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Lecture 5: We describe Tamagawa measure on a semi-simple
group and the Tamagawa number for the group. Then we state
the Siegel-Weil formula and describe an explicit description of the
metaplectic group. At the end, we describe Fourier expansion of
modular forms on Mp and SL(2) as a preparation for describing
the Rankin product method explicit in Lecture 6.



50. Tamagawa measure. Let G,p be an affine linear semi-
simple algebraic group with G(Fy,) # 0 for all place v of F. Regard
the group G as an affine F-scheme Spec(Og). Write n for the
dimension of the scheme G. We take a Haar measure dx on F)
so that [p, /pdz =1, fOFv dz, = 1 for almost all finite place v and
droc 1S given by the Lebesgue measure. An algebraic differential
form w = f(x)dx1 A --- A dxn, defined everywhere on G, for each
place v, we define a measure |w|y, on G(Fy) by

/G(Fv) ¢(z)d|wlo = /G(FU) d(2)|f(x)|vdxidxs - - - dry

for the canonical measure da:j on F, induced by the above dx.
Then define a measure |wly by &, |wlv on G(Fy). The form w is
called a gauge form if g*w = w for the pull back of z +— gx for
each g € (G, and the associated measure is unique and called the
Tamagawa measure dw. The Tamagawa number 7(G) is defined
by

(&) = /G<FA>/G(F> o



1. Gauge form on OV/@. For simplicity, assume F = Q in
this section. Writing GL(m) = Spec(Z[X;;,det(X;;)71]), w =
det(X; ;)™ A;;dX;; induces a gauge form on GL(m). Since
GL(m) = Gy, x SL(m), for an SL(m)-gauge form wgy, w =
wgy A dt/t writing Gy, = Spec(Z[t,t~1]).

Choose a basis v1,...,vm Of V over Q and put S = (s(v;,v;)); ; €
M (Q). Then we define 2zt = S'zS—1, which is an involution
of My, = glm. Then Oy (A) = {x € GLn(A)|zax* = 1}. We
consider s+ = {z € gln|z* = Fz} (54 is the Lie algebra of Oy,).
We have gl,, = s4 @ s_. Since w as above satisfies w(axzb) =
det(a)™ det(b)"w(zx) for a,b € GL(m), we can split w = wy A
w— according to the linear splitting gly, =54 ©s. Then wy
restricted to Og C gl gives a gauge form on the connected
component of Og.

It is known that 7(Oy ) =2 if m > 2. (See §1.2.2 and (4.46)).



32. Siegel—Weil Eisenstein series. Consider the function & :
Mp(Fy) 2 g — (W(g9)¢)(0) € C for ¢ € S(V). This means that
we first apply w(g) to ¢ and then evaluate at 0 € V. We have
the splitting B(Fy) — Mp(Fy) and SLy(F) — Mp(Fy) which
coincide with r on B(F') up to constants, and by the definition
of r on b € B(F), writing r(b) = r(v(w))r(diagla,a=1]),

®(bg) = epuQ(v))|alf/* (W(g)$) (av)y—o = (b).

Therefore ®(g) is a left B(F)-invariant function on Mp(Fy). For
g € Mp(Fy), by Iwasawa decomposition applied to SLo(Fy), write
g = diag[a, a v (w)k with k € SL>(Or)Cx for the standard max-
imal compact subgroup Cs Of SLo(Fo), We define a(g) = |a|p,
and ®,(g) = Cl>(g)|a,(g)|%A. Define Siegel—Weil Eisenstein series
by
E(®P;s) := > Ds(v9),
YEB(F)\SL2(F)

which is absolutely and locally uniformly convergent if Re(s) > 0.



§3. Siegel—Weil formula. When n > 4, E(®d;s) converges
absolutely if s = 0, and E(®P;s) has a meromorphic continuation
to the whole s € C. If V is anisotropic and n > 2, E(®, s) is finite
at s = 0. When well defined, we write E(®) for E(P;0).

Let K be a maximal compact subgroup of Og(A). Then we
have, if either n > 4 or S is anisotropic with n > 1,

Jo ooy APV @ Wd(9) = T(OVE(®)(9) = 2 B(®)(9)

for g € Mp(A), h € Og(A) all K-finite ® € S(Vy)°°.

See §4.4.3 for a proof.



4. Standard automorphic factor: §4.5.2. Let F be a totally
real field. We consider ¢(7;300) : 300 — €00(32,7) as a Schwartz
function of 300 € Foo With 7 € 35 := $!F. Define a function
h(g,7) of g € Mp(Fy), T € 3 by

~1/2

Poo(g) = (W(9)$)(7: 0) = la(g) [ (g, 7).

Then h : Mp(Fy) X 3 — C* is a holomorphic function in 7 as
long as ©(g) € B(Fa)lMg(4)SO5(F). Set

i) = GO )very = (4 d)verys §(17)'F = [[(Vm + d”)

and j(v,7)* =TI, (’r, +d¥)kv for k =Y, kyv € Z[Ir]. We denote
also by Ir the element >, v € Z[Ig]. Then we have

(h1) h(g,7)2 =t-j(x(qg),7)!F for t € ST

(h2) h is an automorphic factor of g € 7= 1(B(Fy)9(4)SO5(Fxo)):
(h3) if v € SLo(F) N B(Fy)Fo(4), h(y,7)* =j(vy,7)?!F;

(h4) if v = (3 5) € SLo(F) N B(Fy)lMo(4) (see §4.5.2),

N(d) (FlV-1]/F

2
A7) _|N<d>|< 2dO},

) i(y,m)IE.



5. The case F = Q. Assume that n = 1; so, Hn = H. For
integers a,b = 0, we define Shimura's symbol <%) by

1. <%) = 0 if (a,b) #1 (where (a,b) is the GCD of a and b),

2. If bis an odd prime, <%) is the Legendre symbol (i.e., it is less

one than the number of solutions of z2 =a mod b),
3. If b>0, a— <%) is a character modulo b,

4. If a =0, b — % IS a character modulo 4a whose conductor
is the conductor of Q[\/E]/@,

5. <_i1) — 1 or —1 according as a >0 or a < 0O,

6. () =1.
Recall 6 : $§ — C given by 0(7) = ¥,z e(n’t). For v € To(4), we
have h(vy,7) ;= 0(~(7))/0(7) and

r((e4)m =<t (5)a((2h) Y2

where j(<‘c‘ g) 7)) = cr+4d, 71/2 = V|| exp(wif) if 7 = || exp(27if)
with -1 < <1 and ¢4 = +/—1 or 1 according as d =3 or 1
mod 4. See §4.3.1.



6. Quadratic space over a totally real field F'. The ex-
tension S — Mp(F,) — SLo(F,) actually descends down to
115 < SLo(Fy) — SLo(Fy). The 2-cocycle: SLy(Fy) — ST giving
rise to the extension Mp(F,) is cohomologous to another one
k . SLo(Fyp) — pp with values in up (found by T. Kubota; see
§4.3.3), and we have the following commutative diagram:

pp —> SLo(Fy) — SLo(Fy)
| d |
St — Mp(F) — SLa(Fp).
For F', we put j(goo,7) = [lyer(cvmy +dv) for 7 = (7),er € 9!
and goo = (gu)yer € SLo(R)! = SLo(Fx). We can realize
SLo(Fso) = {(9, (g9, 7))|g € SLa(Feo), J(g,7)% = j(g,7)}
with product given by (g, J(g,7))(h, J(h,T)) = (gh, J(g,h(7))J(h,T)).

Thus we have the central extension s <, SLo(Fso) % SL2(Foo)
with i(—=1) = (15,—1) and w(g,J) = g. The center of SL» is
given by us x us(Foo). See §4.3.3.



7. Half integral weight for FF = Q. Let [ is an open sub-
group of Tp(4) and T = I NSL>(Z). A modular form f €
Mﬁz(l‘,w) (which is a holomorphic or anti-holomorphic function
on $ depending on the sign) is called a modular form of weight
£ for odd ¢ if it satisfies f(v(7)) = () f(T)h(y, 7H)¢ for v €T,
T =7 and 7~ = 7. Here ¢ : Z/MZ — C* is a character and
W <CCL g) = 9 (d). The modular form f has its Fourier expansion:
f(r) = Y8, an(f)e(Enr™) for a lattice L C Q. We extend v
to a character of ¢ : T (M) — C* so that @(g 3) = ¢ (dy). We
lift f tof:SL>(Q)\Mp(A) — C by putting

£ (a(u, ¢J (oo, 7)) = ¥ (u) f (oo (v/=1))¢ T (uoo, &)~

for a € SL>(Q) ¢ Mp(A) and (u, J(uso, 7)) € T - Mp(R) (¢ € S?
and uco = <CCL g)) regarding SLo(R) C SLo(A) € Mp(A).



§8. Adelic half integral weight forms; 54.3.4. We define the
space of adelic modular forms Mﬁz(lﬁ,w) on I of weight ¢/2 as
a function f : Mp(A) — C satisfying the following conditions:
(hi1) f(&g(u, ¢ (uoo, 7)) = ¢(u)f(g)¢tJ (ucs, £4) ¢ for all € € SLo(Q),
¢e St and werl - Mp(R);

(hi2) f(7r) := £(gr,n Y*n=t/* for g, = n=1/2 <8 %) is holomor-
phic or anti-holomorphic according to the sign;

(hi3) f(7) is finite at cusps.

We define similarly the space E/Q(I‘ 1) of cusp forms, requiring

a,o(f|€/20z) = O fora € SL»(Z), where f|€/2a(7') = f(a(r)h(a, 7)1
taking a square root holomorphic function 7 — h(a,7) of j(a, 1)
suitably.



§9. Fourier expansion; Section 4.6. We extend v to a char-
acter of ¢* : A*/Q* — C* so that ¢v*(w;) = ¥ (l) for each prime
[ prime to M and then ¥* to Tg(M) so that ¥(u) = ¥(u)~ 1. De-
fine an idele character ¥ : A*/Q* — C* by ¥(a) = w*(a)|a|1g€/2.
Thus for g = <“ 91) € B(Z)B(R) C SL,(A), we find for + =

Oa
aoo(aoo? + boo) and a lattice L C Q

f(g) =¥ 1(a) Y an(f)exp(—2mnas,)e(+nascboso).
O0<neL

Let v(u) = <6 7_{) € U(A). Then we consider for a general b =
v(w) diagla,a=1] € B(A). Write f(a,u) := f(b). Then f(a,uta) =
f(v(a)b) = f(b) if « € Q. Thus f(a,u) has a Fourier expansion
over u € A of the form

fla,u) = a;@ ag(a; a)e(au) with ag(a;a) = /A/Qf(a,u)eA(—ozu)du

for the volume one Haar measure du of A/Q.



310. Properties of expansion coefficients. By

diag[B, 8~ v(u) diag[a, a ] = v(B?%u) diag[Ba, (Ba) ]
for 8 € QQ, we have

Z ag(a;a)e(au) = f(a,u) = f(Ba, B%u) = Z ag(a; Ba)e(aB?u).

acQ acQ
By the uniqueness of the expansion,
(*) a¢(a; a) = ag(af™2, Ba)

| {w(a)aa(f) exp(—2raa2) if0<acl,
ag(a; a) = _
O otherwise.

For t € ZX, we get

ag(a; at) = Y~ H(t)ag(a, a),

since v(w) diag[a,a~ 1] diag[t,t~1] = v(w) diag[ta, (ta) ~1].



§11. Normalization. Define for a € A*, if aa® € L(U=Ry)? N
(A*u{0}),

() af(aa?) 1= ¢(a)af(@ a) exp(2rascad,) = aalf),

and otherwise, put a¢(aa?) = 0. If oza,Q(UA)Q = b2 (Ur)? (€ € Q),
then writing oza,za, = £b2t2 for t € Uz, &~ [oz is Iocally square; so,
¢ = a2 with b = Ba, and we have

ag(aa?) 1= (a)ag(a, a) exp(2raccasd,)
= y(Ba)ag(aB2, Ba) exp(2r (@) (Ba)2,) = ar(€b?),
since ¥ (Ba) = 1 (a). This shows that ag(x) is well defined inde-

pendent of the choice of the expression z = aa? with ¢ € AX and
o€ QX.

By (x%x), we have

ar(r) = aa(f) = af(.fCtQ) for t € Z*R* and = = aa®.

Since a¢ is supported over Aj_ = A(OO)IR{j_, ar only depends on

the finite part of the idele. Thus we can recover

f(a,u) =P(a)~! Y ap(aa?)exp(—2mascas,)e(+au).
0<aeQ



