Siegel-Weil formula

Haruzo Hida
Department of Mathematics, UCLA,
Lecture no. 5 at NCTS, April 16, 2024

Lecture 5: We describe Tamagawa measure on a semi-simple group and the Tamagawa number for the group. Then we state the Siegel-Weil formula and describe an explicit description of the metaplectic group. At the end, we describe Fourier expansion of modular forms on Mp and $\mathrm{SL}(2)$ as a preparation for describing the Rankin product method explicit in Lecture 6.
§0. Tamagawa measure. Let $G_{/ F}$ be an affine linear semisimple algebraic group with $G\left(F_{v}\right) \neq \emptyset$ for all place v of F. Regard the group G as an affine F-scheme $\operatorname{Spec}\left(\mathcal{O}_{G}\right)$. Write n for the dimension of the scheme G. We take a Haar measure $d x$ on $F_{\mathbb{A}}$ so that $\int_{F_{\mathrm{A}} / F} d x=1, \int_{O_{F_{v}}} d x_{v}=1$ for almost all finite place v and $d x_{\infty}$ is given by the Lebesgue measure. An algebraic differential form $\omega=f(x) d x_{1} \wedge \cdots \wedge d x_{n}$ defined everywhere on G, for each place v, we define a measure $|\omega|_{v}$ on $G\left(F_{v}\right)$ by

$$
\int_{G\left(F_{v}\right)} \phi(x) d|\omega|_{v}=\int_{G\left(F_{v}\right)} \phi(x)|f(x)|_{v} d x_{1} d x_{2} \cdots d x_{n}
$$

for the canonical measure $d x_{j}$ on F_{v} induced by the above $d x$. Then define a measure $|\omega|_{\mathbb{A}}$ by $\otimes_{v}|\omega|_{v}$ on $G\left(F_{\mathbb{A}}\right)$. The form ω is called a gauge form if $g^{*} \omega=\omega$ for the pull back of $x \mapsto g x$ for each $g \in G$, and the associated measure is unique and called the Tamagawa measure $d \omega$. The Tamagawa number $\tau(G)$ is defined by

$$
\tau(G)=\int_{G\left(F_{\mathrm{A}}\right) / G(F)} d \omega .
$$

§1. Gauge form on $\mathrm{O}_{V / \mathbb{Q}}$. For simplicity, assume $F=\mathbb{Q}$ in this section. Writing $\mathrm{GL}(m)=\operatorname{Spec}\left(\mathbb{Z}\left[X_{i j}, \operatorname{det}\left(X_{i j}\right)^{-1}\right]\right), \omega=$ $\operatorname{det}\left(X_{i, j}\right)^{-m} \wedge_{i, j} d X_{i j}$ induces a gauge form on $\mathrm{GL}(m)$. Since $\mathrm{GL}(m)=\mathbb{G}_{m} \ltimes \mathrm{SL}(m)$, for an $\mathrm{SL}(m)$-gauge form $\omega_{S L}, \omega=$ $\omega_{S L} \wedge d t / t$ writing $\mathbb{G}_{m}=\operatorname{Spec}\left(\mathbb{Z}\left[t, t^{-1}\right]\right)$.

Choose a basis v_{1}, \ldots, v_{m} of V over \mathbb{Q} and put $S=\left(s\left(v_{i}, v_{j}\right)\right)_{i, j} \in$ $M_{m}(\mathbb{Q})$. Then we define $x^{l}=S^{t} x S^{-1}$, which is an involution of $M_{m}=\mathfrak{g l}_{m}$. Then $\mathrm{O}_{V}(A)=\left\{x \in \mathrm{GL}_{m}(A) \mid x x^{\iota}=1\right\}$. We consider $\mathfrak{s}_{ \pm}=\left\{x \in \mathfrak{g l}_{m} \mid x^{\ell}=\mp x\right\}$ (\mathfrak{s}_{+}is the Lie algebra of O_{V}). We have $\mathfrak{g l}_{m}=\mathfrak{s}_{+} \oplus \mathfrak{s}_{-}$. Since ω as above satisfies $\omega($ axb $)=$ $\operatorname{det}(a)^{m} \operatorname{det}(b)^{m} \omega(x)$ for $a, b \in \operatorname{GL}(m)$, we can split $\omega=\omega_{+} \wedge$ ω_{-}according to the linear splitting $\mathfrak{g l}_{m}=\mathfrak{s}_{+} \oplus \mathfrak{s}_{-}$. Then ω_{+} restricted to $\mathrm{O}_{S} \subset \mathfrak{g l}_{m}$ gives a gauge form on the connected component of O_{S}.

It is known that $\tau\left(\mathrm{O}_{V}\right)=2$ if $m \geq 2$. (See $\S 1.2 .2$ and (4.46)).
§2. Siegel-Weil Eisenstein series. Consider the function Φ : $\operatorname{Mp}\left(F_{\mathbb{A}}\right) \ni g \rightarrow(\mathbf{w}(g) \phi)(0) \in \mathbb{C}$ for $\phi \in \mathcal{S}\left(V_{\mathbb{A}}\right)$. This means that we first apply $\mathbf{w}(g)$ to ϕ and then evaluate at $0 \in V$. We have the splitting $B\left(F_{\mathbb{A}}\right) \hookrightarrow \mathrm{Mp}\left(F_{\mathbb{A}}\right)$ and $\mathrm{SL}_{2}(F) \hookrightarrow \mathrm{Mp}\left(F_{\mathbb{A}}\right)$ which coincide with \mathbf{r} on $B(F)$ up to constants, and by the definition of \mathbf{r} on $b \in B(F)$, writing $\mathbf{r}(b)=\mathbf{r}(v(u)) \mathbf{r}\left(\operatorname{diag}\left[a, a^{-1}\right]\right)$,

$$
\Phi(b g)=\left.\mathbf{e}_{F}(u Q(v))|a|_{F_{\mathbb{A}}}^{m / 2}(\mathbf{w}(g) \phi)(a v)\right|_{v=0}=\Phi(b)
$$

Therefore $\Phi(g)$ is a left $B(F)$-invariant function on $\mathrm{Mp}\left(F_{\mathbb{A}}\right)$. For $g \in \operatorname{Mp}\left(F_{\mathbb{A}}\right)$, by Iwasawa decomposition applied to $\mathrm{SL}_{2}\left(F_{\mathbb{A}}\right)$, write $g=\operatorname{diag}\left[a, a^{-1}\right] v(u) k$ with $k \in \mathrm{SL}_{2}\left(\widehat{O}_{F}\right) C_{\infty}$ for the standard maximal compact subgroup C_{∞} of $\mathrm{SL}_{2}\left(F_{\infty}\right)$, we define $a(g):=|a|_{F_{\mathbb{A}}}$ and $\Phi_{s}(g):=\Phi(g)|a(g)|_{F_{\mathbb{A}}}^{s}$. Define Siegel-Weil Eisenstein series by

$$
E(\Phi ; s):=\sum_{\gamma \in B(F) \backslash S L_{2}(F)} \Phi_{s}(\gamma g)
$$

which is absolutely and locally uniformly convergent if $\operatorname{Re}(s) \gg 0$.
§3. Siegel-Weil formula. When $n>4, E(\Phi ; s)$ converges absolutely if $s=0$, and $E(\Phi ; s)$ has a meromorphic continuation to the whole $s \in \mathbb{C}$. If V is anisotropic and $n \geq 2, E(\Phi, s)$ is finite at $s=0$. When well defined, we write $E(\Phi)$ for $E(\Phi ; 0)$.

Let K be a maximal compact subgroup of $\mathrm{O}_{S}(\mathbb{A})$. Then we have, if either $n>4$ or S is anisotropic with $n>1$,

$$
\int_{\mathrm{O}_{V}(\mathbb{Q}) \backslash \mathrm{O}_{V}(\mathbb{A})} \theta(\Phi)(g, h) d \omega(g)=\tau\left(\mathrm{O}_{V}\right) E(\Phi)(g)=2 \cdot E(\Phi)(g)
$$

for $g \in \operatorname{Mp}(\mathbb{A}), h \in \mathrm{O}_{S}(\mathbb{A})$ all K-finite $\Phi \in \mathcal{S}\left(V_{\mathbb{A}}\right)^{\infty}$.

See §4.4.3 for a proof.
$\S 4$. Standard automorphic factor: §4.5.2. Let F be a totally real field. We consider $\phi(\tau ; \mathfrak{z} \infty): \mathfrak{z} \infty \mapsto \mathbf{e}_{\infty}\left(\mathfrak{z}_{\infty}^{2} \tau\right)$ as a Schwartz function of $\mathfrak{z} \infty \in F_{\infty}$ with $\tau \in \mathfrak{Z}_{F}:=\mathfrak{H}^{I_{F}}$. Define a function $h(g, \tau)$ of $g \in \operatorname{Mp}\left(F_{\mathbb{A}}\right), \tau \in \mathfrak{Z}_{F}$ by

$$
\Phi_{\infty}(g)=(\mathrm{w}(g) \phi)(\tau ; 0)=|a(g)|_{F_{\mathbb{A}}}^{-1 / 2} h(g, \tau)^{-1} .
$$

Then $h: \operatorname{Mp}\left(F_{\mathbb{A}}\right) \times \mathfrak{Z}_{F} \rightarrow \mathbb{C}^{\times}$is a holomorphic function in τ as long as $\pi(g) \in B\left(F_{\mathrm{A}}\right) \hat{\Gamma}_{0}(4) \mathrm{SO}_{2}\left(F_{\infty}\right)$. Set
$j(\gamma, \tau)=\left(j\left(\gamma^{\nu}, \tau_{\nu}\right)\right)_{\nu \in I_{F}}=\left(c^{\nu} \tau_{\nu}+d^{\nu}\right)_{\nu \in I_{F}}, j(\gamma, \tau)^{I_{F}}=\prod_{\nu}\left(c^{\nu} \tau_{\nu}+d^{\nu}\right)$
and $j(\gamma, \tau)^{k}=\Pi_{\nu}\left(c^{\nu} \tau_{\nu}+d^{\nu}\right)^{k_{\nu}}$ for $k=\sum_{\nu} k_{\nu} \nu \in \mathbb{Z}\left[I_{F}\right]$. We denote also by I_{F} the element $\sum_{\nu} \nu \in \mathbb{Z}\left[I_{F}\right]$. Then we have (h1) $h(g, \tau)^{2}=t \cdot j(\pi(g), \tau)^{I_{F}}$ for $t \in S^{1}$;
(h2) h is an automorphic factor of $g \in \pi^{-1}\left(B\left(F_{\mathbb{A}}\right) \hat{\Gamma}_{0}(4) \mathrm{SO}_{2}\left(F_{\infty}\right)\right)$;
(h3) if $\gamma \in \mathrm{SL}_{2}(F) \cap B\left(F_{\mathbb{A}}\right) \hat{\Gamma}_{0}(4), h(\gamma, \tau)^{4}=j(\gamma, \tau)^{2 I_{F}}$;
(h4) if $\gamma=\left(\begin{array}{c}* \\ c \\ d\end{array}\right) \in \mathrm{SL}_{2}(F) \cap B\left(F_{\mathrm{A}}\right) \hat{\Gamma}_{0}(4)$ (see $\S 4.5 .2$),

$$
h(\gamma, \tau)^{2}=\frac{N(d)}{|N(d)|}\left(\frac{F[\sqrt{-1}] / F}{a d O_{F}}\right) j(\gamma, \tau)^{I_{F}} .
$$

\S 5. The case $F=\mathbb{Q}$. Assume that $n=1$; so, $\mathfrak{H}_{n}=\mathfrak{H}$. For integers $a, b \neq 0$, we define Shimura's symbol $\left(\frac{a}{b}\right)$ by

1. $\left(\frac{a}{b}\right)=0$ if $(a, b) \neq 1$ (where (a, b) is the GCD of a and b),
2. If b is an odd prime, $\left(\frac{a}{b}\right)$ is the Legendre symbol (i.e., it is less one than the number of solutions of $x^{2} \equiv a \bmod b$),
3. If $b>0, a \mapsto\left(\frac{a}{b}\right)$ is a character modulo b,
4. If $a \neq 0, b \mapsto\left(\frac{a}{b}\right)$ is a character modulo $4 a$ whose conductor is the conductor of $\mathbb{Q}[\sqrt{a}]_{\mathbb{Q}}$,
5. $\left(\frac{a}{-1}\right)=1$ or -1 according as $a>0$ or $a<0$,
6. $\left(\frac{0}{ \pm 1}\right)=1$.

Recall $\theta: \mathfrak{H} \rightarrow \mathbb{C}$ given by $\theta(\tau)=\sum_{n \in \mathbb{Z}} \mathbf{e}\left(n^{2} \tau\right)$. For $\gamma \in \Gamma_{0}(4)$, we have $h(\gamma, \tau):=\theta(\gamma(\tau)) / \theta(\tau)$ and

$$
h\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \tau\right)=\varepsilon_{d}^{-1}\left(\frac{c}{d}\right) j\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \tau\right)^{1 / 2},
$$

where $j\left(\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \tau\right)=c \tau+d, \tau^{1 / 2}=\sqrt{|\tau|} \exp (\pi i \theta)$ if $\tau=|\tau| \exp (2 \pi i \theta)$ with $-1<\theta \leq 1$ and $\varepsilon_{d}=\sqrt{-1}$ or 1 according as $d \equiv 3$ or 1 $\bmod 4$. See §4.3.1.
§6. Quadratic space over a totally real field F. The extension $S^{1} \hookrightarrow \operatorname{Mp}\left(F_{\mathbb{A}}\right) \rightarrow \mathrm{SL}_{2}\left(F_{\mathbb{A}}\right)$ actually descends down to $\mu_{2} \hookrightarrow \widetilde{S L}_{2}\left(F_{\mathbb{A}}\right) \rightarrow \mathrm{SL}_{2}\left(F_{\mathbb{A}}\right)$. The 2-cocycle: $\mathrm{SL}_{2}\left(F_{\mathbb{A}}\right) \rightarrow S^{1}$ giving rise to the extension $\operatorname{Mp}\left(F_{\mathbb{A}}\right)$ is cohomologous to another one $\kappa: \mathrm{SL}_{2}\left(F_{\mathbb{A}}\right) \rightarrow \mu_{2}$ with values in μ_{2} (found by T. Kubota; see §4.3.3), and we have the following commutative diagram:

For F, we put $j\left(g_{\infty}, \tau\right)=\Pi_{\nu \in I}\left(c_{\nu} \tau_{\nu}+d_{\nu}\right)$ for $\tau=\left(\tau_{\nu}\right)_{\nu \in I} \in \mathfrak{H}^{I}$ and $g_{\infty}=\left(g_{\nu}\right)_{\nu \in I} \in \mathrm{SL}_{2}(\mathbb{R})^{I}=\mathrm{SL}_{2}\left(F_{\infty}\right)$. We can realize

$$
\widetilde{\mathrm{SL}}_{2}\left(F_{\infty}\right)=\left\{(g, J(g, \tau)) \mid g \in \mathrm{SL}_{2}\left(F_{\infty}\right), J(g, \tau)^{2}=j(g, \tau)\right\}
$$

with product given by $(g, J(g, \tau))(h, J(h, \tau))=(g h, J(g, h(\tau)) J(h, \tau))$.
Thus we have the central extension $\mu_{2} \stackrel{i}{\hookrightarrow} \widetilde{\mathrm{SL}}_{2}\left(F_{\infty}\right) \xrightarrow{\pi} \mathrm{SL}_{2}\left(F_{\infty}\right)$ with $i(-1)=\left(1_{2},-1\right)$ and $\pi(g, J)=g$. The center of SL_{2} is given by $\mu_{2} \times \mu_{2}\left(F_{\infty}\right)$. See $\S 4.3 .3$.
\S 7. Half integral weight for $F=\mathbb{Q}$. Let $\hat{\Gamma}$ is an open subgroup of $\hat{\Gamma}_{0}(4)$ and $\Gamma=\hat{\Gamma} \cap \mathrm{SL}_{2}(\mathbb{Z})$. A modular form $f \in$ $M_{\ell / 2}^{ \pm}(\Gamma, \psi)$ (which is a holomorphic or anti-holomorphic function on \mathfrak{H} depending on the sign) is called a modular form of weight $\frac{\ell}{2}$ for odd ℓ if it satisfies $f(\gamma(\tau))=\psi(\gamma) f(\tau) h\left(\gamma, \tau^{ \pm}\right)^{\ell}$ for $\gamma \in \Gamma$, $\tau^{+}=\tau$ and $\tau^{-}=\bar{\tau}$. Here $\psi: \mathbb{Z} / M \mathbb{Z} \rightarrow \mathbb{C}^{\times}$is a character and $\psi\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\psi(d)$. The modular form f has its Fourier expansion: $f(\tau)=\sum_{0 \leq n \in L}^{\infty} a_{n}(f) \mathbf{e}\left(\pm n \tau^{ \pm}\right)$for a lattice $L \subset \mathbb{Q}$. We extend ψ to a character of $\tilde{\psi}: \hat{\Gamma}_{0}(M) \rightarrow \mathbb{C}^{\times}$so that $\widetilde{\psi}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\psi\left(d_{N}\right)$. We lift f to $\mathbf{f}: \mathrm{SL}_{2}(\mathbb{Q}) \backslash \mathrm{Mp}(\mathbb{A}) \rightarrow \mathbb{C}$ by putting

$$
\mathbf{f}\left(\alpha\left(u, \zeta J\left(u_{\infty}, \tau\right)\right)\right)=\widetilde{\psi}(u) f\left(u_{\infty}(\sqrt{-1})\right) \zeta^{\ell} J\left(u_{\infty}, \pm i\right)^{-\ell}
$$

for $\alpha \in \mathrm{SL}_{2}(\mathbb{Q}) \subset \operatorname{Mp}(\mathbb{A})$ and $\left(u, J\left(u_{\infty}, \tau\right)\right) \in \hat{\Gamma} \cdot \mathrm{Mp}(\mathbb{R})\left(\zeta \in S^{1}\right.$ and $u_{\infty}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$) regarding $\widetilde{\mathrm{SL}}_{2}(\mathbb{R}) \subset \widetilde{\mathrm{SL}}_{2}(\mathbb{A}) \subset \mathrm{Mp}(\mathbb{A})$.
$\S 8$. Adelic half integral weight forms; §4.3.4. We define the space of adelic modular forms $M_{\ell / 2}^{ \pm}(\hat{\Gamma}, \psi)$ on $\hat{\Gamma}$ of weight $\ell / 2$ as a function $\mathrm{f}: \mathrm{Mp}(\mathbb{A}) \rightarrow \mathbb{C}$ satisfying the following conditions: (hi1) $\mathbf{f}\left(\xi g\left(u, \zeta J\left(u_{\infty}, \tau\right)\right)\right)=\widetilde{\psi}(u) \mathbf{f}(g) \zeta^{\ell} J\left(u_{\infty}, \pm i\right)^{-\ell}$ for all $\xi \in \mathrm{SL}_{2}(\mathbb{Q})$, $\zeta \in S^{1}$ and $u \in \hat{\Gamma} \cdot \mathrm{Mp}(\mathbb{R})$; (hi2) $f(\tau):=\mathrm{f}\left(g_{\tau}, \eta^{-1 / 4}\right) \eta^{-\ell / 4}$ for $g_{\tau}=\eta^{-1 / 2}\left(\begin{array}{ll}\eta \\ 0 & \xi \\ 1\end{array}\right)$ is holomorphic or anti-holomorphic according to the sign; (hi3) $f(\tau)$ is finite at cusps.

We define similarly the space $S_{\ell / 2}^{ \pm}(\hat{\Gamma}, \psi)$ of cusp forms, requiring $a_{0}\left(\left.f\right|_{\ell / 2} \alpha\right)=0$ for $\alpha \in \mathrm{SL}_{2}(\mathbb{Z})$, where $\left.f\right|_{\ell / 2} \alpha(\tau)=f(\alpha(\tau)) h\left(\alpha, \tau^{ \pm}\right)^{-\ell}$ taking a square root holomorphic function $\tau \mapsto h(\alpha, \tau)$ of $j(\alpha, \tau)$ suitably.
§9. Fourier expansion; Section 4.6. We extend ψ to a character of $\psi^{*}: \mathbb{A}^{\times} / \mathbb{Q}^{\times} \rightarrow \mathbb{C}^{\times}$so that $\psi^{*}\left(\varpi_{l}\right)=\psi(l)$ for each prime l prime to M and then ψ^{*} to $\hat{\Gamma}_{0}(M)$ so that $\tilde{\psi}(u)=\psi(u)^{-1}$. Define an idele character $\psi: \mathbb{A}^{\times} / \mathbb{Q}^{\times} \rightarrow \mathbb{C}^{\times}$by $\psi(a)=\psi^{*}(a)|a|_{\mathbb{A}}^{-\ell / 2}$. Thus for $g=\left(\begin{array}{ll}a & b \\ 0 & a^{-1}\end{array}\right) \in B(\widehat{\mathbb{Z}}) B(\mathbb{R}) \subset \widetilde{S L}_{2}(\mathbb{A})$, we find for $\tau=$ $a_{\infty}\left(a_{\infty} i+b_{\infty}\right)$ and a lattice $L \subset \mathbb{Q}$

$$
\mathbf{f}(g)=\psi^{-1}(a) \sum_{0 \leq n \in L} a_{n}(f) \exp \left(-2 \pi n a_{\infty}^{2}\right) \mathbf{e}\left(\pm n a_{\infty} b_{\infty}\right)
$$

Let $v(u)=\left(\begin{array}{cc}1 & u \\ 0 & 1\end{array}\right) \in U(\mathbb{A})$. Then we consider for a general $b=$ $v(u) \operatorname{diag}\left[a, a^{-1}\right] \in B(\mathbb{A})$. Write $\mathbf{f}(a, u):=\mathbf{f}(b)$. Then $\mathbf{f}(a, u+\alpha)=$ $\mathbf{f}(v(\alpha) b)=\mathbf{f}(b)$ if $\alpha \in \mathbb{Q}$. Thus $\mathbf{f}(a, u)$ has a Fourier expansion over $u \in \mathbb{A}$ of the form
$\mathrm{f}(a, u)=\sum_{\alpha \in \mathbb{Q}} a_{\mathrm{f}}(\alpha ; a) \mathrm{e}(\alpha u)$ with $a_{\mathrm{f}}(\alpha ; a)=\int_{\mathbb{A} / \mathbb{Q}} \mathrm{f}(a, u) \mathrm{e}_{\mathbb{A}}(-\alpha u) d u$
for the volume one Haar measure $d u$ of \mathbb{A} / \mathbb{Q}.

§10. Properties of expansion coefficients. By

$$
\operatorname{diag}\left[\beta, \beta^{-1}\right] v(u) \operatorname{diag}\left[a, a^{-1}\right]=v\left(\beta^{2} u\right) \operatorname{diag}\left[\beta a,(\beta a)^{-1}\right]
$$

for $\beta \in \mathbb{Q}$, we have

$$
\sum_{\alpha \in \mathbb{Q}} a_{\mathbf{f}}(\alpha ; a) \mathbf{e}(\alpha u)=\mathbf{f}(a, u)=\mathbf{f}\left(\beta a, \beta^{2} u\right)=\sum_{\alpha \in \mathbb{Q}} a_{\mathbf{f}}(\alpha ; \beta a) \mathbf{e}\left(\alpha \beta^{2} u\right)
$$

By the uniqueness of the expansion,

$$
\begin{gather*}
a_{\mathbf{f}}(\alpha ; a)=a_{\mathbf{f}}\left(\alpha \beta^{-2}, \beta a\right) \tag{*}\\
a_{\mathrm{f}}(\alpha ; a)= \begin{cases}\psi^{-1}(a) a_{\alpha}(f) \exp \left(-2 \pi \alpha a_{\infty}^{2}\right) & \text { if } 0 \leq \alpha \in L, \\
0 & \text { otherwise. }\end{cases}
\end{gather*}
$$

For $t \in \widehat{\mathbb{Z}}^{\times}$, we get

$$
a_{\mathrm{f}}(\alpha ; a t)=\psi^{-1}(t) a_{\mathrm{f}}(\alpha, a),
$$

since $v(u) \operatorname{diag}\left[a, a^{-1}\right] \operatorname{diag}\left[t, t^{-1}\right]=v(u) \operatorname{diag}\left[t a,(t a)^{-1}\right]$.
§11. Normalization. Define for $a \in \mathbb{A}^{\times}$, if $\alpha a^{2} \in L\left(U_{\widehat{\Gamma}} \mathbb{R}_{+}\right)^{2} \cap$ $\left(\mathbb{A}^{\times} \sqcup\{0\}\right)$,
(**) $\quad \mathrm{a}_{\mathbf{f}}\left(\alpha a^{2}\right):=\psi(a) a_{\mathrm{f}}(\alpha, a) \exp \left(2 \pi \alpha_{\infty} a_{\infty}^{2}\right)=a_{\alpha}(f)$,
and otherwise, put $\mathbf{a}_{\mathbf{f}}\left(\alpha a^{2}\right)=0$. If $\alpha a^{2}\left(U_{\widehat{r}}\right)^{2}=\xi b^{2}\left(U_{\widehat{r}}\right)^{2}(\xi \in \mathbb{Q})$, then writing $\alpha a^{2} a^{2}=\xi b^{2} t^{2}$ for $t \in U_{\widehat{\Gamma}}, \xi^{-1} \alpha$ is locally square; so, $\xi=\alpha \beta^{-2}$ with $b=\beta a$, and we have

$$
\mathbf{a}_{\mathbf{f}}\left(\alpha a^{2}\right):=\psi(a) a_{\mathbf{f}}(\alpha, a) \exp \left(2 \pi \alpha_{\infty} a_{\infty}^{2}\right)
$$

$$
\stackrel{(*)}{=} \psi(\beta a) a_{\mathbf{f}}\left(\alpha \beta^{-2}, \beta a\right) \exp \left(2 \pi\left(\alpha_{\infty} \beta_{\infty}^{-2}\right)(\beta a)_{\infty}^{2}\right)=\mathbf{a}_{\mathbf{f}}\left(\xi b^{2}\right)
$$

since $\psi(\beta a)=\psi(a)$. This shows that $\mathbf{a}_{\mathbf{f}}(x)$ is well defined independent of the choice of the expression $x=\alpha a^{2}$ with $a \in \mathbb{A}^{\times}$and $\alpha \in \mathbb{Q}^{\times}$.

By (**), we have

$$
\mathbf{a}_{\mathbf{f}}(x)=a_{\alpha}(f)=\mathbf{a}_{\mathbf{f}}\left(x t^{2}\right) \text { for } t \in \widehat{\mathbb{Z}}^{\times} \mathbb{R}^{\times} \text {and } x=\alpha a^{2}
$$

Since $\mathbf{a}_{\mathbf{f}}$ is supported over $\mathbb{A}_{+}^{\times}=\mathbb{A}^{(\infty)} \mathbb{R}_{+}^{\times}$, $\mathbf{a}_{\mathbf{f}}$ only depends on the finite part of the idele. Thus we can recover

$$
\mathbf{f}(a, u)=\psi(a)^{-1} \sum_{0<\alpha \in \mathbb{Q}} \mathbf{a}_{\mathbf{f}}\left(\alpha a^{2}\right) \exp \left(-2 \pi \alpha_{\infty} a_{\infty}^{2}\right) \mathbf{e}(\pm \alpha u)
$$

