for a fractional ideal 2 of F' prime to 91 (see [PAF] 4.1.9). This shows

. s dEas = (E(xr das)|(2A)) (A(B), A(B),i(B)) ifACF, (5.5)

where E = E,, .

By adding level, we can construct another operator [q] : V(cq, O R) —
V(c,Mq; R) in the following way. Here we assume that q is an integral ideal
prime to ¢p. This goes as follows: For each test object: (A, \,w,i),c (over a
p-adic R-algebra C) of level Dqp> with polarization ideal ¢, we define a new
test object (A, N,w’,i"). First define A" = A/i(q*/O*). The quotient exists
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over C| since i(q*/O*) is an étale subgroup of A (because C is a p-adic ring).
The level structure

i (F/0;) x (M) /0") — A
composed with the quotient map 7 : A — A’ induces, modulo q*/O*, the
level structure i’ : F},/Op x MN*/O* — A’ defined over C. The cq-polarization
N A > A’ ® cq is defined as follows: Tensoring the exact sequence 0 — g —
O — 0/q— 0 with A®* = A ® ¢, we have another exact sequence:

0—-A®cqlg AR — ARc— 0.

Taking dual of the quotient map m : A — A’, we have one more exact sequence:

ﬂ_t

0 — Hom(i(q"/O*),Gyy) — A" 5 A — 0,

which gives rise to the following exact sequence

0 — Hom(i(q*/0%), Gyn) — A”'[a] 27 i(q"/O") @ ¢ — 0.

Since q is prime to ¢, the kernel of the composite: (7 ®id)oXox? : At S A
is the entire q-torsion subgroup A’*[q]. Since A’*/A""[q] = A"* ® q~!, we have
constructed an isomorphism:

(r@id)odor: A'wq ' 2 A«

Tensoring q with this isomorphism, we get the desired ' : A’" = A’ @ ¢q. Since
q is prime to p, on a p-adic algebra C, Lie(A) = Lie(A’), which implies that
W' = m*w is well defined generator of Q4//c. The association (A4, \,w,),c —
(A", N, W', 1) ¢ is functorial (i.e., a morphism between the functors Q in (4.1)
with respect to (¢, Mgp™) and (cq, 9p>)). We have

[a] : V(cq, 0 R) — V(c,Ng; R) and [q] : Gi(cq, M R) — Grlc, Na; R)

by flla](A, A, w, i) = f(A, N, W', 7).

We compute [q] (A(2A), A(2),i(A)) )y for a fractional ideal 2 C M, supposing
that all prime factors of q are split in M/F. Choose an integral ideal £ in M such
that the inclusion O — O induces O/q = 9/9. Then Q + Q° = O. Consider
(A(), A(),i(A)) with the level fsqp*—structure () sending = € q*/O* to
26x € Q71A/A. Then A(A)[Q] = i(A)(q*/O*) and hence A(A)/i(A)(q*/O*) =
ARIQ™Y) and i(A) = i(AQ 1), which are the level fsp>-structure. Since q is
prime to pc, using the fact that Q90°¢ = q, we can verify that

[a] (A0, A(RA), w (), i()) = (AAQ™H), MAQ ™), w(AQ ™), i(ﬁﬂl))(w,)

5.6

where i(2) is the level fqp®>-structure as above and i(AQ~!) is the induced

level fp>°—structure. We can always choose 3 € DT so that Q¢+ Q = O and
9O/Q = 0/q for g = QN F. This shows

/F/ Pa-1pdEq-1 = (E(xr¢q-12)[[a]) (A(B), A(B),i(B))
for 9 and q as above, (5.7)
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where E = E,,,. As for the effect of @ € M, we may assume either o € O or
a € 9 — 0. Then we have, for the characteristic function s of I,

o pandEqs = (E(XF/¢Q‘B)|<O‘>) (A(%>a )‘(%)a Z(%)) faeON FX, (58)
|, GarmdBom = (E(xr ¢o-13)|[aa’]) (A(B), A(B),i(B)) ifa O, (5.9)
where E = E; for ¢ = ¢, for (5.8) and ¢ = ¢,-195 for (5.9).

5.3 Computation of ¢—Expansions

Pick an element g € G(A(>)) with totally positive det(g) € F. Then g induces
an automorphism of the Shimura variety (see (3.9)), and hence the functorial
action of g on test objects. We write

g(Aa )‘a Z) = (Aa )‘!]a Zg)

for the image of a test object (A, \,4) under the action of g. Here, writing
T'(A) = lim  A[N] for the Tate module, the level structure is an isomorphism
i FYo, = T(A) ®q A where F? ., is made up of row vectors on which
G(A()) acts from the right. Then we have i, =iog and A\, = det(g)\. When
g = € G(Q)4, we have an isogeny 7 : (A", N, ¥o01i) — (A, Ay, iy =io07) for
a suitable A’ (see below). Thus we can interpret the action as an action of an
isogeny in this case. This follows from the following three facts for v € G(Q)+
and test objects over C :

(€S

(L1) Writing Eg,a* — (b,a*)"(2,1) = bz + a* and
i-((b,a) mod b®a*) =bz+a mod LI,

we have Effz;;*)’fl ~ ,CS’“* by w — w(cz +d)~!, where v = ().

(L2) iqy(z) = (cz +d)i, 07; so, A" = (CI/EE:z;;*)’fl and

F(w mod Effz;;*)’fl) = (ez + d)flw mod ES’“*.

(L3) We have the identity of the Tate module via i,:
T(CT/£8% )~ b@a* and T(Tateqp(q)) =b®a* (F=r®z2).

If we have an isogeny o : A — A, we have a(A4,\,i) = (A, X,7) given by
N = aa*) and i'(x) = ai(r). Here a* = X o a'o A7!, which is aa*c-
polarization. In other words, defining p(a) € G(Q)+ by ai = io p(a), we
find that p(a)~t(a(A, N, i)) = (A, A, i). Since the Shimura variety classifies the
triples up to isogeny, (A, \,i) and (A4, \,¢) are equal as a point of Sh(G, X),
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and Im(p) gives rise to the stabilizer of the point of Sh(G,X) represented by
(A, A\, 1) (see Corollary 3.5).

When we consider the level structure ¢ modulo a compact subgroup K C
G(A®), we write (A,)\,ix). Then for g € G(A)) with det(g) € F,
g(A, N ir) = (A, Ay, (i0g)g-1Kg4) is well defined (solely depending on g).

We now consider the Tate AVRM: T'ateq p(q). For each positive integer N,
we have a canonical exact sequence:

1 — puny ®a* — Tateqp(q)[N] — b/Nb — 0.

We therefore have a canonical level structure i.q, modulo an (integral) upper
unipotent subgroup U = U(Z) C G(A(*)), which is represented by the following
exact sequence tensored by A(%) (over Z):

~

0— &3‘(1) — T(Tateqs(q)) — b — 0,

where b = Z 7 b and a*(1) = Z(l) ®z a*. Let K C G(A(™)) be the stabilizer
of the row vector space b ® c?‘, that is,

K=Kay= {g € GAL)| (b o &)gzﬁ@&}.
Thus Fll(O; a, b) = SLQ(F) N K. Define
KM) =K. 6(M) = {(‘C’Z) € Kayb’ce mEEaS, a=d=1 mod ‘ﬁ@}

Then we have I'11(9%; a, b) = SLa(F) N K(MN). For each given g € G(A>)) with
totally positive det(g) € F (so, g € £(G, X)), we can find finite ideles a(g), b(g) €
A() such that g = u(g) (b(og) a(*g)) with u(g) € K N SLy(Fy) and (1) €
K. Let (A, X i) be as in (L1-3), and put igmy = (i mod K(M)). Having
(A, X, ig (o)) is equivalent to having T'(A) = i(b ®4*) and i) @ (Na)*/a* —
A[M]. The ideles a(g) and b(g) are determined uniquely modulo multiple of
units in O. We assume here that a(g)m = b(g)m = 1.

Write simply @’ = a(g)~'a and b’ = b(g)b and K9 = g1 Kg. We have a
canonical identification b @ C/l\/*(l) =T(Tatey v (q)) and

.a’,b’

Goan. i - B @ (Na)*/a's — Gy, @ (a')" — Tateq o (q)-

Since b’ @ a’" and b @ a* are commensurable, the two Tate AVRM’s Tateq p(q)
and Tateq p(q) are in the same isogeny class (over Z[[(ab + a’b’)>¢]]). Since

(@‘) =a(g)~'a* and b(g)b = l@, up to isogenies, we have from (L3)

a6
g(Tateayb (q)a )‘221(;15 ZZan,K(‘ﬁ)) =

alg)™ ! .a(g) " ta,b(g)b
(Tateq(g)-1ab(g)e (), det(g)ALE, = Nafg) @b 209V SHD® 6 4(g)) (5.10)
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If g € F*, then a(g) = b(g) = g, and we have an isogeny

g ¢ (Tateq(q), Nl i%0) — (Tatey 1q.g6(q), Man ™%, g 0%,,%9)

Y can can

induced by ¢ — ¢9 (or equivalently, by G,, ® a* — G,, ® (g~ 'a*) given by
x®a — r®ga). Therefore the central rational element acts on the Tate AVRM
trivially.

For the Eisenstein series E(¢) = Eo(¢; ¢) (weight 0) of a function ¢(x, a; y, b)
((z,a;y,b) € (ap x (a/fa)) x (b, x (b/fb))), we find from the above computation
(assuming a(g)m = b(g)m = 1 for N = pf):

E(¢)(g(Tateq,s(a): Aas i)
-1 cala)—1
= E(¢|u(g)>(Tatea(g)*la,b(g)b(Q)a )‘(clz(z%) a,b(g)b, Zcz(z%) a,b(g)b), (511)
where ¢|u(g)(x,a;y,b) = P~HPo((z,a;y,b)u(g)) (letting the 2 x 2-matrix u(g)

act from the right on the row vector (z, a; y, b)) for the partial Fourier transform
¢ — P¢ as in Section 4.2.

We compute the g—expansion of E(¢)[(2) for a fractional ideal A of F. This
is the special case of (5.10) when g is a scalar matrix (¢ 9) with ax =1 (and

a0 = §l) By construction, we have a homomorphism g : b — G, ®z a*. Since
the 2-torsion points of Tateqp(q) is given by ¢(b2A~1/b) & (um ® a*) [2A]. Thus

Tateqp(q) ® A = Tateqs(q)/Tateq,n(q)[A] = Tateqq pa—1 (q)-
From this, it is easy to see (cf. [PAF] (4.53))

. —1 o—1
(Tatea,p(q) ® AL, @A, i%0 @A) = (Tateay—1 par(q), Aoy iy, %),

can » Ycan
(5.12)
where the superscript: “a, b” is to indicate that the attached object is relative
to the Tate curve Tateq p(q).

We compute [q](Tateq,p(q), Acans Weans tean) for an ideal g C O. Recall that
Tateqs(q) = G @ a*/q(b).

1

Tensoring G,,, ® a* with the exact sequence: 0 — O — q~* — q~1/O — 0, we

have another exact sequence:
0— (Gnr®a)[qg—G,r®a" — G, (ag) — 0.
Taking the quotient by ¢(b), we get the following exact sequence:

Lean

0— (Gp, ®a®) [q] == Tateqp(q) — Tateaqp(q) — 0.

Then going back to the construction of the Tate quadruples in [K3] 1.1 (and
[HT] 1.7), we can verify

[a](T'ateq,(q), AZ‘JL, Wg[z?w Tcan,Kq 0 (Nq))

= (Tateaqo(q), Ny, Wes' s ican. Ko w(0)- (5:13)
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The above action [q] corresponds to the action of g = ((1) qgl) for a finite

idele ¢ with q@ =g and gn = 1. This follows from (5.10) combined with the
fact that Ko p(Mq)7 = Kaq,6(N).

Now we further suppose that Kqpg9 = Kq7y for v € G4(Q) and gn = 1.
Then u = gy~ € K, and hence uy = 75;'. This shows

-1 a,b a,b
gy (Ta’tea7b, )\can’ Weans ann>Kn,h(m))

= (Tatea,ba )‘S&Ew wz&?w ican,Kn,h(‘ﬁ) © Vi;tl>' (5'14)

5.4 Linear Independence of Eisenstein Series

Recall that D 2 Z/T” for the intersection I (in Z) of I with the image of D;p.
Let xrs be the characteristic function of I' C Z. We put ¢ = Infy xr/ for a
character ¥ : A — W>*. We regard v as a character of Z composing with the
projection: Z — A. Although the Eisenstein series E(¢) is of weight 0 and
is not classical, we take actually E.(N~%¢) for a positive k so that N=% = 1
mod p on Z. Then E.(N~*¢) = E.(¢) mod p, and hence, just to compute the
g—expansion mod p, we can treat E (¢) as if it is classical. Thus we can apply
Corollary 3.21 to E.(¢). Recall that we have written E(®°) for Eo(P°;¢c) =
E.(®) for a suitable choice of ¢ in the context (making ¢ explicit is left to the
reader since it complicates the symbols attached to the Eisenstein series).
Recall the decomposition € = §F.J in the introduction satisfying

S‘i‘SC:D,S‘i‘Sc:D; 'SCJ’_'SZ:D and SCDSCa (515)

every prime factor of J is inert or ramified over F. (5.16)

Recall f = FINF, s = F.NF and T = (O x (O/f)) x (O x (O/s))/O*.
Then the variable on T is written as (z,a;y,b) with z,y € O,. Write prime
decomposition of f as [] q qc(@. We choose a prime element wq in Oq, and we

define @*(" as an idele whose q-component is given by wg(q). Let

° . - 1 . ua - . a
Xr/(x, a;y,b) = XO:HXF/@ y U3 Y, b)eF(—m) = x(z, L;y, b)eF(_W)a
ue

where ep : Fy/F — @X is the standard additive character having the value
er(Too) = exp(2my/—1Tr(zs)) at oo, and x is the characteristic function of

{(z,a;y,b)|m(x,1;4,b) € T'} for 7 : Dép — Z.

We split further D = | ], .p- DT where DT is the subset of D represented
by elements of F'*:

Dt — {a € Dlal’ = BT with 8 € F* magp}.

Recall that we assumed that € is prime to the relative discriminant © of M/F.
We choose a € D~ so that (o) = 9 is a prime ideal split in M over F'. Then
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Kapp(a) = Kapga for ga = (4 ) for a finite idele g € O with ¢O = 99° and
gep = 1. Define R (resp. S) by a subset {aep|oe € DT} (resp. {Bj,p|8 € D~ })
in the completion D¢, (resp. O{p).

Hereafter until 5.5, we assume J = 1. By (5.5), (5.8) and (5.14), we see that

> W) TTECE)(B))8 = E(@3),

BeD+

where “|3” is the action of the scalar element 8 € Z(Q), and

O (x,a;9,0) = > _b(s)x°(s (@', a); s(y, b)), (5.17)
seS
since s = fj, € S C O (for f € D) by (5.14). Here note that ¢(s) = (8)~"
because s = 3;,. We further sum up over D~:

Y (@E@)|[aa’]|p(a) " = E(@°), (5.18)

acD~

where we have chosen () to be an integral ideal with ©/(a) = O/((a) N F)
and (o) N F = (aa®), and P° is given by

D°(z,a;y,b ZU) 1S (r(x, a;y,b)), (5.19)
r€R
because (r) = ¥(a)™! (r = agp € O¢p). Since we have E(®S (r(z,a;y,b))) =
E(®S)|p(r) for p(r) € Kq,s, we have by (5.14) that

o v | Y wB) T EGR)BIB | llea|pla)
a€D™ BeD+
=Y () E@)p(r) " (5.20)
r€R
We have computed F(®°) as a linear combination of transforms of the Eisen-
stein series E(xp/). On the other hand, by definition of ¢y, ® as above is the
restriction of Infy, xr/ to Zg = (O x (0/€)*) /OX C Z.

Recall that 2 € DT is chosen out of fractional ideals of F if |Cly| is odd;
so, in such a case, the operator (2() makes sense. Similarly, if |Cly| is even,
we have chosen 2 € DT U D~ among prime ideals of M split over F; so, the
operator [AA] regarding AA as a prime ideal of F' also makes sense.

Theorem 5.1. Suppose p > 2. Let t be the canonical variable of the Serre-
Tate deformation space S = Gy, @701 of (A(D),N(O),i(9D)),w so that the
parameters (t%* —1,...,t% —1) (for a base {a;}; of O over Z) give the coordinate
around the origin 1 € S. Suppose that I =1, and write ® for the restriction of
Infy x1v to Zy C Z. Put for each B € D™

n= 3 v E@)|@0)) € 05

AeD+
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if the relative class number of M/F is odd, where we have chosen 2 C F prime
to €C°p. Otherwise, we put for each B € D~

=) )[R p(as) "' (t) € O,

AeD+

where [A]~ = aé{c with ag € M™* prime to €&°. Then the t—expansion of

= > (B B [BB ()

BecD—

at (A(D), A(D), (D)) gives (up to an automorphism of W[[Z]]) the t—expansion
of the anticyclotomic measure Oy In particular, supposing that p > 2 is
unramified in F/Q, we have the vanishing of the p-invariant: p(p, ¢) = 0,
unless the following three conditions are satisfied:

(M1) M/F is unramified everywhere (so the strict class number of F is even);

(M2) The strict ideal class of the polarization ideal ¢ in F is not a norm class
of an ideal class of M (& (M/F) =-1);

(M3) a ~ (¢(a)Np/g(a) mod my) is the quadratic character of M/F, which
s equivalent to ¢* =1 mod myy.

Under (M1-3), the invariant ju(,, ) is positive and is given by p(¢) in (5.27).

The Eisenstein series Eg defined in the theorem really depends on B € D~
since the polarization ideal of E(®°) in the sum depends on B.

Proof. We first show that the t—Expansion of £ gives (up to an automorphism
of W{[Z]]) the t-expansion of the Katz measure. We said “up to an automor-
phism of W{[Z]]”, because of the following reason: In the definition of the level
structure i(2A), x € (§2)*/O* is sent to 20z € F~2/A. This has the following
harmless effect: The t-expansion of E(®S ((z, a;y, b) diag[24, (26)~!])) actually
coincides with the t—expansion of the measure. The variable change (z, a; y, b) —
(x,a;y, b) diag[2d, 26 1] corresponds to the automorphism: z +— 2§z of the topo-
logical space Z (since 2§ is chosen to be prime to p€), which gives rise to an
automorphism of W[[Z]]. So we forget about the effect of this unit 24.

Since the argument is simpler in the case where the relative class number
is odd, we assume that the relative class number is even. We are going to
compute the x—derivatives of the Eisenstein series at A(A~!) for applying the

t—expansion principle. Let v, be a unique Hecke character of Z such that
Yu(B) = BUI5p(6) for all B =1 mod €p, dula = ¢ and $(A) = af "
with ag as in (5.3) for all 2 as above, choosing 20 € DT so that []~ € I'. We
write (z) for the projection of z € W(F)* to the p-profinite part of W (F)*

Then we have

(@) ) = (1) 0)° = {(@1)")°.
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We now replace each term (a1 E(x2)[(B)|8][aa]|p(a) ™! of (5.20) by

P(aB™H)d" (E(xp)(8)|Bllaa]|p(e) ~H) (AAT)

@ w<a5*1><a5*1>“<6*1>E<< Y (i [0 )) A0 A )
— (@B ) (@B D E((2 )  (xr 0 (@B7)°)(Al(a ' B)A1))
) (@B NE(((@ )" xr) a8 D) A0 B)A )

|
= Yu(af ) E((((z71y)" X)) (A@RT),  (5.21)

where ¢|[a](z,a;y,b) = édla"tz,a ta;ay, ab), ¢ o a(t) = ¢(at) for t € T
and ARA™Y) = (AR, A(&A71),i(A~Y)). The above equality indicated by
() (resp. (xx)) follows from (5.1) and the formulas: d"(¢*¥) = (xy)"¢™¥
and d®(t%) = a"t® (resp. the fact that xr o (37!) is the characteristic func-
tion of (a=t@)I). To avoid this type of complicated computation for ag, we
choose 2 so that (ag ) = ag © and [A]~ € I (this is always possible). Let
F = (Infy ((z71y)" XF/) |Z0)O = ((zy)")®°. By the computation given in [HT]
(4.9) (where the ideal denoted by 2 is actually 2~ in this paper), the partial
L-value for the character 1, and for the ideal class of A~! is given by, for
E(F) = Ecm—l (F),

(W E(F)(ART) = 1 (A)d"(B(D°)|[AA] | p(a2) ™) (A(D))

and
d"E = Y Ge@EF)A@T) (5.22)
AeD+
for all k > 0. This is because lp(ag[) fixes the test object (A(D), A(D), (D)) and
convert the variable ¢ into t* ° (o = ag; Corollary 3.5), and hence we have

E(9)[[A2%°]| plaz) T (A(D)) = E(¢)(A@A™).

In [HT], bottom of page 215, a{¢~1)2* appears instead of the single power a(¢~1D*
(@ = ay" in our computation here), but as can be easily checked (and as is
obvious from the evaluation formula of the Katz measure in the introduction),
this is a misprint, and the above single power a(°~D* is the correct one.

Now we apply the operator [B8°] and make variable change: ¢ — /%" in
(5.22). We may again assume that [B]~ € I”. The operator [B5°] (resp. the
variable change: t +— t[®17) plays the role of [AA¢] (resp. p(ag) ') in the above
computation, and we obtain by the effect of the differential operator d* again

d"(Ex|[BB (™)) = ) U@AB)EF)A@B)). (523

AeD+

This combined with the evaluation formula (1.3) (and [HT] (4.9)) shows that
the function in the theorem, after applying d* and evaluating at A(9D), has the
property satisfied by the measure ¢, ¢; so, the first assertion follows from (4.6).

As explained above Corollary 3.21, we have a unique element H, € G (F)
whose t-expansion is the constant 1 (identical to the t-expansion of the Hasse

83



invariant). Abusing terminology, we call H,, the Hasse invariant. We want
to apply Corollary 3.21 taking {a;}; = {[B] }sep- and {fi;} = {Es|[BB]
mod myy }gep-. Here for each index ¢ with a; = [B]~, {fi;} is given by the
single element Fg := (Eg|[BB¢ mod my).

To verify the assumption (of Corollary 3.21) of linear independence (over
F) of {H,, fij}; for each i, we need to show that for each B € D~, Fy is
linearly independent from the Hasse invariant H,(t) = 1, unless (M1-3) are
satisfied. Here we use the t—expansion principle and the g—expansion principle.
Once this is done, by Corollary 3.21, {Ew (t®! )}gep- is linearly independent
over IF, and hence we conclude the nonvanishing of £ (i.e., the vanishing of the
p-invariant) by Corollary 3.21 (which requires the unramifiedness of p in F/Q),
since elements in {[B] }nep- are distinct modulo T,,(Q). We show the linear
independence of Eg from H, by finding a totally positive £ € F' such that the
g—expansion coefficient a(¢, Fg) Z 0 mod myy.

We may assume that ¢ has conductor divisible by €. Write 7 : T* — A for
the projection Z — A composed with ¢ : T* — Z. Let ¥ be the function on 7%
given by ¥(z, a;y,b) = Yorn(z~t, a1 y,a). By our assumption, ®°(z, a;y,b) =
G(v5)¥, where the Gauss sum G(¢) is given by

> ) tep(—uw =),

v mod f

This number is a p-adic unit; so, for our purpose, we can forget about it. The
g—expansion coefficient of £ € ab of E(V¥) at the cusp (a, b) is given by

> W(a,b)|N(a)| .

(a,b)€(axb)/O* ,ab=¢£

We fix B € D~. This determines c¢i—1 which is the polarization ideal of
A(B71) on A(B~1). If we write ¢ for the polarization ideal of A(9), we know
c-1 = ¢(BB). We choose c%l,l to be a prime [ prime to pf (this is possible
by changing it in its strict ideal class and choosing § € M suitably).

We first assume that the class number is even. We have chosen 2 to be
a prime £ of M split over F. Then Q!¢ = ai{c, and Dagl is a product of
primes in F and ramified primes in M/F. If Dagl = u does not contain ramified
primes, then the operator [29°] = [q] (9 = QN F) is given by g € G(A(>)) with
go = 1, and p(an)g~! € Kap(75)Z(A). Thus £|[Q9|p(ag) L = f|{u) for
an integral ideal u of F' and modular form f on Kqp(fs).

We assume that Da51 contains ramified primes. Then we may assume that
Da51 = uR for a square-free product R of ramified primes £ and an ideal
u C F. For each ramified prime £, we may assume that

p(Oe) = {(p2, 2)]a,be O},

where [ = €N F. Let g € G(A()) be the element whose action on the
Hilbert modular variety coincides with [q]. As already seen, g(¥ = 1 out-

side q and gq = ((1) w%l). Recalling the relative discriminant © of M/F, by
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the definition of the level-g-structure of A(%B), we find that ¢~ 'p(ag)®) €
Kap(f5)Z(A®)), and writing R = [], £ for ramified primes £ in M/F, we
may assume that p(ag); ' = (2, §) for each prime factor [ of v = RN F. Note
that Kap(fs)ip(an); " = (7). Therefore, fl[allp(an)™ = fl{u)| (=5”9),
and the operator p(agn) ™! o [q] brings T'ateq s (q) to Tate,—14 45 (q) (see (5 10)).
We can thus rewrite the sum defining Fg in the theorem as:

Ep = o)™ Y $(R)E®@) (W], (5.24)

where u runs over a complete representative set (of F-ideals) for the image
L(Clp) of Clp in Clp, v = RN F, and v runs over a complete representative
set for Clf,/1(Clr) made of square-free factors of . To make our treatment
uniform, even if the class number is odd, we change notation in the sum defining
FEy and rewrite it as

Ey = Zw “LE(®°)|(w), (5.25)

where u runs over a complete representative set (of F-ideals) for the image
L(Clp) of Clg in Clp;. Hereafter we use the notation u to indicate an ideal
representing a class in ¢(Clp) and stop assuming that the class number is even.

We now take a totally positive 0 < ¢ € O so that (§) = In (I = cy",: a prime
by our choice) for an integral ideal n prime to €p®. We pick a pair (a,b) € F?
with ab = ¢ for @ € u™! and b € lur. Then (a) = u~'z for an integral ideal ¢
and (b) = ulty. Since (ab) = n, we find that ry = n and hence v = O because
n is prime to ®. Thus for each factor ¢ of n, we could have a pair (ay, by) with
a;by = & such that

((ar) =ug 'y, (b) = (Sag ") = welmp™")

for uy € DT representing the ideal class of the ideal r. We then write down the
q-expansion coefficient of ¢¢ at the cusp (O, ) of Eg as in the theorem:

G(y)alé, Bw) = G) ™ Y w7 E(°)|(ur))

tln
(€2 5~ zv@;)*lw*l(u»%(a&wcif(f“fl)lfV(lT)l
tln x
=¥ O N(u&”w’l(uﬂw(“’)m
tln x
5.26
= ‘/’sc zlj P(x) -

e(q)
= O T Do @(@)N @)~

qln \j=0

= ¢35, (©y(n) "IN ()~




where n =[], q°) is the prime factorization of n.
Suppose that n is a prime q. Then by (5.26), we have G(¢;) ta(¢, Es) =

P (€)1 +(p(a)N(q)) ™). I ¢¥(q)N(q) = —1 mod myy for all prime ideals q in
the strict class of ¢g-1, the character a — 9 (a)N(a) mod my is of conductor
1, and the strict class number has to be even.

We define, for the valuation v of W (normalized so that v(p) = 1)

1 — ((q)N(g))= @+
1 —(q)N(q) ’

w(w) =Infyv H

q[n

(5.27)

where n runs over all integral ideals prime to © of the form c¢(2(¢) for ideals 2
of M. Here c¢ is the polarization ideal of A(D). Then, by moving around %5 in
D™, the p-invariant pu(g,;) of the 1-branch of the anticyclotomic Katz measure

¢~ is less than or equal to u(y), and u(yp,) = wu(y) if M/F is everywhere

unramified. In particular, if {/)v =N mod my as a character of F,* has non-
trivial conductor, 0 < () < p(¢p) = 0. We may therefore assume that ¢ has

conductor 1 and that ¢(c) = —1.
We now recall the conditions (V) and (M1-3) stated in the introduction:

(V) * =1 mod my and N(c) t(c HW' () = —1 mod myy.
and
(M1) M/F is unramified at every finite place;
(M2) The strict ideal class of the polarization ideal ¢ in F' is not a norm class

of an ideal class of M (& (M/F) =-1);

c

(M3) a (¢(a)Np/g(a) mod my) is the character (M—/F) of M/F.

We first give a direct proof of the equivalence of (V) and (M1-3) as a lemma
(following the suggestion of one of the referees of this paper), and after that, we
shall give an indirect proof of the same fact using u(1)) defined above.

Lemma 5.2. Let the assumption be as in Theorem 1. Then we have an equiv-
alence: (V) < (M1-3).

Proof. Suppose (M1-3). Write ¢ = (¢» mod my) and @ = (Np/g mod m).
Then ©(rz¢) = N(z) := (N(x) mod my) for the p-adic cyclotomic character
N of M. By (M3) and class field theory, we have yw(zz®) = 1 for z €
M,*. This implies 0 (z) = P )N (z) " :NE(x)E(xxc)N(x)fl = 1)(x), which
proves the first part of (V). By (M2-3), ¢(c) = ¥ N(c) = —1; so, we need
to prove W’ (1)) = 1 mod myy. Since E* = 1), we have ¥(z) = ¥(z~°) for
z € O% with xp = 1. Thus for a prime ideal Q|€ of M outside p, q = QN F
splits as ¢ = QQ in M. Identifying Og = Oy = O7 and writing g(v) =

S ue(on a0 Aa(wen (@gtdgu), we have g(Pq)g(lg) = 9@a)g(@q) by
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P(u) = Y(u~°), and hence, we get g(vq)9(vg) = N(Q°)Yq(—1). Since ¢ =
YN is everywhere unramified by (M1), we have 1o (—1) = 1; so, finally we get
9(hq)g(Pg) = N(Q°). We may take wg = w$ in the definition of G(dg, ¢g).
Then we have

_ _ M/F
()P V) = HNs () BV () = (e

Since G(da, ¥a)Gldg, ) = H(wh)w(=%)g(a)g(vg) (f Q° | €), we find
that G(dg,¥a)G(dg,v5) =1 mod my for all Q|C prime to p. Thus we get
W'(¢) = [1q G(da, ¥a)Gldg, ¥g) = 1 mod my . B

_ Now we assume (V). Since P (z) = V(@ °)N(z)~' = 9(z), we find that
Y(xa2®) = N(x)~" = ©(zz®)~", which implies ¢Yw is a global Hecke character
trivial on Ny p(M,.S). Then by class field theory, 1)@ is either trivial or equal
to (M—/F) Since v is a character of totally imaginary M with connected MZ,
Yoo = 1. Since @ has nontrivial at co (because F' is real and p > 2), we find that
Y = (M—/F) Since the conductor of Y@ is concentrated on €p which is prime

to the conductor of (M—/F) (because p€ is made up of split primes in M/F),

we find that (M—/F) is everywhere unramified. Thus we get (M1) and (M3).

By N(¢) (¢ H)W'(¢)) = —1 mod myy, the condition (M2) follows from the
fact W' () =1 mod my by the computation of the first part which uses only
(M1) and (M3) already proven. O

Here is the indirect argument: We are going to show that if u(y) > 0, M/F
is unramified everywhere and {/)v = (M—/F) mod myy. We have already proven

that if () > 0, ¢ is unramified and ¥(c) = —1 before the lemma. We now
choose two prime ideals q and ¢’ so that lqq" = (£). Then by (5.26), we have

» o 1 1
Gten) e, 22) = 5% (14 iy ) (1 g )- 029

Since 1(qq’) = ¥(I"1) = —1, we find that if a(¢, Eg) =0 mod myy,
—1=4(a/dq') = $(7)P(a%) = = ().

Since we can choose q arbitrary, we find that {/)v is quadratic.

The polarization ideal of A(B 1) is ¢(BB) as already remarked. Since the
strict ideal classes {[BB|}pecp- together with Cl% covers all the classes in
Nuyp(Clyr) in the strict ideal class group Clp, we find that —1 = P(e) =
¢(c(BBC)) implies that ¢ is trivial on Nu/p(Clar) but non-trivial on Clp.

This implies, by class field theory, {/)v is the quadratic character (M—/F) of the

quadratic extension M/F. In particular, M/F is unramified everywhere.
Since (M1) and (M3) are established under the condition p(v) > 0, by the
above lemma (or rather by its proof), we have W/(1)) = 1 mod my,. We thus

87



find (¢, ) > 0 < the three conditions (M1-3) are satisfied. Under these three
conditions, by the g—expansion principle, we find p(¢) = ,u(%;), which is finite.

We show fi(3)) > 0 under (M1-3) (without using the identity: u(¢) = u(py,)).
Since {/)v(n) = (MT/F) = —1 for n appearing in the definition of u(%), for odd

number of prime factors g|n has odd exponent e(q). Thus ¢(q)*@+! = 1, and
hence the factor 1 — (1(q)N(q))¢(P*! in the definition vanishes; so, u(¢)) > 1.
This finishes the proof. O

To show that the condition (M2) really depends on the CM-type X, we
give an example. We take F' = Q[v/21]. This real quadratic field has strict
class number 2 (so has class number 1). We thus have a unique everywhere
unramified CM quadratic extension M = Q[v/—3,+/—7]. Define two CM types
of M: Y3 (resp. X7) to be the inflation to M of the identity inclusion of Q[v/—3]
(resp. Q[v/—7]) into C. Then we can chose § = &, for ¥, to be /—¢. Since

(200)" = opyp(260) 7 = <107, we find ¢ = ((7+ \/21)\/2171) for 37 and
hence (M/ F) = —1 in this case because (7 + v/21) is totally positive. Contrary

c

to this, we find ¢ = (3 + v21)v21 ') and (M—/F) — 1 for 5.

5.5 Non-Vanishing of the py—Invariant
Define

Lo(Mia,b) = {(24) € GLy(F)|ad —bc >0, a,d € O, ¢ € Nabd, b€ (ab)*},

(5.29)
where a > 0 indicates that a is totally positive. We let the congruence subgroup
To(fs; a,b) act on

PV(T) = {(yx)|z € F, x ((ja)"/a"), y € b, x (b/sb) }

by (y,z) — (y,z)v. It is easy to check that this action is well defined. Note
that for a function ¢ on T, we have E(¢)|y = E(P~Y(Ppo~)) if v € GLo(F)
has det () > 0 and preserves the lattice (a* @ b) made of column vectors.

We give an example of a branch with positive p—invariant if € contains a
prime inert in M/F. We assume that 9 is a prime factor of J prime to J/Q such
that ¥q = 1; so, ¥ is imprimitive at . For the moment, we further assume
that 9 is an inert prime of M over F' generated by a totally positive element
w € O. This assumption of principality is for simplicity in order to have well
defined Hecke operator T'(q) (g = Q N F) acting on Gi(T'o(M; a, b)), because
otherwise T'(q) brings G (I'o(9; a, b)) into G (To(IM; 9 a, b)).

We put f = E(®%) as in (5.17). Since P®S oy = ¢(d)P®S, for v = (24) €
To(fp"; a,b) (for a suitable r > 0), we know f|y = () f, where ¥(v) = (d).
The number 7 is the exponent such that the character: Z — A L WX factors
through Cly (€p").
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We are going to see that f +— > .x fllea]|p(a) ™!, with the notation (in
particular R) in (5.19), factors through the level-lowering trace operator Tr
from To(fp";a,b) to its subgroup T'o(fp"/q;a,b). The regular representation
p:9Oq — My(Oq) induces p: O/Q — M>(0O/q). Let C =p((9/Q)*). We have
the following decomposition:

GLy(0/q) = BC = CB

for the upper triangular Borel subgroup B. Note that the image of C in PG L(2)
is the maximal quotient (we call the “—” quotient) on which ¢ € Gal(M/F') acts
by —1. The “—” quotient has order N(q) + 1. By this Iwasawa decomposition,

it is easy to see that
(gl[al)|Tr = N(a)g|T(q)
for the Hecke operator T'(q) (of level prime to q).
Since D~ C M*/F*, complex conjugation acts on D~ by “—1” (writing
additively). Thus we can identify D~ with the “—” quotient of n(Oys,)/I" for
the natural map = : Dfxp — Z. So ignoring the effect of the action of the finite

group O* /0O, we can decompose R into a product of subsets R for prime

factors [|fp:
|| eRr=][RrR=
e€NX /O lfp

with Ry C D[X
The sum over R in (5.20) is still valid even if J # 1, and we have

> () Elp(r) Tt = (0% (Zw )" E|p(r) >.

r€R reR’

Defining the trace map by the summation of translation by p(r) over r € Rq =
C modulo center, we then have

> () Elp(r) Tt = (9% (Zw Tm>ﬁm

reER reR!

where R” =[], Ri. The prime factor of (O* : O*) is either even or ramified
in M, which is excluded by our assumption; so, division by the index is harmless
for us (in the computation of the p—invariant).

For simplicity, we write ® for ®3 and write ®, for the restriction of ® to
the factor (O/q). Then we see

[ if a € (0/q),
qla) = {N(q) 1 ifa=0in0/q.

This shows that, f = g|[q] — g for ¢ = E(¢), where ¢ is the function ® of
outside—p-level f/q defined for the character 1y modulo (€/Q)p" inducing the

character: Z — A 2, W>*. We can check

i@ = (1+ 540 ) o (5.30)
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since the partial Fourier transform P¢ at sf is basically a constant multiple
of o5 : (O/f)* x (O/s)* — W* (up to translation by an sf-adic unit) on
PV(E)T/Ker((iffl,i;)) >~ (0/f) x (O/s) for test objects (£, \,4). Thus we see

Te(f) = N(a)g|T(q) — (N(q) +1)g
= N(@)1+vo(@)N(a)™")g — (N(q) +1)g = (¢¥o(Q) — 1)g.

This shows that the function in (5.20) just vanishes if 1o(Q) = 1.

The above argument works without assuming the principality of the prime
£, after summing up over Cl&. We explain briefly the reason. For each split
prime A € Z(Ip)T, put fo = E(®3)|[A2A|p(ag) ™! where ag ¢ = [A]~. Then
fa only depends on the class of 2 in CLy; = Clps(1). Then we find

gu = E(¢)|[A%°]|p(ax) ™" € Gr(To(f/q; a%, b))

such that fa = ga _,[[a] — g= and

g2 T(q) = (1 + tho(a)N(a) ") ga,,

where 2 +— 2, is the permutation on Cl};(1) induced by 2 — QA. We make a
sum over the ideal classes in Cl};:

zﬂ: &) (gar, -, [[a] — ga)|Tx
=Y G(@)N(@)ga, ., |T(@) = (N(@) +1) Y ¢(A)ga
= ;1/)(;)]\](‘1)(1 +o(a)N(a)"gx — (N(a) jl) ;1/)(9099(
= (¢o(Q) - 1) ;1/)(9099(-

We get the following fact for inert primes J observed first by Gillard ([G2]
Proposition 2):

Proposition 5.3. Let Q be a prime of M inert over F and assume that € = €'Q
with € 4+ Q = . Suppose the following two conditions are satisfied:

(I1) ¥ mod my is imprimitive (induced by a character modulo €' p>). Thus
Y =19 mod my for a character vy of Cly (€'p™);

(12) ¥o(Q) =1 mod myy.

Then the anti-cyclotomic branch ¢, . has positive p—invariant. If further
itself is imprimitive induced by a character 1 of Clas(€'p™) and T = Q (so,
¢ is made up of split primes), the invariant y(yp,,) is given by the sum of the
additive p—adic valuation of (Yo(Q) — 1) and (o) as in (5.27).

The condition (I1) implies that the order of ¢ is divisible by p if ¢ is primitive
at i; so, either N(q) — 1 or N(q) + 1 is divisible by p.
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Proof. When 1) itself is imprimitive, by the above calculation, the positivity:
,u(%;) > 0 is clear. The last assertion is a consequence of the linear indepen-
dence of gy (for 2 running through C1};) over F, which follow from an argument
similar to the proof of Theorem 5.1. When 1 is primitive at £, we choose a
character g of Cly (€'p™) with ¢ = 9 mod my. Then ¢ » = ¢, ; so, the
positivity of the p—invariant of Py.e follows from that of Poo.c- O

Ramified primes J can be treated modifying the above argument. Here we
shall give a sketch of the argument; so, suppose that J is a ramified prime. For
simplicity, we assume that i = JN F' is unramified in F/Q. By the definition of
the level structure i = i(9), we have i(i71/0) ®J3~1/O =i71/O. Thus writing
9 =a*+bz = L, for fractional ideals a and b of F prime to cip, we may assume
that (z) = Jr for ¢ prime to J. The stabilizer in SLa(F') of the lattice © = L, is
given by I'g(i; a, b). Since zb C J and b is prime to i, we find that p(O5) is made

of matrices (‘;W‘ ) for a,b € O;. We also suppose that € = J for simplicity.
Since complex conjugation acts on (9/J)* trivially, D~ is made of two elements
1 and z as above. In other words, ' ¢ = 2! 7¢, and we may assume that the

operator p(z)~! o [1z°] is the action of the normalizer 7 = (9 %) of I'o(i; a, b).

Note that we have a natural map Clp(i) — Clp(J). Let ¢ be an imprimitive
character modulo a p—power. Writing

fa = B(2)][AA plag) ™ = g2 [[i] — gu

for gy with gu|[i]|7 = 0(J)ga,, we do the same computation as in the inert
case:

Zw (g, |[i] = ga)| T
:qu(%)womgm—zw( ga = (Yo(3J Z‘/’
o A

This formula (and its generalization for € # J) for imprimitive character proves
the following fact whose proof is left to the reader:

Proposition 5.4. Let Q be a prime of M ramified over F and assume that
¢ =¢'Q with € +Q = 9. Suppose the following two conditions are satisfied:

(R1) ¥ mod myy is imprimitive (induced by a character modulo €' p>. Thus
¥ =19 mod myy for a character vy of Cly (€'p™);

(R2) ¥9(Q) =1 mod myy.

Then the anti-cyclotomic branch ¢ » has positive p—invariant. If further 1
itself is not primitive induced by a character o of Cly (€'p™®) and T = Q (so
¢’ is made up of split primes), we have p(,,) is given by the sum of the additive
p-adic valuation of (Yo(Q) — 1) and (o) as in (5.27).

Presumably, if one is able to carry out the computation of the ¢g—expansion

of the sum E = E(®°), one should be able to get an exact formula of the u—
invariant of ©y without restriction to its conductor. However, the g—expansion is
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rather complicated, or at least, the process of computation looks rather involved
(when 1 is primitive at some inert or ramified primes). This is natural since we
have the cases of positive py—invariant as described above. We hope to come back
this question in future, hopefully proving the conjecture by Gillard asserting the
vanishing of u(y,,) (except in the case specified by (M1-3)) when ¢ is primitive
of order prime to p (see [G2] Conjecture).
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6 Appendix: Correction to [HT]

Here is a table of misprints in [HT], and “P.3 L.5b” indicates fifth line from the
bottom of the page three.

page and line | Read | Should Read
P.192 L.1b 15 G((20)5, A7) [Ta5 G((20)%,A5")
P.194 L.13b Zq ZTo
P.199 L.5b w(X) ®w(X°) w(X) ®w(Xe)
P.199 L.1b §(k, p2) (f(X, A\, w, 1)) §(k, pe)(F(X, A\, w, 1))
P.200 (1.12) w/a, @ Uy, W/, © Uy,
P.201 L.3b ! c*
P.202 L.1 ab)* (ab)*
P.202 L.10 Oy, O3
P.204 L.7 Tateq,p(q) Tateq,p(q)[M]
P.206 L.3b 2mi(a*z + b) 2mi(bz + a*)
P.206 L.1b VFFr VIDF|
P.207 L.10b > aca Cr(1,2,5) > aca Ckla, 2, s)
P.207 L.4b erp(z,ap) er(xag)
P.208 L.5 erp(z,bz) ep(xbz)
P211L.1 QIF Q[3p
P.211 L.2 (FI) 224/ (Fi) 2/ ( JNF)
P.213 L.3b [Lejz(1 = A5 (€ = A (L))" Hsms( (L)~
P.214 L.12 As(zp) st (2p)
P.215 L.2 )\ic(ggg»m o) )“BC(Q‘B ))\il(am)
P215 (49) | demd® L
P.215 L?b, 3b a*mOE*Qd(l c) afngfd(lfc)
P.217 L.11b, 9b
P.216 1.8 X (ag).N ()~ xp(ag) — N(P)~!
P.235 L.1b Ap(2) A(z)
1(w@q) + 7' ()
P.241L.9 n(wy) + n(wq) or ()
_ - (1 —@yB,X)(1 - X)
P.241 L.14 (1 =B X)(1 — g3, X) (1 — OéquX)
P.241 L.14 spherical minimal principal
P.241 L.15 special minimal special
P.241 L.15b L(s, 1) L(s, Ad(f))
P.241 L.2b gekx gEE=5,UE;
P.245 L.4b 2 gl [y
P.249 L.1b (V%c)*l (vgoce)™t
P.250 L.8b 2p er
P.250 L.4b (B(Ap)) W' (0(\p))
P.251 L.10 (A%c) at three places (Apoc)
P.256 L.14b v*(Cy) 4 (Cy)
P.257 L.12b wpm™ Xpm™
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