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Lecture 3: We first reduce the proof of }°2 ,(F,G|T(n))q"™ €
S>(Fg(M)) for a definite quaternion algebra D @ with @ in Choice
A to a duality theorem between Hecke algebra and the space of
cusp forms. In later lectures, we compute more generally the
g-expansion of the theta descent of a quaternionic automorphic
form via 0(¢) which coincides with > ,(F,G|T(n))q" if ¢ = &P
and £E=Q x Q.



§0. Reduction to Duality Theorem. We recall M = 0Ng with
(Ng,0) = 1. Let h,(M; A) be the subalgebra of End¢(S,(Mg(M)))
generated over A by Hecke operators T'(n) and

Sp(Mo(M); A) = Si(Fo(M)) N Allg]].

Recall

Duality theorem The space S = S,.(I'g(M); A) is A-dual of
H := hi(M;A) such that for a linear form ¢ : h,(M;A) — A,

> @(T(n))g" | € Si(Mo(M); A). Writing f =352 a(n, f)q" € S,
n=1

the pairing (-,-) : H x S — A is given by {(h, f) = a(1, f|h).

By Jacquet-Langlands correspondence, S(A) = HO9(Shp, A) is
a module over ho(M;A). Then applying the above theorem
to the linear form ho(M; A) > h — (F,G|h), we get the asser-
tion 6.(®)(F ® G) = Y521 (F,GIT(n))q" = Y22, (FIT(n), G)q" €
SQ‘”QW(I‘O(M); A) for FRGe S(A) ®4 S(A) in Theorem A.



1. Hecke operators. Define a semi-group of the Eichler order
A(M) = {(g g) e MQ(Z)|C =0,(a, M) =1 mod M,ad— bc > o}.
Then Mg(M)T (n)Mg(M) =T (n) for

T(n) ={ae A(M)|det(a) = n},

and we have a disjoint decomposition [IAT, 3.36]

(C1) T (1) = Uo<afn.ad=n,(ain=1 U= To(M)ag q.

where oy 44 = <8 g) For f: 9 — C and a € A(M), we define

flra = det(a) 1 f(a(r))j(a, 7)7F for a = (g g), a(r) = 4t
and j(a,7) = cr 4+ d. Since j(aB,7) = j(a,3(7))j(8,7), we have
fle(aB) = (flga) |8 Then Sp(IMg(M)) is made of holomorphic
functions with f|,y = f for all v € g(N) and converging ex-
pansion f|ra = Yocnegaln, flpa)q™ for ¢" = exp(2my/—171) for
all @ € SLo(Z). We define f|T'(n)(7) := >Xg.ab flkQa,ap as in the
above decomposition of 7(n). Then T'(n) € Endg(S(Mo(M)).




§2. Hecke relation and integrality. If f(7) is given by Fourier
expansion f = > ; a(n, f)q", by computation, the decomposi-
tions of 7(n) in §1 tells us the following relation

(R1) a(m, fIT(n)) = Xo<d|(m,n),(d,Mm)=1 2 _1CL( > f)-

Form this, it is clear T(m)T'(n) = T (n)T(m) and for I|M, writing
U(l) for T(1), a(m, flU)) = a(ml, f) and hence U("™) = U()".

Define Sip(MTo(M); A) := Sip(IF'o(M)) N Al[q]] for a subalgebra A C
C. By Shimura [EMI,84.1.5], Sp.(ITo(M); A) = S(To(M);Z) @7 A
and hence it is legitimate to define

(1) Sk(Mo(M); A) = S(Mo(M); Z) ®7 A C Allgl]
for any algebra A not necessarily in C. Then we define hy(M; A) :=

A[T(n)ln =1,2,...] C End4(Si(IF'o(M); A)), which is a commu-
tative A-algebra.



§3. Duality Theorem. Define the pairing between hy, = hi(M; A)
and S, = S, (lT'g(M); A) by (h, f) =a(1, flh). Then the pairing is
perfect; i.e.,

Hom 4(h, A) = S, and Hom (S, A) = hy.
In particular, ¢ € Hom 4(hg, A) is sent to 302 ;1 o(T(n))q".

We prove this by steps.

Step 1: A = Q. Then by (I), it is valid for all Q-algebras
A. By (1), ranky Sp(I'g(M);Z) < oo; so, ranky hp(M;Z) < oo.
Tensoring QQ, we need to show the pairing is non-degenerate. By
(R1), (T'(n),f) = a(n,f). Thus if (T'(n), f) = 0 for all n, the
coefficients a(n, f) = 0 for all n, which implies f = 0.

Pick h € h,(M; Q). Suppose (h,f) = 0 for all f € S(IMNy(Q); Q).
By (hT(n), f) = a(1, f[RT(n)) = a(1, f[T(n)h) = (h, f|T(n)) =0
and (hT'(n), f) = (T'(n), flh) = a(n, flh), we find flh = 0 for all
f, and h = 0. [ ]



84. Conclusion of the proof.

Step 2: A = F,. By Step 1, dimeSk(l‘o(M);Fp) < o0, SO,
dime hi.(M;Fp) < co, and the same argument proves the non-
degeneracy.

Step 3: A = Z. Taking a Z-basis {h;}; of hy and {f;}; of 5.
Then the matrix of the pairing S = ((h;, f;)); ; satisfies det(S) #
O mod p for all prime p by Step 2. Therefore, det(S) = =1,
finishing the proof for A = 7Z. The by (I), we get the result for
general A.

Final step. Pick ¢ € Homy4(hg, A). Then by the perfectness
of the paring, we find f € S.(To(M); A) such that (h, f) = ¢(h).

Since a(n, f) = (T'(n), f) = e(T(n)), we find f =32, o(T(n))q"
as desired. [ ]



§5. Hecke operators on Sh = D*\Dj. Recall the Eichler order
R of level M = ONg. If pt M, Rp = R®y Zp = A(M), for
the p-adic closure A(M), of A(M) in Mx(Zp). If p|Ng, by the
condition (a,M) =1, A(M)p C Rp. Define

AP (M) =T A x T Ry,
pfo plo
where a 4+ a* = Tr(a) and act = N(a). Put 7(n) = {a €
AP (M)|det(a)Z = nZ}. Then R*T(n)R* = 7(n) and similarly
to (C1), we have

(CQ) j\i(’n) — |—|O<a]n,ad=n Ugl;(]j O‘d,a,bﬁ{x-

We need to use right coset decomposition for adelic automor-
phic forms, since GLo(Q)\GLo(A)/Tg(M)SO5(R) = Mg(M)\$H by
r — Too(v/—1) (assuming det(zs) > 0); in particular, the right
multiplication za = azu by a for a € AM2(Q) n GLQ(A(OO)) and
a € GL5(Q) is converted into the left multiplication a 1zso(v/=1)

on $).



6. Hecke operators on S(A). For a function F : Shp =
D*X\Dx/R* — A, we define T(n)F(s) = YqaqpF(sagap). By
the above right coset description, we have T(n)F € S(A). We
may regard 7 (n) as the characteristic function T, of the open
set 7(n) of Dg(oo). For the Haar measure dp with [5, dp = 1,
T(n)F(z) = Jr(n) F(zy)du(y) coincide with

T F@) = [ FaTu@)du@) = [ . FO)Tulya )duy).
A(c0) A(00)
Then the convolution product

. —1 _
T T () = /Dg<oo> Tn(y) Tn (ye™ ) dp(y) = /Dg<oo> T (y) Tin () dp(y)

actually gives the Hecke operator product T'(n)T(m). We can
verify by computation

(R2) T(m)T(n) = Xo<d|(m,n),(d,M)=1{DT(Z),

where (d)F(x) = F(xd).



7. Jacquet—Langlands correspondence: Section 3.4. Here
IS a version of the Jacquet—Langlands correspondence discussed
in §3.4.5:

We have an C-linear isomorphism JL : S(C) — S9"eW(Io(M))
such that JLoT(n) =T(n)o JL.

This map is not canonical. By the theta correspondence, de-
fine ® : S(A) ® S(A) — So>(Mg(M); A) by

©.@)
O(F®G) =0(P)F®G) = > (F,T(n)G)q".
n=1
Let sg NeW(Io(N); A) = S9- ”eW(I_O(M))ﬂSQ(I_O(M) A) for Ac C
and 52 NCW(Tog(M); A) = 52 r‘eW(I‘O(M) 7) @7 A for general A.
The morphism © factors through 52 NEW(Tro(M); A). Define
h(A) := A[T(n)ln =1,2,...] C End4(S(A)). Then we have

Corollary. We have a canonical isomorphism ho(M; A) — h(A)
sending T(n) to T(n) for all n given by ho(M;A) > T(n) —



§8. (F,G[T'(n)) as a period. Write 7(n) = aes(n)RxaRX. For
each coset [a] = RXaRX, choose a representative set U(n) for
R*/RY for RX := (aR*a~1 N RX); so,

RX = | | w(aR*a~1 N RX).
ueU(n)
Multiplying aR*a~1 from the right, we get
}A%Xaf%xa,_l = |_| uaf%xa,_l & RXaR* = |_| uaR*.
ueU(n) ueU(n)
We have two morphisms Shq 1= Shsx = D*\D/RXDX = Shp

given by zRX — xR* and xR} — zaR*; s0, Shq — Shy X Shz,.
Let Shn = Ugeg(n) Sha C Shg, X Shg,. One can verity

(F,G|T(n)) = /Sh F(x)G(x)dy' =: (F® G, Shy,) (homology pairing)

n

where du’ is the Dirac measure on Shy,. Therefore

(D) F2G) = > (F&U, Sha)d"
n=1



9. Indefinite case. Now we assume that Dy = D R R =
M»>(R) (an indefinite division quaternion algebra). We take the
Eichler order R of level M = ONg as before, and identifying

= M>(R), we define Shp = DX\(D Aoy X 9), where D} =
{a € D*|N(a) > 0} which acts on the upper half complex plane
by linear fractional transformation.

Since D is division, Shr has the universal abelian surface A with
R-multiplication and a level structure. Let w,g;,,, be the Hodge
line bundle relative to 7 : A — Shp; so, w®2 = det(mQ2a /5n,)
and w®?2 = Q}(O(M)/A is (W*QE/YO(M))@)Q extended to Xgp(M) by
O at cusps. We consider

Sk(Shg; A) 1= H(Shp,wiy), H'(Shg, A)

on which Hecke operator T'(n) acts as correspondences. This
definition match with the one already given S>(IMg(M); A) by the
g-expansion principle.



§10. Hecke algebras. We have S>(Shp;C) & S, (Shy;C) =
H1(Shp,C) for the complex conjugation S5 (Shp; C) of So(Shg,; C)
by associating the cohomology class [F] of w(F) = 2miF(7)dr
(or its complex conjugate). By the Hecke equivariance, we have
H(A) ;= A[T(n)ln =1,2,...] C End4(S>(Shg; A)). We have the
Poincaré duality

(-,-) : HY(Shp,C) x HY(Shp,C) — H?(Shp,C(1)) =C

In the same manner as in §8, we define the correspondence Shy,, C

Shr x Shr as a Shimura subcurve. Choosing a good Schwartz

function - we will specify in a later lecture and the Bruhat func-

tion ®() in case A, in the same manner as in the definite case,

we have 04(P) : H1(Shp x Shp, A) = H1(Shp, A) @ H(Shp, A) —
S9- S§TNEW(To(M); A) with

0« (P)F®G) = > ([FI®IG],Shn)q" = > ([F], [GlIT(n))q".
n=1 n=1

We will prove this for Shy for general D, in later lectures.



§11. Period relation. Complex conjugation ¢ as an element
of Aut(Shpr(C)) acts on H(Shp, A) whose +-eigenspace is de-
noted by H1(Shp, A)[£]. For a generator F (resp. Fi) of
So(Shp:W)[A] and H1(Shp, A)[+,\], define wi(F) = w(F) +
w(F) = QPFL. If 05()(f) = QP(FL e F_) for QP € C, again
we find QP = Q. Q_ up to units in W by the R =T theorem.

Period Theorem: If S5 (Io(M); W)[A] =

Faltlngs

QP =0, QP QP

up to W-units. This follows from the fact that Shimura’s abelian
variety Ay in Jg(M) associated to f and Az in the jacobian of
Shp associated to F have the same Hasse—Weil L-function for
Hl, and hence by Faltings, they are isogenous over Q.



