
L-INVARIANTS OF TATE CURVES

HARUZO HIDA

1. Lecture 3

1.1. Extensions of Qp by its Tate twist. Let K ⊂ Cp be a finite extension of
Qp and W be a two dimensional vector space over K with a K-linear action of
D := Gal(Qp/Qp). We start with an extension of local Galois modules

0→ K(1)→W → K → 0

over D. This type of extensions (for K = Qp) can be obtained by the p-adic Tate
module W = TpE ⊗Zp Qp of an elliptic curve E/Qp with multiplicative reduction.

We prepare some general facts. The following is a description of a result in [GS1]
Section 2 (see also [H07]). We write H i(?) for H i(D, ?). By definition, H1(M) =
Ext1

K[D](K,M) for a D-module M , and hence, there is a one-to-one correspondence:
{

nontrivial extensions
of K by M

}
↔
{

1-dimensional subspaces
of H1(M)

}
.

From the left to the right, the map is given by (M ↪→ X � K) 7→ δX(1) for

the connecting map K = H0(K)
δX−→ H1(M) of the long exact sequence attached

to (M ↪→ X � K). Out of a 1-cocycle c : D → M , one can easily construct
an extension (M ↪→ X � K) taking X = M ⊕ K and letting D acts on X by
g(v, t) = (gv + t · c(g), t), and [c] 7→ (M ↪→X � K) gives the inverse map.

By Kummer’s theory, we have a canonical isomorphism:

H1(K(1)) ∼=

(
lim←−
n

Qp
×/(Qp

×)p
n

)
⊗Zp K.

We write γq ∈ H1(K(1)) for the cohomology class associated to q ⊗ 1 for q ∈ Qp
×.

The class γq is called the Kummer class of q. A canonical cocycle ξq in the class γq is
given as follows. Then ξq(σ) = lim←−n(q

1/pn)σ−1 having values in Zp(1) ⊂ K(1).
In summar, we have

Proposition 1.1. IfW is isomorphic to the representation σ 7→
(N (σ) ξq(σ)

0 1

)
with 0 <

|q|p < 1, then for the extension class of [W] ∈ H1(K(1)), we have K[W] = Kγq. In

particular, Kγq is in the image of the connecting homomorphismH0(K)
δ0−→ H1(K(1))

coming from the extension K(1) ↪→W � K.

Corollary 1.2. Let E/Qp be an elliptic curve. If E has split multiplicative reduction
over W , the extension class of [TpE ⊗Q] is in QpγqE for the Tate period qE ∈ Qp

×.
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Let K̃ := K[ε] = K[t]/(t2) with ε ↔ (t mod t2). A K̃ [D]-module W̃ is called an

infinitesimal deformation of W if W̃ is K̃-free of rank 2 and W̃/εW̃ ∼= W as K[D]-

modules. Since the map ε : W̃ �W ⊂ W̃ given by v 7→ εv is Galois equivariant, we
have an exact sequence of D-modules

0→W → W̃ →W → 0.

Each infinitesimal deformation gives rise to an infinitesimal character ψ : D → K̃×

with ψ mod (ε) = 1. Define K̃(ψ) for the space of the character ψ. Obviously,
dψ
dt

: D→ K is a homomorphism; so, dψ
dt
∈ Hom(D,K) = H1(K). Since the extension

K̃(ψ) is split if and only if dψ
dt

= 0, we get

Proposition 1.3. The correspondence K̃(ψ) ↔ dψ
dt
∈ H1(K) gives a one-to-one

correspondence:{
Nontrivial infinitesimal

deformations of K

}
↔
{

1-dimensional
subspaces of H1(K)

}
.

Note that
H1(D,K) ∼= Hom(D,K) = Hom(Dab,K) ∼= K2,

where, as we have seen in Lecture 2, the last isomorphism is given by

Hom(Dab,K) 3 φ 7→ (
φ([γ,Qp])

logp(γ)
, φ([p,Qp])) ∈ K2.

This follows from local class field theory. Since the Tate duality 〈·, ·〉 is perfect, for
any line ` in H1(D,K), one can assign its orthogonal complement `⊥ in H1(D,K(1)).

Proposition 1.4. The correspondence of a line in H1(D,K) and its orthogonal com-
plement in H1(D,K(1)) gives a one-to-one correspondence:

{
Nontrivial extensions

of K by K(1) as K[D]-modules

}
↔
{

nontrivial infinitesimal
deformations of K over D

}
.

Theorem 1.5. Let E/L be an elliptic curve with split multiplicative reduction defined

over a finite extension L/Qp, and let ψ : Gal(Qp/Qp)→ Q̃p

×
be a nontrivial character

which is congruent to 1 modulo ε. Let W = TpE ⊗ Qp for the p-adic Tate module
TpE of E and qE ∈ L× be the Tate period of E. Then the following statements are
equivalent:

(a) dψ
dt

(σNL/Qp(qE)) = 0 for σq = [q,Qp]
−1;

(b) W corresponds to Q̃p(ψ) under the correspondence of Proposition 1.4;

(c) There is a deformation W̃ ofW and a commutative diagram of Q̃p[D]-modules
with exact row:

Q̃p(1)
↪→−−−→ W̃ �−−−→ Q̃p(ψ)

mod ε

y mod ε

y
y mod ε

Qp(1) −−−→
↪→

W −−−→
�

Qp.

Normalize the Artin symbol [x,Qp] so that

• N ([u,Qp]) = u−1 for u ∈ Z×
p ,
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• [p,Qp] is the arithmetic Frobenius element.

By an explicit form of Tate duality, we have 〈γq, φ〉 = φ(σq) for γq ∈ H1(D,Qp(1))
and φ ∈ Hom(D,Qp) = H1(D,Qp).

Proof. The case L = Qp is treated in [GS1] 2.3.4 and the gneral fact is in [H07].
For simplicity, we assume L = Qp. Since 〈γq, φ〉 = φ(σq) for φ ∈ H1(D,Qp) =

Hom(D,Qp) and γq ∈ H1(D,Qp(1)), applying these formulas to φ = dψ
dt

, we get (a)
⇔ (b) by the definition of the correspondence in Proposition 1.4.

Here is the argument proving (b) ⇒ (c). Let ξQ be a 1-cocycle representing γQ for

Q = qE. Then D ×D 3 (σ, τ ) 7→ c(σ)dψ
dt

(τ ) ∈ Qp(1) is the 2-cocycle representing the

cup product γQ ∪ [Q̃p(ψ)] (another expression of the Tate pairing), which vanishes by
(b) (⇔ (a)). Thus it is a 2-coboundary:

(1.1) ξQ(σ)
dψ

dt
(τ ) = ∂Ξ(σ, τ ) = Ξ(στ )−N (σ)Ξ(τ )− Ξ(σ)

(⇔ Ξ(στ ) = ξQ(σ)
dψ

dt
(τ ) +N (σ)Ξ(τ ) + Ξ(σ))

for a 1-chain Ξ : D → Qp(1). Then defining an action of σ ∈ D on Q̃p

2
via the matrix

multiplication by ρ̃(σ) :=
(

N (σ) ξQ(σ)+Ξ(σ)ε

0 ψ(σ)

)
. One checks that this is well defined by

computation (the relation (1.1) shows up in the ε-term of ρ̃(στ )
?
= ρ̃(σ)ρ̃(τ ) at the

shoulder). The resulting Q̃p[D]-module W̃ fits well in the diagram in (c).
Conversely suppose we have the commutative diagram as in (c), which can be

written as the following commutative diagram with exact rows and columns:

0 0 0
↓ ↓ ↓

0 −→ Qp(1) −→ W −→ Qp −→ 0
↓ ↓ ↓

0 −→ Q̃p(1) −→ W̃ −→ Q̃p(ψ) −→ 0
↓ ↓ ↓

0 −→ Qp(1) −→ W −→ Qp −→ 0
↓ ↓ ↓
0 0 0

The connecting homomorphism d : H1(D,Qp(1)) → H2(D,Qp(1)) vanishes because
the leftmost vertical sequence splits. On the other hand, letting δψ : H0(D,Qp) →
H1(D,Qp) stand for the connecting homomorphism of degree 0 coming from the
rightmost vertical sequence, and letting δi : H i(D,Qp) → H i+1(D,Qp(1)) be the
connecting homomorphism of degree i associated to the bottom row and the top row.
By the commutativity of the diagram, we get the following commutative square:

H0(D,Qp) = Qp
δ0−−−→ H1(D,Qp(1))

δψ

y
yd=0

H1(D,Qp) −−−→
δ1

H2(D,Qp(1)).
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Since δψ(1) = dψ
dt

, we confirm dψ
dt
∈ Ker(δ1). By Proposition 1.1, γQ is the in the

image of δ0. Thus (a)/(b) follows if we can show that Ker(δ1) is orthogonal to Im(δ0).
SinceW = TpE⊗Q,W is self dual under the canonical polarization pairing, which

induces a self duality of W and also the self (Cartier) duality of the exact sequence

0 → Qp(1)
ι−→ W π−→ Qp → 1. In particular the inclusion ι and the projection π are

mutually adjoint under the pairing. Thus the connecting maps δ0 : H0(D,Qp) →
H1(D,Qp(1)) and δ1 : H1(D,Qp) → H2(D,Qp(1)) are mutually adjoint each other
under the Tate duality pairing. In particular, Im(δ0) is orthogonal to Ker(δ1). �

1.2. How to relate the L-invariant with the logarithm of Tate period. Take
an elliptic curve E with multiplicative reduction over the finite extension L/Qp. Let
W = TpE ⊗Zp Qp. Write Qi = NFpi/Qp(qpi).

Theorem 1.6 (L-invariant). If Deformation conjecture holds for ρE, then SelF (V ) =
0 and we have

L(Ad(ρE)) =

(
b∏

i=1

logp(Qi)

ordp(Qi)

)
L(1).

We have L(m) = 1 if b = e, and the value L(1) when b < e is given by

L(1) = det

(
∂δpi([p, Fpi])

∂Xj

)

i>b,j>b

∣∣∣
X1=X2=···=Xe=0

∏

i>b

logp(γpi)

[Fpi : Qp]αpi([p, Fpi])

for the local Artin symbol [p, Fpi].

Proof. In the proof, we continue to assume Fpj = Qp for all j = 1, . . . , e. Fix an

index j. Write Dj = Gal(F pj/Fpj )
∼= D. We consider the universal couple (R,ρ) of

ρE under the conditions (K1–4). Put mj := (X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xe) ⊂ R =

K[[Xj]]j=1,...,e for Xj = Xpj . Consider W̃j = W/mjW for W = ρ.

Suppose j ≤ b. We have a Dj -stable filtration 0 = F2W̃j ⊂ F1W̃j ⊂ W̃j = F0W̃j.
Let δj be the nearly ordinary character

δj := (δj mod (X1, . . . ,Xj−1,X
2
j ,Xj+1, . . . ,Xe)).

The character δj satisfies δj ≡ αpj = 1 mod (Xj) for the trivial character 1 of D.
Since det(ρ) = N (K3), we have

W̃j

F1W̃j

= δj ∼= Q̃p and F1W̃j = Q̃p(δ
−1
j N ).

The matrix form of the Dj-representation W̃j is
(
δ−1
j N ∗
0 δj

)
. Twist W̃j by δj; then,

W̃j ⊗ δj has the matrix form
(N ∗

0 ψj

)
for ψj = δ2

j . Then W̃j ⊗ ψj is an infinitesimal
extension making the following diagram commutative:

Q̃p(1)
↪→−−−→ W̃j ⊗ ψj

�−−−→ Q̃p(ψj)y
y

y
Qp(1) −−−→

↪→
W −−−→

�
Qp.
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This diagram satisfies the condition (c) of Theorem 1.5, for Qj = qE/Fpj
,

∂ψj
∂Xj

∣∣∣
Xj=0

([Qj,Qp]) = 2

(
δj
∂ψj
∂Xj

∣∣∣
Xj=0

)
([Qj,Qp]) = 0⇒ ∂δj

∂Xj

∣∣∣
Xj=0

([Qj,Qp]) = 0.

Write Qj = pau for a = ordp(Qj) and u ∈ Z×
p . Then logp(u) = logp(Qj). We have

δj([Qj, Fpj ]) = δj([p, Fpj ])
aδj([u, Fpj])

= δj([p, Fpj ])
a(1 +Xj)

− logp(N ([u,Fpj ]))/ logp(γpj)

= δj([p, Fpj ])
a(1 +Xj)

− logp(u)/ logp(γpj )

(because N ([u, Fpj ]) = u−1). Differentiating this identity with respect to Xj, we get
from δj([u, Fpj])|Xj=0 = δj([p, Fpj ])|Xj=0 = αj([p, Fpj ]) = 1

a
∂δj
∂Xj

∣∣∣
Xj=0

([p, Fpj ])−
logp(u)

logp(γj)
= 0.

From this we conclude

(1.2)
∂δj([p, Fpj ])

∂Xj

∣∣∣
Xj=0

logp(γj)αpj ([p, Fpj ])
−1 =

logp(Qj)

ordp(Qj)
,

since αj([p, Fpj ]) = 1 (by split multiplicative reduction of E at pj with j ≤ b).
As already seen, SelF (Ad(ρE)) = 0, assuming that R ∼= K[[Xp]]p|p. We will prove

the following factorization in the fourth lecture:

(1.3) L(Ad(ρE)) =
b∏

i=1

∂δi([p, Fpi])

∂Xi

∣∣∣
Xi=0

logp(γpi)αpi([p, Fpi])
−1

× det

(
∂δi([p, Fpi])

∂Xj

)

i>b,j>b

∣∣∣
X=0

∏

j>b

logp(γpj )αpj([p, Fpj ])
−1.

From this and (1.2), the desired formula follows. �
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