L-INVARIANT OF *p*-ADIC *L*-FUNCTIONS

HARUZO HIDA

Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the field of all algebraic numbers. We fix a prime p > 2 and a p-adic absolute value $|\cdot|_p$ on $\overline{\mathbb{Q}}$. Then \mathbb{C}_p is the completion of $\overline{\mathbb{Q}}$ under $|\cdot|_p$. We write $W = \{x \in K | |x|_p < 1\}$ for the p-adic integer ring of sufficiently large extension K/\mathbb{Q}_p inside \mathbb{C}_p . We write $\overline{\mathbb{Q}}_p$ for the field of all numbers in \mathbb{C}_p algebraic over \mathbb{Q}_p .

We consider a Dirichlet series

$$\sum_{n=1}^{\infty} a_n n^{-s} = \prod_{\ell} \left(\sum_{n=0}^{\infty} a_{\ell^n} \ell^{-ns} \right) = \prod_{\ell} \left((1 - \alpha_{\ell}^{(1)} \ell^{-s}) (1 - \alpha_{\ell}^{(2)} \ell^{-s}) \cdots (1 - \alpha_{\ell}^{(d)} \ell^{-s}) \right)^{-1}$$

with an Euler product over primes ℓ . Heuristically, if $|n^m - n^{m'}|_p < \varepsilon$ and $|a_n - b_n|_p < \varepsilon$ for all integers n, we would expect that

$$|\sum_{n=1}^{\infty} a_n n^m - \sum_{n=1}^{\infty} b_n n^m|_p < \varepsilon$$

up to some constant (the transcendental factor of the *L*-values) at good integers s = m. Even if $s \equiv s' \mod p^M(p-1)$ for $g \gg 0$ ($\Leftrightarrow |s-s'|_p \leq p^{-M}$), p^s and $p^{s'}$ may not be very close *p*-adically, while $|\ell^s - \ell^{s'}|_p \leq p^{-1-M}$ if $\ell \neq p$. If *m* is negative, we will have further trouble interpolating the *L*-values if we do not remove Euler *p*-factors. Thus mod *p* class of *L*-values is better represented by the *L*-value with a certain **Euler** *p*-factor removed.

Here is an example. Start with a Dirichlet character $\chi : (\mathbb{Z}/N\mathbb{Z}) \to \overline{\mathbb{Q}}^{\times}$ with $\chi(-1) = -1$. Here the word "Dirichlet character" means that it is multiplicative and $\chi(n) = 0$ if n has a nontrivial common factor with N. For positive integer m and m', as long as $|n^m - n^{m'}|_p < 1$ (that is, $m \equiv m' \mod (p-1)$), it is known from the time of Euler

$$|(1 - \chi(p)p^{m-1})L(1 - m, \chi) - (1 - \chi(p)p^{m'-1})L(1 - m', \chi)|_p < 1.$$

By a work of Kubota–Leopoldt and Iwasawa, we have a *p*-adic analytic *L*-function $L_{\chi}(s) = \Phi(\gamma^{1-s} - 1)$ for a power series $\Phi(X) \in \Lambda = W[[X]]$ and $\gamma = 1 + p$ such that

$$L_{\chi}(m) = \Phi(\gamma^{1-m} - 1) = (1 - \chi(p)p^{m-1})L(1 - m, \chi)$$

for all positive integer m as long as $|n^m - n|_p < 1$ for all n prime to p. The Iwasawa's analyticity $L_{\chi}(s) = \Phi(\gamma^{1-s} - 1)$ guarantees that there are only finitely many zeros (counting with multiplicity) of $L_{\chi}(s)$ in W.

If we suppose $\chi = \left(\frac{-D}{\cdot}\right)$ for a square free positive integer D, the modifying Euler factor vanishes at s = 1 if the Legendre symbol $\left(\frac{-D}{p}\right) = 1 \Leftrightarrow (p) = \mathfrak{p}\overline{\mathfrak{p}}$ in $\mathbb{Z}[\sqrt{-D}]$

Date: August 8, 2008.

A colloquium talk at TIFR on 8/7/2008. The author is partially supported by the NSF grant: DMS 0244401, DMS 0456252 and DMS 0753991.

with $\mathfrak{p} = \{x \in \mathbb{Z}[\sqrt{-D}] | |x|_p < 1\}$. In other words, $L_{\chi}(1) = 0$ and $\lambda \geq 1$. This type of zeros of a *p*-adic *L*-function is called an *exceptional zero*. We may regard χ as a Galois character $\operatorname{Gal}(\mathbb{Q}[\mu_N]/\mathbb{Q}) = (\mathbb{Z}/N\mathbb{Z})^{\times} \xrightarrow{\chi} \{\pm 1\}$, and we remark that $\chi(Frob_p) = 1$ to have the exceptional zero. For a given *p*-adic *L*-function, we write *e* for the number of (linear) Euler factors producing the exceptional zero.

Here is another example. Start with an elliptic curve $E_{/\mathbb{Q}}$ defined by the equation $y^2 = 4x^3 - g_2x - g_3$ with $g_j \in \mathbb{Z}$. If $4x^3 - g_2x - g_3 \equiv 0 \mod \ell$ has three distinct roots in $\overline{\mathbb{F}}_{\ell}$, the reduced curve $E_{\ell} = E \mod \ell$ over \mathbb{F}_{ℓ} defined by $y^2 \equiv 4x^3 - g_2x - g_3 \mod \ell$ remains to be an elliptic curve. Counting the number of points of $E_{\ell}(\mathbb{F}_{\ell})$, we define $a_{\ell} = |\mathbf{P}^1(\mathbb{F}_{\ell})| - |E_{\ell}(\mathbb{F}_{\ell})| = 1 + \ell - |E_{\ell}(\mathbb{F}_{\ell})|$. Then the Hasse-Weil *L*-function of *E* twisted by χ is given by

$$L(s, E, \chi) = \prod_{\ell} (1 - a_{\ell} \chi(\ell) \ell^{-s} + \chi(\ell)^2 \ell^{1-2s})^{-1}$$
(Hasse).

Take the Galois representation ρ_E of E on $\varprojlim_n \operatorname{Ker}(p^n : E \to E) \cong \mathbb{Z}_p^2$. Then

$$L(s, E) = \prod_{\ell} \det(1 - \rho_E(Frob_{\ell})|_{V_{I_{\ell}}} \ell^{-s})^{-1} \qquad (\text{Weil}).$$

Split the Euler factor as a product of linear factors

$$(1 - a_p p^{-s} + p^{1-2s}) = (1 - \alpha p^{-s})(1 - \beta p^{-s}),$$

if one of α and β , say α , is a *p*-adic unit (so, $|\alpha|_p = 1$), *E* has either ordinary or multiplicative reduction modulo *p*. We suppose this ordinarity condition. Then by the solution of Shimura-Taniyama conjecture by Wiles et al, this *L*-function has *p*-adic analogue constructed by Mazur such that we have $\Phi_E(X) \in \Lambda$ with $\Phi_E(\varepsilon(\gamma) - 1) =$ $(1 - \alpha^{-1}\varepsilon(p))\frac{G(\varepsilon^{-1})L(1,E,\varepsilon)}{\Omega_E}$ for all *p*-power order character $\varepsilon : \mathbb{Z}_p^{\times} \to W^{\times}$; in other words, $L_p(s, E) = \Phi_E(\gamma^{1-s} - 1)$. Here Ω_E is the period of the Néron differential of *E*. The $\rho_E(Frob_p)$ has eigenvalue 1 if and only if *E* has multiplicative reduction mod *p* if and only if $E(\mathbb{C}_p) \cong \mathbb{C}_p^{\times}/q_E^{\mathbb{Z}}$ as Galois modules.

1. \mathcal{L} -invariant

For a *p*-adic Galois representation ρ acting on $V \cong W^d$, we define $L(s,\rho) = \prod_{\ell} \det(1 - \rho(Frob_{\ell})|_{V_{I_p}}p^{-s})^{-1}$, assuming that $\det(1 - \rho(Frob_{\ell})|_{V_{I_\ell}}X) \in T[X]$ for a number field $T \subset \overline{\mathbb{Q}}$ independent of ℓ . We suppose that ρ is *p*-ordinary in the sense that ρ restricted to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p)$ is upper triangular with diagonal characters \mathcal{N}^{a_j} on the inertia I_p for the *p*-adic cyclotomic character \mathcal{N} ordered from top to bottom as $a_1 \geq a_2 \geq \cdots \geq 0 \geq \cdots \geq a_d$. Thus

$$\rho|_{I_p} = \begin{pmatrix} \mathcal{N}_{a_1}^{a_1} & * & \cdots & * \\ 0 & \mathcal{N}_{a_2} & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathcal{N}_{a_d} \end{pmatrix}$$
(Ordinarity).

Under the existence of a good analytic *p*-adic *L*-function $L_p(s, \rho)$ of Iwasawa type for ρ , we make

Conjecture 1.1. If the eigenvalue of $Frob_p$ contains 1 with multiplicity e, then $L_p(s,\rho)$ has zero of order $e + \operatorname{ord}_{s=1} L(s,\rho)$ and for a nonzero constant $\mathcal{L}(\rho) \in \mathbb{C}_p^{\times}$,

$$\lim_{s \to 1} \frac{L_p(s,\rho)}{(s-1)^e} = \mathcal{L}(\rho)\mathcal{E}^+(\rho)\frac{L(1,\rho)}{c^+(\rho(1))}$$

where $c^+(\rho(1))$ is the transcendental factor of the critical complex L-value $L(1, \rho)$ and $\mathcal{E}^+(\rho)$ is the product of nonvanishing modifying p-factors.

The problem of \mathcal{L} -invariant is to compute explicitly the \mathcal{L} -invariant $\mathcal{L}(\rho)$. The \mathcal{L} -invariant in the cases where $\rho = \chi = \left(\frac{-D}{L}\right)$ as above and $\rho = \rho_E$ for E with split multiplicative reduction is computed in the 1970s to 90s, and the results are

Theorem 1.2. Let the notation and the assumption be as above.

 £ (χ) = log_p(q)/ord_p(q) = log_p(q)/h for q ∈ C_p given by q = ∞/∞, where h is the class number h of Q[√-D] and p^h = (∞) (Gross-Koblitz and Ferrero-Greenberg);

 (2) For E split multiplicative at p, writing E(C_p) = C[×]_p/q^ℤ for the Tate period

 $q \in \mathbb{Q}_p^{\times}$, we have $\mathcal{L}(\rho_E) = \frac{\log_p(q)}{\operatorname{ord}_p(q)}$. This was conjectured by Mazur-Tate-Teitelbaum and later proven by Greenberg-Stevens.

Here \log_p is the Iwasawa logarithm and $|x|_p = p^{-\operatorname{ord}_p(x)}$.

Starting with a 2-dim *p*-adic Galois representation for a number field *F*, there is a systematic way to create many Galois representations whose eigenvalues of $Frob_p$ contain 1. Take a symmetric *n*-th tensor of ρ_E twisted by *m* times det $(\rho)^{-1}$. Then $\rho_{n,m} = \rho_E^{\otimes n} \otimes \det(\rho_E)^{-m}$ has exceptional zero at s = 1 if n = 2m. If *m* is odd and *F* is totally real, $\rho_{2m,m}$ is critical at s = 1, and $e = |\{\mathfrak{p}|p\}|$.

There is an arithmetic way of constructing p-adic L-function due to Iwasawa and others. We can define Galois cohomologically the Selmer group

$$\operatorname{Sel}_M(\rho) \subset H^1(\operatorname{Gal}(\overline{\mathbb{Q}}/M), \rho \otimes \mathbb{Q}_p/\mathbb{Z}_p) \ (M = F, F_\infty)$$

for the \mathbb{Z}_p -extension F_{∞}/F inside $F(\mu_{p^{\infty}})$. The Galois group $\Gamma = \operatorname{Gal}(F_{\infty}/F)$ acts on $H^1(\operatorname{Gal}(\overline{\mathbb{Q}}/F_{\infty}), \rho \otimes \mathbb{Q}_p/\mathbb{Z}_p)$ and hence on $\operatorname{Sel}_{F_{\infty}}(\rho)$, making it as a discrete module over the group algebra $W[[\Gamma]] = \lim_{n} W[\Gamma/\Gamma^{p^n}]$. Identifying Γ with (a subgroup of) $1+p\mathbb{Z}_p$ by the cyclotomic character, we may regard $\gamma \in \Gamma$. Then $W[[\Gamma]] \cong \Lambda$ by $\gamma \mapsto 1 + X$. By the classification theory of compact Λ -modules, the Pontryagin dual $\operatorname{Sel}^*(\rho)$ is pseudo-isomorphic to $\prod_{f \in \Omega} \Lambda/f\Lambda$ for a finite set $\Omega \subset \Lambda$. The power series $\Phi_{\rho} = \prod_{f \in \Omega} f(X)$ is uniquely determined up to unit multiple. We then define $L_p^{arith}(s,\rho) = \Phi_\rho(\gamma^{1-s} - 1)$. Greenberg verified in 1994 the conjecture for this $L_p(s,\rho)$ except for the nonvanishing of $\mathcal{L}(\rho)$ (under some restrictive conditions). I also did verify in my book from Oxford university press his conjecture under milder assumptions by an automorphic way. If there exists a good analytic way of making the *p*-adic *L*-function $L_p^{an}(s,\rho) = \Phi_\rho^{an}(\gamma^{1-s} - 1)$ interpolating complex *L*-values, the main conjecture of Iwasawa's theory confirms $\Phi_{\rho} = \Phi_\rho^{an}$ up to unit multiple.

An important point is to describe \mathcal{L} without recourse to the above formula involving L-functions. Greenberg's computation of the \mathcal{L} -invariant is via Galois cohomology groups; for example, for $Ad(\rho) = \rho_{2,1}$: He found a unique subspace $\operatorname{Sel}_F^{cyc}(\rho) \subset H^1(F, Ad(\rho))$ of dimension $e = |\{\mathfrak{p}|p\}|$ responsible to the order e zero at s = 1. This space is represented by cocycles $c_{\mathfrak{p}} : G_F = \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to Ad(\rho)$ such that

- (1) $c|_{D_{\mathfrak{p}}} \sim \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ for the decomposition group $D_{\mathfrak{p}}$ at each $\mathfrak{p}|p$;
- (2) c is unramified outside p and c modulo nilpotent matrices is unramified over $F_{\mathfrak{p}}[\mu_{p^{\infty}}]$ at all $\mathfrak{p}|p$ (automatic if $F_{\mathfrak{p}} = \mathbb{Q}_p$).

Take a basis $\{c_{\mathfrak{p}}\}_{\mathfrak{p}|p}$ of \mathcal{L} over K. Write

$$c_{\mathfrak{p}}(\sigma) \sim \begin{pmatrix} -a_{\mathfrak{p}}(\sigma) & *\\ 0 & a_{\mathfrak{p}}(\sigma) \end{pmatrix}$$
 for $\sigma \in D_{\mathfrak{p}'}$.

Then $a_{\mathfrak{p}}: D_{\mathfrak{p}'} \to K$ is a homomorphism. His \mathcal{L} -invariant is defined by

$$\mathcal{L}_{2,1} = \det\left(\left(a_{\mathfrak{p}}([p, F_{\mathfrak{p}'}])_{\mathfrak{p}, \mathfrak{p}'}\left(\log_p(\gamma)a_{\mathfrak{p}}([\gamma, F_{\mathfrak{p}'}])\right)_{\mathfrak{p}, \mathfrak{p}'}\right)^{-1}\right)$$

The goal of this talk is to relate Greenberg's \mathcal{L} -invariant with Galois deformation theory, and give a couple of conjectures on $\mathcal{L}_{n,m}$ and the deformation ring.

2. A CONJECTURE

Take an elliptic curve $E_{/F}$ for a totally real field F with split multiplicative reduction modulo at every prime $\mathfrak{p}|p$; so, $E(\overline{F}_{\mathfrak{p}}) \cong \overline{F}_{\mathfrak{p}}^{\times}/q_{\mathfrak{p}}^{\mathbb{Z}}$ for $q_{\mathfrak{p}} \in F_{\mathfrak{p}}^{\times}$. Let $Q_{\mathfrak{p}} = N_{F_{\mathfrak{p}}/\mathbb{Q}_{p}}(q_{\mathfrak{p}})$.

Conjecture 2.1 (\mathcal{L} -invariant). Suppose that the motive $Sym^{\otimes n}(H_1(E))(m)$ for $m \in \mathbb{Z}$ with $0 \leq m < n$ is critical at 1 (\Leftrightarrow either n is odd or n = 2m with odd m). Then if the arithmetic or analytic $L_p(s, \rho_{n,m})$ has an exceptional zero at s = 1, we have

$$\mathcal{L}_{n,m} = \prod_{\mathfrak{p}|p} \frac{\log_p(Q_{\mathfrak{p}})}{\operatorname{ord}_p(Q_{\mathfrak{p}})}.$$

3. Galois deformation

The Greenberg's Selmer group $\operatorname{Sel}_{F}^{cyc}(\rho)$ can be identified with the tangent space at the origin of the universal deformation space of $\rho_n = \rho_{n,0}$. Consider $J_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and put $J_n = J_1^{\otimes n}$. We have ${}^t\rho_n(\sigma)J_n\rho_n(\sigma) = \mathcal{N}^n(\sigma)J_n$. Define an algebraic group G_n over \mathbb{Z}_p by

$$G_n(A) = \left\{ \alpha \in GL_{n+1}(A) \middle|^t \alpha J_n \alpha = \nu(\alpha) J_n \right\}$$

for the similitude homomorphism $\nu : G_n \to \mathbb{G}_m$ (note that $G_1 = GL(2)$). The Galois representation ρ_n has values in $G_n(\mathbb{Z}_p)$. Consider the *p*-adic Lie algebra $Ad(\rho_n)$ of the derived group of G_n . Then $\sigma \in G_F$ acts on $Ad(\rho_n)$ by $X \mapsto \rho_n(\sigma) X \rho_n(\sigma)^{-1}$. Then

(3.1)
$$Ad(\rho_n) \cong \bigoplus_{j: \text{odd}, \ 1 \le j \le n} \rho_{2j,j}.$$

Start with ρ_n , and consider the deformation ring (R_n, ρ_n) which is universal among Galois representations: $\rho_A : G_F \to G_n(A) \equiv \rho_n \mod \mathfrak{m}_A$ for local artinian \mathbb{Q}_p algebras A with residue field \mathbb{Q}_p such that

(Q_n1) unramified outside bad primes for E, ∞ and p;

$$(\mathbf{Q}_{n}2) \ \rho_{A}|_{D_{\mathfrak{p}}} \cong \begin{pmatrix} \alpha_{0,A,\mathfrak{p}} & \ast & \ast & \ast \\ 0 & \alpha_{1,A,\mathfrak{p}} & \cdots & \ast \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_{n,A,\mathfrak{p}} \end{pmatrix} \text{ with } \alpha_{i,A,\mathfrak{p}} \equiv \mathcal{N}_{\mathfrak{p}}^{n-i} \mod \mathfrak{m}_{A} \text{ with } \alpha_{i,A,\mathfrak{p}}|_{I_{\mathfrak{p}}}$$
$$(i = 0, 1, \dots, n) \text{ factoring through the cyclotomic inertia group } \operatorname{Gal}(F_{\mathfrak{p}}[\mu_{p^{\infty}}]/F_{\mathfrak{p}})$$
for all $\mathfrak{p}|_{D_{\mathfrak{p}}}$

(Q_n3) $\nu \circ \rho_A = \mathcal{N}^n$ for the global *p*-adic cyclotomic character \mathcal{N} .

The universal couple (R_n, ρ_n) exists under $(Q_n 1-3)$. Each diagonal character, say, *j*th $\boldsymbol{\delta}_j$ from the top, of $\boldsymbol{\rho}|_{D_p}$ induces a \mathbb{Z}_p -algebra homomorphism of $\mathbb{Z}_p[[X_{j,p}]]$ sending $1 + X_{j,p}$ to the value of $\boldsymbol{\delta}_j$ at the generator of the *p*-primary part of $\operatorname{Gal}(F_p[\mu_{p\infty}]/F_p)$.

Conjecture 3.1. We have $R_n \cong \mathbb{Q}_p[[X_{j,p}]]_{\mathfrak{p}|p, j:odd, 1 \leq j \leq n}$ for variables $X_{j,p}$ induced by *j*-th diagonal character of $\rho_n|_{D_p}$; in particular, dim $R_n = e \cdot \operatorname{rank} G_n = e \lceil \frac{n}{2} \rceil$.

When $F = \mathbb{Q}$ and n = 1, the conjecture holds, and for general totally real F, it holds if n = 1 and $\rho_E \mod p$ has nonsoluble image (Wiles/Taylor, Skinner/Wiles, Fujiwara, Kisin, Khare/Wintenberger, Lin Chen). Since $G_3 \cong GSp(4)$ is the spin cover of $G_4 = GO(2,3)$. Some progress has been made by A. Genestier and J. Tilouine towards the identification of Galois deformation rings and GSp(4)-Hecke algebras (for $F = \mathbb{Q}$), there is a good prospect to get a proof of Conjecture 3.1 when n = 3 and 4. Further, when $F = \mathbb{Q}$, in view of the recent results of Clozel-Harris-Taylor and Taylor (in the paper proving the Sato-Tate conjecture for Tate curves), one would be able to treat general n in future not so far away. Conjecture 3.1 implies the \mathcal{L} -invariant conjecture for Greenberg's \mathcal{L} -invariant:

Theorem 3.2. Suppose Conjecture 3.1 and that n is odd. Then we have

$$\prod_{j:odd,0$$

This follows from the fact that $\left(\frac{\partial \rho_n}{\partial X_{j,\mathfrak{p}}} \rho_n^{-1}\right)\Big|_{X=0}$ gives a canonical basis of $\operatorname{Sel}^{cyc}(Ad(\rho_n))$; so, we can compute Greenberg's \mathcal{L} -invariant explicitly.

For the abelian case, if $\chi = \left(\frac{M/F}{P}\right)$ for a CM field in which all $\mathfrak{p}|p$ in F splits into $\mathfrak{P}\overline{\mathfrak{P}}$ with $\mathfrak{P}^h = (\varpi(\mathfrak{P}))$, we also get

Corollary 3.3. Up to a simple constant, for a half subset $\Sigma \sqcup \Sigma^c = \{\mathfrak{P}|p\}$, we have

$$\mathcal{L}(\chi) = \frac{\det \left(\log_p(N_{\mathfrak{P}'}(\varpi(\mathfrak{P})^{(1-c)})) \right)_{\mathfrak{P},\mathfrak{P}'\in\overline{\Sigma}}}{\prod_{\mathfrak{P}\in\overline{\Sigma}} \operatorname{ord}_p(N_{\mathfrak{p}}(\varpi(\mathfrak{P})^{(1-c)}))},$$

where $N_{\mathfrak{P}}$ is the local norm $N_{M_{\mathfrak{P}}/\mathbb{Q}_{p}}$ and c is a complex conjugation.

The above two results are obtained by explicitly computing the universal representation ρ . As for Corollary 3.3, we take a CM Hecke eigenform so that $\rho = \operatorname{Ind}_M^F \psi$ for a CM Hecke character ψ of $\operatorname{Gal}(\overline{\mathbb{Q}}/M)$. Writing κ for the universal character deforming ψ whose restriction to $\operatorname{Gal}(\overline{\mathbb{Q}}_p/F_p)$ factors through $\operatorname{Gal}(F[\mu_{p^{\infty}}]/F_p)$, we have $\kappa([u, M_{\mathfrak{P}}]) = (1 + X_p)^{\log_p(N_{\mathfrak{P}}(u)/\log_p(\gamma)}\psi([u, M_{\mathfrak{P}}])$ for \mathfrak{P} -adic unit u, and we get $\rho = \operatorname{Ind}_M^F \kappa$. By this fact, we can compute $\mathcal{L}(\operatorname{Ind}_F^{\mathbb{Q}}\chi) = \mathcal{L}(\operatorname{Ind}_F^{\mathbb{Q}}Ad(\rho))$.

The general case for all n > 0 is treated in my paper appeared in IMRN 2007 Vol. 2007, Article ID rnm102, 49 pages. doi:10.1093/imrn/rnm102, and the proof of the case: n = 1 is given in my book "Hilbert modular forms and Iwasawa theory" from Oxford University Press published in 2006.