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1. Lecture 1

1.1. Introduction. As everyone knows, Wiles (and Taylor) proved that, under some mild con-
ditions, if a p–adic Galois representation is congruent modulo p to that of an elliptic cusp form,
then the representation itself is associated to a cusp form. It has been reported that the Shimura-
Taniyama conjecture has been settled in this way, that is, every Q–rational elliptic curve appears as
a Q–rational factor of the jacobian variety of the modular curve Γ0(N)\H. Taniyama posed another
(but related) problem after stating his now famous problem which was one of the origins of the
conjecture:

Decompose modular jacobians into simple factors up to isogeny.

As often the case in his problems, the question is not very specific. My interpretation is that he
wanted to find a good explicit condition for an abelian variety to appear in a modular jacobian as
a simple factor (either over Q or over Q). 1

The cusp form associated to an elliptic curve over Q is invariant under Γ0(N), often called “Haupt”
type. For an elliptic cusp form f : H→ C on the upper half complex plane H, if each integral matrix(

a b
cN d

)
with ad−Nbc = 1 acts on f as

f

(
az + b

cNz + d

)
= χ(d)f(z)(cNz + d)k.

When χ is non-trivial, Hecke called such a f “of weight k” and with “Neben” type χ (modulo N).
I would like to study simple factors rather emphasizing cusp forms with non-trivial Neben type.

It is often the case, when the ‘Neben’ type is a quadratic character, that the compatible system
of Galois representations associated to a Hecke eigenform has a special member ρq for a prime q

such that ρ = (ρq mod q) has dihedral image, even if ρq is not an induced representation. Explicit
characterization of primes with this property would be an interesting question, because a 2-dim
induced Galois representation is always modular. In this first lecture, I would like to give a simple
constructive method, which actually gives all residually dihedral non-dihedral representations, and
its application to some modularity problems.

Let Σ be a finite set of primes including the fixed odd prime p and QΣ be the maximal exten-
sion unramified outside Σ and ∞. Let G = Gal(QΣ/Q). We pick an absolutely irreducible odd
representation ρ : G→ GL2(F) for a finite field F of characteristic p. All Galois representations are
supposed to be continuous, and all valuation rings will be finite flat over Zp. Always the fixed prime
p is supposed to be odd.

We consider the following conditions:

(Ordinarity) ρ|Dp
∼=
(

ε ∗
0 δ

)
with δ unramified and δ 6= ε on the decomposition group Dp at

p;
(Flatness) ρ restricted to the decomposition group at p is isomorphic to a Galois module
associated to a locally free group scheme over Zp of rank |F|2;
(Irreducibility) ρ restricted to Gal(QΣ/Q(µp)) remains absolutely irreducible;
(Modularity) ρ is associated to an elliptic cusp form.

Theorem 1.1 (Wiles-Taylor-Diamond). Suppose modularity and irreducibility and either ordinarity
or flatness of ρ. Let ρ : GΣ → GL2(O) be a Galois representation for a DVR O such that

(1) ρ ≡ ρ mod mO;
(2) det ρ = νk−1

p up to finite order characters for k ≥ 2, where νp is the p–adic cyclotomic
character;

(3) ρ|Dp
∼= ( ε ∗

0 δ ) for an unramified character δ ≡ δ mod mO when ρ is ordinary;
(4) When ρ is flat, k = 2 and det ρ|Ip

= νp|Ip
and ρ is associated to a p–divisible group over Zp

in the sense of Tate.

Then there exist a positive integer N and a Hecke eigenform f ∈ Sk(Γ1(N)) such that ρ ∼= ρf .

1An exact English translation of the two problems can be found in Shimura’s notes: “Yutaka Taniyama and his
time” in Bull. London Math. Soc. 21 (1989).
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This theorem was proven in the now famous paper of Wiles (Ann. of Math. 141 (1995)) as
Theorem 0.2, assuming a ring theoretic property of the Hecke algebra, which was in turn proven
by Taylor-Wiles in the paper following the above. A condition of ramification outside p imposed in
the work of Wiles was later removed by Diamond. The flatness condition is now eased by Breuil-
Conrad-Diamond-Taylor to potential flatness.

1.2. Residually induced representation. I always write A for a DVR. Let F be a quadratic
extension of Q, and fix a finite set S of rational primes including p. We look into a little smaller
G = Gal(F S/Q) and H = Gal(F S/F ). First I explain how to create a Galois representation
ρG : G→ GL2(B) (for a canonical B ⊃ A) residually dihedral from a Galois representation ρ = ρH :
H → GL2(A).

We write ∆ for G/H and fix an element δ ∈ G which generate ∆. Put V = A2, and let H act on
V via ρH . We may assume V = A[H ]v for ∃v ∈ V (replacing V by A[H ]v if necessary). We assume
that ρH to satisfy the following two conditions:

(I1) ρH is absolutely irreducible over the quotient field of A (and V = A[H ]v);
(I2) We have anA–linear endomorphism T : V → V such that T (hx) = δhδ−1T (x) and detT 6= 0,

where ∆ = 〈δ〉.
The existence of T assures us the existence of an extension ρG of ρH . Here is how to create an
universal extension ρG. Consider the induced module: W = A[G]⊗A[H] V , which is free of rank 4

over A. Define an A–linear endomorphism T̃ : W →W by T̃ (δi⊗v) = δi−1⊗T (v) for i ∈ Z/2Z. By

T̃ (hδi ⊗ v) = δi−1 ⊗ T (δ−ihδiv) = δi−1 ⊗ δ1−ihδi−1T (v) = hδi−1 ⊗ T (v) = hT̃ (δi ⊗ v),
T̃ commutes with A[H ] and obviously commutes with δ and hence commutes with A[G]. Thus
B = EndA[G](W ) is bigger than A.

Dividing T by a suitable element in A, we may assume that T = (T mod mA) for the maximal
ideal mA of A does not vanish. By definition, ρH(δ−2)T 2 commutes with ρH and hence is a scalar
t by Schur’s lemma. The scalar t is uniquely determined in O = (A − {0})/(A×)2, and we call the
class Ob(ρH) ∈ O the obstruction class of ρH . It is easy to see:

Proposition 1.2. We have

(1) B = A[
√
t] = A[X]/(X2 − t);

(2) W is free of rank 2 over B;
(3) If Ob(ρH) ∈ mA, then B is a local ring; so, write ρG : G → GL2(B) for the representation

realized on W ;
(4) If Ob(ρH) ∈ mA and ρ = (ρG mod mB) is absolutely irreducible, then there exists a character

ξ : H → (B/mB)× such that ρ ∼= IndG
H ξ.

All assertions can be easily proven. For example, (4) follows from the fact that T 6≡ 0 mod mA but
det T = 0. Thus we have an exact sequence of H–modules: 0→ Ker(T )→ V/mAV → Im(T ) → 0;
so, ρH is reducible with semi-simplification isomorphic to ξ ⊕ ξδ (ξδ(h) = ξ(δhδ)). �

The ring B has an involution σ :� B such that ρG ⊗ χ ∼= σ ◦ ρG and σ(
√
t) = −

√
t (χ : G/H ∼=

{±1}).
There is a converse of the above proposition: Start with a Galois representation ϕ : G→ GL2(O)

for a DVR O with irreducible ϕ = (ϕ mod mO) ∼= IndG
H ξ. We assume that ϕH = ϕ|H is absolutely

irreducible. Since, for χ : G/H ∼= {±1},
φ ∼= IndG

H η ∃η ⇐⇒ φ⊗ χ ∼= φ,

we can divide our consideration into two cases:

(a) There exists an involution σ of O such that σ ◦ ϕ ∼= ϕ ⊗ χ;
(b) No such involution.

We may assume that O is generated by Tr(ϕ) because ϕ(δ) has eigenvalues±1 and ϕ has Schur index
1. In Case (b), we regard Φ = ϕ⊕(ϕ⊗χ) as representations into GL2(B

′) for the subring B′ ⊂ O⊕O
generated over O by Tr(Φ(g)) for all g ∈ G. Then we define σ ∈ Aut(B′) by σ(x, y) = (y, x). In
Case (a), we write B′ for O and Φ for ϕ. We have
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Proposition 1.3. Let A0 = H0(〈σ〉, B′). Then there exist a DVR A unramified over A0 and
ρH : H → GL2(A) such that

(1) TrρH = TrϕH ;
(2) We have an isomorphism ι : B ↪→ A ⊗A0 B

′ such that ι ◦ ρG
∼= ϕ or Φ according as we are

in Case (a) or (b),

where ρG is the representation constructed in the previous proposition.

Since this is slightly technical, I will not prove this here. A proof is given in my new book [H00b]
Chapter V, and a summary on this result can be downloaded from my web site: www.math.ucla.edu/̃ hida
as a preprint: “Modular Galois Representations of Neben type”.

1.3. Modularity Problems. We start with an irreducible Galois representation ρH : H → GL2(A)
satisfying the following three conditions in addition to (I1-2):

(I3) We have Ob(ρH) ∈ mA;
(I4) ρG = ρG mod mB is absolutely irreducible;
(I5) det ρG(c) = −1 for complex conjugation c.

Combining the two proposition with the theorem of Wiles-Taylor-Diamond, we get

Theorem 1.4. Suppose the five conditions (I1-5) and that the representation ρG is either p–ordinary
with det ρG = νk−1

p up to finite order characters for k ≥ 2 or flat with det ρ|Ip
= νp|Ip

. Then for any
extension ϕ : G→ GL2(O) of ρH for a DVR O over A, if ϕ = (ϕ mod mO) is absolutely irreducible
on Gal(F S/Q(µp)), then there exist an integer N > 0 and a Hecke eigenform f : Sk(Γ1(N)) such
that ϕ ∼= ρf .

1.4. Elliptic Q–Curves. An elliptic curve E defined over a number field is called Q–curve if for
any σ ∈ Gal(Q/Q), we have an isogeny µσ : E → Eσ. By a result of Elkies, all elliptic Q-curves
have a model over a (2, 2, . . . , 2)–extension of Q.

Corollary 1.5. Let E be an elliptic curve defined over F with an isogeny θ : E → Eδ. Suppose that
End(E/Q

) = Z and that there exists a prime 5 ≤ p - D with the following two properties:

(1) E has semi-stable reduction at p;
(2) p| deg(θ) and the p–primary part of Ker(θ) is cyclic.

Then there exists a positive integer N such that E shows up as a factor over an abelian extension
of F of the jacobian of the modular curve X1(N).

Proof. We need to check the five conditions: (I1-5) and the assumptions of Theorem 1.4 for V (ϕ) =
Tp(E). I indicate how to create the linear operator T in (I2).

Assume that p divides deg(θ) and that p ≥ 5. We may identify Eδ[p∞] with E[p∞] by x 7→ δx.
We get a natural identification of V (ϕδ) and V (ϕ). Writing this identification as i : V (ϕ) ∼= V (ϕδ),
then i(h(x)) = δhδ−1i(x). The isogeny θ induces T = i ◦ θ : V (ϕ) → V (ϕ) such that T (hx) =
ε(h)δhδ−1T (x) for a character ε : H → {±1}. The character ε is trivial if and only if θ is defined
over F . We can show that ε = ηδ−1 for another character η of H . Then η ⊗ ϕ satisfies (I2). Thus
E is a factor of the jacobian over the splitting field of η. �

Here is how to find examples of Elliptic Q–curves: p–isogenies {θ : E → E′} between elliptic
curves are classified by the modular curve X0(p). For each point y ∈ X0(p)(Q) represented by θ,
Q(y) is characterized as the field of moduli of θ defined over Q: Q(y) is the fixed field of

G(θ) =
{
σ ∈ Gal(Q/Q)

∣∣θσ ∼= θ over Q
}
,

Take a point y with Q(y) = F . As is well known, we can choose a model of E defined over F .
For this model, we are in the situation of the corollary. Thus the main point is to find y ∈ X0(p)
quadratic over Q. The functorial correspondence θ 7→ tθ induces an involution τ of X0(p). We make
a quotient curve X∗(p) = X0(p)/〈τ 〉. If x ∈ X∗(p)(Q) and y ∈ X0(p) is over x, Q(y) is either Q or
a quadratic extension F .

Here is a list of primes p ≥ 5 for which X∗(p) ∼= P1
/Q

:

p = 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71.
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By a work of Mazur if p ≥ 11 in the above list, there are no non-CM rational points of X0(p)
(actually there is at most one non-cuspidal Q–rational point in these cases). Thus all points on
X0(p) over infinitely many (non-CM) Q–rational points of X∗(p) yield examples of type (1) or (2).

Even if the genus of X0(p) is 0, by Hilbert’s irreducibility theorem, for infinitely many x ∈ X∗(Q),
we find Q(y) quadratic over Q (for y ∈ X0(p) over x) as explicitly done by Shimura in his Annals
paper in 1972 for p = 5.
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2. Lecture 2

In this second lecture, we describe a theory of Ribet on abelian Q–varieties with real multiplication
(see [H] Section 8 for a generalization to Q–motives). In the third lecture, we generalize the technique
we employed in the first lecture to the present case and give a sufficient condition for the modularity
of such abelian varieties.

2.1. Abelian F–varieties with real multiplication. We consider abelian varieties X defined
over a number field F . We write End(X/F ) for the F –endomorphism algebra of X, and put

EndQ(X/F ) = End(X/F )⊗Z Q,

which is a finite dimensional semi-simple algebra over Q. For a subalgebra E ⊂ EndQ(X/F ), we

write EndQ
E(X/F ) for the E–linear endomorphism subalgebra of EndQ(X/F ). We call X has real

multiplication (an AVRM) if the following two conditions are satisfied:

(rm1) E ⊂ EndQ(X/Q
) for a totally real field E with [E : Q] = dimX;

(rm2) E = EndQ
E(X/Q).

An AVRM X/Q
is called an F–AVRM if we have an E–linear isogeny µσ : σ(X) → X for all

σ ∈ GF = Gal(Q/F ). Here E acts naturally on σ(X) through conjugation by σ. An F –AVRM X/Q

has a model X/K for an extension K/F if the following three conditions are satisfied:

• X is defined over K;
• X/K ×K Q is isogenous to X/Q;

• E ⊂ EndQ(X/K) ⊂ EndQ(X/Q
).

Since X/Q
is defined over a finitely generated subfield of Q, it has a model over a finite Galois

extension L over F . We may assume that µσ for σ ∈ Gal(L/F ) is defined over L. We define
a 2–cocycle c(σ, τ ) on GF by c(σ, τ ) = µσ

σµτµ
−1
στ which has values in E×. The cocycle factors

through GF/GL = Gal(L/F ), and therefore locally constant (that is, continuous under the discrete
topology on E×). We consider the cohomology class Ob

Q
(X) = [c] in the continuous cohomology

group H2(GF , E
×) under the discrete topology on E×.

Lemma 2.1. If Ob
Q
(X) = 0 in H2(GK , E

×) for an extension K/F , X has a model defined over
K.

Proof. Let L/K/F be an intermediate field. For a given projective variety Y/L, Y has a model if and
only if the Galois group Gal(L/K) acts on Y/K through automorphisms of the scheme Y/K compatible
with its action on Spec(L), which is in turn equivalent to have an isomorphism fσ : σ(Y ) ∼= Y for each
σ ∈ Gal(L/K) satisfying a cocycle relation fσ ◦ σfτ = fστ . We consider Y/L =

⊕
σ∈Gal(L/K) σ(X).

We define εσ : σ(Y ) ∼= Y by εσ(xτ) = (xστ ). By computation, we check the cocycle relation
εσ ◦ σετ = εστ . We find a model Y/K = ResL/KX. This model is characterized by the Frobenius
reciprocity law:

Hom(Z/K ,ResL/KX) ∼= Hom(Z/L, X/L).

From this, we have

EndQ
E(Y/K , Y/K) ∼= EndE(⊕σσ(X), X/L) ∼=

⊕

σ

Eµσ .

As an endomorphism of Y/L, we have µσ(⊕τxτσ) = ⊕τ
τµσ(xτσ), where xτ ∈ τ (X). From this,

we conclude µσµτ = c(σ, τ )µστ for the obstruction cocycle c. If c = 1, then σ 7→ µσ induces
E[Gal(L/K)] ∼= EndE(Y/K). In particular, we have the idempotent e = [L : K]−1

∑
σ σ. For

sufficiently large integer N , Ne induces an endomorphism of Y/K and Ne(Y ) gives a model of X
over K, since Ne(Y ) is isogenous to X over L.

If Ob
Q
(X) = 0 in H2(GK, E

×), enlarging L if necessary, we find a cochain α : Gal(L/K) → E×

such that c(σ, τ ) = α(σ)α(τ )α(στ )−1. Replacing µσ by α(σ)−1µσ, the obstruction cocycle becomes
trivial, and hence we find a model of X over K. �
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Proposition 2.2 (K. Ribet). Each F–AVRM has a model over a composite of (finitely many)
quadratic extensions of F .

An extension L/F is a composite of quadratic extensions of F if and only if Gal(L/F ) is killed
by 2, that is, a (2, 2, . . . , 2)–elementary group; so, we call such an extension a (2, 2, . . . , 2)–extension
in the rest of the lectures.

Proof. The rational Betti cohomology group H1(X,Q) is two dimensional over E. Take an E–
linear polarization λ : X → tX for the dual abelian variety tX. This induces the E–linear map of
H1(X,Q) toH1(X,Q) and hence induces by the Poincaré duality∧2

EH
1(X,Q) ∼= E. Conjugating the

polarization, we have the identity ∧2
EH

1(σ(X),Q) ∼= E. In this way, any homomorphism α : X →
σ(X) induces multiplication by deg(α) : ∧2H1(X,Q) → ∧2H1(σ(X),Q), which is multiplicative in
composition. By definition, deg(e) = e2 for e ∈ E, and we have

c(σ, τ )2 = deg(c(σ, τ )) =
deg(µσ) deg(µτ )

deg(µστ )
.

Thus ObQ(X) is killed by 2.
Look at the split exact sequence of the trivial GF –modules:

1→ µ2 → E× → P → 1.

We have
H2(GF , E

×) ∼= H2(GF , µ2) ×H2(GF , P ).

By a theorem of Mercuriev, cohomology classes of order 2 in the Brauer group Br(F ) ∼= H2(GF , µ2)
get trivialized over a quadratic extension (they are generated by the classes of quarternion algebras).
Thus we need to show that cohomology classes killed by 2 in H2(GF , P ) get trivialized over a
(2, 2, . . . , 2)–extension.

Since P is a Z–free module, we have a short exact sequence:

0→ Hom(GF , P )⊗ Z/2Z→ Hom(GF , P/2P )→ H2(GF , P )[2]→ 0,

where [2] indicates the kernel of the multiplication by 2. Since P is discrete and torsion-free,
Hom(GF , P ) = 0 and hence,

Hom(GF , P/2P ) ∼= H2(GF , P )[2],

which shows the desired result. �

Corollary 2.3. For an F–AVRM (X, µσ)/Q
, we can find a (2, 2, . . . , 2)–extension L/F over which

X has a model with all µσ rational over L.

Proof. Take a model of X over a (2, 2, . . . , 2)–extension K/F . Since H0(X,ΩX/K) is free of rank 1

over K⊗QE, we take a generator ω. For any δ ∈ GF , we have eδ ∈ (Q⊗E)× such that µ∗
δω = eδδ(ω).

We have for σ ∈ GK,
(σµδ)

∗ω = σ⊗1eδδ(ω).

Thus
σ⊗1eδδ(ω) = (σµδ)

∗ω = eδ(µ
−1
δ ◦ σµδ)

∗δ(ω)

and
e−1
δ (σ⊗1eδ) = µ−1

δ ◦ σµδ =: ζσ ∈ EndE(M/K) = E.

Since σ 7→ e−1
δ (σ ⊗ 1)(eδ) is a character of GK with values in E×, we see that ζσ is a root of unity

in E, that is {±1}. The map: σ 7→ σ−1eδ ∈ {±1} gives an isomorphism α of Gal(Kδ/K) into {±1}
for at most a quadratic extension Kδ/K, which is the minimal field of definition of µδ . We have
σµδ = α(σ)µδ and σeδ = α(σ)eδ .

Suppose that [Kδ : K] = 2 (otherwise there is nothing to prove). Since

(µδ ◦ δµδ)
∗ω = eδ

δeδω,

we see that a = eδ
δeδ ∈ E for any extension of δ to GF . From this, we have

δ2

eδ = δ(ae−1
δ ) = eδ,

and δ2 = 1 for all δ ∈ Gal(Kδ/K) inducing δ onK. Thus again Gal(Kδ/K) is a (2, . . . , 2)–group. �
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A similar argument shows, if an F –AVRM is defined over K

all elements in End(X/Q
) is defined over a (2, 2, . . . , 2)–extension of K.

2.2. Endomorphism algebra of an F–AVRM. In the rest of the lecture, the couple (X, µσ) is
an F –AVRM defined over a (2, 2, . . . , 2)–extension L/F . We suppose that the pair (X, µσ)/L cannot
be defined over a subfield of L. By changing X in its isogeny class, we assume that OE ⊂ End(X/Q

)

for the integer ring OE of E.
Let c : ∆ × ∆ → A be a 2–cocycle for ∆ = Gal(L/F ). We call the class [c] ∈ H2(∆, A)

commutative if c(σ, τ ) = c(τ, σ) for all σ, τ ∈ ∆. Since ∆ is an abelian group, any 2–coboundary
with values in a module with trivial action is commutative. Thus commutativity is a well defined
notion of cohomology class.

The map c 7→ b(σ, τ ) = c(σ, τ )− c(τ, σ) induces a surjective homomorphism:

θ : H2(∆, A)→ Hom(∧2∆, A),

and its kernel is made up of commutative classes (see Brown’s book GTM 87 page 127). Let c be
the obstruction cocycle of X/L. As we have already seen,

EndE(ResL/FX) =
⊕

δ∈∆

Eµδ

and µσµτ = c(σ, τ )µστ . Thus ObL(X) = [c] ∈ H2(∆, E×) is commutative if and only if EndE(ResL/FX)
is commutative.

For the obstruction cocycle c : ∆ × ∆ → E×, by the above fact, its projection to torsion-free
P = E×/{±1} is commutative. The non-commutative part concentrate on the Brauer part c±,
which is the projection to µ2.

Lemma 2.4. Suppose that ObL(X) ∈ H2(∆, E×) is non-commutative. Then there exist a finite

extension E′/E, a splitting ∆ = ∆′ ×∆′′ and an abelian variety Y/L′ for L′ = L∆′

such that

• Over a finite abelian extension of L, Y ∼= X ⊗OE
OE′ ; so, E′ = EndE′ (Y/Q

);

• EndE′(Y/L′) = E′ and µσ ⊗ 1 : σ(Y )→ Y is rational over L′ for all σ ∈ ∆′′;
• ObL′(Y ) is commutative.

We do not prove this technical lemma (see [H] Lemma 11). When X is an elliptic curve defined

over a quadratic extension L′/Q with an isogeny σ(X)
µ−→ X for the non-trivial automorphism σ of

L′, Ob(X) is non-commutative if µ is not defined over L′. As we have done in the previous lecture,
twisting by a character η of GL′, we can make Ob(X ⊗ η) commutative. The proof of the above
lemma is a generalization of this argument. By the above lemma, we may assume that ObL(X)
commutative without losing much generality. In the rest of my talk, I assume that

ObL(X) is commutative.

Proposition 2.5. Choose a base {δ1, . . . , δr} of ∆, and write ci = c(δi, δi) ∈ E. Then we have

EndQ
E((ResL/FX)/F ) ∼= E[X1, . . . , Xr]/(X

2
1 − c1, . . . , X2

r − cr)
via µδi

7→ √ci.
Proof. Write the algebra at right-hand-side as D. Since µσµσ = c(σ, σ)µσ2 , from σ2 = 1, we
conclude µ2

σ = c(σ, σ). By the commutativity of ObL(X), we have an E–algebra homomorphism

from D taking Xi to µδi
in EndQ

E((ResL/FX)/F ). Comparing the dimension over E, we conclude
the isomorphism. �

In the third lecture, we will prove that for each odd prime q dividing ci as above, the action on
X[q] on GL is reducible, giving rise to a character ξ : GL → F×

N(q)
. Often, for example, either if

X has good reduction at q (residual characteristic of q) or L is real, the GF acts on (ResL/FX)[p]
through an irreducible induced representation; so, we have the modularity of ResL/FX if F is totally
real under some assumption on X (or ξ).
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3. Lecture 3

In this third lecture, we interpret the determination of the endomorphism algebra of an F –AVRM
in terms of the Galois representations of the F –AVRM. Then we shall give a sufficient condition for
modularity when F = Q. At the end of this lecture, we see that all factors of modular jacobians are
made of Q–AVRM’s.

3.1. Extension of Galois representations. For each δ ∈ ∆ = Gal(L/F ), we fix an extension of δ

to Q, still written as δ ∈ GF . Let A be a discrete valuation ring finite flat over Zp. Let V = A2 be a

continuous A[H ]–module for H = Gal(Q/L) whose ramification is restricted to a finite set. Writing
ρH for the Galois representation on V , we suppose

(I0) V = V (ρH) is cyclic over A[H ];
(I1) ρH is absolutely irreducible over the quotient field of A;
(I2) We have an A–linear endomorphism Tδ : V → V such that

Tδ(hx) = δhδ−1Tδ(x) and detTδ 6= 0.

We then define Thδ = hTδ for h ∈ H . It is easy to check the property (I2) for Thδ and hδ in place
of Tδ and δ. Dividing Tδ by an element of A, we may assume that T δ = (Tδ mod mA) 6= 0 for the
maximal ideal mA of A.

We consider W = A[G]⊗A[H] V for G = Gal(Q/Q), which is again cyclic. We see from (I2),
(
ρH(δ−2)T 2

δ

)
(hx) = h

(
ρH(δ−2)T 2

δ

)
(x).

The operator T̃σ : W → W given by T̃σ(δ ⊗ v) = δσ−1 ⊗ Tσ(v) is firstly well-defined and secondly
commutes with the action of H . To see well-definedness, we have, for h ∈ H

(hσ)−1 ⊗ Thσ(v) = σ−1 ⊗ h−1Thσ = σ−1 ⊗ Tσ ,

because hTσ = Thσ . In particular, T̃σ only depends on the restriction of σ to L. The commutativity
of Tσ with the multiplication by g ∈ G from the left is obvious, because we have multiplied δ by σ
from the right. The commutativity of Tσ and Tτ is more subtle. Since TσTτ has the same effect as
Tστ , by Schur’s lemma, we get c(σ, τ ) ∈ A such that TσTτ = c(σ, τ )Tστ . If this obstruction cocycle

is commutative, the commutativity between T̃δ with δ ∈ G follows from the following computation:

T̃τ T̃σ(δ ⊗ v) = δσ−1τ−1 ⊗ TτTσ(v) = δ(τσ)−1 ⊗ TτTσ(v) = c(τ, σ)T̃τσ(v).

We quote the following fact:

Lemma 3.1. Suppose that ρH mod mA = ξ ⊕ η. For a subgroup ∆′ ⊂ ∆, ξ is invariant under ∆′

and Tσ mod mA (σ ∈ ∆′) takes isomorphically the ξ–eigenspace to ξ–eigenspace, then ξ extends to

a character of H ′ = Gal(Q/L∆′

) into F× for F = A/mA.

We would like to apply the above argument to the Galois representation arising from Q–AVRM
(X, µδ)δ∈∆ with a totally real field E = EndE(X/Q).

First we choose a prime ideal p of E with odd residual characteristic p, put A = OE,p. Take
an A–lattice V stable in the p–adic Tate module lim←−n

X[pn] stable under GL. Let S be the set of

rational primes at which the Galois representation on V ramifies. We add p to S; thus p ∈ S.

Suppose (I0-1) for this choice of H . The condition (I1) is automatic if M is associated to H1 of an
abelian variety, by the solution of the Tate conjecture for abelian varieties by Faltings. If a similar
conjecture holds for motives, (I1) follows from it. We can achieve (I0), replacing V by A[H ]v for
0 6= v ∈ V under (I1).

For each δ ∈ ∆, we then define Tδ(v) = µδ(δ(v)). The pair (V, Tδ) satisfies (I0-2). Multiplying

Tδ by scalar in Frac(A) = Ep, we may assume that T δ = Tδ mod mA is non-zero. The obstruction
cocycle c(σ, τ ) given by TσTτ = c(σ, τ )Tστ under this normalization is called the obstruction cocycle
normalized at p. Let

W = A[G]⊗A[H] V =
⊕

δ∈∆

δ ⊗ V.
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By (I0), W = A[G]v for v ∈ V . Write ρG(σ) for the action of σ ∈ G on W as an A–linear operator.

Choosing δ ∈ G inducing the original δ on L, we define T̃σ(δ ⊗ v) = δσ−1 ⊗ Tσ.

Theorem 3.2. Let the assumption and the notation be as above. Let δ1 , . . . , δr be a minimal set

of generators of ∆ = Gal(L/Q), and write cδ ∈ A for T̃ 2
δ (that is, cδ is the value of c(δ, δ) for the

obstruction cocycle normalized at p). In particular, we write cj for cδj
. Then we have

(1) B = EndA[G](W ) ∼= A[X1, . . . , Xr ]/(X
2
1 − c1, . . . , X2

r − cr) via T̃δj
↔ Xj .

(2) W is free of rank 2 over B; so, we write ρG : G→ GL2(B) for the Galois representation on
W .

(3) If cδ ∈ mA for one δ ∈ ∆, V/mAV has a unique one dimensional subspace stable under H
on which H acts by a character ξ. If ξ 6= ξδ , then ξ extends to a character ξ′ of a subgroup
H ′ ⊃ H of index two in G and for a unique maximal ideal m of B, W/mW is isomorphic

to the absolutely irreducible representation IndG
H′ ξ′.

Proof. The proof of (1) and (2) is similar (but more technical than) the case of EndQ
E(ResL/Q); so,

we omit it (see [H] Theorem 24). We only give a proof of (3). By the same argument in the first
lecture, cδ ∈ mA implies that the semi-simplification (V/mAV )ss of V/mAW is isomorphic to ξ⊕ ξδ.
Then we find a maximal ideal m ⊂ B such that (W/mW )ss ∼= ξ ⊕ ξδ.

Since ξ 6= ξδ , the stabilizer ∆′ of ξ in ∆ is of index 2 in ∆. If Tσ for σ ∈ ∆′ is nilpotent, it takes
ξδ–eigenspace to ξ–eigenspace (because it is upper triangular and nilpotent), which is impossible

by ξσ = ξ 6= ξδ. This implies that Tσ is invertible. Since Tσ for σ ∈ ∆′ brings ξ–eigenspace to

ξ–eigenspace, ξ extends to a character ξ′ : H ′ = Gal(Q/L′) → F× for L′ = L∆′

. Since ξ′
δ 6= ξ′,

W/mW ∼= IndG
H′ ξ′, which is absolutely irreducible. �

3.2. Modularity of Q–AVRM. Let (X, µσ)/L be a Q–AVRM with commutative ObL(X), where
L/Q is a composite of finitely many quadratic extension. Ribet proved that Serre’s conjecture on
the modularity of 2-dim mod p Galois representations imply the modularity of Y = ResL/QX, that
is, Y appears as factors of jacobian J1(N) for a suitable N . Here we try to deduce modularity, using
the known modularity of induced representations. For an elliptic Q–curve X, J. Ellenberg and C.
Skinner proved modularity assuming semi-stability of reduction of X at 3 (and some ramification
condition at 3 of L).

We first suppose that X is an elliptic Q–curve.

Corollary 3.3. Suppose that either ObL(X) vanishes in H2(∆,Q×/Z×) or does not vanish in

H2(∆,Q×/Z
[
1
6

]×
). Then if X is semi-stable over L, X is modular.

If we can ease irreducibility assumption of Wiles-Taylor-Diamond theorem to irreducibility over
Q, we can change 6 to 2 in the above statement, and the semi-stability assumption can be removed
if L is real. This seems likely by a work of Skinner-Wiles.

Proof. It is easy to see that if Ob(X) vanishes in Q×/Z×, then we can find µσ, which are isomor-
phisms (because µσ ◦ σµσ = ±µ1 = ±1). Then it is well known that X has a model over Q. By the
solution of the Shimura-Taniyama conjecture (by Breuil-Conrad-Diamond- Taylor), X is modular.

We suppose that Ob(X) is non-trivial in H2(∆,Q×/Z
[
1
6

]×
). Then there exists an odd prime

p ≥ 5 such that 5|cδ for an element δ ∈ ∆. Thus for the p–adic Tate module V , (V/pV )ss = ξ ⊕ ξδ.
By semi-stability, for a prime p|p, ξ is unramified at p and ξ ramifies. Then it is easy to verify the

irreducibility of IndG
H′ ξ′ over Q(µp) if p ≥ 5 (see [H] Proposition 10). Then Wiles-Taylor-Diamond

theorem shows the result. �

By the above proof, if X has semi-stable reduction at p as in the proof, it is modular.

For a general Q–AVRM, we have the following result:

Corollary 3.4. Suppose that Ob(X) does not vanish in H2(∆, E×
p /O

×
E,p) for a prime p of E with

residual characteristic p ≥ 5. Then if X has semi-stable or ordinary reduction at p over L, X is
modular.

Since the proof is similar to that of Corollary 3.3, we leave it to the audience.
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3.3. Factors of Modular Jacobians. Let f ∈ S2(Γ0(D), χ) be a Hecke eigenform for a prim-
itive quadratic character χ modulo D. Let Y be the abelian variety in J1(D) associated to f .

Writing F = Q(f) for the field generated by Hecke eigenvalues for f , we have F ⊂ EndQ(Y/Q).

Since [F : Q] = dimY , H0(Y,ΩY/Q) is one dimensional vector space over F . Since EndQ
F (Y/Q) ⊂

EndF (H0(X,ΩY/Q)), we see EndQ
F (Y/Q) = F . Since any θ ∈ EndQ(Y/Q) commutes with Frobe-

nius map φ on Y mod p, it commutes with T (p) = φ + χ(p)φ∗ by congruence relation. Thus

θ ∈ EndQ
F (X/Q) = F , and EndQ(X/Q) = F . We get

(3.1) Y is a Q–simple factor of J1(N).

Thus Taniyama’s problem on Q–simple factors (in our setting) is equivalent to:

Decompose the Hecke algebra of S2(Γ0(D), χ) over Q into simple factors,

where the Hecke algebra, denoted by hk(N, χ; Q), is the subalgebra of the linear endomorphism
algebra EndC(Sk(Γ0(N), χ)) generated over Q by Hecke operators T (n).

For simplicity, we assume that D is square-free (so, it is odd). Let L/Q be the (2, 2, . . . , 2)–

extension generated by
√
m∗ form∗ = (−1)(m−1)/2m for all factorsm ofD, and write ∆ = Gal(L/Q).

Let N (Γ0(D)) be the normalizer of Γ0(D) in GL+
2 (Q) = {γ ∈ GL2(Q)| det γ > 0}. Then ∆̂ =

Hom(∆, {±1}) is canonically isomorphic to N (Γ0(D))/Γ0(D)Q× by

N (Γ0(D))/Γ0(D) 3 γ 7→
(

Q[
√

det(γ)∗]
)
∈ ∆̂,

where γ is chosen so that det(γ) is a square-free integer (and det(γ)∗ is defined like m∗). Thus

∆̂ acts on S2(Γ0(D), χ) by f 7→ f |γ, and for n prime to D, γ ◦ T (n) = γ(n)T (n) ◦ γ, thus as an
endomorphism of the jacobian, we have γσ = γ(σ)γ. Let Z =

∑
α∈b∆ α(Y ) ⊂ J1(D). The following

fact is known:

Theorem 3.5. Suppose that EndQ
F (Y/Q

) = F . Then the subfield E generated by T (n) for n with

γ(n) = 1 for all γ ∈ ∆̂ is totally real, and there exists a Q–AVRM (X, µσ) defined over L such that
Z is isogenous over Q to ResL/QX. The Q–AVRM X has everywhere good reduction over L.

Proof. We give a sketch of a proof. This fact is basically due to Ribet and Shimura. We consider

the action of χ ∈ ∆̂, which is the action of
(

0 −1
D 0

)
and is the complex conjugation c on F . The

fixed subfield F+ of F by c is totally real, and Y = Y+ + c(Y+) for Y+ = (χ − 1)(Y ), which is an

Q–AVRM defined over Q[
√
D]. As we have already seen, all endomorphisms of Y+ is defined over

a (2, 2, . . . , 2)–extension of Q[
√
D]. If Y has good reduction at a prime p of L, End(Y ) ⊂ End(Y

mod p) is defined over an extension unramified at p; so, it is defined over (2, 2, . . . , 2)–extension

L′ ⊃ L of Q[
√
D] unramified everywhere over L, since Y has everywhere good reduction over L.

Such a field coincides with L if D is odd by the theory of ambiguous classes. Thus EndQ(Y/L) is a
product of mutually isogenous simple factors: Y ∼∏δ∈∆ δ(X), where ‘∼’ indicates an isogeny. By

congruence relation, every endomorphism of X/L commutes with E. Since H0(X,ΩX/L) is free of

rank 1 over L ⊗Q E, we conclude that EndQ
E(X/L) = EndQ(X/L) = E. Thus X is an absolutely

simple Q–AVRM. �

Let (X, µσ) be an absolutely simple Q–AVRM defined over a composite of quadratic exten-
sions L/Q unramified at 2. Suppose that ObL(X) is commutative and that X/L has everywhere

good reduction. For simplicity, we assume that F = EndQ(ResL/QX) is a field. There is a
unique maximally ramified quadratic extension L′/Q such that L/L′ is unramified outside ∞, and
ResL/L′X = ResOL/OL′

X has everywhere good reduction. The determinant character of l–adic
representation is then εν` for the cyclotomic character ν` and at most quadratic character ε. The
criterion of Neron-Ogg-Shafarevich tells us that ε is unramified outside ramification prime of L/Q
(for a prime l of F ). By a result of Ribet-Serre and Faltings, one expects that the Galois represen-
tation on l–torsion points X[l] contains SL2(OE/l) for almost all primes l; so, ε is unramified over
L′ and is really ramified at primes of ramification of ε. Thus ε is a quadratic character of L′/Q. It
is known that ε is an even character, and L′ is a real quadratic field.
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Conjecture 3.6. Let L/Q be a (2, 2, . . . , 2)–extension unramified at 2. Suppose that Q–AVRM X/L

with commutative ObL(X) has everywhere good reduction and that L is minimal among (2, 2, . . . , 2)–
extensions with such property. Then for the quadratic character χ ramified exactly at ramification
primes of L/Q, ResL/QX is Q–isogenous to a factor of J1(D) associated to a Hecke eigenform
f ∈ S2(Γ0(D), χ) for the conductor D of χ.
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4. Lecture 4

4.1. F–Modularity. Let F be a totally real field and ρ : Gal(Q/F ) → GL2(F) for a field F of
characteristic p > 2 be a representation unramified outside a finite set S of prime ideals prime to p
in F . Write Dq ⊂ Gal(Q/F ) for the decomposition group of a prime q of F . We assume

(r0) ρ is absolutely irreducible over F (µp);

(r1) ρ|Dq
∼=
(

εq ∗

0 δq

)
for all q ∈ S ∪ {p|p} with δq unramified;

(r2) εq 6= δq on the inertia group Iq;
(r3) ρ is optimally modular, that is, there exists a Hilbert modular form of optimal level (that

is, if ρ is flat at p, its level is the product C of conductors C(εq) for q ∈ S and if ρ is not
flat, its level is C

∏
p|p p).

Let O be a valuation ring finite flat over Zp. We take a p–ordinary deformation ρ : Gal(Q/F ) →
GL2(O) unramified outside S ∪{p|p}; thus we suppose the F –version of Ordinarity at p. We further
suppose that

(R1) ρ|Iq
∼=
(

εq ∗
0 δq

)
for the Teichmüller lifts δq and εq of δq and εp for all q ∈ S.

We have the following partial generalization of Wiles’ result in the Hilbert modular case:

Theorem 4.1 (K. Fujiwara). Assume that F/Q is unramified at p if ρ is flat. If det ρ is equal to
νk−1

p (k ≥ 2) up to finite order character for the p–adic cyclotomic character νp, then ρ is optimally
F–modular.

Here ρ is called F–modular, if it is associated to a Hilbert modular form f of optimal level (that
is, L(s, f) = L(s, ρ)). Actually Fujiwara’s result is more general including the multiple weight case
and the flat non-p-ordinary case.

Corollary 4.2. Let (X, µσ)/L be a F–AVRM with commutative ObL(X), where L/F is a composite
of finitely many quadratic extension. Suppose that L is unramified at p and X has everywhere good
reduction. If the image of Ob(X) in H2(Gal(L/F ), E×

p /O
×
p ) is non-trivial for p|p ≥ 5, then the

L–function of ResL/FX is associated to a Hilbert modular form for F .

4.2. Base-Change. We start with an eigenform f ∈ S2(Γ0(p), ψ) for an odd prime p. Define

λ(T (n)) ∈ Q by f |T (n) = λ(T (n))f , and write Q[λ] for the field generated by λ(T (n)) for all n. Pick
a prime q of Q[λ] and consider the q–adic Galois representation ρλ,q of f acting on two dimensional q–
adic vector space V . This Galois representation is unramified outside pq for the residual characteristic
q of q and has the characteristic polynomial det(1− ρλ,q(Frob`)|V I(`)X) independent of q as long as
` 6∈ q, where I(`) is the inertia group of the prime `.

The L–function L(s, λ) =
∑n

n=1 λ(T (n))n−s has Euler product expansion, which coincides with
the Euler product of the system ρλ = {ρλ,q}q of Galois representations:

L(s, ρλ) =
∏

`

det(1− ρλ,q(Frob`)|V I(`)`−s)−1,

where we always choose the prime q outside ` to have well-defined Euler factor det(1−ρλ,q(Frob`)|V I(`)`−s)−1.

For a given number field F ⊂ Q, we can think of the Euler product

L(s, ρλ|Gal(Q/F )) =
∏

l

det
(
1− ρλ,q(Frobl)|V I(l)N(l)−s

)−1
.

Here l runs over all prime ideals of F . Multiplying out, we can expand the Euler product L(s, ρλ|Gal(Q/F ))

into a Dirichlet series

L(s, ρλ|Gal(Q/F )) = L(s, λ̂) =
∑

n

λ̂(T (n))N(n)−s.

Numbers λ̂(n) are well-defined for integral ideals n of F . If there exists a cusp form f̂ : GL2(F )\GL2(FA)→
C such that f̂ |T (n) = λ̂(T (n))f̂ , the cusp form f̂ is called the base-change of f to F .

Since the Hecke eigenvalue λ̂(T (n)) is derived from λ(T (n)) in a purely arithmetic way, finding

f̂ is a highly non-trivial question. This type of problem was first considered by Doi and Naganuma
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in the late 60’s and the existence of f̂ was proved in the late 70’s by Langlands for prime cyclic
extensions F/Q as long as the restriction of ρλ to Gal(Q/F ) remains irreducible. In any case, the
problem remains open for non-soluble or non-Galois extensions F/Q.

4.3. Speculation. We study here the problem of base-change for a Hecke eigenform f ∈ Sk(Γ0(N), ψ)
for k ≥ 2. We call f liftable if there is a finite set of places Sf (including ∞) such that f has a
base-change to F if F/Q is unramified at Sf .

The most significant assumption of Fujiwara’s theorem is the optimal modularity of ρ, and other
conditions seem likely to be removed in coming years. We start our speculation by supposing that
Fujiwara’s result holds only assuming F –modularity of ρ:

Starting with f , try to find a sequence of Hecke eigenforms fj ∈ Skj
(Γ0(Nj), ψj) for a suitable

level Nj such that fj ≡ f
σj

j−1 mod lj for σj ∈ Gal(Q/Q) and for a prime lj of Q dividing an odd

prime `j . We write f ∼ fj if such a sequence of congruence (and Galois conjugation) exists.
If we can find (optimally) liftable fj , then applying Fujiwara’s theorem to the prime `j in place

of p and ρ associated to the base-change lift f̂j of fj , fj−1 is (optimally) liftable, because the `j–

adic Galois representation of fj restricted to Gal(Q/F ) is a deformation of ρ. Applying the above

argument for `j−1 in place of p to fj−2 and the base-change f̂j−1, fj−2 would be liftable to F , and
so on, getting eventually the liftability of f by induction.

However at the present state of knowledge, to make the above argument work, we need to assume
the following four conditions on χ = χj, ` = `j , l = lj and φ = fj for all j:

(1) φ is l-ordinary;
(2) The Galois representation ρl,φ of φ modulo l is absolutely irreducible as a representation of

Gal(Q/µ`));
(3) ` is odd and is unramified in F/Q;
(4) χ has conductor equal to the level of φ and has order prime to `.

The last assumption guarantees that the base-change if exists it has minimal level.

Proposition 4.3. If we can remove the above four conditions on `, then every modular form is
liftable.

Proof. By a theory of p–adic modular forms, for a given f , we can always find g such that f ≡ g
mod p. Thus we may assume that f is of weight 2. Take sufficiently large N so that S2(Γ1(N))
contains a liftable form h (for example, theta series). The following argument, proving the connect-
edness of the spectrum of the Hecke algebra over Z for S2(Γ1(N)), is due to B. Mazur: Let Σ be
the system of eigenvalues of T (n) (for n prime to N). If we can separate Σ = Σ1 t Σ2 so that (i)
Σj is Galois stable and (ii) there is no congruences between eigenvalues in Σ1 and Σ2. Then we can
split J1(N) = A × B for abelian subvarieties A and B. Then the polarization divisor Θ has to be
algebraically equivalent to A × D ∪ D′ × B for divisors D and D′. It is well known the algebraic
equivalence class of a theta divisor is made of irreducible degree 1 divisors; so, this is impossible.
Thus we find a sequence fj such that f ∼ f1 ∼ f2 ∼ · · · ∼ fj ∼ h;so, f is liftable. �

Suppose that f ∈ Sκ(Γ0(N), ψ) is p–ordinary for a prime p of Q, that is, for a prime p of Q,
ap with f |T (p) = apf is a p–adic unit. Then we can include fκ in the p–adic family of modular
forms {fk,ε}k≥2,ε such that fk ≡ fκ mod p and fk,ε ∈ Sk(Γ0(Np), ψεω

κ−k
p ) (see [H] Section 7.5 and

Section 2). Here ε runs over all finite order characters of 1 + pZp regarded as Dirichlet characters.
Thus if f is liftable, then fk,ε is liftable. Pick any prime q for which fk,ε is q–ordinary, we can
include fk,ε in the q–adic family of Hecke eigenforms; so, {g`,η} is liftable for all ` ≥ 2 and all finite
order character η of 1 + qZq.

Problem 1. By repeating the above construction, what amount of modular forms can be proven to
be liftable.

The following conjecture might be some help to solve the above question.

Conjecture 4.4 (Ordinarity). Let f be a Hecke eigenform of weight ≥ 2 without complex multipli-

cation. Then the Dirichlet density of primes q for which f is q–ordinary for some prime q|q of Q is
equal to 1.



MODULARITY PROBLEMS OF Q–MOTIVES AND BASE-CHANGE 15

This fact is proven by Serre for weight 2 Hecke eigenforms.

Let D be a discriminant of a real quadratic field. Now we prove that the space
Sk(Γ0(D), χD) for χD =

(
D
)

has a liftable form. For complex conjugation c,

fc|T (n) = χ(n)λ(T (n))fc if f |T (n) = λ(T (n))f and n is prime to D.

Thus if f ≡ fc mod p, the mod p representation ρ associated to f satisfies ρ ∼= ρ ⊗ χ; thus, it is
residually induced (and irreducible if p is prime to p and k > p). I proved in Documenta Math. 3
(1998) the following

Proposition 4.5. Embed Q[
√
D] in R, and let u be a positive fundamental unit. For simplicity,

suppose that N(u) = −1.

(1) If q–adic representation is q–ordinary and residually dihedral non-dihedral and q is odd, then
q|N(uk−1 − 1) and χD(q) = 1;

(2) If q|N(uk−1 − 1) for an odd prime q with k ≥ 4 or q ≥ 5, then there exists a Hecke
eigenform f ∈ Sk(Γ0(D), χD) and a prime q|q in Q such that f is q–ordinary and q–adic
Galois representation of f is residually dihedral non-dihedral.

The set of odd prime factors of N(uk−1− 1) is non-empty if k ≥ 6. There exist an odd prime factor
of N(uk−1 − 1) for all even k if D 6≡ 1 mod 8 and D 6= 5.

Speculation. For each pair of Hecke eigenforms (f, g) in Sk(Γ0(D), χD), we have f ∼ g by ordinary
odd primes.

This of course implies liftability of all elements in Sk(Γ0(D), χD) if k ≥ 6 (assuming the validity of
Fujiwara’s result only under F –modularity).

Related to this, there is a conjecture of Maeda:

Conjecture 4.6 (Y. Maeda). All Hecke eigenforms in Sk(SL2(Z)) are Galois conjugate each other.

This conjecture is known to be true for k ≤ 1000. Assuming this conjecture, one can prove the
liftability of level 1 Hecke eigenforms for k < 107128.

Example 4.1. We study the liftability of ∆ ∈ Sk(SL2(Z)). ∆ is p–ordinary for primes p with p ≥ 11,
p 6= 2411 and p ≤ 7, 196, 993 (according to F. Q. Gouvêa). Use the prime p = 13, and take the
13–adic family of modular forms {∆k}k≥2 of ∆, we find ∆6 ∈ S6(Γ0(13), χ13). In this space, all
forms are Galois conjugates (so Speculation holds). The prime q for which ∆6 is residually dihedral
is q = 131. Thus if F/Q is unramified at 13 and 131, one can check from Fujiwara’s theorem that
∆ and ∆k has base-change for F . For this, we used the fact that the image of mod p representation
of ∆ contains SL2(Fp) if p 6∈ {3, 5, 7, 23, 691} (due to Serre and Swinnerton-Dyer).

Similar argument shows that: all f ∈ Sk(SL2(Z)) is liftable for k ≤ 1000. For more details, see
my paper with Maeda in Pacific Journal in 1997.

Here is plain consequence of the validity of our speculations:

• Conjecture 4.4 and Speculation imply liftability of all level 1 Hecke eigenform;
• Conjectures 4.4 and 4.6 also imply the liftability of all Hecke eigenforms of level 1.

Since level 1 forms are dense in the space of p–adic modular forms of level p∞, liftability without
exceptional primes of level 1 forms would imply liftability of all p–power level forms (as p–adic
modular forms).

‘
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