Hecke equivariance

in the simplest case

Haruzo Hida
Department of Mathematics, UCLA,
Lecture no. 3 at NCTS, April 2, 2024

Lecture 3: We first reduce the proof of $\sum_{n=1}^{\infty}(\mathcal{F}, \mathcal{G} \mid T(n)) q^{n} \in$ $S_{2}\left(\Gamma_{0}(M)\right)$ for a definite quaternion algebra $D_{/ \mathbb{Q}}$ with Φ in Choice A to a duality theorem between Hecke algebra and the space of cusp forms. In later lectures, we compute more generally the q-expansion of the theta descent of a quaternionic automorphic form via $\theta(\phi)$ which coincides with $\sum_{n=1}^{\infty}(\mathcal{F}, \mathcal{G} \mid T(n)) q^{n}$ if $\phi=\Phi$ and $E=\mathbb{Q} \times \mathbb{Q}$.
\S. Reduction to Duality Theorem. We recall $M=\partial N_{0}$ with $\left(N_{0}, \partial\right)=1$. Let $h_{k}(M ; A)$ be the subalgebra of End $\mathbb{C}\left(S_{k}\left(\Gamma_{0}(M)\right)\right)$ generated over A by Hecke operators $T(n)$ and

$$
S_{k}\left(\Gamma_{0}(M) ; A\right)=S_{k}\left(\Gamma_{0}(M)\right) \cap A[[q]]
$$

Recall

Duality theorem The space $S:=S_{k}\left(\Gamma_{0}(M) ; A\right)$ is A-dual of $H:=h_{k}(M ; A)$ such that for a linear form $\varphi: h_{k}(M ; A) \rightarrow A$, $\sum_{n=1}^{\infty} \varphi(T(n)) q^{n} \in S_{k}\left(\Gamma_{0}(M) ; A\right)$. Writing $f=\sum_{n=1}^{\infty} a(n, f) q^{n} \in S$, the pairing $\langle\cdot, \cdot\rangle: H \times S \rightarrow A$ is given by $\langle h, f\rangle=a(1, f \mid h)$.

By Jacquet-Langlands correspondence, $S(A)=H^{0}\left(S h_{R}, A\right)$ is a module over $h_{2}(M ; A)$. Then applying the above theorem to the linear form $h_{2}(M ; A) \ni h \mapsto(\mathcal{F}, \mathcal{G} \mid h)$, we get the assertion $\theta_{*}(\Phi)(\mathcal{F} \otimes \mathcal{G})=\sum_{n=1}^{\infty}(\mathcal{F}, \mathcal{G} \mid T(n)) q^{n}=\sum_{n=1}^{\infty}(\mathcal{F} \mid T(n), \mathcal{G}) q^{n} \in$ $S_{2}^{\partial \text {-new }}\left(\Gamma_{0}(M) ; A\right)$ for $\mathcal{F} \otimes \mathcal{G} \in S(A) \otimes_{A} S(A)$ in Theorem A.
§1. Hecke operators. Define a semi-group of the Eichler order $\Delta(M):=\left\{\left.\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0,(a, M)=1 \bmod M, a d-b c>0\right\}$. Then $\Gamma_{0}(M) \mathcal{T}(n) \Gamma_{0}(M)=\mathcal{T}(n)$ for

$$
\mathcal{T}(n):=\{\alpha \in \Delta(M) \mid \operatorname{det}(\alpha)=n\},
$$

and we have a disjoint decomposition [IAT, 3.36]

$$
\begin{equation*}
\mathcal{T}(n)=\bigsqcup_{0<a \mid n, a d=n,(a, M)=1} \bigsqcup_{b=0}^{d-1} \Gamma_{0}(M) \alpha_{a, d, b}, \tag{C1}
\end{equation*}
$$

where $\alpha_{a, d, b}:=\left(\begin{array}{ll}a & b \\ 0 & d\end{array}\right)$. For $f: \mathfrak{H} \rightarrow \mathbb{C}$ and $\alpha \in \Delta(M)$, we define $\left.f\right|_{k} \alpha:=\operatorname{det}(\alpha)^{k-1} f(\alpha(\tau)) j(\alpha, \tau)^{-k}$ for $\alpha=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right), \alpha(\tau)=\frac{a \tau+b}{c \tau+d}$ and $j(\alpha, \tau)=c \tau+d$. Since $j(\alpha \beta, \tau)=j(\alpha, \beta(\tau)) j(\beta, \tau)$, we have $\left.f\right|_{k}(\alpha \beta)=\left.\left(\left.f\right|_{k} \alpha\right)\right|_{k} \beta$. Then $S_{k}\left(\Gamma_{0}(M)\right)$ is made of holomorphic functions with $\left.f\right|_{k} \gamma=f$ for all $\gamma \in \Gamma_{0}(N)$ and converging expansion $\left.f\right|_{k} \alpha=\sum_{0<n \in \mathbb{Q}} a\left(n,\left.f\right|_{k} \alpha\right) q^{n}$ for $q^{n}=\exp (2 \pi \sqrt{-1} \tau)$ for all $\alpha \in \operatorname{SL}_{2}(\mathbb{Z})$. We define $f\left|T(n)(\tau):=\sum_{a, d, b} f\right|_{k} \alpha_{a, d, b}$ as in the above decomposition of $\mathcal{T}(n)$. Then $T(n) \in \operatorname{End}_{\mathbb{C}}\left(S_{k}\left(\Gamma_{0}(M)\right)\right.$.
§2. Hecke relation and integrality. If $f(\tau)$ is given by Fourier expansion $f=\sum_{n=1}^{\infty} a(n, f) q^{n}$, by computation, the decompositions of $\mathcal{T}(n)$ in $\S 1$ tells us the following relation

$$
\begin{equation*}
a(m, f \mid T(n))=\sum_{0<d \mid(m, n),(d, M)=1} d^{k-1} a\left(\frac{m n}{d^{2}}, f\right) . \tag{R1}
\end{equation*}
$$

Form this, it is clear $T(m) T(n)=T(n) T(m)$ and for $l \mid M$, writing $U(l)$ for $T(l), a(m, f \mid U(l))=a(m l, f)$ and hence $U\left(l^{n}\right)=U(l)^{n}$.

Define $S_{k}\left(\Gamma_{0}(M) ; A\right):=S_{k}\left(\Gamma_{0}(M)\right) \cap A[[q]]$ for a subalgebra $A \subset$ \mathbb{C}. By Shimura [EMI, §4.1.5], $S_{k}\left(\Gamma_{0}(M) ; A\right)=S\left(\Gamma_{0}(M) ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} A$, and hence it is legitimate to define

$$
\begin{equation*}
S_{k}\left(\Gamma_{0}(M) ; A\right)=S\left(\Gamma_{0}(M) ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} A \subset A[[q]] \tag{I}
\end{equation*}
$$

for any algebra A not necessarily in \mathbb{C}. Then we define $h_{k}(M ; A):=$ $A[T(n) \mid n=1,2, \ldots] \subset \operatorname{End}_{A}\left(S_{k}\left(\Gamma_{0}(M) ; A\right)\right)$, which is a commutative A-algebra.
§3. Duality Theorem. Define the pairing between $h_{k}=h_{k}(M ; A)$ and $S_{k}=S_{k}\left(\Gamma_{0}(M) ; A\right)$ by $\langle h, f\rangle=a(1, f \mid h)$. Then the pairing is perfect; i.e.,

$$
\operatorname{Hom}_{A}\left(h_{k}, A\right) \cong S_{k} \quad \text { and } \operatorname{Hom}_{A}\left(S_{k}, A\right) \cong h_{k}
$$

In particular, $\varphi \in \operatorname{Hom}_{A}\left(h_{k}, A\right)$ is sent to $\sum_{n=1}^{\infty} \varphi(T(n)) q^{n}$.
We prove this by steps.
Step 1: $A=\mathbb{Q}$. Then by (I), it is valid for all \mathbb{Q}-algebras A. By $(\mathrm{I}), \operatorname{rank}_{\mathbb{Z}} S_{k}\left(\Gamma_{0}(M) ; \mathbb{Z}\right)<\infty ;$ so, $\operatorname{rank}_{\mathbb{Z}} h_{k}(M ; \mathbb{Z})<\infty$. Tensoring \mathbb{Q}, we need to show the pairing is non-degenerate. By (R1), $\langle T(n), f)=a(n, f)$. Thus if $\langle T(n), f\rangle=0$ for all n, the coefficients $a(n, f)=0$ for all n, which implies $f=0$.

Pick $h \in h_{k}(M ; \mathbb{Q})$. Suppose $\langle h, f\rangle=0$ for all $f \in S_{k}\left(\Gamma_{0}(\mathbb{Q}) ; \mathbb{Q}\right)$. By $\langle h T(n), f\rangle=a(1, f \mid h T(n))=a(1, f \mid T(n) h)=\langle h, f \mid T(n)\rangle=0$ and $\langle h T(n), f\rangle=\langle T(n), f \mid h\rangle=a(n, f \mid h)$, we find $f \mid h=0$ for all f, and $h=0$.

§4. Conclusion of the proof.

Step 2: $A=\mathbb{F}_{p}$. By Step 1, $\operatorname{dim}_{\mathbb{F}_{p}} S_{k}\left(\Gamma_{0}(M) ; \mathbb{F}_{p}\right)<\infty$; so, $\operatorname{dim}_{\mathbb{F}_{p}} h_{k}\left(M ; \mathbb{F}_{p}\right)<\infty$, and the same argument proves the nondegeneracy.

Step 3: $A=\mathbb{Z}$. Taking a \mathbb{Z}-basis $\left\{h_{i}\right\}_{i}$ of h_{k} and $\left\{f_{j}\right\}_{j}$ of S_{k}. Then the matrix of the pairing $S=\left(\left\langle h_{i}, f_{j}\right\rangle\right)_{i, j}$ satisfies $\operatorname{det}(S) \not \equiv$ $0 \bmod p$ for all prime p by Step 2. Therefore, $\operatorname{det}(S)= \pm 1$, finishing the proof for $A=\mathbb{Z}$. The by (I), we get the result for general A.

Final step. Pick $\varphi \in \operatorname{Hom}_{A}\left(h_{k}, A\right)$. Then by the perfectness of the paring, we find $f \in S_{k}\left(\Gamma_{0}(M) ; A\right)$ such that $\langle h, f\rangle=\varphi(h)$. Since $a(n, f)=\langle T(n), f\rangle=\varphi(T(n))$, we find $f=\sum_{n=1}^{\infty} \varphi(T(n)) q^{n}$ as desired.
§5. Hecke operators on $S h=D^{\times} \backslash D_{\mathbb{A}}^{\times}$. Recall the Eichler order R of level $M=\partial N_{0}$. If $p \nmid M, R_{p}=R \otimes_{\mathbb{Z}} \mathbb{Z}_{p} \cong \Delta(M)_{p}$ for the p-adic closure $\Delta(M)_{p}$ of $\Delta(M)$ in $M_{2}\left(\mathbb{Z}_{p}\right)$. If $p \mid N_{0}$, by the condition $(a, M)=1, \Delta(M)_{p} \subsetneq R_{p}$. Define

$$
\widehat{\Delta}^{D}(M)=\prod_{p \nmid \partial} \Delta(M)_{p}^{\iota} \times \prod_{p \mid \partial} R_{p}
$$

where $\alpha+\alpha^{\iota}=\operatorname{Tr}(\alpha)$ and $\alpha \alpha^{\iota}=N(\alpha)$. Put $\hat{\mathcal{T}}(n)=\{\alpha \in$ $\left.\widehat{\Delta}^{D}(M) \mid \operatorname{det}(\alpha) \widehat{\mathbb{Z}}=n \widehat{\mathbb{Z}}\right\}$. Then $\widehat{R}^{\times} \widehat{\mathcal{T}}(n) \widehat{R}^{\times}=\widehat{\mathcal{T}}(n)$ and similarly to (C1), we have

$$
\begin{equation*}
\widehat{\mathcal{T}}(n)=\bigsqcup_{0<a \mid n, a d=n} \bigsqcup_{b=0}^{d-1} \alpha_{d, a, b} \widehat{R}^{\times} . \tag{C2}
\end{equation*}
$$

We need to use right coset decomposition for adelic automorphic forms, since $\mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}(\mathbb{A}) / \hat{\Gamma}_{0}(M) \mathrm{SO}_{2}(\mathbb{R}) \cong \Gamma_{0}(M) \backslash \mathfrak{H}$ by $x \mapsto x_{\infty}(\sqrt{-1})$ (assuming $\left.\operatorname{det}\left(x_{\infty}\right)>0\right)$; in particular, the right multiplication $x a=\alpha x u$ by a for $a \in \widehat{\Delta}^{M_{2}(\mathbb{Q})} \cap \mathrm{GL}_{2}(\mathbb{A}(\infty))$ and $\alpha \in G L_{2}(\mathbb{Q})$ is converted into the left multiplication $\alpha^{-1} x_{\infty}(\sqrt{-1})$ on \mathfrak{H}.
§6. Hecke operators on $S(A)$. For a function $\mathcal{F}: S h_{R}=$ $D^{\times} \backslash D_{\mathbb{A}}^{\times} / \widehat{R}^{\times} \rightarrow A$, we define $T(n) \mathcal{F}(s)=\sum_{a, d, b} \mathcal{F}\left(s \alpha_{d, a, b}\right)$. By the above right coset description, we have $T(n) \mathcal{F} \in S(A)$. We may regard $\mathcal{T}(n)$ as the characteristic function T_{n} of the open set $\mathcal{T}(n)$ of $D_{\mathbb{A}}^{\times}(\infty)$. For the Haar measure $d \mu$ with $\int_{\widehat{R}^{\times}} d \mu=1$, $T(n) \mathcal{F}(x)=\int_{\mathcal{T}(n)} \mathcal{F}(x y) d \mu(y)$ coincide with

$$
T_{n} * \mathcal{F}(x)=\int_{D_{\mathbb{A}}^{\times}(\infty)} \mathcal{F}(x y) T_{n}(y) d \mu(y)=\int_{D_{\mathbb{A}}^{\times}(\infty)} \mathcal{F}(y) T_{n}\left(y x^{-1}\right) d \mu(y) .
$$

Then the convolution product
$T_{n} * T_{m}(x)=\int_{D_{\mathbb{A}}^{\times}(\infty)} T_{n}(y) T_{m}\left(y x^{-1}\right) d \mu(y)=\int_{D_{\mathbb{A}}^{\times}(\infty)} T_{n}(y x) T_{m}(y) d \mu(y)$
actually gives the Hecke operator product $T(n) T(m)$. We can verify by computation

$$
\begin{equation*}
T(m) T(n)=\sum_{0<d \mid(m, n),(d, M)=1}\langle d\rangle T\left(\frac{m n}{d^{2}}\right), \tag{R2}
\end{equation*}
$$

where $\langle d\rangle \mathcal{F}(x)=\mathcal{F}(x d)$.
§7. Jacquet-Langlands correspondence: Section 3.4. Here is a version of the Jacquet-Langlands correspondence discussed in §3.4.5:

We have an \mathbb{C}-linear isomorphism $J L: S(\mathbb{C}) \rightarrow S_{2}^{\partial-n e w}\left(\Gamma_{0}(M)\right)$ such that $J L \circ T(n)=T(n) \circ J L$.

This map is not canonical. By the theta correspondence, define $\Theta: S(A) \otimes S(A) \rightarrow S_{2}\left(\Gamma_{0}(M) ; A\right)$ by

$$
\Theta(\mathcal{F} \otimes \mathcal{G})=\theta_{*}(\Phi)(\mathcal{F} \otimes \mathcal{G})=\sum_{n=1}^{\infty}(\mathcal{F}, T(n) \mathcal{G}) q^{n}
$$

Let $S_{2}^{\partial \text {-new }}\left(\Gamma_{0}(N) ; A\right)=S_{2}^{\partial-\text { new }}\left(\Gamma_{0}(M)\right) \cap S_{2}\left(\Gamma_{0}(M) ; A\right)$ for $A \subset \mathbb{C}$ and $S_{2}^{\partial-\text { new }}\left(\Gamma_{0}(M) ; A\right):=S_{2}^{\partial-\text { new }}\left(\Gamma_{0}(M) ; \mathbb{Z}\right) \otimes_{\mathbb{Z}} A$ for general A. The morphism Θ factors through $S_{2}^{\partial \text {-new }}\left(\Gamma_{0}(M) ; A\right)$. Define $h(A):=A[T(n) \mid n=1,2, \ldots] \subset \operatorname{End}_{A}(S(A))$. Then we have

Corollary. We have a canonical isomorphism $h_{2}(M ; A) \rightarrow h(A)$ sending $T(n)$ to $T(n)$ for all n given by $h_{2}(M ; A) \ni T(n) \mapsto$ $\left.T(n)\right|_{S \text {-new }\left(\Gamma_{0}(M) ; A\right)} \mapsto T(n) \in h(A)$.
§8. $(\mathcal{F}, \mathcal{G} \mid T(n))$ as a period. Write $\mathcal{T}(n)=\bigsqcup_{a \in S(n)} \widehat{R}^{\times} a \widehat{R}^{\times}$. For each coset $[a]:=\widehat{R}^{\times} a \widehat{R}^{\times}$, choose a representative set $U(n)$ for $\widehat{R}^{\times} / \widehat{R}_{a}^{\times}$for $\widehat{R}_{a}^{\times}:=\left(a \widehat{R}^{\times} a^{-1} \cap \widehat{R}^{\times}\right)$; so,

$$
\widehat{R}^{\times}=\bigsqcup_{u \in U(n)} u\left(a \widehat{R}^{\times} a^{-1} \cap \widehat{R}^{\times}\right)
$$

Multiplying $a \widehat{R}^{\times} a^{-1}$ from the right, we get

$$
\widehat{R}^{\times} a \widehat{R}^{\times} a^{-1}=\bigsqcup_{u \in U(n)} u a \widehat{R}^{\times} a^{-1} \Leftrightarrow \widehat{R}^{\times} a \widehat{R}^{\times}=\bigsqcup_{u \in U(n)} u a \widehat{R}^{\times}
$$

We have two morphisms $S h_{a}:=S h_{\widehat{R}_{a}^{\times}}=D^{\times} \backslash D_{\mathbb{A}}^{\times} / \widehat{R}_{a}^{\times} D_{\infty}^{\times} \rightrightarrows S h_{R}$ given by $x \widehat{R}_{a}^{\times} \mapsto x \widehat{R}^{\times}$and $x \widehat{R}_{a}^{\times} \mapsto x a \widehat{R}^{\times}$; so, $S h_{a} \hookrightarrow S h_{\widehat{R}^{\times}} \times S h_{\widehat{R}^{\times}}$. Let $S h_{n}:=\bigcup_{a \in S(n)} S h_{a} \subset S h_{\widehat{R}^{\times}} \times S h_{\widehat{R}^{\times}}$. One can verify $(\mathcal{F}, \mathcal{G} \mid T(n))=\int_{S h_{n}} \mathcal{F}(x) \mathcal{G}(x) d \mu^{\prime}=:\left(\mathcal{F} \otimes \mathcal{G}, S h_{n}\right)$ (homology pairing) where $d \mu^{\prime}$ is the Dirac measure on $S h_{n}$. Therefore

$$
\theta_{*}(\Phi)(\mathcal{F} \otimes \mathcal{G})=\sum_{n=1}^{\infty}\left(\mathcal{F} \otimes \mathcal{G}, S h_{n}\right) q^{n}
$$

§9. Indefinite case. Now we assume that $D_{\infty}=D \otimes_{\mathbb{Q}} \mathbb{R} \cong$ $M_{2}(\mathbb{R})$ (an indefinite division quaternion algebra). We take the Eichler order R of level $M=\partial N_{0}$ as before, and identifying $D_{\infty}=M_{2}(\mathbb{R})$, we define $S h_{R}=D_{+}^{\times} \backslash\left(D_{\mathbb{A}}^{\times}(\infty) \times \mathfrak{H}\right)$, where $D_{+}^{\times}=$ $\left\{\alpha \in D^{\times} \mid N(\alpha)>0\right\}$ which acts on the upper half complex plane by linear fractional transformation.

Since D is division, $S h_{R}$ has the universal abelian surface A with R-multiplication and a level structure. Let $\omega_{/ S h_{R}}$ be the Hodge line bundle relative to $\pi: \mathbf{A} \rightarrow S h_{R}$; so, $\omega^{\otimes 2}=\operatorname{det}\left(\pi_{*} \Omega_{\mathbf{A} / S h_{R}}\right)$, and $\omega^{\otimes 2} \cong \Omega_{X_{0}(M) / A}^{1}$ is $\left(\pi_{*} \Omega_{\mathbb{E} / Y_{0}(M)}\right)^{\otimes 2}$ extended to $X_{0}(M)$ by 0 at cusps. We consider

$$
S_{k}\left(S h_{R} ; A\right):=H^{0}\left(S h_{R}, \omega_{/ A}^{\otimes 2}\right), H^{1}\left(S h_{R}, A\right)
$$

on which Hecke operator $T(n)$ acts as correspondences. This definition match with the one already given $S_{2}\left(\Gamma_{0}(M) ; A\right)$ by the q-expansion principle.
§10. Hecke algebras. We have $S_{2}\left(S h_{R} ; \mathbb{C}\right) \oplus S_{2}^{-}\left(S h_{R} ; \mathbb{C}\right) \cong$ $H^{1}\left(S h_{R}, \mathbb{C}\right)$ for the complex conjugation $S_{2}^{-}\left(S h_{R} ; \mathbb{C}\right)$ of $S_{2}\left(S h_{R} ; \mathbb{C}\right)$ by associating the cohomology class $[\mathcal{F}]$ of $\omega(\mathcal{F})=2 \pi i \mathcal{F}(\tau) d \tau$ (or its complex conjugate). By the Hecke equivariance, we have $H(A):=A[T(n) \mid n=1,2, \ldots] \subset \operatorname{End}_{A}\left(S_{2}\left(S h_{R} ; A\right)\right)$. We have the Poincaré duality

$$
(\cdot, \cdot): H^{1}\left(S h_{R}, \mathbb{C}\right) \times H^{1}\left(S h_{R}, \mathbb{C}\right) \rightarrow H^{2}\left(S h_{R}, \mathbb{C}(1)\right)=\mathbb{C} .
$$

In the same manner as in $\S 8$, we define the correspondence $S h_{n} \subset$ $S h_{R} \times S h_{R}$ as a Shimura subcurve. Choosing a good Schwartz function Φ_{∞} we will specify in a later lecture and the Bruhat function $\Phi(\infty)$ in case A , in the same manner as in the definite case, we have $\theta_{*}(\Phi): H^{1}\left(S h_{R} \times S h_{R}, A\right)=H^{1}\left(S h_{R}, A\right) \otimes H^{1}\left(S h_{R}, A\right) \rightarrow$ $S_{2}^{\partial \text {-new }}\left(\Gamma_{0}(M) ; A\right)$ with

$$
\theta_{*}(\Phi)(\mathcal{F} \otimes \mathcal{G})=\sum_{n=1}^{\infty}\left([\mathcal{F}] \otimes[\mathcal{G}], S h_{n}\right) q^{n}=\sum_{n=1}^{\infty}([\mathcal{F}],[\mathcal{G}] \mid T(n)) q^{n} .
$$

We will prove this for $S h_{\alpha}$ for general D_{σ} in later lectures.
§11. Period relation. Complex conjugation c as an element of $\operatorname{Aut}\left(S h_{R}(\mathbb{C})\right)$ acts on $H^{1}\left(S h_{R}, A\right)$ whose \pm-eigenspace is denoted by $H^{1}\left(S h_{R}, A\right)[\pm]$. For a generator \mathcal{F} (resp. $\mathcal{F}_{ \pm}$) of $S_{2}\left(S h_{R} ; \mathcal{W}\right)[\lambda]$ and $H^{1}\left(S h_{R}, A\right)[\pm, \lambda]$, define $\omega_{ \pm}(\mathcal{F})=\omega(\mathcal{F}) \pm$ $\overline{\omega(\mathcal{F})}=\Omega_{ \pm}^{D} \mathcal{F}_{ \pm}$. If $\theta^{*}(\Phi)(f)=\Omega^{D}\left(\mathcal{F}_{+} \otimes \mathcal{F}_{-}\right)$for $\Omega^{D} \in \mathbb{C}$, again we find $\Omega^{D} \doteqdot \Omega_{+} \Omega_{-}$up to units in \mathcal{W} by the $\mathcal{R}=\mathbb{T}$ theorem.

Period Theorem: If $S_{2}^{\text {new }}\left(\Gamma_{0}(M) ; \mathcal{W}\right)[\lambda]=\mathcal{W} f$,

$$
\Omega^{D}=\Omega_{+} \Omega_{-} \stackrel{\text { Faltings }}{=} \Omega_{+}^{D} \Omega_{-}^{D}
$$

up to \mathcal{W}-units. This follows from the fact that Shimura's abelian variety A_{f} in $J_{0}(M)$ associated to f and $A_{\mathcal{F}}$ in the jacobian of $S h_{R}$ associated to \mathcal{F} have the same Hasse-Weil L-function for H^{1}, and hence by Faltings, they are isogenous over \mathbb{Q}.

