Hecke equivariance in the simplest case

Haruzo Hida Department of Mathematics, UCLA, Lecture no.3 at NCTS, April 2, 2024

Lecture 3: We first reduce the proof of $\sum_{n=1}^{\infty} (\mathcal{F}, \mathcal{G}|T(n))q^n \in S_2(\Gamma_0(M))$ for a definite quaternion algebra $D_{/\mathbb{Q}}$ with Φ in Choice A to a duality theorem between Hecke algebra and the space of cusp forms. In later lectures, we compute more generally the *q*-expansion of the theta descent of a quaternionic automorphic form via $\theta(\phi)$ which coincides with $\sum_{n=1}^{\infty} (\mathcal{F}, \mathcal{G}|T(n))q^n$ if $\phi = \Phi$ and $E = \mathbb{Q} \times \mathbb{Q}$.

§0. Reduction to Duality Theorem. We recall $M = \partial N_0$ with $(N_0, \partial) = 1$. Let $h_k(M; A)$ be the subalgebra of $\operatorname{End}_{\mathbb{C}}(S_k(\Gamma_0(M)))$ generated over A by Hecke operators T(n) and

 $S_k(\Gamma_0(M); A) = S_k(\Gamma_0(M)) \cap A[[q]].$

Recall

Duality theorem The space $S := S_k(\Gamma_0(M); A)$ is A-dual of $H := h_k(M; A)$ such that for a linear form $\varphi : h_k(M; A) \to A$, $\sum_{n=1}^{\infty} \varphi(T(n))q^n \in S_k(\Gamma_0(M); A)$. Writing $f = \sum_{n=1}^{\infty} a(n, f)q^n \in S$, the pairing $\langle \cdot, \cdot \rangle : H \times S \to A$ is given by $\langle h, f \rangle = a(1, f|h)$.

By Jacquet-Langlands correspondence, $S(A) = H^0(Sh_R, A)$ is a module over $h_2(M; A)$. Then applying the above theorem to the linear form $h_2(M; A) \ni h \mapsto (\mathcal{F}, \mathcal{G}|h)$, we get the assertion $\theta_*(\Phi)(\mathcal{F} \otimes \mathcal{G}) = \sum_{n=1}^{\infty} (\mathcal{F}, \mathcal{G}|T(n))q^n = \sum_{n=1}^{\infty} (\mathcal{F}|T(n), \mathcal{G})q^n \in$ $S_2^{\partial-\text{new}}(\Gamma_0(M); A)$ for $\mathcal{F} \otimes \mathcal{G} \in S(A) \otimes_A S(A)$ in Theorem A. $\S1$. Hecke operators. Define a semi-group of the Eichler order

 $\Delta(M) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}) \middle| c \equiv 0, (a, M) = 1 \mod M, ad - bc > 0 \right\}.$ Then $\Gamma_0(M)\mathcal{T}(n)\Gamma_0(M) = \mathcal{T}(n)$ for

$$\mathcal{T}(n) := \{ \alpha \in \Delta(M) | \det(\alpha) = n \},\$$

and we have a disjoint decomposition [IAT, 3.36]

(C1)
$$\mathcal{T}(n) = \bigsqcup_{0 < a \mid n, ad = n, (a, M) = 1} \bigsqcup_{b=0}^{d-1} \Gamma_0(M) \alpha_{a, d, b},$$

where $\alpha_{a,d,b} := \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$. For $f : \mathfrak{H} \to \mathbb{C}$ and $\alpha \in \Delta(M)$, we define $f|_k \alpha := \det(\alpha)^{k-1} f(\alpha(\tau)) j(\alpha, \tau)^{-k}$ for $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\alpha(\tau) = \frac{a\tau+b}{c\tau+d}$ and $j(\alpha, \tau) = c\tau + d$. Since $j(\alpha\beta, \tau) = j(\alpha, \beta(\tau)) j(\beta, \tau)$, we have $f|_k(\alpha\beta) = (f|_k\alpha)|_k\beta$. Then $S_k(\Gamma_0(M))$ is made of holomorphic functions with $f|_k\gamma = f$ for all $\gamma \in \Gamma_0(N)$ and converging expansion $f|_k\alpha = \sum_{0 < n \in \mathbb{Q}} a(n, f|_k\alpha)q^n$ for $q^n = \exp(2\pi\sqrt{-1}\tau)$ for all $\alpha \in SL_2(\mathbb{Z})$. We define $f|_T(n)(\tau) := \sum_{a,d,b} f|_k\alpha_{a,d,b}$ as in the above decomposition of $\mathcal{T}(n)$. Then $T(n) \in \operatorname{End}_{\mathbb{C}}(S_k(\Gamma_0(M))$.

§2. Hecke relation and integrality. If $f(\tau)$ is given by Fourier expansion $f = \sum_{n=1}^{\infty} a(n, f)q^n$, by computation, the decompositions of $\mathcal{T}(n)$ in §1 tells us the following relation

(R1)
$$a(m, f|T(n)) = \sum_{0 < d \mid (m,n), (d,M) = 1} d^{k-1} a(\frac{mn}{d^2}, f).$$

Form this, it is clear T(m)T(n) = T(n)T(m) and for l|M, writing U(l) for T(l), a(m, f|U(l)) = a(ml, f) and hence $U(l^n) = U(l)^n$.

Define $S_k(\Gamma_0(M); A) := S_k(\Gamma_0(M)) \cap A[[q]]$ for a subalgebra $A \subset \mathbb{C}$. By Shimura [EMI,§4.1.5], $S_k(\Gamma_0(M); A) = S(\Gamma_0(M); \mathbb{Z}) \otimes_{\mathbb{Z}} A$, and hence it is legitimate to define

(I) $S_k(\Gamma_0(M); A) = S(\Gamma_0(M); \mathbb{Z}) \otimes_{\mathbb{Z}} A \subset A[[q]]$

for any algebra A not necessarily in \mathbb{C} . Then we define $h_k(M; A) := A[T(n)|n = 1, 2, ...] \subset \operatorname{End}_A(S_k(\Gamma_0(M); A))$, which is a commutative A-algebra.

§3. Duality Theorem. Define the pairing between $h_k = h_k(M; A)$ and $S_k = S_k(\Gamma_0(M); A)$ by $\langle h, f \rangle = a(1, f|h)$. Then the pairing is perfect; i.e.,

 $\operatorname{Hom}_A(h_k, A) \cong S_k$ and $\operatorname{Hom}_A(S_k, A) \cong h_k$.

In particular, $\varphi \in \text{Hom}_A(h_k, A)$ is sent to $\sum_{n=1}^{\infty} \varphi(T(n))q^n$.

We prove this by steps.

Step 1: $A = \mathbb{Q}$. Then by (I), it is valid for all \mathbb{Q} -algebras A. By (I), $\operatorname{rank}_{\mathbb{Z}} S_k(\Gamma_0(M);\mathbb{Z}) < \infty$; so, $\operatorname{rank}_{\mathbb{Z}} h_k(M;\mathbb{Z}) < \infty$. Tensoring \mathbb{Q} , we need to show the pairing is non-degenerate. By (R1), $\langle T(n), f \rangle = a(n, f)$. Thus if $\langle T(n), f \rangle = 0$ for all n, the coefficients a(n, f) = 0 for all n, which implies f = 0.

Pick $h \in h_k(M; \mathbb{Q})$. Suppose $\langle h, f \rangle = 0$ for all $f \in S_k(\Gamma_0(\mathbb{Q}); \mathbb{Q})$. By $\langle hT(n), f \rangle = a(1, f|hT(n)) = a(1, f|T(n)h) = \langle h, f|T(n) \rangle = 0$ and $\langle hT(n), f \rangle = \langle T(n), f|h \rangle = a(n, f|h)$, we find f|h = 0 for all f, and h = 0.

$\S4$. Conclusion of the proof.

Step 2: $A = \mathbb{F}_p$. By Step 1, $\dim_{\mathbb{F}_p} S_k(\Gamma_0(M); \mathbb{F}_p) < \infty$; so, $\dim_{\mathbb{F}_p} h_k(M; \mathbb{F}_p) < \infty$, and the same argument proves the non-degeneracy.

Step 3: $A = \mathbb{Z}$. Taking a \mathbb{Z} -basis $\{h_i\}_i$ of h_k and $\{f_j\}_j$ of S_k . Then the matrix of the pairing $S = (\langle h_i, f_j \rangle)_{i,j}$ satisfies $\det(S) \neq 0 \mod p$ for all prime p by Step 2. Therefore, $\det(S) = \pm 1$, finishing the proof for $A = \mathbb{Z}$. The by (I), we get the result for general A.

Final step. Pick $\varphi \in \text{Hom}_A(h_k, A)$. Then by the perfectness of the paring, we find $f \in S_k(\Gamma_0(M); A)$ such that $\langle h, f \rangle = \varphi(h)$. Since $a(n, f) = \langle T(n), f \rangle = \varphi(T(n))$, we find $f = \sum_{n=1}^{\infty} \varphi(T(n))q^n$ as desired. §5. Hecke operators on $Sh = D^{\times} \setminus D_{\mathbb{A}}^{\times}$. Recall the Eichler order R of level $M = \partial N_0$. If $p \nmid M$, $R_p = R \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong \Delta(M)_p$ for the p-adic closure $\Delta(M)_p$ of $\Delta(M)$ in $M_2(\mathbb{Z}_p)$. If $p|N_0$, by the condition (a, M) = 1, $\Delta(M)_p \subsetneq R_p$. Define

$$\widehat{\Delta}^{D}(M) = \prod_{p \nmid \partial} \Delta(M)_{p}^{\iota} \times \prod_{p \mid \partial} R_{p},$$

where $\alpha + \alpha^{\iota} = \text{Tr}(\alpha)$ and $\alpha \alpha^{\iota} = N(\alpha)$. Put $\hat{\mathcal{T}}(n) = \{\alpha \in \widehat{\Delta}^D(M) | \det(\alpha)\widehat{\mathbb{Z}} = n\widehat{\mathbb{Z}} \}$. Then $\widehat{R}^{\times}\widehat{\mathcal{T}}(n)\widehat{R}^{\times} = \widehat{\mathcal{T}}(n)$ and similarly to (C1), we have

(C2)
$$\widehat{\mathcal{T}}(n) = \bigsqcup_{0 < a \mid n, ad = n} \bigsqcup_{b=0}^{d-1} \alpha_{d,a,b} \widehat{R}^{\times}.$$

We need to use right coset decomposition for adelic automorphic forms, since $\operatorname{GL}_2(\mathbb{Q})\backslash\operatorname{GL}_2(\mathbb{A})/\widehat{\Gamma}_0(M)\operatorname{SO}_2(\mathbb{R}) \cong \Gamma_0(M)\backslash\mathfrak{H}$ by $x \mapsto x_{\infty}(\sqrt{-1})$ (assuming $\det(x_{\infty}) > 0$); in particular, the right multiplication $xa = \alpha xu$ by a for $a \in \widehat{\Delta}^{M_2(\mathbb{Q})} \cap \operatorname{GL}_2(\mathbb{A}^{(\infty)})$ and $\alpha \in \operatorname{GL}_2(\mathbb{Q})$ is converted into the left multiplication $\alpha^{-1}x_{\infty}(\sqrt{-1})$ on \mathfrak{H} .

§6. Hecke operators on S(A). For a function $\mathcal{F} : Sh_R = D^{\times} \setminus D_{\mathbb{A}}^{\times} / \widehat{R}^{\times} \to A$, we define $T(n)\mathcal{F}(s) = \sum_{a,d,b} \mathcal{F}(s\alpha_{d,a,b})$. By the above right coset description, we have $T(n)\mathcal{F} \in S(A)$. We may regard $\mathcal{T}(n)$ as the characteristic function T_n of the open set $\mathcal{T}(n)$ of $D_{\mathbb{A}}^{\times}(\infty)$. For the Haar measure $d\mu$ with $\int_{\widehat{R}^{\times}} d\mu = 1$, $T(n)\mathcal{F}(x) = \int_{\mathcal{T}(n)} \mathcal{F}(xy) d\mu(y)$ coincide with

$$T_n * \mathcal{F}(x) = \int_{D_{\mathbb{A}(\infty)}^{\times}} \mathcal{F}(xy) T_n(y) d\mu(y) = \int_{D_{\mathbb{A}(\infty)}^{\times}} \mathcal{F}(y) T_n(yx^{-1}) d\mu(y).$$

Then the convolution product

$$T_n * T_m(x) = \int_{D_{\mathbb{A}(\infty)}^{\times}} T_n(y) T_m(yx^{-1}) d\mu(y) = \int_{D_{\mathbb{A}(\infty)}^{\times}} T_n(yx) T_m(y) d\mu(y)$$

actually gives the Hecke operator product T(n)T(m). We can verify by computation

(R2) $T(m)T(n) = \sum_{0 < d \mid (m,n), (d,M) = 1} \langle d \rangle T(\frac{mn}{d^2}),$

where $\langle d \rangle \mathcal{F}(x) = \mathcal{F}(xd)$.

§7. Jacquet–Langlands correspondence: Section 3.4. Here is a version of the Jacquet–Langlands correspondence discussed in §3.4.5:

We have an \mathbb{C} -linear isomorphism $JL : S(\mathbb{C}) \to S_2^{\partial-new}(\Gamma_0(M))$ such that $JL \circ T(n) = T(n) \circ JL$.

This map is not canonical. By the theta correspondence, define $\Theta : S(A) \otimes S(A) \to S_2(\Gamma_0(M); A)$ by

$$\Theta(\mathcal{F}\otimes\mathcal{G})=\theta_*(\Phi)(\mathcal{F}\otimes\mathcal{G})=\sum_{n=1}^\infty(\mathcal{F},T(n)\mathcal{G})q^n.$$

Let $S_2^{\partial-\text{new}}(\Gamma_0(N); A) = S_2^{\partial-\text{new}}(\Gamma_0(M)) \cap S_2(\Gamma_0(M); A)$ for $A \subset \mathbb{C}$ and $S_2^{\partial-\text{new}}(\Gamma_0(M); A) := S_2^{\partial-\text{new}}(\Gamma_0(M); \mathbb{Z}) \otimes_{\mathbb{Z}} A$ for general A. The morphism Θ factors through $S_2^{\partial-\text{new}}(\Gamma_0(M); A)$. Define $h(A) := A[T(n)|n = 1, 2, ...] \subset \text{End}_A(S(A))$. Then we have

Corollary. We have a canonical isomorphism $h_2(M; A) \rightarrow h(A)$ sending T(n) to T(n) for all n given by $h_2(M; A) \ni T(n) \mapsto$ $T(n)|_{S^{\partial-new}(\Gamma_0(M);A)} \mapsto T(n) \in h(A).$ §8. $(\mathcal{F}, \mathcal{G}|T(n))$ as a period. Write $\mathcal{T}(n) = \bigsqcup_{a \in S(n)} \hat{R}^{\times} a \hat{R}^{\times}$. For each coset $[a] := \hat{R}^{\times} a \hat{R}^{\times}$, choose a representative set U(n) for $\hat{R}^{\times}/\hat{R}_{a}^{\times}$ for $\hat{R}_{a}^{\times} := (a \hat{R}^{\times} a^{-1} \cap \hat{R}^{\times})$; so,

$$\widehat{R}^{\times} = \bigsqcup_{u \in U(n)} u(a\widehat{R}^{\times}a^{-1} \cap \widehat{R}^{\times}).$$

Multiplying $a\widehat{R}^{\times}a^{-1}$ from the right, we get

$$\widehat{R}^{\times}a\widehat{R}^{\times}a^{-1} = \bigsqcup_{u \in U(n)} ua\widehat{R}^{\times}a^{-1} \Leftrightarrow \widehat{R}^{\times}a\widehat{R}^{\times} = \bigsqcup_{u \in U(n)} ua\widehat{R}^{\times}.$$

We have two morphisms $Sh_a := Sh_{\widehat{R}_a^{\times}} = D^{\times} \setminus D_{\mathbb{A}}^{\times} / \widehat{R}_a^{\times} D_{\infty}^{\times} \rightrightarrows Sh_R$ given by $x\widehat{R}_a^{\times} \mapsto x\widehat{R}^{\times}$ and $x\widehat{R}_a^{\times} \mapsto xa\widehat{R}^{\times}$; so, $Sh_a \hookrightarrow Sh_{\widehat{R}^{\times}} \times Sh_{\widehat{R}^{\times}}$. Let $Sh_n := \bigcup_{a \in S(n)} Sh_a \subset Sh_{\widehat{R}^{\times}} \times Sh_{\widehat{R}^{\times}}$. One can verify

 $(\mathcal{F},\mathcal{G}|T(n)) = \int_{Sh_n} \mathcal{F}(x)\mathcal{G}(x)d\mu' =: (\mathcal{F}\otimes\mathcal{G},Sh_n) \text{ (homology pairing)}$

where $d\mu'$ is the Dirac measure on Sh_n . Therefore

$$\theta_*(\Phi)(\mathcal{F}\otimes\mathcal{G})=\sum_{n=1}^\infty(\mathcal{F}\otimes\mathcal{G},Sh_n)q^n.$$

§9. Indefinite case. Now we assume that $D_{\infty} = D \otimes_{\mathbb{Q}} \mathbb{R} \cong M_2(\mathbb{R})$ (an indefinite division quaternion algebra). We take the Eichler order R of level $M = \partial N_0$ as before, and identifying $D_{\infty} = M_2(\mathbb{R})$, we define $Sh_R = D_+^{\times} \setminus (D_{\mathbb{A}(\infty)}^{\times} \times \mathfrak{H})$, where $D_+^{\times} = \{\alpha \in D^{\times} | N(\alpha) > 0\}$ which acts on the upper half complex plane by linear fractional transformation.

Since D is division, Sh_R has the universal abelian surface \mathbf{A} with R-multiplication and a level structure. Let $\omega_{/Sh_R}$ be the Hodge line bundle relative to $\pi : \mathbf{A} \to Sh_R$; so, $\omega^{\otimes 2} = \det(\pi_*\Omega_{\mathbf{A}/Sh_R})$, and $\omega^{\otimes 2} \cong \Omega^1_{X_0(M)/A}$ is $(\pi_*\Omega_{\mathbb{E}/Y_0(M)})^{\otimes 2}$ extended to $X_0(M)$ by 0 at cusps. We consider

$$S_k(Sh_R; A) := H^0(Sh_R, \omega_{/A}^{\otimes 2}), \ H^1(Sh_R, A)$$

on which Hecke operator T(n) acts as correspondences. This definition match with the one already given $S_2(\Gamma_0(M); A)$ by the q-expansion principle.

§10. Hecke algebras. We have $S_2(Sh_R; \mathbb{C}) \oplus S_2^-(Sh_R; \mathbb{C}) \cong H^1(Sh_R, \mathbb{C})$ for the complex conjugation $S_2^-(Sh_R; \mathbb{C})$ of $S_2(Sh_R; \mathbb{C})$ by associating the cohomology class $[\mathcal{F}]$ of $\omega(\mathcal{F}) = 2\pi i \mathcal{F}(\tau) d\tau$ (or its complex conjugate). By the Hecke equivariance, we have $H(A) := A[T(n)|n = 1, 2, ...] \subset \operatorname{End}_A(S_2(Sh_R; A))$. We have the Poincaré duality

$$(\cdot, \cdot)$$
: $H^1(Sh_R, \mathbb{C}) \times H^1(Sh_R, \mathbb{C}) \to H^2(Sh_R, \mathbb{C}(1)) = \mathbb{C}.$

In the same manner as in §8, we define the correspondence $Sh_n \subset Sh_R \times Sh_R$ as a Shimura subcurve. Choosing a good Schwartz function Φ_{∞} we will specify in a later lecture and the Bruhat function $\Phi^{(\infty)}$ in case A, in the same manner as in the definite case, we have $\theta_*(\Phi) : H^1(Sh_R \times Sh_R, A) = H^1(Sh_R, A) \otimes H^1(Sh_R, A) \to S_2^{\partial-\text{new}}(\Gamma_0(M); A)$ with

$$\theta_*(\Phi)(\mathcal{F}\otimes\mathcal{G})=\sum_{n=1}^\infty([\mathcal{F}]\otimes[\mathcal{G}],Sh_n)q^n=\sum_{n=1}^\infty([\mathcal{F}],[\mathcal{G}]|T(n))q^n.$$

We will prove this for Sh_{α} for general D_{σ} in later lectures.

§11. Period relation. Complex conjugation c as an element of Aut $(Sh_R(\mathbb{C}))$ acts on $H^1(Sh_R, A)$ whose \pm -eigenspace is denoted by $H^1(Sh_R, A)[\pm]$. For a generator \mathcal{F} (resp. \mathcal{F}_{\pm}) of $S_2(Sh_R; \mathcal{W})[\lambda]$ and $H^1(Sh_R, A)[\pm, \lambda]$, define $\omega_{\pm}(\mathcal{F}) = \omega(\mathcal{F}) \pm \overline{\omega(\mathcal{F})} = \Omega_{\pm}^D \mathcal{F}_{\pm}$. If $\theta^*(\Phi)(f) = \Omega^D(\mathcal{F}_+ \otimes \mathcal{F}_-)$ for $\Omega^D \in \mathbb{C}$, again we find $\Omega^D \doteq \Omega_+ \Omega_-$ up to units in \mathcal{W} by the $\mathcal{R} = \mathbb{T}$ theorem.

Period Theorem: If $S_2^{new}(\Gamma_0(M); W)[\lambda] = Wf$,

$$\Omega^D = \Omega_+ \Omega_- \stackrel{\text{Faltings}}{=} \Omega^D_+ \Omega^D_-$$

up to \mathcal{W} -units. This follows from the fact that Shimura's abelian variety A_f in $J_0(M)$ associated to f and $A_{\mathcal{F}}$ in the jacobian of Sh_R associated to \mathcal{F} have the same Hasse–Weil L-function for H^1 , and hence by Faltings, they are isogenous over \mathbb{Q} .