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Lecture 3: We first reduce the proof of
∑∞

n=1(F ,G|T(n))qn ∈
S2(Γ0(M)) for a definite quaternion algebra D/Q with Φ in Choice

A to a duality theorem between Hecke algebra and the space of

cusp forms. In later lectures, we compute more generally the

q-expansion of the theta descent of a quaternionic automorphic

form via θ(φ) which coincides with
∑∞

n=1(F ,G|T(n))qn if φ = Φ

and E = Q × Q.



§0. Reduction to Duality Theorem. We recall M = ∂N0 with

(N0, ∂) = 1. Let hk(M ;A) be the subalgebra of EndC(Sk(Γ0(M)))

generated over A by Hecke operators T(n) and

Sk(Γ0(M);A) = Sk(Γ0(M)) ∩ A[[q]].

Recall

Duality theorem The space S := Sk(Γ0(M);A) is A-dual of

H := hk(M ;A) such that for a linear form ϕ : hk(M ;A) → A,
∞∑

n=1

ϕ(T(n))qn ∈ Sk(Γ0(M);A). Writing f =
∑∞

n=1 a(n, f)qn ∈ S,

the pairing 〈·, ·〉 : H × S → A is given by 〈h, f〉 = a(1, f |h).

By Jacquet-Langlands correspondence, S(A) = H0(ShR, A) is

a module over h2(M ;A). Then applying the above theorem

to the linear form h2(M ;A) 3 h 7→ (F ,G|h), we get the asser-

tion θ∗(Φ)(F ⊗ G) =
∑∞

n=1(F ,G|T(n))qn =
∑∞

n=1(F|T(n), G)qn ∈
S∂-new
2 (Γ0(M);A) for F ⊗ G ∈ S(A)⊗A S(A) in Theorem A.



§1. Hecke operators. Define a semi-group of the Eichler order

∆(M) :=
{(

a b
c d

)
∈ M2(Z)

∣∣∣c ≡ 0, (a, M) = 1 mod M, ad − bc > 0
}

.

Then Γ0(M)T (n)Γ0(M) = T (n) for

T (n) := {α ∈ ∆(M)| det(α) = n},
and we have a disjoint decomposition [IAT, 3.36]

(C1) T (n) =
⊔

0<a|n,ad=n,(a,M)=1
⊔d−1

b=0 Γ0(M)αa,d,b,

where αa,d,b :=
(

a b
0 d

)
. For f : H → C and α ∈ ∆(M), we define

f |kα := det(α)k−1f(α(τ))j(α, τ)−k for α =
(

a b
c d

)
, α(τ) = aτ+b

cτ+d
and j(α, τ) = cτ + d. Since j(αβ, τ) = j(α, β(τ))j(β, τ), we have

f |k(αβ) = (f |kα)|kβ. Then Sk(Γ0(M)) is made of holomorphic

functions with f |kγ = f for all γ ∈ Γ0(N) and converging ex-

pansion f |kα =
∑

0<n∈Q a(n, f |kα)qn for qn = exp(2π
√
−1τ) for

all α ∈ SL2(Z). We define f |T(n)(τ) :=
∑

a,d,b f |kαa,d,b as in the

above decomposition of T (n). Then T(n) ∈ EndC(Sk(Γ0(M)).



§2. Hecke relation and integrality. If f(τ) is given by Fourier

expansion f =
∑∞

n=1 a(n, f)qn, by computation, the decomposi-

tions of T (n) in §1 tells us the following relation

(R1) a(m,f |T(n)) =
∑

0<d|(m,n),(d,M)=1 dk−1a(mn
d2 , f).

Form this, it is clear T(m)T(n) = T(n)T(m) and for l|M , writing

U(l) for T(l), a(m, f |U(l)) = a(ml, f) and hence U(ln) = U(l)n.

Define Sk(Γ0(M);A) := Sk(Γ0(M)) ∩ A[[q]] for a subalgebra A ⊂
C. By Shimura [EMI,§4.1.5], Sk(Γ0(M);A) = S(Γ0(M); Z) ⊗Z A,

and hence it is legitimate to define

(I) Sk(Γ0(M);A) = S(Γ0(M); Z) ⊗Z A ⊂ A[[q]]

for any algebra A not necessarily in C. Then we define hk(M ;A) :=

A[T(n)|n = 1,2, . . . ] ⊂ EndA(Sk(Γ0(M);A)), which is a commu-

tative A-algebra.



§3. Duality Theorem. Define the pairing between hk = hk(M ;A)

and Sk = Sk(Γ0(M);A) by 〈h, f〉 = a(1, f |h). Then the pairing is

perfect; i.e.,

HomA(hk, A) ∼= Sk and HomA(Sk, A) ∼= hk.

In particular, ϕ ∈ HomA(hk, A) is sent to
∑∞

n=1 ϕ(T(n))qn.

We prove this by steps.

Step 1: A = Q. Then by (I), it is valid for all Q-algebras

A. By (I), rankZ Sk(Γ0(M); Z) < ∞; so, rankZ hk(M ; Z) < ∞.

Tensoring Q, we need to show the pairing is non-degenerate. By

(R1), 〈T(n), f) = a(n, f). Thus if 〈T(n), f〉 = 0 for all n, the

coefficients a(n, f) = 0 for all n, which implies f = 0.

Pick h ∈ hk(M ; Q). Suppose 〈h, f〉 = 0 for all f ∈ Sk(Γ0(Q);Q).

By 〈hT(n), f〉 = a(1, f |hT(n)) = a(1, f |T(n)h) = 〈h, f |T(n)〉 = 0

and 〈hT(n), f〉 = 〈T(n), f |h〉 = a(n, f |h), we find f |h = 0 for all

f , and h = 0.



§4. Conclusion of the proof.

Step 2: A = Fp. By Step 1, dimFp
Sk(Γ0(M);Fp) < ∞; so,

dimFp
hk(M ;Fp) < ∞, and the same argument proves the non-

degeneracy.

Step 3: A = Z. Taking a Z-basis {hi}i of hk and {fj}j of Sk.

Then the matrix of the pairing S = (〈hi, fj〉)i,j satisfies det(S) 6≡
0 mod p for all prime p by Step 2. Therefore, det(S) = ±1,

finishing the proof for A = Z. The by (I), we get the result for

general A.

Final step. Pick ϕ ∈ HomA(hk, A). Then by the perfectness

of the paring, we find f ∈ Sk(Γ0(M);A) such that 〈h, f〉 = ϕ(h).

Since a(n, f) = 〈T(n), f〉 = ϕ(T(n)), we find f =
∑∞

n=1 ϕ(T(n))qn

as desired.



§5. Hecke operators on Sh = D×\D×
A. Recall the Eichler order

R of level M = ∂N0. If p - M , Rp = R ⊗Z Zp
∼= ∆(M)p for

the p-adic closure ∆(M)p of ∆(M) in M2(Zp). If p|N0, by the

condition (a, M) = 1, ∆(M)p ( Rp. Define

∆̂D(M) =
∏

p-∂

∆(M)ι
p ×

∏

p|∂
Rp,

where α + αι = Tr(α) and ααι = N(α). Put T̂ (n) = {α ∈
∆̂D(M)| det(α)Ẑ = nẐ}. Then R̂×T̂ (n)R̂× = T̂ (n) and similarly

to (C1), we have

(C2) T̂ (n) =
⊔

0<a|n,ad=n
⊔d−1

b=0 αd,a,bR̂
×.

We need to use right coset decomposition for adelic automor-

phic forms, since GL2(Q)\GL2(A)/Γ̂0(M)SO2(R) ∼= Γ0(M)\H by

x 7→ x∞(
√
−1) (assuming det(x∞) > 0); in particular, the right

multiplication xa = αxu by a for a ∈ ∆̂M2(Q) ∩ GL2(A
(∞)) and

α ∈ GL2(Q) is converted into the left multiplication α−1x∞(
√
−1)

on H.



§6. Hecke operators on S(A). For a function F : ShR =

D×\D×
A/R̂× → A, we define T(n)F(s) =

∑
a,d,b F(sαd,a,b). By

the above right coset description, we have T(n)F ∈ S(A). We

may regard T (n) as the characteristic function Tn of the open

set T (n) of D×
A(∞). For the Haar measure dµ with

∫
R̂× dµ = 1,

T(n)F(x) =
∫
T (n) F(xy)dµ(y) coincide with

Tn∗F(x) =
∫

D×
A(∞)

F(xy)Tn(y)dµ(y) =
∫

D×
A(∞)

F(y)Tn(yx−1)dµ(y).

Then the convolution product

Tn∗Tm(x) =

∫

D×
A(∞)

Tn(y)Tm(yx−1)dµ(y) =

∫

D×
A(∞)

Tn(yx)Tm(y)dµ(y)

actually gives the Hecke operator product T(n)T(m). We can

verify by computation

(R2) T(m)T(n) =
∑

0<d|(m,n),(d,M)=1〈d〉T(mn
d2 ),

where 〈d〉F(x) = F(xd).



§7. Jacquet–Langlands correspondence: Section 3.4. Here
is a version of the Jacquet–Langlands correspondence discussed
in §3.4.5:

We have an C-linear isomorphism JL : S(C) → S∂-new
2 (Γ0(M))

such that JL ◦ T(n) = T(n) ◦ JL.

This map is not canonical. By the theta correspondence, de-
fine Θ : S(A) ⊗ S(A) → S2(Γ0(M);A) by

Θ(F ⊗ G) = θ∗(Φ)(F ⊗ G) =
∞∑

n=1

(F , T(n)G)qn.

Let S∂-new
2 (Γ0(N);A) = S∂-new

2 (Γ0(M))∩S2(Γ0(M);A) for A ⊂ C
and S∂-new

2 (Γ0(M);A) := S∂-new
2 (Γ0(M); Z) ⊗Z A for general A.

The morphism Θ factors through S∂-new
2 (Γ0(M);A). Define

h(A) := A[T(n)|n = 1,2, . . . ] ⊂ EndA(S(A)). Then we have

Corollary. We have a canonical isomorphism h2(M ;A) � h(A)
sending T(n) to T(n) for all n given by h2(M ;A) 3 T(n) 7→
T(n)|S∂-new(Γ0(M);A) 7→ T(n) ∈ h(A).



§8. (F ,G|T(n)) as a period. Write T (n) =
⊔

a∈S(n) R̂×aR̂×. For

each coset [a] := R̂×aR̂×, choose a representative set U(n) for

R̂×/R̂×
a for R̂×

a := (aR̂×a−1 ∩ R̂×); so,

R̂× =
⊔

u∈U(n)

u(aR̂×a−1 ∩ R̂×).

Multiplying aR̂×a−1 from the right, we get

R̂×aR̂×a−1 =
⊔

u∈U(n)

uaR̂×a−1 ⇔ R̂×aR̂× =
⊔

u∈U(n)

uaR̂×.

We have two morphisms Sha := Sh
R̂×

a
= D×\D×

A/R̂×
a D×∞ ⇒ ShR

given by xR̂×
a 7→ xR̂× and xR̂×

a 7→ xaR̂×; so, Sha ↪→ Sh
R̂× × Sh

R̂×.

Let Shn :=
⋃

a∈S(n) Sha ⊂ Sh
R̂× × Sh

R̂×. One can verify

(F ,G|T(n)) =
∫

Shn

F(x)G(x)dµ′ =: (F ⊗ G, Shn) (homology pairing)

where dµ′ is the Dirac measure on Shn. Therefore

θ∗(Φ)(F ⊗ G) =
∞∑

n=1

(F ⊗ G, Shn)q
n.



§9. Indefinite case. Now we assume that D∞ = D ⊗Q R ∼=
M2(R) (an indefinite division quaternion algebra). We take the

Eichler order R of level M = ∂N0 as before, and identifying

D∞ = M2(R), we define ShR = D×
+\(D×

A(∞) × H), where D×
+ =

{α ∈ D×|N(α) > 0} which acts on the upper half complex plane

by linear fractional transformation.

Since D is division, ShR has the universal abelian surface A with

R-multiplication and a level structure. Let ω/ShR
be the Hodge

line bundle relative to π : A → ShR; so, ω⊗2 = det(π∗ΩA/ShR
),

and ω⊗2 ∼= Ω1
X0(M)/A

is (π∗ΩE/Y0(M))
⊗2 extended to X0(M) by

0 at cusps. We consider

Sk(ShR;A) := H0(ShR, ω⊗2
/A

), H1(ShR, A)

on which Hecke operator T(n) acts as correspondences. This

definition match with the one already given S2(Γ0(M);A) by the

q-expansion principle.



§10. Hecke algebras. We have S2(ShR;C) ⊕ S−
2 (ShR;C) ∼=

H1(ShR, C) for the complex conjugation S−
2 (ShR;C) of S2(ShR;C)

by associating the cohomology class [F] of ω(F) = 2πiF(τ)dτ

(or its complex conjugate). By the Hecke equivariance, we have

H(A) := A[T(n)|n = 1,2, . . . ] ⊂ EndA(S2(ShR;A)). We have the

Poincaré duality

(·, ·) : H1(ShR, C) × H1(ShR, C) → H2(ShR, C(1)) = C.

In the same manner as in §8, we define the correspondence Shn ⊂
ShR × ShR as a Shimura subcurve. Choosing a good Schwartz

function Φ∞ we will specify in a later lecture and the Bruhat func-

tion Φ(∞) in case A, in the same manner as in the definite case,

we have θ∗(Φ) : H1(ShR×ShR, A) = H1(ShR, A)⊗H1(ShR, A) →
S∂-new
2 (Γ0(M);A) with

θ∗(Φ)(F ⊗ G) =
∞∑

n=1

([F] ⊗ [G], Shn)q
n =

∞∑

n=1

([F], [G]|T(n))qn.

We will prove this for Shα for general Dσ in later lectures.



§11. Period relation. Complex conjugation c as an element

of Aut(ShR(C)) acts on H1(ShR, A) whose ±-eigenspace is de-

noted by H1(ShR, A)[±]. For a generator F (resp. F±) of

S2(ShR;W)[λ] and H1(ShR, A)[±, λ], define ω±(F) = ω(F) ±
ω(F) = ΩD

±F±. If θ∗(Φ)(f) = ΩD(F+ ⊗ F−) for ΩD ∈ C, again

we find ΩD + Ω+Ω− up to units in W by the R = T theorem.

Period Theorem: If Snew
2 (Γ0(M);W)[λ] = Wf ,

ΩD = Ω+Ω−
Faltings

= ΩD
+ΩD

−

up to W-units. This follows from the fact that Shimura’s abelian

variety Af in J0(M) associated to f and AF in the jacobian of

ShR associated to F have the same Hasse–Weil L-function for

H1, and hence by Faltings, they are isogenous over Q.


