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Abstract

For an odd prime p, we compute the µ-invariant of the anticyclotomic

Katz p-adic L-function of a p-ordinary CM field if the conductor of the

branch character is a product of primes split over the maximal real sub-

field. Except for rare cases where the root number of the p-adic functional

equation is congruent to −1 modulo p, the invariant vanishes.
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1 Introduction

We fix a rational prime p. In our book [PAF] 4.2.4 and 8.4, we computed
the monodromy group at p inside the automorphism group G of the arithmetic
automorphic function field of the Shimura variety of symplectic and unitary
type. In this paper, we shall carry out a similar computation of the monodromy
group of the Serre–Tate deformation space realized as a formal completion of
the tower of the Hilbert modular varieties at an ordinary abelian variety with
real multiplication (see Corollary 3.5). This combined with the q–expansion
principle enables us to compute the µ–invariant of the anti-cyclotomic Katz p–
adic L–function in an explicit manner. In other words, under mild assumptions,
we shall prove the vanishing of the µ–invariant of the p–adic Hecke L–functions
constructed by Katz in [K3] (see also [HT]). Let F be an algebraic closure of
Fp and W (F) be the ring of Witt vectors with coefficients in F. We fix a p–adic
valuation ring W finite flat over W (F). Fix an algebraic closure Qp (resp. Q) of

Qp (resp. Q) and write Q̂p for the p–adic completion of Qp. We regard W ⊂ Q̂p.

To state the result precisely, we first recall nice properties of the p–adic Katz
measure ϕ = ϕC (of prime-to–p conductor C) interpolating Hecke L–values.
Let F be a totally real number field and M be a totally imaginary quadratic
extension of F (hereafter such fields will be called CM fields). We write DF for
the discriminant of F . We write O (resp. O) for the integer ring ofM (resp. F ).

We fix two embeddings throughout the paper: i∞ : Q → C and ip : Q → Q̂p.
We suppose throughout the paper the following ordinarity hypothesis:

(ord) Every prime factor of p in F splits in M .

Then, writing c both for complex conjugation of C and of Q induced under i∞,
we can choose a set of embeddings Σ of M into Q such that

(cm1) Σ tΣc is the set of all embeddings of M into Q;

(cm2) the p–adic place induced by any element of Σ composed with ip is distinct
from any of those induced by elements in Σc.

The set Σ satisfying (cm1-2) is called a p–adic CM-type. Under (ord), we can
find a p–adic CM-type, and we fix one such Σ. We write Σp for the set of p–adic
places (hence of prime ideals of M over p) induced by the embedding ip ◦ σ for

σ ∈ Σ. We fix a finite idele d ∈ M (∞)
A (resp. dF ∈ F (∞)

A ) such that the ideal
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corresponding to d (resp. dF ) is the different dM (resp. d) of M/Q (resp. F/Q).
Let λ : M×

A /M
× → C× be a Hecke character such that

λ(x∞) =
∏

σ∈Σ

x(k+κσ(1−c))σ
∞ ,

where k and κσ are integers. Then λ has values in Q on the finite part

M×
A(∞) of M×

A . Moreover, the map λ̂ : M×
A(∞)/M

× → Q
×

p defined by λ̂(x) =

λ(x)
∏
σ∈Σ x

(k+κσ(1−c))σ
p is a well defined continuous character, which is called

the p–adic avatar of λ. By class field theory, we may regard λ̂ as a Galois char-

acter λ̂ : Gal(Q/M) → Q
×

p . We can associate λ its dual λ∗ given by λ∗(x) =

λ(xc)−1|x|A. Then the p–adic avatar of λ∗ is given by λ̂∗(x) = λ̂(xc)−1N(x)−1

for the p-adic cyclotomic character N . Let Q be a prime of M dividing the
conductor of λ and let dQ be a generator of the different of MQ. We define the
local Gauss sum of λ at prime ideals Q dividing the conductor of λ by

G(dQ, λQ) = λ($−e
Q )

∑

u∈(OQ/Qe)×

λQ(u)eM ($−e
Q d−1

Q u), (1.1)

where $Q is a prime element of the Q–adic completion MQ, OQ is the Q–adic
integer ring of MQ, λQ is the restriction of λ to M×

Q , e is the exponent of Q in
the conductor of λ and eM : MA/M → C× is the standard additive character
normalized as eM(x∞) = exp(2π

√
−1Tr(x∞)). Outside the conductor of λ, we

simply put G(dQ, λQ) = 1. We can define the complex and the p–adic period
Ω∞ ∈ (F ⊗Q C)× ∼= (CΣ)× and Ωp ∈ (O ⊗Z W )× as in [K3] (see Section 4.4
in the text for more details). In fact, these numbers are defined uniquely only

modulo Q
×

but the ratio “Ω∞/Ωp” is uniquely determined. Finally, we fix an
O-ideal C prime to p and choose an element δ ∈M such that

(d1) δc = −δ and i∞(Im(δσ)) > 0 for all σ ∈ Σ,

(d2) The alternating form 〈x, y〉 = TrM/F (xy
c

2δ ) induces an isomorphism O ∧
O ∼= c−1d−1 for an ideal c prime to pCCc,

where d is the different of F/Q. By (d2) above, if Q is prime to c, one can
choose dQ in (1.1) to be 2δ or (2δ)c. Then we define root numbers:

Wp(λ) =
∏

P∈Σp

NM/Q(P−e(P))G(2δ; λP ),

W ′(λ) =
∏

L|F

G((2δ)c, λ−1
L )

∏

L|Fc

G(2δ, λ−1
Lc )

∏

l|I

G((2δ)c, λ−1
l ), (1.2)

where we decomposed C = FFcI so that FFc consists of split primes over F ,
I consists of inert or ramified primes over F , F + Fc = O and Fcc ⊃ F. We
constructed in [HT] (following [K3] where the case C = 1 is treated) a unique
measure ϕ on the ray class group Z = Z(C) modulo Cp∞ of M characterized
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by the following formula:

∫
Z(C)

λ̂dϕ

ΩkΣ+2κ
p

= (O× : O×)Wp(λ)
(−1)kΣπκΓΣ(kΣ + κ)√
|DF | Im(δ)κΩkΣ+2κ

∞

×
∏

L|C

(1− λ(L)){
∏

P∈Σp

(1− λ(P c))
∏

P∈Σp

(1− λ∗(P c))}L(0, λ) (1.3)

for all Hecke characters λ modulo Cp∞ such that (i) its conductor is divisible
by all prime factors of F, (ii) the infinity type of λ is kΣ+κ(1−c) for an integer
k and κ =

∑
σ∈Σ κσσ with integers κσ satisfying either k > 0 and κσ ≥ 0 or

k ≤ 1 and κσ ≥ 1 − k. Moreover denoting the measure ϕ for Z(Cc) by ϕc, we
have the following functional equation

∫

Z(C)

λ̂dϕ = λN(c−1)W ′(λ)

∫

Z(Cc)

λ̂∗dϕc

as long as the conductor of λ is divisible by all prime factors of F. Here, we used
the following convention for an element ξ of the formal free module generated
by Σ and for x ∈ CΣ and x ∈WΣ:

xξ =
∏

σ∈Σ

xξσ
σ and ΓΣ(ξ) =

∏

σ∈Σ

Γ(ξσ).

The set Σ is also identified with the formal sum
∑

σ∈Σ σ, and a ∈M (including
−1) is considered to be an element of CΣ via diagonal embedding a 7→ (aσ)σ∈Σ.
By abusing this convention, π is considered to be the diagonal element (π)σ∈Σ

in CΣ. We have written Σp for the set of prime ideals corresponding to p–adic
places induced by ip ◦ σ for σ ∈ Σ. The L–functions in (1.3) is always the
primitive one associated with a primitive Hecke character. We also tacitly agree
to put λ(Q) = 0 if Q divides the conductor of λ.

Let ∆ = ∆(C) be the maximal torsion subgroup of Z(C). A character
ψ : ∆→W× is called a branch character. We fix a splitting Z(C) = ∆×Γ for a
Zp-free subgroup Γ so that ψ and any function φ on Γ can be considered to be
functions on Z(C) via pullback by the projections: Z(C) � ∆ and Z(C) � Γ.
The ψ–branch ϕψ of the measure ϕ is defined on Γ and is given by

∫

Γ

φdϕψ =

∫

Z(C)

ψφdϕ.

Since Γ is isomorphic to Z(1)/∆(1), Gal(M/F ) acts on Γ naturally. We write
π− for the projection of Γ onto Γ− = Γ/ΓGal(M/F ), on which the generator
c ∈ Gal(M/F ) acts by −1 : x 7→ xc = x−1. We write ϕ−

ψ = π−
∗ ϕψ:

∫

Γ−

φdϕ−
ψ =

∫

Γ

φ ◦ π−dϕψ.

Take a Hecke character λ of infinity type κ(1−c) for sufficiently large κ (so, k =
0) which is trivial on ∆C factoring through π− (such a character always exists
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for a well chosen κ). Then the characters {λ̂ψχ}χ for finite order characters χ :

Γ− → Q
×
p span a dense subspace of continuous functions on Γ−, because finite

order characters span the dense subspace of locally constant functions. The
constant λψχ(c)−1W ′(ψλ̂χ) only depends on ψ and is equal to ψ(c)−1W ′(ψ).

Indeed, because of λ̂χ(xc) = λ̂χ(x)−1 (and λ̂χ factoring through Γ−), we have

ψλ̂χ(c) = ψ(c) (by cc = c), ψλ̂χ|O×
Q

= ψ|O×
Q

for Q - p, and λ̂χ($Q$Qc) = 1

(taking $Qc = $c
Q). This implies G(dQ, ψλ̂χ) = G(dQ, ψ) and

ψλ̂χ(c)−1W ′(ψλ̂χ) = ψ(c)−1W ′(ψ)

as desired. Thus the above functional equation stated for characters is actually
valid for all continuous functions φ on Γ−:

∫

Γ−

φdϕ−
ψ = ψN(c−1)W ′(ψ)

∫

Γ−

φ∗dϕ−
ψ∗ = ψN(c−1)W ′(ψ)

∫

Γ−

φdϕ−
ψ∗ ,

where φ∗(x) = φ(x−c)N(x)−1 = φ(x) because N(Γ−) = 1 and φ factors through
Γ− on which x 7→ x−c is the identity map. From this, the functional equation
for ϕ−

ψ can be stated as an identity of the two measures on Γ−:

dϕ−
ψ = ψN(c−1)W ′(ψ)dϕ−

ψ∗ .

Thus the measure ϕ−
ψ vanishes modulo mW if the following condition is satisfied:

ψ∗ ≡ ψ mod mW and ψN(c−1)W ′(ψ) ≡ −1 mod mW . (V)

If (V) is satisfied, the µ–invariant of the measure ϕ−
ψ is positive. Our main

result of this paper is as follows:

Theorem I. Suppose that p > 2 and that p is unramified in F/Q. Further
suppose that I = 1. Then the µ–invariant of ϕ−

ψ vanishes, unless (V) is satisfied.

When (V) is satisfied, µ(ϕ−
ψ ) is finite and positive.

Actually, we prove a stronger result: Theorem 5.1, computing µ(ϕ−
ψ ) explic-

itly in terms of the branch character ψ, and µ(ϕ−
ψ ) is given by µ(ψ) in (5.27).

The above theorem of course implies the vanishing of µ(ϕψ) unless (V) is
satisfied. Even if (V) is satisfied, µ(ϕψ) might well vanish, but we only study the
anticyclotomic measure ϕ−

ψ in this paper. The condition (V) is rarely satisfied
because it is equivalent to the following three conditions (see Lemma 5.2):

(M1) M/F is unramified at every finite place;

(M2) The strict ideal class of the polarization ideal c in F is not a norm class

of an ideal class of M (⇔
(
M/F

c

)
= −1);

(M3) a 7→ (ψ(a)NF/Q(a) mod mW ) is the character
(
M/F

)
of M/F .
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The last condition (M3) is equivalent to ψ∗ ≡ ψ mod mW ; (M2) depends on
our choice of the CM-type Σ, and even if (M1) and (M3) are satisfied, (M2)
could fail (see the example after the proof of the theorem in Subsection 5.4).

Basically at the same time when this paper was first written, for imaginary
quadratic field M = Q(

√
−D), the µ–invariant of the anti-cyclotomic part was

determined by Finis [F2] without assuming I = 1, by a different method directly
studying the associated CM elliptic curve (and perhaps, his method can be
generalized to general CM fields). Our method does not yield a proof of the
vanishing of µ of the restriction to the Galois group of the Coates–Wiles Zp–
extension of an imaginary quadratic field (which has been proven in [G1]). We
will recall the definition of the µ–invariant at the end of this introduction.

Recently, Vatsal in [V1], [V2] and [V3] has proposed an idea proving the
vanishing of the µ–invariant for many p–adic L–functions of elliptic modular
forms over an imaginary quadratic field (that is, the p–adic Rankin product of
an elliptic modular form with an elliptic cusp form with complex multiplication
by the imaginary quadratic field). His result also concerns with the anticyclo-
tomic restriction of the p–adic L–function and is a modular generalization of
the classical method of Ferrero-Washington [FW].

By this theorem, as long as I = 1 and p is unramified in F/Q and (M1-3)
are not satisfied, the main divisibility result in [HT] Theorem I holds in the
Iwasawa algebra Λ there in place of the weaker divisibility in Λ ⊗Z Q proven
in [HT]. We can prove this stronger divisibility even under (M1-3) (see [H07]),
which results a proof of the anticyclotomic main conjecture under some mild
assumptions (see [H06]).

In [Si], Sinnott gave an algebro-geometric proof of the theorem of Ferrero-
Washington, relying on the analysis of rational functions on Gm/Fp

(under tran-

scendental automorphisms of the formal group Ĝm). Our idea is the use of
Hilbert modular Shimura varieties and Eisenstein series in place of Gm and ra-
tional functions. Though the origin of our idea goes back to [Si], in order to
make it work for the Shimura variety in place of geometrically easy Gm, we are
forced to go through an extensive study of the q–expansion of Eisenstein series
and the geometry of the moduli space of abelian varieties with real multiplica-
tion by O (abbreviated as AVRM). The q–expansion principle is equivalent to
geometric irreducibility of the mod p fiber of the variety, which was shown by
Ribet [DR] Section 4 (the study of G also yields the irreducibility; see [PAF]
4.2.4 and [H08]). The datum of an ordinary CM type gives rise to an abelian
scheme A of the given CM type over W . We will construct an Eisenstein series
Ea indexed by a ∈ Ω for an appropriate finite subset Ω of automorphisms of the
deformation space of A with the following properties:

1. Ea is congruent to an arithmetic Eisenstein series modulo p.

2. Elements in Ω are disjoint modulo the stabilizer of A inside the automor-
phism group of the moduli space (that is, the Hilbert modular Shimura
variety).
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3. The functions a(Ea) = Ea ◦ a for a ∈ Ω with Ea 6≡ 0 mod p are linearly
independent modulo p.

4. The expansion of a non-zero linear combination of {a(Ea)}a∈Ω with re-
spect to the canonical variable t of the Serre–Tate deformation space of A
coincides with the power series expansion of a given branch of the (anti-
cyclotomic) Katz measure in the theorem.

Some technical reasons aside, the assumption of unramifiedness of p in F is
made to guarantee the smoothness over Zp of Hilbert modular varieties of level
prime to p. The smoothness might not be necessary, anyway; so, we might be
able to dispose of this condition by applying our method more carefully.

After proving the theorem in Section 5, we discuss what happens when
I 6= 1. In this case, Gillard showed that the anticyclotomic µ–invariant is
positive for some order p branch characters for infinitely many choices of I
([G2] Proposition 2). We will reprove this result of Gillard in Subsection 5.5,
employing our technique. This is included in order to show that the q–expansion
of our Eisenstein series fully reflects divisibility by p of the Katz measure (and
also as a good evidence for the reliability of our method). The computation
of the µ–invariant, when the branch character is ramified and primitive at a
nonsplit prime of M over F , seems far more demanding than in the case of
split-prime level. We hope to come back to this question in future.

We recall in the rest of the introduction the notion of the µ–invariant of p–
adic measures and a brief history of proofs of vanishing of the µ–invariant of some
other p–adic L–functions. The space Λ of p–adic measures on Γ− with values
in W is a p–adic Banach algebra under the convolution product induced from
the group structure on Γ−. Then Λ is isomorphic canonically to the continuous
group algebra W [[Γ−]] via the isomorphism which takes the Dirac measure at
γ ∈ Γ− to the element γ ∈ W [[Γ−]]. Choosing a base of Γ−, this non-canonical

identification with Z[F :Q]
p induces in turn an isomorphism of W [[Γ−]] onto the

formal power series ring over W of [F : Q] variables. Especially, Λ is regular
and a unique factorization domain. The uniformizer $ of W is a prime element
in Λ. The µ–invariant of a measure ϕ− ∈ Λ is the exponent µ such that $µ

divides exactly ϕ−. In other words,

|$|µ(ϕ−)
p = Supφ

∣∣∣∣
∫

Γ−

φdϕ−

∣∣∣∣
p

/|φ|p (|φ|p = Supx |φ(x)|p), (1.4)

where | |p is the normalized absolute value of Qp (extended uniquely to Q̂p),
and φ runs over all continuous functions on Γ− with values in W .

In the case of Kubota-Leopoldt p–adic L–functions, the vanishing of the
µ–invariant was predicted by Iwasawa from the point of view of his theory of
cyclotomic Zp–extensions, and the conjecture was proven by Ferrero and Wash-
ington [FW] later, and more recently a new and simpler proof was given by
Sinnott [Si]. The idea of Sinnott paved the way of treating the problem even
for the elliptic Z2

p–extensions of imaginary quadratic fields, and a proof of the
vanishing of the Katz-Yager p–adic L–functions for imaginary quadratic fields
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was then given by Gillard [G1] and Schneps, independently, according to this
line. I collaborated with R. Gillard in the early 1990’s and proved a result sim-
ilar to the one presented here for partial Hecke L–functions directly related to
Katz’s Eisenstein measure (see [G2]). A new input here is Shimura’s determina-
tion ([Sh2] II) of the automorphism group G of the arithmetic Hilbert modular
function field and the study of the action of G on the Serre–Tate canonical co-
ordinate of the universal deformation space of a CM abelian variety. This new
input combined with a Zariski density result of a positive dimensional subset
stable under the action of an algebraic torus in G enabled us to prove the linear
independence of {a(Ea)}a∈Ω modulo p (see Corollary 3.21).

The density result (see Proposition 3.8 and its slight generalization: Propo-
sition 3.11) is an adaptation of Chai’s density result of a Hecke orbit (see [C2]
Section 5) to our setting. In earlier versions of this paper, the proof of this
density result relied on a lifting argument of the mod p subvariety to a charac-
teristic 0 formal scheme. Although lifting works well over the ordinary locus,
C.-L. Chai pointed out to me a flaw in the proof. He suggested to use the tech-
niques in his three papers from [C2] to [C4] to recover the result. Also in the
earlier versions, the condition (V) was not presented as it is now, and we claimed
the vanishing rather unconditionally. Actually, the author found a discrepancy
in the computation of the q–expansion of the Eisenstein series, which resulted
a better understanding of the circumstances with non-triviality of µ only when
(M1-3) (⇔ (V)) are satisfied.

The author would like to thank Ching-Li Chai for his remarks and assistance.
The author would like to also thank Roland Gillard and Jacques Tilouine and
the referees of this paper who read carefully the drafts of this paper and pointed
out several mistakes.

2 Serre–Tate Deformation Space

In this section, we describe deformation theory of abelian schemes over local
Wm–algebras for Wm = W/pmW . We follow principally Katz’s exposition [K2].

2.1 A Theorem of Drinfeld

Let R be a local Wm–algebra, and R–LR is the category of local R–algebras.
Let G : R–LR → AB be a covariant functor into the category AB of abelian
groups. When m = ∞ (that is, W∞ = W ), the category R–LR is made up
of p–adically complete local R–algebras B = lim←−n B/p

nB and morphisms are
supposed to be p–adically continuous. For simplicity, we always assume that
rings we consider are noetherian. If we regard G as a functor from the category
of affine R schemes (or formal schemes), it is contravariant. Suppose that, for
any faithfully flat extension of finite type B ↪→ C of R–algebras,

1. The group G(B) injects into G(C), that is, G(B) ↪→ G(C);

2. Let C ′ = C ⊗B C and C ′′ = C ⊗B C ⊗B C. Write ιi : C ↪→ C ′ (i = 1, 2)
for the two natural inclusions (with ι1(r) = r ⊗ 1 and ι2(r) = 1⊗ r) and
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ιij : C ′ ↪→ C ′′ for the three natural inclusions (i.e. ι12(r ⊗ s) = r ⊗ s⊗ 1
and so on). If x ∈ G(C) satisfies y = G(ι1)(x) = G(ι2)(x) and G(ι12)(y) =
G(ι23)(y) = G(ι13)(y), then x is in the image of G(B).

Such aG is called an abelian sheaf on R–LR under the fppf–topology (or simply
abelian fppf–sheaf). We denote by R–Gp the category of abelian fppf sheaves
over R. If A/R is an abelian scheme, then G(B) = A(B) = HomS(Spec(B), A)
(S = Spec(R) or Spf(R)) is an fppf–sheaf.

The following definition of p-divisibility is in a naive sense weaker than Tate’s
notion of p-divisible groups. We call an abelian fppf sheaf G a p–divisible fppf
sheaf if for any x ∈ G(B), there exists a finite faithfully flat extension C of B
and a point y ∈ G(C) such that x = py. If G is an abelian scheme A (including
non-p-torsion points), it is a p–divisible fppf sheaf.

We call a p-divisible fppf sheaf G/S a p–divisible group or a Barsotti-Tate
group if G = lim−→n

G[pn] for finite flat group schemes G[pn] = Ker(pn : G→ G)

over S with closed immersions G[pn] ↪→ G[pm] for m > n and the multiplication
[pm−n] : G[pm] → G[pn] is an epimorphism in the category of finite flat group
schemes. Thus A[p∞] =

⋃
n A[pn] for A[pn] = Ker(pn : A → A) is a Barsotti-

Tate p-divisible group if A/R is an abelian scheme.

Let R be a local W–algebra and I be an ideal of R such that Iν+1 = 0 and
NI = 0 for an integer N equal to a power of p. Define functors GI and Ĝ by

GI(B) = Ker(G(B)→ G(B/I)) and Ĝ(B) = Ker(G(B)→ G(B/mB)),

where mB is the maximal ideal of B. When G(B) = HomR-LR(R, B)(= Ĝ(B))
for R = R[[T1, . . . , Tn]] (that is G/R = Spf(R)/R) and the identity element 0
corresponding to the ideal (T1, . . . , Tn), we call G a formal group. If G is formal,
then the map HomR−LR(R, B) 3 φ 7→ (φ(T1), . . . , φ(Tn)) identifies GI(B) with
the set I × I × · · · × I (n times) endowed with a formal group law.

Suppose that G/R is formal. Then for any integer m, the endomorphism [m]
of multiplication by m on G induces a continuous algebra endomorphism [m]∗ :
R → R; it induces multiplication by m on ΩG/R = (T1, . . . , Tn)/(T1, . . . , Tn)

2,
hence on the tangent space TG/R too. Thus [N ](Ti) ≡ NTi mod (T1, . . . , Tn)

2,
and [N ](GI(B)) = GI2(B) because NI = 0. Similarly, we have inductively,
[N ](GIa(B)) = GIa+1(B). Thus [Nν]GI = G0 = {0}. We get

GI ⊂ G[Nν] if G is formal, (2.1)

where G[m] = Ker([m] : G→ G) is the kernel of [m].

Theorem 2.1 (Drinfeld). Let G and H be abelian fppf–sheaves over R–LR
and I be as above. Let G0 and H0 be the restriction of G and H to R/I–LR.
Suppose

(i) G is a p–divisible fppf sheaf;

(ii) H is formal (so, H(B)→ H(B/J) is surjective for any nilpotent ideal J).

Then
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(1) The modules HomR-Gp(G,H) and HomR/I-Gp(G0, H0) are p–torsion-free,
where the symbol “HomX-Gp” stands for the homomorphisms of abelian
fppf–sheaves over X–LR;

(2) The natural map, so-called

“reduction mod I” : HomR-Gp(G,H)→ HomR/I-Gp(G0, H0)

is injective;

(3) For any f0 ∈ HomR/I-Gp(G0, H0), there exists a unique homomorphism
Φ ∈ HomR-Gp(G,H) such that Φ mod I = Nνf0. We write as in [K2]
“Nνf” for Φ even if f exists only in HomR-Gp(G,H)⊗Z Q;

(4) In order that f ∈ HomR-Gp(G,H), it is necessary and sufficient that
“Nνf” kills G[Nν].

Proof. The first assertion follows from p–divisibility, because if pf(x) = 0 for
all x, taking y with py = x, we find f(x) = pf(y) = 0 and hence f = 0.

We have an exact sequence: 0 → HI → H → H0 → 0; so, we have another
exact sequence:

0→ Hom(G,HI)→ Hom(G,H)
mod I−−−−−→ Hom(G,H0) = Hom(G0, H0),

which tells us the injectivity since HI is killed by Nν and Hom(G,H) is p–
torsion-free.

To show (3), take f0 ∈ Hom(G0, H0). By surjectivity of H(B) → H0(B/I),
we can lift f0(x mod I) to y ∈ H(B). The class y mod Ker(H → H0) is
uniquely determined. Since Ker(H → H0) is killed by Nν , for any x ∈ G(B),
therefore Nνy is uniquely determined; so, x 7→ Nνy induces functorial map:
“Nνf”: G(B)→ H(B). This shows (3).

The assertion (4) is then obvious from p–divisibility of G. The uniqueness
of f follows from the p–torsion-freeness of Hom(G,H).

2.2 A Theorem of Serre–Tate

Let A/R be the category of abelian schemes defined over R. We consider a
category Def(R,R/I) of triples (A0, D, ε), where A0 is an abelian scheme over
R/I, D is p–divisible, and ε : D0

∼= A0[p
∞]. We have a natural functor A/R →

Def(R,R/I) given by A 7→ (A0 = A mod I, A[p∞], id).

Theorem 2.2 (Serre-Tate). The above functor: A/R → Def(R,R/I) is a
canonical equivalence of categories.

Proof. By Drinfeld’s theorem applied to A[p∞] and A (both abelian fppf–
sheaf), the functor is fully faithful (see [K2] for details). It is known that we
can lift A0 to an abelian scheme B over R. This follows from the deformation
theory of Grothendieck ([GIT] Section 6.3 and [CBT] 2.8.1). Assume that A0

is ordinary. When R/I is a finite field, by a theorem of Tate, A0 has complex
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multiplication. By the theory of abelian varieties with complex multiplication,
A0 can be lifted to a unique abelian scheme B over R with complex multiplica-
tion (the canonical lift), because isomorphism classes of such abelian varieties
of CM type corresponds bijectively to lattices (up to scalar multiplication) in

a CM field. Thus we have an isomorphism α
(p)
0 : B0[p

∞] → A0[p
∞]. Then we

have a unique lifting (by the Drinfeld theorem) that f : B[p∞]→ D of Nνα
(p)
0 .

Clearly, f is an isogeny, whose (quasi) inverse is the lift of Nν(α
(p)
0 )−1. Thus

Ker(f) is a finite flat group subscheme of B. The geometric quotient of B by
a finite flat group subscheme exists (see [ABV] Section 12) and is an abelian
scheme over R. Then dividing B by Ker(f), we get the desired A/R ∈ A/R.

2.3 Deformation of an Ordinary Abelian Variety

Let S = Spec(OS) be an affine scheme over Fp and (A, ω) be a pair of an
abelian variety over S of relative dimension g and a basis ω = ω1, . . . , ωg of
H0(A,ΩA/S) over OS . Write π : A → S for the structure morphism. We have
the absolute Frobenius endomorphism Fabs : S → S. Let TA/S be the relative
tangent bundle, and consider the direct image π∗TA/S over S; so, H0(S, π∗TA/S)
is spanned by the dual base η = η(ω). For each invariant derivation D of OA,
by the Leibnitz formula, we have

Dp(xy) =

p∑

j=0

(
p

j

)
Dp−jxDjy = xDpy + yDpx.

Thus Dp is again a derivation. The association: D 7→ Dp induces an Fabs–
linear endomorphism F ∗ of TA/S . Then we define H(A, ω) ∈ OS by F ∗

∧g
η =

H(A, ω)
∧g

η. Since η(λω) = tλ−1η(ω) for λ ∈ GLg(OS), we see

H(A, λω)

g∧
η(λω) = F ∗

g∧
η(λω) = F ∗(det(λ)−1

g∧
η(ω))

= det(λ)−pF ∗
g∧
η(ω) = det(λ)−pH(A, ω)

g∧
η(ω)

= det(λ)−pH(A, ω) det(λ)

g∧
η(λω) = det(λ)1−pH(A, ω)

g∧
η(λω).

Thus we get
H(A, λω) = det(λ)1−pH(A, ω).

We call A ordinary if we can embed µgp into A[p] after a faithfully flat étale
base-change. As in the elliptic curve case (cf. [GME] 2.9.1), we know

H(A, ω) = 0 ⇐⇒ A is not ordinary.

Let κ be an algebraically closed field over Fp. Let R be a pro-artinian local
ring with residue field κ. Write CL/R for the category of complete local R–
algebras with residue field κ. We fix an ordinary abelian variety A0/κ. Write

At/R for the dual abelian scheme (representing Pic0
A/R) of an abelian scheme

11



A/R. We write TA[p∞]et for the Tate module of the maximal étale quotient of

A[p∞]. We consider the following deformation functor P̂ : CL/R → SETS:

P̂A0(OS) =
[
(A/S , ιA)

∣∣ A/S is an abelian scheme and ιA : A⊗OS κ
∼= A0

]
.

Here “[ ]” indicates the set “{ }/ ∼=” of isomorphism classes of the objects
inside the straight brackets, and f : (A, ιA)/S ∼= (A′, ιA′)/S if f : A → A′ is an
isomorphism of abelian schemes with the following commutative diagram:

A⊗OS κ
f0−−−−→ A′ ⊗OS κ

ιA

yo ιA′

yo

A0 A0.

The functor P̂A0 is representable by the formal torus

HomZp(TA0[p
∞]et × TAt0[p∞]et, Ĝm(S)),

and each deformation (A/S , iA) ∈ P̂A0(OS) gives rise to the Serre–Tate coordi-

nate qA/S : TA0[p
∞]et×TAt0 [p∞]et → Ĝm(S). We give a sketch of the construc-

tion of qA/S. We prepare some facts. Let f : A→ B be an isogeny; so, Ker(f)
is a finite flat group scheme over S. Pick x ∈ Ker(f), and let L ∈ Ker(ft) ⊂ Bt
be the line bundle on B with 0∗

BL = OS (S = Spec(OS) for an artinian R–
algebra OS). Thus f∗L = OA. Cover B by open affine subschemes Ui so that
L|Ui = φ−1

i OUi . Since 0∗
BL = OS , we may assume that (φi/φj) ◦ 0B = 1.

Since f : A → B is finite, it is affine. Write Vi = f−1(Ui) = Spec(OUi). Then
f∗L|Vi = ϕ−1

i OVi with ϕi = φi ◦ f , and we have, regarding x : S → Ker(f),

ϕi ◦ x
ϕj ◦ x

=
φi ◦ f ◦ x
φj ◦ f ◦ x

=
φi ◦ 0B
φj ◦ 0B

= 1.

Thus ϕi ◦ x glue into a morphism [x,L] : S → Gm, and we get a pairing

ef : Ker(f) ×Ker(ft)→ Gm.

Since A is a Ker(f)–torsor over B, we have A ×B A ∼= Ker(f) ×S B. Thus for
any homomorphism ζ : Ker(f) → Gm, we can find a function φ : Ker(f) ×S
B → P1 such that φ(y + t) = ζ(t)φ(y) for t ∈ Ker(f). This function φ gives
rise to a divisor D on BA = B ×S A. By definition, f∗AL(D) = OA×SA for
fA = f × 1 : A ×S A → B ×S A, and ef (x,L(D)) = ζ(x). Thus, over A,
ef/A : Ker(f)/A × Ker(ft)/A → Gm is a perfect pairing. Since A → S is
faithfully flat, we find that the original ef is perfect. Write A◦ for the formal
completion at the origin of the mod p fiber of A.

We apply the above argument to f = [pn] : A → A, write the pairing as en
and verify the following points:

(P1) en(α(x), y) = en(x, αt(y)) for α ∈ End(A/B);
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(P2) Write A0[p
n]◦ = µgpn ⊂ A0[p

n]. Then en induces an isomorphism of group
schemes: A0[p

n]◦ ∼= Hom(At0[p
n]et, µpn);

(P3) Taking limit of the above isomorphisms with respect to n, we find

A◦ ∼= Hom(TAt[p∞]et, Ĝm) ∼= Hom(TAt0[p
∞]et, Ĝm)

as formal groups. In particular A◦ ∼= Ĝg
m.

We are now ready to describe the Serre–Tate coordinate qA/S. Since OS ∈ CL/R
is a projective limit of local R–algebras with nilpotent maximal ideal, we may
assume that OS is a local artinian R–algebra with nilpotent maximal ideal mS .
Then A◦(S) is killed by pn0 for sufficiently large n0 (applying Drinfeld’s theorem
to I = mS). Taking a lift x̃ ∈ A(S) of x ∈ A(F) (such that x̃ mod mS = x),
x̃ is determined modulo Ker(A(S) → A(F)) = A◦(S) which is a subgroup of
A[pn] if n ≥ n0. By the smoothness of A/S , a lift x̃ ∈ A(S) of x ∈ A(F) always
exists. Thus pnx̃ ∈ A(S) is uniquely determined by x ∈ A(F). If x ∈ A[pn],
pnx̃ =“pn”x ∈ A◦(S) by definition, getting a homomorphism “pn”:A[pn](F) →
A◦(S). We have an obvious commutative diagram (if n ≥ n0)

A[pn+1]et(S)
∼−−−−→ A0[p

n+1](F)
“pn+1”−−−−−→ A◦(S)

p

y p

y
y‖

A[pn]et(S)
∼−−−−→ A0[p

n](F)
“pn”−−−−→ A◦(S),

which gives rise to a morphism TA0[p
∞]et→ A◦(S). Thus the structure of the

Barsotti–Tate group A[p∞] is uniquely determined by the extension class of the
exact sequence of fppf sheaves:

0→ A◦[p∞]/S → A[p∞]/S
π−→ A[p∞]et/S → 0. (2.2)

Take x = lim←−n xn ∈ TA[p∞]et with xn ∈ A[pn]et. Lift xn to vn ∈ A(S) so that

π(vn) = xn. Then, for “pn”: A[pn]→ A◦,

qn(x) = “pn”vn ∈ A◦(S).

The value qn(xn) becomes stationary if n ≥ n0, and taking limit of qn(xn) as

n → ∞, we get q(x) ∈ A◦(S) ∼= Hom(TAt0[p
∞]et, Ĝm(S)). Then we define

qA/S(x, y) = q(x)(y) (see [K2]).

Theorem 2.3 (Serre-Tate). We have

(1) A canonical isomorphism

P̂(OS) ∼= HomZp(TA0[p
∞]et × TAt0[p∞]et, Ĝm(S))

taking (A/S , ιA) to qA/S(·, ·).
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(2) The functor P̂ is represented by the formal scheme

HomZp(TA0[p
∞]et × TAt0[p∞]et, Ĝm) ∼= Ĝg2

m .

(3) qA/S(x, y) = qAt/S(y, x) under the canonical identification: (At)t = A.

(4) Let f0 : A0/κ → B0/κ be a homomorphism of two ordinary abelian varieties
with the dual map: ft0 : Bt0 → At0. Then f0 is induced by a homomorphism

f : A/S → B/S for A ∈ P̂A0(OS) and B ∈ P̂B0(OS) if and only if
qA/S(x, ft0(y)) = qB/S(f0(x), y).

Proof. Here is a brief outline of the proof. Let T/S and E/S be a multiplicative
and an étale p-divisible group over a scheme S, respectively. Consider the sheafi-
fication HomSfppf

(E[pn], T [pn]) (resp. Ext1Sfppf
(E[pn], T [pn])) of presheaf U 7→

HomU (E[pn]/U , T [pn]/U) (resp. U 7→ Ext1U (E[pn]/U , T [pn]/U)) over the small
fppf site Sfppf over S. Any connected-étale extension T [pn]→ X � E[pn] in the
category of finite flat Z/pnZ-modules over S split over an fppf extension S′/S;
so, we have Ext1Sfppf

(E[pn], T [pn]) = 0 and a splittingX = T [pn]⊕E[pn]. Taking

a module section i : E[pn]→ X[pn] and projecting down to T [pn] over S′, we get
a homomorphism φS′ ∈ HomS′ (E[pn], T [pn]). Since S′ 7→ φS′ satisfies the de-
scent datum, it is a C̆ech 1-cocycle with values in HomSfppf

(E[pn], T [pn]). Thus

we have a morphism Ext1Sfppf
(E[pn], T [pn])→ H1(Sfppf ,HomSfppf

(E[pn], T [pn])).

By fppf descent, this is an isomorphism. Applying this to S = Spec(OS),
T [pn] = A[pn]◦ and E[pn] = A[pn]et, we get

Ext1Sfppf
(A[pn]et, A[pn]◦) ∼= H1(Sfppf ,HomSfppf

(A[pn]et, A[pn]◦)).

When S is affine, [C4] Proposition 2.4 (iii) and (iv) combined tells us

Ext1Sfppf
(A[p∞]et, A[p∞]◦) ∼= lim←−

n

Ext1Sfppf
(A[pn]et, A[pn]◦)

∼= HomZp(TAt[p∞]et ⊗ TAt[p∞]et, Ĝm(S)))

since Ĝm
∼= lim←−nR

1π∗µpn ∼= lim←−n µpn (for π : Sfppf → Set) as sheaves over the

small étale site Set (see [C4] Section 2 for more details). Since the residue field
F of OS is algebraically closed, A[pn]et and At[pn]et are constant over OS ; so,
we may replace TAt[p∞]et and TAt[p∞]et by their special fibers TA0[p

∞]et and
At0[p

∞]et, and qA/S completely determines the extension class of the p-divisible
group in (2.2). Therefore, qA/S determines the isomorphism class of A[p∞]/S .
Then by the Serre–Tate theorem in the previous subsection, the deformation
A/S is determined by (A0, A[p∞]) and hence by qA/S. This shows the assertions
(1) and (2). All other assertions follows from (P1-3) easily.

2.4 Abelian Variety with Real Multiplication

Let F/Q be a totally real finite extension unramified at the fixed prime p. Write
O for the integer ring of F , and put d = [F : Q]. Consider an abelian scheme A
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over a scheme S of relative dimension d with an embedding i : O ↪→ End(A/S)
sending the identity to the identity automorphism of A/S .

An abelian scheme A/S can be considered as an fppf sheaf on SCH/S with
coefficients in abelian groups. For any O–moduleM , the fppf sheaf A⊗M which
is the fppf sheafification of the presheaf taking an S–scheme T to A(T ) ⊗O M
gives rise to another abelian scheme, written as A ⊗M . If M = c−1 for an
integral ideal c ⊂ O, tensoring A with the exact sequence:

0→ O → c−1 → c−1/O→ 0,

we get another exact sequence:

0→ Tor1(A,O/c)→ A→ A ⊗ c−1 → 0.

Thus A⊗c−1 is represented by A/A[c], because TorO1 (A,O/c) ∼= A[c] canonically
(since O is a Dedekind domain).

Here is a brief description of polarization on an abelian scheme A/S satisfying
the four conditions (rm1–4) below (called an AVRM). See [R] Section 1 for
more details on polarizations on an AVRM. An ample line bundle L on A gives
rise to an isogeny λL : A → At as follows (cf. [ABV] Section 6 and [DAV]
page 3). Pick a T -point a ∈ A(T ) for an S-scheme T . Then by addition,
a induces a morphism Ta : A/T → A/T sending x to x + a. Then A(T ) 3
a 7→ T ∗

a (L) ⊗ L−1 ⊗ a∗(L)−1 ⊗ 0∗(L) ∈ Pic0
A/S(T ) = At(T ) is a morphism of

group functors, which gives rise to the homomorphism λL : A/S → At/S . A

line bundle is called symmetric if (−1)∗L = L. If L is symmetric, λtL = λL.
A polarization is an O–linear isogeny λ : A → At induced by a symmetric
line bundle L/As

fiber by fiber over geometric points s ∈ S (cf. [GIT] 6.3). If
λ : A → At is a polarization, Ker(λ) is given by A[c−1] for an integral ideal
c−1 6= 0, because Ker(λ) is self dual under Cartier duality. Then λ induces
At ∼= A ⊗ c. Such a polarization is called a c–polarization. By definition,
λL⊗L′ = λL + λL′ . For a ∈ O, we see easily that a ◦ Tx = Ta(x) ◦ a and
that λa∗L = a2λL. The set of totally positive elements in a square ideal a2

is generated over N by square elements of a. Thus the subset of Hom(A,At)
generated by polarizations forms a positive cone P (A). If S is a Q–scheme,
the module Lie(A) is a faithful module over EndQ

O(A) = EndO(A) ⊗Z Q. In

particular, F –linear symmetric endomorphisms EndQ
O−sym(A) (those fixed by

the Rosati involution) is isomorphic to F . Thus we have EndO−sym(A) = O.
Therefore if λ is a c–polarization, HomO−sym(A,At) = HomO−sym(A,A)⊗c = c,
and hence P (A) ∼= c+ canonically, where c+ is the cone inside c made up of
totally positive elements.

We consider the following fiber category AF of abelian schemes over the
category of Z(p)–schemes. Here Z(p) ⊂ Q is the valuation ring of the p–adic
valuation. An object of AF is the triple (A/S , i : O ↪→ End(A/S), λ), where

(rm1) i = iA is an embedding of algebras taking identity to identity;

(rm2) λ is an O–linear symmetric polarization λ : A→ At with p - deg(λ);

(rm3) The image of iA is stable under the Rosati involution induced by λ;
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(rm4) As O⊗ZOS–modules, we have Lie(A) ∼= O⊗ZOS locally under the Zariski
topology of S, where the O–module structure of Lie(A) is induced by i.

A morphism φ : (A, i, λ)/S → (A′, i′, λ′)/S in the category AF is an O–linear
morphism φ : A/S → A′

/S of abelian schemes over S with λ = φt ◦ λ′ ◦ φ.

Fix an algebraic closure F of Fp. Take an ordinary abelian scheme (A0, i0, λ0)
defined over F. We fix a polarization λ0 : A0 → At0 of degree prime to p. We
consider the following functor defined from CL/W(F) into SETS:

P̂A0,i0,λ0(R)

=
[
(A/R, ιA, i, λ) ∈ AF

∣∣(A, ιA) ∈ P̂A0(R), λ and i induce λ0 and i0

]
.

Here we call f : (A, λA, ιA) → (B, λB , ιB) an isomorphism if f : (A, ιA) ∼=
(B, ιB) and ft◦λB◦f = λA. Note that by Theorem 2.1 (1) (Drinfeld’s theorem),
End(A/R) is torsion-free, and hence, End(A/R) ↪→ EndQ(A/R) = End(A/R)⊗Z

Q. We write α∗ = λ−1
0 ◦ αt ◦ λ0 for α ∈ End(A0) ⊗Z Q. Since End(A/R) ⊂

End(A0) again by Theorem 2.1 (2), the involution keeps EndQ(A/R) stable

(because on EndQ(A/R), it is given by α∗ = λ−1 ◦αt ◦λ). The Rosati involution
α 7→ α∗ is known to be positive (see [ABV] Section 21). The polarization λ0

induces an isomorphism λ0 : A[p∞]et ∼= At[p∞]et. We identify TA0[p
∞]et and

TAt0[p
∞]et by λ0. Then the involution α 7→ αt in the Serre–Tate theorem (4)

is replaced by the positive involution “∗”; in particular, “∗” is the identity map
on i(O) (which is the unique positive involution of the totally real field). Then
it is clear from the previous theorem that, for Op = O ⊗Z Zp,

P̂A0,λ0(R) ∼= HomZp(TA0[p
∞]et ⊗Op TA0[p

∞]et, Ĝm(R)).

Proposition 2.4. We have TA0[p
∞]et ∼= Op as O–modules.

Proof. Since A0 and the connected component A0[p]
◦ of the finite flat group

scheme A0[p] share the tangent space Lie(A0) at the origin, as O–modules, they
are free of rank 1 over O ⊗Z F. Write A0[p]

◦ = Spec(R) for an F–bialgebra R.
Then for its unique maximal ideal m ⊂ R, we have Lie(A0) = HomF(m/m2,F).
By Cartier duality (e.g. [GME] 1.7), we have

At0[p]
et ∼= HomGp−sch(A0[p]

◦, µp) ↪→ HomSCH(A0[p]
◦, µp)

∼= HomF−alg(F[t]/(tp), R) � HomF−alg(F[t]/(tp), R/m2) ∼= m/m2.

Since A[p]◦ ∼= µdp over F for d = dimA0, it is easy to see that the above morphism
induces At0[p]

et ⊗Fp F ∼= H0(A0,ΩA0/F). Then by duality and polarization, we
get A0[p]

et ⊗Fp F ∼= Lie(A0) as O ⊗Z F–modules. This shows that

Lie(A0) ∼= TA0[p
∞]et ⊗Z F as O ⊗Z F–modules. (2.3)

Then by Nakayama’s lemma, we conclude from (rm4) the desired assertion.
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Corollary 2.5. Suppose that O is unramified at p. Let S = Gm ⊗Z d−1 =
Spec(Z[O]) for the group algebra Z[O]. Then identifying TA0[p

∞]et with Op,

the functor P̂A0,i,λ0 is represented by the formal scheme Ŝ/W , where Ŝ is the
formal completion of S along the identity section of Gm ⊗Z d−1(F).

Proof. We have seen that the deformation space Ŝ is given by

HomZp(TA0[p
∞]et ⊗Op TA0[p

∞]et, Ĝm(R))

∼= HomZp(Op, Ĝm(R)) ∼= Ĝm(R) ⊗Z HomZ(O,Z) ∼= Ŝ(R) (R ∈ CL/W ).

Here t ⊗ a ∈ Ĝm ⊗Z d−1 corresponds to q : Op → Ĝm ∈ HomZp(Op, Ĝm(R))

with q(b) = tTr(ab). This supplies us with the desired identity.

3 Hilbert Modular Shimura Varieties

Let G = ResF/Q(GL(2)). We write h0 : S = ResC/RGm → G/R for the homo-

morphism of real algebraic groups sending a+ b
√
−1 to the matrix

(
a −b
b a

)
. We

write X for the conjugacy class of h0 under G(R). The group G(R) acts on X

from the left by conjugation. Since the centralizer of h0 is the product of the
maximal compact subgroup of the identity connected component G(R)+ of the
real Lie group G(R) and its center Z(R), the identity connected component X+

containing 0 = h0 is isomorphic to the product Z = HI of copies of the upper
half complex plane H indexed by embeddings I of F into R by g(0) 7→ g(i) for
i = (

√−1, . . . ,
√−1). Here the action of (gσ)σ∈I ∈ G(R) with gσ =

(
aσ bσ

cσ dσ

)
on

Z is given by z = (zσ) 7→
(
aσzσ+bσ

cσzσ+dσ

)
. Thus X is a finite union of the hermitian

symmetric domain isomorphic to Z, and for an arithmetic subgroup Γ ⊂ G(Q),
Γ\X is a finite union of Hilbert modular varieties.

The pair (G,X) satisfies Deligne’s axiom for Shimura varieties in [D3] 2.1.1.
The Shimura variety over C is given by

ShC(C) = ShC(G,X)(C) = lim←−
K

G(Q)\
(
X×G(A(∞))

)
/K

= G(Q)\
(
X×G(A(∞))

)
/Z(Q), (3.1)

where (γ, u) ∈ G(Q)×K acts on (z, g) ∈ X×G(A(∞)) by γ(z, g)u = (γ(z), γgu),
Z(Q) is the closure of the center Z(Q) in G(A(∞)). See [M] page 324. We
write [z, g] for the point of ShC(C) represented by (z, g) ∈ X× G(A(∞)). This
pro-algebraic variety has a unique canonical model Sh(G,X) defined over Q,
which we recall later. In this section, we review the construction of the model,
emphasizing its automorphism group G. Strictly speaking, the group G we will
study is a subgroup of finite index in the full automorphism group, and the full
automorphism group is a semi-direct product of G with the field automorphism
group Aut(F/Q). As is clear from Shimura’s original construction of canonical
models [Sh2], full knowledge of G is almost equivalent to the existence of the
canonical model itself (see [AAF] Chapter II).
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3.1 Abelian Varieties up to Isogenies

Let V = F 2 be a column vector space, and put V (A(∞)) = VA(∞) := V ⊗Q A(∞).
We often write FA(∞) for F ⊗Q A(∞), which is the finite part of the adele ring
FA = F ⊗Q A. Then V (A(∞)) is an FA(∞)-free module of rank 2. We consider

the fibered category AQ
F over Q-SCH defined by the following data:

(Object) abelian schemes with real multiplication by O;

(Morphism) HomQ
F (A,A′) = HomO(A,A′) ⊗Z Q.

For an object A/S , we take a geometric point s ∈ S, consider the Tate module

T (A) = Ts(A) = lim←−N A[N ](k(s)), and define V (A) = Vs(A) = T (A) ⊗Z A(∞).

The module V (A) is an FA(∞) -free module of rank 2 and has an Ô-stable lattice

T (A), where Ô = O ⊗Z Ẑ =
∏
`:prime O`.

Picking a geometric point s in each connected component of S, a full level
structure on A is an isomorphism η : V (A(∞)) ∼= Vs(A) of FA(∞) -modules. For
a closed subgroup K ⊂ G(A(∞)), a level K-structure is the K-orbit η = ηK of
η for the right action η 7→ η ◦ u (u ∈ K). Strictly speaking, we consider the
étale (set theoretic) sheaf L(S′) = IsomF (VA(∞) , Vs(A/S′ )) (over the small étale
site over S) of level structures of A on which K acts, and η is supposed to be
an element of the sheaf quotient L/K. For many instances, we assume K to
be open compact. Since A[N ]/S is an étale finite group scheme, the algebraic
fundamental group π1(S, s) with base point s acts on A[N ](k(s)) for any integer
N and hence on the full Tate module Vs(A) = lim←−N A[N ](k(s)) ⊗ Q. The

level K-structure is defined over S if σ ◦ η = η for each σ ∈ π1(S, s). If the
compatibility σ ◦ η = η is valid at one geometric point s for each connected
component of S, it is valid for all s ∈ S (see [PAF] 6.4.1).

Two polarizations λ, λ′ : A→ At are said to be equivalent (written as λ ∼ λ′)
if λ = aλ′ = λ′ ◦ a for a totally positive a ∈ F . Here a is any fraction in F×

+ ,
writing F×

+ for the set of all totally positive elements in F . Without introducing

the category AQ
F up to isogeny, our notion of polarization classes does not make

sense. The equivalence class of a polarization λ defined over S is written as λ. If
the class λ is defined over S, we can find a polarization λ ∈ λ really defined over
S (e.g., [PAF] pages 100–101). Our requirement (rm4) in Section 2.4 is often
stated as the condition on characteristic polynomials satisfied by the action of
α ∈ O on the OS-module Lie(A) in papers and books dealing with Shimura
varieties of PEL type (for example, [Ko] Section 5 and the condition (det) of
[PAF] 4.2.1). For an open compact subgroup K, we consider the following
functor from SCH/Q into SETS,

PQ
K(S) =

[
(A, λ, η)/S with (rm1–4)

]
,

where η is a level K-structure as defined above, and [ ] = { }/ ∼= indicates the
set of isomorphism classes in AQ

F of the objects defined over S in the brackets.

For a compact subgroup K, PQ
K(S) is defined by the natural projective limit

lim←−U P
Q
U (S) for U running over open compact subgroups containing K. An F -

linear morphism φ ∈ HomQ
F (A,A′) is an isomorphism between triples (A, λ, η)/S

18



and (A′, λ
′
, η′)/S if it is compatible with all data; that is,

φ ◦ η = η′ and φt ◦ λ = λ
′ ◦ φ.

Equip V = F 2 with an alternating form Λ : V ∧F V ∼= F given by (x, y) =
txJ1y for J1 =

(
0 −1
1 0

)
. We define a Q-alternating pairing 〈·, ·〉 : V × V → Q by

TrF/Q◦Λ. Suppose that the point s ∈ S is a complex point s ∈ S(C); so, we have
the Betti homology group H1(A,Q) := H1(A(k(s)),Q). Then the polarization
λ : A → At induces a nondegenerate F -Hermitian alternating pairing Eλ :∧2

H1(A,Q) → Q (the Riemann form; see [ABV] Sections 1 and 20). Here
the word: “F -Hermitian” means Eλ(αx, y) = Eλ(x, αy) for all α ∈ F . We
write eλ : H1(A,Q) ∧F H1(A,Q) ∼= F for a unique alternating form satisfying
TrF/Q ◦ eλ = Eλ. The Hodge decomposition: H1(A,C) = H0(A(k(s)),ΩanA/C)⊕
H0(A(k(s)),Ω

an
A/C) induces, by Poincaré duality, an embedding h = hA : C× =

S(R)→ AutF (H1(A,R)) such that

1. h(z)ω = zω for all ω ∈ HomC(H0(A(k(s)),ΩA/C),C) (and h(z)ω = zω);

2. Eλ(x, h(
√
−1)y) is a positive definite Hermitian form on H1(A,R) (∼=

VR := V ⊗Q R) under the complex structure given by h.

In the above definition of PQ
K for an open compact K, missing is a condition

usually required in papers dealing with Shimura varieties:

(pol) There exists an F -linear isomorphism f : V ∼= H1(A,Q) such that f−1 ◦
hA ◦ f is a conjugate of h0 under G(R), f ≡ η mod K under the
canonical isomorphism Vs(A) ∼= H1(A,A(∞)) = H1(A,Q) ⊗Q A(∞) and
eλ(f(x), f(y)) = α · Λ(x ∧ y) for some α ∈ F×.

Since V and H1(A,Q) both have a non-degenerate F -bilinear alternating form,
we can find an F -linear isomorphism f0 : V

∼−→ H1(A,Q) with eλ(f0(x), f0(y)) =
Λ(x ∧ y). After tensoring A(∞) and scaling by an element in F×

A(∞) , we may

assume that g := η−1 ◦ f0 belongs in SL2(F
(∞)
A ). By the strong approximation

theorem, we have γ ∈ SL2(F ) such that g = uγ−1 for u ∈ K; in other words,
putting f = f0 ◦ γ, we have f ∈ η ◦K as in (pol). Since G(R) is the full group
of FR-linear automorphisms of VR, f−1 ◦ hA ◦ f is always conjugate to h0. Thus
this condition (pol) is redundant; so, we ignore it.

By [Sh1] and [D2] 4.16–21,

(rep) the canonical model Sh(G,X)/Q represents the functor PQ
1 over Q for

the trivial subgroup 1 made of the identity element of G(A(∞)).

This fact will be confirmed over C by a straight calculation (see the paragraph
following (3.2)). Through the action of G(A(∞)) on F 2

A(∞) , g ∈ G(A(∞)) acts
on the level structure by η 7→ η ◦ g and hence on the variety Sh(G,X) from the
right. If K is open and sufficiently small (so that Aut((A, λ, η)/S) = {1} for all

test objects (A, λ, η)/S), ShK (G,X) := (Sh(G,X)/K)/Q (whose complex points

are given by the manifold G(Q)\(X×G(A(∞)))/K) represents PQ
K over Q.
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Over C, by (3.1), we have

[z, g] = [γ(z), γg] (⇔ [γ−1(z), g] = [z, γg]) (3.2)

for (z, g) ∈ Z×G(A(∞)) and γ ∈ G(Q)+, taking the expression

Sh(G,X)(C) = G(Q)+\
(
Z×G(A(∞))

)
/Z(Q)

and noting X+ = Z. In the complex uniformization, each point [z, g] corresponds
to the test triple (Az, λz, ηz ◦ g), where Az(C) = CI/(O∗ + Oz) and ηz ( ab ) =

bz − a identifying T (Az) = Ô∗ + Ôz. To see this, we note that the map:
[z, g] 7→ (Az , λz, ηz ◦ g) sends

(
Z×G(A(∞))

)
surjectively onto PQ

K(C) for each
open compact subgroup K. Thus we need to check

(Aγ−1(z), λγ−1(z), ηγ−1(z) ◦ g) ∼= (Az, λz, ηz ◦ γ(∞)g) in AQ
F for γ ∈ G(Q)+

which is equivalent to [γ−1(z), g] = [z, γ(∞)g]. This is because αγ ◦ ηγ−1(z) =

ηz ◦ γ(∞) for the isogeny αγ : Aγ−1(z) → Az given via the multiplication by

(−cz + a) on CI (writing γ =
(
a b
c d

)
).

We now give a very brief outline of the proof of the representability (as-
suming that K is open-compact), reducing it to the representability of a func-
tor classifying abelian schemes up to isomorphisms not up to isogenies. Let
G1 be the derived group ResO/ZSL(2) of G. By shrinking K, we may as-

sume that det(K) ∩ O×
+ ⊂ (K ∩ Z(Z))2. This is to guarantee that the im-

ages of gKg−1 ∩ G1(Q) and gKg−1 ∩ G(Q)+ in PG(Q) (PG = G/Z) are
equal; so, ShK (C) can be embedded into ShK1 (C) for K1 = G1(A(∞)) ∩ K,
because the moduli problem with respect to K1 is neat without having any
nontrivial automorphisms. Let L ⊂ V be an O-lattice. We may assume that
L = a∗ ⊕ b for a pair (a, b) of two fractional ideals, where a∗ is the dual ideal
given by {ξ ∈ F |Tr(ξa) ⊂ Z} = a−1d−1. We define the polarization ideal c by
c∗ = Λ(L∧L) ⊂ F . For each point hz ∈ X, we have a unique point z ∈ (C−R)I

fixed by hz(C×) (in this way, we identify Z with the connected component X+ of
X containing h0). By changing the F⊗R-linear identification V ⊗QC = F 2⊗QC,
we may assume that z ∈ X+ = Z. The action of hz(C×) on VR = V ⊗Q R gives
a structure of a complex vector space of dimension g = [F : Q] on VR; that
is, VR = CI via (a, b) 7→ −a + bz = (a, b)J1 · t(z, 1) for J1 =

(
0 −1
1 0

)
. Then

L ⊂ VR gives rise to the lattice Lz, and Λ induces the c-polarization λz. Set

L̂ = L ⊗Z Ẑ ⊂ V
(∞)

A = V ⊗Q A(∞), and define an abelian variety Az/C by

Az(C) = CI/Lz. Then we have T (Az) = L̂, which induces ηz : VA(∞)
∼= V (Az)

and gives rise to a level N -structure φN : N−1L/L ∼= Az[N ] for any N > 0.
Let Cl+(K) = F×

A(∞)/ det(K)F×
+ , which is a finite group (by the open prop-

erty of K). We fix a complete representative set {c ∈ F×
A(∞)} for Cl+(K) so

that cÔ ∩ F = c. We define an O–lattice Lc = c∗ ⊕ O ⊂ V as above with
Λ(Lc ∧ Lc) = c∗, and put L = LO. Note that L = Lc · ( c 0

0 1 ) in F 2 = V .

For each isogeny class of (A, λ, η)/S ∈ PQ
K(S), we can functorially find a

unique triple (A′, λ′, η′)/S and a polarization ideal c (representing a unique class
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in Cl+(K)) such that η′(L̂c) = T (A). Once this is done, as explained after (pol),
we can find a polarization λ′ in λ′ so that the alternating pairing induced on
T (A) by the polarization coincides with Λ under η. See [PAF] pages 135–6 for
the details of this process of finding a unique triple (A′, λ′, η′)/S in the isogeny

class of (A, λ, η)/S . Thus once we have adjusted the c-polarization λ′ in λ to Λ

for each member (A, λ, η) ∈ PQ
K(S), we have a unique triple (A′, λ′, η′)/S with

c-polarization λ′. If two such choices are isogenous, the isogeny between them
has to be an isomorphism keeping the polarization. Thus we get an isomorphism
of functors: PQ

K(S) ∼= P ′
K(S) :=

⊔
c∈Cl+(K) P ′

K,c(S), where c runs over the ideal

classes in Cl+(K) = F
(∞)
A

×
/F×

+ det(K), and

P ′
K,c(S) =

{
(A′, λ′, η′)/S with (rm1-4)

∣∣ η′(L̂c) = T (A′) and c(λ′) = c
}
/ ∼= .

Here ∼= means an isomorphism (not an isogeny) for a chosen polarization integral
over the fixed lattice Lc in the class of λ (in other words, λ induces a fixed
alternating form on the space V integral over Lc (up to units in F ∩ det(K)).
As we now see, this functor P ′

K,c is represented by a scheme M(c, K) over a
specific abelian extension kK of Q dependent on K (see below for a description
of kK for some specific K’s). See [PAF] Section 4.2 for details of this process.

Recall Lc = c∗ ⊕O ⊂ V , L̂c = lim←−N Lc/NLc = Lc ⊗Z Ẑ and Lc ∧Lc
∼= c∗ by

(a, b) ∧ (a′, b′) 7→ a′b − ab′. Take the principal congruence subgroup Γc(N) =

Ker(GL(L̂c) � GL(Lc/NLc)) of G(A(∞)) for an integer N > 0. We write
Γ(N) for ΓO(N). We identify µN with Z/NZ by choosing a primitive Nth root
ζ = ζN of unity in Q[µN ]. Then, having a level Γ(N)-structure η is equivalent

to having a level Γc(N)-structure η′, because we can identify L̂c and L̂ via the
left multiplication by ( c 0

0 1 ). Giving η′ is equivalent to giving an isomorphism of
locally free group schemes

φN : (c∗ ⊗ µN)× (O ⊗ Z/NZ) ∼= N−1Lc/Lc

η′∼= A′[N ].

Thus P ′
Γ(N),c is the standard moduli functor classifying the level structure for

the principal congruence subgroup Γc(N):

P ′
Γ(N),c(S) =

{
(A, λ, φN)/S

∣∣∣φN : (c∗ ⊗ µN )× (O ⊗ Z/NZ) ∼= A[N ]
and c(λ) = c

}
/ ∼= .

By a standard argument (see [R], [K3] and [PAF] 4.1), this functor is represented
by a geometrically irreducible quasi projective variety M(c,Γ(N))/Q[µN ] .

Over kΓ(N) = Q[µN ], the component M(c,Γ(N)) of ShΓ(N)(G,X) represents
the functor P ′

Γ(N),c. This irreducible component in turn corresponds to the

component G(Q)\ (X ×G(Q) ( c 0
0 1 ) Γ(N)) /Γ(N) ⊂ ShΓ(N)(C) in (3.1). The

choice ζ gives rise to the identification Q[µN ] = Q[T ]/(ΦN(T )) with Q[ζ] for the
cyclotomic polynomial ΦN(T ) ∈ Z[T ], and an automorphism σ ∈ Gal(Q[ζ]/Q)
changes the identification by ζ 7→ ζσ , whose action is induced by φN 7→ φN ◦
( c 0

0 1 ) for a unit c ∈ Ẑ× such that ζσ = ζc. In other words, the action of
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( c 0
0 1 ) ∈ G(A(∞)) on Sh(G,X)/Q brings M(O,Γ(N))/Q[ζ] ⊂ ShΓ(N)(G,X) to its
σ-conjugate M(O,Γ(N))σ/Q[ζ] in ShΓ(N)(G,X)/Q.

Summing up all these, we have

P ′
Γ(N) =

⊔

c∈Cl+F (N)

P ′
Γ(N),c over Q[µN ]-SCH , (3.3)

which implies

ShΓ(N)(G,X)/Q[µN ] =
⊔

c∈Cl+F (N)

M(c,Γ(N)) over Q[µN ]. (3.4)

Since Lc =
(
L̂ · ( c 0

0 1 )
−1
)
∩ V , this corresponds to the decomposition

G(A(∞)) =
⊔

c∈Cl+F (N)

G(Q) ( c 0
0 1 ) Γ(N).

By the Galois action on M(c,Γ(N))/Q[µN ], we can descend the right-hand side
of (3.4) to the base field Q to obtain the model ShΓ(N)(G,X) over Q, because
M(c,Γ(N)) is quasi-projective as we already mentioned.

To construct p-integral models of Shimura varieties, we use the following
variant (due to Kottwitz [Ko]) of the functor PQ

K. We fix a rational prime p
unramified in F/Q. This concerns an open-compact subgroup K maximal at
p (i.e., K = G(Zp) × K(p)), where Op = O ⊗Z Zp. We have written K(p) =
{x ∈ K|xp = 1}. Recall A(p∞) = {x ∈ A|xp = x∞ = 0}. We identify the

multiplicative group A(p∞)× with {x ∈ A×|xp = x∞ = 1}.
We consider the following fibered category A(p)

F over Z(p)-schemes:

(Object) abelian schemes with real multiplication by O;

(Morphism) We define Hom
A

(p)
F

(A,A′) = HomAF (A,A′)⊗Z Z(p), where

Z(p) =
{a
b

∣∣bZ + pZ = Z
}
.

This means that to classify test objects, we now allow only isogenies with degree
prime to p (called “prime-to-p isogenies”), and the degree of the polarization λ
is supposed to be also prime to p. Two polarizations are equivalent if λ = aλ′ =
λ′ ◦ a for a totally positive a ∈ F prime to p.

Fix an O-lattice L ⊂ V = F 2 with Λ(L ∧ L) = c∗, and assume self Op-
duality of Lp = L⊗Z Zp under the alternating pairing Λ : V ∧ V ∼= F . Consider
test objects (A, λ, η(p))/S . Here η(p) : V (A(p∞)) = V ⊗Q A(p∞) ∼= V (p)(A) =

T (A) ⊗Z A(p∞) and λ ∈ λ are supposed to satisfy the following requirement,

V (p)(A) ∧ V (p)(A)
eλ−→ F

(p∞)
A is proportional to Λ : V ∧ V ∼= F up to scalars in

(F ⊗ A(p∞))×. Here eλ is the alternating form induced by the polarization λ.
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We write the K(p)-orbit of η(p) as η(p). Then we consider the following functor
from Z(p)-schemes into SETS.

P(p)
K (S) =

[
(A, λ, η(p))/S with (rm1-4)

]
. (3.5)

Let O×
(p)+ = O×

p ∩ F×
+ . As long as K is maximal at p, we can identify

Cl+(K) = F
(∞)
A

×
/F×

+ det(K) with F
(p∞)
A

×
/O×

(p)+ det(K(p)). Thus we may

choose the representatives {c} prime to p (and we may assume the self-duality of
L at p). By the same process as bringing PQ

K isomorphically to P ′
K/Q, the func-

tor is equivalent to P ′
K/Z(p)

defined over Z(p)-SCH ; so, it is representable over

Z(p), giving a canonical model Sh
(p)
K (G,X)/Z(p)

over Z(p). The functor P ′
K/Z(p)

is a disjoint union of the functors P ′
K,c indexed by c ∈ Cl+(K), where

P ′
K,c(S) =

[
(A, λ, η(p))/S with (rm1-4)

∣∣η(p)(L̂c) = T (p)(A), c(λ) = c
]
. (3.6)

A subtle point is to relate Sh
(p)
/Z(p)

to Sh/Q. The equivalence of functors

P(p)
Γ(N)

∼= P ′
Γ(N)/Z(p)

are compatible when N varies over integers prime to p;

similarly, for PQ
Γ(N)

∼= P ′
Γ(N)/Q; therefore,

Sh(p) ⊗Z(p)
Q ∼= Sh/G(Zp).

The functor P ′
Γ(N),O/Z(p)[µN ] for N prime to p is represented by a scheme

M(O,Γ(N))/Z(p)[µN ] and gives rise to a closed subscheme of Sh
(p)
Γ(N)/Z(p) [µN ].

The characteristic 0 fiber M(O,Γ(N))⊗Z(p) [µN ] Q[µN ] gives M(O,Γ(N))/Q[µN ]

in (3.4). We define a closed subscheme M(p) of Sh(p) over the integer ring

Z(p)−ab
(p)

=
⋃
p-N Z(p)[µN ] by

M(p) := lim←−
p-N

M(O,Γ(N))/Z(p)[µN ] ⊂ Sh(p) ⊗Z(p)
Z(p)−ab

(p) . (3.7)

Similarly, we define a closed subscheme M of ShQab over the maximal abelian
extension Qab =

⋃
N>0 Q[µN ] by

M/Qab := lim←−
N>0

M(O,Γ(N))/Q[µN ] ⊂ Sh ⊗Q Qab. (3.8)

Since L̂′ ∼= L̂ for any O-lattice L′ ⊂ V , it is essential to allow all O-
isomorphism classes of O-lattices L′ to define P ′

Γ(N), because in the definition

of P(p), only L̂(p) is specified (which does not determine the isomorphism class
of L if the class group of F is nontrivial). This problem is more acute at p
because over Z(p), Tp(A) does not determine Lp. Indeed the p-adic Tate module
of an abelian scheme of characteristic p has less rank than its characteristic 0
counterpart. The self-duality at p of L has to be imposed to overcome this point
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(see the argument just above Remark 7.4 of [PAF]). Also we need the density
of the derived group G1(Q) in G1(A(∞)) (the strong approximation theorem) in

order to know that geometrically irreducible components of Sh
(p)
K are indexed

by the class group Cl+(K): π0(Sh
(p)

K/Q
) ∼= Cl+(K).

Since p is unramified in F/Q (and K(p) is sufficiently small), Sh
(p)
K is smooth

over Z(p) by the infinitesimal criterion of smoothness (e.g., [NMD] Proposition
2.2.6); that is, we can show that any characteristic p test object lifts to charac-
teristic 0 infinitesimally. To explain this, let R be a Z(p)-algebra with a nilpotent
ideal I ⊂ R containing a power of p. Put R0 = R/I. We want to show the

existence of a lifting of a test object (A0, λ0, η
(p)
0 )/R0

to R. The abelian variety
A0 lifts to an abelian scheme A/R (with A⊗RR0

∼= A0) by the deformation the-
ory of Grothendieck–Messing–Mumford (cf. [CBT] V.1.6, [GIT] Section 6.3, [R]
1.5–10, [DAV] I.3, and also [PAF] Theorem 8.8 and the remark after the theo-
rem). Since the degree of the polarization is prime to p (here we use the fact that
we can choose a representative c prime to p in a given class in Cl+(K)), λ also
lifts because we may assume that λ0 : A0 → At0 is étale (and hence At = A/E
for an étale subgroup E ⊂ A lifting Ker(λ0); see [ECH] I.3.12). As for the

level structure η
(p)
0 , it is prime to p and hence étale over R0. Then it extends

uniquely to a level structure η(p) : V
(p)

A
∼= V (p)(A) over R. By the deformation

theory of Barsotti–Tate groups (see [CBT] V.1.6 and [R] 1.5–10), using (rm4),
we can find a deformation A/R of A0/R0

with an embedding O ↪→ End(A/R)
compatible with O ↪→ End(A0/R0

).

We can let g ∈ G(A(∞)) act on Sh(G,X)/Q by

(A, λ, i, η) 7→ (A, λ, i, η ◦ g), (3.9)

which gives a right action of G(A(∞)) on Sh(G,X). Define

G = G(G,X) =
{
g ∈ G(A)

∣∣ det(g) ∈ A×F×F×
∞+/F

×F×
∞+

}
,

and write E = E(G,X) = G(G,X)/Z(Q)G(R)+ (see [Sh2] II, [Sh3] and [AAF]
Section 8). Here F×

∞+ is the subgroup of totally positive elements in F∞ = F⊗Q

R. By (3.1) (and by our construction), we have π0(Sh(G,X)(C)) ∼= F×
A(∞)/F

×
+
∼=

F×
A /F

×F×
∞+ = lim←−N Cl

+
F (N). The action of g ∈ G(A(∞)) permutes transitively

connected components of Sh(G,X)(C).
The neutral irreducible component of Sh(G,X)(C) is the image of Z × 1

in Sh(G,X)(C) under the projection in (3.1) and is given by the complex
points M(C) of the closed subscheme M/Qab of Sh/Qab defined in (3.8). Since
M(O,Γ(N))(C) is a connected complex manifold for N � 0, M/Qab is geometri-

cally irreducible. Composing the structure morphism M→ Spec(Qab) with the
unique morphism Spec(Qab) → Spec(Q), we regard M as an irreducible (but
geometrically reducible) Q-scheme. Thus we can think of the rational function
field Q(M/Q). The field of definition of M (that is, the algebraic closure of

Q in the function field Q(M/Q)) is the maximal abelian extension Qab/Q (so,
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Q(M/Q) = Qab(M/Qab)), because the values of the Weil pairing on all the tor-

sion points of the universal abelian scheme over M generate Qab. Then we can
think of the scheme M×Q Qab (over Qab) which is no longer connected:

M×Q Qab =
⊔

σ∈Gal(Qab/Q)

M×Qab,σ Qab.

Since Sh is defined over Q and M/Qab ⊂ Sh/Qab , Mσ
/Qab := M×Qab,σ Qab gives

another connected components of Sh⊗Q Qab; in other words, the nonconnected
scheme M×Q Qab has an open immersion into Sh(G,X)/Qab , and the action of

g ∈ G(A(∞)) preserves π0(M ×Q Qab) if and only if det(g) ∈ A×F×F×
∞+. The

action of g with det(g) ∈ A× permutes transitively geometrically irreducible
components of Sh through the action of the Artin symbol [det(g),Q] on Qab

(see [PAF] Proof of Theorem 4.14). Thus we may regard G as the stabilizer
inside G(A(∞)) of the neutral component M/Q. Since G(A(∞)) acts transitively

on the set π0(Sh(G,X)/Q), the stabilizer of another component M·g in G(A(∞))

is given by g−1Gg. Since G is a normal subgroup of G(A(∞)), G is the stabilizer
of any other geometrically irreducible component of Sh(G,X).

We shall give another description of E due to Deligne. We recall it, because
recently Shimura’s reciprocity is often written down using Deligne’s formulation
and it is also easier to describe the action of G(A(∞)) (up to isogeny) in group
theoretic terms if we use his definition. Write G = G(A(∞))/Z(Q), Γ = G(Q)+,
and ∆ = Gad(Q) = G(Q)/Z(Q). We have the projection Γ 3 γ 7→ γ onto a
subgroup Γ of G and the following commutative diagram of group homomor-
phisms:

Γ
ϕ−−−−→ ∆

∩

y
yr

G −−−−→
ad

Aut(G).

(3.10)

Here r is the inclusion, ϕ is induced by the projection G(Q)→ Gad(Q), Aut(G)
is the automorphism group of the group G, and ad(g)(x) = gxg−1 for g ∈ G.
We often write ϕ(γ) for ϕ(γ) and by definition, r(δ) (δ ∈ ∆) preserves Γ as a
whole. Plainly, we have the following two compatibility conditions,

(a) r(ϕ(γ)) = ad(γ) for all γ ∈ Γ (commutativity of (3.10));

(b) ϕ(r(δ)(γ)) = ad(δ)(ϕ(γ)) for all δ ∈ ∆ and γ ∈ Γ.

We consider the semi-direct product: Go ∆ whose multiplication law is given
by (g, δ)(h, ε) = (g · (r(δ)(h)), δε), and we have (g, δ)−1 = (r(δ−1)(g−1), δ−1).
By computation, we have

(g, δ)(γ−1, ϕ(γ))(g, δ)−1 = (g · r(δ)(γ−1)r(δ · ϕ(γ))(r(δ−1)(g−1)), ad(δ)(ϕ(γ))).
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Then again by computation,

g · r(δ)(γ−1)r(δ · ϕ(γ))(r(δ−1)(g−1))

= g · r(δ)(γ−1)r(δ)(γ(r(δ−1)(g−1))γ−1) = g · r(δ)((r(δ−1)(g−1))γ−1)

= g · r(δ)(r(δ−1)(g−1))(r(δ)(γ−1)) = r(δ)(γ)−1.

This shows that Γ̃ = {(γ−1, ϕ(γ))|γ ∈ Γ} is a normal subgroup of the semi-direct
product Go ∆. We then define

G ∗Γ ∆ = (Go ∆)/Γ̃. (3.11)

We have the following commutative diagram with exact rows.

Ker(ϕ)
⊂−−−−→ Γ

ϕ−−−−→ ∆
onto−−−−→ Coker(ϕ)

‖

y ∩

y ∩

yδ 7→[1,δ]

y‖

Ker(ϕ) −−−−→
⊂

G −−−−−→
g 7→[g,1]

G ∗Γ ∆ −−−−→
onto

Coker(ϕ).

Then by the (suitably applied) snake lemma, we get a canonical isomorphism

Γ\G ∼= ∆\(G ∗Γ ∆). (3.12)

Note that Γ\(X ×G) = Sh(G,X)(C) by (3.1). By this isomorphism, the amal-
gamated product G∗Γ ∆ acts on Γ\(X×G), and the action of [g, δ] ∈ G∗Γ ∆ on
the class [z] in Γ\(X×G) = Sh(G,X)(C) (which is sent to [z, 1] ∈ ∆\(G ∗Γ ∆))
is given by

[z] · [g, δ] = [z, 1][g, δ] = [zg, δ] = [1, δ][r(δ)−1(zg), 1] = [r(δ)−1(zg)]. (3.13)

Thus G ∗Γ ∆ acts on the Shimura variety Sh(G,X), and by (3.13) combined
with (3.2), the action coincides with the one in (3.9) (see [D3] and [PAF] 4.2.2).
In particular, E(G,X) is identified with the stabilizer of M (and of any other
geometrically irreducible component of Sh(G,X)) in G ∗Γ ∆. The map

G ∗Γ ∆ 3 (g, ad(γ)) 7→ det(g) ∈ F×
A /F

×F×
∞+

is a well defined homomorphism, and E(G,X) is identified with the inverse image

of A×F×F×
∞+/F

×F×
∞+ in G ∗Γ ∆. The following fact (whose proof we have

sketched) has been shown in [Sh2] II 6.5 and [Mt] Theorem 2 (see also [MS] 4.6
and 4.13 and [PAF] Theorem 4.14):

Theorem 3.1. The stabilizer in G(A(∞)) of the geometrically irreducible com-
ponent of Sh(G,X) which contains the image of X+ × 1 is given by E(G,X).
The right action of (g, ad(γ)) ∈ E(G,X) (γ ∈ G(Q)) on [z, g′] is given by

[z, g′] 7→ [γ−1(z), (g′g)ad(γ)],

where (g′g)ad(γ) = γ−1(g′g)γ.
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Since Shimura does not formulate his result in the language of scheme, it
is hard to say which part of Sh is Shimura’s canonical model, though we can
probably say that the (projective) system {MK := M/K}K⊂E(G,X) of quasi-

projective varieties irreducible over Q (indexed by open compact subgroups K)
each regarded as defined over its field of definition kK (that is, the algebraic
closure of Q in its function field Q(MK/Q)) is essentially his canonical model.
Since other geometrically connected components V of Sh/Q is isomorphic to M

by an action of g ∈ G(A(∞)), more precisely, Shimura’s canonical models give
a system of geometrically irreducible varieties of the form g(MK)/kK

with a

specific isomorphism onto Mg−1Kg/kK
given by each element of g ∈ G(A(∞)).

His theory includes an explicit determination of kK as an abelian extension of
Q via class field theory, the local reciprocity low at each CM point on MK and
an explicit description of the action of E(G,X) on each member MK (the global
reciprocity law). The above result is an interpretation in Deligne’s language
of the result of Shimura in [Sh2] II 6.5. When we regard g ∈ E(G,X) as an
automorphism of OSh or Sh(G,X)/Q, we write it as τ (g).

3.2 Shimura’s Reciprocity Law

Since Sh(G,X)(C) = G(Q)\
(
X×G(A(∞))

)
/Z(Q), we write [z, g] ∈ Sh(C) for

the image of (z, g) ∈ X × G(A(∞)). A point x = [z, g] is called a CM point if
z = (zσ)σ∈I ∈ X = (C −R)I ⊂ F ⊗Q C generates a totally imaginary quadratic
extension Mx = F [z] ⊂ F ⊗Q C of F (a CM field over F ). We write O = Ox

for the integer ring of Mx and Ox = {α ∈ Ox|αLz ⊂ Lz} (the order of Lz =
O∗+Oz). Let Tx = Tz be the (abstract) group scheme ResOx/ZGm (which is an

abstract torus over Z[ 1
D ] for the discriminantD of Ox). We assume p - D for the

prime p (so, we assume that Lz⊗ZZp = Ox⊗ZZp andOx⊗ZZp = Ox⊗ZZp). The
regular representation ρz : Tx(Q) = M×

x → G(Q) given by ( αzα ) = ρz(α) ( z1 )
gives rise to a representation Tx/Z[1/D] → G/Z[1/D] because (1, z) gives rise to a

basis of Lz ⊗Z Z[ 1
D ]. Since (1, z) gives a basis of Lz ⊗Z Ẑ[ 1

D ] over Ẑ[ 1
D ] for the

discriminant D of Ox, we may regard ρz as a representation ρ̂z : Tz → G defined
over Ẑ[ 1

D
]. Now conjugating by g, we get ρ̂x : Tx/A(∞) → G/A(∞) defined over

A(∞) given by ρ̂x(α) = g−1ρ̂z(α)g. Here we used the fact that A(∞) = Ẑ[ 1
D ]⊗ZQ.

We assume that Ax has complex multiplication by Ox; that is, under the action
of Tx(Ẑ) = Ô×

x via ρ̂x, L̂ ·g∩F 2 is identified with a fractional ideal of Mx prime
to p. On the other hand, the level structure ηx = ηz ◦ g identifies T (Ax) with

L̂ · g = L̂c for a polarization ideal c prime to p.
We let G(Q) act on the column vector space V = F 2 through the matrix

multiplication. The action of Tx via ρz on V makes V a vector space over Mx of
dimension 1. Then the subspace Vx = V ⊗Q C on which hz acts by its restriction
µx = hz|Gm×1 is preserved by multiplication by Mx, yielding an isomorphism
class Σx of representations of Mx. Since the isomorphism class Σx is determined
by its diagonal entries σi : Mx ↪→ C, we may identify Σx with a formal sum∑

i σi. Since µx × µx = hz, we find that {σi, cσi}i=1,...,d (d = [F : Q]) is the
total set Ix of complex embeddings of Mx into C. Taking the fiber A = Ax at
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x ∈ Sh(C) of the universal abelian scheme over Sh, we find that A has complex
multiplication by Mx with CM type (Mx,Σx). Let (M ′

x,Σ
′
x) be the reflex of

(Mx,Σx) as defined in [ACM] Chapter IV. Then a 7→ ∏
σ∈Σ′

x
σ(a) induces a

morphism rx : T ′ = ResM ′
x/QGm → Tx ⊂ G. The field M ′

x is by definition the
field of definition of µx : Gm → G. The map rx can be realized as

rx : T ′
x = ResM ′

x/QGm
µx−−→ ResM ′

x/QTx
Norm−−−−→ Tx.

For each b ∈ T ′
x(A

(∞)) = (M ′
x,A(∞))

×, we have the Artin reciprocity image

[b,M ′
x] ∈ Gal(M ′

x
ab
/M ′

x), where M ′
x
ab

is the maximal abelian extension of M ′
x.

Since Tx(R) is the stabilizer of z, [z, γg] = [γ−1(z), g] = [z, g] for γ ∈ Tx(Q), and
hence [z, g] 7→ [z, rx(b)g] only depends on [b,M ′

x] by class field theory. Also we
find that elements of ρ̂x(Tx(Q)) ⊂ G(A(∞)) stabilize the CM point [z, g] under
right multiplication. Now we are ready to state Shimura’s reciprocity law for
the CM point [z, g] (see [ACM] 18.6, 18.8 and [M] II.5.1):

Proposition 3.2. Let x = [z, g] be a CM point in Sh(G,X)/Q. Then the point

x is M ′
x
ab

-rational, and for any b ∈ T ′
x(A

(∞)), we have

[b−1,M ′
x]([z, g]) = [z, g]ρ̂x(rx(b)) = [z, ρ̂z(rx(b))g]

and [z, g]ρ̂x(γ) = [z, ρ̂z(γ)g] = [γ−1(z), g] = [z, g] for any γ ∈ Tx(Q).

3.3 Reciprocity Law for Deformation Spaces

We suppose that p is unramified in F/Q. We start with a fixed CM point
x = [z, g] and the associated abelian variety (Ax, λ, i, η) of CM type (Mx,Σx).
Unless confusion seems likely, we write (M,Σ) for (Mx,Σx). We suppose that
i : O ↪→ End(Ax) extends to i : O ↪→ End(Ax) for the integer ring O of M . Take
W = W (Fp) and consider the reduction A0 modulo (p) of Ax. Suppose that A0

is ordinary. Diagonalizing the action of M on Lie(Ax)/W , we may assume that
σ ∈ Σ embeds O into W . We write vi (i = 1, 2, · · ·) for the p–adic place of M
associated to σ ∈ Σ. We write Σp = Σx,p for the set of places vi. This condition
of A0 being ordinary is equivalent to

(ord) Each v ∈ Σp is not equivalent to v ◦ c for 1 6= c ∈ Gal(M/F ).

This implies that all prime factors of p in F split in M . We pick a base of
MA(∞) over FA(∞) and identify MA(∞) with V (A(∞)) = F 2

A(∞) so that the fixed

lattice in the definition of P(p)
K is a fractional ideal of M . If x = [z, g], the choice

of g is tantamount to the choice of the base of MA(∞) over FA(∞) . Then the
polarization λ induces an alternating pairing 〈α, β〉 = TrM/Q(δαc(β)) for the
unique non-trivial automorphism c of M/F . Here δ ∈M is a purely imaginary
element δ =

√
−∆ for a totally positive element ∆ ∈ F with Im(σ(δ)) > 0

for all σ ∈ Σ. We then have Ax(C) = L\ (M ⊗Q R) for a fractional ideal
L ⊂M identifying M ⊗Q R with CΣ through a⊗ t 7→ (σ(a)t)σ∈Σ. This induces

η(p) = η
(p)
z ◦ g(p) : M ⊗Q A(p∞) ∼= V (p)(Ax). Since K is maximal at p, we may
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assume that Lp = Op = O ⊗Z Zp (so, gp ∈ G(Zp) because Lz ⊗Z Zp = Op

inside Mp). We are dealing with Kottwitz’s moduli problem (as in (3.5) in 3.1).

By reduction mod p, η(p) induces a prime-to-p level structure η
(p)
0 on A0. Let

(A, ιA, λ)/R be any deformation of (A0, ι0, λ0)/F (F = Fp) over Spec(R) for an
artinian W–algebra R. Since A[N ] for N prime to p is étale over Spec(R), the

level structure η
(p)
0 at the special fiber extends uniquely to a level structure

η
(p)
A on A/R. Thus the level structure is insensitive to the deformation of the

underlying triple (A0, ι0, λ0). Therefore, for the deformation functor:

P̂(R) =
[
(A, ιA, i, λ, η

(p)
A )/R

∣∣(A, ιA, i, λ, η(p)
A ) mod mR = (A0, ι0, i0, λ0, η

(p)
0 )
]
,

the forgetful morphism: (A, ιA, i, λ, η
(p)
A )/R 7→ (A, ιA, i, λ)/R of P̂ into the orig-

inal deformation functor P̂A0,i0,λ0 induces an isomorphism of functors; so, they
have identical deformation spaces.

We consider the Serre–Tate deformation space Ŝ representing P̂. We take
the Kottwitz model Sh(p)(G,X)/W over W and consider x = [z, g] as a point of

Sh(p)(G,X)(W ). Let Shord = Shord(G,X) = Sh(p)(G,X)[ 1
E ], that is, we invert

over Sh(p) a lift E of a power of the Hasse invariant H . The formal completion
Shord∞ of Shord along Shord1 = Shord⊗W F is uniquely determined independently
of the choice of E and gives the ordinary locus of A. Writing Shord for Sh(p)[ 1

E ]
is therefore a slight abuse of notation. We assume that x gives rise to a closed
point of Shord∞ .

Since Ŝ carries the universal deformation A = (A, i, λ, η(p))/bS which is an

element of P(p)(Ŝ), by the universality of the Shimura variety, we have an
inclusion

ϕ : Ŝ ↪→ Shord∞ (G,X) such that ϕ∗Aord = A (3.14)

for the universal quadruple Aord over Shord∞ (G,X). Since η(p) lacks the informa-

tion about A0[p
∞], the identification of Ŝ with Ĝm ⊗Z d−1 is not yet specified.

Since Ŝ is connected, we have the connected component V/W ⊂ Sh
(p)
/W

containing the image of ϕ. Then V/F = V ⊗W F is the connected compo-

nent containing the point x carrying (A0, ι0, i0, λ0, η
(p)
0 ). We can lift the mor-

phism ϕ to the Igusa tower over the formal completion V ord∞ of V [ 1
E

]/W along

V ord/F = V [ 1
E

]/F. The Igusa tower Ig/V ord
∞

studied in [PAF] Chapter 8 is given by

IsomO(Fp/Op/V ord
∞

,Aord[p∞]et
/V ord

∞
) for the universal abelian scheme Aord over

V ord∞ . Strictly speaking, in [PAF], we studied principally the Igusa tower on the
neutral component of Shord∞ , but here we study it over V ord∞ , because we need to
study it over the component containing the fixed CM point x ∈ Shord∞ . We can
also write Ig/V ord

∞

∼= IsomO(µp∞ ⊗Z d−1
/V ord

∞
,Aord[p∞]◦/V ord

∞
) for the connected

component Aord[p∞]◦ of Aord[p∞] (Cartier duality). Let p =
∏
v∈Σp

pv for the

prime pv associated to the valuation v ∈ Σp. Then
⋃
j(p

c)−j/O ∼= Ax[(p
c)∞],

which induces

ηordp : Op ∼= Opc ∼= HomZp(Qp/Zp, Ax[(p
c)∞]) = TAx[p

∞]et.
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We can therefore extend η(p) to

ηord : Op × (Mx ⊗Q A(p∞)) ∼= TAx[p
∞]et × V (p)(Ax).

Let K̂ be the field of fractions ofW . Over the field K̂[µp∞ ], we can further extend
ηordp to ηp : Op×Op = Op

∼= TAx[p
∞] by identifying

⋃
j p

−j/O ∼= Ax[p
∞]. This

choice is tantamount to the choice of gp which brings the base of Lp to the base
given by the two idempotent 1p := (1, 0) of Op and 1pc := (0, 1) of Opc in
Op ×Opc = Op ×Op. We write η = ηp × η(p) and ηord = ηordp × η(p).

We can think of the deformation of (A0, i, ι0, λ0, η
ord
0 )/Fp

for ηord0 = ηord

mod p. The p-part of the level p–structure ηord0 provides the canonical identi-

fication of the deformation space Ŝ with Ĝm ⊗Z d−1. For any complete local
W -algebra C and any deformation A/C of A0, A[p∞]et is étale over Spec(C);
so, again the deformation is insensitive to the ordinary level structure. Thus we
get a canonical immersion:

ϕηord
0

: Ĝm ⊗Z d−1 ↪→ Ig such that ϕ∗Aord = Aord. (3.15)

Here Aord (resp. Aord) denotes the universal ordinary quadruple over Ig (resp.

the universal quintuple over Ŝ).
The abelian variety Ax = (Ax, i, λ, η

ord) of CM type (M,Σ) is the fiber

of Aord at a point q0 ∈ Ĝm ⊗Z d−1(W ). Here q0 is an Op–bilinear form on
TA0[p

∞]et. Since any element a ∈ i0(O) ⊂ End(A0/Fp
) can be lifted to Ax, by

the Serre–Tate theorem, we have

q0(i(α)y, y′) = q0(y, i(α)y′) (α ∈ O), (3.16)

where α = c(α) for 1 6= c ∈ Gal(M/F ). This forces q0 to be 0, that is, q0(y, y
′)

is the constant 1 of the group Ĝm⊗d−1 identically, because q0 is also Op–linear
and Op = Op. Indeed, the connected étale exact sequence of Ax[p

∞] does split
by complex multiplication, and hence q0 = 1 by definition.

We now compute the effect of the isogeny i0(α) : A0 → A0 (A0 = Ax/F and

α ∈ O) on the deformation space Ŝ. Pick a deformation A/R of A0 = Ax/F for
an artinian R ∈ CL/W , and we look into the following diagram with exact rows:

Hom(TA0[p
∞]et, Ĝm(R)) ↪→ A[pn](R)

π−→ A0[p
n]et(R)

α
x yα−c

Hom(TA0[p
∞]et, Ĝm(R)) ↪→ A[pn](R)

π−→ A0[p
n]et(R).

(3.17)

Take u = lim←−n un ∈ TA0[p
∞]et, and lift it to v = lim←−n vn for vn ∈ A(R) (but

vn 6∈ A[pn]). Then

q(u) = lim←−
n

qn(un) ∈ Hom(TA0[p
∞]et, Ĝm) for qn(un) =“pn”vn.

Note that the identification of Hom(TA0[p
∞]et, Ĝm) with the formal group A◦

of A is given by the Cartier duality composed with the polarization; so, if α is
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prime to p, α sends q to qα
1−c

= lim←−n α(“pn”α−c(vn)).Thus the effect of α on

q is given by q 7→ qα
1−c

. Once the identification of Ŝ with Ĝm ⊗ d−1 is given
(that is, a level p∞–structure ηord0 : Fp/Op ∼= A0[p

∞]et is chosen), α ∈ O prime

to p acts on the coordinate t (of Ĝm ⊗ d−1) by t 7→ tα
1−c

.

Write Ẑp[O] for the formal completion of Zp[O] at the origin 1 ∈ S(F) for

S = Gm ⊗ d−1. Identify Ẑp[O] with the ring made up of series:
∑
ξ∈O a(ξ)t

ξ

for a(ξ) ∈ Zp (here Ẑp[O] ∼= Zp[[(tξ1 − 1), . . . , (tξd − 1)]] for a base ξ1, . . . , ξd

of O over Z). Let T = ResO/ZGm. Since Ĝm ⊗Z d−1 = Spf(Ẑp[O]) for the

completion at the origin 1 ∈ S(F) for S = Gm ⊗Z d−1, O×
p = T (Zp) acts on Ŝ

as follows: We have a character O → Ẑp[O]
×

with s 7→ ts. Then the variable

change t 7→ ts induces an automorphism of the formal group Ĝm ⊗Z d−1, and
all O–linear automorphisms are obtained in this way. On the points q of the
formal scheme Ĝm ⊗Z d−1(W ), the action induces q 7→ qs.

The inclusion O ↪→ O induces an identification of p-adic rings Op with
Op which we fix in this paper and use always in the sequel. Note that Op =
Op × Opc . This same inclusion: O ↪→ O induces an inclusion of Z(p)-tori

T ↪→ Tx. Let T := Tx/T . By the identification above, the map O×
(p) → O×

p

given by α 7→ α1−c induces an injective homomorphism

T (Z(p))→ O×
p = T (Zp). (3.18)

Thereby, the action of T (Zp) on Ŝ and that of T (Z(p)) are compatible. The

torus T (Z(p)) is isomorphic to the image (under ρ̂x) of Tx(Z(p)) in E(G,X), and

its action on Ŝ factors through the action of E(G,X) on Ig(G,X) via (3.15).

The Op–module structure of Ŝ given by t 7→ ts therefore commutes with the

isogeny action of Tx on Ŝ.
By the level structure ηordp (and its dual), we identify A◦

x with Ĝm⊗d−1 and
Ax[p

∞]et with Fp/Op. In this way, we may identify the torus T with the diagonal
torus T δ of SL2 . The action of t ∈ T (Zp) = O×

p on the quotient Ax[p
∞]et is

given by the multiplication by t ∈ O×
p , and hence the two tori are identified by

T (Zp) 3 t 7→
(
t−1 0
0 t

)
∈ T δ(Zp) ⊂ SL2(Op) taking the lower diagonal entry of

T δ as the coordinate of the quotient.
Change of level structure ηord 7→ ηord ◦a for a ∈ T (Zp) is given by the action

of an element
(
a−1 0
0 a

)
of the diagonal torus in T δ(Ẑ) ⊂ SL2(F

(∞)
A ), which moves

the point x ∈ Ig to a different point y = a(x) étale over the image of x in ShK
(for K = G(Ẑ)) and brings the canonical coordinate at x to that of the image
y. In other words, the action of a by the change of ηord to ηord ◦ a:

(A, i, ι, λ, ηord) 7→ (A, i, ι, λ, ηord ◦ a)

sends the deformation space Ŝ centered at (A0, i0, ι0, λ0, η
ord
0 ) on x to the differ-

ent deformation space Ŝa centered at (A0, i0, ι0, λ0, η
ord
0 ◦a) on y = a(x) (as long

as the two quintuples are not isogenous). The action of ρ̂x : Tx(Q) ↪→ G(A(∞))
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and the action of T δ(Zp) via change of level structure are compatible, since the
intersection of the images of the two groups in E(G,X) is trivial (and the p-
component T δ(Zp) and the projection of ρ̂x(Tx(Q)) to the p-component G(Qp)
are both diagonal).

By the definition of ρ̂x given above, we have α ◦ ηord = ηord ◦ ρ̂x(α) au-
tomatically. If ρ̂x(α) ∈ Tx(Z(p)), it acts on Ig(G,X) as an automorphism,
while ρ̂x(α) ∈ Tx(Q) may expand or shrink OIg because it would induce a
morphism like the Frobenius map on the special fiber. The action of τ (ρ̂x(α))

sends the canonical coordinate t into tα
1−c

(identifying α with its image in
Op =

∏
p∈Σp

Op = Op).

Lemma 3.3. If h ∈ E(G,X) fixes x and is an image of h̃ ∈ G(A(∞)) with

h̃p ∈ G(Zp), then it is induced by an endomorphism α ∈ EndQ
F (Ax) = M , and

h induces t 7→ tα
1−c

.

Proof. Since h fixes x, it has to preserve Ig and Ŝ by the irreducibility of Ig (a

theorem of Ribet; see [PAF] Theorem 4.21). Take h̃ ∈ G(A(∞)) with h̃p ∈ G(Zp)

projecting down to h. Thus h̃p is in the upper triangular Borel subgroup B(Zp)
by [PAF] Corollary 4.22. The Borel subgroup B is upper triangular with respect
to the coordinate given by ηord (and its dual) under which we identified T and
T δ . By the universality of Sh/Q, there exists an isogeny α : Ax → Ax such that

η(p) ◦ h̃ = α ◦ η(p) and ηord ◦ h̃ = α ◦ ηord. Since α ∈ End(Ax) = O, we have

h̃ = ρ̂x(α) modulo Z(Q), and therefore, h is the image of ρ̂x(α) in E(G,X). The
assertion follows from the above discussion.

Summing up the above discussion, we have the following fact:

Proposition 3.4. Let a ∈ T (Zp) for T = ResO/ZGm. Then the action:

(A, i, ι, λ, ηord) 7→ (A, i, ι, λ, ηord ◦ a)

induces an isomorphism: Ŝa ∼= Ŝ sending f =
∑

ξ c(ξ)t
′ξ ∈ Γ(Ŝa,ObSa

) to

f ◦a(t) =
∑

ξ c(ξ)t
ξ ∈ Γ(Ŝ,ObS), where t (resp. t′) is the canonical coordinate of

Ŝ (resp. Ŝa). For an isogeny α ∈ EndQ
F (Ax) regarded as an element of Tx(Q)

by ρ̂x, we have t ◦ τ (ρ̂x(α)) = tα
1−c

.

Here is how to relate the characteristic 0 Shimura variety ShUn of level Γ1(p
n)

with the characteristic p Igusa tower of level pn. A more localized argument
can be found in [H09]. Let W = i−1

p (W (F)) ⊂ Q (a strict henselization of

Z(p) inside Q). We regard Sh(p) as a (pro-)scheme over W. Let K (resp. K̂)
be the field of fractions of W (resp. W ). Consider the quotient ShU∞/K =
Sh(G,X)/U∞ for the stabilizer U∞ = Up,∞ ⊂ G(Zp) of the infinity cusp. Thus
U∞ =

⋂
nUn and Un consists of elements g ∈ G(Zp) with g ≡ ( 1 ∗

0 ∗ ) mod pn.
Thus ShU∞/K = lim←−n ShUn/K, and ShUn/K (n = 1, 2, . . . ,∞) can be written as
the scheme representing the functor

IsomO(µpn ⊗ d−1

/Sh
(p)

/K

,A[pn]
/Sh

(p)

/K

),
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because the level p-structure ηp mod Un for a test object (A, λ, η mod U∞)/S
can be given by an O-linear closed immersion: µp∞ ⊗d−1 ↪→ A[p∞] (⇔ Op(1) =
Tp(µp∞⊗d−1) ↪→ TpA) if n =∞ and an O-linear closed immersion: µpn⊗d−1

/S ↪→
A[pn]/S if n <∞. Here IsomO(G/B,H/B) for finite flat O-modules (or Barsotti-
Tate O-modules) G andH over a base B is a contravariant functor from B-SCH
to SETS which assigns a B-scheme R the set of O-linear closed immersions
G ×B R ↪→ H×B R defined over R. By the theory of the Hilbert scheme (e.g.
[PAF] 6.1.5–6), the above functor IsomO(G/B,H/B) is representable by a scheme
quasi-finite affine over B if G andH is finite flat overB, because flatness and pro-
jectivity of G/B and H/B (following from finiteness) is the requirement of repre-

sentability by the Hilbert scheme. Put In = IsomO(µpn ⊗ d−1

/Sh
(p)

/W

,A[pn]
/Sh

(p)

/W

).

We perform the same construction over the category of (p-adic) formal
schemes over Shord∞ . We then get the formal completion Ign(G,X) of In along
its special fiber over F:

Ign(G,X) = IsomO(µpn ⊗ d−1
/Shord

∞
,A[pn]/Shord

∞
)

∼= IsomO(µpn ⊗ d−1
/Shord

∞
,A[pn]mult/Shord

∞
)

∼= IsomO(A[pn]et/Shord
∞
, p−nO/O/Shord

∞
) (Cartier duality)

for the multiplicative part A[pn]mult/Shord
∞

of Aord [pn]/Shord
∞

(which is only well

defined over the formal scheme Shord∞ ). The Igusa tower Ig/V ord∞ we discussed
earlier is the pull back of the full Igusa tower Ig = lim←−n Ign(G,X) to the integral

formal subscheme V ord∞ ⊂ Shord∞ . Though Ign(G,X) is étale finite over Shord∞ ,
In/Sh

(p) is étale quasi-finite over Sh(p) (because elements In over non-ordinary
locus in characteristic 0 fiber of In does not extend to characteristic p fiber). In
any case, by definition In ⊗W K = ShUn/K.

We look at the normalization In = In(G,X) of the scheme Shord/W in ShU∞/K.

Since In/Sh
(p) is étale quasi-finite, In is normal. Thus OIn ⊃ OIn and OIn,x ⊃

OIn,x at all closed points x ∈ In; in other words, OIn is a localization of OIn

over the topological space of In; so, we have an open immersion In ↪→ In because
of In ⊗W K = ShUn/K.

Since V ord∞ is a connected component of Shord∞ , Ig/V ord∞ (defined earlier) is a
closed subscheme of Ig(G,X) (and actually a connected component of Ig(G,X)
by a result of Ribet). The n-th layer

Ign(G,X) := IsomO(µpn ⊗ d−1
/Shord

∞
,Aord[pn]mult/Shord

∞
)

(∗)∼= IsomO(O/pnO/Shord
∞
,Aord[pn]et/Shord

∞
)

is finite étale over the formal scheme Shord∞ , and Ig(G,X) = lim←−n Ign(G,X).

The isomorphism (∗) is given by sending an isomorphism of the left-hand-side
to its Cartier dual inverse. Each layer Ign(G,X) is finite over Shord∞ . As we

have seen, Ign(G,X) is the formal completion În of In along its special fiber
In/F = In ⊗W F = Ign(G,X)/F ⊂ In/F and hence is an open formal subscheme
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of the formal completion În of In along its special fiber. In summary, the
special fiber In/F over F has Ign(G,X)/F as an open subscheme of maximal
dimension, the formal scheme Ig(G,X)/W is the formal completion of I∞/W

along Ig(G,X)/F, and Î∞ is an open formal subscheme of the formal completion

Î∞ along its special fiber.
The quadruple Ax = (Ax, i, λ, η) of CM type (M,Σ) gives a unique point

x ∈ Sh(G,X)(K[µp∞]) and the ordinary quadruple Ax = (Ax, i, λ, η
ord) gives

a unique integral point x ∈ I∞(W). Consider the W–point x ∈ I∞. Then
writing Ox/W for the stalk at the closed point x̃ = (x mod mW) ∈ I∞(F) (for

the maximal ideal mW ⊂ W), we have an isomorphism Ŝ = Spf(Ôx/W ), where

Ôx = lim←−nOx/m
n
x for the maximal ideal mx of Ox/W . Since Ŝ = Ĝm ⊗Z d−1,

the endomorphism ring End(Ŝ) as a formal group is isomorphic to Md(Zp).

By t 7→ ta, a ∈ Op acts on Ŝ; so, we write EndO(Ŝ) for the commutant of

ResOp/Zp
Ga(Zp) in End(Ŝ). Then EndO(Ŝ) ∼= Op. For each f ∈ ObS and a ∈

O×
p , we write a(f) = f◦a. Recall the torus T defined by Tx/T . We may consider

the reversed exact sequence of tori over Z(p): 1→ T → Tx
norm−−−→ T → 1, where

the map “norm” is induced by the norm map: O×
(p) → O×

(p). The character

Tx 3 α 7→ α1−c factors through T with kernel T . The inclusion ρ̂x : Tx ↪→ G
(over A(∞)) induces ρ : M×

x → E(G,X) (and by abusing the symbol, we have
ρ : T (Q) ∼= ρ̂x(Tx(Q))/Z(Q) → E(G,X)). Let D be the stabilizer in E(G,X) of
the generic point of the irreducible component of Ig(G,X)/F containing x. As
seen in [PAF] Corollary 4.22, we may identify D with

D =

{
h ∈ G(G,X)

∣∣hp is upper triangular and det(h) ∈ Q×
p Z(Q)Z(R)+

}

Z(Q)G(R)+
.

Here D contains ρ̂x(Tx(Q)), ρ̂x(h)p (h ∈M×
x,p) is in the diagonal torus in D and

ρ̂x(T (Q)) is a discrete subgroup of D.

Corollary 3.5. If α ∈ O×
(p)

(∼= Tx(Z(p))), then τ (ρ̂x(α)) fixes x and preserves

Ox/W . If τ (h) for h ∈ E(G,X) fixes x, then h is in the image of M×
x . Moreover

writing ι for the embedding Ox/W ↪→ ObS associated to (Ax, λ, i, η
ord), we have

α1−c(ι(f)) = ι(τ(bρx(α))f). The effect of ρ̂x(α) ∈ E(G,X) (for α ∈ M×) on the

canonical coordinate t ∈ Ŝ is given by t 7→ tα
1−c

.

Since the action of Tx(Q) (x = [z, g]) on Ŝ factors through Tx(Q)/T (Q) =
T (Q) by α 7→ α1−c, we regard ρ(T (Z(p))) as the isotropy group in E(G,X) of

Ŝ ↪→ Ig(G,X) (by Lemma 3.3). However we need to keep in mind the fact that

the image of α ∈ Tx(Z(p)) in T (Z(p)) acts on Ŝ through the action of τ (ρ(α))

whose action on q ∈ Ŝ is given by q 7→ qα
1−c

.

3.4 Rigidity for Formal p-Divisible Groups

We set up some notation to quote a result of Chai (Theorem 4.2 in [C3] and
Theorem 6.6 in [C4]). Let k be an algebraically closed field of characteristic
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p > 0. Let T̂ be a finite dimensional p-divisible smooth formal group over k.
Let EZp = End(T̂), and let E = EZp⊗Zp Qp. Denote by E× the linear algebraic
group over Qp whose Qp-rational points is E×. Let G be a connected linear
algebraic group over Qp, and let ρ : G → E× be a homomorphism of algebraic
groups over Qp. Let G(Zp) = ρ−1(E×

Zp
). The compact p-adic group G(Zp)

operates on the p-divisible formal group T̂ via ρ.

Theorem 3.6 (C.-L. Chai). Assume that the trivial representation is not a

subquotient of the linear representation (ρ, E). Suppose that Ẑ is an integral

closed formal subscheme of the p-divisible formal group T̂ which is closed under
the action of an open subgroup U of G(Zp). Then Ẑ is stable under the group

law of T̂ and hence is a p-divisible smooth formal subgroup of T̂.

A proof of this fact is given as [C4] Theorem 6.6 (see also [C3] Theorem 4.2).
We now interpret this result in the following setting. In the sequel, k = F = Fp.
We keep the notation introduced in the previous subsection. In particular, we
recall the torus T fixing the CM point x. Let L be a Zp–free module of finite
rank on which T (Zp) acts by a Qp–rational linear representation. We take

(G/Qp
, T̂/k) in the theorem to be (T/Qp

, T̂L/F = Ĝm⊗Zp L). Then T̂L/F inherits

the action of T from L; so, we get ρ : T/Qp
→ E for E = End(T̂L) = EndZp(L).

Then we get from the theorem the following lemma:

Lemma 3.7. Suppose that the trivial representation of T (Zp) is not a subquo-

tient of L ⊗Zp Qp. If Ẑ/F is an integral closed formal subscheme of T̂L stable
under the action of an open subgroup U of T (Zp). Then there exists a Zp–direct

summand L bZ ⊂ L stable under T (Zp) such that Ẑ = Ĝm⊗Zp L bZ ; in particular,

Ẑ is a smooth formal subtorus of T̂L.

We recall the definition of Tate-linear subvarieties in the Hilbert modular
variety given in [C4] Section 5. Fix a closed point x ∈ Shord/F (F = Fp) carrying a

triple (Ax, λ, η
(p)) (thus Ax is of CM type (M,Σ) and satisfies (ord) in 3.3). Let

V be the irreducible component of Sh
(p)
/F containing x, and put V ord = V ∩Shord.

Let m ≥ 1 be a positive integer. Suppose that Z is an irreducible closed
subvariety of (V ord)m = V ord × V ord × · · · × V ord defined over F.

(T1) Let z = (z1, . . . , zm) (zj ∈ V ord) be any closed point of Z. We say that Z
is Tate-linear at z if the formal completion of Z at z is a formal subtorus

of the Serre–Tate formal torus
∏m
j=1 V̂

ord
zj
∼= (Ĝm ⊗Z O)m,

(T2) We say that Z is Tate-linear if it is Tate-linear at every closed point of Z.

(T3) Denote by f : Y → Z the normalization of Z. We say that Z is weakly
Tate-linear if for every closed point y of Y , the morphism induced by f on
the formal completion Ŷy of Y along y is an isomorphism of Ŷy to a formal

subtorus of the Serre–Tate formal torus (Ĝm ⊗Z O)m (at f(y) ∈ Vm).

Obviously, we can modify the above definition to define TateO-linearity insisting
O-linearity in (T1–3). In [C4], the definition of Tate linear subvarieties is given
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for a closed subvariety of the ordinary locus of the Siegel modular variety. Since
(V ord)m has a canonical closed immersion into a Siegel modular variety (e.g.,
[PAF] Corollary 7.2 and 8.4.2), this definition is equivalent to Chai’s definition
for closed subvarieties of the Hilbert modular variety. It is conjectured by Chai
that a weakly Tate linear subvariety is actually Tate linear (see [C4] 5.3.1)),

which has been shown to hold for our V ⊂ Sh(p)
/F (see [C4] Theorem 8.6).

If Z is a variety with a morphism π : Z → (V ord)m and if for a closed point

z ∈ Z, π induces an embedding of Ẑz into the formal completion of (V ord)m

at π(z), we can still speak of Tate-linearity (and weak Tate-linearity) at z of Z
(we shall make this abuse often later).

3.5 Linear Independence

We prove a key result on linear independence of arithmetic modular functions
(Theorem 3.20 below), respectively, forms (Corollary 3.21 below) and their im-

age under a transcendental automorphism of the deformation space Ŝ over W .
We keep the assumption of unramifiedness of p in F/Q and the notation intro-
duced in 3.3. Thus d−1

p = Op, and we have

Ŝ = Ĝm ⊗Z d−1 = Ĝm ⊗Zp d−1
p = Ĝm ⊗Zp Op = Ĝm ⊗Z O,

where Ĝm denotes the completion of Gm overW along the origin 0 in the special
fiber at p. Thus the definition of the Tate linearity of the previous section applies
to this case. Recall that M/F is the fixed CM quadratic extension of F with
integer ring O, and x ∈ Ig(F) is the CM point corresponding to an ordinary
abelian variety with complex multiplication of type (M,Σ). We may assume
that the point x has expression x = [z, g] = [z, 1] · g for g ∈ G(Zp × A(p∞)).
Indeed, we can choose the CM abelian variety Ax so that its lattice L = Lz · g
(which is a fractional M -ideal prime to p) is given by c∗ + Oz for a fractional
F -ideal c prime to p. By our choice, Lz ⊗Z Zp = Op = Op ⊕ Opc ; so, we
may choose g with ηx = ηz ◦ g so that gp ∈ G(Zp) is the matrix of change of
base from (1, z) ∈ F 2

p to the basis (1p, 1pc) ∈ F 2
p for the idempotents 1p ∈ Op

and 1pc ∈ Opc . The level p∞-structure ηordp (of Ax) sends a ∈ Op to a · 1pc

identifying Ax[p
∞]et with Mp/Opc by Lz ⊗Z Zp = Op ⊕Opc . For this choice

x = [z, g], we recall the representation ρ̂x : Tx → G defined over A(∞) given at
the beginning of Section 3.2 and the quotient torus T (Z(p)) = Tx(Z(p))/T (Z(p))
defined just above (3.18). As studied in Lemma 3.3, ρ̂x(T (Z(p))) gives the

stabilizer of x = [z, g] in G(Zp × A(p∞))/Z(Z(p)). We simply write ρ for ρ̂x
hereafter.

For each open compact subgroup K of G(A(∞)) such that K = Kp ×K(p)

with Kp = GL2(Op), let VK be the geometrically irreducible component con-
taining x in the reduction (Sh(p)/K)/F modulo p of the Kottwitz model. Let

V = lim←−K VK for K running through open compact subgroups of G(A(∞)) maxi-
mal at p. Strictly speaking, the point x gives rise to a projective system of points
xK ∈ VK(F) (the image of x in VK ), but we write this point as x ∈ VK(F).
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The formal completion Ŝ of V along x is isomorphic to Ĝm ⊗ O whose au-
tomorphism group is isomorphic to O×

p . Through the injective homomorphism
(3.18): α 7→ α1−c, we regard T (Z(p)) as a subgroup of O×

p , identifying Op with
Op by the inclusion O ↪→ O.

Let OV,x = lim−→K
OVK,x be the stalk of V at x, and let S = Spec(OV,x).

The local ring OV,x is a dense subring of the affine ring ÔS of Ŝ.

Take a1, . . . , am ∈ O×
p . By the action of aj on Ŝ (and hence on ÔS), we have

an algebra homomorphism

φ :
︷ ︸︸ ︷
OV,x ⊗F · · · ⊗F OV,x → ÔS sending f1 ⊗ · · · ⊗ fm to

m∏

j=1

aj(f) ∈ ÔS.

(3.19)
If aj ’s (j = 1, . . . , m) are pairwise distinct modulo T (Z(p)), we would like to
prove that φ is injective. Thus for a nonconstant modular function f ∈ OV,x,
{a1(f), . . . , am(f)} are linearly independent over F. Since f is a ratio of two
modular forms, this is not too far from the claim (made in the introduction) that
{a1(E), . . . , am(E)} are linearly independent over F for a suitable Eisenstein
series E. Thus we study Ker(φ) for a1, . . . , am ∈ O×

p .
Since ρ(T (Z(p))) fixes x (Lemma 3.3), T (Z(p)) acts on OS by ring auto-

morphisms, and by Corollary 3.5, this action is compatible with action of O×
p

via the embedding T (Z(p)) ↪→ O×
p . Thus we have φ(α(f1) ⊗ · · · ⊗ α(fm)) =

α1−c(φ(f1 ⊗ · · · ⊗ fm)) for all α ∈ T (Z(p)). In other words, the closed sub-
scheme Spec(Im(φ)) ⊂ Sm = S × · · · × S is stable under the diagonal action
of T (Z(p)) on Sm. Thus we study in the following couple of propositions the
(local) structure of a closed subscheme of Sm stable under the diagonal action
of T (Z(p)). After determining the structure of such formal subschemes, we will
globalize the result to reach our desired conclusion of the injectivity of φ if ajs
are independent.

Since Ker(φ) is a prime ideal of OV,x⊗ · · ·⊗ OV,x stable under the diagonal
action of T (Z(p)), it is induced by an irreducible closed (pro-)subscheme X ⊂ V
passing through xm = (x, x, . . . , x). In other words, X is the Zariski closure in
V m of Spec(OV,x⊗· · ·⊗OV,x/b) for the prime ideal b = Ker(φ). We take a more
general setting specified as follows (we use the following notation throughout).

(N0) Let S = Spec(OV,x)/F and SK = Spec(OVK ,x)/F with their formal com-

pletion Ŝ and ŜK along x isomorphic to Ĝm ⊗Z d−1 = Ĝm ⊗Z O;

(N1) For a prime ideal b ⊂ (OV,x ⊗ · · · ⊗ OV,x) (the m-fold tensor product)
stable under a p-adically open subgroup T of T (Z(p)), we write X/F =
Spec(OV,x ⊗ · · · ⊗ OV,x/b) ⊂ Sm and let Y � X be the normalization;

(N2) X̂ ⊂ Ŝm is a formal completion of X along its closed point xm = (x, . . . , x);

(N3) X/F is the Zariski closure of X in V m (so, X is stable under T and X̂ is
the formal completion of X along xm). Let Y � X be the normalization.
Write X = lim←−K XK ⊂ V

m with irreducible closed subschemes XK ⊂ VmK
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(the image of X in VmK ) and YK � XK for the normalization of XK
(so, Y = lim←−K YK), where K runs over open compact subgroups with

K = K(p) ×G(Zp).

We first deal with the simplest case of m = 1. We start with an irreducible
closed (pro-)subscheme X ⊂ V passing through x stable under the action of a
subgroup T of T (Z(p)) as above. DefineXord = X∩V ord andXord

K = XK∩V ordK .
We want to prove thatX = V if dimX > 0, and as we will see after the following
proposition, this implies injectivity of φ. By the étaleness of OV,x/OVK,x, X̂ is

canonically isomorphic to the formal completion X̂K of XK at x.

Proposition 3.8. Let the notation and the assumption be as in (N0–3) with
m = 1. If dimX/F > 0, then we have X/F = V/F and XK/F = VK/F.

Proof. We first follow the argument in [C2] Sections 4 and 5. By the Serre–Tate
deformation theory and unramifiedness of p in F/Q (which implies dp = Op),
we have a canonical identification:

V̂/F
∼= Ŝ = Ĝm ⊗Z d−1 = Ĝm ⊗Zp d−1

p =
∏

p∈Σp

Ĝm ⊗Zp Op,

where V̂ is the formal completion of V along x. For an open compact subgroup
K maximal at p (so that Ig/V ordK is étale at x), the above identity induces

V̂K/F
∼= Ŝ = Ĝm ⊗Z d−1 =

∏

p∈Σp

Ĝm ⊗Zp Op.

Since OXK ,x is a localization of an F-algebra of finite type, it is an excellent ring
(see [EGA] IV.7.8.3 (ii) and (iii)). Since OXK ,x is an excellent integral domain,

X̂ ∼= X̂K = Spf(ÔXK ,x) is reduced (see [EGA] IV.7.8.3 (vii)).
As we have seen, an element α ∈ M× prime to p acts on the Serre–Tate

canonical coordinate by t 7→ tα
1−c

for the generator c of Gal(M/F ). By the

stability of X under T, the formal completion X̂ along the point x is stable un-
der the closure T of T. Since X̂ ∼= X̂K is a noetherian reduced formal scheme,
it has only finitely many irreducible components. Thus the stabilizer of each
irreducible component of X̂ is an open subgroup of T and hence is an open sub-
group of T (Zp). Applying Lemma 3.7 to Ŝ = T̂L (L = Op) and an irreducible

component I of X̂ = X̂K (which is reduced as we already remarked), we find

I =
∏

p∈ΞI

Ĝm ⊗Zp Op

for a subset ΞI ⊂ Σp. The formal scheme I is a smooth formal subgroup of Ŝ.
The group T (Z(p)) acts naturally on the normalization Y = lim←−K YK of X.

For a closed point y ∈ YK over x, OYK ,y (which is finite type over OXK ,x) is

excellent, and the formal completion ŶK is integral ([EGA] IV.7.8.3 (vii)). Thus
there is a unique point yI ∈ Y over x ∈ X such that the projection YK → XK
induces an isomorphism of the formal completion ŶyI along yI onto I.
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Let U be any of the (pro-)varieties Ig, V and VK . On U , the tangent bundle
ΘU is decomposed into the direct sum of eigenspaces under the O–action:

ΘU
∼= OU ⊗Z O locally, and ΘU =

⊕

p∈Σp

ΘU,p, (3.20)

where ΘU,p is a locally free OU ⊗Zp Op-module of rank 1 (see [C2] page 473).
To see this, let f : A → Z be an AVRM over a scheme Z/F. Then we have
the Kodaira-Spencer map κ : f∗ΩA/Z ⊗O⊗ZOZ f∗ΩA/Z → ΩZ/F (see [K3] 1.0).
The Kodaira-Spencer map κ is an isomorphism if A is the universal abelian
scheme over Z = U (see [K3] (1.0.21)); hence, f∗ΩZ/F

∼= O ⊗Z OZ and, taking
the dual, ΘU

∼= O⊗ZOZ . Therefore ΘU =
⊕

p∈Σp
ΘU,p for the Op⊗ZOZ-eigen

sub-bundles ΘU,p, and we obtain the expression (3.20).
Let A be the universal abelian scheme over VK , and write A = A×VK YK .

We again have the Kodaira-Spencer map κY : f∗ΩA/YK
⊗O⊗ZOYK

f∗ΩA/YK
→

ΩYK/F. Since I =
∏

p∈ΞI
Ĝm ⊗Zp Op, after taking the formal completion along

yI , this map induces an isomorphism

(
̂f∗ΩA/YK

⊗O⊗ZOYK

̂f∗ΩA/YK

)
⊗O

∏

p∈ΞI

Op
∼= Ω̂YK,yI

/F.

By this expression, via the normalization map: Y → X, the tangent space ΘbY
of Ŷ at yI is identified with ⊕p∈ΞI (Θp ⊗OV,x ÔY,yI), where Θp = ΘV,p. By
faithfully flat descent, we have ΘY ⊗OY OY,yI = ⊕p∈ΞI (Θp ⊗OV OY,yI). Thus
on an open dense subscheme YI ⊂ Y with yI ∈ YI , we have

ΘYI = ⊕p∈ΞI (Θp ⊗OV OYI ).

Since Y is irreducible, ∩IYI for I running over all irreducible components of X̂
is still open dense in Y . This implies that ΞI is independent of I; hence, X̂ is
integral and smooth, and we have

Ŷ = X̂ =
∏

p∈Ξ

Ĝm ⊗Zp Op (3.21)

for a subset Ξ of Σ. Therefore, X is smooth at x.
Suppose that Ξ 6= Σp and let p ∈ Σp − Ξ. We only need to prove that

VK = XK for a choice of an open subgroup K maximal at p. Choosing K
sufficiently small, we may assume that VK is smooth over F = Fp. Recall the
universal abelian scheme A/VK

. Define A = AK = A×VKXK . Write pF = F∩p,
and consider the pF –divisible group A[p∞F ].

We need here a lemma (Lemma 3.10 below) about an ordinary AVRM:
A → Z. In our setting, Z = XK , which is an irreducible excellent affine
scheme. Since p 6∈ Ξ, the p-divisible group A[p∞F ]/ bXK

splits canonically into a

direct sum A[p∞F ]◦ ⊕ A[p∞F ]et
/ bXK

. By the lemma, on an open dense subscheme

UK ⊂ XK the p-divisible group A[p∞F ]/UK
splits canonically into a direct sum

A[p∞F ]◦⊕A[p∞F ]et/UK
for the connected component A[p∞F ]◦ and the étale quotient

39



A[p∞F ]et. We now follow the proof of Theorem 8.6 in [C4] to get a contradiction
(and hence we conclude Ξ = Σp). Consider the decomposition A[p∞]/UK

=∏
p′∈Σp

A[p′
∞
F ]/UK

of the Barsotti-Tate group A[p∞]/UK
over UK . This étale-

connected splitting of A[p∞F ] over UK gives two orthogonal idempotents e◦ and
eet in EndUK (A[p∞F ]), with the following properties.

• The idempotents e◦ and eet commute with the action of O on A[p∞F ],

• e◦ + eet = id ∈ EndUK (A[p∞F ]),

• The image of e◦ is the multiplicative part of A[p∞F ], and the image of eet

is naturally isomorphic to the maximal étale quotient of A[p∞F ].

Thus, we have

EndO(A[p∞]/UK
) ⊃


⊕

p′ 6=p

Op


⊕

(
Ope

◦ ⊕Ope
et
)

) Op. (∗)

On the other hand, Theorem 2.6 of [J] tells us that

EndO(A[p∞]/UK
) = EndO(A/UK

)⊗Z Zp.

The endomorphism algebra EndQ(A/UK
) = EndO(A/UK

) ⊗ Q is isomorphic to
either a CM quadratic extension or F itself. Since Ξ 6= ∅ (⇔ dimX > 0),
EndO(A[p′F

∞
]/UK

) = Op′ for p′ ∈ Ξ, because A[p′F
∞

]/bGm⊗Op′
is the univer-

sal Barsotti-Tate group over Ĝm ⊗ Op′ ⊂ X̂ deforming Ax[p
′
F
∞]/F and hence

A[p′F
∞

]◦ ↪→ A[p′F
∞

] � A[p′F
∞

]et is non-split over UK . Thus EndQ(A/UK
) can-

not be a CM quadratic extension; so, EndQ(A/UK
) = F . This is a contradiction

(against (∗)), hence Ξ = Σp, and XK = VK as desired.

Corollary 3.9. Let the notation and the assumption be as in (N0–3) and as in
Proposition 3.8. In particular, m = 1 and b ⊂ OV,x is a non-maximal prime

ideal stable under T. Let b̃ be the unique prime ideal of OIg,x above b, and write

X = Spec(OV,x/b). Then b = 0, b̃ = 0 and X = Spec(OV,x); in particular, φ
for m = 1 in (3.19) is injective.

Proof. Let bK = b ∩ OVK ,x. Since OIg,x is étale over OVK ,x, we have a unique

prime ideal b̃ ⊂ OIg,x which is over bK . Thus b̃ is also stable under T, and we

have b̃ = 0 ⇔ b = 0 ⇔ bK = 0 for any open compact subgroup K maximal at
p. We consider the Zariski closure XK of Spec(OVK ,x/bK) in VK/F.

For any Zariski open neighborhood U ⊂ VK of x, put OU ∩ bK = Ker(Res :
OU → OVK ,x/bK). Then U ∩ XK is given by the spectrum relative to U :
SpecU(OU/OU ∩ bK ). Since OU ∩ bK is a (sheaf) prime ideal of OU , U ∩XK is
irreducible reduced, and hence XK is irreducible reduced. Thus

X = V ⇔ b = 0 (⇔ b̃ = 0)⇔ bK = 0⇔ XK = VK .

The irreducible reduced T-invariant closed subscheme X is either a single point
{x} or V itself by the above proposition, and hence we conclude b = 0; in
particular, Ker(φ) = 0, taking b to be Ker(φ).
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Lemma 3.10. Let A → Z be an ordinary AVRM with real multiplication by
O over a reduced excellent affine base scheme Z over Fp. For a closed point

s ∈ Z(Fp) and a formal completion Ẑ along s, if the p-divisible group A[p∞F ]×Z Ẑ
splits into a product of its connected component A[p∞F ]◦

/bZ and étale quotient

A[p∞F ]et
/bZ, then on an open subscheme U ⊂ Z containing s, the p-divisible group

A[p∞F ]/U canonically splits into A[p∞F ]◦⊕A[p∞F ]et/U for the connected component

A[p∞F ]◦/U and the étale quotient A[p∞F ]et/U .

Proof. The splitting, if it exists, is canonical, because Z is reduced. Indeed, such
splitting is canonical over an algebraically closed field (cf. [ABV] Section 14,
specifically, page 136), and if the base scheme is reduced, under the existence
of the splitting over the base, it has to be unique at all geometric points (and
hence unique over the reduced base scheme). Replacing Z by its irreducible
component containing s, we may assume that Z is irreducible. The pF -part of
the Serre–Tate coordinate tp around s measures the degree of non-splitting of
the exact sequence A[p∞F ]◦ ↪→ A[p∞F ] � A[p∞F ]et

/ bZ . Because of the splitting over

Ẑ , we find that tp(A[p∞F ]/ bZ) = 0. By assumption, Z = Spec(R) for an excellent

integral domain R. Then by [C4] Proposition 8.4 (ii), there exists an open
neighborhood U of s in Z over which we have a splitting A[p∞F ]◦⊕A[p∞F ]et/U .

Our goal is to prove the injectivity of φ for general m ≥ 1 in (3.19) under the
assumption that the aj ’s are pairwise distinct modulo T (Z(p)). The injectivity is
equivalent to Spec(Im(φ)) = Sm; so, we study the local property of Spec(Im(φ))
to show that dim(Im(φ)) < dimSm implies the equality of two of the aj’s modulo
T (Z(p)). The following result dealing with the local structure of Spec(Im(φ))
when m > 1 is a key to prove the linear independence.

Proposition 3.11. Let the notation be as in (N0–3), Proposition 3.8 and its
proof. In particular, for a positive integerm, let X be a closed integral subscheme
of Sm containing xm = (x, x, . . . , x) for the closed point x ∈ S, and let ΠY :
Y → X be the normalization of X . Write Sm = S′ × S′′ for the first (m− 1)–
factor S′ = Sm−1 ⊂ Sm and the last factor S′′ = S. Suppose that the projection
to S′ induces a dominant morphism πX : X → S′

/F. Suppose further that X is

stable under the diagonal action of a subgroup T of T (Z(p)) ⊂ Aut(OV,x) whose
p–adic closure is open in T (Zp). Then,

(1) Y has finitely many points y over xm, is Tate O-linear at every point y

over xm; so, Ŷy = Ĝm ⊗Zp L for an Op-direct summand L of X∗(Ŝ
m).

Moreover the isomorphism class of L as Op-module is independent of y.

(2) Y is smooth over F and is flat over S′.

(3) Either X = Sm or X is finite over S′ via πX . If X is finite over S′, Y is
finite flat over S′.

(4) If πX ◦ ΠY induces a surjection of the tangent space at one y ∈ Y over
xm onto that of S′ at xm−1 and X is a proper subscheme of Sm, then
πX ◦ΠY : Y → S′ is étale.
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Comment: In Proposition 3.8 dealing with the case of m = 1, the factor
S′ is equal to Spec(F). Later in Corollaries 3.16 and 3.19, we prove that X is
smooth; so, Y = X .

Proof. By Serre–Tate theory, we have Ŝ ∼= Ĝm ⊗Zp Op. Since the case m = 1
has already been taken care of by Proposition 3.8, we may assume that m ≥ 2.
Since X is dominant over S′, we have dimX > 0. Let K be an open compact
subgroup of G(A(∞)) maximal at p, and recall SK = Spec(OVK ,x). We assume
that K is small so that S/SK is étale. Consider the image of XK of X in
SmK . Then XK = Spec(RK) for an integral domain RK and X = Spec(R)
for R = lim−→K

RK . Since RK is a localization of an integral domain of finite

type over F, RK is excellent ([EGA] IV.7.8.3 (ii) and (iii)). Thus its formal

completion X̂K ∼= X̂ along xm is reduced ([EGA] IV.7.8.3 (vii)).
Since X is stable under the diagonal action of the subgroup T of T (Z(p)) ⊂

Aut(OV,x) and X is integral, by Lemma 3.7, X̂ is a union of finitely many

formal Op–submodules of Ŝm of the form Ĝm ⊗ L for Op–direct summands

L of the cocharacter group X∗(Ŝ
m) ∼= Omp : X̂ =

⋃
L∈I Ĝm ⊗ L for a finite

index set I of Op–direct summands L of X∗(Ŝ
m). In particular, X̂ is stable

under the action of T (Z(p)) (not just T) diagonally embedded into AutO(Ŝ)m,
and X and X are stable under T (Z(p)). The normalization Y → X is given by
lim←−K YK for the normalization YK of XK . Naturally the semigroup EndSCH(X )

of endomorphisms of the scheme X acts on Y; in particular, T (Z(p)) acts on Y.

The formal completion Ŷy along y for each point y ∈ Y over xm is isomorphic to

the formal completion ŶK,y of YK along the image of y in YK. The scheme YK
is excellent, because YK is finite over XK ([EGA] IV.7.8.3 (ii), (vii)). Since ŶK,y
is the normalization of X̂K and ŶK,y is integral ([EGA] IV.7.8.3 (vii)), points

yL of Y over xm are indexed by the irreducible components of X̂ and hence by
L ∈ I so that ŶK,yL = Ĝm ⊗ L. Since Y → S′ is dominant, for at least one

L0 ∈ I, the projection L0 ⊗O F → X∗(Ŝ
′)⊗O F is surjective (i.e., the image of

L0 is of finite index in X∗(Ŝ
′)).

Recall that we denote by X the Zariski closure of X in Vm and the nor-
malization Π : Y → X of X. Again EndSCH(X) acts on Y ; in particular,
T (Z(p)) acts on Y . We have Y = lim←−K YK for the normalization YK of XK .

We look at the tangent bundle ΘZ for Z = V m, Y, X, Sm and Ŝm. Since Vm

carries the self product of the universal abelian scheme Am, by the Kodaira-
Spencer map with respect to Am/Vm: ΩAm/V m ⊗(Om⊗ZOV m) ΩAm/V m

∼= ΩVm ,
and taking dual, we have the diagonal action of O on ΘV m (actually Om acts
on ΘV m). We have the tangent bundle ΘX ⊂ ΘV m (which is stable under
O), but ΘX may not be locally free around xm since X may have singular-
ity at xm. The action of O on ΘX extends to ΘY compatibly. Let yL ∈ Y
be a point above xm with ŶyL = Ĝm ⊗ L. Since Y is stable under T (Z(p))

and ŶyL
∼= Ĝm ⊗ L for each point yL ∈ Y above xm, we have ΘY =

⊕
p ΘY,p

for Op-eigen sub-bundle ΘY,p. Since ŶyL = Ĝm ⊗ L, ΘbYyL
= L ⊗Z ObYyL

, and

rankZp L⊗OOp = rankOY ΘY,p = rankZp L0⊗OOp. Thus L ∼= L0 as Op-modules
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for all L ∈ I, and Ŷ is equidimensional (the equidimensionality also follows from
excellency of XK by [EGA] IV.7.8.3 (x)). This proves (1).

If L0 ⊗O F = X∗(Ŝ
m) ⊗O F , we get X = Sm, and we are done. Hereafter

we assume rankZp L0 < rankZp X∗(Ŝ
m) (⇔ L0 ⊗O F 6= X∗(Ŝ

m) ⊗O F ); so,

rankZp L < rankZp X∗(Ŝ
m) for all L ∈ I. Recall the decomposition Sm = S′×S′′

with the last factor S′′ = S. Similarly we decompose Vm = V ′ × V ′′ for the
product V ′ of the first (m − 1) copies of V and the last copy V ′′ = V . If

π : Ĝm ⊗ L → Ŝ′ is not dominant for L ∈ I, the image π(Ĝm ⊗ L) is a

proper closed formal subscheme of Ŝ′. In particular, Ŷ → Ŝ′ is not flat over
π(Ĝm ⊗ L) ( Ŝ′. Define the non-flat locus Y nf ⊂ Y as the Zariski-closure
of the set of closed points y ∈ Y such that OY,y is not flat over OV ′,v for the
image v ∈ V ′ of y. The non-flat locus yL ∈ Y nf ⊂ Y is a nonempty proper
closed subscheme, because Ĝm ⊗ L0 ⊂ Ŷ = ŶyL0

is flat over Ŝ′ and flatness is

an open property. Since the formal completion of Y nf at yL contains Ĝm ⊗ L,
dimY nf = dimY ; so, Y cannot be irreducible (because Y nf is a proper closed

subscheme of Y ), a contradiction. Thus Ĝm ⊗ L → Ŝ′ is flat for all L ∈ I,

and hence Ŷ is flat over Ŝ′. Since Ŝ′/S′ is faithfully flat, Y is flat over S′. In

particular, for all L ∈ I, Ĝm ⊗ L is dominant finite over Ŝ′. This proves (2).

Since π : X̂ → Ŝ′ induces a surjection π∗ : L ⊗O F → X∗(Ŝ
′) ⊗O F , the

intersection Ŝ′′ ∩ (Ĝm ⊗L) has dimension equal to rankZp L0 + rankZp X∗(Ŝ)−
rankZp X∗(Ŝ

m) for all L ∈ I. Then Ŝ′′ ∩ (Ĝm ⊗ L) is a formal Op-submodule

isomorphic to
∏

p∈ΞL
Ĝm ⊗ Op in Ŝ′′ = Ŝ, where ΞL is the set of all primes

p ∈ Σp such that rankOp
L0 ⊗O Op > m − 1. By Proposition 3.8 (applied to

an irreducible component of X ∩ S′′), we have either ΞL = Σp or ΞL = ∅.
If ΞL = Σp, we have rankZp L0 = rankX∗(Ŝ

m), and hence X = Sm; so, we
are done. Since L ∼= L0 as Op-modules for all L ∈ I, we actually knew that

Ŝ′′ ∩ (Ĝm ⊗ L) and that Ξ = ΞL (indexed by L) are independent of L ∈ I,

and X̂ ∩ Ŝ′′ = Ŝ′′ ∩ (Ĝm ⊗ L) for all L ∈ I (though we did not use this fact).

We hereafter assume that Ξ = ∅. Since π : Ĝm ⊗ L → Ŝ′ is dominant and
dim Ĝm ⊗ L = dim Ŝ′ = rankZp L, π : Ĝm ⊗ L → Ŝ′ is finite flat for all L ∈ I.
Thus X → S′ is finite, and Y is finite flat over S′. This proves (3).

To prove (4), consider the differential sheaf ΩY/S′. We may assume that

(πX ◦ΠY)∗ : ΘY → ΘS′ is surjective at y0 = yL0 . Since Ŷy0/Ŝ
′ is finite flat, Ŷy0

is étale over Ŝ′, and hence Yy0/S′ is étale. Thus ΩY/S′ |Yy0
= 0, and hence ΩY/S′

vanishes on a nonempty open subscheme of Y . Thus the support Y ram ⊂ Y of
ΩY/S′ is a proper closed subscheme of Y . If YyL/S

′ is not étale, YyL ⊂ Y ram.
Thus Y ram is a closed subscheme of dimension equal to dimY ; so, it is an
irreducible component of Y , and hence Y is reducible, a contradiction. Thus
Y → S′ is étale finite.

Remark 3.12. Let the notation and assumption be as in Proposition 3.11. We
suppose m = 2 and that Y → X ( S2 has two dominant projections onto the left
and the right factor S of S2 . We write the Serre–Tate coordinate (induced by

the ordinary level structure on Ax) of the left factor (resp. the right factor) of Ŝ2
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as t (resp. t′). Then by Lemma 3.7, the formal completion Ŷy of Y along a point

y above x2 = (x, x) is canonically isomorphic to a formal subtorus of Ŝ2 given

by Ĝm ⊗ L for an Op–free direct summand L of O2
p. Thus if dimX = dim V ,

Ŷy is defined by the equation tu = t′
v

for non-zero-divisors u, v ∈ Op with
uOp + vOp = Op, and L ⊂ O2

p is given by L = {(x, y) ∈ O2
p|ux = vy}. If two

projections are étale, (u, v) can be chosen to be (1, a) for a unit a = v/u ∈ O×
p .

Corollary 3.13. Let b = Ker(φ) for φ as in (3.19). Let y ∈ Y be a point

above xm and Ŷy be the formal completion of Y along y. Then Ŷy for at least

one y ∈ Y contains ∆̂ = {(ta1 , . . . , tam)|t ∈ Ŝ}, and for i = 1, 2, . . . , m, writing

Ŝi for the i-th copy of Ŝ in Ŝm, the projection X∗(Ŷy) → X∗(Ŝi) is surjective,

regarding Ŷy ⊂ Ŝm. In particular, if m = 2 and πX is finite, Y → S′ is étale
finite.

Proof. We have the following commutative diagram

OV,x ⊗F · · · ⊗F OV,x φ−−−−→ ÔS
ι

y ‖

y

ÔV,x ⊗F · · · ⊗F ÔV,x −−−−→
Φ

ÔS ,

(3.22)

where ÔV,x = ÔS , Φ(f1 ⊗ · · · ⊗ fm) =
∏m
j=1 aj(fj) and the map ι is the tensor

product of the natural inclusion OV,x ⊂ ÔV,x. Thus Ker(Φ) ⊃ ι(b). Note

that Spf(ÔV,x ⊗F · · · ⊗F ÔV,x/Ker(Φ)) is the skew diagonal image ∆̂ in Ŝm.

Taking the formal completion along xm, the map ι brings ∆̂ into X̂ because
Ker(Φ) ⊃ ι(b). Thus an irreducible component Ĝm ⊗ L of X̂ contains ∆̂. In

particular, if m = 2, πX ,∗(L) contains πX ,∗(X∗(∆̂)) = X∗(Ŝ
′). Then the rest

follows from (4) of the above proposition.

We keep the assumption and the notation in (N0–3) for b = Ker(φ) (φ as
in (3.19)). We have globalized X taking its Zariski closure X in Vm. We start
with the simplest case where m = 2. There are two possibilities by the above
result that dimX = dimV or X = V 2. The latter case implies φ is injective
as desired; so, we are done. Assuming dimX = dimV , we take the Zariski
closure X of X in V × V and its normalization Π : Y → X. We study X
(resp. Y ) as a global irreducible subvariety of the self product V × V (resp.
as a correspondence V ← Y → V ). We are going to show in Corollary 3.16
after two preparatory propositions that X = Y and that the variety X is the
graph of an automorphism of V given by an action of an element in G(A(p∞))
(in other words, a1/a2 has to be in T (Z(p))). In this process of showing that
X is a graph of an automorphism, we use repeatedly the fact that the diagonal
action of T (Z(p)) preserves X in V × V and extends to Y .

The subvariety X is a graph of an automorphism of V (as a correspondence
in V ×V ) if and only if the projections πj : X → V (j = 1, 2) are isomorphisms.
The only information we have is: (i) X is stable under the diagonal action of
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T (Z(p)) (or a finite index subgroup thereof) and (ii) the formal completion Y
at any point y ∈ Y over (x, x) ∈ X has isomorphic projections to the formal
completion of V at x (that is, we know that the two projections Πj = Π ◦ πj of
Y to V are étale infinitesimally around y). Thus out of (i) and (ii), we need to
show that πj (j = 1, 2) are isomorphisms. We shall do this by the following two
steps:

Step 1. We show that Πj is étale over a dense open subscheme of V (this is
basically achieved by Propositions 3.14 and 3.15).

Step 2. We show that the two pullbacks Yj := Π∗
jA (j = 1, 2) of the

universal abelian scheme A/V by Πj are isogenous over Y . Writing the prime-
to-p level structure of Yj as ηj := Π∗

jη, for the isogeny ϕ : Y1 → Y2, we have

ϕ ◦ η1 = η2 ◦ g for some g ∈ G(A(p∞)), and we conclude Y = X and X is the
graph ∆1,g ⊂ (V × V ) of τ (g) (Corollary 3.16).

After finishing off the case m = 2, we proceed by induction on m and show
that ai/aj ∈ T (Z(p)) (for some i 6= j) if X 6= Vm:

Step 3. Under a suitable assumption on X ⊂ Vm, by induction on m, we
show that an irreducible subvariety X ⊂ V m (containing (x, x, . . . , x)) stable
under the diagonal action of T (Z(p)) (or its p-adically open subgroup) is con-
tained in V m−2 ×∆1,g after permuting the components V . We get this result
by applying Step 2 to the projected image of X to the product V × V of the
last two factors in V m (Corollary 3.19).

Then the linear independence of {a1(Ea1), . . . , am(Eam)} for elements aj ’s
mutually distinct modulo T (Z(p)) in the introduction follows easily from this
(Corollary 3.21).

In Step 2, the two AVRMs Yj/Y are (O-linearly) isogenous if and only if

EndQ
O(Y/Y ) = M2(F ) for Y := Y1 ×Y Y2. Our argument is by contradiction,

supposing EndQ
O(Y/Y ) = F ×F . Since VK (for an open subgroup K ⊂ G(Ẑ)) is

actually defined over a finite field, the generic fiber of Y/Y is an abelian scheme
over a field of finite type over the prime field Fp; so, generically, we can use
finiteness theorem of Zarhin–Tate on the endomorphism ring of abelian scheme
over a field of finite type over Fp. Since πj is étale over a big open subset, we
can then study Y1×Y Y2 specializing it to many CM points, and in such a way,
we exhibit a contradiction against the assumption End(Y/Y ) = F × F . This
type of arguments is impossible just studying X because the scheme X has only
one closed point and the function field of X is not finite type over Fp.

The main tool in Step 1 is the local information from the Serre–Tate co-
ordinates we have studied above and Zariski’s main theorem (or equivalently,
the Stein factorization of the projections X → V ), which requires us to have

a smooth compactification (a toroidal compatification Ṽ of V ). Though the
minimal (Satake) compactification V ∗ of V is easy (and we still have the action
of E(G,X) on the compactification), we lose smoothness which is vital in the
use of the Zariski’s main theorem. This point adds some technicalities to our
arguments.

For a sufficiently small open compact subgroup K so that VK is smooth over
F, we take a smooth toroidal compactification ṼK . The toroidal compactification
depends on a choice of a simplicial cone decomposition CK of the totally positive
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cone F×
+ = {α ∈ F |α� 0} into a disjoint union F×

+ =
⊔
C∈CK

C stable under

the multiplication by O×
+ . Fix such a decomposition for K. For smaller K′ /K,

we may take the smooth toroidal compactification ṼK′ associated to the same
decomposition CK . Then K/K′ acts faithfully on ṼK′ extending its action on

VK′ , and ṼK′ → ṼK is a finite morphism compatible with the action of K ([DAV]

IV.6.7). Then we construct Ṽ = lim←−K ṼK so that the starting maximal compact

subgroup acts on Ṽ compatibly with the projection Ṽ → V ∗ ([DAV] V.2.5).
Let x ∈ V ord(F) = (V ∩ Shord)(F). The fiber at x of A/V is a test object

(Ax, λx, η
(p)
x ). The abelian variety Ax/F has complex multiplication by a CM

field M/F (by a theorem of Tate: [ABV] Section 22). Thus we have an em-

bedding ρ : Tx(Z(p)) ↪→ G(A(p∞)) given by αη
(p)
x = η

(p)
x ρ(α). Since the test

object Ax is given in our application, the point of Sh
(p)
/W at which Ax is realized

as a fiber of A may not be in the neutral component, but it is the image of
the neutral component under the right action by g ∈ G(A(p∞)). The point x is
therefore of the form [z, g] whose level structure ηx is of the form ηz ◦ g (g 6= 1;
otherwise, the image of Q-anisotropic torus Tx under ρ̂z cannot be diagonal at
p in G(A(∞))). Recall ρ = ρ̂x : Tx(Z(p)) ↪→ G(A(p∞)) in Section 3.2 with Im(ρ)

in G(A(p∞))/Z(Z(p)) giving the stabilizer of the point x = [z, g] (Lemma 3.3).

We start with the more general setting of (N0–3) with m = 2: Let

X/F ⊂ V × V

be an irreducible subscheme with (x, x′) ∈ Xord(F) (Xord = X ∩ (V ord×V ord))
stable under the diagonal action of a p-adically open subgroup T in T (Z(p)). We

write Ṽ for a smooth toroidal compactification of V , X̃ for the Zariski closure
of X in Ṽ × Ṽ , and Π̃ : Ỹ → X̃ for the normalization Ỹ of X̃. The action of
T on X extends to Y . For an open compact subgroups K1, K2 ⊂ G(A(p∞)), we

write V12 for VK1 × VK2 , and we define X12 for the image of X in V12 and X̃12

for the image of X̃ in Ṽ12 := ṼK1 × ṼK2 . We write Ỹ12 for the normalization of

X̃12. Thus Ỹ = lim←−K1×K2
Ỹ12. We suppose (see Proposition 3.11 (3))

(DE) The two projections Π1,Π2 : Y → V are finite at a point y ∈ Y above a
point (x, x′) in V (F) × V (F) fixed by the diagonal action of Tx(Z(p)).

Since x and x′ are fixed by ρ(Tx(Z(p))), Ax and Ax′ are isogenous and have
complex multiplication of the same type (M,Σ) (cf. [D1] Section 7). We also

have dimF Y = dimF X = dimF V and dimF Ỹ12 = dim X̃12 = dim ṼK . If Πj

is not étale at (x, x′), Πj,∗(X∗(Ŷy)) ⊂ X∗(Ŝ) = Op is an Op-submodule of

finite index, and we find α ∈ Tx(Z(p)) such that α1−cX∗(Ŝ) = Πj,∗(X∗(Ŷy)) in

X∗(Ŝ) = Op. Then ρ(α−1)◦Πj is étale (by Proposition 3.11 (4)). The action of
ρ(α) for a p-adic non-unit α1−c is not an automorphism of V but a “radiciel”
endomorphism of V . Indeed,

(
1 0
0 p

)
acts on Sh(p) as the relative Frobenius

map of degree p, and hence if ρ̂x(α)pK =
(

1 0
0 p

)
K, the action of ρ(α) coincides

with the Frobenius map composed with ρ̂x(α
(p)) on ShK . Since any statement
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concerning the underlying topological space of our schemes is not affected by
“radiciel” endomorphisms, we may assume (for such statements)

(A) Π1 and Π2 are étale finite at any point y ∈ Y above (x, x′),

by modifying Πj by ρ(α) for α ∈ M×. This condition follows from Proposi-
tion 3.11 (4) and Corollary 3.13 in the case of our interest: b = Ker(φ).

As already remarked, we will show that X is the graph of the action by
an element g ∈ G(A(p∞)). In this process, we may also assume the following
condition without losing generality:

(B) x = x′.

By moving X under the automorphism 1×ρ(b(p)) of V ×V for suitable b ∈M×
A ,

we can bring x′ to x, and hence we may assume (B).

Let Vj = lim←−Kj
VKj , resp. Ṽj = lim←−Kj

ṼKj (j = 1, 2) be the j-th factor in

V × V , resp. in Ṽ × Ṽ . We now study the finite locus fiVj = lim←−Kj

fiVKj in Vj

of the projection Πj : Y → Vj for j = 1, 2. By definition, the non-finite locus
nfiṼKj is the closure of all closed points v ∈ ṼKj such that OeYKj

,y is not finite

over OeVKj
,v for at least one point y ∈ Π−1

j (v). We put fiṼKj = ṼKj − nfiṼKj .

Similarly, we define the non-flat locus nflṼKj by the closure of all closed points

v ∈ ṼKj such that OeYKj
,y is not flat over OeVKj

,v for at least one point y ∈
Π−1
j (v). Since a flat morphism is an open map, nflṼKj is a proper closed

subscheme of ṼKj . Let flṼKj = ṼKj −nflṼKj . Thus flΠ̃j : Π̃−1
j (flṼKj )→ flṼKj

induced by Π̃j is flat. Since flΠ̃Kj is proper flat and generically finite, each fiber

of flΠ̃Kj is noetherian of dimension-zero (by [ALG] III.9.5); so, flΠ̃Kj is proper

and quasi-finite; so, it is finite. Thus the non-flat locus nflṼKj contains the

non-finite locus nfiṼKj ; so,

nfiṼKj is a proper closed subscheme of ṼKj inside nflṼKj . (3.23)

Thus the finite-flat locus ṼKj−nflṼKj is a nonempty open subscheme. Similarly,
we define etVKj by the maximal open subscheme of VKj over which Πj is étale

(the cuspidal divisors ramifies in Ṽj over ṼKj ; so, the étale locus is in Vj).

Any of the properties ? = et, fi, nfl, nfi . . . , we write ?VKj = VKj ∩ ?ṼKj ,
?Vj = lim←−Kj

?VKj and V et = etV1 ∩ etV2 (in other words, over V et, Π1 and Π2

are both étale).

Proposition 3.14. Suppose (DE). Then we have

1. The non-finite loci nfiṼ and non-flat loci nflṼ of Π̃j : Ỹ → Ṽ (j = 1, 2)

in Ṽ are of codimension at least 2, and nfiṼ ⊂ nflṼ .

2. If Π1 : Y → S and Π2 : Y → S are étale, V et = etV1 ∩ etV2 is an open
dense subscheme of V containing (x, x) stable under T.
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Proof. As explained before, we may assume (A) and (B). We first show that
we have a very big open subscheme fiVj = lim←−Kj

fiVKj ⊂ Vj so that each Y12

is finite over fiVKj (j = 1, 2) under the two projections Πj : Y12 → VKj . The

projection Π̃j : Ỹ12 → ṼKj is a covering generically finite étale; so, over a dense

open subscheme fiṼKj ⊂ ṼKj , Π̃j is finite. Let K′
j ⊂ Kj be open subgroups

maximal at p. Let X̃′
12 (resp. Ỹ ′

12) be the image of X̃ in ṼK′
1
× ṼK′

2
(resp. the

normalization of X̃′
12). We have the commutative diagram:

Ỹ ′
12

finite−−−−→ X̃′
12 −−−−→ ṼK′

jy
yfinite π

yfinite

Ỹ12 −−−−→
finite

X̃12 −−−−→ ṼKj .

(3.24)

The middle down-pointed arrow is finite because ṼK′
1
× ṼK′

2
→ ṼK1 × ṼK2 is

finite. From this, the left-most down-pointed arrow is finite. Thus fiṼK′
j

=

π−1(fiṼKj ). Put fiVKj = fiṼKj ∩ VKj . Then we have fiVK′
j

= π−1(fiVKj ), and
fiVj = lim←−Kj

fiVKj ⊂ V (for j = 1, 2) is a dense open subscheme of V whose

image in VKj is fiVKj . In other words, the projection VK′
j

� VKj induces
surjective projection of the finite loci

fiVK′
j

= π−1(fiVKj ) �
fiVKj for K′

j ⊂ Kj for a fixed Kj , (3.25)

and the image of the non-finite locus nfiṼK′
j

:= ṼK′
j
− fiṼK′

j
in ṼKj is a proper

closed subscheme independent of K′
j ⊂ Kj (for a fixed open compact subgroup

K1 × K2 ⊂ G(A(∞)) maximal at p). The scheme nfiṼj = lim←−K′
j

nfiṼK′
j

is the

non-finite locus of Πj : X → V (j = 1, 2). Put fiYj = Π−1
j (fiVj). Then

Πj : fiYj → Vj is finite for j = 1, 2, and fiVj is the maximal open subscheme

of V with this property. By definition, Π̃j : Ỹ12 → ṼKj is the normalization

of π̃j : X̃12 → ṼKj . Since π̃j : Ṽ12 → ṼKj is projective, π̃j : X̃12 → ṼKj is

projective. Since the projection: Ỹ12 → X̃12 is finite, it is projective; so, Π̃j is

projective, and we can take the Stein factorization of Ỹ12 → Y st12

Πfi
j−−→ ṼKj of Π̃j

(see [ALG] III.11.5). Thus we have

Ỹ12 ×eVKj

fiṼKj
∼= Y st12 ×eVKj

fiṼKj , (3.26)

because over fiṼKj , Ỹ12 → Y st12 is birational with connected fiber.

We consider the non-finite locus nfiṼj ⊂ Ṽ and non-flat locus nflṼj ⊂ Ṽ of

Π̃j : Ỹ → Ṽ . As we already remarked before stating the proposition, nfiṼj ⊂
nflṼj , and nfiṼj is a proper closed subscheme of Ṽj . Since Πst

j : Ỹ → Y st is

birational and Y st is projective and normal, Πst
j

−1
is well defined outside the

closed subscheme Πfi
j

−1
(nflṼKj ) ⊂ Y st12 of codimension ≥ 2 (see [ALG] V.5.1).
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Since Πfi
1 is finite, nfiṼKj (⊂ nflṼKj ) is at least of codimension 2 in ṼKj . The

projection ṼK′
j

� ṼKj again sends nfiṼK′
j

into nfiṼKj ,
nfiṼj = lim←−Kj

nfiṼKj is

a closed pro-subscheme of codimension 2 of the pro-variety Ṽ by the stability
(3.25) of the non-finite locus with respect to K′

j (and by [EGA] IV.8.2.9).

The scheme Y st12 is normal dominant finite over ṼKj (and is generically étale

finite). Since ṼKj is smooth if Kj is sufficiently small, the ramified (non-étale)

locus ramṼKj = ṼKj − etṼKj of Y st12 over ṼKj is a divisor of VKj ; so, it is of at

least codimension 1 for a given Kj . Since ṼKj − VKj is the cuspidal divisor, the
ramified (non-étale) locus ramVKj ⊂ VKj of Y st12 over VKj is a divisor of VKj ; so,
it is of at least codimension 1 for a given Kj . To extend this result to the pro-
variety Vj, we need to show that ramVK′

j
is sent into ramVKj under the projection

map VK′
j

� VKj . To show this, we look into the following commutative diagram

similar to (3.24) (removing cuspidal divisors):

Y ′
12

finite−−−−→ X′
12

↪→−−−−→ VK′
1
× VK′

2

πY

yfinite πX

yfinite π

yétale

Y12 −−−−→
finite

X12
↪→−−−−→ VK1 × VK2 .

Taking fiber products, we get morphisms (from the commutativity of the above
diagram): Y ′

12 → Y12 ×X12 X
′
12, X

′
12 → X12 ×(VK1×VK2) (VK′

1
× VK′

2
) and

Y12 ×(VK1×VK2) (VK′
1
× VK′

2
) → X12 ×(VK1×VK2) (VK′

1
× VK′

2
). Since the pull-

back X12×(VK1×VK2) (VK′
1
×VK′

2
) of X12 to VK′

1
× VK′

2
is a closed subscheme of

VK′
1
× VK′

2
étale over X12 containing (x, x). Thus by definition, X′

12 is a closed
irreducible subscheme of X12 ×(VK1×VK2) (VK′

1
× VK′

2
) of the same dimension.

Thus X′
12 is the irreducible component of X12×(VK1×VK2) (VK′

1
× VK′

2
) contain-

ing (x, x) and covering X12, and πX is étale finite. Thus we have a commutative
diagram:

Y12 ×X12 X
′
12

étale−−−−→ Y12y
ynormalization

X′
12 −−−−→

étale
X12

Since étale morphisms are isomorphisms at the level of completed local rings,
they commute with the formation of normalization. Thus Y ′

12 is an irreducible
component of Y12 ×X12 X

′
12, and therefore πY is étale finite. Hence, the pro-

jection VK′
j

� VKj sends ramVK′
j

into ramVKj , and ramVj = lim←−Kj

ramVKj is a

closed pro-subscheme of codimension 1 (by [EGA] IV.8.2.9) of the pro-variety
Vj (whose image in VKj is contained in ramVKj ).

By (3.26), etVj contains Vj − (nfiVj ∪ ramVj) which is an open dense sub-
scheme of Vj , and hence V et = etV1∩etV2 is open dense in V . By our assumption,
(x, x) ∈ V et, and V et is stable under T, since étaleness is preserved by the action
of T.
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Let v be a closed point of Y ord/F = Y ×V 2 (V ord)2 above (v1, v2) ∈ V 2.

We consider the formal completion Ŷv (resp. V̂Πj(v)) along v (resp. Πj(v)). If

Π1×Π2 embeds Ŷv into V̂v1× V̂v2 and the equation defining Ŷv in V̂Π1(v)× V̂Π2(v)

is given by ta1 = tb2 for the Serre–Tate coordinate tj of V̂vj , we call Y O-linear
at v. Write Ylin ⊂ Y ord(F) for the subset of all closed O-linear points.

Proposition 3.15. Suppose (DE), and let the notation be as in (N0–3) above
Proposition 3.8 for m = 2. In particular, let X be a Zariski-closure of X in
V × V and Y → X be the normalization of X. The subset Ylin ⊂ Y of O-linear
points as defined above contains the set of all closed points of an open dense
subscheme Y lin in Y ord. In other words, at each closed point y′ ∈ Y lin(F), the
formal completion of Y lin along y′ is defined by a linear equation.

In the following corollary, we will find that the subvariety X is a graph of
the action of an element in G(A(p∞)); so, we conclude Y lin = Xlin = Xord .
Since Xord is Tate-linear at densely populated v in the image of Y lin, by [C4]
Proposition 5.3, Xord is weakly Tate O-linear; so, Y ord is Tate O-linear. We
shall give here an argument (again suggested by Chai) sufficient to prove the
weaker version as stated above.

Proof. Modifying Πj by ρ(α) for α ∈ M× does not affect O-linearity at closed
point of Y over (x, x′); so, by changing Πj by ρ(αj)◦Πj for α ∈ M× if necessary,
we assume (A) and (B) (thus, Πj is étale for j = 1, 2). An endomorphism ax ∈
End(Ax) induces an endomorphism of the deformation space Ŝ = V̂x = Ĝm⊗O.
Modifying ax by the central action of Op, we may assume that ax is the identity
on the connected component of Ax[p

∞] without affecting the endomorphism of

the deformation space Ŝ induced by ax. We fix an ordinary level p–structure
ηordp on Ax. Identifying EndO(Ŝ) = Op by ηordp , the action of ax on Ŝ is then
given by the action of ax over the étale quotient Ax[p

∞]et. By Proposition 3.11
(1), Y is O-linear at a point y ∈ Y above (x, x), and hence, by Remark 3.12,

we may assume that the formal completion Ŷy along y is defined by t′
u

= tv

(u, v ∈ Op = EndO(Ŝ)) for the Serre–Tate coordinate (t, t′) of Ŝ× Ŝ for Ŝ = V̂x,
where t and t′ are associated to the ordinary level structure ηordp . Since the two
projections Π1,Π2 : Y → V are étale at y (by (A)), a = v/u is a unit in Op, and

Ŷy is defined by t′ = ta. We write ax ∈ End(Ax)⊗Z Zp = End(Ax[p
∞]) for the

endomorphism inducing a ∈ End(Ŝ) as normalized above. Then ax is a unit in
EndO(Ax[p

∞]).
We consider the universal abelian scheme A/V . We pull it back to Π : Y →

X ⊂ V × V : Y1 = Π∗
1A and Y2 = Π∗

2A. Identifying Ax with the fibers Yj,y of
Yj (j = 1, 2) at y, we regard the unit ax ∈ End(Ax[p

∞]) as a homomorphism
ax : A1,x[p

∞] = Ax[p
∞]→ Ax[p

∞] = A2,x[p
∞].

We now reduce the existence of the desired non-empty open subscheme
Y lin ⊂ Y ord to the existence of an étale irreducible covering Ũ over an open
dense subscheme U ⊂ Y ord containing the given point y ∈ Y ord such that
ax extends to an isomorphism ã : Y1[p

∞]/eU → Y2[p
∞]/eU of Barsotti-Tate

groups over Ũ . Thus supposing the existence of the open subscheme U and
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such an extension ã over Ũ , we specify the open subscheme Y lin. Shrinking
U ⊂ Y ord (keeping y inside U), we may assume that the projections Πj : U → V
(j = 1, 2) are both étale (cf. Proposition 3.14), because the projections are

étale at the specific point y. Then the formal completion Ŷu along u ∈ U with
Π(u) = (u1, u2) ∈ V ×V is isomorphic by Πj (j = 1, 2) to the universal deforma-
tion space of the p–divisible O–module Auj [p

∞] carrying the universal deforma-

tion Yj [p∞]/bYu

∼= Aj [p
∞]/bVuj

via Πj : Ŷu ∼= V̂uj . Choose an ordinary level struc-

tures ηordj,p : Fp/Op ∼= Auj [p
∞]. Then the canonical coordinate tj of A[p∞]/bVuj

∼=
Y[p∞]/bYu

is given by tj = limn→∞“pn”(ηordj,p (p−n)) for the Drinfeld’s lift “pn”

in Theorem 2.1. Another level structure ã ◦ ηord1,p of Au2 [p
∞] gives rise to the

coordinate tau

2 for a unit au ∈ O×
p because AutO(Ŷu) = O×

p . Thus we get the

relation t1 = tau
2 valid on Ŷu, because ã sends the t1 = limn“p

n”(ηord1,p (p−n)) to

tau

2 = limn“p
n”(ã(ηord1,p (p−n))). In other words, Ŷu is contained in the O-linear

formal subscheme Ŷ ′
u defined by t1 = tau

2 . Since Ŷu ↪→ V̂u1 × V̂u2 is a smooth

formal subscheme with two isomorphisms Ŷu ∼= V̂uj induced by Πj , we find

Ŷu = Ŷ ′
u, and hence Ŷu is defined by t1 = tau

2 . Thus we may put Y lin = U .

Next we shall show that ax extends to â : Y1[p
∞] → Y2[p

∞] over Ŷy.
Identifying Ax with the fibers Yj,x of Yj (j = 1, 2) at y, we regard the unit
ax ∈ End(Ax[p

∞]) as a homomorphism ax : Y1,y[p
∞] = Ax[p

∞] → Ax[p
∞] =

Y2,y[p
∞]. As pointed out by one of the referees of this paper, the formal com-

pletion Ŷ = Ŷy of Y along y is the maximal subscheme of Ŝ× Ŝ over which this

ax extends to a homomorphism â : Y1[p
∞]/bY → Y2[p

∞]/bY of Ŷ –group schemes.

To find â, as above, we identify a with an element of Op by projecting ax down
to EndO(Ax[p

∞]et) = Op for the maximal étale quotient Ax[p
∞]et of the p–

divisible group. The isogeny action ρ(α) : A/V → A/V for α ∈ End(Ax) = O

induces ρ(α) : Y1[p
n]bY

∼−−→
Π1

A[pn]/bVx

α−→ A[pn]/bVx

∼−−−→
Π−1

2

Y2[p
n]/bY if α ≡ a

mod pnOp for p =
∏

p∈Σp
p and if α ≡ 1 mod pnOpc . Choose α as above,

and write it as αn. Therefore the isogeny action of ρ(αn) on A gives rise to
αn : Y1[p

n]/bYn
→ Y2[p

n]/bYn
well defined over an infinitesimal neighborhood

Ŷn of y (isomorphic to the connected component of Ax[p
n]). Indeed, the em-

bedding Ŷ ↪→ Ŝ × Ŝ is given by (t, ta), ρ(αn) sends Y1,v[p
n]/bYn

∼−−→
Π1

A[pn]bVn
to

Y2,ρ(αn)p(v)[p
n]/bYn

∼−−→
Π2

A[pn]/bVn
, and va = ρ(αn)p(v) as long as v ∈ Ŷn. Here V̂n

is the infinitesimal neighborhood of x isomorphic to the connected component
of Ax[p

n]), ρ(αn)p ∈ G(Qp) is the p–component of ρ(αn), and αn gives rise to

a|Y1[pn] after base-change to Ŷn. By taking the limit â = limn→∞αn|Y2[pn]
/ bYn

with respect to n, we find out that ax gives rise to a unique homomorphism
â : Y1[p

∞]/bY → Y2[p
∞]/bY of Barsotti-Tate groups over Ŷ .

To show the existence of U , we follow an argument of Chai in the proof of
[C4] Proposition 8.4. We choose a sufficiently small open compact subgroup

K1×K2 ⊂ G(Ẑ)2 maximal at p so that Ŷ12,y = Ŷy. Since Y ord12 is irreducible, we
only need to find a non-empty open subscheme U12 ⊂ Y ord12 with the required
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property (then U is given by the pull back of U12 to Y ord). We have â well

defined over Ŷ = Ŷ12,y. For any reduced local OY12,y–algebra R, an O-linear
isomorphism α : Y1[p

∞]/R → Y2[p
∞]/R inducing ax on Ax[p

∞] (if exists) is

unique. Write simply Ô for ÔY12,y = ÔY,y and O for OY12,y. Since Ô ⊗O Ô is

reduced, the pullbacks of â by the two projections πj : Ŷ ×O Ŷ → Ŷ coincide by

the above uniqueness; that is, â satisfies the descent datum (relative to Ô/O).
By faithfully flat descent, â descends to O and hence we can find an open Zariski
neighborhood U12 ⊂ Y ord12 of y over which we have an extension ã of ax. Then
U = U12 ×Y12 Y does the job.

There is an alternative argument: By M. Artin’s approximation theorem in
[A] (see also [NMD] Theorem 16 in 3.6) applied to the truncated ân = â|Y1[pn]

defined over Ŷ = Ŷ12,y, we can find an étale neighborhood Ũn of y such that

we have an extension ãn over Ũn. The two pullbacks of ãn to Ũn ×Y ord
12

Ũn
coincide by the uniqueness of the extension of ax because of the reducedness
of Ũn ×Y ord

12
Ũn; so, this time by étale descent, we get the desired open dense

subscheme Un. Since IsomY ord
12

(Y1[p
m],Y2[p

m]) for m > n is finite flat over

IsomY ord
12

(Y1[p
n],Y2[p

n]), the open set Un stabilizes as n grows. Taking the

intersection U12 =
⋂
nUn with respect to n, we get the desired open dense

subscheme U12 ⊂ Y ord12 .

Corollary 3.16. Let the notation and the assumption be as in Proposition 3.15.
Then X is everywhere smooth and X = Y . Moreover, if (DE) is satisfied, there
exist non-zero α, β ∈ O(p) such that X coincides with the skew diagonal

∆α,β = {(ρ(α)(v), ρ(β)(v))|v ∈ V }.

If Π1 and Π2 are étale finite, we may assume that (α, β) = (1, β) with β ∈ O×
(p).

Proof. If (DE) fails, Y = X = V 2 by Proposition 3.11 (3); so, the assertion
follows trivially. We may assume (DE), (A) and (B) as indicated after stating
(DE). We follow an argument of Chai which is a version of the argument in [C4]
Section 8 adjusted to our self-product of the Hilbert modular variety. Since
the two projections Πj : Y → Vj are dominant, we have End(Yj) ⊗ Q = F
for Yj = Π∗

jA = A ×Vj ,Πj Y . Let Y/Y = Y1 ×Y Y2. Thus there are only

two possibilities for EndQ(Y) = End(Y/Y ) ⊗ Q: Either EndQ(Y) = F × F or

EndQ(Y) = M2(F ). Suppose that EndQ(Y) = M2(F ). By semi-simplicity of the
category of abelian schemes, we have two commuting idempotent ej ∈ EndQ(Y)

such that ej(Y) = Yj. Since EndQ(Y) = M2(F ), we can find an invertible

element β̃ in GL2(O(p)) ⊂ M2(F ) such that β̃ ◦ e1 = e2; so, β̃ : Y1 → Y2 is an
isogeny, whose specialization to the fiber of Yj (j = 1, 2) at y gives rise to an

endomorphism β ∈ End(Ax) ⊗ Q. Thus the isogeny β̃ is induced by ρ(β) (this
point is explained more carefully after proving EndQ(Y) = M2(F )).

We suppose EndQ(Y) = F × F and try to get a contradiction (in order to
prove that EndQ(Y) = M2(F )). We pick a sufficiently small K1 = K2 = K ⊂
G(A(p∞)) maximal at p so that VK is smooth. For the moment, we assume that
K is open compact. The variety VK is naturally defined over a finite extension
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Fq/Fp as the solution of the moduli problem P ′
K,c in (3.6) for the polarization

ideal c ofAx (the minimal choice of Fq is the residue field ofW∩kK for Shimura’s
field kK of definition of VK ⊂ ShK/Q). The universal abelian scheme AK

is therefore defined over VK/Fq
, and AK is a variety of finite type over Fq .

Replacing q by its finite power, we may assume that X12 ⊂ VK×VK/Fq
is stable

under the Galois action Gal(F/Fq), and hence it has a unique geometrically
irreducible model X12/Fq

⊂ VK × VK/Fq
defined over Fq . Let Y12/Fq

be the
normalization of X12/Fq

. Then Y12 = Y12/Fq
×Fq F. We write Y12/Y12/Fq

for

the abelian scheme A2
K ×(VK×VK) Y12. Then Y12 is an abelian scheme over the

variety Y12/Fq
of finite type over Fq . Let η be the generic point of Y12/Fq

, and
write η for the geometric point over η and Fq(η)sep for the separable algebraic
closure Fq(η)sep of Fq(η) in Fq(η). Take an odd prime ` 6= p, and consider the
`–adic Tate module T`(Yη) for the generic fiber Yη of Y. We consider the image
of the Galois action Im(Gal(Fq(η)sep/Fq(η))) in GLO`×O`(T`(Yη)). Then by a
result of Zarhin ([Z] and [DAV] Theorem V.4.7), the Zariski closure over Q of
Im(Gal(Fq(η)sep/Fq(η))) is a reductive subgroup G of GLF`×F`(T`(Yη)⊗Q), and
Im(Gal(Fq(η)sep/Fq(η))) is an open subgroup of G(Q`). Moreover, by Zarhin’s
theorem, the centralizer of G in GLF`×F`(T`(Yη) ⊗ Q) is End(Y) ⊗ Q`. Since
the reductive subgroups of GL(2) are either tori or contain SL(2), the derived
group G1(Q`) of G(Q`) has to be SL2(F` × F`). By Chebotarev’s density, we
can find a set of closed points u ∈ Y12(F) with positive density such that the
Zariski closure in G of the subgroup generated by the Frobenius element Frobu ∈
Im(Gal(Fq(η)sep/Fq(η))) at u with Π(u) = (u1, u2) (uj ∈ V (F)) is a torus
containing a maximal torus Tu = (Tu1 × Tu2) ∩ G1 of the derived group G1 of
G. In particular the centralizer of Tu in G1 is itself. Thus Yu is isogenous to a
product of two non-isogenous absolutely simple abelian varieties Y1 = Au1 and
Y2 = Au2 with multiplication by F defined over a finite field. The endomorphism
algebra Mj = EndQ(Yj) is a CM quadratic extension of F generated over Q by
the relative Frobenius map φj induced by Frobu. The relative Frobenius map

Frobu acting onX∗(V̂u1)
∼= Op has [F : Q] distinct eigenvalues {φ(1−c)σ

1 |σ ∈ Σ1}
for the CM type Σ1 of Y1, which differ from the eigenvalues of φ2 ∈ End(Y2)

on X∗(V̂u2)
∼= Op. Since we have proven that over the open dense subscheme

U = Y lin of Y , the formal completion of U at u ∈ U with u = (u1, u2) ∈ X ⊂ V 2

is canonically isomorphic to a formal subtorus Ẑ ⊂ V̂u1 × V̂u2 with co-character

group X∗(Ẑ) ∼= Op, we may assume that our point u = (u1, u2) as above is
in the (open dense) image U12 of U in X12 (because the set of such u’s has

positive density). Projecting X∗(Ẑ) down to the left and the right factors VK ,

the projection map X∗(Ẑ)→ X∗(V̂uj ) is actually an injection commuting with
the action of Frobu. Thus Frobu has more than [F : Q] distinct eigenvalues on

X∗(Ẑ), which is a contradiction. Thus we conclude that EndQ(Y) = M2(F ) for
any choice of small open compact subgroups K maximal at p. Passing to the
limit, we may assume that K = G(Zp) (as we do hereafter), and we still have

EndQ(Y) = M2(F ).
As we have remarked at the beginning, EndQ(Y) = M2(F ) implies that

we have an isogeny β̃ : Y1 → Y2 over Y . Writing η
(p)
j for the prime-to–p
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level structure of Yj inducing the prime-to–p level structure already chosen for

Ax = Y1,y = Y2,y at y ∈ Y , we find that β̃ ◦ η(p)
1 = η

(p)
2 ◦ g for g ∈ G(A(p∞)).

Specializing at y, we have g = ρ(β) for β ∈ EndQ(Ax) = M . Thus Ŷy ⊂
Ŝ × Ŝ is given by the equation t′ = tβ

1−c

for nonzero β ∈ O(p) for the Serre–

Tate coordinate t resp. t′ with respect to the ordinary level p-structure ηordp

of Ax = Y1,y resp. Y2,y. By (A) (and Remark 3.12), β1−c ∈ O×
p ; so, we may

assume that β ∈ O×
(p) (and hence β̃ is a prime-to-p isogeny). As in the proof of

Proposition 3.11 (1), we have X̂(x,x) =
⋃
L∈I Ĝm⊗L for finitely many Op-direct

summands L of X∗(Ŝ
2). As we have shown in the proof of Proposition 3.11

(1), points of Y above (x, x) is indexed by L ∈ I. Suppose that y corresponds

to L. Then Ŷy ⊂ Ŝ × Ŝ coincides with Ĝm ⊗ L. On the other hand, we have
the skew-diagonal ∆β = ∆1,β = {(z, ρ(β)(z))|z ∈ V } ⊂ V × V . The formal

completion ∆̂β along (x, x) therefore coincides with Ŷy and Ĝm ⊗ L ⊂ X̂(x,x)

inside Ŝ2 . Thus ∆β ⊂ X. By the irreducibility of X, we conclude X = ∆β.
Since ∆β is smooth, ∆β = Y , and hence X is smooth everywhere.

If Condition (A) fails, as explained after the statement (DE), the morphisms
ρ(α)−1 ◦ Π1 and ρ(β′)−1 ◦ Π2 for suitable nonzero α, β′ ∈ O(p) are étale; so,
(ρ(α) × ρ(β′))−1(X) = ∆1,β by the above argument; so, X = ∆α,β′β. This
finishes the proof.

Here are two technical lemmas, before going into the case where m > 2.

Lemma 3.17. Let Ni = A for a commutative ring A (i = 1, 2, . . . , m). Let
N ⊂ N1 ×N2 × · · · ×Nm = Am be an A-free submodule of Am with m ≥ 2. If
A is a product of finitely many local rings and the projection of N to Ni ×Nm
is surjective for all i = 1, 2, . . . , m − 1 and the projection π′ of N to N ′ :=
N1 ×N2 × · · · ×Nm−1 is surjective, we have N = Am.

Proof. We may assume that A is a local ring. Tensoring its residue field, by
Nakayama’s lemma, we may assume that A is a field k. Suppose that dimN ≤
m − 1. Since π′ is surjective, π′ is an isomorphism, and N ∩ (N ′ × zm) is
either empty or z ∈ N ∩ (N ′ × zm) is a unique point with π′(z) = zm. Since
N → N1 ×Nm is surjective, there exists at least two points in N ∩ (N ′ × zm),
a contradiction. Thus dimN = m and N = km.

For a scheme morphism f : Z → Z′, write f(Z) for the Zariski-closure in Z′

of the image of the topological space of Z by f with reduced scheme structure.

Lemma 3.18. Let the assumption be as in (N0–3). Let S2 ⊂ Sm be a factor
and π : Sm � S2 be the projection. Write π(X ) = Spec(B0) for a local ring

B0 ⊂ OX (with maximal ideal m0). Write X̂ =
⋃
L∈I Ĝm ⊗Zp L. Then

(1) For B̂0 = lim←−n B0/m
n
0 , there exists a finite set I1 of Op-direct summands

` ⊂ X∗(Ŝ
2) such that Spf(B̂0) =

⋃
`∈I1

Ĝm ⊗Zp `, and rankZp ` = dimB0.

(2) rankZp π∗(L) is independent of L ∈ I and is equal to dimB0 = dimπ(X ).
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Proof. From the definition of the image π(X ), B0 is given by the image of

the composite OS2
π∗

−→ OSm � OX . Let XK ⊂ V mK be as in (N3) such

that X̂K = X̂ . Then π(XK ) is an excellent scheme since it is of finite type
over a field F ([EGA] IV.7.8.3 (ii)). For the projection XK of X to SmK , write
π(XK) = Spec(B0,K). Then B0,K is a localization of π(XK ) at (x, x) ∈ S2

K

(SK = Spec(OVK ,x)) and is an excellent integral local ring ([EGA] IV.7.8.3

(ii)). By [EGA] IV.7.8.3 (vii) and (x), B̂0 = B̂0,K is reduced equidimensional.

Since π(X ) ⊂ S2 is irreducible and stable under T, Spf(B̂0) =
⋃
`∈I1

Ĝm ⊗Zp `
with rankZp ` = dimB0, by Proposition 3.11 (1), for finitely many Op-direct

summands ` ⊂ X∗(Ŝ
2). This proves (1).

Write X = Spec(A0), Y = Spec(A) and Spec(B) (resp. Spec(BK)) for
the normalization of π(X ) (resp. π(XK)). Then Spec(BK )/Spec(B0,K) is fi-
nite ([EGA] IV.7.8.3 (vi)) and hence Spec(B)/Spec(B0) is finite. We have the
commutative diagram:

B0
↪→−−−−→ A0

⊂−−−−→ Â0

∩

y ∩

y
y∩

B −−−−→
↪→

A −−−−→
⊂

Â.

Here Â = lim←−n A/m
n
B0
A (so, Ŷ = Spf(Â)). Write π0(Z) for the set of connected

components of a scheme Z. Since I ∼= π0(Spf(Â)) and I1 ∼= π0(Spf(B̂)), we

have a natural surjection I = π0(Spf(Â))
π∗−→ π0(Spf(B̂)) = I1, and L, L′ ∈ I

corresponds to a single ` if π∗(L) ⊗O F ⊂ ` ⊗O F and π∗(L
′) ⊗O F ⊂ ` ⊗O F .

We have Â =
∏
L∈I AL with Ĝm ⊗ L = Spf(AL) and B̂ =

∏
`∈I1

B` with

Ĝm ⊗ ` = Spf(B`). Fix ` and let J ⊂ I be the collection of all L ∈ I such
that π∗(L) ⊗O F ⊂ ` ⊗O F . Then we have a morphism B` → A` :=

∏
L∈J AL,

and the projection B` → AL to the L-component is an injection. Indeed, the
image BL of B` in AL is given by lim←−n B/(m

n
L ∩ B) for the maximal ideal

mL of AL. Since B/(mn
L ∩ B) is a finite dimensional F-vector space, writing

m = m` ∩ B = mL ∩ B for the maximal ideal m` of B`, it is killed by mN

(0 � N ∈ Z). Thus mN ⊂ (mn
L ∩ B). The filtrations {mn

L ∩ B}n and {mn}n
give the same topology on B, since mn ⊂ mn

L ∩ B. Thus B` = lim←−nB/m
n ∼=

lim←−n B/(m
n
L ∩ B) = BL. The ring BL is the power series ring over F with d

variables for d = rankZp π∗(L), and B` is the power series ring with rankZp `
variables. This shows dimB0 = rankZp ` = dimB` = rankZp(π∗(L)) as desired.

We can give a more elementary proof of (2). Let πV : V mK → V 2
K be the

projection which induces π. Let U = Spec(B0) ⊂ π(XK ) be a sufficiently small
affine open neighborhood of (x, x) such that its normalization B/B0 is finite. We
can find such B0 because B/B0 is finite by (1). We take an affine open neigh-
borhood U ′ = Spec(A0) ⊂ π−1

V (U) of xm such that the normalization A/A0 is
finite and A0 is of finite type over B0; so, A is a noetherian domain of finite
type over B. As already explained, A and B are excellent. Let Ũ = Spec(B)

and Ũ ′ = Spec(A). Since B ⊂ A and A and B are integral domains, the mor-
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phism: Spec(A) → Spec(B) is generically flat. The non-flat locus Ũ ′
nf (which

is the Zariski closure of {P ∈ Ũ ′|AP is not flat over Bπ′(P)}) is a proper closed

subscheme of Ũ ′. If rankZp π∗(L) < rankZp `, the formal completion Ĝm ⊗ L
of A along the point yL ∈ Ũ ′ corresponding to L is not flat over the formal
completion Ĝm ⊗ ` of B along the image π(yL). Thus Ũ ′

nf contains a closed
subscheme of maximal dimension, a contradiction against the irreducibility of
Ũ ′. Thus rankZp π∗(L) = rankZp ` as desired.

Here is the corollary showing Y = X = Vm−2 ×∆(α,β) for m > 2:

Corollary 3.19. Let the notation be as in (N0–3) and the assumption be as in
Proposition 3.11. Then X is smooth everywhere, and Xord is Tate O-linear. If
X is finite over S′, X is given either by Vm−1×{x} or identical to Vm−2×∆(α,β)

for some non-zero α, β ∈ O(p) (after permuting first m− 1 factors).

Proof. We use the symbols introduced in Proposition 3.11 and its proof; in
particular, S = Spec(OV,x) and Sm = S′ × S′′ ⊂ Vm with S′′ = S. By
Proposition 3.8 (m = 1) and by Corollary 3.16 (m = 2), we may assume that
m > 2. Assume that X 6= Sm . If the projection of X to S′′ is a proper closed
subscheme in S′′, by applying Proposition 3.8 to the image of X in S′′, we find
that X = S′ × {x}; so, we are done. Thus we may assume that the projection
of X to S′′ is dominant and that X is finite over S′ (Proposition 3.11 (3)).

There are two ways to prove the assertion now. We first describe a way
of reducing the assertion to Corollary 3.16 which is closer to the treatment in
the earlier version of this paper (putting off a brief description of the second
method due to Chai after the first). Let Π : Y → X and ΠY : Y → X be the
normalization. Then by Proposition 3.11 (3), Y is finite flat over S′, and Y is
Tate O-linear at every point y ∈ Y above xm ∈ X (abusing the terminology).

Pick a point y ∈ Y above xm, and write Ŷy = Ĝm⊗L and X̂ =
⋃
L∈I Ĝm⊗L.

We write Si = S be the i-th component of Sm. Let πi,m : Sm → Si × S′′

with i < m be the projection. We regard Ŷy = Ĝm ⊗ L ⊂ Ŝm. If πi,m,∗ :

L⊗OF → X∗(Ŝi×Ŝ′′)⊗OF is surjective for all i < m, by Lemma 3.17 applied to

A = Op⊗OF = Fp and Ni = X∗(Ŝi)⊗OF , we find that L⊗OF = X∗(Ŝ
m)⊗OF ;

so, Ŷy = Ŝm , and hence Y = X = Vm, and we are done. Thus we assume that

that the projection πi,m,∗ : L ⊗O F → X∗(Ŝi × Ŝ′′) ⊗O F is not surjective for
an i < m, and

rankZp πi,m,∗(L) < rankZp X∗(Ŝi × Ŝ′′).

Recall that f(Z) denotes the Zariski-closure in Z′ of the image of the un-
derlying topological space of Z for a morphism f : Z → Z′ of schemes. If
Z = Spec(A) and Z′ = Spec(B), then the topological space of f(Z) is that of
Spec(f∗(B)). Write Πi,m := πi,m ◦Π : Y → Si × S′′. By Lemma 3.18 (2),

dimπi,m(X ) = rankZp πi,m,∗(L) < rankZp(X∗(Ŝi×Ŝ′′)) = dim(Si×S′′). (3.27)

By (3.27), the reduced image πi,m(X ) ⊂ Si × S′′ is an irreducible proper
closed subscheme invariant under T. Applying Corollary 3.16 to πi,m(X ), we
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find that πi,m(X ) = Spec(O∆α,β ,x2) and πi,m(X) ⊂ ∆α,β for some non-zero
α, β ∈ O(p). Permuting indices to bring i to m− 1, we conclude

X ⊂ π−1
m−1(∆α,β) = Vm−2 ×∆α,β.

Since dimX = (m − 1) dimV (by Proposition 3.11 (3)), we conclude by irre-
ducibility X = Vm−2 ×∆α,β as desired.

Here is a brief sketch of the second proof, which is based on the argument
in [C4] Section 8. By using Chai’s globalization of the Serre–Tate coordinate in
[C4] Section 2, we find a dense open subscheme Y lin ⊂ Y (y ∈ Y lin) such that
Y is Tate O-linear at every closed point of Y lin. The existence of Y lin ⊂ Y
follows basically from Proposition 5.3 in [C4] and its proof (applied to Y not
X). Consider the abelian scheme Y = Am ×V m Y . Then EndQ(Y/Y ) is either
isomorphic to Fm or Fm−2×M2(F ), because Y is dominant over Vm−1 and V by
the two projections. Then in a similar manner to the proof of Corollary 3.16, we
can prove the impossibility of EndQ(Y/Y ) ∼= Fm. Thus we have EndQ(Y/Y ) ∼=
Fm−2×M2(F ); in other words, for an index i < m, the i-th factor Yi obtained
by pulling back the i-th factor A of Am to Y is isogenous to the last factor Ym.
This isogeny is induced by a nonzero α/β ∈ M ∼= EndQ

O(Ax) with α, β ∈ O.

Then we conclude that X̂ ⊃ Ŝm−1× ∆̂(α,β) for ∆(α,β) plugged in the product of
the i-th and the m-th copy of V in Vm, and hence X has the desired form.

The subgroup O×
(p)
∼= ρ(T (Z(p))) in E(G,X) fixes x ∈ Ig(F) (Lemma 3.3)

and hence acts on the stalk OV,x and the stalk OIg,x of x on the Igusa tower
Ig/V . The group T (Z(p)) is embedded into T (Zp) = O×

p as in (3.18). Then the

action of T (Z(p)) extends to its p–adic completion O×
p = T (Zp) = Aut(Ŝ) for

Ŝ = Spf(ÔV,x) = Spf(ÔIg,x). Each a ∈ O×
p acts on the formal completion ÔIg,x

as automorphisms sending the canonical coordinate t to ta for a ∈ T (Zp) = O×
p .

Each diagonal element g = diag[a, d] ∈ T δ(Zp) for the diagonal torus T δ ⊂ G
also acts on Ig by the change of level structure ηordp 7→ ηordp ◦ g. The image

of T δ(Zp) ∩ G in E(G,X) has trivial intersection with T (Z(p)) inside E(G,X),

because Tx(Z(p)) is embedded diagonally in G(A(∞)) by ρ = ρ̂x, while each

element of T δ(Zp) has only nontrivial component at p. Thus the two actions of
a ∈ T (Zp) = O×

p fixing x and that of g ∈ T δ(Zp) ∩ G moving x are compatible.

In the following theorem, a ∈ T (Zp) = O×
p acts on ÔIg,x via t 7→ ta for the

canonical coordinate t. We are now ready to prove:

Theorem 3.20. Let F be the residue field of W (so it is an algebraic closure
of Fp). Let x ∈ Ig(F) be a closed point (which is fixed by the action of T (Z(p))

embedded in E(G,X) by ρ). Let a1, . . . , am ∈ T (Zp), and assume that aia
−1
j 6∈

T (Z(p)) for all i 6= j. Then aj(OIg,x/F) (j = 1, 2, . . . , m) are linearly disjoint

over F in ÔIg,x/F, where OIg,x is the stalk at x of the Igusa tower over V .

Let b = Ker(φ) be the kernel of the homomorphism φ in (3.19). Let b̃ be

the unique prime ideal of OIg,x⊗ · · ·⊗OIg,x over b. Then b̃ is the kernel of the

map φ̃ defined in the exactly the same way as φ replacing OV,x by OIg,x. The
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assertion of the theorem is equivalent to b̃ = 0. Since b = 0 ⇔ b̃ = 0 by the
same argument as in the proof of Corollary 3.9, it is enough to prove b = 0.

Proof. We first suppose that m = 2. We use the symbols we introduced in the
proof of the above two propositions. In particular, V = lim←−K VK for K maximal

at p. For simplicity, we write Ô = ObS/F, S = Spec(O) and Ŝ = Ĝm ⊗Z O.

Suppose b 6= 0. Applying Proposition 3.11 (3) to the two projections S×S → S
and X = Spec(R) which has two dominant projections onto S = Spec(O). Then

the formal completion X̂ of X along x2 = (x, x) is a formal torus defined by
t′u2 = tu1 for u1, u2 ∈ Op∩F×

p (Corollary 3.16). By our definition of b, we have
u2/u1 = a2/a1 ∈ O×

p ; so, we may choose u1 and u2 so that u1 = 1 and u2 ∈ O×
p .

Let X be the schematic closure of X in V × V . Then by Corollary 3.16, we
find that X = ∆1,α and hence u2 = α1−c for α ∈ O×

(p). Since α1−c ∈ T (Z(p)),

this contradicts to a1/a2 6∈ T (Z(p)). Thus X = V 2, and a1(O) and a2(O) are
linearly disjoint over F.

We now deal with the case where m > 2. Recall

φ :

m︷ ︸︸ ︷
O ⊗F O ⊗F · · · ⊗F O → Ô

in (3.19) which is the F–algebra homomorphism given by f1 ⊗ f2 ⊗ · · · ⊗ fm 7→∏m
j=1 aj(fj) ∈ Ô ⊗W F. Let R = Im(φ) ⊂ Ô ⊗W F. We regard X = Spec(R)

as a closed subscheme of Sm for S = Spec(O). Take the schematic closure X
of X in V m. By the induction hypothesis on m, X surjects onto S′ and S′′. By
Proposition 3.11 (3), X is either finite over S′ or X = Sm. In the latter case, we
are done; so, we assume that X is finite over S′. Then by Corollary 3.19, there
exists an index 0 < i < m so that πi(X) = ∆α,β inside V 2 = Vi×V ′′ for the i-th

factor Vi = V in V m. We have X̂ ⊃ ∆̂ in Lemma 3.13, and we conclude that
O×
p = T (Zp) 3 ai/am = (α/β)1−c ∈ T (Q), which is a contradiction (because
T (Z(p)) = T (Zp) ∩ T (Q)). Thus X = Sm (and hence b = 0) and X = Vm.

We can add the datum of a nowhere vanishing differential to our classification
problem, looking into the following functor QK :

U 7→
[
(A, λ, i, η(p), ω)/U

∣∣A ∈ P ′
K(U) ∼= P(p)

K (U), π∗ΩA/U = (OU ⊗Z O)ω
]
,

(3.28)
where K is an open compact subgroup of G(A(∞)) maximal at p and A =
(A, λ, i, η(p)) is chosen in P ′

K(U) in (3.6). Then QK is represented by a T–
torsor MK(G,X) over Sh(p)(G,X)/K. The torus T = ResO/ZGm acts on QK
by ω 7→ tω for t ∈ T (OU ) = (OU ⊗Z O)

×
. Over W , assuming Ax to be ordinary

and choosing a level p∞–structure ηordp , it naturally induces an isomorphism

of formal group η : A◦
x
∼= Ĝm ⊗Z d−1 = Spf(Ŵ [qξ]ξ∈O). In other words, η∗ dqq

gives rise to a canonical differential. Choose a nowhere vanishing differential ω0

on A0 = Ax ⊗W F, and consider the formal completion M̂K of MK along its
closed point corresponding to (A0, λ0, i0, η

ord
0 , ω0), which is a formal T̂ -torsor

over Ŝ = V̂x. Here T̂ is the formal completion of T along the origin. Then the
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formal T̂ -torsor M̂K splits into a product T̂ ×W Ŝ over Ŝ ∼= Ĝm⊗d−1. In other
words, if we consider the deformation functor:

Q̂(C) =
[
(A, λ, i, ηord, ω)/C

∣∣(A, λ, i, ηord, ω) ×C F = (A0, λ0, i0, η
ord
0 , ω0)

]

for artinian local W–algebras C with residue field F, Q̂ is prorepresented by
Ŝ × T̂ . In the above discussion, we may actually allow K of p–power level in
(3.28) as long as K contains the monodromy group U∞ of the infinity cusp in
G(Zp) ∩ G(G,X) by replacing Sh(p)(G,X) by the Igusa tower Ig(G,X) and the
level structure η(p) = η(p)K(p) by ηordK(p). In this slightly more general case,
the functor is represented by a formal scheme M̂K which is a T̂–torsor over
Ŝ ⊂ Ig(G,X)/K. Therefore in the sequel, we allow modular forms of finite
p–power level of type Γ1(p

r).
We identify the character group X∗(T ) of T with the module of formal linear

combinations κ =
∑

σ κσσ (κσ ∈ Z) for field embeddings σ : F ↪→ Q so that
xκ =

∏
σ σ(x)κσ (x ∈ T (Q)). For each character κ of T and a p–adic W–algebra

C, we write Gκ(C) for the κ−1–eigenspace of OM/C . Thus Gκ(C) is the union
of C–integral modular forms of weight κ and of finite level (of Γ1(N)–type for
all positive integers N). Since p is unramified in O, T is smooth over Zp and
is diagonalizable over Zp. Therefore we have OM/W =

⊕
κGκ(W ). By the

above splitting, we may regard Gκ(C) ⊂ ObS/C . In particular, a ∈ Tx(Zp) acts

on f ∈ Gκ(F) through the identification T (Zp) = AutO(Ŝ/F), and we have

a(f) ∈ ObS/F. We write t − 1 = (tj − 1)j for the parameter at 1 of Ŝ. Each

φ ∈ Gκ(C) has t–expansion given by

φ(t) = φ(Aord) ∈ C[[t− 1]].

The Hasse invariant H satisfies H(t) ∈ F× (because ÂbS
∼=
(

Ĝm ⊗Z d−1
)
×W Ŝ

for the universal deformationA/bS). Since H is invertible on Shord , for any given

parallel weight κ =
∑
σ kσ (k ∈ Z), we have Hκ ∈ Gκ(F) such that Hκ(t) = 1.

Indeed, for k� 0, we can lift H to E ∈ Gκ(W ) of level prime to p with E ≡ H
mod mW by the ampleness of the weight κ automorphic line bundle. Then
allowing p-power level, we can find Hκ/F of any parallel positive weight κ by
the p-adic density of modular forms of level prime to p in the space of p-adic
modular forms (see [PAF] Theorem 4.10). The form Hκ/F ∈ Gκ(F) may not
have a characteristic 0 lift if κ = 1 even if we allow the level N divisible by p.

Corollary 3.21. Fix a parallel weight κ, and let Hκ ∈ Gκ(F) be the mod
p modular form with Hκ(t) = 1. Let a0, . . . , an ∈ Tx(Zp) and suppose that
aia

−1
j 6∈ Tx(Q) for all i 6= j. Let I ⊂ {0, 1, 2, . . . , n} be a subset of indices. Then

if {Hκ, fij ∈ Gκ(F)}j for a fixed κ 6= 0 are linearly independent over F for each
i ∈ I, then {ai(fij)}i∈I,j in ObS/F are linearly independent over F.

Proof. Note that a(Hκ)(t) = Hκ(t
a) = 1. The division by a(Hκ) brings the

module a(Gκ(F)) isomorphically into the ring a(OIg,x/F), we may assume that
κ = 0. Then the above theorem (Theorem 3.20) implies the desired result.
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In the introduction, we mentioned linear independence of aj(Eaj) = Eaj ◦aj
for Eisenstein series Eai of a weight κ. Strictly speaking, in our application, we
prove linear independence of Eaj and Hκ by q-expansion principle, and then
apply the above corollary to {Hκ, Eaj ∈ Gκ(F)}j to show that {aj(Eaj )}j is
linearly independent over F.

4 Eisenstein and Katz Measure

We recall the Fourier expansion of classical Eisenstein series and Eisenstein
measure from [HT] Sections 2 and 3. This is based on Katz’s theory in [K3],
but our exposition slightly differs from it in a fashion adapted to our application.
In this section, we do not assume that p is unramified in F/Q.

4.1 Geometric Modular Forms

Let F/Q be a totally real finite extension with integer ring O. Recall the
different d of F/Q, and for each ideal a we have written a∗ = a−1d−1. Thus
O∗ = d−1. For a nonzero ideal N of O, we define a group scheme µN over
Z as the Cartier dual of the constant group O/N. If N is generated by an
integer n > 0), µN

∼= O∗ ⊗Z µn canonically by the trace pairing on O∗ × O
and the duality between µn and Z/nZ. In general, we can identify µN with
{x ∈ O∗ ⊗ µn|αx = 0 for all α ∈ N} choosing a positive integer n ∈ N. For
a fixed fractional ideal c of F and an ideal N prime to c, the Hilbert modular
variety M(c,N) classifies the following triples (A, λ, i)/S formed by

• An abelian scheme π : A → S with an algebra homomorphism: O ↪→
End(A/S) making π∗(ΩA/S) a locally free O ⊗Z OS–module of rank 1;

• An O–linear polarization λ : At ∼= A ⊗ c. By λ, we identify the O–
module of symmetric O–linear homomorphisms Homsym(A/S , A

t
/S) with

c = Homsym(A/S , A/S) ⊗O c. Then we require that the (multiplicative)
monoidP (A) of symmetric isogenies induced locally by an ample invertible
sheaf be identified with the set of totally positive elements c+ ⊂ c;

• We have an O-linear closed immersion i = iN : µN ↪→ A[N] of group
schemes.

Thus M(c,N) is the coarse moduli scheme of the functor P(S) =
[
(A, λ, i)/S

]

from the category of schemes S into the category SETS, where [ ] = { }/ ∼=
is the set of isomorphism classes of the objects inside the brackets, and we call
(A, λ, i) ∼= (A′, λ′, i′) if we have an O–linear isomorphism φ : A/S → A′

/S such

that λ′ = (φ ⊗ 1) ◦ λ ◦ φt and φ ◦ i = i′. The scheme M(c,N) is a fine moduli
if N is sufficiently deep. In [K3] and [HT], the moduli M(c,N) is described as
an algebraic space, but it is actually a quasi-projective scheme (e.g. [C1] and
[PAF] Chapter 4).

We could insist that π∗(ΩA/S) is free over OS ⊗Z O, and taking a genera-
tor ω with π∗(ΩA/S) = (OS ⊗Z O)ω, we may consider the functor classifying
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quadruples (A, λ, i, ω):
Q(S) =

[
(A, λ, i, ω)/S

]
. (4.1)

Let T = ResO/ZGm. We let a ∈ T (S) = H0(S, (OS ⊗Z O)×) act on Q(S) by
(A, λ, i, ω) 7→ (A, λ, i, aω). By this action, Q is a T–torsor over P; so, Q is repre-
sentable by a schemeM =M(c,N) affine over M = M(c,N). By definition,M
is a T–torsor over M. For each character κ ∈ X∗(T ) = Homgp−sch(T,Gm) and
a given ring R, if F 6= Q, the κ−1–eigenspace of H0(M/R,OM/R) is the space
of modular forms of weight κ integral over R, where M/R = M×Z Spec(R).
We write Gκ(c,N;R) for this space of R–integral modular forms, which is an
R–module of finite type. When F = Q, as is well known, we need to take the
subsheaf of sections with logarithmic growth towards cusps. To simplify our
argument, hereafter in this section, we often assume that F 6= Q, since we do
not need to insist on logarithmic growth by the Koecher principle, assuming
this condition (in any case we just need to add this growth condition in the
elliptic modular case; see [GME] Chapters 2 and 3). Thus f ∈ Gκ(c,N;R) is
a rule assigning an element in an R–algebra C to each quadruple (A, λ, i, ω)/C
(defined over the R–algebra C) satisfying the following three conditions:

(G1) f(A, λ, i, ω) = f(A′, λ′, i′, ω′) ∈ C if (A, λ, i, ω) ∼= (A′, λ′, i′, ω′) over C;

(G2) f((A, λ, i, ω) ⊗C,ρ C ′) = ρ(f(A, λ, i, ω)) for each ρ ∈ HomR-alg(C,C
′);

(G3) f(A, λ, i, aω) = κ(a)−1f(A, λ, i, ω) for a ∈ T (C).

The sheaf of κ−1–eigenspace OM[κ−1] under the action of T is an invertible
sheaf of weight κ on M. We write this sheaf as ωκ. Then we have

Gκ(c,N;R) = H0(M(c,N), ωκ)

as long as M(c,N) is a fine moduli space. Writing A = (A,λ, i,ω) for the
universal abelian scheme over M, s = f(A)ωκ gives rise to the section of ωκ.
Conversely, for any section s ∈ H0(M(c,N), ωκ), taking a unique morphism
φ : Spec(C) → M such that φ∗A = A for A = (A, λ, i, ω)/C, we can define
f ∈ Gκ by φ∗s = f(A)ωκ.

Fix a prime p. We fix a fractional ideal c prime to Np and take two ideals
a and b prime to Np such that ab−1 = c. To this pair (a, b), we can attach the
Tate AVRM Tatea,b(q) defined over the completed group ring Z((ab)) made of
formal series f(q) =

∑
ξ�−∞ a(ξ)qξ (a(ξ) ∈ Z). Here ξ runs over all elements

in ab, and there exists a positive integer C (dependent on f) such that a(ξ) = 0
if σ(ξ) + C < 0 for some σ ∈ I. We write R[[(ab)≥0]] for the subring of
R[[ab]] made of formal series f (having coefficients in R) with a(ξ) = 0 for all
ξ with σ(ξ) < 0 for at least one embedding σ : F ↪→ R. Actually, we skipped
a step of introducing the toroidal compactification of M whose (completed)
stalk at the cusp corresponding to (a, b) actually carries Tatea,b(q). However
to make exposition short, we ignore this technically important point, referring
the (attentive) reader to the treatment in [K3] Chapter I, [C1], [HT] Section 1
and [H02] Section 4. The scheme Tate(q) can be extended to a semi-abelian
scheme over Z[[(ab)≥0]] with special fiber Gm⊗a∗ at the augmentation ideal A.
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Since a is prime to p, ap = Op. Thus if R is a Zp–algebra, we have a canonical
isomorphism:

Lie(Tatea,b(q) mod A) = Lie(Gm ⊗ a∗) ∼= R⊗Z a∗ ∼= R⊗Z O
∗.

By Grothendieck-Serre duality, we have ΩTatea,b(q)/R[[(ab)≥0 ]]
∼= R[[(ab)≥0]]. In-

deed we have a canonical generator ωcan of ΩTate(q) which induces dt
t ⊗ 1 on

Gm ⊗ a∗ (writing Gm = Spec(Z[t, t−1]); see [K3] (1.1.17) and (1.2.11)). Since
a is prime to Np, we have a canonical inclusion µN ⊂ µn ⊗Z O

∗ ∼= µn ⊗Z a∗

(for an integer 0 < n ∈ N prime to a) into Gm ⊗ a∗, which induces a canonical
closed immersion ican : µN ↪→ Tate(q). As described in [K3] (1.1.14) and [HT]
page 204, Tatea,b(q) has a canonical c–polarization λcan. Thus we can evalu-
ate f ∈ Gκ(c,N;R) at (Tatea,b(q), λcan, ican, ωcan). The value f(q) = fa,b(q)
actually falls in R[[(ab)≥0]] (if F 6= Q : Koecher principle) and is called the
q–expansion at the cusp (a, b). When F = Q, we impose f to have values in the
ring R[[(ab)≥0]] when we define modular forms (this is the logarithmic growth
condition):

(G4) fa,b(q) ∈ R[[(ab)≥0]] for all (a, b).

Suppose that N is prime to p. We can think of a functor

P̂(R) =
[
(A, λ, ip, iN)/R

]

similar to P defined over the category of p–adic rings R = lim←−n R/p
nR. The

only difference here is that we consider an isomorphism of ind-group schemes ip :

µp∞⊗ZO
∗ ∼= A[p∞]◦ (in place of a differential ω), which induces Ĝm⊗O∗ ∼= Â for

the formal completion V̂ at the characteristic p–fiber of a scheme V over Zp. It
is a theorem (due to Deligne–Ribet and Katz) that this functor is representable

by the formal completion M̂(c,Np∞) of M(c,Np∞) = lim←−nM(c,Npn) along its
mod p fiber. Thus we can think of p–adic modular forms f/R for a p–adic ring
R which are functions of (A, λ, ip, iN)/C (for any p–adic R–algebra C) satisfying
the following conditions:

(Gp1) f(A, λ, ip, iN) = f(A′, λ′, i′p, i
′
N) ∈ C if (A, λ, ip, iN)/C ∼= (A′, λ′, i′p, i

′
N)/C ;

(Gp2) f((A, λ, ip, iN)⊗C,ρ C ′) = ρ(f(A, λ, ip, iN)) for each p-adically continuous
R-algebra homomorphism ρ : C → C ′;

(Gp3) fa,b(q) ∈ R[[(ab)≥0]] for all (a, b) prime to Np.

We write V (c,N;R) for the space of p–adic modular forms satisfying (Gp1-3).
This V (c,N;R) is a p–adically complete R–algebra.

We have the q–expansion principle valid both for classical modular forms
and p–adic modular forms f ,

(q-exp) The q–expansion: f 7→ fa,b(q) ∈ R[[(ab)≥0]] determines f uniquely.

This follows from the irreducibility of the Hilbert modular Igusa tower proven
in [DR] (see also [PAF] Theorem 4.21 and [H08] for other proofs).
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Since Gm ⊗ d−1 = Spec(Z[tξ]ξ∈O) has a canonical invariant differential dt
t ,

we have ωp = ip,∗
dt
t on A. This allows us to regard each f ∈ Gκ(c,N;R) a

p–adic modular form by putting

f(A, λ, ip, iN) = f(A, λ, iN, ωp).

By (q-exp), this gives an injection of Gκ(c,N;R) into the space of p–adic mod-
ular forms V (c,N;R) (for a p–adic ring R) preserving q–expansions.

Over C, the category of quadruples (A, λ, i, ω) is equivalent to the category
of triples (L, λ, i) made of the following data (cf. [ABV] I): L is an O–lattice in
O⊗Z C = CI , an alternating form λ : L∧OL ∼= c∗ and i : N∗/O∗ ↪→ FL/L. The
form λ is supposed to be positive in the sense that λ(u, v)/ Im(uvc) is totally
positive in O ⊗Z R = RI . Via polarization λ, we can define theta functions
as described in [ABV] Chapter I by which we can embed the complex torus
CI/L into a projective space PN(C) for sufficiently large dimension N . Then
by Chow’s theorem, the image A is a projective algebraic variety defined over
C with group structure, in short, an abelian variety over C. The differential ω
can be recovered by ι : A(C) = CI/L so that ω = ι∗du where u = (uσ)σ∈I is
the variable on CI .

Conversely, if we start with a triple (A, λ, ω)/C,

LA =

{∫

γ

ω ∈ O ⊗Z C
∣∣∣γ ∈ H1(A(C),Z)

}

is a lattice in CI , and the polarization λ : At ∼= A⊗ c induces L ∧ L ∼= c∗.
Using this equivalence, we can relate our geometric definition of Hilbert

modular forms with the classical analytic definition. Recall Z which is the
product of I copies of the upper half complex plane: Z = HI for

H = {z = x+
√
−1y ∈ C|y = Im(z) > 0}.

We regard Z ⊂ O ⊗Z C = CI made up of z = (zσ)σ∈I with totally positive
imaginary part. Thus we can think of the submodule bz ⊂ F ⊗Q C = CI for a
cusp (a, b). For each z ∈ Z, we define Lz = 2π

√
−1(bz + a∗) ⊂ CI ,

λz(2π
√
−1(az + b), 2π

√
−1(cz + d)) = −(ad− bc) ∈ c∗

and iz : N∗/O∗ = (Na)∗/a∗ → FLz/Lz by iz(a mod O∗) = 2π
√
−1a mod Lz.

Consider the following congruence subgroup Γ11(N; a, b) given by
{(

a b
c d

)
∈ SL2(F )

∣∣∣a, d ∈ O, b ∈ (ab)∗, c ∈ Nabd and d− 1 ∈ N
}
.

Write Γ11(c; N) = Γ11(1;O, c−1). We let g = (gσ) ∈ SL2(F ⊗Q R) = SL2(R)I

act on Z by linear fractional transformation of gσ on each component zσ. Then

(Lz, λz, iz) ∼= (Lw, λw, iw) ⇐⇒ w = γ(z) for γ ∈ Γ11(N; a, b).

Here an isomorphism between (Lz, λz, iz) and (Lw, λw, iw) is supposed to pre-
serve the decomposition Lz ∼= Lw ∼= b⊕a∗. The set of pairs (a, b) with ab−1 = c
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is in bijection with the set of cusps of Γ11(c; 1). Two cusps are equivalent if they
transform each other by an element in Γ11(c; N). A standard choice is (O, c−1),
which we call the infinity cusp of M(c,N). For each ideal t, (t, t−1c−1) gives
another cusp. The two cusps (t, t−1c−1) and (s, s−1c−1) are equivalent under
Γ11(c; N) if t = αs for an element α ∈ F× with α ≡ 1 mod N in F×

N . We have

M(c,N)(C) ∼= Γ11(c; N)\Z, canonically.

Let G = ResO/ZGL(2). Take an open compact subgroup K ⊂ G(A(∞)) such
that u ∈ K if and only if the following two conditions are satisfied:

1. u ∈
(
dF 0
0 1

)−1
G(Ẑ)

(
dF 0
0 1

)
for an idele dF ∈ Ô with dF Ô = d̂;

2.
(
dF 0
0 1

)
u
(
dF 0
0 1

)−1
mod N is congruent to an upper unipotent matrix in

GL2(O/N) modulo N.

Then taking an idele c with cÔ = ĉ, we see that

Γ11(c; N) ⊂
(
( c 0

0 1 )K ( c 0
0 1 )

−1 ∩G(Q)+

)
⊂ O×Γ11(c; N)

for G(Q)+ made up of all elements in G(Q) with totally positive determinant.
Choosing a representative set of the strict ray class group ClF (N) by finite ideles
in F×

A , we find by the approximation theorem that

G(A) =
⊔

c∈ClF (N)

G(Q) ( c 0
0 1 )K ·G(R)+

for the identity connected component G(R)+ of the Lie group G(R). This shows

G(Q)\(X×G(A(∞)))/K ∼= G(Q)+\(Z ×G(A(∞)))/K ∼=
⊔

c∈ClF (N)

M(c,N)(C),

(4.2)
where G(A)+ = G(A(∞))G(R)+ and X and Z is as in (3.1). The ClF (N)–tuple
(fc)c with fc ∈ Gκ(c,N; C) can be viewed as a single automorphic form giving
a section of a line bundle over ShK (C) = G(Q)+\(Z×G(A(∞)))/K.

Recall the identificationX∗(T ) with Z[I] so that κ(x) =
∏
σ σ(x)κσ . Regard-

ing f ∈ Gκ(c,N; C) as a holomorphic function of z ∈ Z by f(z) = f(Lz , λz, iz),
it satisfies the following automorphic property:

f(γ(z)) = f(z)
∏

σ

(cσzσ + dσ)κσ for all γ =
(
a b
c d

)
∈ Γ11(c; N). (4.3)

The holomorphy of f is a consequence of the functoriality (G2). Each f ∈
Gκ(c,N; C) has the Fourier expansion

f(z) =
∑

ξ∈(ab)≥0

a(ξ)eF (ξz)

at the cusp corresponding to (a, b). Here eF (ξz) = exp(2π
√−1

∑
σ ξ

σzσ). This
Fourier expansion equals the q–expansion fa,b(q) replacing eF (ξz) by qξ.
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Shimura studied in his theory of arithmetic of Hecke L–values the effect on
modular forms of the following differential operators on Z indexed by κ ∈ Z[I]:

δσκ =
1

2π
√
−1

(
∂

∂zσ
+

κσ

2yσ
√
−1

)
and δkκ =

∏

σ

(
δσκσ+2kσ−2 · · · δσκσ

)
, (4.4)

where k ∈ Z[I] with kσ ≥ 0. An important point is that the differential operator
preserves rationality property at CM points of (arithmetic) modular forms, al-
though it does not preserve holomorphy (see [AAF] III and [Sh3]). To describe

the rationality, we recall the two embeddings i∞ : Q ↪→ C and ip : Q ↪→ Q̂p

fixed in the introduction. Recall W = i−1
p (W ), which is a discrete valuation

ring. Let (A, λ, ω, i)/W be an ordinary quadruple of CM type (M,Σ) (hav-
ing complex multiplication by the integer ring O ⊂ M). The complex uni-
formization: ι : A(C) ∼= CΣ/Σ(A) induces a canonical base ω∞ = ι∗du of
ΩA/C over O ⊗Z R, where u = (uσ)σ∈Σ is the standard variable on CΣ and
Σ(A) = {(σ(a))σ∈Σ ∈ CΣ|a ∈ A}. We define the periods Ω∞ ∈ CΣ = O ⊗Z C
by ω = Ω∞ω∞. The level p–structure ip : µp∞ ⊗ d−1 ↪→ A[p∞] induces an

isomorphism ιp : Spf(Ŵ [qξ]ξ∈O) = Ĝm ⊗Z d−1 ∼= Â for the p–adic formal group

Â/W at the origin. Then ω = Ωpωp (Ωp ∈ O ⊗Z W = WΣ) for ωp = ιp,∗
dq
q .

Here is the rationality result of Shimura for f ∈ Gκ(c,N;W):

(δkκf)(A, λ, ω∞, i)

Ωκ+2k
∞

= (δkκf)(A, λ, ω, i) ∈ Q. (S)

Katz interpreted the differential operator in terms of the Gauss-Manin con-
nection of the universal AVRM over M and gave a purely algebro-geometric
definition of the operator (see [K3] Chapter II and [HT] Section 1 for a summary
of the result of Katz). Using this algebraization of δkκ, he extended the operator
to geometric modular forms and p–adic modular forms. We write his operator
corresponding to Shimura’s operator δk∗ as dk : V (c,N;R) → V (c,N;R). An
important formula given in [K3] (2.6.7) is: for f ∈ Gκ(c,N;W),

(dkf)(A, λ, ωp, i)

Ωκ+2k
p

= (dkf)(A, λ, ω, i) = (δkκf)(A, λ, ω, i) ∈ W. (K)

Let t be the canonical variable of the Serre–Tate deformation space Ŝ. Iden-
tifying Ŝ with Ĝm ⊗Z d−1, t is the character 1 ∈ O = X∗(Gm ⊗Z d−1) =

Hom(Gm ⊗Z d−1,Gm). Write S = Gm ⊗Z d−1. We have Ŝ = Spf( ̂W [X(S)])

for the completion ̂W [X(S)] at the augmentation ideal of the monoid algebra
W [X(S)] = W [O] (X(S) = X∗(S) = Homalg−gp(S,Gm)), where W [O] is the
ring made up of formal finite sums

∑
ξ∈O a(ξ)t

ξ (a(ξ) ∈ W ). We have the
following interpretation of dκ:

dκ
∑

ξ

a(ξ)tξ =
∑

ξ

a(ξ)ξκtξ. (4.5)

To see this formula, let us recall the construction of dκ. Let A = (A, λ̂, î) be

the universal deformation of A = (A, λ, i) on Ŝ. Since A is ordinary, the level
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p–structure ip : µp∞ ⊗Z d−1 ↪→ A gives the identification of formal groups îp :

Ĝm⊗d−1

/bS
∼= Â. Note that Ĝm⊗d−1

/bS is isomorphic to Ŝ×W Ŝ overW ; so, we write

the standard variable on the base Ŝ as t and on the fiber Ŝ as s. Then for each
a ∈ Op, we have a unique section ω(a) = (âip)∗

ds
s of ω/bS . The action of a is just

s 7→ sa; so, ω(a) = dsa

sa . By [K2] 4.3.1, the differential operator is Ŝ–invariant,

and the canonical variable t is normalized so that dta = ata ⇐⇒ d = tddt .

In other words, by the construction of d, choosing a parameter t of Ŝ so that

Ŝ = Spf(Ŵ [tξ]ξ∈O), we have d = a−1tddt on Ŝ for a unit a ∈ W×. Thus changing
t by ta, we have an exact identity as above. This change of variable does not
cause much trouble in the computation we execute later (because everything
involving t is brought to that of ta by the variable change). Thus we may
assume dκtξ = ξκtξ.

There is another short cut showing (4.5): It is known that d induces a base

of invariant differentials on the base Spf(Ŵ [ab]) of the Tate AVRM, regarding

it as Ĝm ⊗ (ab); so, dσ coincides with δσ0 . From this, we can also conclude that
dκ induces an invariant differential.

For each f ∈ V (c,N;R) (for a p–adic algebra R), we call the expansion

f(t) := f(A, λ̂, î) =
∑

ξ∈O

a(ξ, f)tξ

as an element of R̂[O] a t–expansion of f . Hereafter, we write this ring sym-
bolically as R[[tξ]]ξ∈O. Choosing a Z–base {aj} of O, Tj = taj − 1 gives a

complete set of local parameters at the point x ∈ M̂(c,N)/R given by A and

R̂[O] ∼= R[[T1, . . . , Td]]. We have the following t–expansion principle:

(t-exp) The t–expansion: f 7→ f(t) ∈ R[[tξ]]ξ∈O determines f uniquely.

The Taylor expansion of f with respect to the variables T = (Tj) can be com-
puted by applying differential operators ∂j = ∂

∂Tj
and evaluating the result at

x = A. Since ∂j is a linear combination of the dσ’s in the field of fractions of R
as long as R is of characteristic 0, we have, for f, g ∈ V (c,N;W ),

dκf(A) = dκg(A) for all κ ≥ 0 ⇐⇒ f(t) = g(t). (4.6)

What we have described is actually an oversimplified description of Katz’s
theory, and the reader is referred to [K3] and [HT] Section 1 for a more rigorous
explanation on the subject.

4.2 q–Expansion of Eisenstein Series

Let φ : {Op × (O/f′)} × {Op× (O/f′′)} → C be a locally constant function such
that φ(ε−1x, εy) = N(ε)kφ(x, y) for all ε ∈ O×, where k is a positive integer
and f′ and f′′ are integral ideals prime to p. We put f = f′ ∩ f′′ and suppose
that all a, b and c are prime to fp. We regard φ as a function on X × Y with
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X = Y = Op× (O/f) via the natural projection of {Op× (O/f)}×{Op× (O/f)}
to {Op × (O/f′)} × {Op × (O/f′′)}. We put Xα = (O/pαO) × (O/f) and define
the partial Fourier transform

Pφ :
{
(Fp/O

∗
p)× (f∗/O∗)

}
× Y =

{⋃

α

p−αf∗/O∗

}
× Y → C

of φ, taking α so that φ factors through Xα × Y , by

Pφ(x, y) =

{
p−α[F :Q]N(f)−1

∑
a∈Xα

φ(a, y)eF (ax) if x ∈ p−αf∗/O∗,

0 if x 6∈ p−αf∗/O∗,
(4.7)

where eF is the standard additive character of FA restricted to the local com-
ponent Fpf at pf. This definition does not depend on the choice of α.

We construct an Eisenstein series Ek(z; φ) for a positive integer k and φ as
above as a function of triples (L, λ, i) we have studied in the previous subsection.
Actually k indicates the parallel weight

∑
σ kσ. Here i : Fp/O

∗
p × (f)∗/O∗ ↪→

p−∞L/L × f−1L/L is the level p∞f2–structure. The f–part if of i induces, via
polarization, the dual map i′f : L/fL� O/f, and hence having if is equivalent to

having a pair (if, i
′
f), which is literally of level f2 (not just of level f). We define

an Ofp–submodule PV (L) ⊂ L⊗O Ffp specified by the following conditions:

(pv1) PV (L) ⊃ L⊗O Ofp;

(pv2) PV (L)/ (L ⊗O Ofp) = Im(i).

By definition, we may regard

i−1 : PV (L) � PV (L)/ (L ⊗O Ofp) ∼= Fp/O
∗
p × f∗/O∗.

By Pontryagin duality under Tr ◦ λ, the dual map i′ of i gives rise to

i′ : PV (L) � Op × (O/f).

See [HT] page 206 for details for i′ which is written as π′ there. Then we may
regard Pφ as a function on p−∞f−1L∩ PV (L) =

(⋃
α p

−αf−1L
)
∩ PV (L) by

Pφ(w) =

{
Pφ(i−1(w), i′(w)) if (w mod L) ∈ Im(i),

0 otherwise.
(4.8)

For each w = (wσ) ∈ F ⊗Q C = CI , the norm map N(w) =
∏
σ∈I wσ is well

defined. Writing L = (L, λ, i) for simplicity, we define the value Ek(L; φ, c) by

Ek(L; φ, c) =
{(−1)kΓ(k + s)}[F :Q]

√
|DF |

∑′

w∈p−∞f−2L/O×

Pφ(w)

N(w)k|N(w)|2s
∣∣∣
s=0

. (4.9)

Here “
∑′

” indicates that we are excluding w = 0 from the summation. As
shown by Hecke, this type of series is convergent when the real part of s is
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sufficiently large and is continued to a meromorphic function well defined at
s = 0 (as long as either k ≥ 2 or φ(a, 0) = 0 for all a). If either k ≥ 2 or
φ(a, 0) = 0 for all a, the function Ek(c, φ) gives an element in Gκ(c, f

2p∞; C)
(κ = k

∑
σ:F↪→Q σ), whose q–expansion computed in [HT] Section 2 is given by

N(a)−1Ek(φ, c)a,b(q) = 2−[F :Q]L(1− k; φ, a)

+
∑

0�ξ∈ab

∑

(a,b)∈(a×b)/O×

ab=ξ

φ(a, b)
N(a)k

|N(a)|q
ξ, (4.10)

where L(s; φ, a) is the partial L–function given by the Dirichlet series:

∑

ξ∈(a−{0})/O×

φ(ξ, 0)

(
N(ξ)

|N(ξ)|

)k
|N(ξ)|−s.

4.3 Eisenstein Measure

We recall the definition of the Eisenstein measure with values in V (c, fs;W )
for a p–adic algebra W given below. Recall the fixed algebraic closure F of Fp
and the ring W (F) of Witt vectors with coefficients in F. We consider W (F)

as a subring of the p–adic completion Q̂p of Qp. Let W be a discrete valuation

ring finite flat over W (F) inside Q̂p. For any fractional ideal a, write its prime
decomposition as

∏
q qεq ; so, εq is an integer with εq = 0 for primes q which do

not show up in the prime decomposition. We denote ε(a) = {εq}q for this set
of exponents. We abbreviate the product

∏
q qεq as qε(a), which is equal to a.

Let s|f be two integral ideals of F prime to p. We consider the space Õ =

(Op × (O/f)) × (Op × (O/s)) and write the variable on Õ as (x, a; y, b) for

x, y ∈ Op and a ∈ O/f and b ∈ O/s. We regard Õ as a ring; then Õ× is

the group of invertible elements in Õ. Embedding O× into Õ diagonally, we
can take the closure O× under the profinite topology of Õ. We also write
T̃ = (O×

p × (O/f))× (O×
p × (O/s)). We let ε ∈ O× act on Õ by ε(x, a; y, b) =

(εx, εa; εy, εb). Then we define T = T̃ /O× and T× = Õ×/O×. These are the
profinite compact spaces carrying the Eisenstein measure.

For each continuous function φ(x, a; y, b) on T̃ , we consider the following
partial Fourier transform:

φ◦(x, a; y, b) =
∑

u∈O/f

φ(x−1, u; y, b)eF (−ua$−ε(df)), (4.11)

where we have chosen for each prime q of F , a prime element $q in F×
q ⊂ F×

A

and put $e =
∏

q$
eq

q in F×
A for each exponent e = {eq ∈ Z}q with eq = 0

almost everywhere (that is, except for finitely many primes). The map φ 7→ φ◦

is a linear operator acting on the space C(T̃ ;W ) of all continuous functions on
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T̃ with values in W (and is invertible by the Fourier inversion formula). If φ
factors through T , then φ◦ satisfies the following property

φ◦(εx, εa; ε−1y, ε−1b) = φ◦(x, a; y, b) for all ε ∈ O×.

This is the property required to define Eisenstein series (for even weight k) in
the previous subsection. Then there exists a unique measure Ec : C(T ;W ) →
V (c, fs;W ) with the following two properties:

(E1) If φ has values in Q equipped with the discrete topology, then for each
positive integer k > 0,

Ec(N
−kφ) = Ek(φ

◦; c),

where N : T̃ → Z×
p is given by N(x, a; y, b) = NF/Q(x) for the norm map

NF/Q : Op → Zp. Note here that N−kφ◦ (for any positive integer k)
factors through T ⇐⇒ φ◦ satisfies invariance under O× required for the
definition of the Eisenstein series;

(E2) The q–expansion of Ec(φ) at the cusp (a, b) is given by

N(a)
∑

0�ξ∈ab

qξ
∑

(a,b)∈(a×b)/O×,ab=ξ

φ◦(a; b)|N(a)|−1,

where |N(a)| is the (complex) absolute value of the norm N(a) of a ∈ a,

a × b is embedded in T̃ by (a, a mod f; b, b mod s), and ε ∈ O× acts on
(a, b) by (a, b) 7→ (εa, ε−1b).

The existence and the uniqueness of the measure satisfying (E1-2) is a conse-
quence of the q–expansion principle and the q–expansion of the classical Eisen-
stein series given in the previous section (see [K3] Chapter III and [HT] Sec-
tion 3). Although it is assumed that f = s in [HT], there is no difficulty extending
the construction to the general case, since for any function factoring through T
as in (E1), the corresponding Eisenstein series can be checked to be of level fs.

When confusion is unlikely, we write E(φ) for E0(φ; c) to simplify our nota-
tion (though E(φ) fully depends on c).

4.4 Katz Measure

We can evaluate p–adic modular forms f at any test object (A, λ, i)/W defined
over W . This gives rise to a linear form Ev : V (c, fs;W ) → W given by
Ev(f) = f(A, λ, i). Thus we can think of the evaluation Ev ◦ Ec, which is a
bounded measure on C(T ;W ) with values in W .

Now we choose a specific test object. Let x = [z, g] be an ordinary CM
point of the Shimura variety. We take the abelian scheme (A, λ, i) sitting over
x ∈M(c, fs). Thus A has complex multiplication by a CM field M = Mx with
a CM type Σ. We write M ′ for the reflex field of (M,Σ) (see [ACM] Section 8).
We suppose that p is unramified inM (and hence inM ′). The complex manifold
A(C) is given by CΣ/Σ(A) for a lattice A ⊂ M , and we can find a model A
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defined over an abelian extension k of M ′ such that all torsion points of A are
rational over an abelian extension of M ′ ([ACM] 18.6 and 21.1). The model
is unique if the field contains the field of moduli of the sufficiently deep level
structure i. By a theorem of Serre–Tate, making i deep (for example, making it
of level N for a deep N prime to p), A has good reduction over W ∩ k. Here we
can insist that k is unramified at p if M is unramified at p. Thus we may assume
that (A, λ, i) is defined over W , and if p is unramified in F/Q, we may assume

that W = W (F). We further assume that the special fiber Ã at p of A is an
ordinary abelian variety. Since the residue field F of W is algebraically closed,
Ã[p∞] ∼=

(
µp∞ ⊗ d−1

)
×(Fp/Op). Thus Ã has level p∞ structure i0 defined over

F. By Serre–Tate deformation theory, A sits at the origin 1 ∈ Ŝ. Thus we can
uniquely lift i0 to a level p∞–structure ip; so, we may assume that i contains a
level p∞ structure defined over W .

We would like to recall briefly the construction of the Katz measure interpo-
lating the L–values of arithmetic Hecke characters of conductor dividing Cp∞,
where C is an integral ideal of M prime to p. We write O for the integer ring of
M . We decompose C = FFcI. Here I consists of inert or ramified primes over
F , FFc consists split primes over F and

F + Fc = F + Fc = Fc + Fcc = O and Fc ⊃ Fc.

We put f = FI∩F , s = Fc∩F and i = I∩F . We have Op = O⊗ZZp = Op×Opc ,
where Op =

∏
P∈Σp

OP. We suppose the following four conditions:

1. The lattice A is a fractional ideal of M prime to Cp; so, we write A = A(A)
(so, A(A)(C) = CΣ/Σ(A)).

2. Choose δ ∈ M so that δc = −δ and Im(σ(δ)) > 0 for all σ ∈ Σ, and have
the alternating form 〈u, v〉 = (ucv−uvc)/2δ induce O∧O ∼= d−1c−1. Then
this pairing induces c(AAc)−1–polarization λ = λ(A).

3. The inclusion F ↪→M induces a canonical isomorphism Op ∼= Op, which
in turn induces i′p : Fp/O

∗
p = Fp/Op ∼= MΣ/AOp ⊂ CΣ/Σ(A). We put

ip(A)(x) = i′p(2δx). This is the p–part of the level structure i(A).

4. The prime-to–p part i(p) of i(A) is defined as follows. Choose an idele

dF of F such that dF Ô = d̂, the prime-to–fpd component d
(fpd)
F is trivial

and dF,q = (2δ)Q for prime ideal Q with Q|F, where q = Q ∩ F . Then
x 7→ dFx induces (f2)∗/O∗ ↪→ (Fi)−2A/A, which is the if.

In addition to the data (A(A), λ(A), i(A)), assuming that p is unramified in
F/Q, for our later use, we choose the differential ω(A) on A(A) as follows:

5. We choose and fix a differential ω = ω(O) on A(O)/W so that

H0(A(O),ΩA(O)/W) = (W ⊗Z O)ω.

Since Ap = Op, A(O∩A) is an étale covering of both A(A) and A(O); so,
ω(O) induces a differential ω(A) first by pull-back to A(O ∩ A) and then
by pull-back inverse from A(O ∩ A) to A(A).
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As long as the projection π : A(O ∩ A) � A(A) is étale, the pull-back inverse
(π∗)−1 : ΩA(O∩A)/W → ΩA(A)/W is a surjective isomorphism. We thus have

H0(A(A),ΩA(O)/W) = (W ⊗Z O)ω(A).

Let ClM (i) be the ideal class group of M modulo i and Cl−(i) be the quotient of
ClM (i) by the image of (O/i)×. Identifying Op (resp. Opc) with the first (resp.

last) component ofOp of Õ and embeddingO/f into O/FI (resp. identifyingO/s
with O/Fc)) through the inclusionO ↪→ O, we embed T× intoZ = ClM (Cp∞) =
lim←−n ClM(Cpn). Then we have the exact sequence:

T× ι−→ Z → Cl−(i)→ 1,

and the kernel of ι is a finite group. We write [A] for the image of the class
of an ideal A prime to Cp in Z. For α ∈ O, we have [(α)] = α−1, where the
right-hand side is the image of the inclusion O×

Cp → Z. Choosing a complete

representative set {A} for Cl−(i), we have a decomposition

Z =
⊔

A

Im(ι)[A]−1.

For each function φ ∈ C(Z;W ), we define φA ∈ C(T ;W ) in the following way:
φA(t) = φ(t[A]−1) for t ∈ T× and extend it by 0 outside T×. Then define

∫

Z

φdϕ =
∑

A

∫

T

φAdEcA
(A(A), λ(A), i(A)), (4.12)

where cA = c(AAc)−1. We write EA(φ) for EcA
(φ) for functions φ ∈ C(T×;W ).

In [K3] Chapter V and [HT] Section 4, computation of
∫
Z
λ̂dϕ is made for

the p–adic avatar λ̂ of an arithmetic Hecke character λ of conductor a factor
of Cp. The result is as described in the introduction. Since there are many
misprints in [HT] (though all minor), we have added at the end of this paper a
correction table of misprints in [HT].

5 Proof of Theorem I

Recall the quadratic CM extension M/F introduced in Section 1, and write Σ
(resp. Σp) for the CM type (resp. the p–adic CM type) we fixed there. We now
prove Theorem I, and the proof concludes in Subsection 5.4. We assume that p
is unramified in F/Q and write W = W (F).

5.1 Splitting the Katz Measure

We start with a general argument. We assume that p > 2. Let the triple
(A(A), λ(A), i(A)) be the abelian variety of CM type (M,Σ) as in Section 4.4.
We consider the measure EA : φ 7→

∫
T
φdEcA

(A(A), λ(A), i(A)) (on the image
of T× in ClM (Cp∞)) for the polarization ideal cA = c(AAc)−1. For α ∈ M
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prime to Cp, u 7→ αu induces an isomorphism: A(A) ∼= A(αA). This mul-
tiplication by α sends i(A) (resp. λ(A) and ω(A)) to α ◦ i(αA) which sends
an element x ∈ (Fp/O

∗)× (f2)∗/O∗ to αdFx mod αA (resp. ααcλ(A) = λ(αA)
and αω(αA)). This shows that

∫

T×

φ(αt)dEA(t) =

∫

T×

φ(t)dEαA(t), (5.1)

where α(x, a; y, b) = (αx, αa;αcy, αcb) for t = (x, a; y, b). This tells us how the
piece of the integral corresponding to A in the definition of the Katz measure
dϕ transforms if we change A in its ideal class.

This formula (5.1) can be verified functorially using the fact:

(A(αA), λ(αA), αi(αA)) ∼= (A(A), (ααc)λ(A), i(A)) by αu 7→ u,

but there is an easy short-cut: for k� 0,

∫

T

φN−k(t)dEA(t) =
∑

w∈A

P (N−kφ)◦(i−1(w), i′(w))

=
∑

w∈αA

P (N−kφ)◦(α−1i−1(w), α−ci′(w))

=

∫

T

φN−k(αx, α−cy, α−1a, α−cb)dEαA =

∫

T

φN−k(α−1t)dEαA(t),

where N(x, a; y, b) = N(x) =
∏
σ σ(x). For each function φ on Im(ι)[A]−1, we

define φA(x) = φ(x[A]−1). Now we decompose, for an open subgroup H of T×

containing Ker(ι),

ι(T×)[A]−1 =
⊔

B

ι(H)[B]−1 ⇐⇒ T× =
⊔

B

H [B−1A].

Thus, we have

∫

T×

φA(t)dEA(t) =
∑

B

∫

T×

χH[B−1A]φA(t)dEA(t)

=
∑

B

∫

T×

χH(t[BA−1])φB(t[BA−1])dEA(t) =
∑

B

∫

T

χH(t)φB(t)dEB(t),

where χH is the characteristic function of H . Note here that we have B = αA

for α ∈M×.

For the moment, we assume that C is stable under complex conjugation c.
For simplicity, we write Z for ClM (Cp∞). We take a subgroup Γ = ΓC ⊂ Z of
finite index satisfying the following two conditions:

1. Z = Γ×∆ with torsion-free Γ and a finite group ∆ = ∆C;

2. Γ and ∆ is stable under c.
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Under the assumption: p > 2, we can choose the splitting Z = Γ × ∆ stable
under c. This fact can be shown as follows: We can first split Z = Zp × ∆′

so that Zp is the maximal p–profinite subgroup. This splitting is canonical;
so, it is stable under c. Since p is odd, we can split Zp = Z+

p × Z−
p so that c

acts through multiplication by ±1 on Z±
p . Then we just split Z±

p = Γ± × ∆±

for torsion-free Γ± and finite groups ∆±. Thus we can achieve c–stability of
Γ = (Γ+ × Γ−) ⊂ Z.

For each z ∈ Z, we define π−(z) = [z]− := z1−c. Recall the torus Tx =
ResM/QGm ⊂ G fixing the closed point x ∈ Shord over (A(O), λ(O), i(O)) ∈
M(c, f2p∞) and its quotient T as in (3.18) (with the injection: T (Z(p)) ↪→
T (Zp) = O×

p sending α ∈ Tx(Z(p)) to α1−c ∈ O×
p ). We have a natural exact

sequence:
1→

(
O×
p × (O/C)×

)
/O× → Z → ClM → 1,

where ClM is the class group of M . Since O× is a subgroup of O× of finite
index and p is unramified in M/Q, π−(O×) is a finite group of order prime to
p. By this fact, we see that

Γ− ∩ π−
((

O×
p × (O/C)×

)
/O×

)
↪→ O×

p [−1] ∼= O×
p ,

where O×
p [−1] = {a ∈ O×

p |c(a) = a−1}. In particular, identifying Op with Op,
for a principal ideal (α) prime to Cp, [(α)]− = αc−1

p ∈ T (Zp) = O×
p = O×

p ,
where p =

∏
p∈Σp

p. Therefore, writing [A] for the image in Z of an ideal A

prime to Cp, we have, regarding T (Z(p)) ⊂ T (Zp) = O×
p by (3.18),

[A]− ∈ T (Z(p)) ⇐⇒ [A] ∈ [O×
(pC)]

(
Γ+ ×∆+

)
, (5.2)

where ∆+ = H0(Gal(M/F ),∆), and O(pC) ⊂ M is the localization (not the
completion) of O at pC.

We now allow the case C 6= Cc. In any case, we have a canonical splitting
of Z into the prime-to–p subgroup ∆(p) and the p–profinite subgroup Zp. We
fix a splitting Zp = ∆p × ΓC so that the natural projection π : Z → ClM (p∞)
induces an isomorphism of ΓC onto the torsion free part Γ = ΓO of ClM (p∞) we
have already chosen in the above discussion. We then define ∆C = ∆(p) ×∆p.

The translation φ(z) 7→ φ(zζ) by ζ ∈ ∆C gives an action of ∆C on the space
of continuous functions C(Z;W ) on Z with values in W . For each character ψ
of ∆C, we write C(Z;O)[ψ] for the ψ–eigenspace for the action of ∆C. Then
the restriction of continuous functions on Z to ΓC gives rise to an isomorphism
Resψ : C(Z;W )[ψ] ∼= C(ΓC;W ). We write Infψ for Res−1

ψ .
For a given measure ϕ on Z, the ψ–component ϕψ ∈W [[Γ]] is defined by

∫

Γ

φdϕψ =

∫

Z

Infψ φdϕ.

In terms of group algebras, ψ̃ : Z → W [[Γ]] given by ψ̃(ζγ) = ψ(ζ)π(γ) for
γ ∈ ΓC and ζ ∈ ∆C induces a continuous W–algebra homomorphism W [[Z]] �

W [[Γ]] (still written as ψ̃), and we can verify that ϕψ = ψ̃(ϕ). If one chooses
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another splitting of Z into a product of a torsion-free group and a finite group,
they differ by a character of Γ into ∆C. In other words, i′i−1 = ε is a character
of Γ for two sections i, i′ : Γ→ Z of the projection: Z � Γ. Then Infψ φ for two
different splittings differ by multiplication by ψ ◦ ε; hence, the invariant µ(ϕψ)
is independent of the choice of splitting. Hereafter we stop worrying about the
choice of splitting, fixing it once and for all. We write ∆ for ∆C hereafter.

5.2 Good Representatives

We would like to choose a representative set D for ∆ so that the projection
π∆ : Z → ∆ induces an isomorphism D ∼= ∆ if p - |ClM |. In general, D ∼= Z/Γ′

for the intersection Γ′ of Γ and the image of O×
Cp. We would like to choose D

so that our computation of q–expansion (of Eisenstein series) becomes easier.
Let I(Cp) be the group of fractional ideals of M prime to Cp, and define

I(Cp)+ =
{
A ∈ I(Cp)

∣∣A1−c = α1−cO for α ∈ M×
}
.

Suppose for the moment that C does not contain primes ramifying in M/F .
Since A is prime to Cp, α1−c is prime to Cp. Thus if a prime factor Q of
Cp divides the principal ideal (α), its conjugate Qc divides (α) with the equal
multiplicity. Thus α = βγ for γ ∈ F× with β prime to Cp. In other words,
(β1−c) = (α1−c) = A1−c, and hence we can write

I(Cp)+ =
{
A ∈ I(Cp)

∣∣A1−c = α1−c
A O for αA ∈M× prime to Cp

}
(5.3)

if C does not contain primes ramifying in M/F . Without assuming the above
condition, we can always write

I(Cp)+ =
{
A ∈ I(Cp)

∣∣A1−c = α1−c
A O for αA ∈ M× prime to C′p

}
,

where C′ is the maximal factor of C prime to the relative discriminant of M/F .
The quotient of I(Cp)+ by principal ideals prime to Cp is a subgroup of the

class group ClM of M , which we write Cl+M . We see easily that

ClF = the image of ClF ⊂ Cl+M ⊂ H0(Gal(M/F ), ClM).

If the group O×
+ of totally positive units of O coincides with the group of square

units, the equality Cl+M = H0(Gal(M/F ), ClM ) holds. If further the class
number of M is odd, the three groups are all equal. We take a complete repre-
sentative set D− (resp. D+) for ClM/Cl

+
M (resp. Cl+M in I(Cp)+).

When the class number of M is odd, we choose D+ among fractional ideals
of F and D− among primes of M split over F . If the class number is even,
supposing that C is prime to the discriminant of M/F , we choose D+ ∪ D−

among primes of M split over F .
We write Γ′ for the intersection of Γ with the image of O×

Cp in the group Z =
ClM (Cp∞). Then we put D for a complete representative set in the localization
(not the completion) O×

(Cp) for π(O×
Cp)/Γ

′ with the projection π : O×
Cp → Z if

C does not contain primes ramifying in M/F . When C is divisible by a prime
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ramified in M/F , things get more complicated, because we need to include in D
elements α ∈ O divisible by some ramified primes in C. So until Subsection 5.5,
we assume that C is prime to the relative discriminant of M/F . Then we have

∫

Z

φdϕ =
∑

A∈D+

∑

α∈D

∑

B∈D−

∫

Γ′

φAαB(z)dEAαB

We compute (A(BA), λ(AB), i(AB)) for A ⊂ F . Since we have

A(BA)(C) = CΣ/Σ(AB) = CΣ/Σ(B)⊗O A = A(B)(C) ⊗O A,

we conclude A(AB) = A(B) ⊗O A. There is another construction if we choose
A ⊂ O: Tensoring A(B) to the exact sequence: 0 → A → O → O/A → 0, we
get another exact sequence:

0→ Tor1(O/A, A(B))
i−→ A(B) ⊗O A→ A(B)→ 0.

Since O is a Dedekind domain, we have Tor1(O/A, A(B)) ∼= A(B)[A] canon-
ically. Thus i brings A(B)[A] onto (A(B) ⊗O A)[A]. Since λ(B) is a cB–

polarization for cB = c(BBc)−1, we have A(B)t
λ(B)−−−→ A(B)⊗cB. This induces

λ(B)⊗ A : (A(B) ⊗A)t ∼= A(B)t/A(B)t[A]

∼= (A(B)⊗O cB)⊗O A−1 = (A(B)⊗O A)⊗ cAB.

We can check that λ(B) ⊗ A = λ(AB). Since A is prime to Cp, the quotient
process by the A–torsion subgroup does not alter the level structure; so, i(B)
induces i(AB) = i(B)⊗ A.

The above process of making (A(AB), λ(AB), i(AB)) can be performed
(without any modification) for general triples (A, λ, i) (even without complex
multiplication) and yields a functorial map from test objects (A, λ, i) with polar-
ization ideal c to test objects (A⊗OA, λ⊗A, i⊗A) with polarization ideal cA−2.
For a p–adic modular form f ∈ V (cA−2,N;R), we define f |〈A〉 ∈ V (c,N;R) by

f |〈A〉(A, λ, i) = f(A ⊗O A, λ⊗A, i⊗A) (5.4)

for a fractional ideal A of F prime to N (see [PAF] 4.1.9). This shows

∫

Γ′

φABdEAB = (E(χΓ′φAB)|〈A〉) (A(B), λ(B), i(B)) if A ⊂ F , (5.5)

where E = EcAB
.

By adding level, we can construct another operator [q] : V (cq,N;R) →
V (c,Nq;R) in the following way. Here we assume that q is an integral ideal
prime to cp. This goes as follows: For each test object: (A, λ, ω, i)/C (over a
p-adic R-algebra C) of level Nqp∞ with polarization ideal c, we define a new
test object (A′, λ′, ω′, i′). First define A′ = A/i(q∗/O∗). The quotient exists
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over C, since i(q∗/O∗) is an étale subgroup of A (because C is a p–adic ring).
The level structure

i :
(
Fp/O

∗
p

)
× ((Nq)∗/O∗)→ A

composed with the quotient map π : A → A′ induces, modulo q∗/O∗, the
level structure i′ : Fp/O

∗
p ×N∗/O∗ → A′ defined over C. The cq–polarization

λ′ : A′t ∼= A′ ⊗ cq is defined as follows: Tensoring the exact sequence 0→ q →
O → O/q→ 0 with At = A ⊗ c, we have another exact sequence:

0→ A⊗ cq[q]→ A ⊗ cq→ A ⊗ c→ 0.

Taking dual of the quotient map π : A→ A′, we have one more exact sequence:

0→ Hom(i(q∗/O∗),Gm)→ A′t πt

−→ At → 0,

which gives rise to the following exact sequence

0→ Hom(i(q∗/O∗),Gm)→ A′t[q]
λ◦πt

−−−→ i(q∗/O∗)⊗ c→ 0.

Since q is prime to c, the kernel of the composite: (π⊗ id) ◦λ ◦ πt : A′t → A⊗ c

is the entire q–torsion subgroup A′t[q]. Since A′t/A′t[q] = A′t ⊗ q−1, we have
constructed an isomorphism:

(π ⊗ id) ◦ λ ◦ πt : A′t ⊗ q−1 ∼= A⊗ c.

Tensoring q with this isomorphism, we get the desired λ′ : A′t ∼= A′ ⊗ cq. Since
q is prime to p, on a p–adic algebra C, Lie(A) ∼= Lie(A′), which implies that
ω′ = π∗ω is well defined generator of ΩA′/C . The association (A, λ, ω, i)/C 7→
(A′, λ′, ω′, i′)/C is functorial (i.e., a morphism between the functors Q in (4.1)
with respect to (c,Nqp∞) and (cq,Np∞)). We have

[q] : V (cq,N;R)→ V (c,Nq;R) and [q] : Gκ(cq,N;R)→ Gκ(c,Nq;R)

by f |[q](A, λ, ω, i) = f(A′, λ′, ω′, i′).
We compute [q](A(A), λ(A), i(A))/W for a fractional ideal A ⊂M , supposing

that all prime factors of q are split inM/F . Choose an integral ideal Q inM such
that the inclusion O ↪→ O induces O/q ∼= O/Q. Then Q + Qc = O. Consider
(A(A), λ(A), i(A)) with the level fsqp∞–structure i(A) sending x ∈ q∗/O∗ to
2δx ∈ Q−1A/A. Then A(A)[Q] = i(A)(q∗/O∗) and hence A(A)/i(A)(q∗/O∗) =
A(AQ−1) and i(A)′ = i(AQ−1), which are the level fsp∞–structure. Since q is
prime to pc, using the fact that QQc = q, we can verify that

[q](A(A), λ(A), ω(A), i(A))/W ∼= (A(AQ−1), λ(AQ−1), ω(AQ−1), i(AQ−1))/W ,
(5.6)

where i(A) is the level fqp∞–structure as above and i(AQ−1) is the induced
level fp∞–structure. We can always choose Q ∈ D+ so that Qc + Q = O and
O/Q ∼= O/q for q = Q ∩ F . This shows

∫

Γ′

φQ−1BdEQ−1B = (E(χΓ′φQ−1B)|[q]) (A(B), λ(B), i(B))

for Q and q as above, (5.7)

76



where E = EcAB
. As for the effect of α ∈M×, we may assume either α ∈ O or

α ∈ O− O. Then we have, for the characteristic function χΓ′ of Γ′,

∫

Γ′

φαBdEαB = (E(χΓ′φαB)|〈α〉) (A(B), λ(B), i(B)) if α ∈ O ∩ F×, (5.8)

∫

Γ′

φα−1BdEα−1B = (E(χΓ′φα−1B)|[ααc]) (A(B), λ(B), i(B)) if α 6∈ O, (5.9)

where E = Ec for c = cαB for (5.8) and c = cα−1B for (5.9).

5.3 Computation of q–Expansions

Pick an element g ∈ G(A(∞)) with totally positive det(g) ∈ F . Then g induces
an automorphism of the Shimura variety (see (3.9)), and hence the functorial
action of g on test objects. We write

g(A, λ, i) = (A, λg , ig)

for the image of a test object (A, λ, i) under the action of g. Here, writing
T (A) = lim←−N A[N ] for the Tate module, the level structure is an isomorphism

i : F 2
A(∞)

∼= T (A) ⊗Q A(∞), where F 2
A(∞) is made up of row vectors on which

G(A(∞)) acts from the right. Then we have ig = i ◦ g and λg = det(g)λ. When
g = γ ∈ G(Q)+, we have an isogeny γ̃ : (A′, λ′, γ̃ ◦ i′) → (A, λγ , iγ = i ◦ γ) for
a suitable A′ (see below). Thus we can interpret the action as an action of an
isogeny in this case. This follows from the following three facts for γ ∈ G(Q)+
and test objects over C :

(L1) Writing Lb,a∗

z = (b, a∗)t(z, 1) = bz + a∗ and

iz((b, a) mod b ⊕ a∗) = bz + a mod Lb,a∗

z ,

we have L(b,a∗)γ−1

γ(z)
∼= Lb,a∗

z by w 7→ w(cz + d)−1, where γ = ( ∗ ∗
c d ).

(L2) iγ(z) = (cz + d)iz ◦ γ; so, A′ = CI/L(b,a∗)γ−1

γ(z) and

γ̃(w mod L(b,a∗)γ−1

γ(z) ) = (cz + d)−1w mod Lb,a∗

z .

(L3) We have the identity of the Tate module via iz :

T (CI/Lb,a∗

z ) ∼= b̂⊕ â∗ and T (Tatea,b(q)) = b̂⊕ â∗ (̂x = x⊗Z Ẑ).

If we have an isogeny α : A → A, we have α(A, λ, i) = (A, λ′, i′) given by
λ′ = αα∗λ and i′(x) = αi(x). Here α∗ = λ ◦ αt ◦ λ−1, which is αα∗c–
polarization. In other words, defining ρ(α) ∈ G(Q)+ by αi = i ◦ ρ(α), we
find that ρ(α)−1(α(A, λ, i)) = (A, λ, i). Since the Shimura variety classifies the
triples up to isogeny, α(A, λ, i) and (A, λ, i) are equal as a point of Sh(G,X),
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and Im(ρ) gives rise to the stabilizer of the point of Sh(G,X) represented by
(A, λ, i) (see Corollary 3.5).

When we consider the level structure i modulo a compact subgroup K ⊂
G(A(∞)), we write (A, λ, iK). Then for g ∈ G(A(∞)) with det(g) ∈ F×

+ ,
g(A, λ, iK) = (A, λg, (i ◦ g)g−1Kg) is well defined (solely depending on g).

We now consider the Tate AVRM: Tatea,b(q). For each positive integer N ,
we have a canonical exact sequence:

1→ µN ⊗ a∗ → Tatea,b(q)[N ]→ b/Nb→ 0.

We therefore have a canonical level structure ican modulo an (integral) upper

unipotent subgroup U = U(Ẑ) ⊂ G(A(∞)), which is represented by the following

exact sequence tensored by A(∞) (over Ẑ):

0→ â∗(1)→ T (Tatea,b(q))→ b̂→ 0,

where b̂ = Ẑ⊗Z b and â∗(1) = Ẑ(1) ⊗Z a∗. Let K ⊂ G(A(∞)) be the stabilizer

of the row vector space b̂ ⊕ â∗, that is,

K = Ka,b =
{
g ∈ G(A(∞))

∣∣(b̂ ⊕ â∗)g = b̂ ⊕ â∗
}
.

Thus Γ11(O; a, b) = SL2(F ) ∩Ka,b. Define

K(N) = Ka,b(N) =
{(

a b
c d

)
∈ Ka,b

∣∣c ∈ Nâbd, a ≡ d ≡ 1 mod NÔ
}
.

Then we have Γ11(N; a, b) = SL2(F )∩K(N). For each given g ∈ G(A(∞)) with
totally positive det(g) ∈ F (so, g ∈ E(G,X)), we can find finite ideles a(g), b(g) ∈
A(∞) such that g = u(g)

(
b(g) ∗
0 a(g)

)
with u(g) ∈ K ∩ SL2(FA) and ( 1 ∗

0 1 ) ∈
K. Let (A, λ, i) be as in (L1–3), and put iK(N) = (i mod K(N)). Having

(A, λ, iK(N)) is equivalent to having T (A) = i(b̂ ⊕ â∗) and iK(N) : (Na)∗/a∗ ↪→
A[N]. The ideles a(g) and b(g) are determined uniquely modulo multiple of

units in Ô. We assume here that a(g)N = b(g)N = 1.
Write simply a′ = a(g)−1a and b′ = b(g)b and Kg = g−1Kg. We have a

canonical identification b̂′ ⊕ â′
∗
(1) = T (Tatea′,b′(q)) and

ia
′,b′

can,Kg : µN ⊗ (Na′)∗/a′∗ ↪→ Gm ⊗ (a′)∗ � Tatea′,b′(q).

Since b′ ⊕ a′
∗

and b⊕ a∗ are commensurable, the two Tate AVRM’s Tatea,b(q)
and Tatea′,b′(q) are in the same isogeny class (over Z[[(ab + a′b′)≥0]]). Since

̂(a(g)a∗) = a(g)−1â∗ and b(g)b̂ = b̂(g)b, up to isogenies, we have from (L3)

g(Tatea,b(q), λa,b
can, i

a,b
can,K(N)) =

(Tatea(g)−1a,b(g)b(q), det(g)λa,b
can = λa(g)

−1a,b(g)b
can , i

a(g)−1a,b(g)b
can,K(N)g ◦ u(g)). (5.10)
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If g ∈ F×, then a(g) = b(g) = g, and we have an isogeny

g : (Tatea,b(q), λa,b
can, i

a,b
can)→ (Tateg−1a,gb(q), λg

−1a,gb
can , g ◦ ig−1a,gb

can )

induced by q 7→ qg (or equivalently, by Gm ⊗ a∗ → Gm ⊗ (g−1a∗) given by
x⊗a 7→ x⊗ga). Therefore the central rational element acts on the Tate AVRM
trivially.

For the Eisenstein series E(φ) = E0(φ; c) (weight 0) of a function φ(x, a; y, b)
((x, a; y, b) ∈ (ap× (a/fa))× (bp× (b/fb))), we find from the above computation
(assuming a(g)N = b(g)N = 1 for N = pf):

E(φ)(g(Tatea,b(q), λa,b
can, i

a,b
can))

= E(φ|u(g))(Tatea(g)−1a,b(g)b(q), λa(g)
−1a,b(g)b

can , ia(g)
−1a,b(g)b

can ), (5.11)

where φ|u(g)(x, a; y, b) = P−1(Pφ((x, a; y, b)u(g)) (letting the 2×2–matrix u(g)
act from the right on the row vector (x, a; y, b)) for the partial Fourier transform
φ 7→ Pφ as in Section 4.2.

We compute the q–expansion of E(φ)|〈A〉 for a fractional ideal A of F . This
is the special case of (5.10) when g is a scalar matrix ( a 0

0 a ) with aN = 1 (and

aÔ = Â). By construction, we have a homomorphism q : b ↪→ Gm ⊗Z a∗. Since

the A–torsion points of Tatea,b(q) is given by q(bA−1/b)⊕ (µN ⊗ a∗) [A]. Thus

Tatea,b(q) ⊗A−1 = Tatea,b(q)/Tatea,b(q)[A] = TateaA,bA−1 (q).

From this, it is easy to see (cf. [PAF] (4.53))

(Tatea,b(q)⊗ A, λa,b
can ⊗ A, ia,bcan ⊗A) = (TateaA−1,bA(q), λaA−1 ,bA

can , iaA−1,bA
can ),

(5.12)
where the superscript: “a, b” is to indicate that the attached object is relative
to the Tate curve Tatea,b(q).

We compute [q](Tatea,b(q), λcan, ωcan, ican) for an ideal q ⊂ O. Recall that

Tatea,b(q) = Gm ⊗ a∗/q(b).

Tensoring Gm ⊗ a∗ with the exact sequence: 0→ O → q−1 → q−1/O → 0, we
have another exact sequence:

0→ (Gm ⊗ a∗) [q]→ Gm ⊗ a∗ → Gm ⊗ (aq)∗ → 0.

Taking the quotient by q(b), we get the following exact sequence:

0→ (Gm ⊗ a∗) [q]
ican−−−→ Tatea,b(q)→ Tateaq,b(q)→ 0.

Then going back to the construction of the Tate quadruples in [K3] 1.1 (and
[HT] 1.7), we can verify

[q](Tatea,b(q), λa,b
can, ω

a,b
can, ican,Ka,b(Nq))

= (Tateaq,b(q), λaq,b
can , ω

aq,b
can , ican,Kaq,b(N)). (5.13)
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The above action [q] corresponds to the action of g =
(

1 0
0 q−1

)
for a finite

idele q with qÔ = q̂ and qN = 1. This follows from (5.10) combined with the
fact that Ka,b(Nq)g = Kaq,b(N).

Now we further suppose that Ka,bg = Ka,bγ for γ ∈ G+(Q) and gN = 1.
Then u = gγ−1 ∈ Ka,b, and hence uN = γ−1

N . This shows

gγ−1(Tatea,b, λ
a,b
can, ω

a,b
can, ican,Ka,b(N))

= (Tatea,b, λ
a,b
can, ω

a,b
can, ican,Ka,b(N) ◦ γ−1

N ). (5.14)

5.4 Linear Independence of Eisenstein Series

Recall that D ∼= Z/Γ′ for the intersection Γ′ (in Z) of Γ with the image of O×
Cp.

Let χΓ′ be the characteristic function of Γ′ ⊂ Z. We put φ = Infψ χΓ′ for a
character ψ : ∆ → W×. We regard ψ as a character of Z composing with the
projection: Z � ∆. Although the Eisenstein series Ec(φ) is of weight 0 and
is not classical, we take actually Ec(N

−kφ) for a positive k so that N−k ≡ 1
mod p on Z. Then Ec(N

−kφ) ≡ Ec(φ) mod p, and hence, just to compute the
q–expansion mod p, we can treat Ec(φ) as if it is classical. Thus we can apply
Corollary 3.21 to Ec(φ). Recall that we have written E(Φ◦) for E0(Φ

◦; c) =
Ec(Φ) for a suitable choice of c in the context (making c explicit is left to the
reader since it complicates the symbols attached to the Eisenstein series).

Recall the decomposition C = FFcI in the introduction satisfying

F + Fc = O, F + Fc = O, Fc + Fcc = O and Fc ⊃ Fc, (5.15)

every prime factor of I is inert or ramified over F . (5.16)

Recall f = FI ∩ F , s = Fc ∩ F and T = (O×
p × (O/f)) × (O×

p × (O/s))/O×.
Then the variable on T is written as (x, a; y, b) with x, y ∈ Op. Write prime
decomposition of f as

∏
q qε(q). We choose a prime element $q in Oq, and we

define $ε(f) as an idele whose q–component is given by $
ε(q)
q . Let

χ◦
Γ′(x, a; y, b) =

∑

u∈O/f

χΓ′(x−1, u; y, b)eF (− ua

$ε(df)
) = χ(x, 1; y, b)eF (− a

$ε(df)
),

where eF : FA/F → Q
×

is the standard additive character having the value
eF (x∞) = exp(2π

√−1Tr(x∞)) at ∞, and χ is the characteristic function of

{(x, a; y, b)|π(x, 1; y, b) ∈ Γ′} for π : O×
Cp → Z.

We split further D =
⊔
α∈D− αD+ where D+ is the subset of D represented

by elements of F×:

D+ =
{
α ∈ D

∣∣αΓ′ = βΓ′ with β ∈ F× ∩O×
Cp

}
.

Recall that we assumed that C is prime to the relative discriminant D of M/F .
We choose α ∈ D− so that (α) = Q is a prime ideal split in M over F . Then
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Ka,bρ(α) = Ka,bgQ for gQ =
(

1 0
0 q

)
for a finite idele q ∈ Ô with qÔ = Q̂Q̂c and

qCp = 1. Define R (resp. S) by a subset {αCp

∣∣α ∈ D+} (resp. {βfp

∣∣β ∈ D−})
in the completion O×

Cp (resp. O×
fP ).

Hereafter until 5.5, we assume I = 1. By (5.5), (5.8) and (5.14), we see that
∑

β∈D+

ψ(β)−1E(χ◦
Γ′)|〈(β)〉|β = E(Φ◦

+),

where “|β” is the action of the scalar element β ∈ Z(Q), and

Φ◦
+(x, a; y, b) =

∑

s∈S

ψ(s)χ◦(s−1(x−1, a); s(y, b)), (5.17)

since s = βfp ∈ S ⊂ O×
fp (for β ∈ D+) by (5.14). Here note that ψ(s) = ψ(β)−1

because s = βfp. We further sum up over D−:
∑

α∈D−

ψ(α)E(Φ◦
+)|[ααc]|ρ(α)−1 = E(Φ◦), (5.18)

where we have chosen (α) to be an integral ideal with O/(α) ∼= O/((α) ∩ F )
and (α) ∩ F = (ααc), and Φ◦ is given by

Φ◦(x, a; y, b) =
∑

r∈R

ψ(r)−1Φ◦
+(r(x, a; y, b)), (5.19)

because ψ(r) = ψ(α)−1 (r = αCp ∈ OCp). Since we have E(Φ◦
+(r(x, a; y, b))) =

E(Φ◦
+)|ρ(r) for ρ(r) ∈ Ka,b, we have by (5.14) that

∑

α∈D−

ψ(α)


 ∑

β∈D+

ψ(β)−1E(χ◦
Γ′)|〈β〉|β


 |[ααc]|ρ(α)−1

=
∑

r∈R

ψ(r)−1E(Φ◦
+)|ρ(r)−1. (5.20)

We have computed E(Φ◦) as a linear combination of transforms of the Eisen-
stein series E(χ◦

Γ′). On the other hand, by definition of ϕψ, Φ as above is the

restriction of Infψ χΓ′ to Z0 =
(
O×
p × (O/C)×

)
/O× ⊂ Z.

Recall that A ∈ D+ is chosen out of fractional ideals of F if |ClM | is odd;
so, in such a case, the operator 〈A〉 makes sense. Similarly, if |ClM | is even,
we have chosen A ∈ D+ ∪ D− among prime ideals of M split over F ; so, the
operator [AAc] regarding AAc as a prime ideal of F also makes sense.

Theorem 5.1. Suppose p > 2. Let t be the canonical variable of the Serre–
Tate deformation space Ŝ = Ĝm ⊗Z d−1 of (A(O), λ(O), i(O))/W so that the
parameters (ta1−1, . . . , tad−1) (for a base {ai}i of O over Z) give the coordinate

around the origin 1 ∈ Ŝ. Suppose that I = 1, and write Φ for the restriction of
Infψ χΓ′ to Z0 ⊂ Z. Put for each B ∈ D−

EB(t) =
∑

A∈D+

ψ(A)−1E(Φ◦)|〈A〉(t) ∈ ObS
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if the relative class number of M/F is odd, where we have chosen A ⊂ F prime
to CCcp. Otherwise, we put for each B ∈ D−

EB(t) =
∑

A∈D+

ψ(A)E(Φ◦)|[AAc]|ρ(αA)−1(t) ∈ ObS ,

where [A]− = α1−c
A with αA ∈ M× prime to CCcp. Then the t–expansion of

E =
∑

B∈D−

ψ(B)EB|[BBc](t[B]− )

at (A(O), λ(O), i(O)) gives (up to an automorphism of W [[Z]]) the t–expansion
of the anticyclotomic measure ϕ−

ψ,C. In particular, supposing that p > 2 is

unramified in F/Q, we have the vanishing of the µ–invariant: µ(ϕ−
ψ,C) = 0,

unless the following three conditions are satisfied:

(M1) M/F is unramified everywhere (so the strict class number of F is even);

(M2) The strict ideal class of the polarization ideal c in F is not a norm class

of an ideal class of M (⇔
(
M/F

c

)
= −1);

(M3) a 7→ (ψ(a)NF/Q(a) mod mW ) is the quadratic character of M/F , which
is equivalent to ψ∗ ≡ ψ mod mW .

Under (M1-3), the invariant µ(ϕ−
ψ,C) is positive and is given by µ(ψ) in (5.27).

The Eisenstein series EB defined in the theorem really depends on B ∈ D−

since the polarization ideal of E(Φ◦) in the sum depends on B.

Proof. We first show that the t–Expansion of E gives (up to an automorphism
of W [[Z]]) the t–expansion of the Katz measure. We said “up to an automor-
phism of W [[Z]]”, because of the following reason: In the definition of the level
structure i(A), x ∈ (f2)∗/O∗ is sent to 2δx ∈ F−2/A. This has the following
harmless effect: The t–expansion of E(Φ◦

+((x, a; y, b) diag[2δ, (2δ)−1])) actually
coincides with the t–expansion of the measure. The variable change (x, a; y, b) 7→
(x, a; y, b) diag[2δ, 2δ−1] corresponds to the automorphism: z 7→ 2δz of the topo-
logical space Z (since 2δ is chosen to be prime to pC), which gives rise to an
automorphism of W [[Z]]. So we forget about the effect of this unit 2δ.

Since the argument is simpler in the case where the relative class number
is odd, we assume that the relative class number is even. We are going to
compute the κ–derivatives of the Eisenstein series at A(A−1) for applying the
t–expansion principle. Let ψκ be a unique Hecke character of Z such that

ψκ(β) = β(1−c)κψ(β) for all β ≡ 1 mod Cp, ψκ|∆ = ψ and ψκ(A) = α
(1−c)κ
A

with αA as in (5.3) for all A as above, choosing A ∈ D+ so that [A]− ∈ Γ′. We
write 〈z〉 for the projection of z ∈ W (F)× to the p–profinite part of W (F)×.
Then we have

〈
(x, y)κ(c−1)φ

〉◦
=
〈
(x−1y)κφ

〉◦
= 〈(xy)κ〉φ◦.
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We now replace each term ψ(αβ−1)E(χ◦
Γ′ )|〈β〉|β|[ααc]|ρ(α)−1 of (5.20) by

ψ(αβ−1)dκ(E(χ◦
Γ′)|〈β〉|β|[ααc]|ρ(α)−1)(A(A−1))

(∗)
= ψ(αβ−1)(αβ−1)κ(c−1)E((xy)κ(χ◦

Γ′ |[αβ−1]))(A((α−1β)A−1))

= ψ(αβ−1)(αβ−1)κ(c−1)E(((x−1y)κ(χΓ′ ◦ (αβ−1))◦)(A((α−1β)A−1))

(∗∗)
= ψκ(αβ

−1)E((〈(x−1y)κ〉χΓ′)◦|[αβ−1]))(A((α−1β)A−1))

= ψκ(αβ
−1)E((〈(x−1y)κ〉χΓ′)◦))(A(A−1)), (5.21)

where φ|[α](x, a; y, b) = φ(α−1x, α−1a;αy, αb), φ ◦ α(t) = φ(αt) for t ∈ T
and A(A−1) = (A(A−1), λ(A−1), i(A−1)). The above equality indicated by
(∗) (resp. (∗∗)) follows from (5.1) and the formulas: dκ(qxy) = (xy)κqxy

and dκ(ta) = aκta (resp. the fact that χΓ′ ◦ (αβ−1) is the characteristic func-
tion of (α−1β)Γ′). To avoid this type of complicated computation for αA, we
choose A so that 〈α1−c

A 〉 = α1−c
A and [A]− ∈ Γ′ (this is always possible). Let

F =
(
Infψ

(
(x−1y)κχΓ′

)
|Z0

)◦
= 〈(xy)κ〉Φ◦. By the computation given in [HT]

(4.9) (where the ideal denoted by A is actually A−1 in this paper), the partial
L–value for the character ψκ and for the ideal class of A−1 is given by, for
E(F) = Ec

A−1 (F),

ψκ(A)E(F)(A(A−1)) = ψκ(A)dκ(E(Φ◦)|[AAc]|ρ(αA)−1)(A(O))

and
dκE(A(O)) =

∑

A∈D+

ψκ(A)E(F)(A(A−1)) (5.22)

for all κ ≥ 0. This is because ρ(αA) fixes the test object (A(O), λ(O), i(O)) and

convert the variable t into tα
1−c

(α = αA; Corollary 3.5), and hence we have

E(φ)|[AAc]|ρ(αA)−1(A(O)) = E(φ)(A(A−1)).

In [HT], bottom of page 215, a(c−1)2κ appears instead of the single power a(c−1)κ

(a = α−1
A in our computation here), but as can be easily checked (and as is

obvious from the evaluation formula of the Katz measure in the introduction),
this is a misprint, and the above single power a(c−1)κ is the correct one.

Now we apply the operator [BBc] and make variable change: t 7→ t[B]− in
(5.22). We may again assume that [B]− ∈ Γ′. The operator [BBc] (resp. the

variable change: t 7→ t[B]− ) plays the role of [AAc] (resp. ρ(αA)−1) in the above
computation, and we obtain by the effect of the differential operator dκ again

dκ(EB|[BBc](t[B]− ))(A(O)) =
∑

A∈D+

ψκ(AB)E(F)(A((AB)−1)). (5.23)

This combined with the evaluation formula (1.3) (and [HT] (4.9)) shows that
the function in the theorem, after applying dκ and evaluating at A(O), has the
property satisfied by the measure ϕ−

ψ,C; so, the first assertion follows from (4.6).
As explained above Corollary 3.21, we have a unique element Hκ ∈ Gκ(F)

whose t-expansion is the constant 1 (identical to the t-expansion of the Hasse
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invariant). Abusing terminology, we call Hκ the Hasse invariant. We want
to apply Corollary 3.21 taking {ai}i = {[B]−}B∈D− and {fij} = {EB|[BBc]
mod mW}B∈D− . Here for each index i with ai = [B]−, {fij} is given by the
single element EB := (EB|[BBc] mod mW ).

To verify the assumption (of Corollary 3.21) of linear independence (over
F) of {Hκ, fij}j for each i, we need to show that for each B ∈ D−, EB is
linearly independent from the Hasse invariant Hκ(t) = 1, unless (M1-3) are
satisfied. Here we use the t–expansion principle and the q–expansion principle.
Once this is done, by Corollary 3.21, {EB(t[B]− )}B∈D− is linearly independent
over F, and hence we conclude the nonvanishing of E (i.e., the vanishing of the
µ-invariant) by Corollary 3.21 (which requires the unramifiedness of p in F/Q),
since elements in {[B]−}B∈D− are distinct modulo Tx(Q). We show the linear
independence of EB from Hκ by finding a totally positive ξ ∈ F such that the
q–expansion coefficient a(ξ, EB) 6≡ 0 mod mW .

We may assume that ψ has conductor divisible by C. Write π : T× → ∆ for
the projection Z → ∆ composed with ι : T× → Z. Let Ψ be the function on T×

given by Ψ(x, a; y, b) = ψ◦π(x−1, a−1; y, a). By our assumption, Φ◦(x, a; y, b) =
G(ψf)Ψ, where the Gauss sum G(ψf) is given by

∑

u mod f

ψ(u)−1eF (−u$−ε(fd)).

This number is a p–adic unit; so, for our purpose, we can forget about it. The
q–expansion coefficient of ξ ∈ ab of E(Ψ) at the cusp (a, b) is given by

∑

(a,b)∈(a×b)/O×,ab=ξ

Ψ(a, b)|N(a)|−1.

We fix B ∈ D−. This determines cB−1 which is the polarization ideal of
λ(B−1) on A(B−1). If we write c for the polarization ideal of λ(O), we know
cB−1 = c(BBc). We choose c−1

B−1 to be a prime l prime to pf (this is possible
by changing it in its strict ideal class and choosing δ ∈M suitably).

We first assume that the class number is even. We have chosen A to be
a prime Q of M split over F . Then Q1−c = α1−c

Q , and Qα−1
Q is a product of

primes in F and ramified primes inM/F . If Qα−1
Q = u does not contain ramified

primes, then the operator [QQc] = [q] (q = Q∩F ) is given by g ∈ G(A(∞)) with
gpf = 1, and ρ(αQ)g−1 ∈ Ka,b(fs)Z(A(∞)). Thus f |[QQc]|ρ(αQ)−1 = f |〈u〉 for
an integral ideal u of F and modular form f on Ka,b(fs).

We assume that Qα−1
Q contains ramified primes. Then we may assume that

Qα−1
Q = uR for a square-free product R of ramified primes L and an ideal

u ⊂ F . For each ramified prime L, we may assume that

ρ(OL) =
{(

a b
b$l a

)
|a, b ∈ Ol

}
,

where l = L ∩ F . Let g ∈ G(A(∞)) be the element whose action on the
Hilbert modular variety coincides with [q]. As already seen, g(q) = 1 out-

side q and gq =
(

1 0
0 $−1

q

)
. Recalling the relative discriminant D of M/F , by
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the definition of the level-q-structure of A(B), we find that g−1ρ(αQ)(D) ∈
Ka,b(fs)Z(A(∞)), and writing R =

∏
L L for ramified primes L in M/F , we

may assume that ρ(αQ)−1
l =

(
0 1
$l 0

)
for each prime factor l of r = R ∩ F . Note

that Ka,b(fs)lρ(αQ)−1
l =

(
$l 0
0 1

)
. Therefore, f |[q]|ρ(αQ)−1 = f |〈u〉|

(
$ε(r) 0

0 1

)
,

and the operator ρ(αQ)−1 ◦ [q] brings Tatea,b(q) to Tateu−1a,ubr(q) (see (5.10)).
We can thus rewrite the sum defining EB in the theorem as:

EB =
∑

u

ψ(u)−1
∑

r

ψ(R)E(Φ◦)|〈u〉|[r], (5.24)

where u runs over a complete representative set (of F –ideals) for the image
ι(ClF ) of ClF in ClM , r = R ∩ F , and r runs over a complete representative
set for Cl+M/ι(ClF ) made of square-free factors of D. To make our treatment
uniform, even if the class number is odd, we change notation in the sum defining
EB and rewrite it as

EB =
∑

u

ψ(u)−1E(Φ◦)|〈u〉, (5.25)

where u runs over a complete representative set (of F –ideals) for the image
ι(ClF ) of ClF in ClM . Hereafter we use the notation u to indicate an ideal
representing a class in ι(ClF ) and stop assuming that the class number is even.

We now take a totally positive 0� ξ ∈ O so that (ξ) = ln (l = c−1
B−1 : a prime

by our choice) for an integral ideal n prime to CpD. We pick a pair (a, b) ∈ F 2

with ab = ξ for a ∈ u−1 and b ∈ lur. Then (a) = u−1x for an integral ideal x

and (b) = ulry. Since (ab) = ln, we find that xy = n and hence r = O because
n is prime to D. Thus for each factor x of n, we could have a pair (ax, bx) with
axbx = ξ such that

((ax) = u−1
x x, (bx) = (ξa−1

x ) = uxlnx−1)

for ux ∈ D+ representing the ideal class of the ideal x. We then write down the
q–expansion coefficient of qξ at the cusp (O, l) of EB as in the theorem:

G(ψf)
−1a(ξ, EB) = G(ψf)

−1
∑

x|n

ψ−1(ux)a(ξ, E(Φ◦)|〈ux〉)

(E2)
=
∑

x|n

N(ux)
−1ψ−1(ux)ψF(ax)ψ

−1
Fc

(ξax
−1)

1

|N(ax)|

= ψ−1
Fc

(ξ)
∑

x|n

N(ux)
−1ψ−1(ux)ψC(ax)

1

|N(ax)|

= ψ−1
Fc

(ξ)
∑

x|n

1

ψ(x)N(x)

= ψ−1
Fc

(ξ)
∏

q|n



e(q)∑

j=0

(ψ(q)N(q))−j




= ψ−1
Fc

(ξ)ψ(n)−1N(n)−1
∏

q|n

1− (ψ(q)N(q))e(q)+1

1− ψ(q)N(q)
,

(5.26)
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where n =
∏

q|n qe(q) is the prime factorization of n.

Suppose that n is a prime q. Then by (5.26), we have G(ψf)
−1a(ξ, EB) =

ψ−1
Fc

(ξ)(1+(ψ(q)N(q))−1). If ψ(q)N(q) ≡ −1 mod mW for all prime ideals q in
the strict class of cB−1 , the character a 7→ ψ(a)N(a) mod mW is of conductor
1, and the strict class number has to be even.

We define, for the valuation v of W (normalized so that v(p) = 1)

µ(ψ) = Infn v


∏

q|n

1− (ψ(q)N(q))e(q)+1

1− ψ(q)N(q)


 , (5.27)

where n runs over all integral ideals prime to D of the form c(AAc) for ideals A

of M . Here c is the polarization ideal of A(O). Then, by moving around B in
D−, the µ–invariant µ(ϕ−

ψ ) of the ψ–branch of the anticyclotomic Katz measure

ϕ− is less than or equal to µ(ψ), and µ(ϕ−
ψ ) = µ(ψ) if M/F is everywhere

unramified. In particular, if ψ̃ = ψN mod mW as a character of F×
A has non-

trivial conductor, 0 ≤ µ(ϕ−
ψ ) ≤ µ(ψ) = 0. We may therefore assume that ψ̃ has

conductor 1 and that ψ̃(c) = −1.
We now recall the conditions (V) and (M1–3) stated in the introduction:

(V) ψ∗ ≡ ψ mod mW and N(c)−1ψ(c−1)W ′(ψ) ≡ −1 mod mW .

and

(M1) M/F is unramified at every finite place;

(M2) The strict ideal class of the polarization ideal c in F is not a norm class

of an ideal class of M (⇔
(
M/F

c

)
= −1);

(M3) a 7→ (ψ(a)NF/Q(a) mod mW ) is the character
(
M/F

)
of M/F .

We first give a direct proof of the equivalence of (V) and (M1–3) as a lemma
(following the suggestion of one of the referees of this paper), and after that, we
shall give an indirect proof of the same fact using µ(ψ) defined above.

Lemma 5.2. Let the assumption be as in Theorem I. Then we have an equiv-
alence: (V) ⇐⇒ (M1–3).

Proof. Suppose (M1–3). Write ψ = (ψ mod mW ) and ω = (NF/Q mod m).

Then ω(xxc) = N(x) := (N(x) mod mW ) for the p-adic cyclotomic character
N of M×

A . By (M3) and class field theory, we have ψω(xxc) = 1 for x ∈
M×

A . This implies ψ
∗
(x) = ψ(x−c)N(x)−1 = ψ(x)ω(xxc)N(x)−1 = ψ(x), which

proves the first part of (V). By (M2–3), ψ̃(c) = ψN(c) = −1; so, we need

to prove W ′(ψ) ≡ 1 mod mW . Since ψ
∗

= ψ, we have ψ(x) = ψ(x−c) for

x ∈ Ô× with xp = 1. Thus for a prime ideal Q|C of M outside p, q = Q ∩ F
splits as q = QQ in M . Identifying OQ

∼= Oq
∼= OQ and writing g(ψ) =

∑
u∈(OQ/Qe)× λQ(u)eM ($−e

Q d−1
Q u), we have g(ψQ)g(ψQ) = g(ψQ)g(ψ

−1

Q ) by

86



ψ(u) = ψ(u−c), and hence, we get g(ψQ)g(ψQ) = N(Qe)ψQ(−1). Since ψ̃ =

ψN is everywhere unramified by (M1), we have ψQ(−1) = 1; so, finally we get
g(ψQ)g(ψQ) = N(Qe). We may take $Q = $c

Q in the definition of G(dQ, ψQ).
Then we have

ψ($Q)ψ($Q)N(Q) = ψ(NM/F ($Q))ω(NM/F ($Q)) =

(
M/F

NM/F ($Q)

)
= 1.

Since G(dQ, ψQ)G(dQ, ψq) = ψ($e
Q)ψ($e

Q
)g(ψQ)g(ψQ) (if Qe ‖ C), we find

that G(dQ, ψQ)G(dQ, ψq) ≡ 1 mod mW for all Q|C prime to p. Thus we get
W ′(ψ) =

∏
Q G(dQ, ψQ)G(dQ, ψq) ≡ 1 mod mW .

Now we assume (V). Since ψ
∗
(x) = ψ(x−c)N (x)−1 = ψ(x), we find that

ψ(xxc) = N(x)−1 = ω(xxc)−1, which implies ψω is a global Hecke character
trivial on NM/F (M×

A ). Then by class field theory, ψω is either trivial or equal

to
(
M/F

)
. Since ψ is a character of totally imaginary M with connected M×

∞,

ψ∞ = 1. Since ω has nontrivial at∞ (because F is real and p > 2), we find that

ψω =
(
M/F

)
. Since the conductor of ψω is concentrated on Cp which is prime

to the conductor of
(
M/F

)
(because pC is made up of split primes in M/F ),

we find that
(
M/F

)
is everywhere unramified. Thus we get (M1) and (M3).

By N(c)−1ψ(c−1)W ′(ψ) ≡ −1 mod mW , the condition (M2) follows from the
fact W ′(ψ) ≡ 1 mod mW by the computation of the first part which uses only
(M1) and (M3) already proven.

Here is the indirect argument: We are going to show that if µ(ψ) > 0, M/F

is unramified everywhere and ψ̃ ≡
(
M/F

)
mod mW . We have already proven

that if µ(ψ) > 0, ψ̃ is unramified and ψ̃(c) = −1 before the lemma. We now
choose two prime ideals q and q′ so that lqq′ = (ξ). Then by (5.26), we have

G(ψf)
−1a(ξ, EB) = ψ−1

Fc
(ξ)

(
1 +

1

ψ(q)N(q)

)(
1 +

1

ψ(q′)N(q′)

)
. (5.28)

Since ψ̃(qq′) = ψ̃(l−1) = −1, we find that if a(ξ, EB) ≡ 0 mod mW ,

−1 = ψ̃(q/q′) = ψ̃(l−1)ψ̃(q2) = −ψ̃(q2).

Since we can choose q arbitrary, we find that ψ̃ is quadratic.
The polarization ideal of λ(B−1) is c(BBc) as already remarked. Since the

strict ideal classes {[BBc]}B∈D− together with Cl2F covers all the classes in

NM/F (ClM ) in the strict ideal class group ClF , we find that −1 = ψ̃(c) =

ψ̃(c(BBc)) implies that ψ̃ is trivial on NM/F (ClM ) but non-trivial on ClF .

This implies, by class field theory, ψ̃ is the quadratic character
(
M/F

)
of the

quadratic extension M/F . In particular, M/F is unramified everywhere.
Since (M1) and (M3) are established under the condition µ(ψ) > 0, by the

above lemma (or rather by its proof), we have W ′(ψ) ≡ 1 mod mW . We thus
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find µ(ϕ−
ψ ) > 0⇔ the three conditions (M1–3) are satisfied. Under these three

conditions, by the q–expansion principle, we find µ(ψ) = µ(ϕ−
ψ ), which is finite.

We show µ(ψ) > 0 under (M1-3) (without using the identity: µ(ψ) = µ(ϕ−
ψ )).

Since ψ̃(n) =
(
M/F

c

)
= −1 for n appearing in the definition of µ(ψ), for odd

number of prime factors q|n has odd exponent e(q). Thus ψ̃(q)e(q)+1 = 1, and
hence the factor 1 − (ψ(q)N(q))e(q)+1 in the definition vanishes; so, µ(ψ) ≥ 1.
This finishes the proof.

To show that the condition (M2) really depends on the CM-type Σ, we
give an example. We take F = Q[

√
21]. This real quadratic field has strict

class number 2 (so has class number 1). We thus have a unique everywhere
unramified CM quadratic extension M = Q[

√
−3,
√
−7]. Define two CM types

of M : Σ3 (resp. Σ7) to be the inflation to M of the identity inclusion of Q[
√
−3]

(resp. Q[
√−7]) into C. Then we can chose δ = δ` for Σ` to be

√
−`. Since

(2δ`)
−1 = dM/F (2δ`)

−1 = c−1d−1, we find c = ((7 +
√

21)
√

21
−1

) for Σ7 and

hence
(
M/F

c

)
= −1 in this case because (7 +

√
21) is totally positive. Contrary

to this, we find c = ((3 +
√

21)
√

21
−1

) and
(
M/F

c

)
= 1 for Σ3.

5.5 Non-Vanishing of the µ–Invariant

Define

Γ0(N; a, b) =
{(

a b
c d

)
∈ GL2(F )

∣∣ad− bc� 0, a, d ∈ O, c ∈ Nabd, b ∈ (ab)∗
}
,

(5.29)
where a� 0 indicates that a is totally positive. We let the congruence subgroup
Γ0(fs; a, b) act on

PV (T ) =
{
(y, x)

∣∣x ∈ Fp × ((fa)∗/a∗), y ∈ bp × (b/sb)
}

by (y, x) 7→ (y, x)γ. It is easy to check that this action is well defined. Note
that for a function φ on T , we have E(φ)|γ = E(P−1(Pφ ◦ γ)) if γ ∈ GL2(F )
has det(γ) � 0 and preserves the lattice t(a∗ ⊕ b) made of column vectors.

We give an example of a branch with positive µ–invariant if C contains a
prime inert in M/F . We assume that Q is a prime factor of I prime to I/Q such
that ψQ = 1; so, ψ is imprimitive at Q. For the moment, we further assume
that Q is an inert prime of M over F generated by a totally positive element
$ ∈ O. This assumption of principality is for simplicity in order to have well
defined Hecke operator T (q) (q = Q ∩ F ) acting on Gk(Γ0(N; a, b)), because
otherwise T (q) brings Gk(Γ0(N; a, b)) into Gk(Γ0(N; q−1a, b)).

We put f = E(Φ◦
+) as in (5.17). Since PΦ◦

+ ◦ γ = ψ(d)PΦ◦
+ for γ =

(
a b
c d

)
∈

Γ0(fp
r; a, b) (for a suitable r > 0), we know f |γ = ψ(γ)f , where ψ(γ) = ψ(d).

The number r is the exponent such that the character: Z � ∆
ψ−→ W× factors

through ClM (Cpr).
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We are going to see that f 7→ ∑
α∈R f |[ααc]|ρ(α)−1, with the notation (in

particular R) in (5.19), factors through the level-lowering trace operator Tr
from Γ0(fp

r; a, b) to its subgroup Γ0(fp
r/q; a, b). The regular representation

ρ : OQ →M2(Oq) induces ρ : O/Q→M2(O/q). Let C = ρ((O/Q)×). We have
the following decomposition:

GL2(O/q) = BC = CB

for the upper triangular Borel subgroup B. Note that the image of C in PGL(2)
is the maximal quotient (we call the “−” quotient) on which c ∈ Gal(M/F ) acts
by −1. The “−” quotient has order N(q) + 1. By this Iwasawa decomposition,
it is easy to see that

(g|[q])|Tr = N(q)g|T (q)

for the Hecke operator T (q) (of level prime to q).
Since D− ⊂ M×/F×, complex conjugation acts on D− by “−1” (writing

additively). Thus we can identify D− with the “−” quotient of π(Ofp)/Γ
′ for

the natural map π : O×
fp → Z. So ignoring the effect of the action of the finite

group O×/O×, we can decompose R into a product of subsets Rl for prime
factors l|fp: ⊔

ε∈O×/O×

εR ∼=
∏

l|fp

Rl = R′

with Rl ⊂ O×
l .

The sum over R in (5.20) is still valid even if I 6= 1, and we have

∑

r∈R

ψ(r)−1E|ρ(r)−1 = (O× : O×)−1

(∑

r∈R′

ψ(r)−1E|ρ(r)−1

)
.

Defining the trace map by the summation of translation by ρ(r) over r ∈ RQ
∼=

C modulo center, we then have

∑

r∈R

ψ(r)−1E|ρ(r)−1 = (O× : O×)−1

( ∑

r∈R′′

ψ(r)−1E|ρ(r)−1

)
|Tr,

where R′′ =
∏

l6=qRl. The prime factor of (O× : O×) is either even or ramified
in M , which is excluded by our assumption; so, division by the index is harmless
for us (in the computation of the µ–invariant).

For simplicity, we write Φ for Φ◦
+ and write Φq for the restriction of Φ to

the factor (O/q). Then we see

Φq(a) =

{
−1 if a ∈ (O/q)×,

N(q) − 1 if a = 0 in O/q.

This shows that, f = g|[q] − g for g = E(φ), where φ is the function Φ◦
+ of

outside–p–level f/q defined for the character ψ0 modulo (C/Q)pr inducing the

character: Z � ∆
ψ−→W×. We can check

g|T (q) =

(
1 +

ψ0(q)

N(q)

)
g, (5.30)
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since the partial Fourier transform Pφ at sf is basically a constant multiple
of ψ0,fs : (O/f)× × (O/s)× → W× (up to translation by an sf–adic unit) on
PV (L)f/Ker((i−1

f , i′s))
∼= (O/f)× (O/s) for test objects (L, λ, i). Thus we see

Tr(f) = N(q)g|T (q) − (N(q) + 1)g

= N(q)(1 + ψ0(q)N(q)−1)g − (N(q) + 1)g = (ψ0(Q) − 1)g.

This shows that the function in (5.20) just vanishes if ψ0(Q) = 1.
The above argument works without assuming the principality of the prime

Q, after summing up over Cl+M . We explain briefly the reason. For each split
prime A ∈ I(Ip)+, put fA = E(Φ◦

+)|[AAc]|ρ(αA)−1 where α1−c
A = [A]−. Then

fA only depends on the class of A in CLM = ClM (1). Then we find

gA = E(φ)|[AAc]|ρ(αA)−1 ∈ Gk(Γ0(f/q; aA, b))

such that fA = gA
q−1 |[q]− gA and

gA|T (q) = (1 + ψ0(q)N(q)−1)gAq
,

where A 7→ Aq is the permutation on Cl+M (1) induced by A 7→ QA. We make a
sum over the ideal classes in Cl+M :

∑

A

ψ(A)(gA
q−1 |[q]− gA)|Tr

=
∑

A

ψ(A)N(q)gA
q−1 |T (q)− (N(q) + 1)

∑

A

ψ(A)gA

=
∑

A

ψ(A)N(q)(1 + ψ0(q)N(q)−1)gA − (N(q) + 1)
∑

A

ψ(A)gA

= (ψ0(Q) − 1)
∑

A

ψ(A)gA.

We get the following fact for inert primes I observed first by Gillard ([G2]
Proposition 2):

Proposition 5.3. Let Q be a prime of M inert over F and assume that C = C′Q

with C′ + Q = O. Suppose the following two conditions are satisfied:

(I1) ψ mod mW is imprimitive (induced by a character modulo C′p∞). Thus
ψ ≡ ψ0 mod mW for a character ψ0 of ClM (C′p∞);

(I2) ψ0(Q) ≡ 1 mod mW .

Then the anti-cyclotomic branch ϕ−
ψ,f has positive µ–invariant. If further ψ

itself is imprimitive induced by a character ψ0 of ClM (C′p∞) and I = Q (so,
C′ is made up of split primes), the invariant µ(ϕ−

ψ ) is given by the sum of the
additive p–adic valuation of (ψ0(Q) − 1) and µ(ψ0) as in (5.27).

The condition (I1) implies that the order of ψ is divisible by p if ψ is primitive
at i; so, either N(q) − 1 or N(q) + 1 is divisible by p.
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Proof. When ψ itself is imprimitive, by the above calculation, the positivity:
µ(ϕ−

ψ ) > 0 is clear. The last assertion is a consequence of the linear indepen-

dence of gA (for A running through Cl+M ) over F, which follow from an argument
similar to the proof of Theorem 5.1. When ψ is primitive at Q, we choose a
character ψ0 of ClM (C′p∞) with ψ ≡ ψ0 mod mW . Then ϕ−

ψ,C ≡ ϕ−
ψ0,C

; so, the

positivity of the µ–invariant of ϕ−
ψ,C follows from that of ϕ−

ψ0,C
.

Ramified primes I can be treated modifying the above argument. Here we
shall give a sketch of the argument; so, suppose that I is a ramified prime. For
simplicity, we assume that i = I∩ F is unramified in F/Q. By the definition of
the level structure i = i(O), we have i(i−1/O)⊕ I−1/O = i−1/O. Thus writing
O = a∗+bz = Lz for fractional ideals a and b of F prime to cip, we may assume
that (z) = Ix for x prime to I. The stabilizer in SL2(F ) of the lattice O = Lz is
given by Γ0(i; a, b). Since zb ⊂ I and b is prime to i, we find that ρ(OI) is made
of matrices

(
a $ib
b a

)
for a, b ∈ Oi. We also suppose that C = I for simplicity.

Since complex conjugation acts on (O/I)× trivially,D− is made of two elements
1 and z as above. In other words, x1−c = z1−c, and we may assume that the
operator ρ(z)−1 ◦ [xxc] is the action of the normalizer τ =

(
0 $i

1 0

)
of Γ0(i; a, b).

Note that we have a natural map ClF (i) → ClM (I). Let ψ be an imprimitive
character modulo a p–power. Writing

fA = E(Φ◦
+)|[AAc]|ρ(αA)−1 = gA

−1
i
|[i]− gA

for gA with gA|[i]|τ = ψ0(I)gAi
, we do the same computation as in the inert

case:

∑

A

ψ(A)(gA
i−1 |[i]− gA)|τ

=
∑

A

ψ(A)ψ0(I)gA −
∑

A

ψ(A)gA = (ψ0(I) − 1)
∑

A

ψ(A)gA.

This formula (and its generalization for C 6= I) for imprimitive character proves
the following fact whose proof is left to the reader:

Proposition 5.4. Let Q be a prime of M ramified over F and assume that
C = C′Q with C′ + Q = O. Suppose the following two conditions are satisfied:

(R1) ψ mod mW is imprimitive (induced by a character modulo C′p∞. Thus
ψ ≡ ψ0 mod mW for a character ψ0 of ClM (C′p∞);

(R2) ψ0(Q) ≡ 1 mod mW .

Then the anti-cyclotomic branch ϕ−
ψ,C has positive µ–invariant. If further ψ

itself is not primitive induced by a character ψ0 of ClM (C′p∞) and I = Q (so
C′ is made up of split primes), we have µ(ϕ−

ψ ) is given by the sum of the additive
p–adic valuation of (ψ0(Q)− 1) and µ(ψ0) as in (5.27).

Presumably, if one is able to carry out the computation of the q–expansion
of the sum E = E(Φ◦), one should be able to get an exact formula of the µ–
invariant of ϕ−

ψ without restriction to its conductor. However, the q–expansion is
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rather complicated, or at least, the process of computation looks rather involved
(when ψ is primitive at some inert or ramified primes). This is natural since we
have the cases of positive µ–invariant as described above. We hope to come back
this question in future, hopefully proving the conjecture by Gillard asserting the
vanishing of µ(ϕ−

ψ ) (except in the case specified by (M1-3)) when ψ is primitive
of order prime to p (see [G2] Conjecture).
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6 Appendix: Correction to [HT]

Here is a table of misprints in [HT], and “P.3 L.5b” indicates fifth line from the
bottom of the page three.

page and line Read Should Read

P.192 L.1b
∏

l|I G((2δ)c, λ−1
l )

∏
Q|IG((2δ)c, λ−1

Q )

P.194 L.13b xq xσ
P.199 L.5b ω(Σ) ⊗ ω(Σc) ω(Σ)⊕ ω(Σc)
P.199 L.1b δ(k, ρx)(f(X, λ, ω, i)) δ(k, ρx)

d(f(X, λ, ω, i))
P.200 (1.12) ω/Ap

⊗ U/Ap
ω/Ap

⊕ U/Ap

P.201 L.3b c−1 c∗

P.202 L.1 ab)∗ (ab)∗

P.202 L.10 OZ OZ

P.204 L.7 Tatea,b(q) Tatea,b(q)[M ]
P.206 L.3b 2πi(a∗z + b) 2πi(bz + a∗)

P.206 L.1b
√
FF

√
|DF |

P.207 L.10b
∑

a∈a Ck(1, z, s)
∑

a∈a Ck(a, z, s)
P.207 L.4b eF (x, a0) eF (xa0)
P.208 L.5 eF (x, bz) eF (xbz)
P.211 L.1 Q|F Q|Fp
P.211 L.2 (FI)−2A/A (Fi)−2A/A (i = I ∩ F )
P.213 L.3b

∏
L|Fl(1− λ∗(L− λ∗(L))−1

∏
L|FI(1− λ∗(L))−1

P.214 L.12 λΣ(xp) λ−1
Σ (xp)

P.215 L.2 λ−1
Pc(acP)λ

−1
P aP) λ−1

Pc(aPc)λ−1
P (aP)

P.215 (4.9)
R

G∞
bλdϕ

Ω
m0Σ+2
p

R
G∞

bλdϕ
Ω

m0Σ+2d
p

P.215 L.7b, 3b
P.217 L.11b, 9b

a−m0Σ−2d(1−c) a−m0Σ−d(1−c)

P.216 L.8 χP(aP).N(P)−1 χP(aP)−N(P)−1

P.235 L.1b λp(x) λ̂(x)

P.241 L.9 η($q) + η($q)
η($q) + η′($q)

or η($q)

P.241 L.14 (1− αqβqX)(1 − αqβqX)
(1 − αqβqX)(1 −X)

×(1 − αqβqX)
P.241 L.14 spherical minimal principal
P.241 L.15 special minimal special
P.241 L.15b L(s, f ) L(s, Ad(f ))
P.241 L.2b q ∈ Ξ q ∈ Ξ = Ξp ∪ Ξs
P.245 L.4b

∑
q|C

∏
q|C

P.249 L.1b (ν0
Qc)

−1 (νQ ◦ c)−1

P.250 L.8b 2F eF
P.250 L.4b (θ(λP )) W ′(θ(λP ))
P.251 L.10 (λ0

P c) at three places (λP ◦ c)
P.256 L.14b ψ∗(Cf) ψ∗(Cf)
P.257 L.12b WPm XPm
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